ENCYCLOPAEDIA;
OR, A
DICTIONARY
OF
ARTS, SCIENCES,
AND
MISCELLANEOUS LITERATURE;
Constructed on a Plan,
BY WHICH
THE DIFFERENT SCIENCES AND ARTS
Are digested into the Form of Distinct
TREATISES OR SYSTEMS,
COMPREHENDING
THE HISTORY, THEORY, and PRACTICE, of each,
According to the Latest Discoveries and Improvements;
AND FULL EXPLANATIONS GIVEN OF THE
VARIOUS DETACHED PARTS OF KNOWLEDGE,
WHETHER RELATING TO
NATURAL and ARTIFICIAL Objects, or to Matters ECCLESIASTICAL,
CIVIL, MILITARY, COMMERCIAL, &c.
Including ELUCIDATIONS of the most important Topics relative to RELIGION, MORALS, MANNERS,
and the ECONOMY of LIFE:
TOGETHER WITH
A DESCRIPTION of all the Countries, Cities, principal Mountains, Seas, Rivers, &c.
throughout the WORLD;
A General HISTORY, Ancient and Modern, of the different Empires, Kingdoms, and States;
AND
An Account of the Lives of the most Eminent Persons in every Nation,
from the earliest ages down to the present times.

Compiled from the writings of the best Authors, in several languages; the most approved Dictionaries, as well of general science as of its particular branches; the Transactions, Journals, and Memoirs, of various Learned Societies, the MS. Lectures of Eminent Professors on different sciences; and a variety of Original Materials, furnished by an Extensive Correspondence.

THE FIRST AMERICAN EDITION, IN EIGHTEEN VOLUMES, GREATLY IMPROVED.

ILLUSTRATED WITH FIVE HUNDRED AND FORTY-TWO COPPERPLATES.

V O L. VIII. G O B—H Y D

PHILADELPHIA:
PRINTED BY THOMAS DOBSON, AT THE STONE HOUSE, No 41, SOUTH SECOND STREET.
M.DCC.XCVIII.

[Copy-Right secured according to law.]
GOBBO (PIETRO PAOLO CORTONESI, so called), a celebrated painter of fruit and landscapes, was born at Cortona in 1580, and learned the principles of design from his father; but was afterwards the disciple of Carleccia at Rome, and perfected himself in the most essential parts of his profession, by studying after nature, with judgment and accuracy. His merit soon recommended him to the notice and esteem of the most able judges at Rome; and as he excelled equally in painting fruit and landscape, he found a generous patron in cardinal Borghese, who employed him to adorn his palace. The fruit which he painted had so true and expressive an imitation of nature, that nothing could possibly be more exact; and by his thorough knowledge of the chiaro-fero, he gave an extraordinary roundness and relief to every object. But his greatest excellence consisted in his colouring; for in design he was not remarkably superior to others. He died in 1640.

GOBELIN (Giles), a famous French dyer, in the reign of Francis I. discovered a method of dying a beautiful scarlet, and his name has been given ever since to the finest French scarlets. His house, in the suburb of St Marcel at Paris, and the river he made use of, are still called the gobelins. An academy for drawing, and a manufactury of fine tapestries, were erected in this quarter in 1666; for which reason the tapestries are called the gobelins.

GOBIUS, in ichthyology, a genus of fishes belonging to the order of thoracici. They have two holes between the eyes, four rays in the membrane of the gills, and the belly-fins are united in an oval form. There are eight species, principally distinguished by the number of rays in their fins.

GOBEL, or GOBELLET, a kind of drinking cup, or bowl, ordinarily of a round figure, and without either foot or handle. The word is French, goblet; which Salmasius, and others, derive from the barbarous Latin cupa. Budes deduces it from the Greek κυρα, a sort of cup.

GOD, one of the many names of the Supreme Being. See Christianity, Metaphysics, Moral Philosophy, and Theology.

God is also used in speaking of the false deities of the heathens, many of which were only creatures to which divine honours and worship were superstitiously paid.

The Greeks and Latins, it is observable, did not mean by the name God, an all-perfect being, whereof eternity, infinity, omnipotence, &c. were essential attributes; with them, the word only implied an excellent and superior nature; and accordingly they gave the appellation gods to all beings of a rank or class higher and more perfect than that of men; and especially to those who were inferior agents in the divine administration, all subject to the one Supreme. Thus men themselves, according to their system, might become gods after death; inasmuch as their souls might attain to a degree of excellence superior to what they were capable of in life.

The first divines, father Bossa observes, were the poets; the two functions, though now separated, were originally combined; or, rather, were one and the same thing.

Now the great variety of attributes in God, that is, the number of relations, capacities, and circumstances, wherein they had occasion to consider him, put these poets, &c. under a necessity of making a partition, and of separating the divine attributes into several persons; because the weakness of the human mind could not conceive so much power and action in the simplicity of one single divine nature. Thus the omnipotence of God came to be represented under the person and appellation of Jupiter; the wisdom of God, under that of Minerva; the justice of God under that of Juno.

The first idols or false gods that are said to have been adored, were the stars, fire, moon, &c. on account of the light, heat, and other benefits, which we derive from them. Afterwards the earth came to be deified, for furnishing fruits necessary for the subsistence of men and animals; then fire and water became objects of divine worship, for their usefulness to human life. In process of time, and by degrees gods became multiplied to infinity; and there was scarce any thing but the weakness or caprice of some devotee or other elevated into the rank of deity; things useless or even destructive not excepted. See Mythology.

GODALMING, a town of England, in the county of Surry, on the river Wey, 35 miles from London. It is a corporation; by whose charter their chief magistrate is a warden chosen yearly, who has 8 brethren his assistants. The parish is divided into 9 tithings. Its river abounds with good fish; and drives a grist-mill, two paper-mills, and three corn-mills; over which river a new bridge was begun July 22d 1783. Here is a manufactury of mixed and blue kerseys, also a manufactury of stockings; and the place is also famous for liquorice, and store of peat that burns better than pitch-coal; but a woman of this town (Mary Tuffs) in 1726 endeavoured to render it infamous, by a pretend-
Godfathers of some of the inhabitants. In that college in 1647. As he was a fellow of the college of physicians in 1646, and appointed reader of the anatomical lecture in that college in 1647. As he took part against Charles I., accepted the wardenship of Merton-college, Oxford, from Oliver Cromwell when chancellor, and sat for representative of that university in Cromwell's parliament, he was removed from his wardenship in a manner disgraceful to him by Charles II. He was however then professor of physic at Gresham college, to which he retired, and continued to attend those meetings that gave birth to the Royal Society; upon the establishment of which, he was nominated one of the first members. Being fully persuaded that the preparation of medicines was not the physician's business, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter affuies was only the volatile spirit of raw silk rectified and sifted with oil of cinnamon or some other essential oil. But he claims more credit for the translation of the works of medicine than for prescribing them, he constantly prepared his own; and in 1668 published a treatise recommending his example to general practice. He died of an apoplectic fit in 1674; and his memory was preserved by the drops that bore his name, otherwise called Gutta Percha, the secret of which he sold to Charles II., and which Dr. Lifter af...
Lincoln, the visitor. The only entire part is small, formerly a private chapel. Not many years since a stone coffin, said to have been Rosamond’s, who perhaps was removed from the church to this place, was to be seen here. The building has been put to various uses, and at present serves occasionally for a stable.

GODWIN (Francis), succisively bishop of Landaff and Hereford, was born in 1567. He was eminent for his learning and abilities; being a good mathematician, an excellent philosopher, a pure Latinist, and an accurate historian. He understood the true theory of the moon’s motion a century before it was generally known. He first hinted those hints afterwards purified by bishop Wilkins, in his “Secret and swift messenger,” and published “A catalogue of the lives of English bishops.” He has nevertheless been accused as a great sinner, for omitting no opportunity of disposing of preferments in order to provide for his children. He died in 1648.

GODWIN (Thomas), a learned English writer born in 1517, was master of the free-school at Abington in Berkshire; where he educated a great many youths, who became eminent both in church and state. His works show him to have been a man of great learning: such as, Historie Romane antiquitates, Synopsis antiquitatum Hebraicarum, Moses & Aaron, Florilegium Floridum, &c. He died in 1642.

GODWIN, or Godwin Sands, famous sand-banks off the coast of Kent, lying between the N. and S. Foreland; and as they run parallel with the land; and as they run parallel with the land; they have been the desideratum of those Jews who were firm to their religion; and by the person of the same name in the Revelation, they suppose Antichrist to be meant; the great enemy of the church and faithful. Some have endeavoured to prove that Gog, spoken of in Ezekiel, and Cambyses king of Persia, were one and the same person; and that Gog and Magog in the Revelations denote all the enemies of the church, who should be protectors of it to the commutation of ages.

GOGGLES, in surgery, are instruments used for curing squinting, or that distortion of the eyes which occasions this disorder. They are short conical tubes, composed of ivory stained black, with a thin plate of the same ivory fixed in the tubes near their anterior extremities. Through the centre of each of these plates is a small circular hole, about the size of the pupil of the eye, for the transmission of the rays of light. These goggles must be continually worn in the daytime, till the muscles of the eye are brought to act regularly and uniformly, so as to direct the pupil straight forwards; and by these means the cure will be sooner or later effected.

GOMMAGOG-HILLS, are hills so called, three miles from Cambridge, remarkable for the intrenchments and other works call’d up there: whence some suppose it was a Roman camp; and others, that it was the work of the Danes.

GOGUET (Antony-Yves), a French writer, and author of a celebrated work, intituled, L’Origine des Lois, des Arts, des Sciences, &c de leur Prayres chez les anciens Peuples, 1759, 3 vols. 4to. His father was an advocate, and he was born at Paris in 1716. He was very unpromising as to abilities, and reckoned even dull in his early years; but his understanding developing itself, he applied to letters, and at length produced the above work. The reputation he gained by it was great; but he enjoyed it a very short time, dying the same year of the small-pox; which disorder, it seems, he always dreaded. It is remarkable, that Conrad Fuger, to whom he left his library and his MSS, was so deeply affected with the death of his friend, as to die himself three days after him. The above work has been translated into English, and published in 3 vols. 8vo.

GOLCONDA, a kingdom in Asia, in the peninsula on this side the Ganges. It is bounded on the north by that of Oria, on the west by that of Balagate, on the south by Billagar, and on the east by the gulf of Bengal. It abounds in corn, rice, and cattle; but that which renders it most remarkable, are the diamond-mines, they being the most considerable in the world: they are usually purchased of the black merchants, who buy parcels of ground to search for these precious stones in. They sometimes fail in meeting with any, and in others they find immense riches. They have also mines of salt, bauxite for sword-blades, and curious callicoes and Chelsea.

Vol. VIII. Part I.
GOLD, the most valuable of all the metals, is of a bright yellow colour when pure, but becomes more or less white in proportion as it is alloyed with other metals. It is the heaviest of all known bodies, platinum only excepted, its specific gravity being that of distilled water as 19.640 to 1000. It melts in a low white heat; requiring, according to Mr Wedgewood’s calculation, 5237 degrees of Fahrenheit’s, or 32 of his own, thermometer for its fusion; a heat greatly superior to that which melts silver or copper; the former requiring only 4717, and the latter 4587 of Fahrenheit. Other metallurgists, however, have differed, and affirmed that copper requires for its fusion a greater degree of heat than either gold or silver.

Gold is by far the most tough and ductile, as well as the most malleable of all metals. According to Cronstedt, one grain of it may be stretched out so as to cover 98 Swedish ells, equal to 63.66 English yards of silver wire; but Wallerius asserts, that a grain of gold may be stretched in such a manner as to cover 500 ells of wire. At any rate, the extensio is prodigious; for, according to the leaf of these calculations, the millionth part of a grain of gold may be made visible to the naked eye. Nor is its malleability inferior to its ductility. Boyle, quoted as Apligny in his Treatise of Colours, says, that one grain and an half of gold may be beaten into 50 leaves of one inch square, which, if intercalated by parallel lines drawn at right angles to each other, and distant only the 100th part of an inch from each other, will produce 25 millions of little squares, each very easily discernible by the naked eye. Mr Magellan tells us, that its surface may be extended by the hammer 15000 times. "I am informed," says he, "by an intelligent gold-beater in England, that the finest gold leaf is that made in new ships, and must have an alloy of three grains of copper to the ounce troy of pure gold, or else it would be too soft to pass over the irregularities of the skin. He affirms, that 80 books, or 2000 leaves of gold, each measuring 33 square inches, viz. each leaf containing 10.89 square inches, weigh less than 384 grains. Each book, therefore, or 25 leaves, =272.23 inches, weighs less than 4 grains; so that each grain of the metal will produce 56,718 square inches."

From further calculations it may be made to appear, that the thickness of these leaves is less than 1/15000 of an inch; and that 16 ounces of gold would be sufficient to gold a silver wire equal in length to the whole circumference of the globe.

Gold is more elastic than lead or tin, but less so than iron, or even copper. It grows hard and brittle by hammering, but resumes its ductility on being slowly heated. Gold leaf exhibits a fine green colour on being interposed between the eye and the beams of the sun or any other luminous body. When exposed for some time to a strong heat, it becomes ignited, and at half melts, assuming at the same time a fine bluish-green colour; and, when cold, crystallizes into quadrilateral pyramids. This bluish-green colour, according to Mr Magellan, as well as the former, when a thin film of the metal is interposed between the eye and the luminous body, is owing to transmitted light. "The green light (says he) is transmitted in both cases, since all reflected colours are produced by the transmutation of light, as the ingenious philosopher Mr Delavals has lately discovered and demonstrated in his very elaborate treatise on this subject, inferred in the second volume of the memoirs published in 1753 by the Philosophical Society of Manchester." Sir Isaac Newton, in his Optics (page 162, edition of 1730), accounts for that phenomenon, saying, that "gold foliated, and held between the eye and the light, looks of a greenish blue; and therefore (says he) many gold leaves let into its body the blue rays to be reflected to and fro within it, till they be stopped and reflected; while it reflects the yellow outwards, and therefore looks yellow." It is therefore, in the two above cases, that some of the blue rays are transmitted along with the yellow ones; and both together appear of a bluish-green. If gold be exposed to the joined rays of light, excepting only the yellow ones, which we suppose stopped after they were separated by a prism, it only looks white like silver; "which flows (says Sir Isaac Newton) that its yellownefs arises from the excess of intercepted rays tinging that whitenefs with their colour when they are let to pass. It is a pleasing observation to look with a deep magnifier on various pieces of gold, silver, and Dutch (copper) leaves between the eye and the sunshine. The particles of silver are seen in the form of oblong dark lumps, with some interlines, like net-work, between them: those of the copper-leaf are more numerous and more regularly distributed; but the particles of the gold-leaf appear like little green transparent and similar particles, uniting between themselves by nearly diaphanous joints, as if they were forced to flatten in their edges, rather than they would break their mutual cohesion with one another."

Gold is more generally found native than any other metal; though Bergman informs us, that he does not know an instance of its ever being found perfectly free of alloy. Kirwan says it is seldom found pure; being generally alloyed with silver, copper, or iron, and sometimes with all the three. According to Wallerius, native gold is found, 1. In solid masses, in Hungary, Transylvania, and Peru. 2. In grains in the Spanish West Indies. 3. In a vegetable form like the branches, or twigs of plants. 4. In a druse figure, as composed of groups or clusters of small particles united together, found in Hungary. 5. Composed of thin plates, or thin pellicles, covering other bodies, found in Siberia. 6. In a crystalline form in Hungary.

The same author informs us, that gold, in its regular state, is formed either into angular crystals composed of yellow octaedrons, or into yellow irregular masses, which flow a grain-like texture. Brunnich says, that the native gold found in leaves is always crystallized on the surface; and with a magnifier they may be seen of a triangular pyramidal form. He informs us also, that in Transylvania he procured a specimen of cubic native gold, but never saw it any where else.

Gold is also found in the form of thick solid pieces. It is in general more frequently imbedded in quartz, and mixed with it, than with any other stone; and the quartz in which the gold is found in the Hungarian
Gold is principally supplied with gold from Chili and Peru in South America. A small quantity is likewise imported from China and the coast of Africa. The principal gold mines of Europe are those of Hungary, and next to them the mines of Salzburg. The mines of Adelfors in Smaland are likewise worked to advantage; and the veins of metal appear to be diffused over a great tract of land. Some gold from four to seven grains in the mark is also said to be extracted from the silver of the mines of Ofterilvarberget in the province of Dalarno. Native gold has also been found in Lapland above Tornea, and in Westmanland. In Peru it is found mixed with a flouzy matter not well known, from which it is extracted by amalgamation. Mr. Pallas mentions three gold mines that are worked there, near the river Pyshma, in which 500 men are employed. The metal is found in a powdery form, and also thin plates or leaves. Sometimes kernels or lumps of a spongy texture, and very light, are met with which contain a good quantity of gold dust. This gold-dust or waft-gold is usually washed out of sands wherein it lies in the form of loose grains or lumps. It is distinguished by the variously coloured substances wherewith it is mixed. The metal is also found separate from any matrix in lumps or visible grains mixed with sands. Thus it is met with in many rivers of Europe as well as in the other quarters of the world. It is also very diffused through masses of sand, particularly such as is of a yellowish-red or violet-colour; and in this state it is so universally diffused through every kind of earth, that Mr. Bergman thinks it the most common of all the metals, iron alone excepted. If 100 pounds of sand contain 24 grains of gold, the separation is said to be worth attending to. In Africa 5 pounds of sand often yield 63 grains of gold, or even more; and the heaviest sand, which is often black or red, contains the most. In Hungary, however, only 10 or 12 grains of gold are contained in 10,000 pounds of sand, and even this trifling quantity it has been extracted, though with labour.

Gold is brought down with most of the large rivers; even those which do not take their rise in mountains where gold is found. In Transylvania the river of Avanyos affords sufficiency to upwards of 700 Gipley families, who collect the gold from it. In Brazil it is found in such abundance, that their torrents are often turned with great labour and expense into new beds, in order to gather the gold there deposited by the running waters. It is also found there mingled with the earth in various shapes and forms. It is likewise said to be sometimes found in veins running through beds of coals.

Gold is said to be mineralized, when it is mixed with some other substance in such a manner as not to be acted upon by aqua regia. In this manner gold is mineralized.

1. By Sulphure. Many have insisted, that as gold and sulphur are not found to have any chemical attraction for one another, it is impossible that marcasite can contain any of the metal, or indeed that it can be found in any ore containing sulphur: but since we know by experience, that gold can be melted out of these ores, even after they have been digested in aqua regia, and that gold likewise enters into their sulphurated regulars, there is the greatest reason to believe, that some third substance, probably a metal, has by its admixture enabled the sulphur to unite with the minute quantity of gold. Marcasites, however, contain, at any rate, only a small quantity of the precious metal; and none is to be expected from them in places where no gold is in the neighbourhood. "I am not perfectly clear (says Cronstedt) whether the gold is really dissolved and indurated, or, if I may so express myself, vitrified in the fchiris; provided by this mineral body, we mean a garnet substance. But I have seen a piece of what is called fchir, whose texture was exactly like the Schemnitz blende; and in this case it might perhaps hold the same contents."

2. With Sulphur by means of Iron. Gold pyrites, or marcasité gold ore. This is a close and compact substance of a bright yellow colour. Here the gold is said to be mineralized by sulphur by means of iron, because it cannot be extracted by aqua regia or by amalgamation. A kind of gold pyrites is found at Adelfors in the province of Smaland, which contains an ounce or less of gold in an hundred weight of the ore. The Transylvania gold pyrites, according to Brunnicl, in which no gold can be perceived by the naked eye, contain from 30 to 100 and 110 ounces and upwards in an hundred weight. Those where the gold appears in the pyrites like fired Spanish stuff, hold 520 ounces, but they are very scarce. The mountain of Fazzebaye, near Zalaitha, is remarkable for gold pyrites; and here they seem also to contain semi-metallic parts.

The following is M. Magellan's method of accounting for the union of gold with this kind of pyrites. "It is well known, that gold may be dissolved by liver of sulphur. The procès given for this purpose by M. Apliny, p. 136 of his Treatise on Colours, is as follows. Reduce to powder four pounds of vegetable alkali (citrine, tartar), and as many of sulphur, with one of leaves of gold. Melt this mixture in a crucible with its cover; pour the fused matter out on a marble stone; pound it again when cold, and put the whole in a mortar with hot water; which being filtrated is of a greenish yellow colour, containing the gold dissolved. Now, as we know that hepdr sulphuris has been found in several pyrites, and Mafigani says that he found it in those lagoons near Sienna in Italy; is it not very natural to conclude, that this noble metal may be really mineralized in the auriferous pyrites?"

3. Auriferous Cassiterite, in which the metal is mineralized by means of quicksilver, said to be found in Hungary. Mr. Sage speaks of a specimen of gold from Hungary, now in the French king's cabinet at Paris, which is crystallized into quadrangular prisms of a grey yellowish colour and a brittle consistence, which he supposes to be the result of a mercurial amalgam of native gold.

5. The Schemnitz Blende, in which the gold is mineralized by means of zinc and iron. Cronstedt informs us, that the ores of zinc at Schemnitz in Hungary contain a great deal of silver, and that this silver is very rich in gold. Professor Brunnicl enumerates the following varieties of this ore. 1. Where the metal...
Gold is mineralized by means of a cubic lead-ore, containing silver found in the mines of Michaeli and some places in Transylvania. 2. By a copper pyrites with silver. This kind is called gold in Hungary: it has a compact surface of a pale yellow colour; but must not for that reason be confounded with the auriferous pyrites. 3. The Creminitz-ores in which the metal is mineralized by means of red gilder-ore. 4. By means of the metal scattered very minutely in it. The vein is quartz, seen through microscopes, and often cannot be seen at all before it is separated by various processes. 5. By cubic lead-ore, iron, and some unknown volatile parts. This ore, as described by Scopoli, is black; the richest pieces are laminated almost like an iron-glimmer, with a degree of flexibility. The vein is quartz, which is sometimes loose, and the metal scattered very minutely in it. It is found in Transylvania. 6. Native gold, with black-lead (or molybdana), has been found near Rimezembut in Upper Hungary; but our author (Professor Brunnicl) has not had any opportunity of examining whether it is mineralized by it or not. In all the above species, the gold is either entirely native, but so minutely divided, and so loosely scattered, that it can only be seen through microscopes, and often cannot be seen at all before it is separated by various processes: or it may not be in the form of native gold, but the metal as it were in embryo; in which case fire is necessary to bring the constituent parts together, and to add those that are wanting; in that cafe likewise it is never without some degree of metallic properties of gold. Kunckel and Boyle made the experiment by expelling gold for several months to the fire of a glafs-hole. It appears, however, that, by the violent heat of the sun-beams collected in the focus of a burning-glafs, some alteration may be produced in it. Komnekel and Boyle made the experiment by expelling gold for several months to the fire of a glafs-hole. It appears, however, that, by the violent heat of the sun-beams collected in the focus of a burning-glafs, some alteration may be produced in it. Homberg observed that gold, when exposed to the lens of Tichirhausen, formed, was volatilized, and even vitrified: and Macquer found, that the metal, when exposed to the lens of Mr. Trudaine, exhaled a fume which gilded silver, and was therefore gold in a volatile state: the globule of melted gold was agitated with a rapid circular motion, and became covered with a dull and as it were calciform pellicle: and lastly, that a violet vitrification was formed on the middle of the globule. This vitrification gradually extended, and produced a kind of button, flatter, or of a larger curvature, than that of the globe, and which stuck upon it as the transparent cornea appears on the sclerotica of the eye. This glafs increased in size, while the gold itself continually diminished: the support always appeared tinged with a purple colour, seemingly produced by the absorption of part of the glafs. Time did not permit him to vitrify a quantity of gold entirely. He observes, that it is a necessary condition to the violet glafs should be reduced with combustible matters, in order to justify the affection that it is the calx of that perfect metal, which would evidently appear to be the cause if it became revived into gold. But however this may be, Mr. Fourcroy is of opinion that this ought to be confidered as a true vitrified calx of gold; and this with the greater probability, as in many operations with this metal the purple colour is constantly produced, and many preparations of gold are employed to give that colour to enamel and porcelain. "Gold (says he) is therefore calcinable like the other metals; and only requires, as likewise does silver, a stronger heat, and a longer time to unite with the base of air than other metallic substances." Mr. Kirwan, on the other hand, tells us, that "gold exposed to the utmost heat of Mr. Parker's lens for some hours, lost no sensible part of its weight; yet, when in contact with earthy matters, it communicated a blue or purplish tinge to them; so that he believes an exceeding small portion of it might be dephlogistificated."

This experiment with the lens of Mr. Parker does not invalidate that of Macquer: for either Trudaine's lens may be more powerful than Mr. Parker's; or the air in France being more clear than in England, the action of the sun must be stronger. We are assured, however, that by means of the electric fire gold may be infamistaneously calcinable and even vitrified, whence we must conclude, not only that gold is really calcinable, but that the electric fire is almost infinitely more powerful than any other; as by its means we may in a moment accomplish what either cannot be done otherwise at all, or very imperfectly, even by the fiercest fire we can raise. The flame of a lamp blown by dephlogistificated air is also found sufficient to volatilize gold.

Gold being thus indestructible by the common operations of fire, equally resists its slow action in the atmosphere. It is altogether exempted from rusting; and though its surface becomes tarnished by exposure to the air, it is merely in consequence of the deposition of foreign bodies upon it. Water preserves no change, says Mr. Fourcroy; though, according to the experiments of Lagaraye, it seems capable of dividing it nearly in the same manner as it does iron.

Gold combines with various metals; and is commonly alloyed in a certain proportion with copper, which gives it a red colour and greater firmness than it possesseth when very pure, at the same time that it is thus rendered more fusible. In this state it is used for money, plate, and toys of different kinds. It is sometimes also alloyed with silver, which deprives it of its colour, and renders it very pale: this alloy, however, is not made without some difficulty, on account of the very different specific gravities of the two metals, as Homberg observed, who saw them separate during their fusion. The alloy of gold with silver forms the green gold of the jewellers and gold-beaters.

As gold has been rendered, by the universal consent of mankind, the most valuable substance in the world, it is of great consequence to be able to discover its degree of purity, in order to prevent the adulterations which would naturally be practiced, and to pro...
Gold. produce an equality of value in the different pieces dispersed in commerce. The chemical methods by which this is accomplished, are related under the articles Chemistry, and Essaying of Metals. To ascertain with precision the quantity of imperishable metal it may contain, a given mass of gold is supposed to contain 24 parts called carats; each carat being supposed divided into 32 parts called thirty-seconds of a carat. If the gold after the operation has lost one grain in 24, it is gold of 23 carats; if it has lost a grain and a half, it is gold of 22 carats 16 thirty-seconds, and so on.

The weight used in the assay of gold is called the assay weight, and usually consists of 24 grains; it is divided into 24 carats, which are likewise subdivided into 32 parts. An assay weight is likewise used which weighs 12 grains; and is likewise divided into 24 carats, subdivided again into thirty-seconds.

The scarcity and great price of gold prevents its being made into vessels or utensils; but as its brilliancy and colour are agreeable, methods have been found of applying it to the surface of a great number of bodies, which it thus not only beautifies, but by its indestructibility preserves from the injuries of the atmosphere. The art of applying it in this manner is called gilding; and the immense ductility of gold already mentioned, renders it capable of being applied in this manner at much less expense than could be imagined. It is used besides in gilding, either in a state of solution by acids, or amalgamated with mercury, which are called watery gilding. It was formerly used in medicine, and great Virtues were ascribed to it; whence the great number of golden tinctures, elixirs, &c. of quacks; but all these are now defervedly exploded, and the best practitioners allow that gold, in whatsoever manner it be prepared, is either inactive or dangerous.

Gold in its metallic state cannot be combined with the vitriifiable earths, but its calces may; for which reason they are often used in enameled painting and in porcelain, where they produce a beautiful violet-colour. Glafs is tinged by the means of a beautiful red of which we have an account in Neri's art of glafs-making; though Dr Lewis says he never could succeed in making the colour diffuse itself equally throughout the substance of the glafs. See Colouring of Glass.

The preparation of gold called aurum fulminans is taken notice of under the article Chemistry, No 103, M. Magellan takes notice of its extraordinary fulminating property, and says that its fragrance is 64 times greater than that of an equal quantity of gun-powder. According to Bergman, the strength of the explosion is 176 times greater than that of gun-powder (20 grains of aurum fulminans being equivalent to half a pound of gun-powder). Bergman accounts for the amazing strength of this explosion, by supposing it owing to the quantity of air extricated at the time; but this, according to his own account, cannot be at all sufficient for such a purpose; and Magellan is of opinion that "this wonderful phenomenon seems not yet completely accounted for by any hypothesis yet known." See the articles Chemistry, and Explosion.

It is on account of the singular and excellent natural qualities of this metal (says our author), which are considerably heightened by its scarcity, that gold is so much valued among all the civilized nations of the world. Mr Pautcson, in his Meteorologik, p. 34, says, that one cubic foot (French measure) of gold is worth 2,153,000 livres tournoyes, or 89,708 guineas and seven shillings, supposing the Louis d'Or to be equal to the guineas; and that the respective value of the former cubic foot of gold is equal to 25,6 cubic feet of silver; each of this last metal being reckoned worth about 84,000 French livres, or 3503 guineas and eight shillings; so that if we suppose the monied species in France to be but two milliards of French livres, according to the estimation of Mr Neckar in his Treatise upon the Commerce of Corn, the whole amount should make but a solid cube of gold less than 10 feet on each side. So trifling is the physical object that excites the activity of 222,000 of the human species, the number that is paid to be that of the inhabitants of France.

We shall close this article with some observations by M. Magellan on the state in which gold is found in the bowels of the earth, and consequently of the origin of gold ores. "As to the natural existence of gold in the bowels of the earth (says he), there have been two opinions among mineralogists; some pretending that it is only found in its metallic or native form; and others, that it is sometimes found mineralized in an intimate union with other substances. M. Kirwan holds the former, and the celebrated Bergman the latter. But, says Mr Kirwan, though Mr Bergman inclines to the opinion of the mineralization, yet he is candid enough to own, that the gold, when extracted from this ore, is of a granular or angular form. It is therefore very doubtful, whether it was not rather mixed, than truly combined with the sulphur and iron: and its proportion being exceedingly small so that 100 pounds of the pyrites scarcely contain an ounce of gold, it is not a wonder that it should escape the action of aqua regia; more especially as the nitrous acid becomes so phlogisticated by acting on the pyrites, as not to be able to dephlogisticate the marine. Likewise mercury, by reason of the gold particles being enveloped in the fulphurous iron, can hardly 20 parts to it.

"These arguments (says M. Magellan) against the true mineralization of gold, are fully answered by the facts already mentioned. Besides, it is well known, that gold can be combined and calcined, via fessa, by the liver of sulphur and femimetals. This being acknowledged on both sides of the question, why should we insist on denying this mineralization, when it is out of doubt, among mineralogists of rank, that volcanic fires have had a great share in the convulsions and revolutions of this globe, of which every one has the most convincing proofs almost everywhere. "The account given by Mr Hacquet of the gold mines at Nagy-ag in Transylvania, the ancient Dacia, which lies about 45° latitude, offers the most convincing proofs of this assertion. The country all round these mines bears an incontrovertible appearance of being a volcanic one; and among various other metals, there are at least 13 kinds of gold ores, most of them mineralized. These are, 1. Gold mineralized by sulphur, zinc, and arsenic, in a grey-yellowish volcanic ore, which is called cottuners, or cotton ore, on account of its lightness and texture. 2. By iron and arsenic, formed by strata; one containing black silver ore, then sphaltum, galena, quartz, and grey gold ore: it yields about half an ounce in the 100 pounds. 3. By sulphur, antimo-
Gold.

4. In the form of crooked threads mixed with quartz and gypseous spath; a poor mine. 5. Dendritiform, like the moco stone, or the agate from Aberdein in the Palatinate; but these black dendrites are in a reddish stone. 6. Amorphous, very compact, in small grains, with spath and quartz. A quintal of it yields two ounces of gold, and more of silver.

7. By sulphur, great part of zinc, and a little antimony and arsenic; not rich. 8. Of a black or dark-reddish colour, containing an affirmative pyrites; not rich. 9. Of a bluish colour, mineralized by sulphur, antimony, iron, and a little arsenic mixed with silver; very rich in gold.

10. Parly laminated with needles of a blackish yellow colour: this gives 66 ounces of gold per cwt of gold, according to Scopoli. 11. Polished with gypseous spath and yellow pyrites. 12. In irregular laminae, on a grayish argille. The gold looks like silver, is surrounded by spars of a pale rosy colour. 13. In crystallized laminae from two to four lines diameter, of an hexagonal form, and very much resembling molybdena. The vein was lost for some time, but lately found again on mining for letting out water from the main. This ore is very rare, and has given 372 ounces per cwt of a mixed metal; five of which were gold, and one silver.

Method of Recovering Gold from Gilt Works. The solvent power of gold, and the indissolubility of silver, in aqua regia, affords a principle on which gold may be separated from the surface of silver; and, on this foundation, different processes have been contrived, of which the two following appear to be the best. Some powdered sal ammoniac, moistened with aquafortis into the hexagonal form, and very much resembling molybdena. The vein was lost for some time, but lately found again on mining for letting out water from the main. This ore is very rare, and has given 372 ounces per cwt of a mixed metal; five of which were gold, and one silver.

The Editors of the Encyclopædia give a method of recovering the gold from wood that has been gilt on a water-size: this account is extracted from a memoir on the same subject, presented to the Academy of Sciences by M. de Montamy. The gilt wood is steeped for a quarter of an hour in a quantity of water sufficient to cover it, made very hot: the size being thus softened, the wood is taken out, and scrubbed, piece by piece, in a little warm water, with short stiff bristle brushes of different sizes, some small for penetrating into the carvings, and others large for the greater dispatch in flat pieces. The whole mixture of water, size, gold, &c. is to be boiled to dryness, the dry matter made red hot in a crucible to burn off the size, and the remainder ground with mercury, either in a mortar, or where the quantity is large, in a mill.

Cold-Wire. See Guinea.

Cold-Wire, a cylindrical ingot of silver, super fixtures gilt or covered with gold at the fire, and afterwards drawn successively through a great number of little round holes, of a wire-drawing iron, each less than the other, till it be sometimes no bigger than a hair of the head. See Wire-Drawing.

It may be observed that, before the wire be reduced to this excessive fineness, it is drawn through above 140 different holes; and that each time they draw it, it is rubbed after with new wax, both to facilitate its passage, and to prevent the silver's appearing through it.

Cold-Wire flattened, is the former wire flattened between two rollers of polished steel, to fit it to be spun on a stick, or to be used flat, as it is, without spinning, in certain stuffs, laces, embroideries, &c. See Stuff, &c.

Cold-Thread, or Spun-gold, is flattened gold, wrapped or laid over a thread of silk, by twining it with wheel and iron-bobbins.

To dispose the wire to be spun on silk, they pass it between two rollers of a little mill: these rollers are of nicely polished steel, and about three inches in diameter. They are set very close to each other, and turned by means of a handle fastened to one of them, which gives motion to the other. The gold wire in passing between the two is rendered quite flat, but without losing any thing of its gilding: and is rendered so exceedingly thin and flexible, that it is easily spun on silk thread, by means of a hand-wheel, and so wound on a spool or bobbin. See Wire-Drawing.
Gold-Leaves or Beaten Gold, is gold beaten with a hammer into exceeding thin leaves, so that it is composed that an ounce may be beaten into 1650 leaves, each three inches square, in which state it takes up more than 159,052 times its former surface. See Gold-Leaf.

It must be observed, however, that gold is beaten more or less, according to the kind or quality of the work it is intended for; that for the gold-wire drawers toOULD their ingots withal, is left much thicker than that for gilding the frames of pictures, &c. See Gilding.

Gold-Bread. See Brocade.

Mosaic-Gold. is gold applied in panells on a proper ground, distributed into squares, lozenges, and other compartments; part of which is shadowed to raise or heighten the rest. See Mosaic.

Gold-Plate for Enamelling are generally made of ducat gold, whose fineness is from 235 to 237 carats; and the finest gold is the best for this purpose, unless where some parts of the gold are left bare and unplated, as in watch-cases, snuff-boxes, &c. for which purpose a mixture of alloy is necessary, and silver is preferred to copper, because the latter disposes the plates to tarnish and turn green. See Enamelling.

Shell-Gold is that used by the gilders and illuminers, and with which gold letters are written. It is made by grinding gold leaves, or gold-beaters fragments, with a little honey, and afterwards separating the honey from the powdered gold by means of water. When the honey is washed away, the gold may be put on paper or kept in shells; whence its name. When it is used, it is diluted with gum-water or soap-finds. The German gold-powder, prepared from the Dutch gold-leaf in the same manner, is generally used; and when it is well foured with varnish, answers the end in japanners gilding as well as the genuine.

Gold-Size for burnished gilding is prepared of one pound and an half of tobacco-pipe clay, half an ounce of red chalk, a quarter of an ounce of black lead, forty drops of sweet oil, and three drams of pure tallow; grind the clay, chalk, and black lead, separately, very fine in water; then mix them together, add the oil and tallow, and grind the mixture to a due confluence.

Gold-size of japanners may be made by pulverizing gum animi and asphaltum, of each one ounce; red-lead, a little charge of gold, and umbre, of each one ounce and a half, mixing them with 3 pounds of linseed-oil, and boiling them, observing to stir them till the whole be incorporated, and appears on growing cold of the confluence of tar; strain the mixture through a funnel, and keep it stopped up in a bottle for use. When it is used, it must be ground with as much varnish as will give it an opaque body, and diluted with oil of turpentine, so that it may be worked freely with the pencil. A simple preparation consists of one pound of linseed oil and four ounces of gum animi; powder the gum, and mix it gradually with the boiling oil; let it continue to boil till it becomes of the confluence of tar; strain it through a coarse cloth; keep and use it as the other.

Gold-Finch, in ornithology. See Fringilla.

These are seed-birds of very curious colours, and which, were they not so common, would probably be very much esteemed.

Vol. VIII.
GOL

[10]

GOLDEN, particularly of the philosopher's stone. Others have explained it by the profit of the wool-trade to Celts, or the gold which they commonly gathered there with fleeces in the rivers. See ARGONAUTS.

Order of the Golden Fleece, is a military order instituted by Philip the Good, duke of Burgundy, in 1390. It took its denomination from a representation of the golden fleece, borne by the knights on their collars, which consisted of flints and fleeces. The king of Spain is now grand master of the order, in quality of duke of Burgundy: the number of knights is fixed to thirty-one.

It is usually said to have been instituted on occasion of an immense profit which that prince made by wool; though others will have a chemical mystery couched under it, as under that famous one of the ancients, enough of metallurgy to be able to infinuate that the fabulous conquest particularly of the duke of Burgundy had in view both the golden fleece of Jason, and a[ured the young prince to leave materials of the ingot to the thinness they wanted: besides what he has for the fashioning, more than the buyer may be allowed for it at the king's exchange; and here any false metal shall be foiled and forfeited to the king. The cities of York, Exeter, Bristol, &c. are places appointed for the assay wrought-plate of goldsmiths; also a duty is granted on silver-plate of sixpence an ounce, &c. Plate made by goldsmiths shall be of a particular fineness, on pain of forfeiting, and if any parcel of plate sent to the assayers is discovered to be of a coarser alloy than the respective standards, it may be broken and defaced; and the fees for assay are particularly limited.

GOLDSMITH (Oliver), a celebrated English writer, was born at Roscommon in Ireland in the year 1731. His father, who possessed a small estate in that county, had nine sons, of whom Oliver was the third. He was originally intended for the church; and with that view, after being well instructed in the classics, was, with his brother the Rev. Henry Goldsmith, placed in Trinity-college, Dublin, about the latter end of the year 1749. In this seminary of learning he continued a few years, when he took a bachelor's degree: but his brother not being able to obtain any preferment after he left the college, Oliver, by the advice of Dean Goldsmith of Cork, turned his thoughts to the study of physic; and, after attending some courses of anatomy in Dublin, proceeded to Edinburgh in the year 1751, where he studied the several branches of medicine under the different professors in that university. His beneficent disposition soon involved him in unexpected difficulties; and he was obliged precipitately to leave Scotland, in consequence of engaging himself to pay a considerable sum of money for a fellow-student.

A few days after, about the beginning of the year 1754, he arrived at Sunderland, near Newcastle, where he was arrested at the suit of a tailor in Edinburgh, to whom he had given security for his friend.
Goldsmith. By the good offices of Laughlin Maclane, Esq.; and Dr. Sleigh, who were then in the college, he was soon delivered out of the hands of the bailiff; and took his passage on board a Dutch ship to Rotterdam, where, after a short stay, he proceeded to Brussels; he then visited great part of Flanders; and after passing some time at Strinburg and Louvain, where he obtained a degree of bachelor of physic, he accompanied an English gentleman to Bern and Geneva.

It is undoubtedly fact, that this ingenious unfortunate man travelled on foot most part of his tour. He had left England with very little money; and being of a philosophical turn, and at that time possessing a body capable of sustaining every fatigue, and a heart not easily terrified at danger, he became an enthusiast to the design he had formed of seeing the manners of different countries. He had some knowledge of the French language and music, and he played tolerably well on the German flute; which, from an amusement, became at times the means of subsistence. His learning produced him a hospitable reception at most of the religious houses; and his music made him welcome to the peasants of Flanders and other parts of Germany. "Whenever I approached," he used to say, "a peasant's house towards night-fall, I played one of my motley tunes; and that procured me not only a lodging, but subsistence for the next day: but in truth (his confiant expression) I must own, whenever I attempted to entertain persons of a higher rank, they always checked my performance odious, and never made me any return for my endeavours to please them."

On Mr Goldsmith's arrival at Geneva, he was recommended as a proper person for a travelling tutor to a young man, who had been unexpectedly left a considerable sum of money by his uncle Mr S., formerly an eminent pawnbroker near Holborn. This youth, who had been articled to an attorney, on his engaging with his preceptor, made a sketch of his delightful poem called the Traveller, and his Vicar of Wakefield, was followed by the performance of his comedy of the Good-natured Man at Covent-Garden theatre, and placed him in the first rank of the poets of the present age.

Among many other persons of distinction who were desirous to know him, was the Duke of Northumberland; and the circumstances that attended his introduction to that nobleman is worthy of being related, in order to show a striking trait of his character. "I was invited," said the Duke (as he was then universally called) "by my friend Mr Piercy, to wait upon the duke, in consequence of the satisfaction he had received from the perusal of one of my productions. I dressed myself in the best manner I could; and, after paying some compliments I thought necessary on such an occasion, proceeded to Northumberland-house, and acquainted the servants that I had particular business with his Grace. They showed me into an antichamber; where, after waiting some time, a gentleman
Goldsmith, gentleman very gently dressed made his appearance.

Tying him for the duke, I delivered all the fine things I had composed in order to compliment him on the beauty he had done me: when, to my great astonishment, he told me I had mistaken him for his matter, who would see me immediately. At that instant the duke came into the apartment; and I was so confused on the occasion, that I wanted words barely sufficient to express the sense I entertained of the duke's politeness, and went away extremely chagrined at the blunder I had committed."

Another feature of his character we cannot help laying before the reader. Previous to the publication of his Deferted Village, the bookseller had given him a note for one hundred guineas for the copy, which the Doctor mentioned a few hours after to one of his friends: who observed, it was a very great sum for so short a performance. "In truth," replied Goldsmith, "I think so too; I have not been easy since I received it; therefore I will go back and return him his note;" which he absolutely did; and left it entirely to the bookseller to pay him according to the profits produced by the sale of the piece, which turned out very considerable.

During the last rehearsal of his comedy intitled She Stoops to Conquer, which Mr. Coleman had no opinion would succeed, on the Doctor's objecting to the repetition of one of Tony Lumpkin's speeches, being apprehensive it might injure the play, the manager with great keenness replied, "Psha! my dear Doctor, do not be fearful of quibbs, when we have been sitting almost these two hours upon a barrel of gunpowder." The piece, however, contrary to Mr. Goldsmith's expectation, was received with uncommon applause by the audience; and Goldsmith's pride was so hurt by the severity of the above observation, that it entirely put an end to his friendship for the gentleman that made it.

Notwithstanding the great success of his pieces, by some of which it is ascertained, upon good authority, he cleared 1800l. in one year, his circumstances were by no means in a prosperous situation; which was partly owing to the liberality of his disposition, and partly to an unfortunate habit he had contracted of gaming; the arts of which he knew very little of; and consequently became the prey of those who were unprincipled enough to take advantage of his simplicity.

Just before his death he had formed a design for executing an Universal Dictionary of Arts and Sciences, the prospectus of which he actually published. In this work several of his literary friends (particularly Sir Joshua Reynolds, Dr. Johnson, Mr. Beauclerck, and Mr. Garrick) had undertaken to furnish him with articles upon different subjects. He had entertained the most favourable expectations from the success of it. The undertaking, however, did not meet with that encouragement from the booksellers which he had longed for; it would undoubtedly receive; and he used to lament this circumstance almost to the last hour of his existence.

He had been for some years afflicted, at different times, with a violent strangury, which contributed not a little to embitter the latter part of his life; and which, united with the vexations which he suffered upon other occasions, brought on a kind of habitual debility. In this unhappy condition he was attacked by a nervous fever, which, being improperly treated, terminated in his dissolution on the 4th of April 1774.

As to his character, it is strongly illustrated by Mr. Pope's lines,
GOLIUS (James), a celebrated professor of Ar-

tematics, and became greatly

erstwhile he worked for Philip

He was put to the university of

He afterwards travelled into Africa and Asia;

He had been an eye-witness of the wretched

He was born at Leyden, where he studied under Erpinus; and

He returned to Leyden, loaded with manuscripts; and in 1624,

He was also chosen professor of mathematices; and discharged the

He cared to have dispersed among them an Arabic

He published, 1. The Life of

He wrote a very beautiful medal, which he

He afterwards worked for Philip Galle. Domestic

He went through Germany into Italy; and palled under a

He visited Bologna, Florence, Naples, and Venice,

He produced several

He left behind him at Haerlem, where he

He died at Haerlem in 1617, aged 59. He is said to have been forty years old

He was a famous engraver and

He wrote many:

GOLZIUS (Hubert), a learned German, born

The subjects of these plates are,

The Venetian Ball, a large plate lengthwise, from

The Necromancer, a middling sized upright plate, from a design of his own;

He died in 1583. He was a painter, and himself was buried in the

He died in 1626, and succeeded Perinius in the Arabic chair. As he had

He died in 1667. GOLTZIUS (Henry), a famous engraver and

He was a very advanced

He made during

He travelled through Germany,

He worked many of the drawings which he had made during

He was a professor of

He was a fellow-christian; and succeeded very

He was a pupil of Albert Durere, Lucas Van Leyden, and

He was a pupil of

He died in 1649. GOLIAUS (James), a celebrated professor of Ar-

He was a pupil of Erpinus; and having

He was a pupil of

He was a pupil of Erpinus; and having

He was a pupil of

He was a pupil of
GOMBROON, by the natives called Bander Abassi, a city of Persia, situated in N. Lat. 27. 40. E. Long. 55. 30. The name of Gombroon, or Gomorong, Captain Hamilton tells us, it had from the Portuguese, because it was remarkable for the number of prawns and shrimps caught on its coasts, by them called come-rong. This city owes its wealth and grandeur to the demolition of Ormus, and the downfall of the Portuguese empire in the East Indies. It is now justly accounted one of the greatest marts in the East, was built by the great Shah Abas, and from him, as some think, obtained the name of Bander Abassi, which signifies the court of Abas. It stands on a bay about nine leagues to the northward of the east end of the island of Kilimnath, and three leagues from the famous Ormus. The English began to settle here about the year 1631, when, in consideration of their services against the Portuguese, Shah Abas granted them half the customs of that port. This was confirmed by a plenipotentiary, and duly regarded, till the coronation of Kishmili, when the revenue of the town had been sacked and ravaged by a European nation. The English have a country-house and gardens, to which they retire occasionally. Here they have whole groves of Seville orange-trees, which though not natural to the country, thrive very well, and are always verdant, bearing ripe and green-fruits, with blossoms, all at the same time. They have likewise tanks and ponds of fine fresh-water, with every thing else that can moderate the heat of the climate, and render life agreeable and elegant. About ten miles from Asfæn is a place called Minas, where are cold and hot natural baths, reckoned infallible in the cure of all scrophulous disorders, rheumatisms, and other diseases, by bathing.

Gombroon is extremely populous, on account of the commerce carried on by the Dutch and English factories, as well as the natives. The English factory is close by the sea, at some distance from the Dutch, which is a commodious and fine new building. A great part of the company's profits arises from freights. As the natives have not one good ship of their own, and are extremely ignorant of navigation, they freight their goods for Surat, and other Indian marts, in English and Dutch bottoms, at an exorbitant rate. The commodities of the Gombroon market are, fine wines of different kinds, raisins, almonds, kifh-milhes, prunelles, dates, pistachio-nuts, ginger, silk, carpets, leather, tutton, galbanum, ammoniac, asa-fatida, tragacanth, with other gums, and a variety of shop medicines. These are in a great measure the produce of Carmania, which they bring to Gombroon in caravans. The English company has once a small factory in the province of Carmania, chiefly for the sake of a fine wool produced there, and used by the hatters. The said company had once a project of carrying a breed of the Perian goats to St. Helena; but whether it was executed, or what success it met with, we cannot say. Although the company pay no customs, yet they usually make a present to the Shabander, to avoid the trouble he has it in his power to give them. All private traders with the company's paffes, enjoy the same privileges, on paying two per cent. to the company, one to the agent, and one to the broker. All private trade, either by European or country ships, has long been engraffed by the company's servants.

GOMERA, one of the Canary islands lying between Ferro and Teneriffe. It has one good town of the same name, with an excellent harbour, where the Spanish fleet often takes in refreshments. They have corn sufficient to supply the inhabitants, with one sugar-work, and great plenty of wine and fruits. It is subject to the Spaniards, who conquered it in 1445. W. Long. 17. 10. N. Lat. 28. 0.

GOMORRAH (anc. geog.), one of the cities of the plain or of the vale of Siddim in Judæa, destroyed 48-
GOMOZIA, in botany: A genus of the digynia order, belonging to the tetrandria class of plants. The corolla is campanulated, quadripartite above; there is no calyx; the berry bicolunar.

GOMPHOSIS, in anatomy, that kind of articulation by which the teeth are fixed in the jaw-bone. See Anatomy, n. 2.

GONDI, (John Francis Paul), Cardinal de Retz, was the son of Philip Emmanuel de Gondi, Count de Joigny, lieutenant-general, &c. and was born in 1613. From a doctor of the Sorbonne, he first became coadjutor to his uncle John Francis de Gondi, whom he succeeded in 1654 as archbishop of Paris; and was finally made a cardinal. This extraordinary person has drawn his own character in his memoirs with impartiality. He was a man, who from the greatest degree of debauchery, and till languishing under its consequences, made himself adored by the people as a preacher. At the age of 23, he was at the head of a conspiracy against the life of Cardinal Richelieu: he precipitated the parliament into cabals, and the people into sedition; he was (says M. Voltaire) the first bishop who carried on a civil war without the mask of religion. However, his intrigues and schemes turned out ill, that he was obliged to quit France; and he lived the life of a vagrant exile for five or six years, till the death of his great enemy. Cardinal Mazarin when he returned on certain stipulated conditions. After afflicting in the concave at Rome, which chose Clement IX. he retired from the world, and ended his life like a philosopher in 1679; which made Voltaire say, that in his youth he lived like Catiline, and like Atticus in his old age. He wrote his Memoirs in his retirement; the best edition of which is that of Amsterdam, 4 vols 12mo. 1719.

GONDOLA, a flat boat, very long and narrow, chiefly used at Venice to row on the canals. The word is Italian, gondola. Du Cange derives it from the vulgar Greek gondole, "a bark," or "little ship." Lancelot deduces it from gondus, a term in Athenaeus for a sort of vase.

The middle-sized gondolas are upwards of thirty feet long and four broad; they always terminate at each
Gondola each end in a very sharp point, which is raised perpendicularly to the full height of a man.

The address of the Venetian gondoliers, in passing along their narrow canals, is very remarkable: there are usually two to each gondola, and they row by pulling before them. The fore-man reaps his oar on the left side of the gondola: the hind man is placed on the stern, that he may see the head over the till or covering of the gondola, and reaps his oar, which is very long, on the right side of the gondola.

Gondola is also the name of a passage-boat of six or eight oars, used in other parts of the coast of Italy.

Gonorrhoea, an effluvium of white, greenish, or differently-coloured, matter from the urethra; most commonly owing to venereal infection. See Medicine and Surgery.

Gonzaga (Lucretia), was one of the most illustrious ladies of the 16th century; and much celebrated for her wit, her learning, and her delicate style. Hortensio Lando wrote a beautiful panegyric upon her, and dedicated to her his dialogue of moderating the passions. Her beautiful letters have been collected from the notes she wrote to her servants; several were made to her. All that came from her even of the notes she wrote to her servants; several of which are to be met with in the edition of her letters.

Good, in general, whatever is apt to encrease pleasure, to diminish pain in us; or, which amounts to the same, whatever is able to procure or preserve to us the possession of agreeable sensations, and remove those of an opposite nature.

Moral Good denotes the right conduct of the several senes and passions, or their just proportion and accommodation to their respective objects and relations. See Morals.

Good bearing, (bonus gestus,) signifies an exact carriage or behaviour of a subject towards the king and the people, whereunto some persons upon their misbehaviour are bound: and he that is bound to this, is said to be more strictly bound than to the peace; because where the peace is not broken, the surety de bonus gesto may be forfeited by the number of a man's company, or by their weapons.

Good behaviour, in law, an exact carriage and behaviour to the king and his people. A justice of the peace in Britain may, at the requisition of another, or where he sees cause, demand surety for the good behaviour; and to that end the justice may issue out his warrant against any persons whatsoever, below the degree of nobility; but when it is a nobleman, complaint is to be made in the court of chancery, or king's bench, where such nobleman may be bound to keep the peace. Infants and feem-coverts, who ought to find surety by their friends, may be bound over to their good behaviour; as also lunatics, that have sometimes lucid intervals, and all others who break the peace, or being suspected to do it by affrays, assaults, battery, wounding, fighting, quarrelling, threatening, &c. A person may be likewise bound to his good behaviour for a scandalous way of living, keeping bawdy-houses, gaming-houses, &c. and so may common drunkards, whores-mongers, common whores, cheats, libellers, &c. He who demands surety for the peace, on any violence offered, must take an oath before the justice, that he goes in fear of his life, or some bodily harm, &c. and that it is not out of malice, but from a regard to his own safety.

Good-Breeding. See Good-Manners.

Good-Friday, a fast of the Christian church, in memory of the sufferings and death of Jesus Christ. It is observed on the Friday in holy or passion week; and it is called, by way of eminence, good, because of the blest effects of our Saviour's sufferings, which were a propitiatory or expiating sacrifice for the sins of the world. The commemoration of our Saviour's sufferings has been kept from the very first ages of Christianity, and was always observed as a day of fasting and humiliation. Among the Saxons it was called Long Friday: but for what reason, except on account of the long fasting and offices then used, is uncertain. On Good-Friday the pope sits on a plain form; and, after service is ended, when the cardinals wait on him back to his chamber, they are obliged to keep a deep silence, as a testimony of their sorrow. In the night of Good-Friday the Greeks perform the obsequies of our Saviour round a great crucifix, laid on a bed of state, adorned with flowers; these the bishops distribute among the attendants when the office is ended. The Armenians, on this day, set open a holy sepulchre, in imitation of that of mount Calvary.

Good-Hope, or Cape of Good Hope, a promontory of Africa, where the Dutch have built a good town and fort. It is situated in the country of the Hottentots; for an account of whom, and of the country at large, with its first discovery, see the article Hottentots.

The Cape of Good-Hope has been generally esteemed the most southerly point of Africa, though it is not truly so. In Phillip's Voyage to Botany Bay, we are told, that the land which projects farthest to the south is a point to the east of it, called by the English Cape Agulhas; a name corrupted from the original Portuguese das Agulhas, which, as well as the French appellation des Agulhes, is descriptive of its form, and would rightly be translated Needle Cape.

On approaching the Cape, a very remarkable eminence may in clear weather be discovered at a considerable distance; and is called the Table-mountain from its appearance, as it terminates in a flat horizontal surface, from which the face of the rock descends almost perpendicularly. In the mild or summer season, which commences in September, and continues till March, the Table Land or Mountain, is sometimes suddenly capped with a white cloud, by some called the spreading of Table-cloth. When this cloud seems to roll down the steep face of the mountain, it is a sure indication of an approaching gale of wind from the south-east; which generally blows with great violence, and some-
...sometimes continues a day or more, but in common is of short duration. On the first appearance of this cloud, the ships in Table Bay begin to prepare for it, by striking yards and top-masts, and making every thing that can be an obstacle to the wind. When the wind strikes the Table Land, divided by a small valley, stands on the right hand side of Table Bay a round hill, called the Sugar Loaf; and by many the Lion's Head, as there is a continuance from it contiguous to the sea, called the Lion's Rump; and when you take a general view of the whole, it very much resembles that animal with his head erect. The Sugar Loaf or Lion's Head, and the Lion's Rump, have each a flag-raft on them, by which the approach of ships is made known to the governor, particularly their number, nation, and the quarter from which they came. To the eastward, separated by a small channel from the Table Land, stands Charles's Mount, well known by the appellation of the Devil's Tower, or Devil's Head; and so called from the violent gusts of wind supposed to issue from it when it partakes of the cap that covers the Table Land, though these gusts are nothing more than a degree of force the wind acquires in coming through the channel. When this phenomenon appears in the morning, which is by no means so frequent as in the evening, the sailors having a saying, as the Devil's Tower is almost contiguous to the Table Land, that the old gentleman is going to breakfast; if in the middle of the day, that he is going to dinner; and if in the evening, that the cloth is spread for supper. Table-mountain rises about 3567 feet above the level of the sea; the Devil's Tower, about 3368; and the Lion's Head, 2764. In the neighbourhood of the latter lies Cape Flats, a district consisting of two farms, wherein the famous wines of that name are produced.

The above described high lands form a kind of amphitheatre about the Table-valley, where the Cape settlements are situated. This is situated at the bottom of the middle height, or Table-mountain; and almost in the centre of the Table Bay, so called from that mountain.—This bay, it is observed in Philip's Voyage, "cannot properly be called a port, being by no means a station of security; it is exposed to all the violence of the winds which set into it from the sea; and is far from sufficiently secured from those which blow from the land. The gusts which descend from the summit of Table-mountain are sufficient to force ships from their anchors, and even violently to annoy persons on the shore, by destroying any tents or other temporary edifices which may be erected, and raising clouds of fine dust, which produce very troublesome effects. A gale of this kind, from the south-east, blew for three days successively when Captain Cook lay here in his first voyage; at which time, he informs us, the Resolution was the only ship in the harbour that had not dragged her anchors. The storms in the sea are still more formidable: so much so, that ships have frequently been driven by them from their anchorage, and wrecked at the head of the bay. But these accidents happen chiefly in the quarte month, or winter months, from May to August; during which time few ships venture to anchor here. The British fleet arriving late lay perfectly unmoored as long as it was necessary for it to remain in this situation.—Farie Bay, on the south-east side of the Cape, is more secure than Table Bay during the prevalence of the north-west winds, but liable for strong gales from the south-east. It is, however, less frequented, being 24 miles of very heavy land in front of Cape Town, whence almost all necessaries must be procured. The most sheltered part of False Bay is a recess on the west side, called Simon's Bay."
In a word, Cape Town is at this time fortified with strength, regularity, and judgment. The governor's house is delightfully situated, nearly in the centre of an extensive garden, the property of the Dutch East India company, usefully planted, and at the same time elegantly laid out. The governor's family make what use they please of the produce of the garden, which is various and abundant; but the original intention of the company in appropriating to their hospital which is generally pretty full when their convalescents reap the benefit of a change of air, and for its handsome, pleasant, and well-shaded walks, is much frequented by people. The governor's family make what use they please of the produce of the garden, which is various and abundant; but the new menagerie, in which the company have half a dozen wild animals and about the same number of curious birds.

There are two churches in the town; one large, plain, and unadorned, for the Calvinists, the prevailing sect; and a smaller one for the Lutherans. The hospital, which is large and extensive, is situated at the upper end of the town, close to the company's garden; where the convalescents reap the benefit of a wholesome pure air, perfumed with the exhalations of a great variety of rich fruit trees, aromatic shrubs, and odorous plants and flowers; and likewise have the use of every production of it.

Besides their hospital, the Dutch East India company have several other public buildings, which tend to improve the appearance of the town. The two principal of these are, the stables and a house for their horses. The former is a handsome range of buildings, capable of containing an incredible number of horses. Those have at the cape are small, spirited, and full of life. The latter is a building of considerable extent, where the slaves, both male and female, have separate apartments, in a very comfortable style, to reside in after the fatigue and toil of the day; and there are several officers placed over them, who have commodious apartments, and treat them humanely.

The inhabitants of the Cape, though in their persons large, stout, and athletic, have not all that phlegm about them which is characteristic of Dutchmen in general. The physical influence of climate may in some degree account for this; for it is well known that in all southern latitudes the temper and disposition of the people are more gay, and that they are more inclined to luxury and amusements of every kind, than the inhabitants of the northern hemisphere. The ladies are lively, good-natured, and familiar; and from a peculiar gay turn, they admit of liberties that would be unutterable in England, though perhaps they as seldom overstep the bounds of virtue as the women of other countries.

The heavy draft work about the Cape is mostly performed by oxen; which are here brought to an uncommon degree of usefulness and docility. It is not uncommon to see 14, 16, and sometimes 18, in one of their teams; when the roads are heavy, they sometimes, though rarely, yoke 20; all which the Hottentots, Malays, and Cape slaves, have in the most perfect subjection and obedience. One of these fellows places himself on the fore part of the waggons, or, when loaded, on the top of the load, and with a tremendous long whip, which from its size he is obliged to hold in both his hands, manages these creatures with inexplicable dexterity. When he finds expedition needful, he can make them keep whatever pace he chooses, either trot or gallop (a gait performed or kept up with difficulty by European oxen), and that with as much ease as if he was driving horses. They likewise manage horses with the same dexterity; and to see one of them driving three, four, five, and sometimes six pair, in hand, with one of these long whips, would make the most complete master of the whip in England cut a despotic figure. Carriages are not very numerous at the Cape, as the inhabitants in general travel in covered waggons, which better suit the roughness of the country. The governor and some few of the principal people keep coaches, which are a good deal in the English style, and always drawn by fine horses.

GOOD MANNERS. See MANNERS.

GOODINGS, in sea-language, are clamps of iron bolted on the stern-post of a ship, whereon to hang the rudder and keep it steady; for which purpose there is a hole in each of them, to receive a correspondent spindle bolted on the back of the rudder, which turns thereby as upon hinges.

GOOSE, in ornithology. See ANAS. The goose was held in great esteem amongst the Romans, for having faved the Capital from the invasion of the Gauls by cackling and clapping its wings. Geese were kept in the temple of Juno; and the cenfors, when they entered upon their office, provided meat for them. There was also an annual feast at Rome, at which they carried a silver image of a goose in flute; and hanged a dog, to punish that animal because he did not bark at the arrival of the Gauls.

Goose-Neck, in ornithology. See MERGUS. Goose-Berry, in botany. See RUBUS. Goose-Neck, in a ship, a piece of iron fixed on the one end of the tiller, to which the laniard of the whip-staff or the wheel-rope comes, for steering the ship.

Goose-Wing, in the sea-language. When a ship fails before, or with a quarter-wind on a fresh gale, to make the more haste, they lanch out a boom and fall on the lee-side; and if so fitted, is called a goose-wing.

GORCUM, a town of the United Provinces, in South Holland, which carries on a considerable trade in cheese and butter. It is situated on the rivers Ligne and Maese, in E. Long. 4° 55'. N. Lat. 51° 49'.

GORDIANUS I. (a Roman general), was for his valor and virtues chosen emperor by the army in the reign of Maximinus, A. D. 237; but his son, whom he had associated with himself in the throne, being slain by Capellian, the governor of Mauritania for Maximinus, Gordianus killed himself the same year. See Rome.

GORDIANUS III. (grandson of the former), a renowned warrior, was styled The guardian of the Roman
GORDIAN-KNOT, in antiquity, a knot made in the leathers or harness of the chariot of Gordius king of Phrygia, so very intricate, that there was no appointing where it began or ended. The inhabitants had a tradition, that the oracle had declared, that he who untied this knot should be master of Asia. Alexander having undertaken it, was unable to accomplish it; when tearing left his not untiring it should be deemed an ill augury, and prove a check in the way of his conquests, he cut it asunder with his sword, and thus either accomplished or eluded the oracle.

GORDIUS, the hair-worm, a genus of insects belonging to the family of vermis interlinea. There are several species. 1. The aquaticus, or water hair-worm, is 10 or 12 inches in length, and of about the thickness of a hoarse hair; its skin is smooth and somewhat glossy, without furrows; its colour pale yellowish white all over, except the head and tail, which are black and glossy. The body is rounded, and very slender in proportion to its length: the mouth is small, and placed horizontally; the jaws are both of the same length, and obtuse at their extremities. This species is common in fresh waters, more especially in clay, through which it passes as a fifth deep through the water, and the author of many springs. This is the worm that in Guinea is only a variation of the preceding one in colour, and more especially in clay, through which it attempts this. 2. The argillaceus, or clay hair-worm, or muscular hair-worm, is all over of a pale yellowish at the extremities. It chiefly inhabits the clay; and Linneus calls that its proper element, from its being generally dug out of it. 3. The medicinis, or muscular hair-worm, is all over of a pale yellowish colour. It is a native of both Indies; frequent in the morning dew, from whence it enters the naked feet of the slaves, and occasions a disagreeable smell in those countries, and to which children are very liable: it creates the most troublesome itchings, and too often excites a fever and inflammation. It particularly infects the muscles of the arms and legs, from whence it may be drawn out by means of a piece of silk or thread tied round the head; but the greatest caution is necessary in this simple operation, lest the animal, by being thrained too much, should break; for if any part remains under the skin, it quickly grows with reddened vigour, and becomes a cruel and sometimes fatal enemy, to the poor slaves in particular. Baths with infusions of bitter plants, and all verminous drugs, destroy it. 4. The marinus, or sea hair-worm, is siliiform, twisted spirally, and lying flat, about half an inch in length: of a whitish colour, smooth, and scarcely diminishing at the head. It is as great a tormenter of herrings, bleak, and various other fish, as the gordius medicinis is of man. The fish when infested with these animals sinks to the surface, and tumbling about as if in great agony.

GORDIAN, king of Phrygia, and father of Midas, was a poor husbandman, with two yokes of oxen, wherewith he ploughed his land and drew his wain. An eagle sitting a long while upon one of his oxen, he confessed the footthayers; a virgin bid him sacrifice to Jupiter in the capacity of king. He married the virgin, who brought forth Midas. The Persians instructed by the oracle to set the first person they met in a wain upon the throne, met Gordius, and made him king. Midas for this good fortune dedicated to Jupiter his father's cart. The knot of the yoke, they say, was so well twisted, that he who could unloose it was promised the empire of Asia; hence the proverb of the Gordion knot had its original. See GORDIAN KNOT.

GORDON (Alexander), an excellent draughtsman and a good Grecian, who resided many years in Italy, visited most parts of that country, and had also travelled into France, Germany, &c. was secretary to the Society for Encouragement of Learning; and afterwards to the Egyptian Club, composed of gentlemen who had visited Egypt (viz. lord Sandwich, Dr Shaw, Dr Poocke, &c.) He succeeded Dr Stukely as secretary to the Antiquarian Society, which office he resigned in 1741 to Mr Joseph Ames. He went to Carolina with governor Glen, where, besides a grant of land, he had several offices, such as registrar of the province, &c. and died a justiciary of the peace, leaving a handsome estate to his family. He published 1. Itinerarium Septentrionale, or a journey through most parts of the Counties of Scotland, in two parts, with 66 copperplates, 1726, folio. 2. Supplement to the Itinerarium, 1727, folio. 3. Histories of Pope Alexander VI. and his son Caesar Borgia. 4. A complete History of the ancient Amphitheatres, 1730, 8vo. afterwards enlarged in a second edition. 5. An Essay towards explaining the hieroglyphical figures on the coffin of the ancient Mummy belonging to Capt. William Letheullier, 1737, folio, with cuts. 6. Twenty-five Plates of all the Egyptian Mummies and other Egyptian Antiquities in England, 1739, folio.

GORDON (Thomas), noted for his translations and political writings, was born at Kirkudbright in North Britain. He came young to London; where he supported himself by teaching languages, until he procured employment under the earl of Oxford in queen Anne's time, but in what capacity is not now known. He first distinguished himself in the defence of Dr Hoadly in the Bangorian controversy; which recommended him to Mr Trenchard, in conjunction with whom he wrote the well-known Cato's Letters, upon a variety of important public subjects. These were followed by another periodical paper, under the title of the Independent Whig, which was continued some years after Mr Trenchard's death, by Gordon alone, against the hierarchy of the church; but with more acrimony than was shown in Cato's Letters. At length Sir Robert Walpole retained him to defend his administration, to which end he wrote several pamphlets. At the time of his death, July 28th 1750, he was first commissioner of the wine licences, an office which he had enjoyed many years. He was twice married. His second wife was the widow of his great friend Trenchard, by whom he had children. He published English translations of Sallust and Tacitus, with additional discourses to each author, which contain much good matter. Also, two collections of his tracts have been preserved: the first intitled, A Cordial for Low-spirits, in three volumes; and the second, The Pillars of Priestcraft and Orthodoxy shaken, in two volumes.
GOR
go
go

GORDEONIA

in botany: A genus of the polyantrum order, belonging to the monadelphous class of plants. The calyx is simple; the style five-cornered, with the stigma quinquenul; the capsule quinquenulocul; the seeds two-fold with a leafy wing. This is a tall and very straight tree, with a regular pyramidal head. Its leaves are shaped like those of the common bay, but serrated. It begins to blossom in May, and continues bearing its flowers the greatest part of the summer. The flowers are fixed to foot-flakes, four or five inches long; are monopetalous, divided into five segments, encompassing a tuft of flamina headed with yellow apices; which flowers, in November, are succeeded by a conic capsule having a divided calyx. The capsule, when ripe, opens, and divides into five sections, disclosing many small half-winged seeds. This tree retains its leaves all the year, and grows only in wet places, and usually in water. The wood is somewhat soft; yet Mr. Careby mentions his having seen some beautiful tables made of it. It grows in Carolina, but not in any of the more northerly states.

GORE, in heraldry, one of the abatements, which, according to Guillim, denotes a coward. It is a figure consisting of two arches, one drawn one from the finifer chief, and the other from the finifer base, both meeting in an acute angle in the middle of the ffs point. See HERALDRY.

GOREE, a small island of Africa, near Cape de Verd, subject to the French. It is a small spot not exceeding two miles in circumference, but its importance arises from its situation for trade so near Cape de Verd, and it has been therefore a bone of contention between European nations. It was first poledited by the Dutch, from whom, in 1663, it was taken by the English; but in 1665 it was retaken by the Dutch, and in 1677 retaken by the French, in whose possession it remained till the year 1759, when the British armies were every where triumphant; and it was reduced by commodore Keppel, but restored to the French at the treaty of peace in 1763. It was retaken by the English in the last war, but again restored at the peace of 1783.

GOREE, the capital town of an island of the same name in Holland, eight miles south of Briel.

GOREY, a borough, fair, and port town in the county of Wexford, province of Leinster; otherwise called Newborough. It stands about 18 miles north of Wexford town, and 45 from Dublin.

GOLT, a small island of the South Sea, 12 miles west of the coast of Peru, in America. It is of different high land, very woody, and some of the trees are very tall and large, and proper for mast. It is about 10 miles in circumference, and has several springs and rivulets of excellent water, but is subject to conflagrant rains.

GORGONIA, a small island of Italy, in the sea of Tuscany, and near that of Corfica, about eight miles in circumference; remarkable for the large quantity of anachovies taken near it. E. Long. 10. 0. N. Lat. 43. 23.

GORDONIA, a small island of the South Sea, 12 miles west of the coast of Peru, in America. It is of different high land, very woody, and some of the trees are very tall and large, and proper for mast. It is about 10 miles in circumference, and has several springs and rivulets of excellent water, but is subject to conflagrant rains.

GORGONIA, in natural history, a genus of zoophytes, which formerly were called ceratophytons, and are known in English by the names of sea-fans, sea-feathers, and sea-whips. Linnaeus and Dr. Pallis consider them as of a mixed nature in their growth, between animals and vegetables; but Mr. Ellis shows them to be true animals of the polyse kind, growing up in a branched form resembling a shrub, and in no part vegetable. They differ from the fresh water polype in many of their qualities, and particularly in producing from their own substance a hard and solid support, serving many of the purposes of the bone in other animals. This is formed by a concretion; juice thrown out from a peculiar set of longitudinal parallel tubes, running along the internal surface of the fishy part; in the coats of these tubes are a number of small orifices, through which the offensive liquor exudes, and concreting, forms the layers of that hard part of the annular circles, which form, judging from the conchology rather than the texture, harks erroneously denominated wood. The surface of the gorgonia is composed of a kind of scales, so well adapted to each other as to serve for defence from external injuries; and the flesh, or as some have called it, the bark or cortex, consists of proper muscles and tendons for extending the openings of their cells; for sending forth from these their polype fuckers in search of food; and for drawing them in suddenly, and contracting the sphencter muscles of these flabby cells, in order to secure these tender parts from danger; and also of proper secretory ducts, to furnish and depilate the offensive matter that forms the skin and branches as well as the base of the bone. Mr. Ellis affirms, that there are ovaries in these animals, and thinks it very probable that many of them are viviparous. See CORALLINES.

GORGONS, in antiquity and mythology. Authors are not agreed in the account they give of the Gorgons. The poets represent them as three sisters, whose names were Stheno, Euryale, and Medusa; the latter of whom was mortal, and, having been deformed by Neptune, was killed by Perseus; the two former were subject neither to age nor death. They are described with wings on their shoulders, with serpents round.
Goritia round their heads, their hands were of brass, and their teeth of a prodigious size, so that they were objects of terror to mankind. After the death of Medusa, her sisters, according to Virgil, were appointed to keep the gate of the palace of Pluto.

Diodorus Siculus will have the Gorgons and Amazons to have been two warlike nations of women, who inhabited that part of Libya which lay on the lake Tritonides. The extermination of these female nations was not effected till Hercules undertook and performed it.

Pausanius says, the Gorgous were the daughters of Phorbas; after whose death Medusa, his daughter, reigned over the people dwelling near the lake Tritonides. The queen was passionately fond of hunting and war, so that she laid the neighbouring countries quite waste. At last, Perseus having made war on them, and killed the queen herself, when he came to take a view of the field of battle, he found the queen’s corpse so extremely beautiful, that he ordered her head to be cut off, which he carried with him to show his countrymen the Greeks, which could not behold it without being struck with alarm and horror.

Others represent them as a kind of monstrous women, covered with hair, who lived in woods and forests. Others, again, make them animals resembling wildbeep, whole eyes had a poisonous and fatal influence.

Goritia, or Goritz, a strong town of Germany, in the circle of Aurelia, and duchy of Carniola, with a caftle; seated on the river Lisonzo, 20 miles north-east of Aquileia, and 70 north-east of Venice. E. Long. 12° 43'. N. Lat. 45° 12'.

Gorlæus (Abraham), an eminent antiquary, was born at Antwerp, and gained a reputation by collecting medals and other antiques. He was chiefly fond of the rings and seals of the ancients, of which he published a prodigious number in 1601, under this title, Dafyllithotecases: a Vrarios Sigillarum, quorum apud priscos tam Graecos quam Romanos usus fero, ere, argentae, et aure, Fromuptum. This was the first part of the work: the second was intitled, Variarum Gemmarum et antiquitatis in fingunmotifis fiulpturae. This work has undergone several editions, the bulk of which is that of Leyden, 1605: but it not only contains a vast number of cuts, but also a short explication of them by Gronovius. In 1608, he published a collection of medals, which, however, if we may believe the Scaligerus, it is not safe always to trust. Gorlæus died upon Delph for the place of his residence, and died there in 1609. His collections of antiques were sold by his heirs to the prince of Wales.

Gorlitz, a town of Germany, in Upper Lusatia, subject to the elector of Saxony. It is a handsome strong place, and seated on the river Neisse, in E. Long. 15° 15'. N. Lat. 51° 10'.

Goritzia, or Goritz, a strong town of Germany, in the circle of Aurelia, and duchy of Carniola, with a castle; seated on the river Lisonzo, 20 miles north-east of Aquileia, and 70 north-east of Venice. E. Long. 12° 43'. N. Lat. 45° 12'.

Gorstia, or Goritz, a strong town of Germany, in Upper Lusatia, subject to the elector of Saxony. It is a handsome strong place, and seated on the river Neisse, in E. Long. 15° 15'. N. Lat. 51° 10'.

Gorstia, or Goritz, a town of Germany, in Upper Lusatia, subject to the elector of Saxony. It is a handsome strong place, and seated on the river Neisse, in E. Long. 15° 15'. N. Lat. 51° 10'.

Gorstia, or Goritz, a strong town of Germany, in Upper Lusatia, subject to the elector of Saxony. It is a handsome strong place, and seated on the river Neisse, in E. Long. 15° 15'. N. Lat. 51° 10'.

Joseph procured for his father and brethren when they came to dwell in Egypt. It was the most fruitful part of the country; and its name seems to be derived from the Hebrew, gôl, which signifies "rain," because this province lying very near the Mediterranean, was exposed to rains, which were very rare in other cantons, and more especially in Upper Egypt. Calmet does not question but that Goshen, which Joshua (X. 41. X. 16. XV. 51.) makes part of the tribe of Judah, is the same as the land of Goshen, which was given to Jacob and his sons by Pharaoh king of Egypt: (Gen. xli. 28.) It is certain that this country lay between Palestine and the city of Tanais, and that the allotment of the Hebrews reached southward as far as the Nile. (Joh. xiii. 5.)

Goslar, a large and ancient town of Lower Saxony, and in the territory of Brunswick; it is a free imperial city, and it was here that gunpowder was first invented, by a monk as is generally supposed. It is a large place, but the buildings are in the ancient taste. In 1728, 280 houses, and St. Stephen's fine church, were reduced to ashes. It is seated on a mountain, near the river Goe, and near it are rich mines of iron. The inhabitants are famous for brewing excellent beer. E. Long. 9° 37'. N. Lat. 51° 53'.

Gospel, the history of the life, actions, death, resurrection, ascension, and doctrine of Jesus Christ.—The word is Saxon, and of the same import with the Latin term evangclium, which signifies glad tidings; or good news.

This history is contained in the writings of St. Matthew, St. Mark, St. Luke, and St. John; who from thence are called evangelists. The Christian church never acknowledged any more than these four gospels as canonical; nor withstanding which, several apocryphal gospels are handed down to us, and others are entirely lost.

Gosport, a town of Hampshire, 79 miles from London, in the parish of Alverstock. It has a ferry over the mouth of the harbour to Portsmouth, and is a large town and of great trade, especially in time of war. Travellers choose to lodge here, where every thing is cheaper and more commodious for them than at Portsmouth. The mouth of the harbour, which is not so broad here as the Thames at Westminster, is secured on this side by four forts, and a platform of above 20 cannon level with the water. Here is a noble hospital built for the cure of the sick and wounded soldiers in the service of the navy; besides a free school.

Gossamer is the name of a fine filmy substance, like cobweb, which is seen to float in the air, in clear days in autumn, and is more observable in flufhfields, and upon furze and other low bushes. This is probably formed by the flying spider, which in traversing the air for food, shoots out these threads from its anus, which are borne down by the dew, &c.

Gossypium, or Cotton: A genus of the polygonaorder, belonging to the monadelphia class of plants; and in the natural method ranking under the 37th order, Columaffera. The calyx is double, the exterior one trifid; the capsule quadrilocular; the seeds wrapped in cottonouble. There are four carpels, all of them natives of warm climates. 1. The herbaceous, or common herbaceous cotton, hath an herbaceous smooth stalk two feet high, branching upwards; five-
COTTON. 1. The American cotton, hath hairy stalks, branching laterally two or three feet high; palmated, three and five lobed, smooth leaves, and yellow flowers, succeeded by large oval pods furnished with seeds and cotton. 2. The Barbados, or Barbadoes yellow-flowered, succeeded by large pods, containing seeds and cotton. 3. The arboreum, or tree cotton, hath an upright, woolly perennial stalk, branching six or eight feet high; palmate, four or five lobed smooth leaves; and yellow flowers, succeeded by large pods filled with seeds and cotton.

The first three species are annual, but the fourth is perennial both in root and stalk. In warm countries these plants are cultivated in great quantities in the fields for the sake of the cotton they produce; but the first species is most generally cultivated. The pods are sometimes as large as middling-sized apples, closely filled with the cotton surrounding the seed. When these plants are raised in Britain, they must be continually kept in a warm house, where they will produce seeds and cotton. They are propagated by seeds.

The American islands produce cotton shrubs of various sizes, which rise and grow up without any culture; especially in low and marshy grounds. Their produce is of a pale red; some paler than others; but so short that it cannot be spun. None of this is brought to Europe, though it might be usefully employed in making of hats. The little that is picked up, serves to make mattresses and pillows.

The cotton shrubs that supplies our manufactures, requires a dry and sandy soil, and thrives best in grounds that have already been tilled. Not but that the plant appears more flourishing in rich lands than in those which are exhausted; but while it produces more wood, it bears less fruit.

A western exposure is fittest for it. The culture of it begins in March and April, and continues during the first spring-rains. Holes are made at seven or eight feet distance from each other, and a few seeds thrown in. When they are grown to the height of five or six inches, all the stems are pulled up, except two or three of the strongest. These are cropped twice before the end of August. This precaution is the more necessary, as the wood bears no fruit till after the second pruning; and, if the shrub was suffered to grow more than four feet high, the crop would not be the greater, nor the fruit so easily gathered. The same method is pursued for three years; for so long the shrub may continue, if it cannot conveniently be renewed oftener with the profit of an advantage that will compensate the trouble.

This useful plant will not thrive if great attention is not paid to pluck up the weeds that grow about it. Frequent rains will promote its growth; but they must not be incessant. Dry weather is particularly necessary in the months of March and April, which is the time of gathering the cotton, to prevent it from being defecund and spotted. When it is all gathered in, the seeds must be picked out from the wool with which they are naturally mixed. This is done by means of a cotton-mill; which is an engine composed of two rods of hard wood, about 18 feet long, 18 lines in circumference, and fluted two lines deep. They are confined at both ends, so as to leave no more distance between them than is necessary for the feed to slip through. At one end is a kind of little millstone, which, being put in motion with the foot, turns the rods in contrary directions. They separate the cotton, and throw out the feed contained in it.

GOTHA, a town of Germany, in the circle of Upper Saxony, and capital of the duchy of Saxe-Gotha, in E. Long. 10° 36'. N. Lat. 51°. Some fancy this town had its name from the Goths, and that they fortified it in their march to Italy; but it was only a village till furnished with walls by the bishop of Mentz in 964. It is situated in a fine plain on the river Leina, well built and strongly fortified. Here are two handsome churches and a very good hospital. Its chief trade is in dyers wood, of which they have three crops, but the third grows wild. The neighbouring country produces a vast deal of corn. The castle or ducal palace of Gotha was rebuilt in the 16th century by duke Ernest, furnished the Pious, who caufed both that and the town to be encompassed with ditches and ramparts; and gave it the name of Friedenstein, or the Castle of Peace, in opposition to its ancient name of Grinemberg, or the Castle of the Furies. It is situated on a neighbouring eminence, from whence there is a vast prospect of a fruitful plain. In one of the apartments there is a collection of valuable rarities, and a noble library.

The dukedom of Saxe-Gotha is about 30 miles long, and 12 broad. The reigning duke is Lewis Ernst, born in 1745, and married to the princess Maria Charlotte of Saxe-Meiningen, by whom he has issue. He is the head of the Ernestine line of Saxony, descended from the elector John Frederic the Magnanimous, who was deprived of the electorate by the emperor Charles V. in 1574; since which the youngest branch called the Albertine has enjoyed it. He has several other principalities besides that of Saxe-Gotha; and his revenues are computed at L. 200,000 a year, with which he maintains about 3000 regular troops. As he is the most powerful of all the Saxon princes of the Ernestine branch; so of all the courts of Saxony, next to that of Dresden, he has the most numerous and the most magnificent. His guards are well clothed, his liberities rich, and his tables served with more elegance than profusion. And yet by the prudent management of his public finances, his subjects are the least burdened with taxes of any state in Germany. The religion is Lutheran.

GOTTFRIED, or Gottenburg, or Gottenburg. See GOTTENBURG.

GOTHIC, in general, whatever has any relation to the Goths: thus we say, Gothic costumes, Gothic architecture, &c. See ARCHITECTURE.

GOTHLAND, the most southern province of Sweden, being a peninsula, encompassed on three sides by the Baltic Sea, or the channel at the entrance of Y.
At what time Woden reigned in this country, is quite uncertain; but all historians agree, that he went out in quest of new settlements with incredible numbers of people following him. He first entered Roxolania, comprehending the countries of Prussia, Livonia, and great part of Muscovy. From thence he went by sea into the north parts of Germany; and having reduced Saxony and Jutland, he at last settled in Sweden, where he reigned till his death, and became so famous that his name reached all countries, and he was by the northern nations worshipped as a god. He is supposed to have brought with him the Runic characters out of Asia, and to have taught the northern nations the art of poetry; whence he is styled the father of the Scaldi or Scaldrì, their poets, who described in verse the exploits of the great men of their nation, as the bards did among the Gauls and Britons.

The Romans distinguished the Goths into two classes; the Ostrogoths and Visigoths. These names they received before they left Scandinavia, the Visigoths being softened by the Latins from Welfergoths, or those who inhabited the western part of Scandinavia, as the Ostrogoths were those who inhabited the eastern part of that country. Their history affords nothing of moment till the time of their quarrelling with the Romans, which happened under the reign of the emperor Caracalla, son to Severus. After that time their history becomes so closely interwoven with that of the Romans, that for the most remarkable particulars of it we must refer to the article Rome. After the destruction of the Roman empire by the Heruli, the Ostrogoths, under their king Theodoric, became masters of the greatest part of Italy, having overcome and put to death Odoacer king of the Heruli in 494. They retained their dominion in this country till the year 553; when they were finally conquered by Narsetes, the emperor Justinian’s general. See (History of) Italy. The Visigoths settled in Spain in the time of the emperor Honorius, where they founded a kingdom which continued till the country was subdued by the Saracens; see the article Spain.

The Goths were famous for their hospitality and kindness to strangers, even before they embraced the Christian religion. Nay, it is said, that from their being eminently good they were called Goths, by the neighbouring nations; that name, according to Grotius and most other writers, being derived from the German word goten, which signifies “good.” They encouraged, says Dio, the study of philosophy above all other barbarous or foreign nations, and often chose kings from among their philosophers. Polygamy was not only allowed but countenanced among them; every one being valued or respected according to the number of his wives. By so many wives they had an incredible number of children, of whom they kept but one at home, sending out the rest in quest of new settlements; and hence those swarms of people which overran so many countries. With them adultery was a capital crime, and irreformibly punished with death. This severity, and likewise polygamy, prevailed among them when they were known to the Romans only by the name of Getes (their most ancient name); as appears from the poet Menander, who was himself one of that nation; and from Horace, who greatly commends the chastity of their women. Their laws fell little short of those of the

Goths.

It is divided into several parts, which are, East Gothland, West Gothland, Smaland, Halland, Blekinge, and Schonen. It was a long time in the possession of the kings of Denmark, but was ceded to Sweden in 1654. The principal towns of Gothland are Calmar, Landcrum, Christiansople, Daleburg, Gothenburg, Helmut, Lundem, Malmon, and Vexo.

GOTHS, a warlike nation, and above all others famous in the Roman history, came originally out of Scandinavia (the name by which the ancients distinguished the present countries of Sweden, Norway, Lapland, and Finnmark). According to the most probable accounts, they were the first inhabitants of those countries; and from thence sent colonies into the islands of the Baltic, the Cimmerian Chersonesus, and the adjacent places yet destitute of inhabitants. The time of their first settling in Scandinavia, and the time when they first peopled with their colonies the abovementioned islands and Chersonesus, are equally uncertain; tho’ the Gothic annals suppose the latter to have happened in the time of Serer the great grandfather of Abraham. This first migration of the Goths is said to have been conducted by their king Eric; in which all the ancient Gothic chronicles, as well as the Danish and Swedish ones, agree. Their second migration is supposed to have happened many ages after; when, the abovementioned countries being overstocked with people, the Bersig, at that time king of the Goths, went out with a fleet in quest of new settlements. He landed in the country of the Ulmerugians, now Pomerania, drove out the ancient inhabitants, and divided their lands among his followers. He fell next upon the Vandals, whose country bordered on that of the Ulmerugians, and overcame them; but instead of forcing them to abandon their country, he only made them share their possessions with the Goths.

The Goths who had settled in Pomerania and the adjacent parts of Germany being greatly increased in numbers, under Filimer, son of the Great, their fifth prince after leaving Scandinavia, and taking their route eastward, entered Scythia, advanced in the neighborhood they undertook a third migration in accordance taking their route eastward, entered Scythia, advanced in the neighborhood they undertook a third migration in...
GOTHEFRED, born at Geneva in 1580. As soon as he had finished his studies, he went to Paris; where he conformed to the Roman religion, and applied with indefatigable industry to the study of history, that of France particularly, wherein he became very eminent, as appears by his works. In 1632, the king made him one of his historiographers, with a stipend of 3000 livres; and, in 1636, he was sent to Cologne, to assist at the treaty of peace negotiating there, on the part of France, by the cardinal of Lyons. This treaty being removed to Munster, Gotthfried was sent thither, where he drew up Memoirs on the subject; and continued in that city, in the king’s service, to his death in 1649. His principal work is his "Account of the Ceremonial of the Kings of France."

GOTHEFRED (James), brother of the preceding, was born at Geneva in 1587. Applying himself to the study of the law, he obtained the professor’s chair there, was made counsellor of the city, and was several times employed in France, Germany, Piedmont, and Switzerland, to negotiate their affairs in the name of the republic. He died in 1652; and his chief work is his Codex Theodorianus, cum perpetuo commentariis, &c.

GOTHEFRED (Dennis), a son of Theodore above mentioned, was born at Paris in 1615. He studied history after his father’s example; became as eminent in that department of knowledge; and obtained the reversion of his father’s place of historiographer royal, from Louis XIII., when he was but 25 years of age. He published his father’s Ceremonial of France; finished his Mémoirs de Philippe de Commynes; and was preparing a History of Charles VIII., when he died in 1681. It was published by his eldest son, Dennis, in 1684.

GOTTENBURG, a rich and strong town of West Gothland, in Sweden, with a good harbour, at the mouth of the river Gothelba; which is the chief port for foreign trade of any in Sweden, as it lies without the Sound. It occupies the site of an ancient town, named Lodofe, which was built by Gustavus Vasa; and became with considerable privileges, from the grant of several additional privileges. — It is built in a very singular situation. At a small distance from the sea is a marshy plain, scarcely more than half a mile in breadth, watered by the rivers Gotha and Motala, and almost entirely inclosed with high ridges of rocks, so bare and rugged, that they scarcely produce a single blade of grass, and exhibit as barren an appearance as the summits of the loftiest Alps. Gottenburg stands partly upon the hills, and partly in the plain; and is divided from these different situations into the Upper and Lower Town. The latter is entirely level, intersected by several canals in the manner of the Dutch towns; and its houses are all constructed up on piles: the upper part hangs upon the declivities; and rows of buildings rise one above the other like the feats of an amphitheatre. The whole is regularly fortified; and its circumference is near three miles, exclusive of the suburbs, called Haga, which lie towards the harbour. The streets are all uniformly straight; a few of the houses are of brick; but the generality are constructed with wood painted red. The harbour is formed by two good inlets, and is about a quarter of a mile in breadth. Its entrance is defended by the fort of Elfsborg, which stands upon a small rocky island, and contains a garrison of 300 men. There has been lately established at Gottenburg a Royal Society of Sciences and Literature, upon the plan of that of Upsala. Mr. Coxe was informed by a merchant who had resided 22 years at Gottenburg, that, during that period, its population had increased considerably, and that it now contained about 30,000 inhabitants. This flourishing state is attributed to the extension of its commerce, particularly its East India Company, and the fisheries of the herring fishery. An English consul and several merchants of that nation reside at Gottenburg; and a chapel, with a regular chaplain, is appropriated to their use. E. Long. 11° 50', N. Lat. 57° 44'.

GOTTINGEN, a considerable town of Lower Saxony in Germany, and in the duchy of Brunswick; formerly free and imperial, but now subject to the elector of Hannover. Here his late Majesty George II., founded an university. It is seated on the river Leine, in E. Long. 10° 5', N. Lat. 51° 32'.

GOTTORP,
GOTTORP, a town of the duchy of Holstein, where the duke has a very fine palace.

GOUANIA, in botany: A genus of the monoea order, belonging to the polygama class of plants. The calyx of the hermaphrodite is quinquedent; there is no corolla; there are five anthers covered with an elasic calyptra or hood; the style trifid; the fruit, inferior to the receptacle of the flower, divided into three seeds. The male is like the hermaphrodite, but wanting stigma and germen.

GOUDA, or TUGOW, a considerable town of South Holland, in the United Provinces, remarkable for its stately church. It is seated on the river IJssel, in E. Long. 4. 37. N. Lat. 52. 2.

GOUDT (Henry), usually called Count Goudt, was born of a noble family at Utrecht, in 1750; and was a knight of the Palatinate. Being passionately fond of the arts, particularly painting and engraving, and desirous of engaging in them, he applied himself diligently to drawing, and made a great proficiency therein. He went to Rome, to examine the works of the great masters in that city. Here he contracted an intimacy with that excellent artist Adam Elsheimer; studied his manner of pencilling, designing, and colouring; and made his works models for his own imitation. He pre-engaged all the pictures that his friends and favourite could finish, and even paid liberally for them before-hand; by which means he found himself in possession of a most desirable treasure. Those pictures which Goudt himself painted were neatly and delicately touched, in colour and pencil resembling Elsheimer, though they were in no degree equal to the paintings of that admirable master. On his return to his native country, a young woman who was in love with him, and desirous of fixing his affections upon her gave him in his drink a love philter: which, however, terminated in a very melancholy manner, by depriving him totally of his senses; and in the dreadful state of idiotism he dragged on a miserable life to the age of 59, his death happening in 1639. It is remarkable, that though left to every other subject, when painting was spoken of he would discourse upon it in a very retentive manner.

Goudt practised engraving as well as painting, and made seven beautiful prints after the pictures of Elsheimer, which are well known to the curious, and are to be met with in most choice collections. He worked with the graver only, in a very neat style; and produced a most powerful effect, not by strengthening the strokes, according to the usual method, but by crossing them with additional strokes, equally neat, and that five or six times, one over another, in the deep shadows. Considering the precision with which he executed his engravings, the freedom of housing the graver which may be discovered in them, is very astonishing. The weeds and other parts of the fore-ground in that admirable print of the Ceres are very finely expressed. The heads of the figures are correctly drawn, and the other extremities are managed in a judicious manner. The seven prints done by him, from Elsheimer, mentioned above, are, 1. Ceres drinking from a pitcher. An old woman appears holding a candle at the door of the cottage, and a boy naked blazing by her is laughing and pointing at the goddess; for which contempt he was metamorphosed by her into a frog. The powerful and striking effect of this engraving cannot be properly described. This print is distinguished also by the name of the forestry. 2. The flight into Egypt: A nocturnal scene, in which the moon and stars are introduced with great success. 3. The angel with Tobit, who is drawing a filh by his side. The back-ground is a landscape; the weeds in the foreground, and the branches of the trees in front, as well as the foliage and weeds hanging from them, are beautifully expressed. 4. The angel with Tobit, crossing a stream of water: The back-ground, a landscape. 5. Baucis and Philemon entertaining Jupiter and Mercury. 6. A landscape, called the Aurora, representing the dawn of day. The effect is very beautiful. 7. The change of St John in prison, a very small upright oval print, which is by far the finest.

GOVERNMENT, in general, is the policy of a state, or an orderly power constituted for the public good.

Civil government was instituted for the preservation and advancement of men's civil interests, and for the better security of their lives, liberties, and properties. The use and necessity of government is such, that there never was an age or country without some fort of civil authority: but as men are seldom unanimous in the means of attaining their ends, so their differences in opinion in relation to government has produced a variety of forms of it. To enumerate them would be to recapitulate the history of the whole earth. But, according to Montesquieu, and most other writers, they may in general be reduced to one of these three kinds. 1. The republican. 2. The monarchial. 3. The despotic. The first is that, where the people in a body, or only a part of the people, have the sovereign power; the second, where one alone governs, but by fixed and established laws; but in the despotic government, one person alone, without law and without rule, directs every thing by his own will and caprice. See the article Law, n° i. 3-10. On the subject of government at large, see Montesquieu's L'Espirit des Lois, l. 2. c. i.; Locke, ii. 129, &c. quarto edition, 1708; Sidney on Government; Sir Thomas Smith de republic. Angl. and Ackerhy on the Political Constitution. As to the Gothic government, its original and faults, &c. see Montesquieu's L'Espirit des Lois, l. i. c. 8. With respect to the feudal policy, how it limited government; see Feudal System.

Government is also a post or office, which gives a person the power or right to rule over a place, a city, or a province, either supreme or by deputation.

Government is likewise used for the city, country, or place to which the power of governing is extended.

GOUGE, an instrument used by divers artificers, being a sort of round hollow chisel; serving to cut holes, channels, grooves, &c. in wood, stone, &c.

GOULART (Simon), a famous minister of Geneva, was born at Senlis in 1543; and was one of the most indefatigable writers of his time. He made considerable additions to the Catalogue of witnesses of the truth, composed by Hlyricus; and acquired a great reputation by his works; the principal of which are, 1. A translation of Seneca. 2. A collection of memorable histories. 3. A translation of St Cyprian De

D(437)
GOURD, in botany. See *Cucurbita*.

GOURGES (Dominique de), an illustrious French patriot, a private gentleman of Gafcony. The Spaniards having inhumanly massacred a colony of Frenchmen who had settled in Florida, Gourges took a severe revenge on them, an account of which is given under the article *Floroda*. On his return, he was received with acclamations by his countrymen, but was forbidden to appear at court. Queen Elizabeth invited him to command an English fleet against the Spaniards in 1593; but he died at Tours in his way to England.

GOURNAY, a town of France, in the duchy of Normandy and territory of Bray, celebrated for its butter market. It is situated on the river Epte, in E. Long. 4° 33'. N. Lat. 49° 25'.

GOURNAY (Mary de Jars de), a lady celebrated for her learning, was the daughter of William de Jars, lord of Neuvil and Gournay. After the death of her father, she was protected by Montaigne and Cardinal Richelieu. To the daughter of the former she dedicated her *Nefoguy de Pindus*; and composed several other works, the most considerable of which is *Les Audis*. She died at Paris in 1685, aged 80. The critics are divided concerning the reputation of this lady; some say she is styled the *Siren* of France; others say her works should have been buried with her.

GOUT. See *Index* subjoined to *Medicine*.

Gower (John), one of the most ancient English poets, was contemporary with Chaucer, and his intimate friend. Of what family, or in what county he was born, is uncertain. He studied the law, and was sometime a member of the society of Lincoln’s-inn, where his acquaintance with Chaucer began. Some have asserted that he was a judge; but this is by no means certain. In the first year of Henry IV. he became blind; a misfortune which he laments in one of his Latin poems. He died in London in 1401, and was buried in St Mary Overie, which church he had rebuilt chiefly at his own expense, so that he must have lived in affluent circumstances. His tomb was magnificent, and curiously ornamented. It still remains, but hath been repaired in later times. From the collar of SS round the neck of his effigies, which lies upon the toftb, it is conjectured that he had been knighted. As to his character as a man, it is impossible, at this distance of time, to say any thing with certainty. With regard to his poetical talents, he was undoubtedly admired at the time when he wrote, though a modern reader may find it difficult to discover much harmony or genius in any of his compositions. He wrote:—

1. *Septem medicinatis*, in French, in ten books. There are two copies of this in the Bodleian library.

2. *Vox clasmatis*, in Latin verse, in seven books. Preserved also in the Bodleian library, and in that of All Souls. It is a chronicle of the insurrection of the commons in the reign of Richard II.

3. *Confessio amantis*; printed at Wellminster by Caxton in 1493. Lond. 1532, 1554. It is a sort of poetical system of morality, intermixed with a variety of moral tales.

4. *De roge Henrico IV.*. Printed in Chaucer’s works. There are likewise several historical tracts, in manuscript, written by our author, which are to be found in different libraries; also some short poems printed in Chaucer’s works.

GOWN, robe, a long upper garment, worn by lawyers, divines, and other graduates; who are hence called *men of the gown*, or gownmen.

The gown is an ample sort of garment, worn over the ordinary cloaths, hanging down to the feet. It is fashioned differently for ecclesiastics and for laymen. At Rome they gave the name *virile gown*, *toga virilis*, to a plain kind of gown which their youth assumed when arrived at puberty. This they particularly denominated *prætexta*. See *Toga*, *Prætexta*, &c.

“The remarkable dress of our British ancestors (Mr Whittaker observes) which continued very nearly the same to the commencement of the last century, is 30a. among the natives of Ireland, and has actually descended to the present among the mountaineers of Scotland, and is therefore rendered very familiar to our ideas, carried in it an astonishing appearance to the Romans. And it seems to have been equally the dress of the men and women among the nobles of Britain. But in a few years after the erection of the Roman-British towns in the north, and in the progress of refinement among them, this ancient habit began to be disapproved by the chiefs of the cities, and looked upon as the badge of ancient barbarism. And the growing prejudices were soon so greatly improved, that within 20 years only after the construction of the towns, the British fagum was actually resigned, and the Roman *toga* or gown assumed by many of them.

“The gown, however, never became universal in Britain: and it seems to have been adopted only by the barons of the cities and the officers of the crown; and has therefore been transmitted to us as the robe of reverence, the ensign of literature, and the mantle of magistracy. The woollen and plaided garments of the chiefs having naturally superseded the leathern veitures of their clients, the former were still wore by the generality of the Britons; and they were retained by the gentlemen of the country, and by the commonalty both in the country and the cities. That this was the case, appears evident from the correspondent conduct of the Gauls and Britons; who kept their *Virgata Sagula* to the last, and communicated them to the Franks and Saxons. The plaided drapery of the Britons still appeared general in the streets of Manchester; and must have formed a striking contrast to the gown of the chief, the dark mantle of Italy: and it and the ornamented buttons on the shoulder were preferred among us even to the present moment, in the parti-coloured cloathing and the taffelled shoulder-knots of our footmen.”

In some universities physicians wears a scarlet gown. In the Saracens, the doctors are always in gowns and caps. Beadles, &c. wear gowns of two or more colours.

Among the French officers, &c. they distinguishe those of the short gown or robe; which are such as have not been regularly examined. They have also barbers of the short gown, who are such as are obliged to prætexte in an inferior way to those of the long robe.

Gown is also taken in the general for civil magistrature, or the profession opposite to that of arms. In this sense it was that Cicero faid *vedant arma togae*.
GOVERN, a borough, fair, and post town, in the county of Kilkenny and province of Leinster, Ireland. N. Lat. 52°. 43'. W. Long. 7°. 0'. It is governed by a constable, recorder, and town clerk. Here are the ruins of an old church, also the handsome seat of the late Lord Clifden; and three miles beyond Gowran are the ruins of Ballinabola castle.

GOVERN (John Van), painter of landscapes, cattle, and sea-pieces, was born at Leyden in 1596; and was for some time instructed by Isaac Nicolai, who was regarded as a good painter; but afterwards he became the disciple of Eelco Vandersadle, the most celebrated landscape painter of his time. Van Goyen very soon took a general esteem; and his works are more universally spread throughout all Europe than the works of any other master, for he possessed an uncommon readiness of hand and freedom of pencil. It was his constant pleasure and practice to sketch the views of villages and towns situated on the banks of rivers or canals; of the sea-ports in the Low Countries; and sometimes of inland villages, where the scenes around them appeared to him pleasing or picturesque. Thence he afterwards used as subjects for his future landscapes; enriching them with cattle, boats, and figures in character, just as the liveliness of his imagination directed. He understood perspective extremely well, and added the principles of the chiaro-沈ro; which branches of knowledge enabled him to give his pictures a strong and agreeable effect. He died in 1656, aged 60. — His usual subjects were sea-pieces, or landscapes with views of rivers, enlivened with figures of peasants either ferrying over cattle, drawing their nets in still water, or going to or returning from market. Sometimes he represented the boats on the banks of rivers, with overhanging trees, and a beautiful reflection of their branches from the transparent surface of the waters. These were the subjects of his best time, which he generally marked with his name and the year; and the high finished pictures of Van Goyen will be ever eminable. But as he painted abundance of pictures, some are flight, some too yellow, and some negligently finished; though all of them have merit, being marked with a free, expeditious, and easy pencil, and a light touch. His pictures frequently have a greyish cast, which did not arise from any mismanagement of the tints, or any want of the skill in laying on the colours; but was occasioned by his using a colour called holiday blue, much approved of at that time, though now entirely disused, because the artists found it apt to fade into that greyish tint; and it hath also rendered pictures of this master exceedingly difficult to be cleaned without injuring the finer touches of the finishing. His best works are valued so highly in most parts of Europe, especially in the Low Countries, that they deservefully afford large prices, being ranked in Holland with the pictures of Teniers; and at this time are not easily procured, particularly if they are damaged, though his lighter performances are sufficiently common.

GRAAF (Regnier de), a celebrated physician, born at Schoonhaven, in Holland, in 1641. He studied physic at Prussia. He was educated in Leyden, where he acquired great honour by publishing a treatise De Siccis Phanocritici. He also published three pieces upon the organs of generation, both male and female; upon which subject he had a controversy with Swammerdam. He died young, in 1673; and his works, with his life prefixed, were published at Leyden in 1677, in 8vo.

GRABE (John Ernest), a very learned writer in the beginning of the 18th century, a native of Königsberg in Prussia. He was educated in the Lutheran religion; but the reading of the fathers led him into doubts. He presented to the electoral consistory at Sam­bia in Prussia a memorial containing his doubts. The elector gave orders to three eminent divines to answer them. Their answers shook him a little in his resolution of embracing the Roman Catholic religion; and one of them, Spener, advised him to go to England. He went; and king William gave him a pension, which was continued by queen Anne. He was ordained a priest of the church of England, and honoured with the degree of doctor of divinity by the university of Oxford; upon which occasion Dr George Smalridge pronounced two Latin orations which were afterwards printed. He wrote, 1. Spicilegium S. S. Patrum, ut et Hereticorum faciuli post Christum natum, 8vo. 2. An edition of the Septa­ugint, from the Alexandrian manuscript in St James's library. 3. Notes on Justin, &c.; and other works, which are esteemed by the learned.

GRACCHUS (Tiberius), elected tribune of the Roman people in the year 103 B.C. He carried forward the execution of the Agrarian law; by which all persons possessing above 300 acres of land were to be deprived of the surplus, for the benefit of the poor citizens, amongst whom an equal distribution of them was to be made. Having carried his plan into execution by violent measures, he fell a victim to his zeal, being assassinated by his own party, 133 B.C. Caius his brother pursuing the same steps, was killed by the consul Ominus, 121 B.C. See (history of Rome).

GRACE, among divines, is taken, 1. For the free love and favour of God, which is the spring and source of all the benefits we receive from him. 2. For the work of the Spirit renewing the soul after the image of God; and continually guiding and strengthening the believer to obey his will, to resist and mortify sin, and overcome it.

Grace is also used, in a peculiar sense, for a short prayer said before and after meat.

The proofs of the moral obligation of this ceremony, drawn from different passages of the New Testament, are so well known, that it is needless to insist on them here. Some others, drawn from the practice of different nations, and of very remote antiquity, may not be disagreeable to our readers.

1. Athenaeus tells us, in his Deipnosof. lib. ii. that in the famous regulation made by Amphictyon king of Athens with respect to the use of wine, both in sacrifices and at home, he required that the name of Jupiter the Sustainer should be decently and reverently pronounced. The same writer, in lib. iv. p. 149, quotes Hermeias, an author extant in his time, who informs us of a people in Egypt, inhabitants of the city of Naukratis, whose custom it was on certain occasions, after they had placed themselves in the usual posture of eating at the table, to rise, again and kneel; when the priest or presbyter to the solemnity began to chant a grace, according to a stated form among them; and when that was over, they joined in the meal in a solemn faciicial manner. Heliodorus has a passage in his Ethiopic to the same purpose, that is
was the custom of the Egyptian philosophers to pour libations and put up ejaculations before they sat down to meals. Porphyr., in his treatise De abstin., lib. iii. p. 408, gives a great character of the Samian gymnosophists in Egypt for the strictness of their lives: as one article in their favour, he observes, that at the sounding of a bell before their meals, which consisted only of rice, bread, fruits, and herbs, they went to prayers; which being ended, and not before, the bell was sounded again, and they sat down to eating. In general this was a religious usage or rite among the ancient Greeks; and derived from yet older ages, if Clement of Alexandria rightly informs us. He mentions, that these people, when they met together to refresh themselves with the juice of the grape, sung a piece of music, in imitation of the Hebrew Psalms, which they called a *gibhion*. Livy, lib. xxxix. speaks of it as a festal custom among the old Romans; that they offered sacrifice and prayer to the gods at their meals and complotations. But one of the fullest testimonies to our purpose is given by Quintilian, *Declam.* 301. *Ad finem manum fays, ducat quidam convenerit epumus, Deus in nomo;* "We approached the table (at supper time) armed with bread and with an offering to accompany."

The *Joanit Tregant*, in his very elegant and instructive narrative of the Christian expedition of their missionaries into China, book i. p. 69, gives this account of the people there in the particular now under consideration. "Before they place themselves for partaking of an entertainment, the person who makes it sets a vessel, either of gold, or silver, or marble, or some such valuable material, in a charger full of wine, which he holds with both his hands, and then makes a low bow to the person of chief quality or character at the table. Then, from the hall or dining-room, he goes into the porch or entry, where he again makes a very low bow, and turning his face to the fourth, pours out this wine upon the ground as a thankful oblation to the Lord of heaven. After this, repeating his reverential obeisance, he returns into the hall," &c.

The Turks pray for a blessing on their meat; and many more instances might be produced of infidels who have constantly observed the like custom in some way or other.

2. The fact, therefore, with respect to the heathen world, being thus evident, we proceed to the sentiments and behaviour of the Jews in this particular. Their celebrated historian Josephus, giving a detail of the rites and customs of the Ephesians, who were confessedly the strictest and most pious professors of the Jewish religion, has this remarkable passage to the present purpose: "The priest," says he, "begs a blessing before they presume to take any nourishment; and it is looked upon as a great sin to take or taste before." Then follows the thanksgiving before meat: "And when the meal," proceeds he, "is over, the priest prays again; and the company with him bless and praise God as their protector, and the donor of their life and nourishment."

Philo, in his book *De vita Contemplativa*, gives an account of a body of men and women stricter than even the Ephesians themselves. He distinguishes them by no particular name, though his relation is very accurate and circumstantial; namely, that on certain special occasions, before "they took their meals, they placed themselves in a proper decent order; when, lifting up their hands and eyes to heaven, they prayed to God that he would be pleased to propitiate them in the use of these his good creatures."

From the Hebrew ritual it appears, that the Jews had their hymns and psalms of thanksgiving, not only after eating their pasover, but on a variety of other occasions, and after meals, and even between their several courses and dishes; as when the best of their wine was brought upon the table, or their aromatic confections, or the fruit of the garden, &c. On the day of the pasover was sung Psalm cxiv. "When Israel came out of Egypt," &c.

Aristides has a passage full on the present subject. "Moses," says he, "commands, that when the Jews are going to eat or drink, the company should immediately join in sacrifice or prayer." Where Rabbi Eleazar (upon that author) met with this sentence, has been controverted. But supposing it not to be found in *toras", it is sufficient for us to know that the Jews did most constantly profess this custom, upon the foundation of an ancient and general tradition and usage. That this practice the prophet Daniel gave thanks before meat, is evident from the Apocryphal book concerning Bel and the Dragon, where, ver. 38, 39, we find, that "Daniel said, Thou hast remembered me, O God! neither hast thou forsaken them who seek thee and love thee. So Daniel rote, and did eat." Of this text Prudentius takes notice in Cathemirin, *hymn* iv.

His *sumptus Daniell excidit Alum faciun, cibus fortis Amen reddidit, alleluia dixit.*

The much-beloved took the repast, And up to heaven his eyes he cast; By which refresh'd, he sang aloud, Amen and Alleluia to his God.

Where, by the way, it may be observed, that the poet is a little mistaken in making the prophet give thanks after meat; whereas, according to the text, he did it before.

Grace, or *gracefulness*, in the human character, an agreeable attribute, inseparable from motion as opposed to rest, and as comprehending speech, looks, gesture, and loco-motion.

As some motions are homely, the opposite to graceful; it is to be inquired, With what motions is this attribute connected? No man appears graceful in a walk; and therefore, laying aside the expressions of the contenience, the other motions may be genteel, may be elegant, but of themselves never are graceful. A motion adjusted in the most perfect manner to answer its end, is elegant; but still somewhat more is required to complete our idea of grace or gracefulness.

What this unknown more may be, is the nice point. One thing is clear from what is said, that this more must arise from the expressions of the contentenience; and from what expressions so naturally as from those which indicate mental qualities, such as sweetnefs, benevolence, elevation, dignity? This promises to be a fair analysis; because all objects mental qualities affect us the most; and the impression made by graceful appearance upon every spectator of taste, is too deep for any cause purely corporeal.

The next step is, to examine what are the mental qualities,
GRA

qualities, that, in conjunction with elegance of motion, produce a graceful appearance. Sweetness, cheerful-
ness, affability, are not separately sufficient, nor even in conjunction. Dignity alone, with elegant motion,
produce a graceful appearance, but still more graceful with the aid of other qualities, those especially that are
the most exalted. See DIGNITY.

But this is not all. The most exalted virtues may
be the lot of a person whose countenance has little ex-
pression; such a person cannot be graceful. Therefore
to produce this appearance, we must add another cir-
cumstance, viz. an expressive countenance, displaying
to every spectator of taste, with life and energy, every
thing that pales in the mind.

Collecting these circumstances together, grace may
be defined as "that agreeable appearance which aris-
e from elegance of motion and from a countenance ex-
pressive of dignity." Expressions of other mental
qualities are not essential to that appearance, but they
heighten it greatly.

Of all external objects, a graceful person is the most
agreeable.

Dancing affords great opportunity for displaying
grace, and haranguing still more. See Dancing,
Declamation, and Oratory.

But in vain will a person attempt to be graceful who
is deficient in amiable qualities. A man, it is true,
may form an idea of qualities he is deficient of, and,
by means of that idea, may endeavour to express these
qualities by looks and gestures: but such studied ex-
pression will be too faint and obscure to be graceful.

All of Grace, the appellation given to the act of
parliament 1765, c. 52, which allows prisoners for
civil debts to be set at liberty, upon making oath that
they have not wherewithal to support themselves in
prison, unless they are alimented by the creditors on
whose diligences they were imprisoned, within ten
days after intimation made for that purpose.

Days of Grace, three days immediately following
the term of payment of a bill, within which the cre-
ditor must protest if payment is not obtained, in or-
der to initiate him to recover again the drawer.

Grace is also a title of dignity given to dukes,
archbishops, and in Germany to barons and other in-
ferior princes.

Graces, Graces, Charities, in the heathen
theology, were fabulous deities, three in number, who
attended on Venus. Their names are, Aglia, Thalia, and
Euphrofyne; i.e. shining, flourishing, and gay; or, ac-
cording to some authors, Pafithea, Euphris, and Ap-
gale. They were supposed by some to be the daughters
of Jupiter and Evynome the daughter of Oceanus; and
by others, to be the daughters of Bacchus and Venus.

Some will have the Graces to have been four; and
make them the fames with the Horae, or Hours, for
other with the four seasons of the year. A marble in
the king of Prussia's cabinet represents the three Graces
in the usual manner, with a fourth seated and covered
with a large veil, with the words underneath, All So-
vers IIII. But this group we may understand to be
the three Graces, and Venus, who was their sifler, as
being daughter of Jupiter and Dione.

The Graces are always supposed to have hold of
each other's hands, and never parted. They were
painted naked, to show that the Graces borrow nothing
from art, and that they have no other beauties than
what are natural.

Yet in the first ages they were not represented nak-
ed, as appears from Paufianias, lib. vi. and lib. ix. who
describes their temples and statues. They were of
wood, all but their head, feet, and hands, which were
white marble. Their robe or gown was gilt; one of
them held in her hand a rofe, another a dyce, and the
third a spig of myrtle.

Graclilis, a musele of the leg, thus called from
its slender shape. See Anatomy, Table of the Muscles.

Gracula, the Gracle, in ornithology, a genus
belonging to the order Picae. The bill is convex,
cultivated, and bare at the point; the tongue is not clo-
ven, but is fleshy and sharpish; it has three toes before
and one behind. 1. The religiosa, lesser grackle, or
Indian curle, is about the size of a blackbird, the bill an
inch and a half long, and of an orange colour. The
general colour of the plumage is black, grolled with
violet, purple, and green, in different reflections of
light; on the quills is a bar of white: the feathers and
legs are orange yellow, and the claws a pale brown.
The species, which is found in several parts of the East
Indies, in the isle of Hanian, and almost every isle be-
Yond the Ganges, is remarkable for whistling, singing,
and talking well, much better than any of the parrot
genre, and in particular very dainty. Its food is of
the vegetable kind. Those kept in this climate are
observed to be very fond of cherries and grapes: if
cherries are offered to one, and it does not immedi-
ately get them, it cries and whines like a young
child, till it has obtained its desire. It is a very tame
and familiar bird. 2. The barita, or boat-tailed
grackle, is about the size of a cuckow. The bill is
sharp, black, and an inch and a half in length; the
general colour of the plumage is black, with a glos-
of purple, especially on the upper parts; the legs
and claws are black, the latter hooked. There is a
singularity in the folding up of the tail feathers, which,
instead of forming a plain surface at top, sink in
a hollow like a deep gutter. It always carries its tail
expanded when on the ground, folding it up in the
above singular manner only when perched or flying.
It inhabits Jamaica; and it feeds on maize, beetles,
and other insects, as well as on the fruit of the banana.
It is likewise common in North America, keeping
company with the flocks of the maize-thieves, and red
winged orioles. These breed in the swamps, and
migrate in September, after which none are seen. 3. The
quiquila, purple-jackdaw, or Barbadoes blackbird, is-
about the size of a blackbird; the whole bird is black,
but most beautifully and richly glossed with purple,
especially on head and neck. The female is wholly
of a brown colour, deepest on the wings and tail. This
species inhabits Carolina, Mexico, and other parts of
North America, also Jamaica. These birds for the
most part feed on maize, whence the name of maize
thieves has been given them; but this is not their
only food, for they are known also to feed on many other
things. In spring, soon after the maize feed is put into
the ground, they scratch it up again; and as soon as
the leaf comes out, they take it up with their bills, root
and all, but when it is ripe they do still more damage,
for at that time they come in troops of thousands, and are so bold, that if disturbed in one part of a field they only go to another. In New Jersey and Pennsylvania three peice per dozen was once given for the dead birds, and by means of this premium they were nearly extirpated in 1750; when the persecution of them was abated on account of the great increase of worms which had taken place in the meadows, and which in the preceding year had left to little hay in New England as to occasion an importation from other parts. The grakles were therefore again tolerated, as it was observed that they fed on these worms till the maize was ripe. These birds build in trees. They are said to pass the winter in swamps, which are quite overgrown with wood, from thence only appearing in mild weather; and after the maize is got in, are content to feed on other things, as the aquatic tame-grafo, and if prefied by hunger, buck-wheat and oats, &c. they are said also to destroy that pernicious infect the bruchus pli. Their note is pretty and agreeable; but their flesh is not good to eat. The erititellis, or Chinese starling, is a little bigger than a blackbird. The bill is yellow or orange; and the general colour of the plumage blackish, with a tinge of blue: the legs are of a dull yellow. These birds, which are said total and whifhe very well, are common in China, where they are very much esteemed, and the figures of them are seen frequently in Chinese paintings. Their food is rice, infects, worms, and fuch like. They are seldom brought to England alive, requiring the greatest care in the passage.—There are eight other species of Graculus.

GRACULUS, in ornithology. See Corvus.

GRADATION, in general, the ascending step by step, or in a regular and uniform manner.

GRADATION, in logic, a form of reasoning, otherwife called Sorites.

GRADATION, in painting, a gradual and insensible change of colour, by the diminution of the teints and shades.

GRADATION, in rhetoric, the same with Climax.

GRADISKA, a strong town of Hungary in Scavonia, on the frontier of Croatia, taken by the Turks in 1691. It is feated on the river Save, in E. Long. 17. 55. N. Lat. 45. 38.

GRADISKA, a strong town of Italy, in a small island of the same name on the frontiers of Friuli, in E. Long. 13. 37. N. Lat. 46. 6. It is subject to the houfe of Austria.

GRADO, a strong town of Italy, in a small island of the same name, on the coast of Friuli, in the territory of Venice. E. Long. 13. 35. N. Lat. 45. 52.

GRADUATE, a person who has taken a degree in the university. See Degree.

GRÆVIUS (John George), one of the most learned writers in the 15th century. In the 24th year of his age, the elector of Brandenburg made him professor at Dofibourg. In 1658, he was invited to Deventer to succed his former master Gronovius. In 1661, he was appointed professor of eloquence at Utrecht; and 14 years after he had the professorship of politics and history conferred on him. He fixed his thoughts here, and refused several advantageous offers. He had, however, the satisfaction to be fought after by divers princes, and to see several of them come from Germany to study under him. He died in 1703, aged 71. His Thesaurus antiquitatum et historiarum Italiae, &c. and other works, are well known.

GRAFTING, or Engrafting, in gardening, is the taking a shoot from one tree, and injuring it into another, in such a manner that both may unite closely and become one tree. By the ancient writers on husbandry and gardening, this operation is called incision, to distinguish it from inoculation or budding, which they call inferre caulis.

Grafting hath been practised from the most remote antiquity; but its origin and invention is differently related by naturalists. Theophrastus tells us, that a bird having swallowed a fruit whole, cast it forth into a leaf or cavity of a rotten tree; where mixing with some of the purified parts of the wood, and being washed with the rains, it budded, and produced within this tree another tree of a different kind. This led the husbandman to certain reflections, from which afterwards arose the art of engrafting.

Pliny sets the same thing in a different light: a countryman having a mind to make a palliade in his grounds, that it might endure the longer, he himself to fill up and strengthen the bottom of the palliade, by running or wasting it with the trunks of ivy. The effect of this was, that the flakes of the palliades taking root, became engrafted into the trunks, and produced large trees; which suggested to the husbandman the art of engrafting.

The use of grafting is to propagate any curious sorts of fruits so as to be certain of the kinds; which cannot be done by any other method: for as all the good fruits have been accidentally obtained from seeds, so the seeds of these, when sown, will many of them degenerate, and produce such fruit as is not worth the cultivating; but when shoots are taken from such trees as produce good fruit, these will never alter from their kind, whatever be their flock or tree on which they are grafted.

The reason or philosophy of engrafting is something obscure; and had not accident given the first hint, all our knowledge of nature would never have led us to it. The effect is ordinarily attributed to the diversity of the pores or ducts of the graft from those of the flock, which change the figure of the particles of the juices in passing through them to the root of the tree.

Mr Bradley, on occasion of some observations of Agricola, suggests something new on this head. The flock grafted on, he thinks, is only to be considered as a fund of vegetable matter, which is to be filtered through the cyon, and digested, and brought to maturity, as the time of growth in the vessels of the cyon directs. A cyon, therefore, of one kind, grafted on a tree of another, may be rather said to take root in the tree it is grafted in, than to unite itself with it: for it is visible that the cyon preserves its natural purity and intent, though it be fed and nourished with a mere crab; which is, without doubt, occasioned by the difference of the vessels in the cyon from those of the flock: so that grafting may be justly compared to planting.

In prosecution of this view of that ingenious author, we add, that the natural juices of the earth, by their secretion
G R A T I N G.

Fermentation and comminution in passing through the roots, &c. before they arrive at the cyon, must do a great deal to half elaborated and so disposed for a more easy, plentiful, and perfect assimilation and nutrition; whence the cyon must necessarily grow and thrive better and faster than if it were put immediately in the ground, there to live on coarse diet and harder of digestion; and the fruit produced by this further preparation in the cyon, must be finer and further exalted than if fed immediately from the more imperfectly prepared and altered juices of the cyon.

Many have talked of changing of species, or producing mixed fruits, by engrafting one tree on another of the same class; but as the graft carries the juices from the cyon to the pulp of the fruit, there is little hope of succeeding in such an expectation by ever so many repeated grafts; but if, after changing the graft and tree, several successive times, you felt the seed of the fruit produced on the graft in a good mould, it is possible that a change may happen, and a new mixed plant may be produced. Thus the almond and peach may, by many changes in the graftings, and by intertentions of the stones of the peaches, and of the shells of the almonds, and by terbiations of the stem of the root here and there, alter their nature so much, that the coat or pulp of the almond may approach to the nature of the peach, and the peach may have its kernel enlarged into a kind of almond; and on the same principle, the curious gardener may produce many such mixed kinds of things.

Mr Du Hamel has observed, that, in grafting of trees, there is always found at the insertion of the graft, a change in the directions of fibres, and a fort of twinging or turning about of the vessels, which greatly imitates that in the formation of certain glands in animal bodies; and from thence he infers, that a new sort of veins being formed by this means, the fruit may very naturally be so far influenced by it, as to be meliorated on the new branch; but that no such sudden and edentential changes can be effected by those means, as too many of the writers on agriculture pretend. He observes, however, that this anatomical observation would not have been sufficient to convince him of the falsity of too many of these relations, had not experiment joined to confirm him in his opinion. He tried many grafts on different trees; and, for fear of error, repeated every experiment of consequence several times: but all served only to convince him of the truth of what he at first suspected. He grafted in the common way the peach upon the almond, the plum upon the apricot, the pear upon the apple, the quince, and the white thorn; one species of plum on other very different species, and upon the peach, the apricot and the almond. All these succeeded alike: the species of the fruit was never altered; and in those which would not come to fruit, the leaves, the wood, and the flowers, were all the same with those of the tree from whence the graft was taken.

Authors on agriculture have also mentioned a very different sort of grafting; namely, the setting grafts of one tree upon stocks of a different genus; such as the apricot the pear upon the oak, the elm, the maple, or the plum, &c. Mr Du Hamel tried a great number of these experiments carefully, and found every one of them unsuccessful; and the natural conclusion from this was, that there must be some natural alliance between the stocks and their grafts, otherwise the latter will either never grow at all or very soon perish.

Notwithstanding the facility with which grafts generally take on good stocks, there are many accidents and uncertainties attending them in their different periods. Some perish immediately; some, after appearing healthy for many months, and some even for years. Of these last some die without the stock suffering any thing; others perish together with the stocks. It is very certain, that the greater part of grafted trees do not live so long as they would have done in their natural state; yet this is no exceptionable rule: for there are some which evidently live the longer for this practice; nay, there are instances of grafts which, being placed on stocks naturally of short duration, live longer than when placed on those which are more robust and lasting. These irregularities have been but little considered hitherto, though they might be made productive of considerable advantages.—One great requisite for the succeeding of any graft is, that it be in its own nature capable of so close and intimate an union with the substance of the stock, that it becomes as it were a natural branch of it. If all trees resembled one another in their structure and juices, the size and elasticity of their vessels, &c. probably the grafts of all trees would succeed upon one another; but this is by no means the case.

Trees are well known to be composed of numerous arrangements of hollow fibres, and these are different and unequal in every species of tree. In order to the succeeding of any graft is, that there must be a conformity in its vessels and juices with those of the stock; and the more nearly they agree in this, probably the better they succeed; and the farther they differ, the worse. If there be, however, some difference in the solid parts of trees, there are evidently many more in the juices. The sap of some trees is white as milk, in others it is red, and in some as clear and limpid as water. In some, it is thin and very fluid; in others, thick and viscous. In the taste and smell of the juices there are also not less differences: some are sweet, some insipid, some bitter, some astringent, and some fetid: the quality of the sap thus makes a very great difference in the nature of trees; but its quantity, and derivation to the parts, is scarce less observable. Of this we have familiar instances in the willow and the box; one of which will produce longer shoots in one year than the other in twenty.

Another difference yet more striking, and indeed more essential in regard to the growth of grafts than all these, is the different season of the year at which trees shoot out their leaves, or ripen their flowers. The almond-tree is in flower before other trees in general have opened their earliest buds; and when other trees are in flower, this is full of leaves, and has its fruit set before the mulberry begins to push out its earliest buttons. When we consider all these differences in trees, we cannot but wonder how it is possible for a branch of one to live upon another; and it becomes a much more perplexing question how any graft can succeed, than how such numbers come to miscarry. A graft of one pear upon another shall be seen
Grafting.

Grafting, seen to succeed presently as if upon its own tree; and in a fortnight will gain six inches in length, and so of some others.—This must be owing to the great similarity between the flock and the graft in all respects; and a great contrariety or difference in structure of parts will make it as remarkable a difference on one hand, and an instance of this may be observed in the plum and the elm; which no art can ever make to succeed upon another, whether the plum be grafted on the elm, or the elm upon the plum flock. These are examples of the extremes of easy growth, and of absolute decay; but there are many conjunctions of trees which seem of a middle nature between the two, and neither immediately perish, nor totally succeed. Of these, such as were grafted in autumn usually remain green the whole winter without pulling; and those which are grafted in spring remain green a month or longer, but still without shooting. Some particular ones have also been known to make a few shoots the first, or even the second sap season after the operation; but all perish at the end of these times. Of this kind are the grafts of the pear-tree upon the elm, the maple, and the hornbeam, and the mulberry upon the elm and fig, with many others.

When we come to inquire into the cause of this, we find that these grafts, though unnatural, have yet had a communication with the flock by means of a few small vessels, which has been sufficient to keep them green, or even to make them shoot a little, during the great ascent of the sap: But the far greater number of the fibres have had all the while no communication, and are found putrified, dried up, or covered with a putrid juice. This has evidently happened by means of the disproportion in size between the vessels of the flock and of the graft, and the great difference between their natural juices, which are obstacles abundantly sufficient to prevent either an union of the fibres or the introduction of new sap.

The grafts of the almond on the plum, and of the plum on the almond, always grow very vigorously for the first year, and give all the appearances imaginable of succeeding entirely; yet they always perish in the second or third year. The almond graft upon the plum-flock always pushes out very vigorously at first; but the part of the flock immediately under the graft grows smaller and perishes, the graft absoiling too much of the juices, and the graft necessarily perishes with it. The decay of the whole generally happens early in the spring; and that plainly from the different season of the natural shooting of the two trees, the almond pushing very vigorously, and consequently draining the flock of its juices, at a time when, according to its nature, the juices are but in small quantity in it, and the sap does not begin to ascend. The grafts of the plum on the almond are, from the same cause, furnished with an abundance of sap which they have at that time no occasion for; and consequently they as certainly perish of repletion, as the other of invasion.

As the peach grafted on the plum succedeth excellently, and lives longer than it would have done in a natural state; the reason seems to be, that the peach is a tender tree, shoots with great vivacity, and produces more branches than the root is able to maintain. Thus the peach trees are usually full of dead wood; and often their large branches perish, and sometimes their whole trunk. On this occasion the plum, being a slow shooting tree, communicates its virtue to the graft; and the peach consequently sends out shoots which are more robust and strong, and there is no more in number than the root is able to supply with nourishment, and consequently the tree is the more lasting.

The grafts, or cions, with which the grafting is effected, are young shoots of last summer's growth, for they must not be more than one year, and such as grow on the outside branches, and robust but moderate shooters; such also as are firm and well ripened, should always be chosen from healthful trees: observing, that the middle part of each shoot is always the best graft, cut at the time of grafting to five or six inches in length, or so as to have four or five good eyes or buds; but should be preferred at full length till grafting time, and then prepared as hereafter directed.

They should be collected or cut from the trees in February, in mild weather, before their buds begin to swell, or advance much for shooting; in collecting them, choose such as have not made lateral or side shoots; cut them off at full length; and if they are not to be used as soon as they are collected, lay their lower ends in some dry earth in a warm border till grafting time, and if ever weather should happen, cover them with dry litter.

The proper tools and other materials used in grafting, are, 1. A strong knife for cutting off the ends of the flocks, previous to the insertion of the graft; also a small hand-saw for occasional use in cutting off the heads of large flocks. 2. A common grafting-knife, or strong sharp pen-knife, for cutting and shaping the grafts ready for insertion; also to slope and form the flocks for the reception of the grafts. 3. A flat grafting-chisel and small mallet for cleaving large flocks, in cleft-grafting, for the reception of the graft. 4. A quantity of new hays-firings for bandages, for tying the grafted parts close, to secure the grafts, and promote their speedy union with the flock. And, 5. A quantity of grafting clay, for laying closely round the grafts after their insertion and binding, to defend the parts from being dried by the sun and winds, or too much liquified by wet, or pinched by cold; for these parts ought to be closely surrounded with a coat of clay in such a manner as effectually to guard them from all weathers, which would prove injurious to young grafts, and destroy their cementing property, so as to prevent the junction: therefore, a kind of stiff loamy mortar must be prepared of strong fat loam, or, in default thereof, any sort of tough binding clay, either of which should be laid in an heap, adding thereto about a fourth of fresh horse-dung free from litter, and a portion of cut hay, mixing the whole well together, and adding a little water: then let the whole be well beaten with a stick upon a floor, or other hard substance; and as it becomes too dry, apply more water, at every beating turning it over, always continuing to beat it well at top till it becomes flat; which must be repeated more or less according to the nature of the clay, but should be several times done the first day; next morning repeat the beating, still moistening it with water; and by thus repeating the beating six or eight times every day for two or three days, or every other day at least, for a week, it will be in proper...
Grafting, per order for use; observing, it should be prepared a week or at least before it is used, but if a month, the better.

The season for performing the operation of grafting is February and March; though, when the work is performed in February, it is for the general part proves the most successful, more especially for cherries, plumbs, and pears; and March grafting is well adapted for apples.

There are different methods of grafting in practice, termed Whip-grafting—Cleft-grafting—Crown-grafting—Cheek-grafting—Side-grafting—Root-grafting—and Grafting by approach or Inarching; but Whip-grafting and Cleft-grafting are most commonly used, and Whip-grafting most of all, as being the most expeditious and successful of any.

Whip-grafting—This being the most successful method of grafting is the most commonly practised in all the nurseries; it is always performed upon small stocks, from about the size of a goose-quill to half an inch or a little more or less in diameter, but the nearer the stock and graft approach in size the better, and is called whip-grafting, because the grafts and stocks being nearly of a size, are laid on one side, so as to fit each other, and tied together in the manner of whips, or joints of angling rods, &c. and the method is as follows. Having the stocks or grafts, knife, bandages, and clay ready, then begin the work by cutting off the head of the stock at some clear smooth part thereof; this done, cut one side sloping upward, about an inch and half or near two inches in length, and make a notch or small slit near the upper part of the slope downward about half an inch long, to receive the tongue of the cyon; then prepare the cyon, cutting it to five or six inches in length, forming the lower end of it in a sloping manner, so as to fit the sloped part of the stock, as if cut from the same place, that the rinds of both may join evenly in every part; and make a slit so as to form a sort of tongue to fit the stock made in the slope of the stock; then place the graft, inserting the tongue of it into the slit of the stock, applying the parts as evenly and close as possible, and immediately tie the parts close together with a string of basts, bringing it in a neat manner several times round the stock and graft; then clay the whole over near an inch thick on every side, from about half an inch or more below the bottom of the graft; then take the whole over near an inch thick over the top of the stock, finishing the whole coat of clay in a kind of oval globular form, rather long, up and down, closing it effectually about the cyon, and every part, so as no fun, wind, nor wet may penetrate, to prevent which; is the whole intention of claying: observing to examine it now and then, to see if it any where cracks or falls off, and if it does it must be instantly repaired with fresh clay. This sort of grafting may also be performed, if necessary, upon the young shoots of any bearing tree, if intended to alter the sorts of fruits, or have more than one sort on the same tree. By the middle or latter end of May, the grafts will be well united with the stock, as will be evident by the showing of the graft; then the clay should be wholly taken away: but suffer the basts bandage to remain sometime long after the united parts seem to swell and be too much confined by the ligature, then take the tying wholly off. Their farther culture is directed under the respective articles, whether designed for dwarfs or standards, &c.

Cleft-grafting—This is focalled, because the stock being too large for whip-grafting is cleft or slit down the middle for the reception of the graft; and is performed upon stocks from about one to two inches diameter. First, with a strong knife cut off the head of the stock; or if the stock is very large, it may be headed with a saw; and cut one side sloping upwards about an inch and half to the top; then proceed with a strong knife or chisel, to cleave the stock at top, crofs-way the slope, fixing the knife or chisel towards the back of the slope, and with your mallet strike it, so as to cleave the stock about two inches, or long enough to admit the graft, keeping it open with the chisel; this done, prepare the cyon, cutting it to such length as to leave four or five eyes, the lower part of which being sloped on each side, wedge-fashion, an inch and half or two inches long, making one side to a thin edge, the other much thicker, leaving the rind thereon, which side must be placed outward in the stock; the cyon being thus formed, and the cleft in the stock being made and kept open with the chisel, place the graft therein at the back of the stock the thickest side outward, placing the whole cut part down like the cleft of the stock, making the rind of the stock and graft join exactly: then removing the grafting chisel, each side of the cleft will closely squeeze the graft, so as to hold it fast: it is then to be bound with a ligature of basts, and clayed over, as observed in whip-grafting, leaving three or four eyes of the cyons uncovered. If intended to graft any pretty large stocks or branches by this method, two or more grafts may be inserted in each; in this case the head must be cut off horizontally, making no slope on the side, but smooth the top, then cleave it quite across, and place a graft on each side, as the stock may be cleft in two places, and insert two grafts in each cleft; they are thus to be tied and clayed as in the other methods. This method of grafting may be performed upon the branches of bearing trees, when intended either to renew the wood or change the sort of fruit. Towards the latter end of May, or the beginning of June, the junction of the graft and stock in either method will be effectually formed, and the graft begin to shoot, when the clay may be taken off, and in a fortnight or three weeks after take off also the bandages.

Crown-Grafting—This kind of grafting is commonly practised upon such stocks as are too large to cleave, and is often performed upon the large branches of apple and pear trees, &c. that already bear fruit, when it is intended to change the sorts, or renew the tree with fresh-bearing wood. It is termed crown-grafting, because the stock or branch being headed down, several grafts are inserted at top all around both the wood and bark, so as to give it a crown-like appearance: observing, that this kind of grafting should not be performed until March or early in April; for then the sap being in motion, renders the bark and wood of the stock much easier to be separated for the admission of the graft. The manner of performing this sort of grafting is as follows: First, cut off the head of the stock or branch with a saw horizontally, and pare the top smooth, then having the grafts, cut one side of each flat, and somewhat sloping, an inch and
Grafting. a half, forming a sort of shoulder at top of the slope to rest upon the crown of the stock; and then raising the kind of the stock with a wedge, for to admit the cyon between that and the wood two inches down, place the grafts with the flat side next the wood, thrusting it down far enough for the shoulder to rest upon the top of the stock; and in this manner may be put three, four, five, or more grafts in one large stock or branch. When the grafts are all thus inserted, let the whole be tied tight and well clayed: observing to leave two or three eyes of each graft uncovered, but raising the clay an inch above the top of the stock, so as to throw the wet quickly off, without lodging about the grafted parts, which would ruin the whole work. Crown-grafting may also be performed, by making several clefts in the crown of the stock, and inferting the grafts round the top of the clefts. The grafts will be pretty well united with the stock, and exhibit a state of growth, by the end of May or beginning of June, and the clay may then be taken away. The trees grafted by this method will succeed extremely well; but, for the first two or three years, have this inconvenience attending them, of being liable to be blown out of the stock by violent winds; which must be remedied by tying long stocks to the body of the stock or branch, and each graft tied upon one of the stocks.

Check-grafting.—Cut the head of the stock off, horizontally, and pare the top smooth; then cut one side flioping an inch and half or two inches deep, and cut the lower part of the graft flioping the same length, making a sort of shoulder at top of the flioped part; it is then to be placed upon the flioped part of the stock, resting the shoulder upon the crown of it; bind it with bafe, and finifh with a covering of clay as in the other methods.

Side-grafting.—This is done by inferting grafts into the sides of the branches without heading them down; and may be practifed upon trees to fill up any vacancy, or for the purpose of variety, to have several sorts of apples, pears, plums, &c. upon the same tree. It is performed thus. Fix upon each parts of the branches where wood is wanted to furnish the head or any part of the tree; there fliop the trunk, little of the wood, and cut the trees along the grafts to fit them as near as poifible; then join them to the branch, and tie them with bafe and clay them over.

Root-grafting.—This is done by whip-grafting cyons upon pieces of the root of any tree of the fame genus, and planting the root where it is to remain; it will take root, draw nourishment, and feed the graft.

Grafting by approach, or Inarching.—This sort of grafting is, when the flocks designed to be grafted, and the tree from which you intend to take the graft, either grow too near, or can be placed fo near together, that the branch or graft maybe made approach the flock, without separating it from the tree, till after its union or the branch be bent to the flock; so that the branch or graft being bent to the flock, they together form a f ort of arch; whence it is called Grafting by Approach, or Inarching. Being a fure method, it is commonly practifed upon fuch trees as are with difficulty made to fucceed by any of the former ways of grafting. When intended to propagate any kind of tree or shrub by this method of grafting, if the tree, &c.
GRA [35] GRA

Grafting.

Grain. as to have very beautiful pyramids of fruit upon them, which will exceed in beauty, flavour, and quantity, all that can be otherwise produced. This, he says, he had long experienced, and gives the following method of doing it. The trees are to be transplanted in autumn, and all their branches cut off. Early in the following summer the young shoots are to be pulled off, and the buds then to be ingrafted into them in an inverted direction. This, he says, adds not only to the beauty of the pyramids, but also makes the branches more fruitful. These are to be closely connected to the trunk, and to be fastened in with the common ligature: they are to be placed circularly round the tree, three buds in each circle, and these circles at six inches distance from one another. The old trees may be ingrafted in this manner, the success having been found very good in those of twenty years standing; but the most eligible trees are those which are young, vigorous, and full of juice, and are not above a finger or two thick. When these young trees are transplanted, they must be fenced round with pales to defend them from the violence of the wind; and there must be no dung put to them till they are thoroughly rooted, for fear of rotting them before the fibres strike. The buds ingrafted must be small, that the wounds made in the bark to receive them, not being very large, may heal the looser, and if the buds do not succeed, which will be perceived in a fortnight, there must be others put in their place. The wound made to receive these buds must be a straight cut, parallel to the horizon; and the piece of bark taken out must be downward, that the rain may not get in at the wound. In the autumn of the same year, this will be a green and flourishing pyramid; and the next summer it will flower, and ripen its fruit in autumn.

Graham.

Graham. which will at the rage and the insult of his enemies. We meet his usual Graemes of mind, and expressed a just exec.. The death of that prince; though he obtained a pardon by the queen’s intercession. He spent the remainder of his days in retirement, and published an elegant translation of “Boethius on the confusion of philosophy.” He died in 1695.

Graham (George), clock and watch maker, the most ingenious and accurate artist in his time, was born in 1675. After his apprenticeship, Mr Tompion received him into his family, purely on account of his merit; and treated him with a kind of parental affection as long as he lived. Before his universally acknowledged skill in his profession, he was a complete mechanic and astronomer; the great mural arch in the observatory at Greenwich was made for Dr Halley, under his immediate inspection, and divided by his own hand; and from this incomparable original, the best foreign instruments of the kind are copies made by English artists. The fector by which Dr Bradley first discovered two new motions in the fixed stars, was of his invention and fabric: and when the French academicians were sent to the north to ascertain the figure of the earth, Mr Graham was thought the fittest person in Europe to supply them with instruments; those who went to the south were not so well furnished. He was for many years a member of the Royal Society, to which he communicated several ingenious and important discoveries; and regarded the advancement of science more than the accumulation of wealth. He died in 1751.

Graham’s Dyke. See *Antonius’s Wall.*

Grain. corn of all sorts, as barley, oats, rye, &c. See Corn, Wheat, &c.

Grain is also the name of a small weight, the twentieth part of a scruple in apothecaries weight, and the twenty-fourth of a penny-weight Troy. A grain-weight of gold-bullion is worth two-pence, and that of silver, but half a farthing sterling.

Grain also denotes the component particles of stones and metals, the veins of wood, &c. Hence crosgained, or against the grain, means contrary to the fibres, of wood, &c.

Grain (Baptist le), master of the requests in ordinary to Mary de Medicis queen of France’s household, wrote *The History of Henry the Great,* and of *Louis XIII.* from the beginning of his reign to the death of the marshal d’Ancre in 1617. This history is reckoned to be written with impartiality, and the spirit of a true patriot; and contains many things not to be found anywhere else. He vigorously afferts the edict that had been granted to the reformed.

Grallae, in ornithology, is an order of birds analogous to the *brata* in the clas of mammalia, in the Linnean system. See Zoology and Ornithology.

Gramina, grasses; one of the seven tribes or natural families, into which all vegetables are distributed by Linnaeus in his *Philosophia Botanica.* They are defined to be plants which have very simple leaves, a jointed stem, a hollow calyx termed *gluma,* and a single seed. This description includes the several sorts of corn as well as grasses. In Tournefort they constitute a part of the fifteenth class, termed *apetalae,* and in Linnaeus’s sexual method, they are mostly contained in the second order of the third clas, called *trian-dria digynia.*

This page contains historical information about the Scottish politician and statesman George Graham (1578–1650), his contributions to science and the arts, and his role in the Civil War.
This numerous and natural family of the grasses has engaged the attention and researches of several eminent botanists. The principal of these are, Ray, Monti, Micheli, and Linnæus.

M. Monti, in his Catalogus Stirpium Agri Bononiensis, printed at Bononia in 1719, divides the grasses from the disposition of their flowers, as, Theophrastus and Ray had divided them before him into three sections or orders. These are, 1. Grasses having flowers collected in a spike. 2. Grasses having their flowers collected in a panicule or loose spike. 3. Plants that in their habit and external appearance are allied to the grasses.

This class would have been natural if the author had not improperly introduced sweet-rue, juncus, and arrow-headed grass, into the third section. Monti enumerates about 360 species of the grasses, which he reduces under Tournefort's genera; to these he has added three new genera.

Scheuchzer, in his Ariflographia, published likewise in 1719, divides the grasses, as Monti, from the disposition of their flowers, into the five following sections: 1. Grasses with flowers in a spike, as phalaris, anthoxanthum, and frumentum. 2. Irregular grasses, as Schrennum, and cornzco. 3. Grasses with flowers growing in a simple panicule or loose spike, as reed and millet. 4. Grasses with flowers growing in a compound panicule, or diffused spike, as oats and poa. 5. Plants by their habit nearly allied to the grasses, as eypres-grasses, scirpus, Linagrotilus, rufen, and tichelichoria.

Scheuchzer has enumerated about four hundred species, which he describes with amazing exactness.

Micheli has divided the grasses into six sections, which contain in all 44 genera, and are arranged from the situation and number of the flowers.

Gramina, the name of the fourth order in Linnæus's Fragments of a Natural Method, consisting of the numerous and natural family of the grasses, viz. Poa, alopecurus or fox-tail grasses, anthoxanthum or vernal grases, aridina arundo or reed, avena or oats, boba, bata, briza, bromus, chin, cornzco, or horn of plenty grass, cymoturus, daethylis, eyma, fæfica or fæfica-grasses, hordine or barley, lagurus or hare's tail grases, lollum or danel, lygrium or hooded matweed, melicia, milleum or millet, nardus, oryza or rice, panicum or panic-grasses, palpalm, phalaris, or canary-grasses, pleum, poa, sacharum or sugar-cane, secale or rye, fita or winged spike-grasses, triticum or wheat, unio, or pea-side oats of Carolina, cox or Job's tears, olyra, pharus, triplicum, zea, Indian Turkey wheat or Indian corn, zizania, æglops or wild fæfica-grasses, and ropogon, aplus, cenchtus, holcus or Indian millet, ifchænum. See Botany, p. 458, col. 2. and Grasses.

Composition. 1. Grammar is the art of speaking or of writing any language with propriety; and the purpose of language is to communicate our thoughts.

2. Grammar, considered as an art, necessarily supposes the previous existence of language; and as its design is to teach any language to those who are ignorant of it, it must be adapted to the genius of that particular language of which it treats. A just method of grammar, therefore, without attempting any alterations in a language already introduced, furnishes certain observations called rules, to which the methods of speaking used in that language may be reduced; and this collection of rules is called the grammar of that particular language. For the greater difficulties with regard to these rules, grammarians have usually divided this subject into four distinct heads, viz. Orthography, or the art of combining letters into syllables, and syllables into words; Etymology, or the art of deducing one word from another, and the various modifications by which the sense of any word can be diversified consistently with its original meaning or its relation to the term whence it is derived; Syntax, or what relates to the construction or due disposition of the words of a language into sentences or phrases; and Prosody, or that which treats of the quantities and accents of syllables, and the art of making verses.

3. But grammar, considered as a science, views language only as it is significant of thought. Neglecting all particular and arbitrary modifications introduced for the sake of beauty or elegance, it examines the analogy and relation between words and ideas; distinguishes between those particulars which are essential to language and those which are only accidental; and thus furnishes a certain standard, by which different languages may be compared, and their several excellencies or defects pointed out. This is what is called Philo sophic or Universal Grammar.

4. The design of speech is to communicate to others the thoughts and perceptions of the mind of the speaker: but it is obvious, that between an internal idea and any external found there is no natural relation; that the word fire, for instance, might have denominated the substane which we call ice, and that the word ice might have signified fire. Some of the most acute feelings of man, as well as of every other animal, are indeed expressed by simple inarticulate sounds, which as they tend to the preservation of the individual or the continuance of the species, and invariably indicate either pain or pleasure, are universally understood: but these inarticulate and significant sounds are very few in number; and if they can with any propriety be said to constitute a natural and universal language, it is a language of which man as a mere sensitive being partakes in common with other animals.
5. Man is endowed not only with sensation, but also with the faculty of reasoning; and simple inarticulate sounds are insufficient for expressing all the various modifications of thought, for communicating to others a chain of argumentation, or even for distinguishing between the different sensations either of pain or of pleasure: a man scourched with fire or unexpectedly plunged among ice, might utter the cry naturally indicative of sudden and violent pain; the cry would be the same, or nearly the same, but the sensations of cold and heat are widely different.

Articulation, by which those simple sounds are modified, and a particular meaning fixed to each modification, is therefore absolutely necessary to such a being as man, and forms the language which distinguishes him from all other animals, and enables him to communicate with facility all that diversity of ideas with which his mind is stored, to make known his particular wants, and to distinguish with accuracy all his various sensations. Those sounds thus modified are called words; and as words have confidedly no natural relation to the ideas and perceptions of which they are significant, the use of them must either have been the result of human sagacity, or have been forgotten to the first man by the Author of nature.

6. Whether language be of divine or human origin, is a question upon which, though it might perhaps be soon resolved, it is not necessary here to enter. Upon either supposition, the first language, compared with those which succeeded it, or even with itself as afterwards enlarged, must have been extremely rude and narrow. If it was of human contrivance, this will be readily granted; for what art was ever invented and brought to a height of perfection by dilator savages? If it was taught by God, which is at least more probable supposition, we cannot imagine that it would be more comprehensive than the ideas of those for whose immediate use it was intended: that the first men should have been taught to express pains or pleasures which they never felt, or uttered sounds that should be afterwards significant of ideas which at the time of utterance had not occurred to the mind of the speaker: man, taught the elements of language, would be able himself to improve and enlarge it as his future occasions should require.

7. As all language is composed of significant words variously combined, a knowledge of them is necessary previous to our acquiring an adequate idea of language as constituted into sentences and phrases. But as it is by words that we express the various ideas which occur to the mind, it is necessary to examine how ideas themselves are forgotten, before we can ascertain the various classes into which words may be distributed. It is the province of logic to trace our ideas from their origin, as well as to teach the art of reasoning; but it is necessary at present to observe, that our earliest ideas are all ideas of sensation, excited by the impressions that are made upon our organs of sense by the various objects with which we are surrounded. Let us therefore suppose a reasonable being, devoid of every possible prepossession, placed upon this globe, and it is obvious, that his attention would in the first place be directed to the various objects which he saw existing around him. Thence he would naturally endeavour to distinguish from one another; and if he were either learning or inventing a language, his first effort would be to give them names, by means of which the ideas of them might be recalled when the objects themselves should be absent. This is one copious source of words; and forms a natural class which must be common to every language, and which is distinguished by the name of nouns; and as these nouns are the names of the several substances which exist, they have likewise been called substantives.

8. It would likewise be early discovered, that every one of these substances was endowed with certain qualities or attributes, to express which another class of words would be requisite, since it is only by their qualities that substances themselves can attract our attention. Thus, to be weighty, is a quality of matter; to think, is an attribute of man. Therefore in every language words have been invented to express the known qualities or attributes of the several objects which exist. These may all be comprehended under the general denomination of attributives.

9. Nouns and attributives must comprehend all that is essential to language (a); for every thing which exists, or of which we can form an idea, must be either a substance or the attribute of some substance; and therefore those two classes which denominate substances and attributes, must comprehend all the words that are necessary to communicate to the hearer the ideas which are present to the mind of the speaker. If any other words occur, they can only have been invented for the sake of dispatch, or introduced for the purposes of ease and ornament, to avoid tedious circumlocutions or disagreeable tautologies. There are indeed grammarians of great name, who have considered essential to language an order of words, of which the use is to connect the nouns and attributives, and which are said to have no signification of themselves, but to become significant by relation. Hence all words which can possibly be invented are by these men divided into two general classes: those which are significant of themselves and those which are not. Words significant of themselves are either expressive of the names of substances, and therefore called substantives; or of

(a) This is the doctrine of many writers on the theory of language, for whose judgment we have the highest respect; yet it is not easy to conceive mankind so far advanced in the art of abstraction as to view attributes by themselves independent of particular substances, and to give one general name to each attribute wherever it may be found, without having at the same time words expressive of affirmation. We never talk of any attribute, a colour for instance, without affirming something concerning it; as, either that it is bright or faint, or that it is the colour of some substance. It will be seen afterwards, that to denote affirmation is the proper office of what is called the substantive verb; as, "Milk is white." That verb therefore appears to be as necessary to the communication of thought as any species of words whatever; and if we must range words under a few general classes we should be inclined to say, that

nouns, attributives, and affirmative, comprehend all that is essential to language.
of attributes, and therefore called *ATTRIBUTIVES.*

Words which are not significant of themselves, must acquire a meaning either as defining or connecting others; and are therefore arranged under the two classes of *DEFINITIVES* and *CONNECTIVES.*

10. That in any language there can be words of themselves have no signification, is a supposition which a man free from prejudice will not readily admit, or that purpose should they have been invented? as they are significant of no ideas, they cannot facilitate the communication of thought, and must therefore be only an incumbrance to the language in which they are found. But in answer to this it has been said, that these words, though devoid of signification themselves, acquire a sort of meaning when joined with others, and that they are as necessary to the structure of a sentence as cement is to the structure of an edifice: for as stones cannot be arranged into a regular building without a cement to bind and connect them, so the original words significant of substances and attributes, cannot be made to express all the variety of our ideas without being defined and connected by those words which of themselves signify nothing. It is evident, therefore, that he who first suggested this supposition did not perceive that it tends to overthrow the doctrine which it is meant to illustrate: for surely the cement is as much the matter of the building as the stones themselves; it is equally solid and equally extended. By being united with the stones, it neither acquires nor loses any one of the qualities essential to matter; it neither communicates its own softness, nor acquires its hardness. By this mode of reasoning therefore it would appear, that the words called *definitives* and *connectives,* so far from having of themselves no signification, are equally essential to language and equally significant with those which are denominated *substantives* and *attributes;* and upon investigation it will be found that this is the truth. For whatever is meant by the definition or connection of the words which all men confide to be significant, that meaning must be the sense of the words of which the purpose is to define and connect; and as there can be no meaning where there are no ideas, every one of these *definitives* and *connectives* must be significant of some idea, although it may not be always easy or even possible to express that idea by another word.

11. These different modes of dividing the parts of speech we have just mentioned, because they have been largely treated of by grammarians of high fame. But it does not appear to us, that any man can feel himself much the wiser for having learned that all words are either *SUBSTANTIVES* or *ATTRIBUTIVES,* *DEFINITIVES* or *CONNECTIVES.* The division of words into those which are *significant of themselves,* and those which are *significant by relation,* is absolute nonsense, and has been productive of much error and much mystery in some of the most celebrated treatises on grammar. It is indeed probable, that any attempt to establish a different classification of the parts of speech from that which is commonly received, will be found of little utility either in practice or in speculation. As far as the former is concerned, the vulgar division seems sufficiently commodious; for every man who knows any thing, knows when he uses a *noun* and when a *verb.* With respect to the latter, not to mention that all the grammarians from *Aristotle* to

CHAPTER I.

Of the Noun or Substantive.

12. *Nouns* are all those words by which objects or substances are denominated, and which distinguish from one another, without marking either quantity, quality, action, or relation. The *substantive* or *noun* is the name of the thing spoken of, and in Greek and Latin is called *nomen,* for it is *wita* in the one, and *nomem* in the other; and if in English we had called it the *name,* rather than the *noun,* the appellation would perhaps have been more proper, as this last word being used only in grammar, is more liable to be misunderstood than the other, which is in *confront* and *familiar* use. That *noun* or the names of things must make a part of every language, and that they must have been the words first suggested to the human mind, will not be disputed. Men could not speak of themselves or of any thing else, without having names for themselves and the various objects with which they are surrounded. Now, as all the objects which exist must be either in the same state in which they were produced by nature, or changed from their original state by art, or abstrai-
Different kinds of nouns.

ed from substances by the powers of imagination, and conceived by the mind as having at least the capacity of being characterized by qualities; this naturally suggests a division of nouns into natural, as man vegetable, tree, &c. artificial, as house, ship, watch, &c. and abstract, as whiteness, motion, temperance, &c.

But the diversity of objects is so great, that had we attempted to frame a complete and perfect alphabet of all the names of substances there would be an impossibility for the most tenacious memory, during the course of the longest life, to retain even the names of the narrowest language. It has therefore been found expedient, when a number of things resemble each other in some important particulars, to arrange them all under one species; to which is given a name that belongs equally to the whole species, and to each individual comprehended under it. Thus the word man denotes a species of animals, and is equally applicable to every human being. The word horse denotes another species of animals, and is equally applicable to every individual of that species of quadrupeds; but it cannot be applied to the species of men, or to any individual comprehended under that species. We find, however, that there are some qualities in which several species resemble each other; and therefore we refer them to a higher order called a genus, to which we give a name that is equally applicable to every species and every individual comprehended under it. Thus, men and horses, and all living things on earth resemble each other in this respect, that they have life. We refer them therefore to the genus called animal; and this word belongs to every species of animals, and to each individual animal. The same classification is made both of artificial and abstract substances; of each of which there are genera, species, and individuals. Thus in natural substances, animal, vegetable, and mineral, denote genera; man, horse, tree, metal, are species; and Alexander, Bucephalus, oak, gold, are individuals. In artificial substances, edifice is genus; house, church, tower, are species; and the Vatican, St Paul's, and the Tower of London, are individuals. In abstract substances, motion and virtue are genera; flight and temperature are species; the flight of Madamet and temperance in wine are individuals. By arranging substances in this manner, and giving a name to each genus and species, the names necessary to any language are comparatively few and easily acquired; and when we meet with an object unknown to us, we have only to examine it with attention; and comparing it with other individuals, to refer it to the genus or species to which it most nearly resembles. By this contrivance we supply the want of a proper name for the individual, and so far as the resemblance is complete between it and the species to which it is referred, and of which we have given it the name, we may conversely and reason about it without danger of error: whereas had each individual in nature a distinct and proper name, words would be innumerable and incomprehensible; and to employ our labours in language, would be as idle as though of numberless written symbols which have been attributed to the Chinese.

Besides number, another characteristic, visible in substances, is that of sex. Every substance is either male or female; or both male and female; or neither one nor the other. So that with respect to sexes and their negation, all substances conceivable are comprehended under this fourfold consideration, which language would be very imperfect if it could not express. Now the existence of hermaphrodites being rare, if not doubtful, and language being framed to answer the ordinary occasions of life, no provision is made, in any of the tongues with which we are acquainted, for expressing, other than by the names made on purpose, or by a plurality, duplicity of sex. With regard to this great natural characteristic, grammarians have made only a threefold division of nouns: those which denote males are said to be of the masculine gender; those which denote females, of the feminine; and those which denote substances that admit not of sex, are said to be neuter or of neither gender. All animals have sex; and therefore the names of all animals should have gender. But the sex of all is not equally obvious, nor equally worthy of attention. In those species that are most common, or

unity and plurality; and this variation is called number. Thus in the English language, when we speak of a single place of habitation, we call it a house; but if of more, we call them houses. In the first of these cases the noun is said to be in the singular, in the last case it is in the plural, number. Greek nouns have also a dual number to express two individuals, as have likewise some Hebrew nouns; but this variation is evidently not essential to language; and it is perhaps doubtful whether it ought to be considered as an elegance or a deformity.

But although number be a natural accident of nouns, it can only be considered as essential to those which denote genera or species. Thus we may have occasion to speak of one animal or of many animals, of one man or of many men; and therefore the nouns animal and man must be capable of expressing plurality as well as unity. But this is not the case with respect to the proper names of individuals: for we can only say Xenophon, Aristotle, Plato, &c. in the singular; as, were any one of these names to assume a plural form, it would cease to be the proper name of an individual, and become the common name of a species. Of this, indeed, we have some examples in every language. When a proper name is considered as a general appellative under which many others are arranged, it is then no longer the name of an individual but of a species; and such admits of a plural; as, the Curtys, the Humours, the Pelhams, the Mantegues, &c. but Socrates can never become plural, so long as we know of no more than one man of that name. The reason of all this will be obvious, if we consider, that every genus may be found whole and entire in each of its species; for man, horse, and dog, are each of them an entire and complete animal; and every species may be found whole and entire in each of its individuals: for Socrates, Plato, and Xenophon, are each of them completely and entirely a man. Hence it is, that every genus, though one, is multiplied into many; and every species, though one, is also multiplied into many, by reference to those beings which are their subordinates: But as no individual has any such subordinates, it can never in strictness be considered as many; and so, as well in nature as in name, is truly an individual which cannot admit of number.

The origin of the singular and plural numbers.

Nouns general terms.

of which the male and the female are, by their size, form, colour, or other outward circumstances, eminently different. Hence, the male is sometimes called by one name, which is masculine; and the female by a different name, which is feminine. Thus in English we say, husband, wife; king, queen; father, mother, son, daughter, &c. In others of similar distinction, the name of the male is applied to the female only by prefixing a syllable or by altering the termination; as man, woman; lion, tigress; emperor, empress, &c. When the sex of any animal is not obvious, or not material to be known, the same name, in some languages, is applied, without variation, to all the species, and that name is said to be of the common gender. Thus in Latin bovis albus is a white ox, and bovis alba a white cow. Diminutive insects, though they are doublets male and female, seem to be considered in the English language as if they were really creeping things. No man, speaking of a worm, would say he creeps, but it creeps, upon the ground. But although the origin of genders is thus clear and obvious; yet the English is the only language, with which we are acquainted, that deviates not, except in this single instance of insects, from the order of nature. Greek and Latin, and many of the modern tongues, have nouns, some masculine, some feminine, which denote substances where sex never had existence. Nay, some languages are so particularly defective in this respect, as to call every object, inanimate as well as animate, under either the masculine or the feminine gender, as they have no neuter gender for those which are of neither sex. This is the case with Hebrew, French, Italian, and Spanish. But the English, strictly following the order of nature, puts every noun which denotes a male animal, and no other, in the masculine gender; every name of a female animal, in the feminine; and every animal whose sex is not obvious or known, as well as every inanimate object whatever, in the neuter gender. And this gives our language an advantage above many others in the poetical and rhetorical style: for when nouns naturally neuter are conveyed into masculine and feminine, the personification is more distinctly and more forcibly marked. (See Personification.) Some very learned and ingenious men have endeavoured, by what they call a more subtle kind of reasoning, to discern in things without sex a distant analogy to that natural distinction, and to account for the names of inanimate substances being, in Greek and Latin, masculine and feminine. But such speculations are wholly fanciful; and the principles upon which they proceed are overthrown by an appeal to facts. Many of the substances, that, in one language, have masculine names, have in other names that are feminine; which could not be the case were this matter regulated by reason or nature. Indeed for this, as well as many other anomalies in language, no other reason can be assigned than that of custom.

Quem penes arbitrium est, et jus, et norma, loquendi.

16. Origin of
catch.

18. It has been already observed that most nouns are the names of individuals, but of whole classes of objects termed genera and species. In clasifying a num-

ber of individuals under one species, we contemplate only those qualities which appear to be important, and in which the several individuals are found to agree about the mind from the consideration of all those which appear to be least essential, and which in one individual may be such as have nothing exactly similar in any other individual upon earth. Thus, in clasifying the individuals which are comprehended under the species denominated horse, we pay no regard to their colour or their size; because experience teaches us, that no particular colour or size is essential to that individual living creature, and that there are not perhaps upon earth two horses whose colour and size are exactly alike. But the qualities which in this process we take into view, are the general shape, the symmetry, and proportion of the parts; and in short every thing which appears evidently essential to the life of the individual and the propagation of the race. All these qualities are strikingly similar in all the individuals which we call horses, and as strikingly dissimilar from the corresponding qualities of every other individual animal. The colour of a horse is often the same with that of an ox; but the shape of the one animal, the symmetry and proportion of his parts, are totally different from those of the other; nor could any man be led to class the two individuals under the same species. It is by a similar process that we ascend from one species to another, and through all the species to the highest genus. In each species or genus in the ascending series fewer particular qualities are attended to than were considered as essential to the genus or species immediately below it; and our conceptions become more and more general as the particular qualities, which are the objects of them, become fewer in number. The use of a general term, therefore, can recall to the mind only the common qualities of the class, the genus or species which it represents. But we have frequent occasion to speak of individual objects. In doing this, we annex to the general term certain words significant of particular qualities, which discriminate the object of which we speak, from every other individual of the class to which it belongs, and of which the general term is the common name. For instance, in advertising a thief, we are obliged to mention his height, complexion, gait, and whatever may serve to distinguish him from all other men.

The process of the mind in rendering her conceptions particular, is indeed exactly the reverse of that by which the generalizes them. For as in the process of generalization, the abstraction from her ideas of any number of species certain qualities in which they differ from each other, and of the remaining qualities in which they agree, constitutes the first genus in the ascending series; so when she wishes to make her conceptions more particular, the annexes to her idea of any genus those qualities or circumstances which were before abstracted from it; and the genus, with this annexation, constitutes the first species in the descending series. In like manner, when she wishes to descend from any species to an individual, she has only to annex to the idea of the species those particular qualities which discriminate the individual intended from the other individuals of the same kind.
This particularizing operation of the mind points out the manner of applying the general terms of language for the purpose of expressing particular ideas. For as the mind, to limit a general idea, connects that idea with the idea of some particular instance, so in language, as we have already observed, in order to limit a general term, connects that term with the word denoting the particular circumstance. Thus, in order to particularize the idea of horse, the mind connects that general idea with the idea of some particular instance, so in language, as we have already observed, in order to limit a general term, connects that term with the word denoting the particular circumstance. Thus, in order to particularize the idea of horse, the mind connects that general idea with the idea of some particular instance, so in language, as we have already observed, in order to limit a general term, connects that term with the word denoting the particular circumstance. Thus, in order to particularize the idea of horse, the mind connects that general idea with the idea of some particular instance, so in language, as we have already observed, in order to limit a general term, connects that term with the word denoting the particular circumstance.

17. *Cafus*, therefore, though they are accidents of nouns not absolutely necessary, have been often considered as such; and they are certainly worthy of our examination, since there is perhaps no language in which some cases are not to be found, as indeed without them or their various powers no language could readily answer the purpose of life.

All the oblique cases of nouns (if we accept the vocative) are merely marks of annexation; but as the connections or relations subsisting among objects are very various, some cases denote one kind of relation, and some another. We shall endeavour to investigate the connection which each case denotes, beginning with the genitives. This is the most general of all the cases, and gives notice that some connection indeed subsists between two objects, but does not point out the particular kind of connection. That we must infer, not from the nature or termination of the genitive itself, but from our previous knowledge of the objects connected. That the genitive denotes merely relation in general, might be proved by adducing innumerable examples, in which the relations expressed by this case are different; but we shall content ourselves with one observation, from which the truth of our opinion will appear beyond dispute. If an expression be used in which are, connected by the genitive case, two words significant of objects between which a twofold relation may subsist, it will be found impossible, from the expression, to determine which of these two relations is the true one, which must be gathered wholly from the context. Thus, for example, from the phrase *inuria regis*, no man can know whether the injury mentioned be an injury suffered or an injury inflicted by the king; but if the genitive case notified any particular relation, no such ambiguity could exist. This case therefore gives notice, that two objects are, such or other, connected, but it marks not the particular sort of connection. Hence it may be translated by our particle of, which will be seen afterwards to be of a signification equally general.

The dative an accusative cases appear to have nearly the same meaning; each of them denoting apposition, or of the double relation of one object with another. Thus when any one says, *Parmenium Homero, Homen vel Virgilius occidit*, are conceived to be placed beside one another, in order to their being compared; and this sort of connection is denoted by the dative case. In like manner, when it is said *latus homero, breadth is conceived as joined to or connected in apposition with shoulders*; and the expression may be translated "broad at the shoulders."

This apposition of two objects may happen either without previous motion, or in consequence of it. In the foregoing instances no motion is presupposed; but if one say, *Hec aliquos subdicto oram*, the apposition is there in consequence of motion. In like manner, when it is said, *Profectus est Romam*, his apposition with home is conceived as the effect of his motion thither.

From this idea of the accusative, the reason is obvious why the object after the active verb is often put in that case; it is because the action is supposed to proceed from the agent to the patient. But the same thing happens with respect to the dative case, and for the same reason. Thus, *Antonius labit Cicero*, and *Antonius vocat Cicereon*, are expressions of the same import, and in each the action of hurting is conceived as proceeding from Antony to Cicero; which is finely illustrated by the passive form of such expressions, where the procedure abovementioned is expressly marked by the preposition ab; *Cicero nocet*, *Cicero labet* an *Antonio*. It is therefore not true, that "the accusative is that case, at least the only case, which to an efficient nominative and a verb of action subjoins either the effect or the passive subject; nor is the dative the only case which is formed to express relations tending to itself." The only thing essential to these two cases is to denote the apposition or conjunction of one object with another; and this they do nearly, if not altogether, in the same manner, although from the current of language they may not be indiscriminately subjoined to the same verb.

The Greek language has no ablative case; but in the Latin, where it is used, it denotes concomitancy, or that one thing accompanies another. From this concomitancy we sometimes draw an inference, and sometimes not. For example, when it is said, *Templum clamor petebat*, clamor is represented as concomitant with their going to the temple; and here no inference is drawn; but from the phrase *pales metus*, although nothing more is expressed than that palæns is a concomitant of the fear, yet we instantly infer that it is also the effect of it. In most instances where the ablative is used, an inference is drawn, of which the foundation is some natural connection observed to subsist between the object thus connected in language. When this inference is not meant to be drawn, the preposition is commonly added: as, *interfectus est cum gladiis*; "he was slain with a sword about him," *interfectus est gladio*; "he was slain with a sword as the instrument of his death."

The remaining cases, which have not been noticed, are the nominative and the vocative. These are in most minimative instances alike in termination, which makes it probable that they are of the general case.
that they were originally one and the same cafe. The foundation of this conjecture will appear from con-
 pondering the use to which each of these cafes is applied.
The nominative is employed to call up the idea of any
 object in the mind of the hearer. But when a man
 hears his own name mentioned, his attention is infant-
lily roused, and he is naturally led to listen to what is to
 be said. Hence, when a man meant particularly to
 solicit one's attention, he would naturally pronounce
 the person's name; and thus the nominative cafe would
 pass into a vocative, of which the use is always to solicit
 attention (b).

20. The Greek and Latin among the ancient, and
 the German among the modern languages, express dif-
 ferent connections or relations of one thing with anot-
 her by cafes. In English this is done for the most part
 by prepositions; but the English, being derived from
 the same origin as the German, that is, from the Teu-
tonic, has at least one variation of the substantive to
 answer the same purpose. For instance, the relation of
 possession, or belonging, is often expressed by a differ-
 ent ending of the substantive, which may be well called a
 cafe. This cafe answers nearly to the nominative cafe in
 Latin; but as that is not a denomination significant of
 the name of the cafe in any language, it may perhaps in
 English be more properly called the possessive cafe.
 Thus, God's grace, anciently Godis grace, is the grace
 belonging to or in the possession of God: and may be
 likewise expressed by means of the preposition: thus,
 the grace of God.

Although the word God is as evidently an inflexion
 of the noun God as the word Dei is an inflexion of De-
 not, there are grammarians who have denied that in
 English there is any true inflexion of the original noun,
 and who have said that the noun with the addition of
 that syllable, which we consider as the sign of a cafe,
 cafes to be a noun, and becomes a substantive; a word
 which with them is devoid of inflexion. Thus, in the
 expression Alexander's house, the word Alexander's
 stands not as a noun, but as an article or substantive,
 serving to ascertain and point out the individuality of
 the house. But this is a palpable mistake: the word Alex-
 ander's serves not to point out the individuality of the
 house, but to shew to whom the house belongs; and is
 therefore, beyond dispute, not an article but a noun in
 the possessive cafe. Again, when we say St Peter's at
 Rome and St Paul's at London, the words St Peter's
 and St Paul's are neither articles, nor, as has been ab-
 surdly imagined, the proper names of edifices, like the
 Rotundo or the Circum ambus; but they are in the pos-
 sessive cafe, the names of the two apostles to whom the
 churches were dedicated, and to whom they are suppos-
 ed to belong.

But that this, which we have called the possessive cafe,
is really not so, must be evident, it is said, because there
 are certain circumstances in which it cannot be sub-
 stituted for the noun with the preposition prefixed. This,
 though a man may say, I speak or Alexander, or Ca-
 sars, I think or Pompey; he cannot say, I speak
 Alexander's, I write Caesar's, or I think Pompey's. This
 is indeed true, but it is nothing to the purpose; for
 though I may say, Lequrro de Alexander, Scribo de
 Cæsare, Cogito de Pompeio; I cannot say, Lequrro Al-
 lexanderi, Scribo Casari, or Cogito Pompeii: and there-
 fore all that can be inferred from this argument is,
 that as the Latin nominative is not always of the same
 import with the preposition de, so the English possessive
 is not always of the same import with the preposition of.

Upon the whole, then, we may conclude, that English
 nouns admit of one inflexion; and that though cafes
 are not so essential to nouns as gender and number, no
 language can be wholly without them or their various
 powers.

CHAPTER II.

Of Articles or Definitives.

21. The intention of language is to communicate
 thought, or to express those ideas which are suggested
to us by our senses external and internal. The ideas
first suggested to us are those of pain and pleasure,
and of the objects with which we are surrounded; and
therefore the words first learned must be nouns, or the
names of objects natural, artificial, and abstract. Every
object about which the human mind can be convertant
is strictly and properly speaking particular; for all
things in nature differ from one another in numberless
respects, which, not to mention the idea of separate
existence, so circumstance and individuate them, that
no one thing can be said to be another. Now the use
of language being to express our ideas or conceptions
of these objects, it might naturally be expected that
every object should be distinguished by a proper name.

This would indeed be agreeable to the truth of things,
but we have already seen that it is altogether imprac-
ticable. Objects have therefore been classified into
genera and species; and names given, not to each individu-
al, but to each genus and species. By this contrivance of
language we are enabled to ascertain in some measure any
individual that may occur, and of which we know not the
proper name, only by referring it to the genus or species
to which it belongs, and calling it by the general or
specific name; but as there is frequent occasion to dis-
tinguish individuals of the same species from one an-
other, it became necessary to fall upon some expedient
to mark this distinction. In many languages general
and species terms are modified and restricted by three
orders of words; the article, the substantive, and
the oblique cases of nouns. The cafes of nouns we
have already considered: the substantive will employ our
fay and use attention afterwards: at present our observa-
tions are confined to the article; a word to very necessary,
title, that without it or some equivalent invention, men
could not employ nouns to any of the purposes of life, or
indeed communicate their thoughts at all. As the
benefit of articles is to enable us, upon occasion, to
employ general terms to denote particular objects, they
must be considered, in combination with the general terms,
as merely substitutes for proper names. They have, how-
ever, been commonly called definitives; because they
serve

(b) The chief objection to this conjecture, that the nominative and vocative were originally the same cafe, is
taken from the Latin tongue, in which the names of the second declension ending in us terminate their voca-
tive in e. But this is easily accounted for. The e in such words was often dropped, as appears from the scanning
of old Latin poetry; and when this was done, the u being short, would naturally in pronunciation pass into
e, like short vowel; and thus, in the vocative cafe, e would in time be written instead of u.
The nature of them may be explained as follows.

22. An object occurs with which, as an individual, we are totally unacquainted; it has a head and limbs, and appears to possess the power of self-motion and senation: we therefore refer it to the genus, and call it an animal.

But this is not enough. The object at which we are looking, and which we want to distinguish, is not a species or a genus, but an individual. Of what kind? known or unknown? Seen now for the first time, or seen before and now remembered? This is one of the instances in which we shall discover the use of the two articles a and the: for, in the case supposed, the article a respects our primary perception, and denotes an individual as unknown; whereas the respects our secondary perception, and denotes individuals as known. To explain this by an example: I see an object pass by which I never saw till now. What do I say? There goes a beggar with a long beard. The man departs, and returns a week after: What do I then say? There goes the beggar with the long beard. Here the article only is changed, the rest remains unaltered. Yet mark the force of this apparently minute change. The individual once vague is now recognized as something known; and that merely by the efficacy of this latter article, which tacitly intimates a kind of previous acquaintance, by referring a present perception to a like perception already past.

This is the explanation of the articles a and the as given by the learned Mr Harris, and thus far what he says on the subject is certainly just; but it is not true that the article the always intimates a previous acquaintance, or refers a present perception to a like perception already past. I am in a room crowded with company, of which the greater part is to me totally unknown. I feel it difficult to breathe from the grossness of the inclosed atmosphere; and looking towards the window, I see in it a person whom I never saw before. I gladly lend my compliments to the gentleman in the window, and request, that if it be not inconvenient, he will have the goodness to let into the room a little fresh air. Of this gentleman I have no previous acquaintance; my present perception of him is my primary perception, and yet it would have been extremely improper to lend my compliments, &c., to a gentleman in the window. Again, there would be no impropriety in saying—A man whom I saw yesterday exhibiting a show to the rabble, was this morning committed to jail with the crime of housebreaking. Notwithstanding the authority, therefore, of Mr Harris and his master Apollonius, we may venture to affirm, that it is not essential to the article a to respect a primary perception, or to the article the to indicate a previous established acquaintance. Such may indeed be the manner in which these words are most frequently used; but we see that there are instances in which they may be used differently. What then, it may be asked, is the import of each article, and in what respects do they differ?

23. We answer, that the articles a and the are both of them definite, and are by being prefixed to the names of genera and species to circumscribe the latitude of those names as to make them for the most part denote individuals. A noun or substantive, without any article to limit it, is, taken in its widest sense, the word man means all mankind:

"The proper study of mankind is man." where mankind and man may change places without making any alteration in the sense. But let either of the articles of which we are treating be prefixed to the word man, and that word is immediately reduced from the name of a whole genus to denote only a single individual; and instead of the noble truth which this line affirms, the poet will be made to say, that the proper study of mankind is not the common nature which is diffused through the whole human race, but the manner and caprice of one individual. Thus far therefore the two articles agree: but they differ in this, that though they both limit the specific name to some individual, the article a leaves the individual itself undefined; whereas the article the affects the individual itself, and can be prefixed to the specific name only when an individual is intended, of which something may be predicated that distinguishes it from the other individuals of the species. Thus, if I say—A man is fit for the definite tresses, my affirmation may appear strange and vague; but the sentence is complete, and wants nothing to make it intelligible; but if I say—the man is fit for tresses, I speak nonsense; for as the article the shows that I mean some particular man, it will be impossible to discover my meaning till I complete the sentence, and predicate something of the individual intended to distinguish him from other individuals.

"This man that both not as lightly, &c.

"Is fit for tresses"—A man, therefore, means some one or other of the human race indefinitely; the man means, definitely, that particular man who is spoken of; the former is called the indefinite, the latter the definite article.

The two articles differ likewise in this respect, that the difference the article a serves only to separate one individual from the general class to which it belongs, it cannot be applied to pluralis. It has indeed the same signification nearly with the numerical word one; and in French and Italian, the same word that denotes unity is also the article of which we now treat. But the difference in the article the being to define objects, by pointing them out as those of which something is affirmed or denied which is not affirmed or denied of the other objects of the same class, it is equally applicable to both numbers; for things may be predicated of one sex of men, as well as of a single man, which cannot be predicated of other men. The use and import of each article will appear from the following example: Man was made for society, and ought to extend his goodwill to all men; but a man will naturally entertain a more particular regard for the man with whom he has the most frequent intercourse, and enter into a still closer union with the man whose temper and disposition suit best with his own.

We have said, that the article a cannot be applied
to plurals, because it denotes unity: but to this rule there is apparently a remarkable exception in the use of the adjectives few and many (see note above). When we join the word great before it), which, though joined with plural substantives, yet admit of the singular article a; as, a few men, a great many men. The reason of this is manifest from the effect which the article has in these phrases: it means a small or a great number collectively, taken, to which it gives the idea of a whole, that is, of unity. Thus, likewise a hundred, a thousand, is one whole number, an aggregate of many collectively taken, and therefore still retains the article a, though joined as an adjective to a plural substantive; as, a hundred years. The exception therefore is only apparent; and we may affirm, that the article a universally denotes unity.

24. The indefinite article is much less useful than the other; and therefore the Greek and Hebrew languages have it not, though they both have a definite article. In languages of which the nom., adjectives, and verbs, have inflexion, no mistake can arise from the want of the indefinite article; because it can always be known by the terminations of the noun and the verb, and by the circumstances predicated of the noun, whether a whole species or one individual be intended. But this is not the case in English. In that language, the adjectives having no variation with respect to gender or number, and the tenses of the verbs being for the most part the same in both numbers, it might be often doubtful, had we not the indefinite article, whether the specific name was intended to express the whole species or only one individual. Thus, if we say in English, "Man was born jest from God," we must be understood to mean that the birth of every man is from God, because the specific term the indefinite article is not prefixed. Yet the words εν υις ἐκ τοῦ Θεοῦ convey no such meaning to any person acquainted with the Greek language; as the word ἄνθρωπος, without any article, is reftricted to an individual by its concord with the verb and the participle; and the sense of the passage is, a man was born (or existed) jest from God.

But though the Greeks have no article correspondent to the article a, yet nothing can be more nearly related to their ο' our the ο' his—THE KING; ΤΟ ΕΥΡΗΚΑ—THE GIFT. In one respect, indeed, the Greek and English articles differ. The former is varied according to the gender and the number of the noun with which it is associated, being—masculine, feminine, neuter, and οί, άι, έν, in the plural number; whereas the English article suffers no change, being invariably the before nouns of every gender and in both numbers. There are, however, some modern languages which, in imitation of the Greek, admit of a variation of their article which relates to gender; but this cannot be considered as essential to this species of words, and it may be questioned whether it be any improvement to the language. In tongues of which the nouns have no inflexion, it can only serve to perplex and confude, as it always presents a particular idea of fix where in many cases it is not necessary.

25. The articles already mentioned are allowed to be firstly and properly such by every grammarian; but there are some words, such as this, that, any, some, all, other, &c. which are generally said to be sometimes articles and sometimes pronouns, according to the different modes of using them. That words should change their nature in this manner, so as to belong to one part of speech, and sometimes to another, must to every unprejudiced person appear very extraordinary; and if it were a fact, language would be a thing so equivocal, that all inquiries into its nature upon principles of science and reason would be vain. But we cannot perceive any such fluctuation in any word whatever; though we know it to be a general charge brought against words of almost every denomination, of which we have already seen one instance in the perversible case of nouns, and shall now see another in those words which are commonly called pronounnal articles.

If it be true, as we acknowledge it to be, that the genuine pronoun always stands by itself, assuming the power of a noun, and supplying its place, then it is certain that the words this, that, any, some, &c. can never be pronouns. We are indeed told, that when we say this is virtue, give me that, the words this and that are pronouns; but that when we say, this habit is virtue, that man defrauded me, then are they articles or definitions. This, however, is evidently a mistake occurred by overlooking those abbreviations in construction which are frequent in every language, and which, on account of that very frequency, have perhaps escaped the attention of grammarians whose faculty has been successfully employed on matters less obvious. When we say this is virtue, it is evident that we communicate no intelligence till we add a substantive to the word this, and declare what is virtue. The word this can therefore in no instance assume the power of a noun, since the noun to which it relates, though for the sake of dispatch it may be omitted in writing or conversation, must always be supplied by the mind of the reader or hearer, to make the sentence intelligible, or this itself of any importance.

When we have viewed speech analyzed, we may then consider it as compounded. And here, in the first place, we may contemplate that synthesis, which by combining simple terms produces a truth; then by combining two truths produces a third; and thus others and others in continued demonstration, till we are led, as by a road, into the regions of science. Now this is that superior and most excellent synthesis which alone applies itself to our intellect or reason, and which to conduct according to rule constitutes the art of logic. After this we may turn to those inferior compositions which are productive of the pathetic, &c. Here, if any where, the word this may be thought to stand by itself, and to assume the power of a noun; but let any man complete the construction of each sentence, and he will perceive that this is no more than a definite article. Thus,—"we may contemplate that synthesis which by combining simple terms produces a truth; then by combining two truths produces a third truth; and thus other truths and other truths in continued demonstration, till we are lead, as by a road, into the regions of science. Now this combination of truths is that superior and most excellent synthesis which alone applies itself to our intellect or reason, and which to conduct according to rule constitutes the art of logic. After we have contemplated this art, we may turn," &c.
Articles in the Latin language.

28 Articles in the Latin language.

article, sometimes a pronoun, and sometimes a conjunction. In the following extract it appears in all these capacities: and yet, upon resolving the passage into parts and completing the construction, it will be found to be invariably a definite article.—"It is necessary to that perfection, of which our present state is capable, that the mind and body should both be kept in action; that neither the faculties of the one nor of the other be suffered to grow lax or torpid for want of use: but neither should health be purchased by voluntary submilion to ignorance, nor should knowledge be cultivated at the expense of health; for that must enable it either to give pleasure to its possessor, or assistance to others." If this long sentence be resolved into its constituent parts, and the words be supplied which complete the construction, we shall see the import of the word that to be precisely the same in each clause. "The mind and body should both be kept in action; that action is necessary to that perfection of which our present state is capable: neither the faculties of the one nor of the other should be suffered to grow lax or torpid for want of use; the degree of action proper to present that state; is necessary: but neither should health be purchased by voluntary submission to ignorance, nor should knowledge be cultivated at the expense of health; for that must enable it either to give pleasure to its possessor, or assistance to others." Again,

"He that's unskillful will not toss a ball!"

"A man unskillful (he is that) will not toss a ball." Here the word that, though substituted for what is called the relative pronoun (a), still prefers unchanging its definite import; and in every instance except where it may be used very improperly, it will be found to be neither more nor less than a definite article.

26. It appears then, that if the essence of an article be to define and ascertain, the words this and that, as well as any, some, all, &c. which are commonly called pronounal articles, are much more properly articles than any thing else, and as such should be considered in universal grammar. Thus when we say, this picture I approve, but that I dislike; what do we perform by the help of the words this and that, but bring down the common apppellative to denote two individuals; the one as the more near, the other as the more distant? So when we say, some men are virtuous, but all men are mortal; what is the natural effect of this all and some, but to define that universality and particularity which would remain indefinite were we to take them away? The fame is evident in such sentences as, some substances have sensation, others want it; choose any way of acting, and some men will find fault, &c.: for here some, other, and any, serve all of them to define different parts of a given whole; some, to denote any indeterminate part; any, to denote an indefinite mode of acting, no matter what; and other, to denote remaining part, when a part has been affirmed already.

27. We have said that the article is a part of speech so very necessary, that without it, or some equivalent invention (v), mankind could not communicate their thoughts; and that of words falling under this description, we knew no language which is wholly defective. We are aware that these positions may be controverted; and that the Latin may be inflected as a language which, without articles, is not only capable of communicating the ordinary thoughts of the speaker to the mind of the hearer; but which, in the hands of Cicero, Virgil and Lucretius, was made to serve all the purposes of the most profound philosopher, the most impassioned orator, and the sublimest poet. That the Latin has been made to serve all these purposes cannot be denied, although Lucretius and Cicero both complain, that on the subject of philosophy, where the use of articles is most conspicuous, it is a deficient language. But should we grant what cannot be demanded, that those two great men were acquainted with the powers of their native tongue, our positions would still remain unshaken; for we deny that the Latin is wholly without articles. It has indeed no word of precisely the same import with our the or the Greek k; but the place of the indefinite article A might be always supplied, if necessary, with the numerical word one. It may be so even in English; for we believe there is not a single instance where the words one man, one horse, one virtue, might not be substituted for the words a man, a horse, a virtue, &c. without the slightest degree altering the sense of the passage where such words occur. This substitution, however, can be but very seldom if ever necessary in the Latin tongue, of which the precision is much greater than that of the English would be without articles; because the oblique cases of the Latin nouns, and the inflexion of its verbs, will almost always enable the reader to determine whether an apppellative represents a whole species or a single individual. The want of the definite article the seems to be a greater defect; yet there are few instances in which its place might not be supplied by this or by that without obscuring the sense; and the Latin tongue is by no means deficient of articles corresponding to these two. Let us substitute the words one and that for a and the in some of the foregoing examples, and we shall find, though the sound may be unctuous, the sense will remain. Thus,

"That man who hath not music in himself, &c.

"Is fit for treasons,"—

conveys to the mind of the reader the very same sentiment which the poet expresses by the words "The man that hath not music," &c. Again, "Man was made for society, and ought to extend his good-will to all men; but one man will naturally entertain a more particular regard for those men with whom he has the most frequent intercourse, and enter into a still closer union with that man whole temper and disposition fair best with his own." Now the words his and ille being exactly the same import with the words this and that; it follows, that wherever the place of the article the may in English be supplied by this or by that, it may in Latin be supplied by hic or by ille. This is
is the case with respect to NATHAN'S reproof of DAVID, where the definite article is indeed most emphatical. The original words might have been translated into English, "THOU ART THAT MAN," as well as "THOU ART THE MAN!" and in Latin they may with the utmost propriety be rendered, "Tu es ille homo." Indeed the words HIC and ILLE, and we might instance many more, though they are commonly called pronouns, are in truth nothing but definite articles: HIC is evidently so; and ILLE is most probably derived from the Hebrew word aleph, in the plural aleph, which may be translated indifferently, either THE or THAT. But what proves beyond dispute that these two words are not pronouns but articles, is, that in no single instance will they be found to stand by themselves and assume the power of nouns. For the sake of dispatch, or to avoid disfigurable repetitions, the noun may indeed be often omitted; but it is always supplied by the reader or hearer, when HIC and ILLE appear in their proper place, and are seen to be invariably definite articles. We shall give an example of the use of each word, and diflince the subject.

In the first oration against Catiline, Cicero begins with addressing himself in a very impassioned style to the traitor, who was present in the senate-houfe. He then exclaims pathetically against the manners of the age, and proceeds in these words: Senatus haec intelligat, consul videt; hic tamen visit. Vivi fum non eftiani in fenatum venit; fit publici confiliarii particeps. In this passage HIC cannot be a pronoun; for from the beginning of the oration there occurs not a single noun of which it can possibly supply the place. When the orator uttered it, he was probably pointing with his finger at Catiline, and every one of his audience would supply the noun in his own mind, as we do when we translate it, "Yet this traitor lives!" When Virgil says,

\[
\text{ille ego, qui quondam iretral modi/latus avella} \\
\text{Carman,}
\]

it is obvious that he means, I AM THAT MAN OF THAT POET, who sung, &c.; and though we may translate the words "I AM WHO HEUSTED HIS SONG," &c. yet when we converse the passage, we are under the necessity of supplying either WHATSOEVER, which shows that HIC is nothing more than a definite article signifying THAT or THE. It appears then, that the Latin tongue is not wholly destitute of articles, as few cases can occur where the Greek i and our THE may not be supplied by the words HIC and ILLE; which have in our opinion been very improperly termed pronouns. If there be any such cases, we can only confess that the Latin language is defective; whereas, had it so articles, it is not easy to conceive how it could answer, to a cultivated people, the ordinary purposes of speech.

28. The articles THIS and THAT, unlike A and THE, are varied according as the noun, with which they are associated, is in the singular or in the plural number. Thus we say—this and that man in the singular, and these and those men in the plural. The Latin articles HIS and ILLE, for such we will call them, are varied like the Greek i, not only with the number, but also with the gender of their nouns. In languages, where the structure of a sentence may be so changed from the order of nature, as it commonly is in Greek and Latin, and where the reader is guided, not by the position, but by the termination of the words, to which are in con-
cord and those which are not, these variations of the article have their use; but in English they are of no importance. Were it not that the custom of the language—the form of the language, as Horace calls it—has determined otherwise, there would be no more impro- priety in saying THIS or THAT man, than in saying SOME men or the men.

29. As articles are by their nature definitives, it follows of course, that they cannot be united with such words as are in their own nature as definite as they may become: nor with such words as, being indefinable, cannot properly be made otherwise, but only with those words, which, though indefinable, are yet capable through the article of becoming definite. Hence the reason why it is absurd to say, THE, OR THE THOU; because nothing, as will be seen afterwards, can make these pronouns more definite than they are of themselves; and the same may be said of proper names. Neither can we say, THE BOTH, because the word BOTH is in its own nature perfectly defined. Thus, if it be said—"I have read both poets,"—this plainly indicates a definite pair, of whom some mention has been made already. On the contrary, if it be said, "I have read two poets," this may mean any pair out of all that ever existed. And hence this numeral being in this sense indefinite (as indeed are all others as well as itself), is forced to assume the article whenever it would become definite. Hence also it is, that as two, when taken alone, has reference to some primary and indefinite notion, while the article THE has reference to some definite and indefinite, it is bad language to say, TWO THE MEN, as this would be blending of incompatibles, that is, it would be representing two men as defined and indefinite at the same time. On the contrary, to say BOTH THE MEN is good language; because the substantive cannot possibly be left at by being defined, to coalesce with a numeral adjective which is defined as well as itself. So likewise it is correct to say, THE TWO MEN, THESE TWO MEN, OF THOSE TWO MEN; because here the article being placed at the beginning, extends its power, as well through the numeral adjective as the substantive, and tends equally to define them both.

30. As some of the above words admit of no article, because they are by nature as definite as may be; so there are others which admit it not, because they are not to be defined at all. Of this sort are all INTERROGATIVES. If we question about substances, we cannot say, THE WHO IS THIS, but WHO IS THIS! And the same in other qualities and such qualities: for we say, without an article WHAT SORT OF, HOW MANY, HOW GREAT? Therefrom is, the article THE respects beings of which we can predicate something; but interrogatives respect beings about which we are ignorant, and of which we can therefore predicate nothing; for as to what we know, interrogation is superfluous. In a word, the natural articles of the words they

31. We have said that proper names admit not of the article, being, in their own nature, definite. This is true, whilst each name is confined to one individual; but as different persons often go by the same name, it is necessary to distinguish them from one another, to prevent...
Chap. II.

preventing the ambiguity which this identity of name would otherwise occasion. For this purpose we are obliged to recur to

adjuncts or epithets. For example, there were two Grecian chiefs who bore the name of Ajax; and it was not without reason that Aristophanes used epithets when his intention was to dis-

tinguish the one from the other: "If both Ajaxes cannot be spared (said he), at least let mighty Telamoni-

an Ajax come." But as epithets are diffused through various subjects, in as much as the same adjective may be referred to many substantives, it has been said to be necessary, in order to render both parts of speech equally definite, that the adjective itself assume an article before it, which may indicate a reference to some single person only. It is thus we say—Trypho the Grammarian; Apollodorus the Cyrenian, &c. This is the doctrine of Mr Harris; from which, though we have the highest respect for the learning of the author, we feel ourselves obliged to differ. In the example given, the article THE is certainly not associated with the words Grammarian and Cyrenian, in the same manner in which it is associated with the word man in the sentence—"The man that hath not music in himself," &c. When we say Apollodorus the Cyrenian, may we, without folly or impertinence, be asked—the Cyrenian, what (e) ? And the moment this question is answer-
ed, it will be seen that the article does not an adjective but a substantive. If the answer be the Cyrenian philosopher, the article THE is associated with the word philosopher, and the phrase Apollodorus the Cyrenian, is an abbreviation of Apollodorus the philosopher of Cyrene. In like manner, Trypho the gram-

marian, is Trypho the grammarian writer, or Trypho the writer of grammar. Such abbreviations are very common. We familiarly say THE SPEAKER, and are understood to mean a high officier in the congress of parliament; yet as a speaker is a name common to many men, we may, without impropriety, be asked, what speaker we mean? and if so, we must reply, the speaker of the house of representatives. But that which is eminent is supposed to be generally known; and therefore, in common language, the speaker is deemed a sufficient designation of him who presides over the house of representatives. Hence, by an easy transition, the definite article, from denoting reference, comes to denote eminence also; that is to say, from implying an ordinary pre-acquaintance, to presume a kind of gen-

eral and universal notoriety. Thus the king is any king; but the king is that person who is acknowledged for a sovereign by any nation, as, the king of Great Britain. In Greek too, as in English, the article is often a mark of eminence; for the poet meant Homer, and the stagirite meant Aristotele; but not that there were many poets besides Homer, and many stagirites besides Aristotele, but none equally illustrious.

31. The great utility of this species of words.

32. Before we dismiss the article, we shall pro-
duce one example to shew the utility of this species of words; which, although they may seem to be of small importance, yet, when properly applied, serve to make a few general terms sufficient for expressing, with accuracy, all the various subjects about which mankind can have occasion to converse. Let man be the general term, which I have occasion to employ for the purpose of denoting some particular. Let it be required to express this particular as unknown; I say a man—known, I say the man—definite; a certain man—an indefinite; all men—animals; present, and near; this man—present, and at some distance; that man—like to some other; such a man—different from some other; another man—An indefinite multitude; many men—A definite multitude; a thousand men—The ones of a multitude, taken throughout; every man—The same ones taken with distinction; each man—taken in order; first man, second man, &c.—The whole multitude of particulars taken collectively; all men—The negation of that multitude; no man—A number of particulars present and near; these men—At some distance, or opposed to others; those men—A number of individuals separated from another number; other men—A small indefinite number; few men—A proportionally greater number; more men—A smaller number; fewer men—And so on we might go almost to infinitude. But not to dwell longer upon this subject, we shall only remark, "that minute changes in principles lead to mighty changes in effects; so that principles are well intimated to regard, however trivial they may appear."

CHAPTER III.

Of Pronouns, or Substantives of the second order.

33. To men who are neither intoxicated with their own abilities, nor ambitious of the honour of building new systems, little pleasure can accrue from differing upon points of science from writers of great and deferred reputation. In such circumstances a man of modesty, although he will not upon the authority of a celebrated name adopt an opinion of which he perceives not the truth, must always advance his own notions with some degree of diffidence, as being conscious that the truth which he cannot perceive, may be visible to a keener and more perspicacious eye. In these circumstances we feel ourselves with regard to some of the most celebrated writers on grammar, from whom, concerning one or two points, comparatively indeed of but little importance, we have already been compelled reluctantly to differ. In treating of pronouns we are likely to deviate full farther from the beaten track; but that we may not be accused of acting the part of dogmatists in literature, and of claiming from others that implicit confidence which we refuse to give, we shall state with fairness the commonly received opinions, point out in what respects we think them erroneous, affirm our reasons for calling them in question, and leave our readers to judge for themselves. The most celebrated writer in English who has treated of pronouns, and whom, since the publication of his Hermes, most other writers have implicitly followed, is Mr Harris, who, after a short introduction proceeds thus: "All conversation passes between individuals who will often happen to be that infant unacquainted with each other. What then is to be done? How shall the speaker address the other, when he knows not his name? or how explain himself by his own name, or which the other is wholly ignorant? Nouns, as they have
have been described, cannot answer this purpose. The
first expedient upon this occasion seems to have been
pointing, or indication by the finger or hand; some
traces of which are still to be observed, as a part of that action
which naturally attends our speaking. But the au-
torities of language were not content with this; they
invented a race of words to supply this pointing; which
words, as they always stood for substantives or names
were characterized by the name of pronouns. These
also they distinguished into three several forts, calling
them pronouns of the first, the second, and the third
person, with a view to certain distinctions, which may
be explained as follows.

"Suppose the parties conversing to be wholly unac-
quainted, neither name nor countenance on either side
known, and the subject of the conversation to be the
speaker himself. Here to supply the place of pointing,
by a word of equal power, the inventors of language
furnished the speaker with the pronoun I; I write, I
say,” &c.: and as the speaker is always principal
with respect to his own discourse, this they called,
for that reason, the pronoun of the first per-
son.

"Again, suppose the subject of the conversation to
be the party addressed. Here, for similar reasons, they
invented the pronoun thou; thou writest, thou
talkest, &c.: and as the party addressed is next in dig-
nity to the speaker, or at least comes next with refer-
tence to the discourse, this pronoun they therefore called
the pronoun of the second person.

"Lastly, suppose the subject of conversation neither
the speaker nor the party addressed, but some third ob-
ject different from both. Here they provided another
pronoun, he, she, or it; which, in distinction to the
two former, was called the pronoun of the third person:
And thus it was that pronouns came to be distinguished
by their respective persons.

36. The description of the different persons here
given is taken, we are told, from Priscian, who took it
from Apollonius. But whatever be the deference
due to these ancient masters, their learned pupil, though
guided by them, seems not to have hit upon the true
and distinguishing characteristic of the personal pronouns.
He supposes, that when the names of two persons
conversing together are known to each other, they
may, by the use of these names, express all that the
personal pronouns express: but this is certainly not true.
To us, at least, there appears to be a very ma-
terial difference between saying, “George did this,”
and “I did this,” nor do we think that the power of
the pronoun would be completely supplied by the name,
even with the additional aid of indication by the hand.
So when one man says to another, with whom he is
conversing, “James did so and so,” it is surely not
equivalent to his saying, “you did so and so.” If
such were the case, one might peremptorily ask, when
both persons are known to each other, Why do they use
the personal pronouns? Mr Harris tells us, that
“when the subject of conversation is the speaker him-
self, he uses I; and when it is the party addressed, he
uses thou.” But in fact the nature of the personal pro-
nouns has no fort of connection with the subject of con-
versation, whether that conversation relate to the speaker,
the party addressed, or a Greek book. In this instance,
“I say that the three angles of every triangle are equal
to two right angles,” the speaker is surely not the sub-
ject of the discourse: nor is the party addressed, but the
truth of his assertion, the subject of discourse in the follow-
ing sentence—“If you say that Homer took’s: Diversions
of Ixly is the most matterly treatise on grammar, so
far as it goes, that you have ever seen.” Mr Harris
uses the phrase becoming the subject of conversation,
in no other sense than that when the speaker has occasion to
mention himself, he uses I; when the party addressed,
thou; and when some other person or thing, he, she, or
it: but we know that he may use other words, by no
means equivalent to the true first of these pronouns, which
will sufficiently mark himself, and the party addressed;
and that he may use indifferently, and without the
smallest injury to the senfe, either the third pronoun,
or the word for which it is merely a substitute.
A man who bears various characters, may design himself
by any one of them. Thus Mr Pitt may speak of himself
as first lord of the treasury, chancellor of the exche-
quer, or member for the university of Cambridge; and in
each case he would be what Mr Harris calls the subject of
conversation: yet every one feels that none of these de-
signations is equivalent to I. What then is the force
of the personal pronouns?

37. It appears to be simply this: The first denotes
the real
speaker, as characterized by the present circum-
cstance of being addressed, in contradistinction to every other character.

In this account of the personal pronouns be true, and we flatten ourselves
that its truth will be obvious to everybody, there is but one
way of expressing by other words the force of the pro-
nouns of the first and second person. Thus,” The
person who now speaks to you did so and so,” is equiva-
lent to “I did so and so;” and “The person to whom I
now address myself did so and so,” is equivalent to
“you did so and so.”

Hence we see why it is improper to say the one or the
other; for each of these pronouns has of itself the force
of a noun with the definite article prefixed, and denotes
a person of whom something is predicated, which distinguis-
hes him from all other persons. I is the person who now
speaks, thou is the person who is now addressed by the
speaker. Hence too we see the reason why the pronoun
I is said to be of the first, and the pronoun thou of the
second person. These pronouns can have place only
in conversation, or when a man, in the character of a
public speaker, addresses himself to an audience; but it
is obvious that there must be a speaker before there can
be a hearer; and therefore, that the pronouns may fol-
low the order of nature, I, which denotes the person of
the speaker, must take place of thou, which denotes
the person of the hearer. Now the speaker and the
hearer being the only persons engaged in conversation or declamation, I is
with great propriety called the pronoun of the first, and thou the pronoun of the
second person. We have said, that, with respect to pro-
nouns, the third person, as it is called, is merely a nega-
tion of the other two. This is evident from the slightest
attention; that is, that there is no distinction of the first,second,
or third
pronouns of the third person. He, she, or it, denotes not
the person either of the speaker or of the hearer; and,
and, as we have just observed, no other person can have a share in conversation or declamation. An absent person or an absent thing may be the subject of conversation, but not of the person addressed; he, she, and it, however, as they stand by themselves, and assume the power of nouns, are very properly denominated pronouns; but they are not personal pronouns in any other sense than as the negation of sex is the neuter gender.

38. We have already seen that nouns admit of number; pronouns, which are their substitutes, likewise admit of number. There may be many speakers at once of the same sentiment, as well as one, who including himself, speaks the sentiment of many: speech may likewise be addressed to many at a time, as well as to one; and the subject of the discourse may likewise be many. The pronoun, therefore, of every one of the persons must admit of number to express the singularity or plurality. Hence the pronoun of the first person has the plural we; that of the second person thou has the plural ye or you; and that of the third person he, she, or it, has the plural they, which is equally applied to all the three genders.

The Greeks and Romans, when addressing one person, used the pronoun in the singular number thou; whereas, in the polite and even in the familiar style, we, and many other modern nations, use the plural you. Although in this case we apply you to a single person, yet the verb must agree with it in the plural number; it must necessarily be, you have, you hast. You was—the second person plural of the pronoun placed in agreement with the first or third person singular of the verb, an error, though common, fecile, which ought to be carefully avoided. In very solemn style, as when we address the Supreme Being, we use thou—perhaps to indicate that he is God alone, and that there is none like unto him; and we sometimes use the same form of the pronoun in contemptuous or very familiar language, to intimate that the person to whom we speak is the meanest of human beings, or the despised and most familiar of our friends. A king, exercising his authority on a solemn occasion, adjoins theplural of the first person, we strictly command and charge; meaning, that he acts by the advice of counsellors, or rather as the representative of a whole people. But in all cases in which the use of the pronoun deviates from the nature of things, the verb in common deviates with it; for, as will be seen afterwards, these two words universally agree in number and person.

39. But though all these pronouns have number, nearly in Greek, Latin, or any modern language, do those of the first and second persons carry the distinctions of sex. The reason is obvious (n), namely, that sex and Vol. VIII.

(1) The reason assigned by Mr Harris and his followers, is, that the speaker and hearer being generally present to each other, it would have been superfluous to have marked a distinction by art, which from nature and even dress was commonly apparent on both sides. This is perhaps the best reason which their description of the personal pronouns admits, but it is not satisfactory; for the speaker and hearer may meet in the dark, when different dressels cannot be distinguished.

(2) If we mistake not, Dr Johnson has somewhere affected to ridicule Bishop Lowth for considering the word mine as the possessive case of the pronoun of the first person. According to the Doctor, mine is the same word with the pronominal adjective my; and was anciently used before a vowel, as my was before a consonant. This is not said with the great Lexicographer's usual precision. That mine was anciently used before a vowel is certain; but it does not therefore follow, that it is the same word with my. If it were, we might on every occasion

In this respect the pronoun of the third person differs from the first and second.
That the word **me** is the same pronoun in the case which the Latin grammarians call the *acutissimum*, is evident from the import of that word in the sentence **He and me**, where the admiratio is supposed to proceed from (k) the person spoken of to the person who speaks. It appears therefore, that though English nouns have only two cases, the nominative and *possessive*, the pronouns of that language have three, as **I, mine, me**; **Thou, thine, thee**; **He, his, him**, &c.

That these are cases, can be questioned by no man who admits that **mei, mihi, me**, are cases of the Latin pronouns *ego*. Both pronouns, the Latin and the English, are irregularly inflected: and perhaps those words which are called the oblique cases of each may have originally been derived from nominatives different from *ego* and *I*; but these nominatives are now lost, and *mei* and *mihi* have, beyond all dispute, the effect of the genitives of the Latin and English pronouns of the first person. These variations, however, cannot be looked upon as an essential part of language, but only as a particular refinement invented to prevent the disagreeable repetition of the pronoun, which must frequently have happened without such a contrivance. This seems to have been the only reason why pronouns have been endowed with a greater variety of cases than nouns. *Nomi* are in themselves greatly diversified. Every genus and every species of objects has a distinct name, and therefore the sameness of sound does not so often occur among them as it would among the pronouns without cases, where the same, **I, thou he, she, or it**, answers for every object which occurs in nature: but by this diversity in the form of the words, the *onomatopoeia*, which would otherwise disgust, is in a great measure avoided. It is probably, for the same reason, that the plural of each of these pronouns is fo very different from the singular. Thus from **I, mine, me**, in the singular, is formed, in the plural, **we, us, our**; from **thou, thine, and thee, ye, or you, yours, you**; and from **he, she, it, his, hers, its, him, her, it, in the singular, they, their, them, in the plural**. In all of which there is not the least resemblance between the singular and the plural of any one word: and except in **he, his, him; it, its, their, theirs**; **they, their, them; there is not any similarity between the different cases of the same word in the fame number.**

From the account here given of the personal pronouns, it appears that the first or second will, either of them, coalesce with the third, but not with each other. For example, if it is good sense, as well as good grammar, to say in any language, **I am he—thou art he—we were they—you were they; but we cannot say—am I thou—not thou art I—now we are you, &c. The reason is, there is no ambiguity in the speaker to be the subject also of the discourse, as when it is said—**I am he; or for the person addressed, as when we say, thou art he. But for the same person in the same circumstances, to be at once the speaker and party addressed, is impossible; for which reason the coalescence of the pronouns of the first and second persons is likewise impossible.**

*That book is mine,** is good English; but **“that book is my,** would be a grofs solecism: the reason is, that **mine** is a genuine pronoun, and stands by itself with the power of a noun; but my, being an adjective, cannot stand by itself.

(a) See Chap. I. 19. on the Cafes of Nouns.
but there is another pronoun which has a character peculiar to itself; and which, as it is never employed but to connect sentences, and must therefore have always a reference to something preceding, is called the

substantive or relative pronoun. This pronoun is in

Greek, ὁ, τοις, τί; in Latin, QUIS, QUOD; and in Eng-

lish, who, which, that.

44. In order to determine with precision the nature and import of the relative pronoun, it will be necessary to ascertain the powers which it contains, or the parts of speech into which it is capable of being resolved.

Now, it is obvious, that there is not a single noun, or prepositional pronoun, which the relative is not capable of representing: for we say, 1, who saw him yesterday, cannot be mistaken; you, who did not see him, may have been misinformed; they, who neither saw nor heard, can know nothing of the matter; the things, which he exhibited, were wonderful. From these examples it is apparent, in the first place, that the relative contains in itself the force of any other pronoun; but it contains something more.

45. If from any sentence in which there is a relat-

ive, that relative be taken away, and the prepositional pronoun, which it represents, be substituted in its stead, the sentence will lose its bond of union, and stand quite loose and unconnected. Thus, if instead of saying the man is wise who speaks little, we should say the man is wise he speaks little, the sentence would be resolved into two; and what is affirmed of the man's wisdom, would have no connection with the circumstance of his speaking little. Hence it is evident, in the second place, that the relative contains the force of a connective as well as of the prepositional pronoun. What kind of connection it denotes, is next to be ascer-

tained.

46. It may be laid down as a general principle, that, by means of the relative pronoun, a clause of a sentence, in which there is a verb, is converted into the nature of an adjective, and made to denote some attribute of a subject, or some property or circumstance belonging to the antecedent noun. Thus, when it is said, homo qui prudentia predicit efi, the relative clause—

qui prudentia prædicit efi, expresses nothing more than the quality of prudence in concrete with the sub-

ject homo, which might have been equally well ex-

pressed by the adjective prædicas. In like manner, when we say, vir qui pauca loquitur, the relative clause

expresses the property of speaking little as belonging to the man, and as being that quality which consti-

tutes, or from which we infer, his wisdom; but if there were such a word as paucolloquent, that quality might very properly be expressed by it, and the phrase vir

qui pauca loquitur would express the same affection with vir qui pauca loquitur.

Now if a relative clause expresses that which might be expressed by an adjective, the presumption is, that it may be resolved into the same constituent parts. But every adjective contains the powers of an abstract substantive, together with an expression of connection; and may be resolved into the substantive of that substantive, or into the nominative with the particle of pre-

fixed, which, in English, corresponds to the termina-

tion of the substantive in the ancient languages. That

the member of a sentence, in which there is a relative, may, in every instance, be analyzed in the same manner, will be apparent from the following examples.

Vir qui sapiens, qui sapiens, and qui sapientissimum; "a man who is wise, a wife man, and a man of wisdom" are certainly phrases of the same import. Again, homo, qui ingratatus est animus, malus est amicus, may be translated into Greek, ὁμοί ὁ δεσπότης ὁ δέσποτης, and into Latin, "the man of ingratitude is a bad friend."

47. Then it appears, that the relative pronoun contains in itself the force of the prepositional pronoun, together with that connection implied in English by the preposition of, and in the ancient languages by the genitive case. When one says, vir qui pauca loquitor, the relative clause qui pauca loquitor expresses that attribute of the man from which his wisdom is inferred: it is conceived by the mind, as script of its propotional form, and standing in the place of a substantive noun governed in the genitive case by vir. The whole sentence might be thus translated, "the man of little speaking is wise," or did the use of the English language admit of it, "the man of he speaks little is wise." In like manner, when it is said, "Man who is born of a woman is of few days and full of trouble," the relative clause is equivalent to an abstract noun in the genitive case, and the whole might be express-

ed in the following manner, "man of he is born of a woman is of few days and full of trouble."

We are sensible, that these expressions into which, in the instances adduced, we have resolved the relative clauses, will appear extremely uncouth and offensive; but we mean not to recommend them as common modes of phrascology. Against their being employed, as such, present use loudly remonstrates (1). They are intro-

duced only with a view to throw the true import of the

relative

(1) It is worthy of observation, however, that, repugnant as such expressions are to the present idiom of the English language, there is nothing in the nature of the thing that could render the use of them improper. All prepositions, as will be seen afterwards, are expressive of relations subtilifying between those objects of which they connect the signs in discourse. Those objects may be denoted, either by single words, and then the preposition will govern a noun; or by relations, and then it will govern a nominative and a verb. Thus, when it is said, "I came after his departure," the preposition after expresses the relation between two events—my coming and his departure, and governs a substantive noun: but if it be said, "I came after he departed," the preposition in this case (as shall be shown afterwards, is absurd to call it, in the one instance, a preposition, and in the other a conjunctin) expresses the same relation as before, but governs a nominative and a verb. This last expression is exactly similar to those employed above. When one says, for example, "the man of he speaks little is wise,"—however uncouth the expression may appear from its not being supported by the authority of custom, the preposition of is used precisely in the same manner, and serves the very same purpose, as when it is said, "the man of little speaking is wise." In both cases it denotes the relation between the two objects.
GRAMMAR.

Chap. III.

The learned and ingenious Mr Harris has, in his Treatise on Universal Grammar, given an analysis of the relative pronoun very different from that which has been given us. The result of his inquiry is, that the relative is equivalent to another pronoun, together with an expression of connection of that kind which is denoted by the particle and. This analysis he exemplifies, and endeavours to confirm by the following sentence: "Light is a body which moves with great celerity." Now, says he, instead of which substitute the words and it, and in their united powers you see the force and character of the pronoun here treated. But let any one attentively consider these two expressions, "Light is a body which moves with great celerity," and "Light is a body and it moves with great celerity," and he will find that they are not precisely equivalent. For to speak in the language of logic, there is in the first but one proposition, of which the subject is light, and the predicate a complex term expressed by the words—body which moves with great celerity. In the second there are two propositions, or two predications concerning light:—first, that it is a body; and secondly, that it moves with great celerity. The relative clause, in the first case, expresses a property of the antecedent body, which with that property is predicated of the subject light; in the second case, this property is removed from the predicate of which it was an essential part, and is improperly converted into a new predication of the subject. The sentence may be resolved upon our principles, and its precise import preferred; as—"Light is a body of it moves with great celerity," the clause—"it moves with great celerity," is conceived by the mind as having the force of an abstract substantive; and is connected with the antecedent body by the proposition of answering to the termination of the genitive case. This abstract substantive thus connected expresses a quality of the body light. But by this example Mr Harris's doctrine is not exhibited in all its absurdity: let us try it by another.

Suppose the following assertion to be true: "Charles XII. was the only monarch who conquered kingdoms to bestow them on his friends." Here it is evident there is but one proposition, of which the predicate is expressed by the words—"only monarch who conquered kingdoms to bestow them on his friends," so that the relative clause is a necessary part of the predicate, and has, like an abstract noun in the genitive case, the effect of modifying the general term monarch. Resolve this sentence on Mr Harris's principles, and you have two propositions, of which the first is a notorious falsehood:—"Charles XII. was the only monarch, and he conquered kingdoms to bestow them on his friends." But instead of and substance of—saying, "Charles XII. was the only monarch of he conquered kingdoms to bestow them on his friends," and you preserve the true import of the expression (m).

49. Are there no cases, then, in which the relative may be resolved into the connective and with a prepositive pronoun? Undoubtedly there are, and we shall now endeavour to ascertain them.

Adjectives in language have two different effects. In some cases Mr Harris's analysis of the relative pronoun may be admitted.

In some cases Mr Harris's analysis of the substantive to which they belong, according to the nature of the attribute which they express. If the attribute expressed by the adjective be competent to all the species of which the substantive is the specific name, it is plain that the adjective does not modify or limit the substantive, for this obvious reason, that nothing can modify which is not discriminative. Thus, when objects—man and little speaking; only in the one it is prefixed to a noun, in the other to an adverb. The noun is here represented by he? "The man of his speaking little is wife!" Who is meant by the pronoun he? We answer, the man who is declared to be wife. The objection proceeds from inattention to the radical signification of the word of, which a late ingenious writer has shown to be the fragment of a Gothis or Anglo-Saxon word, signifying confluence or offspring. If this be admitted, and, after the proofs which he has given, we think it cannot be denied, the uncouth phrase, "The man of his speaking little is wife," may be thus resolved, "The man, a confluence (of his mind) he speaks little, is wife;" or, in other words, "The man, in confluence of his speaking little, is wife." The same acute writer, Mr Horne Tooke, has shown that of said for, though of different radical meanings, may often be substituted the one for the other without injury to the sense. Let this substitution be made in the present instance, and the propriety of the phrase will be apparent: "The man is wife, for he speaks little." It must be remembered, however, that such a substitution cannot be made in every instance, because for signifies cause, and of signifies confluence.

(m) Mr Harris was probably led into his opinion, from considering the Latin qui or quis as compounded of que and it (see Horne Tooke, p. 81, 82, edit. 3d.) But the notion of Perizonius is perhaps better founded, who in his notes ad Suë. Miuev. confiders it as immediately taken from the Greek qui, which in the Doric made s, and in the Latin quis. For it seems highly probable, as some ingenious writers have endeavoured to show, that the Latin is a dialect of the Greek. Of this at least we are certain, that many words in the former are immediately adopted from the latter.
When Horace says, "Prata canis albicant prunus," the adjective canis denotes a quality common to all barking dogs; and therefore cannot modify the substantive, because it adds nothing to the conception of which that substantive is the name. But when the attribute expressed by the adjective is competent to some individuals only of the species of which the substantive is the name, the adjective has then the effect of modifying or limiting the substantive. Thus, when one says vir bonus, he makes use of an adjective which modifies the substantive vir, because it expresses a quality or attribute which does not belong to all men.

The clause of a sentence, in which there is a relative, as it is in every other respect, so is it in this, equivalent to an adjective; it either modifies, or does not modify, the antecedent, according as the attribute which it expresses is or is not characteristic of the species to which the antecedent belongs. Thus, when it is said, "Man, who is born of a woman, is of few days and full of trouble," the relative clause— qui est filius hominis, expresses an attribute common to all men, and therefore cannot modify. In like manner, when we say—"Socrates, who taught moral philosophy, was virtuous,"—the clause, qui haec delectante philosophiam, does not modify. In both these instances the relative clause might be omitted; and it might be said with equal truth, "Man is of few days and full of trouble,"—and "Socrates was virtuous."

But if it be said, "An wise man who punishes the subject, modifies the antecedent qui est sapit," for it is not affirmed of every man, that he is wise, but only of such men as speak little. So—"Charles XII. was the only monarch who conquered kingdoms to bellow them on his friends," and, "the man that endureth to the end shall be saved;" with which more examples that will occur to every reader.

Now it will be found, that it is only when the relative clause expresses such a property or circumstance of the antecedent as does not limit its signification, that the relative pronoun can be resolved into a prepositive pronoun with the conjunction and, and that in these cases the relative clause itself is of very little importance. Thus in the assertion,—"Charles XII. was the only monarch who conquered kingdoms to bellow them on his friends,"—where the relative clause is reftitutum, the who cannot be resolved into and be consistently with truth or common sense. But in the expression, "Man, who is born of a woman, is of few days and full of trouble," the relative who may be so resolved, at least without violating truth;—"Man is of few days and full of trouble, and he is born of a woman." The only difference between the sentence with the relative who, and the same sentence thus resolved, is—that, in the former case, it contains but one predicate; in the latter two, and these but loosely connected.

50. Thus then it appears that the general analysis of the relative pronouns is into the particle of, and a prepositive pronoun; but that there are also occasions on which it may be resolved into a prepositive pronoun and the particle and, without materially altering the sense. Now what is the reason of this distinction?

If the relative clause be equivalent to an adjective, or to an abstrait substantive in the genitive case, it is easy to see that the relative itself may, in every instance be, resolved into another pronoun and the particle of; but it will not perhaps be quite so evident how it should in any instance be resolved by and. This last analysis has its foundation in the nature of the particles of and and; or, to speak more properly, in the nature of the attribute which the relative clause expresses. Both the particles of and and are used to link or join conceptions together; but with this difference, that of has the effect of making the conceptions it connects figure in the mind as one object; whereas the conceptions connected by and are still conceived separately as before. To explain ourselves by an example: suppose we take two words, man and virtue, which denote two distinct ideas or conceptions, and join them together by the particle of, saying man of virtue; the mind no longer views them separately as significant of two conceptions, but of one. Take the same words, and join them together by the particle and, saying man and virtue; the conceptions denoted by man and virtue are still viewed separately as two; notice is only given that they are collaterally connected.

This being the case, it follows, that when the relative modifies the antecedent, or, in other words, when the relative clause and the antecedent denote but one conception, the relative must be resolved by of; in order to preserve this unity of conception. But when the relative does not modify the antecedent; that is, when its clause does not express any necessary part of a complex conception; then the conceptions or ideas denoted by the relative clause and the antecedent may be viewed separately as two; and therefore the relative may be resolved into the corresponding prepositive pronoun and the particle and.

To illustrate this reasoning in a light somewhat different. As every relative clause, which expresses an attribute that is not applicable to a whole genus or species, must necessarily modify some general term, that is, restrict its signification; and as that general term must belong either to the subject or to the predicate of a proposition; it is evident, that every such relative clause is a necessary part of that subject or predicate in which its antecedent stands. If therefore a relative clause, which modifies, be taken away either from the subject or the predicate of a proposition; or if that connection, in consequence of which it modifies, be dissolved (which is always done when the relative is resolved by and); the proposition itself will not hold true. The reason is, that the subject or the predicate becomes then too general: for, in the one case, something is predicated of a whole genus or species, which can be predicated only of some individuals of that genus or species: and in the other, a general predication is made where only a particular one can be applied. Thus, if it be said, "All men who transgress the laws are deserving of punishment," the subject of the proposition is expressed by the words, "all men who transgress the laws." Take the clause of the relative "who transgress the laws"—away, and say, "All men are deserving of punishment." and you have a proposition which is not true, because that is affirmed of the whole species; which can be affirmed only of some individuals. Retaining now the clause of the relative, but resolving it by and, you have the same proposition as before; and together with it, in this instance, another which is equally false:—"All men and they transgress..."
grows the laws, are deserving of punishment," that is, "all men are deserving of punishment, and all men transgress the laws."

But when the attribute expressed by the clause of the relative is characteristic of the genus or species of the antecedent, and consequently applicable to every individual which that genus or species comprehends, the relative clause may be entirely omitted without affecting the truth of the proposition, which is already as general as it can be. As in this case the import of the relative clause is not restitutive of the signification of the antecedent, it is of little consequence whether the attribute be represented by the connective part of the relative, as of, the antecedent, or be affirmed to belong to the antecedent in a separate assertion. Thus it matters not much, whether we say, "Man, who is subject to death, ought not to be too much elated;" that is, according to our analysis,—"Man of he is subject to death, ought not to be too much elated;" or, forming the relative clause into a separate assertion, and connecting the two by the particle and, we say, "Man, and he is subject to death, ought not to be too much elated." In the one sentence, indeed, the reason is implied why man should not be too much elated, viz. his being subject to death. In the other no reason is assigned for this; we only affirm that man is subject to death, and likewise that he should not be too much elated: but as both affirmations are equally true and evident, it is of little consequence, in such a case as this, whether the reason upon which either is founded be implied or not.

From the whole of this tedious investigation, we flatter ourselves that the following conclusions are deduced and sufficiently established: 1st. That the relative pronoun contains in itself the united powers of a connective and another pronoun. 2dly. That is the connective of which, together with another pronoun, it contains the powers, as in every possible instance it may be resolved into these constituent parts, and the import of the sentence in which it has place remain unaltered.

3dly. That the relative clause of a sentence has the import of an adjectival substantive, in the ancient languages, in the genitive case; in English, with the particle of prefixed. 4thly, That the relative pronoun is of necessary use only where there is a deficiency of adjectives or substantives to denote some complex attribute, by which we want to limit a general term or expression; but that where such adjectives or substantives exist in language, we may use the relative or not at pleasure. And, 5thly. That though, in cases where the relative clause does not limit a general term, the relative pronoun may, without violating truth, be analyzed by and; yet such analysis is never proper, as it gives two predicates to the same subject, which, in the original proposition, had but one predicate.

If the clause of the relative be equivalent to an adjective, as in every instance it seems to be, it will naturally occur, that, in the ancient languages, the relative should agree with its antecedent in gender, number, and case. They do agree for the most part in gender and number: in case they cannot often, because the very intention of introducing a relative into lan-

(5) "Who is by some authors made the possessive case of which, and applied to things as well as persons I think, improperly." Leathur.
In English, from the cool and phlegmatic arrangement of the language, occasioned by the want of inflexions and conjugations, the place of every part of a sentence is almost uniformly determined, and very little variety is allowed in the collocation of the words. The imperative is almost always placed in apposition with its subject, and the nominative with its verb. In consequence of this uniformity in the collocation of the words, the mind acquires a habit of connecting in idea any kind of word with the place in which it is used to stand; and is naturally led to consider every word that stands in such a place as belonging to such a clause. Hence it is, we imagine, that the definite that pales into the nature of the relative pronoun; as in those instances in which it occupies the place of the relative, it was natural to consider it as having the same import. Yet the word that has undoubtedly in itself no more the force of the relative pronoun than the or this, or any other definite whatever. In such expressions as the foregoing, it is not improbable that originally the clause of the definite that, which we now call the relative clause, was thrown in as a kind of modifying circumstance in the following manner: "The book (I read that) is elegant;" where the speaker, finding the word book too general for his purpose, throws in a clause to qualify and restrict it, or to confine his affirmation to that particular book which he is then reading. We can easily suppose, that through time the definite that in such an expression might be transposed or removed from its own place to that of the relative that so that the expression would run thus, "The book that I read is elegant;" which would be considered as precisely equivalent to "The book which I read is elegant." This opinion is not a little confirmed by a similar use in the article in Greek, which, though undoubtedly a definite like the English the, is often used instead of the relative pronoun. Numerous examples may be found in Homer and Herodotus, especially in the latter, who seldom refers what is properly called the relative. We shall produce one instance from each.

55 Interrogative pronouns

We have said that the interrogative pronouns, as they are called, who, which, what, are intimately connected with relatives; we now affirm, that the word of these words are nothing but relatives, and that the last contains in itself the united powers of a relative and definite. With respect to cases, number, and gender, the words who and which, when employed as interrogatives, differ not from the same words when employed as relatives; and we hold it as a maxim, without which science could not be applied to the subject of language, that the same word has always the same radical import in whatever different situations it may be placed. To understand this, it is necessary to observe, that all men have a natural propensity to communicate their thoughts in the fewest words possible; hence it follows, that words are often omitted which are necessary to complete the construction of the sentence; and this no where happens more frequently than in the use of who and which. In sentences where these words are confessedly relatives, we often find them without an antecedent; as, "Who means my purse, means truth." Shakespeare, "Which who would learn, as soon may tell the facts." Dryden. "Qui Baculum non odis, amatis sarminas, Meric, Virg. That is, "He who steals my purse, &c." "Which he would learn as soon, &c." and "ille qui Baculum non odis," &c. Such abbreviations occasion no obscurity, because from previous circumstances the hearer knows the mind of the speaker and the periphrasis to whom he refers. But it is not with respect to the relative and antecedent only that such abbreviations have place: in sentences of a different form, whole clauses are sometimes omitted, while the meaning of the speaker is made sufficiently plain. Thus when king Richard III. having lost his horse in battle, exclaims, "A horse! a horse! my kingdom for a horse!" there is no complete thought expressed; but the circumstances in which the king then was, enabled those about him to understand, that he wanted a horse. Accordingly Catesby answers him, "Withdraw, my lord, I'll help you to a horse." In like manner when a person asks a question, his expression is frequently incomplete; but the tone of his voice, or some other circumstance, enables us to ascertain his meaning, and to supply, if we please, the words that are omitted. Thus when it is said, An thief? nothing more is expressed than, If you did it (the Latin au being nothing else but the Greek α begged of the circumstances enable the person who hears it to know that the meaning is, Say if you did it." Let us apply these observations to the words who and which. If these words be relatives, and if our analysis of the relative be just, it is obvious, that no complete meaning can be contained in the clause, "Who is your principal friend?" for that clause contains nothing more than the circumstance of being your principal friend. We shall find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, for he will find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, for he will find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, for he will find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, for he will find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, for he will find it impossible to affix to it any meaning and without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun.
cencing these particulars; and that there may be
more, he describes the unknown person as having
dyed garments from Bozrah; but left even that descrip-
tion not be sufficiently accurate, he throws in the
definative clause, this is that person, pointing at
him, we may suppose, with his finger.—Which, used
as an interrogative, indicates a wish of knowing a par-
cular person or thing out of more than one mention-
ed, as, "Which of the two did it?" that is, "Tell me
the one of the two which did it?" for in old English
which as a relative is often used, where in modern
English we should say who; and that mode of speech
is full retained when the antecedent is omitted, and
the relative clause employed to indicate such a with
as that before us. What includes in itself the signification
of a definitive and a relative pronoun; as, "from
what has gone before, what follows may easily be
guessed?" where the word what is equivalent to that
which. When therefore we say, "What rude fellow
is that?" our meaning is, "Describe that person who
is that rude fellow." Upon the whole, then, it is
evident, that the words called interrogatives are merely
relative pronouns; and that the interrogative sentences
are relative clauses uttered in such circumstances as to
enable the hearer to supply the antecedents necessary
to complete the meaning.

56. To conclude: We have seen that substantives
are either primary or secondary; or, in other words,
NOUNS denote substances, and those either natural, artificial, or abstract. They
over denote things either general, or special, or particular;
and a general or specific name is made to denote an
individual by means of words called articles or de-
finitives. PRONOUNS are the substitutes of nouns,
and are either prepositive or substutive. The prepo-
sitive is distinguished into three orders, called the
first, the second, and the third person. The sub-
jective, otherwise called the relative, includes the
powers of all those three, having superadded as its
own the peculiar force of a connective.

Chapter IV.

57. The words which we have hitherto considered
are commonly called substantives primary or secondary,
and definite; because nouns are significant of substances;
pronouns are the substitutes of nouns; and the ad-
ticles serve to ascertain the extent of the noun; and to
determine whether on any occasion it be significant of
a whole class of substances, or only of one individual. But
substances are of importance to mankind only on ac-
count of their various qualities or attributes; for their
internal texture is a thing of which we are profoundly
ignorant, and with which we have no manner of con-
cern. Thus, experience teaches us, that certain vege-
tables are good to the taste, and wholesome food;
while others are unpleasant and poisonous. The for-
mer kinds are valuable only for their qualities or attri-
butes; and they are the qualities or attributes of the lat-
ter; that make them wretched or hurtful. A horse is
strong, and swift, and docile; and may be trained to
carry a man on a journey, or to drag a plough. It is
for his strength, swiftness, and docility, that he is the
most valuable of all quadrupeds. One man is brave,
another learned, and another eloquent; and by pos-
fessing these different qualities or attributes, each is fitted
for a different station in society. It is plain therefore,
that in contemplating substances, our attention must be
principally bestowed upon their qualities, and that the clas-
of words which serve to denote these qualities must be an
esential part of language. Such words are in genera-
called attributes; and are of three sorts, Verbs, Par-
ticiples, and Adjectives.

58. Of all the constituent parts of speech none
has given the grammarians greater trouble than the
verb. The vast variety of circumstances which it
blends together in one word, throws very considerable
difficulties in the way of him who attempts to analyze
it and ascertain its nature; at the same time, that by
its eminent use in language, it is entitled to all the
attention which can be bestowed upon it. To the dis-
cussion of the verb, Mr Harris, whose notions of this
as of the other parts of speech have been generally
adopted by the subsequent writers on grammar, has
dedicated a large proportion of his book, in which he
has thrown out many excellent observations, mixed, as
it appears to us, with several errors. We have already
observed, that no man is ignorant, when he uses what is
called a verb and when a noun. Every school boy knows
that the words is, lovetb, walketh, standeth,
in English; and est, amat, amatur, amatus, stat,
in Latin, are verbs: he knows likewise that they are
different kinds; some of them are said to be
active, some passive, and some neuter. But it should
seem, that the first object of our investigation ought to
be the characteristic of the verb, or that which all these
words have in common, and which constitutes verbs,
distinguishing them from every other species of
words. Now it is obvious to the slightest attention, that
every verb, whether active, passive, or neuter, may
rather be resolved into the substantive verb is, and another of the verb
attributive: for lovetb is of the same import with love;
walketh, with is walking; and amat, with amans est. But
loving, walking, and amans, are not verbs: whence it follows, that the characteristic of the
verb, that constitutes it what it is, and cannot be expressed by other words, must be that which is
signified by the word is; and to us that appears to be
neither more nor less than assertion.

Assertion therefore, or predication, is certainly
the very essence of the verb, as being that part of
its office, and that part only, which cannot be discharg-
ed by other kinds of words. Every other circumstance
which the verb includes, such as attribute, mode, time,
&c. it may be possible to express by adjectives, participles,
and adverbs; but without a verb it is impossible to predi-
cate, to affirm or deny, any one thing of any other thing.
The office of the verb, then, when stripped of all acciden-
tal circumstances, seems to be merely this, "To join
the subject and predicate of a proposition;" its powers
are analogous to those of the sign + in Algebra, which does not affect the separate value of
the quantities between which it is placed, but only in-
dicates their union or coalescence. To explain by an ex-
ample: When we say, Cicero eloquent, Cicero wise, these
are imperfect sentences, though they denote a substant
and an attribute. The reason is, that they want an
assertion, to show that such an attribute appertains to
such a substant. But when we insert the word was,
we join the substance and attribute together; we give notice that the wisdom and eloquence are applied to Cicero, and we do nothing more; we neither increase the wisdom nor diminish it; we neither make it real nor imaginary; for it was supposed in all its extent when the words Cicero and wise flood independent of each other. We may indeed use the verb in a form which implies not an assertion only, but likewise an attribute; as when we say George writeth, or George walketh: But as whitewash or any other particular colour is not of the essence of a horse, an animal which is found of all colours; so in the phrases quoted, the attribute, though implied, is not of the essence of the verb; for it may be equally well expressed by other words: George is writing, and George is walking, are phrases of the very same import with George writeth, and George walketh.

59. In revolving every verb, whether active, passive, or neuter, into the substantive-verb and another attributive, we have the honour to agree with all the grammarians; but to the word is itself the learned author of Hermes has given a meaning which, as a verb, it does not admit. He observes, that before any thing can be the subject of a proposition, it must exist: that all existence is either absolute or qualified, mutable or immutable: that the word is can by itself express absolute existence, but never the qualified, without subjoining the particular form; and that it signifies both mutable and immutable existence, having in these cases different meanings; altho' the sentences which he gives as examples are evidently constructed in the same manner and consist of the same parts of speech. His examples are: of absolute existence, B is; of qualified, B is an animal; of mutable, This orange is ripe; of immutable, The diameter of the square is incomparably with its side. But if predicament be the essence of verb, all this is nothing to the purpose, and part of it is not true. It is not true that the verb is ever varies its figuration; for it hath as verb no connection with existence of any kind. All such circumstantials are superadded to its verbal nature; or, to speak more accurately, we affix such names or terms from previous knowledge of the objects concerning which the predicament is made. When we say ‘this orange is ripe,’ we do indeed mean, as Mr Harris observes, that it is so now at this present in opposition to past and future time: but it is not the verb is, but the definitive THIS, which fixes the time of maturity, as well as the place of the orange; for had we said, oranges are ripe, we might have been properly asked, When and where are they ripe! although the same verb is used in both sentences. Even in the sentence ‘it is,’ absolute existence (the most simple of all) is inferred not expressly by the verb; and the inference is made from this obvious principle, ‘that when one utters a mark of predicament, we naturally conclude that he means to predicate something of the subject.’ If he adds no specific predicament, as B is round, we apply to B the most general that we can; and what other species is so general as existence?

That the idea of existence, considered as mutable or immutable, is not contained in the verb is itself, but is derived from our knowledge of the objects concerning which the predicament is made, appears manifestly from this: That if a person be supposed ignorant of the meaning of the words God and man, whilst he knows that of is; the uttering of the two propositions, God is happy, and this man is happy, will give him no notice of existence considered as mutable or immutable, temporary or eternal (o). His conclusion with respect to these modes of existence, if any such conclusion be drawn at all, must be derived entirely from his previous knowledge of the nature of God and the nature of man.

Some of our readers may possibly think this notion of verb too abstract and metaphorical; yet what other circumstance than mere predicament is essential to that species of words? We say ‘existent,’ not what is expressed by each individual verb, but what it is which is equally expressed by all verbs, and which distinguishes them from the other parts of speech. And if it be true, that every thing which the verb implies, predicament alone excepted, may be expressed by other parts of speech, and that no other part of speech can predicate; then we think ourselves warranted to affirm, that simple predicament is the essential character of verbs, that every word which predicates is a verb, and that nothing is so which does not predicate.

It must not, however, be conceived, that a doctrine very different from this has been lately maintained by Dr Gregory (p), an objector to the general theory. An objector has given no direct example of a word whose meaning is measured without affirmation, and a feeling or sentiment which is not uttered has nothing to do with language: but he has given a sentence in which there are three verbs, that in his opinion denote no affirmation, but a very plain supposition. If a supposition can be expressed without affirmation, we shall very readily allow that a wish or command may be so expressed likewise. The Doctor’s supposition is thus expressed: ‘Had any punishment ever overtaken you for your broken vows; were but one of your teeth growing black, or even were but one of your nails growing less solid, I should believe you. It is almost superfluous to observe, that to every verb not in the infinitive mode there must be a nominative, and to every active verb an object, whatever be the arrangement of the sentence in which such verbs are found. These

(o) The truth of this observation may be proved by experiment, by uttering to a man of good common sense these two propositions, taking care to express the words God and man in a language which he does not understand. Thus, Deus est happy, and hic homus is happy, uttered to a man totally unacquainted with the Latin tongue, will convey no notice of existence considered as mutable or immutable, &c.

are truths known to every schoolboy; the reasons of them shall be given afterwards. It is likewise undeniable, that in the sentence before us, the nominative to had is any punishment; to the first were, one of your teeth; and to the second, one of your nails. But the sentence arranged in grammatical order, with the several nominatives before their sense of the sentent is completed, express no affirmation; that it is only upon granting the truth of the affirmation which they denote, that the speaker says “I should believe you.” “Any punishment had ever overtaken you; if but one of your teeth were growing black, or even if but one of your nails were growing less beautiful, I should believe you.” Now it has lately been proved, by such evidence as leaves no room for doubt, that had, though called a conjunction, is in fact a verb in the imperative mode, of the same import with give; so that we may substitute the one for the other without in the smallest degree altering the sense. The sentence will then run thus: “Give any punishment had ever overtaken you; give but one of your teeth were growing black, &c. I should believe you.” It is therefore so far from being true, that had and were, when the sentence is completed, express no affirmation; that it is only upon granting the truth of the affirmation which they denote, that the speaker says “I should believe you.” “Any punishment had ever overtaken you,” is plainly an affirmation; if, give that affirmation, admit its truth, “I should believe you.” But it cannot be supposed that had and were change their significations by a mere change of place, or that by being removed from the middle to the beginning of a clause, they lose their original import, and come to denote something entirely different. Were this the case, every attempt to ascertain and fix the general principles of grammar would be as ridiculous as an attempt to express many circumstances by the course of time. For what purpose then, were it the case, to demand the truth of the affirmation, is evident; for when the word requiring the affirmation to be granted is supplied, the verb must be restored to its place in the middle of the clause. Such abbreviations, and such contrivances to mark them, are frequent in all languages, as will be seen more clearly when we come to treat of modes. Upon

the whole, notwithstanding the deference which we willingly pay to this very masterly writer, we are compelled reluctantly to differ from him, and still to think that simple predication is the very essence of the verb.

Should we be required to exemplify our theory by The theory of language, and to produce instances of this simplified process in practice, we might answer, that the not being able to produce such inferences would be no good argument against the truth of our principles. It is the nature of language to express many circumstances by the same word, all of which however are not essential to distinguish the species to which that word belongs from the other species of words; and it is the nature of man to infer from discourse many things which are not actually expressed. Perhaps, however, something nearly approaching to an exemplification of our idea of a simple verb will be found in the following proposition: “The three angles of every plane triangle are equal to two right angles.” What other office the verbs here perform is simply to join the subject and predicate, it is difficult to perceive. It does not give notice of time; or such notice, if given, is an imperfection; for the truth of the proposition is independent on time. Neither ought it to imply existence; for the proposition would be true, were there neither a triangle nor a right angle in nature.

This idea of verb, when it is well considered, we hope will be found just; but should any of our readers suspect it of novelty, and on that account be disposed to condemn it, we have only to request that he will refine his faculty till he has examined the writings of others, and nicely observed the several postures of his own mind in discourse; for meditation may perhaps show him that our theory is not false, and inquiry will satisfy him that it is not novel (q).

60. But although it is certain that asseveration, and asseveration only, is essential to the verb, yet the greater part of those species of words which grammarians call verbs are used to denote an attribute as well as an asseveration; or, in the language of logic, they express both the subject and the predicate of a proposition: thus, he is living, he is written, he is walking, are phrases equivalent in all respects to he is living, he is written, he is walking, denote some effect or action which grammarians call affresco. But although it is certain that asseveration only, is essential to the verb, this is not the case. But although it is certain that asseveration only, is essential to the verb, or, in the language of logic, they express both the subject and the predicate of a proposition: thus, he is living, he is written, he is walking, are phrases equivalent in all respects to he is living, he is written, he is walking, denote some effect or action which grammarians call asseveration.

(q) “Besides words, which are names of ideas in the mind, there are a great many others that are made use of, to signify the connexion that the mind gives to ideas or propositions one with another. The mind in communicating to the sight, organs, does not merely signifies of the ideas it has then before it, but also to show or intimate some particular action of its own at that time relating to those ideas. This it does in several ways; as is and is not are the general marks of the mind ascribing or denying.” Locke on Human Understanding.

“Verbum est pars orationis variabilitas, aliquid de re aliqua dici se affirmari significans. Vulgaris verbi definitio est, quod fit pars orationis, que agere, pati, aut esse significet. Sed nostra accuration, magisque ex ipso verbi cujusvis natura petita videtur. Ceutrum aut affirmari laxiorem hic fensi accipimus, pro eo quod praeclari Dialectici appellant, quo non modo affirmationes strictius sibi ducit, sed negationes etiam interrogationesque inclunatur.” Ruddimanii Grammaticae Institutiones; see also Dr Beattie’s Theory of Language.
black, and at some future time will be of a different colour. As, therefore, all motions and their privation, imply time; and as a proposition may be true one time, which is not true at another; all verbs, as well those which denote both an attribute and an affection, as those which denote an affection only, come to denote time also: Hence the origin and use of tenses, which are so many different forms asfigned to each verb, to show, without altering its principal signification, the various times in which the affection expressed by it may be true. Whether these various forms of the verb be essential to language, it is vain to dispute. They have place in every language with which we are acquainted; and as the use of the verb is to affirm one thing of another, it is absolutely necessary that the time, when such or such an affirmation is true, be marked by tenses, or some other contrivance. Concerning tenses, therefore, we shall throw together some observations equally applicable to every language, after prefixing a general remark or two which seem necessary in order to proceed with precision.

Time, although its existence consists in succession without implying at the same time that there is certainty or necessity in succession continued and unbroken, may yet be considered by the mind as divided into an infinite number of parts. There is, however, one grand division which necessarily occurs, and to which the different tenses of verbs are in all languages adapted. Computing from some portion conceived to be present, all times is either past or to come.

Again, from the very nature of time, it must be obvious, that all its parts are relative; i.e. that no portion of it can be ascertained by any thing inherent in itself, but only by referring it to some other portion, with respect to which it is past, present, or to come. In this respect time is perfectly analogous to space: for as the space in which any object exists, cannot be descried but by relating it to some other space, so neither can the time of any attribute or action be determined but by relating it to some other time. When, therefore, we would mark the time of any action or event, we must previously fix upon some point to which we may refer it. If this point be known, the time referred to it will be known also; but if the former be not known, neither will the latter.

Lastly, in contemplating an action, we may have occasion to consider it as going on, or as finished. This distinction is likewise denoted by the different tenses of verbs. In treating therefore of the tenses, there are two things to which attention ought principally to be turned:—the relation which the several tenses have to one another in respect of time; and the notice which they give of an action’s being completed or not completed.

62. Having premised these remarks, we proceed now to the tenses themselves; of which Mr Harris has enumerated no fewer than twelve. Of this enumeration we can by no means approve; for, without entering into a minute examination of it, nothing can be more obvious, than that his inceptive present—I am going to write—is a future tense; and his complective present—I have written—a past tense. But, as was before observed of the classification of words, we cannot help being of opinion, that, to take the tense as they are commonly received, and endeavour to ascertain their nature and their differences, is a much more useful exercise, as well as more proper for a work of this kind, than to raise, as might easily be done, new and hypothetical theories on the subjedt.

It has been already observed, that all the tenses must necessarily mark relative time. In one sense, this is extremely obvious. The present tense is used in contradistinction to both the past and future, and marks an attribute or action as existing in neither. The past and the future are in like manner used in contradistinction to the present; and mark an attribute or action which exists not now, but which in the one case has existed formerly, in the other will exist at some time coming. But besides this relation of contradistinction subsisting among the tenses, there is another of co-existence, as we may call it, to which it is of great consequence to attend—especially in examining the nature of the present.

63. The present tense refers not only to something which is past or future, but also to something with which the attribute or action of the verb is contemporary. This reference is necessarily implied in its very name; for we cannot say of any thing that it is present, without implying at the same time that there is something else with which it is present. Hence it appears with how little reason Mr Harris and others have given us an aorist of the present, as marking present time indefinitely in contradistinction to other presents, which have been called inceptive, extended, and complective presents. For from what has been said it follows, that the present tense is necessarily and from its very nature perfectly indefinite, and can of itself give notice of no precise or determinate portion or point of time whatever. A thing may have been present fifty years ago, may be present now, or at any future period. This tense implies the relation of co-existence between two or more things; but, without some auxiliary circumstance, it cannot in any language mark the particular portion of time in which those things exist. The indefinite nature of this tense is indeed most clearly seen in that use of it in which Mr Harris has styled it the aorist of the present; that is, in cases where it is employed to denote the repetition of an action which the agent is accustomed frequently to perform, or to express propositions of which the truth is ascertained by general experience; as in the following examples:

Hypocrite,—the only evil that walks
Invisible, except to God, he is known
Ad Iustitiam prospet qui sit judicin, &c.

In these instances it is plain there is no particular time pointed out: the propositions are true, or apprehended as true, at all times. Although the actions, therefore, of walking and hastening are expressed as present, it is impossible from the expressions to determine any precise point of time when they are present.

But if the present tense be thus indefinite, how, it may be asked, are we to ascertain the particular time which is intended? We answer, it is to be ascertained, either by relating the action of the verb as existing in some time already known, or by inference. If, for example, we say,—“Millions of spiritual creatures walk the earth unseen,”—the proposition is general, and the time of walking undetermined. But if we add,—“both when we wake and when we sleep”—the time is by this addition ascertained and specified; for if the time when men wake and sleep be known, the time when these spirits walk the earth is also known. When no specifying clause is given by which to determine the time of the present tense, it is very commonly determined by inference.
Thus, if one use such an expression as—"He sleeps while I am speaking to him,"—the time of his sleeping is ascertained by the subjunctive clause of the sentence; but if it be said simply—"He sleeps"—without alluding any data from which it may be concluded that he is sleeping, the time is altogether indefinite. Such inferences as this are common in language. The mind is desire to obtain complete information on every subject; and therefore frequently supplies to itself what is not expressed in the speech of others.

Both these ways of ascertaining the precise time of the present tense, are excellently illustrated by the use of the word "present" as applied to space. Take a familiar example:—"His brother and he were present when I read the letter." It is at first sight evident that this expression is perfectly indefinite. But if it be said—"His brother and he were present at your house when I read the letter,"—the place of action is inferred, by being referred to a portion of space which is known. If no such reference be made, the person who hears the speech uttered must either remain ignorant of the place intended, or he must ascertain it to himself by inference; and he will probably infer it to be that in which the speaker is at the time of uttering the indefinite sentence. This leads us to observe, that such inferences are not often made without sufficient foundation. Various circumstances may assist the reader or hearer in making them, and prevent all danger of mistake. He may have the evidence of sense, or of something preceding in the discourse, and a number of other particulars, to justify and warrant his conclusion. Thus, if when fitting by a large fire, one pronounce the words—"I am too warm;" to whom he addresses his speech are authorized to conclude, that he is too warm at the time of speaking, unless he expressly prevent the drawing of that conclusion by adding some such clause as—"when I wear a great coat."

It is strictly demonstrable, and hath by Mr. Harris been in fact demonstrated, that there is no such thing as present time. Yet do we not only conceive time as present and existing, but frequently as extending to a very great degree. We speak not only of the present instant, or the present day, but also of the present year, and even of the present century. This manner of conceiving time is indeed loose and unphilosophical; but it is sufficient for the ordinary purposes of language. To express time as it really is, we ought to say, the passing day, the passing year, and the passing century; but in common discourse we denominate any portion of time present, in which the present now or instant is included, although it is obvious that part of that portion is past, and the remainder is future. From the very nature of time thus conceived to be present, the tense now under consideration must represent the action of the verb as commenced, and not finished; for as time is continued succession, and accompanies every action; when any action is not commenced, it exists not in any time, though it may exist hereafter in time which now passeth, and when it is finished, it exists no longer in time present, but in time past. Hence the absurdity of introducing into a theory of the tenses an inceptive present and a complete present; for these terms imply each a direct contradiction.

64. After having said so much of the present tense, we shall have but little to say of the praeter-imperfect. It states an action in respect of time, as past, and in respect of progress, as unfinished. Legebam—"I was reading at some past time, but my reading was then interrupted." I had not finished the sentence when I read it, which is this tense. We must here observe, however, as we did with respect to the present tense, that although the praeter-imperfect represents the action as past, it does not inform us in what precise portion of past time the unfinished action was going on: this circumstance must either be given in separate words, or be inferred by the hearer. If one say simply—Legebam, the person to whom he addresses his speech will conclude, that the time of his reading was past with respect to the present time of his speaking. But if he say—Legebam antequam senseris, he expressly states the action of reading as past with respect to the time in which his hearer came to the place where they both are at the time of speaking. The time of the praeter-imperfect is always past with respect to the present instant when the imperfect is used, and of this the tense itself gives notice; but it may also be past with respect to some other time, and of this it conveys no information.

If we join two praeter-imperfects together, the expression will state the co-existence of two progressive actions, both of which were going on at a time past in respect of some determined time given or supposed. Cum tu feribebas ego legebam; "When you were writing I was reading." Hence the praeter-imperfect has by some grammarians been called the relative present; a name which, however, is by no means exclusively applicable to this tense. When the praeter-imperfect is by the conjunction and joined in the same sentence with a perfect-pass, the two tenses express two actions, both prior to the time of speaking; but the one as having continued after the other was finished. Thus, Eneas speaking of the destruction of Troy, says, that after having escaped with his father and followers, he returned to the city in quest of his wife, and went directly to his own house; but there, continues he, "in reo Danai, et eodem omnetenebam;"—"the Greeks had refiled in," that action was over and completed before his arrival; but the act of "poffessing the whole house," tenetbam was not over, but stil continuing.

65. But it is necessary that the verb denote actions which were completed or perfect, as past, as well as present or imperfect. For this purpose, Greek and English verbs have an aorist, a praeter-pass, and a plusquam-pass. Of these the Latin has only the two last. The praeter-perfect in that language possesses a twofold character: it performs the office of the Greek and English aorist, as well as of the praeter-perfect properly so called; that is, it denotes a finished action at some indefinite past time, as well as at some time of which both past and definite.

In attempting to analyse the signification of complex terms, by which we here mean words that include in their signification a variety of particulars, it is of great advantage to have these particulars separately expressed by different words in another language. The English has resolved the tense which in the Greek and Latin languages are denominated the aorist and the praeter-perfect, by means of what are commonly called auxiliary verbs, expressing the former by the verb did, the latter by the verb have. In examining therefore
The principal distinction in practice between the aorist and präter-perfect (for the difference seems little) The præter-perfect in their real import consists in the time by which the performance of the action admits of being particularly specified. The präter-perfect is always joined with a portion of time which includes the præsent new or perfect action, for otherwise it would not signify, as it always does, the present perfect or the finishing of an action. But the aorist, which signifies no such perfection, is as constantly joined with a portion of past time which excludes the præsent new or perfect. Thus we say, “I have written a letter this day, this week,” &c.; but “I wrote a letter yesterday, last week,” &c.; and interchange these expressions of time in Greek and English wherein the aorist and präter-perfect have different forms, would be improper. In Latin, indeed, where they have but one form, the impropriety does not appear.

67. Having considered the tenses which imply present and past time, it now remains that we examine the import of those which are expressive of time future.

In Latin and English there are two tenses for this purpose, of which the first represents an action in point of time as not yet existing, but as about to exist at some period in the future, and it does not signify the completion of the action into view. The other affords the futurity of an action together with its completion. Vorbeam, “I shall be writing,” denotes future time and incomplete action; for it does not say whether I am to write for a long or for a short time, or whether I shall finish what I promise to begin. This part of the verb, therefore, to which the Greek ἔγειρεν corresponds, is imperfect future, and likewise an aorist. The futurity of any action, it should seem, may always be computed from the time of speaking; for every action must be in future with respect to the time at which its futurity is declared: but the time of its futurity may be more precisely specified by fixing upon some other future time to which to refer it: “I shall be writing after he shall have departed.” Shall or will refers to future time indefinitely; and write or writing refers to an action which is indeed to begin and so far to proceed, but of which nothing is said concerning the completion.

On the other hand, scripsisse, “I shall have written,” is a perfect future denoting complete action: for shall denotes future time; written, perfect action; and have present perfection. So that the meaning of the whole affirmation is,
The Theory of Grammar.

72 Of the tenses of the subjunctive mode.

68. These are all the tenses, essentially different from each other, which have place in the indicative mode of any language with which we are acquainted (x); but as there are tenses in the mode called subjunctive, which bear the same names with those already examined, and which have yet a different import, it will be necessary to consider them before we dismiss the subject of tenses.

Of modes in general something must be said hereafter; at present we shall only observe, that the mode with which we are now concerned, is not very properly distinguished by the same affixed to it by the Latin grammarians. They call it the subjunctive, because it is often subjunctive, and forms the secondary clause of a sentence: but the mode called indicative frequently appears in the same circumstances. The differences between these two modes appear to us to consist in this, that the indicative affords something directly concerning the action; the subjunctive, something concerning the power or liberty of the agent to perform it: for that the latter affords as well as the former, admits not of dispute.

69. The present tense of the subjunctive mode, in the learned languages, answers to the English auxiliaries may and can. Let us consider these a little. — May is evidently a verb of the present or denoting liberty. When I assert that I may write, I give notice that "I am under no compulsion to abstain from writing," that there is no impediment from without by which I am restrained from writing. Can is also a verb of the present tense, expressive of internal power or skill. "I can write," is equivalent to — "There is nothing in myself which incapacitates me for performing the operation of writing." This verb seems originally to have denoted knowledge or skill, and to have been afterwards extended to signify power or ability of any kind. There is little doubt of its being the same with the old English verb to can, which signifies to know. The difference between the import of these two verbs may and can will be best perceived in a familiar example. Suppose we say to one of our transcribers, "You may write a treatise on grammar," to which he returns for answer, "I cannot!" our assertion evidently supposes him at liberty to write the treatise; his answer implies, that he is unable or unskilled to do it. We may conclude, then, that the present tense of this mode contains a declaration of present liberty, ability, or skill; and its other tenses will be found to have reference to the same capacities.

The observation is here to be repeated which was enlarged upon under the present of the indicative. The liberty or ability signified by this tense is always represented as present; but the time of this presence is indefinite. If no particular time be specified, we generally refer it to the time of speaking; but another point may be given from which we are to compute. "When he shall have finished, you may then proceed as you propose." Here the liberty of proceeding is stated as present, not at the time of speaking, but at the time of his finishing, which is future to the time of speaking. But though the liberty, ability, or skill, denoted by this tense, be represented as present, the action itself is stated as contingent, for it is not necessary that a man should perform an action because he has the capacity to perform it.

From this idea of the present of the conjunctive some of its most peculiar uses seem capable of being explained. — And, in the first place, it appears to have a near affinity with the future of the indicative; insomuch that in many instances they may be used promiscuously. Without materially altering the effect of the expression, we may say, "Dico me fac tum esse que imperet," or "que imperabis." The reason of this, perhaps, may be, that with respect to us, our actions and contingency are in most cases nearly the same, both being involved in equal obscurity; and therefore it is often of little consequence which mode of expression we employ.

Secondly, The present of the conjunctive is used to denote

(x) On this point we subscribe to the opinion of the elegant and ingenious Dr Beattie. — "It will perhaps occur (says he), that there are two Greek tenses, of which I have given no account; namely, the second aorist, and the second future. The truth is, that I consider them as unnecessary. Their place, for any thing I know to the contrary, might at all times be supplied by the first aorist and the first future. Some grammarians are of opinion, that the first aorist signifies time past in general, and the second, indefinite time past; and that the first future denotes a nearer, and the second a more remote futurity. But this, I apprehend, is mere conjecture, unsupported by proof: and therefore I incline rather to the tenets of those who teach, that the second future and the second aorist have no meaning different from the first future and the first aorist; and that they are the present and imperfect of some absolute theme of the verb, and, when the other theme came into use, happened to be retained for the sake of variety perhaps, or by accident, with a pretense and future signification. Be this as it will, as these tenses are peculiar to the Greek, and have nothing corresponding to them in other tongues, we need not formulate to overlook them as superfluous." — The Theory of Language, Part II. Chap. 11.

To these judicious observations we have nothing to add, but that they acquire no small degree of confirmation from this circumstance, that there are many Greek verbs which have no second future, and which are yet employed to denote every possible modification of future time. Of the pauly-pauly-futurum of the Greeks we have
The right of which a person is possessed. "I may or I can, tell this book." This application, which Dr Friesley considers as the primary signification of the tense, is easily deduced, or rather follows immediately, from the foregoing account of its import. For if one be under no restraint, either external or internal, to prevent him from performing an action, he has surely a right to perform it.

Thirdly, The present of the subjunctive is often used to signify command or request; as when one says, "You may give my compliments to such a person." This use of the tense under consideration seems to have arisen from a desire to soften the harshness of a command, by avoiding the appearance of claiming superiority. When a man utters the above sentence, he certainly utters no command, but only affirms that the person to whom he speaks has liberty or power to do him a favour. This assertion, however, may contain no new information; and therefore the person addressed, reflecting upon the intention of the speaker in making it, infers that it indicates a wish to desire that his compliments should be made to such a person.

70. Of the subjunctive as well as of the indicative, the præter-perfect is evidently the past tense of the present.

As the latter affords liberty, or ability, to perform some action, as existing at present, the former affords the same liberty or ability to have existed in time past; but the specific portion of time past, in which these capacities existed, must be specified by other words, or it will remain unknown. Thus in the following sentence, "Dixi me facturum esse quæ imperaret," the time of imperaret is referred to that of dixi: the person having the right to command, is supposed to have had it at the time when the other said that he would obey. This tense, as well as the present, states the action as going on and incomplete; and also as future with respect to the liberty or ability to perform it. It is rendered into English by the verbs could or might; of which the first is the past time of can, the second of may.

From the near affinity which the present of the subjunctive has to the future of the indicative, the tense now under consideration appears, in many instances, as the past time of the latter as well as the former. Thus Dixi me facturum esse quæ imperaret, may be rendered "I said that I would do whatever he might, or whatever he should command."

71. Of the præter-perfect, it is sufficient to observe, that as the present states the agent as at liberty to be performing an unfinished action; so this tense states him as at liberty to perform an action considered as finished. "I may be writing a letter when you come," i.e. "I am at liberty to be writing a letter when you come," or "I may have written a letter when you come," i.e. "I am at liberty to be in possession of the finished act of writing a letter when you come." It is a common mode of expression to say, "I may have done such or such a thing in my time," when he who speaks can have little doubt whether he has done the thing or not. In that case, the words may have done, cannot be considered as the præter-perfect of the

GRAMMAR.

The future of the verb do; for it is nonsense to talk of liberty, with respect to the performance of an action, which, at the time of speaking, is supposed to be past and completed. What then is the import of the phrase? We are persuaded that it is elliptical, and that the word say or affirm is understood: "I may (say that I) have done such or such a thing in my time," for liberty or contingency can relate to actions only as they are conceived to be past or future.

72. Of all the tenses, the most complex is the plu­

The plural of the subjunctive name or person, in every tongue of modes, with which we are acquainted, verbs are subject to another variation, which grammarians have agreed to call Moods. Of modes, as of tenses, it has been wisely urged whether or not they be essential to language. The truth seems to be, that the only part of the verb absolutely necessary for the purpose of communicating thought is the indicative mode; for all the others, as has been well observed by Dr Gregory, are referable, by means of additional verbs and a word denoting the action of the primary verb, into circumstantial expressions which

take no notice, because it is found only in the passive voice; to which if it were necessary, it is obvious that it would be necessary in all voices, as a man may be about to do as well as to suffer immediately.
which fully convey their meaning (s). But such expressions continually repeated would make language very prolix and wholly inanimated; for which reason, the import of each of the commonly received modes is a subject worthy of the philologist's investigation. About the number of modes, whether necessary or only expedient, as well as about the import of each, the writers on grammar have differed in opinion. Mr Harris, one of the most celebrated of those writers, has enumerated four modes of the verb, besides the infinitive; viz. The indicative of declarative, to assert what we think certain; the potential or subjunctive, for the purpose of whatever we think contingent; the interrogative, when we are doubtful, to procure us information; and the requisite, to achieve us in the gratification of our volitions. The requisite, too, according to him, appears under two distinct species; either as it is imperative in inferior, or preceptive to superiors.

For establishing such a variety of modes as this, no fort of foundation whatever appears. The same reasoning which induced the author to give an interrogative and requisite mode, might have made him give us a hortative, a desiderative, a volitive, and innumerable other modes, with which no language is acquainted. But besides perplexing his reader with useless distinctions, we cannot help thinking that Mr Harris has fallen into some mistakes with regard to the import of those modes which are universally acknowledged. According to him, assertion is the characteristic of the indicative, and that which distinguishes it from the subjunctive or potential; but this is certainly not true, for without an assertion, the verb cannot be used in any mode. Of this the learned author, indeed, seems to have been aware, when he observed of the subjunctive mode, that it is employed "when we do not assert," and that "it implies but a dubious and conjectural assertion." The truth is, that the assertion implied in this mode, tho' it is not concerning the same thing, is equally positive and absolute with that conveyed by the indicative. An example quoted by himself should have set him right as to this matter:

sed capit sui feliciter, nisi caperet.
Plus daps, &c.

Who does not feel that the assertion contained in habere, is as absolute and positive as any assertion whatever?

75. Perhaps we may be asked to define what we mean by a mode. We know not that we can define it to universal satisfaction. Thus much, however, seems to be obvious, that those variations which are called modes do not simply different modifications of the action of the verb. Amo, Amem, Amo, do not signify modes of loving; for modes of loving are, loving much, loving little, loving long, &c.—Shall we then get over the difficulty by saying, with Mr Harris, that "modes exhibit some way or other the soul and its affections?" This is certainly true; but it is nothing to the purpose; for it does not distinguish the meaning of mode from the object of language in general, all languages being intended to exhibit the soul and its affections.

Grammatical modes of verbs have been defined by Mode de Dr Gregory to be "concise modes of expressing some of those combinations of thoughts which occur most frequently, and are most important and striking." This is a just observation; but perhaps he would have given a more complete definition had he said, that grammatical modes of verbs are concise modes of expressing some of those combinations of thoughts which occur most frequently and of which assertion is an essential part (t). This indeed seems to be the real account of the matter, especially if our notions of the nature of verb be well founded.

(s) The imperative, for instance, may be resolved into a verb of commanding in the first person of the present of the indicative, and a word denoting the action of the primary verb, commonly called the infinitive mode of that verb. Thus, I nunc et versas tecum meditare canoros, and "Jubeo te nunc ire et tecum meditari," &c. are sentences of the very same import. The subjunctive may be resolved in the same manner by means of a verb denoting power or capacity; for credam, and possidium credere, may be often used indifferently. The indicative mode, however, is not thus convertible with another verb of affirming in the first person of the present of the indicative and a word denoting the action of the primary verb; for Titius scribit, "Titius writes," is not of the same import with dicito Titium scriberis, quod Titius scribat, "I say that Titius writes." The first of these sentences, as has been already shown, contains but one affirmation; the second obviously contains two. Titius writes is equivalent to Titius is writing; I say that Titius writes, is equivalent to I am saying that Titius is writing. The reason why the imperative and subjunctive are resolvable into expressions into which the indicative cannot be resolved, will be seen when the import of each of those modes is ascertained.

(t) Every verb, except the simple verb am, art, is, &c. expresses without modes a combination of thoughts, viz. affirmation and an attribute. The affirmation, however, alone is essential to the verb, for the attribute may be expressed by other words. It is indeed extremely probable, that in the earliest ages of the world, the affirmation and attribute were always expressed by different words; and that afterwards, for the sake of conciseness, one word, compounded perhaps of these two, was made to express both the affirmation and the attribute; hence arose the various classes of verbs, active, passive, and neuter. Of a process of this kind there are evident signs in the Greek and some other tongues. But the improvers of language did not stop here. The same love of conciseness induced them to modify the compound verb itself, that it might express various combinations of thoughts still more complex; but in all these combinations assertion was of necessity included; for if the word had ceased to assert, it would have ceased to be a verb of any kind.

Soon after this short note was written, and the whole article finished for the press, we accidentally met with Pickouen's Dissertation on the English Verb. Of that work it belongs not to us to give a character. Such of our readers as shall peruse it, will see that on many points we differ widely in opinion from the author; but we have no painful apprehension of any comparison which may be made. It gives us pleasure, however, to find,
founded,—that its essence consists in affirmation. And in this opinion we are to be more confirmed, from a conviction that no man ever employs language on any occasion but for the purpose of affirming something. The speaker may affirm something directly of the action itself; something of the agent's power or capacity to perform it; or something of his own desire that it should be performed, &c.—but still he must affirm.

If this be so, then are all the modes equally indicative. Some may be indicative of perceptions, and others of opinions; but still they all contain indications. On this idea the three foregoing modes of amo will be thus distinguished. When a man indicates his present feeling of the passion of love, he uses the first; when he indicates his present capacity of feeling it, he uses the second; and when he indicates his present desire that the person to whom he is speaking would entertain that passion, he uses the third.

76. As to what Mr Harris calls the interrogative mode, he himself observes that it has a near affinity to the indicative. It has in fact not only a near affinity to it, but, as far as language is concerned, there is not between the one and the other the slightest difference. For in written language, take away the mark of interrogation and, in spoken language, the peculiar tone of voice, and the interrogative and indicative mode appear precisely the same. That such should be the case is extremely natural.

To illustrate this, let us for once speak in the

VOL. VIII.

that his notions respecting the origin of such verbs as express at once affirmation and an attribute, are the same with those which had occurred to ourselves.

' The copula is (says Mr Pickhour) to have been coeval with language itself. But we have not the same evidence to convince us, that that must necessarily have been the case with any other finite verb; for the copula is, containing only an affirmation, is much more simple than a verb which unites in one word both an attribute and an affirmation. Since therefore people, in their first attempts to express their ideas by words, would scarcely think of any thing more than what was absolutely necessary, it is probable they would be some time before they anticipated any other word containing in itself an affirmation or affirmation; for they would not very early think of contriving words so complex in their nature as to include in them both the name of an action and an affirmation.

' I conjecture, that the first mode of expressing actions or passions, would be by participles or verbal nouns, i.e. words signifying the names of the actions or passions they wanted to describe; and these words, connected with their subjects by the copula is, might in those rude beginnings of language sufficiently supply the place of verbs; e.g. from observing the operations of nature, such words as rain or raining, thunder or thundering, would soon be invented; and by adding the copula is, they would say thundering or thunder is; or is not, raining or rain is; which by the rarity of pronunciation, might in time form the verbs rains, thunders, &c. The observation of their own actions, or the actions of the animals around them, would soon increase their flock of ideas, and put them upon contriving suitable expressions for them. Hence might arise such words as these: sleep or sleeping, stand or standing, run or running, bite or biting, hurt or hurting; and by joining these to substantives by means of the copula is, they might form such sentences as these,—lion is sleeping, or perhaps lion sleep is, stand is, &c. which would soon be contracted into lion sleeps, stands, runs, bites, hurts, &c. Thus our little insulated family might become possessed of verbs including an attribute and an affirmation in one word.'

This account of the origin of actions, passions, and neuter verbs, is certainly ingenious; and, in our opinion, is not more ingenious than just when applied to the Greek and other ancient languages, though it is not applicable to the English; but it seems to be quite irreconcilable with the definition of verb, which the author has adopted from Bishop Lowth; and indeed with every other definition except that which makes the essence of a verb to consist in simple affirmation.

(v) Of a question put in the form of an affirmation we have a remarkable instance in the Gospel of St Matthew. When Christ stood before Pilate, the governor asked him, saying, φανέρω τάς ὁμολογίας σας. That this sentence was pronounced with a view to obtain some answer, is evident from the context; yet it is as plainly an affirmation, though uttered in a feoffing tone, as the fierce confession of Nathaniel, ἐξενέγαζεν τῇ ὄνομα τυπώθηκεν. Had not the question been put in this form, which affirms Christ to be the king of the Jews, the reply could not have been ἐξενέγαζεν τῇ ὄνομα τυπώθηκεν, for without an affirmation the governor would have said nothing. See Dr Campbell's Translation of the Gospels, where the form used in the original is with great propriety retained in the version.
Of the optative mode.

tence may either be an abbreviation for die am sejifi, 'tell me if you did it;' or an may perhaps be, as if certainly is, the imperative mode of some obsolete verb equivalent to give; and in that case, au sejifi will be a complete interrogative sentence signifying, 'you did it, give that.'—But of the interrogative mode of Mr Harris we have said enough; perhaps, our readers will think, too much, since it is a useless distinction not found in any language. It will, however, be proper to say something of this imperative mode, as far as it is the same with the optative mode of the Greek grammarians. And,

77. Nothing, we think, can be clearer, than that the Greek optative signifies no distinct mode of the verb, whatever meaning be annexed to the word mode. The different tenses of the optative are evidently nothing but the past tenses of the corresponding tenses of the subjunctive. Pref. sub. τιμω, I might strike. Pref. opt. τιμήσει, I might strike, &c. This is proved to be indubitably the case by the uniform practice of the Greek writers. Examples might be found without number were one to read in search of them. The following sentence will illustrate our meaning: 'εικαστατι οδοι πα τους Αργάους, 'the Athenians came that they might assist the Argives.' Here the leading verb εικασατι being of the present tense, the dependent verb βοηθησι is the present subjunctive. But change the former to the past tense, and the latter must also be changed. ήεκασατι Οδοι πα τους Αργαους, 'the Athenians came that they might assist the Argives.' Here it is plain that βοηθησι, the present of the optative, is the past tense of βοηθης, the present of the subjunctive; and the same in other instances.

It is almost unnecessary to add, that when this mode is employed to denote a wish, the wish is not expressed by the verb, but is understood. Such abbreviated expressions to denote a wish are common in all languages. Thus, in Greek,

Ταυ ει τις ήταν, ελλωγετε της εκτρικινδρικι τοις τιμω, &c.

Signifies, 'The gods might give you (or, as we say in English, changing the position of the verb, might the gods give you) to destroy.' &c. So in Latin, Ut omnes di desineret perdant, 'That all the gods and goddesses may curse you!' Again, in English, 'O that my head were waters!' &c. In all these, and such like sentences, the words equivalent to I wish, I pray, are understood. In Greek a wish is sometimes introduced by the particle μω or μι, με; as in Homer,

'βιθ' ει τοις ει τις της αδικίας, εμενμενειν ήπερατρον.

'If it had been your fate not to be born, or to die unmarried!' The suppletion is, 'It would have been happy for your country;' or some such thing. In like manner, a poor person not uncommonly inreates a favor by saying, 'Sir, if you would be so good!' Here he speaks; but the completion of his sentence is, 'It would make me happy.' In all these cases a wish is not formally expressed by the speaker, but inferred by the hearer. They are therefore instances of that tendency which mankind universally discover to abbreviate their language, especially in cases where the passions or feelings are interested.

78. The interrogative and optative modes being set aside as superfluous, it would appear from our investigation, that the real distinct modes of the verb, which are found in the most copious and varied language, are only three; the indicative, the subjunctive, and the imperative: and that these are all that can be considered as necessary; the first to indicate the speaker's feeling or doing, the second to indicate his capacity of feeling or acting, and the third to indicate his desire that the person to whom he speaks should feel or act.

Here again we have the misfortune to find ourselves differ in opinion with Dr Gregory; who seems to think that a greater number of modes, if not absolutely necessary, would, however be highly useful. His words are: 'All languages, I believe, are defective in respect of that variety and accuracy of combination and of distinction, which we know with inable certainty take place in thought. Nor do I know of any particular in which language is more deficient than in the expressing of those energies or modifications of thought; some of which always are, and all of which might be expressed by the grammatical modes of verbs. Of this there cannot be a clearer proof than the well-known fact, that we are obliged to express by the same mood very different modifications or energies of thought. As, for instance, in the case of the grammatical mood called the imperative, by which we express occasionally prayer to God, command to a slave, request to a superior, advice to an equal or to any one, order as from an officer to his subaltern, supplication to one whom we cannot refuse.'—If these be, as the author calls them, specific differences of thought, he will not freely object to their being all ranked under one genius, which may be called desire (x). That the internal feelings which prompt us to pray to God, to command a slave, to request a superior, to advise an equal, to give an order to an inferior, and to supplicate one whom we cannot refuse, are all different in degree, cannot be denied. Each of them, however, is desire; and the predication, by which the desire is made known to the person whom we address, is the same in all, when we utter a prayer as when we utter a command, when we request as when we supplicate. But predication alone is that which constitutes the verb; for desire by itself, however modified, can be expressed only by an abstract noun; and the mere energy of desire, when not applied to a particular energizer, can be expressed only by a participle, or by what is commonly, though improperly called the infinitive mode. Now it is certainly conceivable, that a few shades of meaning, or a few (y) degrees of one general energy, might be marked by

(x) 'Desire;—with, with eagerness to obtain or enjoy.'—Johnson.

The uneasiness a man finds in himself upon the absence of any thing, whose present enjoyment carries the idea of delight with it, is that we call desire. Good and evil, present and absent, work upon the mind; but that which immediately determines the will, from time to time, to every voluntary action, is the uneasiness of desire, fixed upon some absent good.'—Locke.

This, whether it be found philosophy or not, is surely sufficient authority for using the word desire to denote the genus of which prayer, command, advice, supplication, &c. may be considered as so many distinct species. (y) Dr Gregory seems to think, that not barely a few, but a vast number, of these energies might be so marked.
by corresponding variations of such verbs as combine energy with predication; and there could be no great impropriety in calling those variations modes of modes; but that such a multiplication of modes would be an improvement in language, is by no means evident. The verb, with the modes and tenses which it has in all languages, is already a very complex part of speech; which few are able, and still fewer inclined, to analyze: and it would surely be of no advantage to make it more complex by the introduction of new modes, especially when those degrees of energy which could be marked by them are with equal occasion introduced. The indicative, subjunctive, and imperative, are therefore all the modes of the verb which to us appear to be in any degree necessary or expedient; and they are in fact all the modes that are really found in any language with which we are acquainted.

For the infinitive, as has been already observed, the infinitive on every account to be improperly styled a tense no mode. To that name it has no title which we can perceive, except that its termination sometimes (for ever the verb this is not true universally) differs in the learned languages from the terminations of the other parts of the verb. Nay, if infinitive be, as it has been proved to be, the very essence of a verb, it will follow, that the infinitive is no part of the verb at all; for it expresses no affirmation. It forms no complete sentence by itself, nor even when joined to a noun, unless it be aided by some real part of a verb either expressed or understood. Scribo, scribis, scribit, scripserit, scripsisse, scripsit; I am writing, I was writing, I have written, I shall write, I shall have written, do each of them contain an affirmation, and constitute a complete sentence: but scribere "to write" scripsisse "to have written," affirm nothing, and are not more applicable to any one person than to another. In a word, the infinitive is nothing more than a detached noun (2), designating the simple energy of the verb, in conjunction with

"Affirming (says he), denying, refusing, foretelling, asking, unlawfully, wishing, hoping, expecting, believing, knowing, doubting, supposing, stipulating, being able, commanding, praying, requesting, supplicating, loving, hating, fearing, despairing, being accosted, wondering, admiring, wavering, swearing, advising, refusing, exhorting, dissuading, encouraging, promising, threatening, &c. all admit very readily of being combined with the general import of a verb." He adds, that "if every one of them had been expressed in all languages by variations as striking as those of τοῦτος, τούτουμεν, and τοῦτοι, they must have been acknowledged as distinct moods of the verb."

If all these words denote different energies of thought, which, however, may be doubted, and if all these different energies, with many others for which, as the author judiciously observes, it is not easy to find names, could, like capacity and desire, be combined with the general action or energy of the verb; and if those combinations could be marked by corresponding variations of that verb; we should indeed acknowledge such variations to be distinct modes, or modes of modes, of the verb. But we doubt much if all this be possible. We are certain that it would be no improvement: for it seems to be evident, either that, in some of the modes, the radical letters of the original verb must be changed, and then it would cease to be the same verb; or that many of the modes must be expressed by words of very unmanageable length; not to mention that the additional complication introduced by so many minute distinctions into a part of speech already exceedingly complex, would render the import of the verb absolutely unintelligible to nine-tenths of those who are justly styled the learned.

(2) In our idea of the infinitive, we have the honor to agree with the learned and excellent Ruddiman; whose words are, "Non inepti hic modus un verbo quislibet verbis nomine est appellatum. Erit enim (si non veres ac temper, quod nonnulli volent, nonum substantivum) significatio erat ei maximem affinis; et quse vicis suffinet pro omnibus eaus. Et quum manifestum esse est additur neutrius generis; ut, Cic. Att. xiii. 29. Cum vivere ipsum turpe sit nobis.—Per. v. 53. Vide easnum, quae est.—Cic. Fin. i. 1. Tum hoc dislijet philosophus.—Petron. c. 52. Meum intelligere noluit, nec se vende. Item, ab urbe ad urbe: ut, Ovid Met. ii. 483. Poffe loqui eripitur, i. e. postes loquendi.—Plaut. Bacch. i. 2. 50. Hic veris perditis, i. e. verecundiam.—Cic. Tufc. v. 38. Lucrum de dolore boni et erudito, cui vivere est cogitare, i. e. ejus vita est cogitare. [Grammaticae Latinae Institutiones: Pars secunda, lib. i. cap. 2, where the reader will find examples of the infinitive used by the best Roman writers as a substantive noun in every case.]

This opinion of Rudder and his ancient grammarians has been lately controverted with much ingenuity by Dr. Gregory; who seems to think, that in the infinitive alone we should look for the essence of the verb delivered of every accidental circumstance, time only excepted. If this be indeed the case, almost every thing which we have said of the verb and its moods, is erroneous and false; and whatsoever its principles of grammar, from the Encyclopedia, will fill his head with a farrago of absurdities. The writer of the article, however, has been at much pains to acquire correct notions of the subject: he has studied the writings of others; he has
with time; and is not a mode, so far as we can conceive, of anything. Thus, Secundus nihil est, is the same with Scientia tua nihili est; and, "Death is certain," with "Ye die is certain."

79. Before we divide the subject of modes, it may not be improper to take notice of the connection which Mr. Harris, after Apollonius, has found between commanding and futurity. "Intreating and commanding (he says) have a necessary respect to the future only. For what have they to do with the present and the past, the nature of which are immutable and necessary?" This is surely confounding commands with the execution of commands. But the learned writer proceeds to inform us, that "it is from the connection of futurity with commands, that the future of the indicative is sometimes used for the imperative mode." The connection, of which he speaks, appears to us entirely imaginary; for futurity has nothing to do with commands, though it may with the execution of them. The present time is the time of commanding, the future of obeying. But supposing the connection real, it would not account for the future tenses being used imperfectly. For although it is future, it would not follow that the relation is convertible, or that employing the future should imply a command. The principle upon which such expressions as, Thou shalt not kill, come to have the force of a command, seems to be this. When a person, especially one possessed of authority, affirms that an action, depending on the will of a free agent, and therefore in its own nature contingent, shall or shall not actually take place; what are we to conclude from such an affirmation? Why surely it is natural to conclude, that it is in his will, his command, that his affirmation be verified. The English word shall, if we be well informed, denoted originally obligation; a sentence in which its past tense should be still has consulted several persons of undoubted learning, who have devoted a great part of their time to grammatical investigations; and he is extremely unwilling to suppose, that all his inquiries respecting the most important part of speech have ended in error. He trusts, therefore, that he shall not be deemed a pedant caviller, though he examine with some severity the principal observations and arguments upon which the Doctor has built his theory. Upon that examination he enters with diffidence: for the learned Professor's knowledge of the various powers of the mind appears, even in this essay, to be such as eminently qualifies him for ascertaining the precise import of every species of words employed for the purpose of communicating thought; and with such a man the present writer would be much happier to agree than to differ in opinion.

The Doctor concludes (Transact. of the Royal Society, Edinburgh, Vol. II. lit. clas. p. 195), that the infinitive is most improperly called a mode: and on that account he thinks we ought to turn our thoughts exclusively to it, "when we endeavour to investigate the general import of the verb with a view to ascertain the accident which it denotes; and be led, step by step, to form a distinct notion of what is common in the accidents of all verbs, and what is peculiar in the accidents of the several classes of them, and thereby be enabled to give good definitions, specifying the essence of the verb." It may be true, that the infinitive exclusively we should turn our attention, when we wish to ascertain the accident denoted by a particular verb or class of verbs; i.e. the kind of action, passion, or state of being, of which, superadded to affirmation, that verb or class of verbs is expressive: but in accidents of this kind, it may be doubted if there be any thing that with propriety can be said to be common to all verbs. There seems indeed to be nothing common to all verbs, but that which is essential to them, and by which they are distinguished from every other part of speech; but every kind of action, passion, and state of being, may be completely expressed by participles and abstract nouns; and therefore in such accidents we cannot find the essence of the verb, because such accidents distinguish it not from other parts of speech. Were a man called upon to specify the essence of verbs or modes, he would not say, that it consists in the meaning of the words, or in the using of these verbs according to the rules of syntax. In every kind of verse where words are used they have indeed a meaning, and in all good verses they are grammatically constructed; but this is likewise the case in prose, and therefore it cannot be the essence of verbs. The essence of verbs must consist in something which is not to be found in prose, viz. a certain harmonic succession of sounds and number of syllables; and the essence of the verb must likewise consist in something which is not to be found in any other part of speech; and that, we are persuaded, is nothing but affirmation. But if affirmation be the very essence of the verb, it would surely be improper, when we endeavour to ascertain the general import of that part of speech, to turn our thoughts exclusively to a word which implies no affirmation; for what does not affirm, cannot in strictness of truth be either a verb or a mode of a verb.

In the same page it is said, that "the indefinite denotes that kind of thought or combination of thoughts, which is common to all the other modes." In what sense this is true, we are unable to conceive: it denotes indeed the same accident, but certainly not the same thought or combination of thoughts. In the examples quoted, Non est vivere sed valere vita, &c. the infinitives have evidently the effect of abstract noun, and not of verbs; for though vivere and valere express the same states of being with vivo and valeo, they by no means express the same combination of thoughts. Vivo and valeo affirm that I am living, and that I am well; and he who utters these words must think that life and health in the abstract, but of life and health as belonging to himself. Vivere and valere, on the other hand, affirm nothing; and he who utters them thinks only of the states of living and of being in health, without applying them to any particular person.

The exquisitely learned author of The Origin and Progress of Language, having said that the infinitive is used either as a noun, or that it serves to connect the verb with another verb or a noun, and so is useful in syntax, the Doctor combats this opinion, and infers the infinitive to be truly a verb; because "the thought expressed by
Of verbs, as they are active, passive, or neuter.

86

By means of it, may be expressed in synonymous and convertible phrasés, in different languages, by means of other parts or moods of the verb. "Of these synonymous and convertible phrasés he gives several examples, of which the first is taken from Hamlet's soliloquy. "To be or not to be, that is the question," he thinks equivalent in meaning to, "The question is, whether we shall be or shall not be?" But we are persuaded he is mistaken. "Whether we shall be or shall not be," is a question asking, whether we shall exist at some future and indefinite time? But the subject of Hamlet's debate with himself was not, Whether, if his conscious existence should be interrupted, it would be afterwards at some future and indefinite time restored? but whether it was to continue uninterrupted by his exit from this world? This, we think, must be self-evident to every reader of the Soliloquies. Likewise, it is evident to us, that the word "question" in this sentence does not signify interrogatory, but subject of debate or affair to be examined; and that the word that serves for no other purpose than to complete the verbe, and give additional emphasis, perhaps, to an inquiry so important. "To be or not to be, that is the question," is therefore equivalent in all respects to "The continuance or non-continuance of my existence, is the matter to be examined;" and the indefinite is here indisputably used as an abstract noun in the nominative case. Should it be said, that the Doctor may have taken the sentence by itself, unconnected with the subject of Hamlet's soliloquy; we beg leave to reply that the opposition is impossible; for, independent of the circumstances with which they are connected, the words "To be or not to be" have no perfect meaning. Were it not for the subject of the soliloquy, from which every reader supplies what is wanting to complete the sentence, it might be asked, "To be or not to be"—"What? A coward, a murderer, a king, or a dead man! Questions all equally reasonable, and which in that case could not be answered.

With the same view, to prove the infinitive to be truly a verb, the Doctor proceeds to remark upon the following phrasés, Dico, credo, puto, Titius expriser, valere, jacere, eccidisse, procubuisse, projectus, quod Titus exprisit, quod jacet, quod eccidisset, &c. He adds, that "the infinitives, as thus used, acquire no other further meaning, in addition to the radical import of the verb with tenœ, like the proper moods; but the subjunctives after quod lose their peculiar meaning as moods, and signify no more than bare infinitives." In the sense in which this observation is made by the author; the very reverse of it seems to be the truth. The infinitives, as thus used, acquire, at least in the mind of the reader, something like the power of affirmation, which they certainly have not when standing by themselves whereas, the subjunctives neither lose nor acquire any meaning by being placed after quod. Dico, credo, puto, Titius expriser, valere, jacere, &c. when translated literally, signify, I say, believe, think, Titius to exist, to be well, to lie along; a mode of speaking which, though now not elegant, was common with the best writers in the days of Shakespeare, and is frequently to be found in the writings of Warburton at the present day. Dico, credo, puto, quod Titus exprisit, quod jacat, &c. signifies literally, I say, believe, think, that Titius may exist, may lie along, &c. Remove the verbs in the indicative mood from the former set of phrasés, and it will be found that the infinitives had acquired a meaning, when conjoined with them, which they have not, when left by themselves; for Titius expriser, jacere; "Titius to exist, to lie along," have no complete meaning, because they affirm nothing. On the other hand, when the indicative verbs are removed, together with the wonder-working quod, from the latter set of phrasés, the meaning of the subjunctives remains in all respects as it was before the removal; for Titius exprisit, jacat, &c. signify, Titius may exist, may lie along, as well when they stand by themselves as when they make the final clauses of a compound sentence. Every one knows, that quod, though often called a conjunction, is always in fact the relative pronoun. Dico, credo, puto, quod Titus exprisat, must therefore be confounded thus: Titus exprisat (part. pr.) quod dico, credo, &c. "Titius may exist in that thing, that proposition, which I say, believe, think." In the former set of phrasés, the infinitives are used as abstract nouns in the accusative case, denoting, in conjunction with Titius, one complex conception, the existence, &c. of Titius: Dico, credo, puto; "I say, believe, think;" and the object of my speech, belief, thought, is, Titius expriser, "the existence of Titius."
All verbs have a necessary reference to a noun in the nominative case.

Active verbs transitive or intransitive.

87

Active verbs denote action, and consequently of verbs denoting action, there are obviously two kinds. There is an action which passes from the agent to some subject, upon which he is employed; and there is an action which respects no object beyond the agent himself. Thus lego and ambulo are verbs which equally denote action: but the action of lego refers to some external object as well as to the agent; for when a man is reading, he must be reading something, a book, a newspaper, or a letter, &c. whereas, the action of ambulo is confined wholly to the agent; for when a man is walking, he is employed upon nothing beyond himself,—his action produces no effect upon any thing external. These two species of verbs have been denominated transitive and intransitive; a designation extremely proper, as the distinction which gave rise to it is philosophically just. Verbs of both species are active; but the action of these only which are called transitive, refers to an external object: and therefore, in these languages of which the nouns have cases, it is only after verbs which are transitive as well as active, that the noun denoting the subject of the action is in the accusative or objective case. Verbs which are intransitive, active, though they be really active, are in the structure of sentences considered as neuter, and govern no case.

And so much for that most important of all words the verb. We proceed now to the consideration of participles, adjectives, and adverbs; which, as they have a near relation to one another, we shall treat of in the same chapter.

CHAPTER V.

Of Participles, Adjectives, and Adverbs.

SECTION I. Of Participles.

81. The nature of verbs being understood, that of Participles is not of difficult comprehension. Every denote an verb, except that which is called the subjunctive verb is expreffive of an attribute of time, and of an affection. Now, if we take away the affection, and thus destroy the verb, there will remain the attribute and the time; and these combined make the essence of that species of words called

In confirmation of the same idea, that the infinitive is truly a verb, the author quotes from Horace a passage, which, had we thought quotations necessary, we should have urged in support of our own opinion:

Nec quicquam tibi profest
Aerias tentasse domos, animoque rotandum
Percurrisse polium, moriturus.

To our apprehension, nothing can be clearer than that tentasse and percurreste are here used as nouns; for if they be not, where shall we find a nominative to the verb profest? It was certainly what is signified by tentasse aerias domos, animoque rotandum percurrese polium, that is said to have been of no advantage to Archias at his death. This, indeed, if there could be any doubt about it, would be made evident by the two prose versions, which the professor supposes to be beautiful lines. The first of which is as follows: Nec quicquam tibi profest quod aerias domos tentaveris, et animo percurreste polium: which must be thus confirmed: Tentaveris aerias domos, et percurreste animo polium (sub id) quad nec quicquam tibi profest. This version, however, is not perfectly accurate; for it contains two propositions, while Horace's lines contain but one. The second, which, though it may be a crabb'd inelegant sentence, expresses the poet's sense with more precision, is in these words: Nec quicquam tibi profest moriturus tua tentatio domum aerius et cursus tus circa polium. Having observed, with truth, that this sentence has the same meaning with the lines of Horace, Dr Gregory asks, "Why are not tentatio and cursus reckoned as verbs as well as tentasse and percurreste?" Let those answer this question who believe that any of these words are truly verbs; for they are surely as he adds, all very near akin; indeed so near, that the mind, when contemplating the import of each, cannot perceive the difference. Mean while, we beg leave in our turn to ask, Why are not tentatio and percurreste reckoned abstract nouns as well as tentatio and cursus? To this question it is not easy to conceive what answer can be returned upon the Doctor's principles. In his theory there is nothing satisfactory; and what has not been done by himself, we expect not from his followers. On the other hand, our principles furnish a very obvious reason for excluding tentatio and cursus from the class of verbs; it is, because these words express no predication. Tentasse and percurreste indeed denote predication no more than tentatio and cursus; and therefore upon the same principle we exclude them likewise from a class to which, if words are to be arranged according to their import, they certainly do not belong.

Should the reader be inclined to think that we have dwelt too long on this point, we beg him to reflect, that if our ideas of the essence of the verb and of the nature of the infinitive be erroneous, every thing which we have laid of modes and Tenes is erroneous likewise. We were therefore willing to try the solidity of those principles which hold the essence of the verb to consist in energy: and we rejected Dr Gregory's theory for the subject of examination, not from any disrespect to the author, whom the writer of this article never knew; but because we believe his abilities to be such, that

Si Pergamu dextra
Defendi passum, etiam has defensa sua sunt.
PARTICIPEs. Thus take, away the affection from the verb writing, and their remains the participle written; which, without the affection, denotes the same attribute and the same time. After the same manner, by withdrawing the affection, we discover written in written; written about to write in written shall be written. This is Mr. Harris's doctrine respecting participles; which, in our opinion, is equally elegant, picturesque, and just. It has, however, been controverted by an author, whose rank in the republic of letters is such, that we should be wanting in respect to him, and in duty to our readers, were we to pass his writing yesterday, and I shall be writing to-morrow. This is acknowledged by Dr. Beattie, that this, which we have taken, is the most convenient light in which the participle can be considered in universal grammar: and yet he affirms that present participles do not always express present time, nor preterite participles past time; may, that participles have oftentimes no connection with time at all. He thus exemplifies his affection, in Greek, in Latin, and in English.

When Cebeus says, άρσν δ τον τάφυ του Σαύρων, the participle of the present, walking, is by means of the verb were applied to time past; and therefore of itself cannot be understood to signify any sort of time. Again, after observing, that in English we have but two simple participles, such as writing and written, of which the former is generally considered as the present and the latter as the past, the Doctor adds, But the writing joined, when a verb of different tenses, may denote either past or future action; for we may say not only, I am writing, but also, I was writing yesterday, and I shall be writing to-morrow; whence he infers that no time whatever is denoted by the present participle. But surely this is a hasty inference, drawn from the doctrine of absolute time and a definite present, which we have already flown to be groundwork and contradictory. When we speak simply of an action as present, we must mean that it is present with respect to something besides itself, or we speak a jargon which is unintelligible, but we do not ascertain the time of its presence. From the very nature of time, an action may be present now, it may have been present formerly, or it may be present at some future period; but the precise time of its presence cannot be ascertained even by the present of the indicative of the verb itself; yet who ever supposed that the present of the indicative denotes no time? The participle of the present represents the action of the verb as going on; but an action cannot be going on without being present in time with something. When, therefore, Cebeus says, "We were walking in the temple of Saturn," he represents the action of the verb walk as present with something; but by using the verb expressive of his affection in a past tense he gives us to understand that the action was not present with anything at the period of his speaking, but at some portion of time prior to that period: what that portion of time was, must be collected from the subsequent parts of his discourse. The same is to be said of the phrases I was writing yesterday, and I shall be writing to-morrow. They indicate, that the action of the verb was present with me yesterday, and will again be present with me to-morrow. The action and the time of action, are denoted by the participle; that action is affirmed to belong to me by means of the verb; and the time at which it belonged to me is pointed out by the tenses of that verb was, was, and shall be. All this is so plain, that it could not have escaped Dr. Beattie's penetration, had he not hastily adopted the absurd and contradictory notion of a definite present.

Of the truth of his affection respecting past participles he gives a Greek and a Latin example. The former is taken from St. Mark: εἰ ἀμαωσαν τοῦθεν; and the latter is that which is commonly called the perfect future of the passive verb aman, amatus fuerat. In the first instance, he says that the participles, though belonging to the sorith of the past time, must be rendered either by the indefinite present, "he who believest;" or by the future, he who will believe; and the reason which he gives for this rendering of the word is, that the believing here spoken of is considered as posterior in time to the enunciation of the promise." This is indeed true, but it is not to the purpose; for with the enunciation of the promise, the time of the participle has no manner of concern. The time of present depends entirely upon the time of the subject, with respect to which it must undoubtedly be past. Our Lord is not here alluring him who shall believe, at the day of final retribution, shall be saved, but that he who shall on that day be found to have believed in time past, shall be saved: and if the participle had not been expressive of a past perfect action and a past time, the whole sentence would have conveyed a meaning not friendly to the interests of the gospel. In like manner, the time of amatus is referred, not to the time of speaking, but to the time of such, with respect to which, he fees not that it is past? The two words, taken together, contain a declaration, that he who utters them shall, he sometime remembereth that of speaking, have been loved, shall have been loved denotes two times, both future with respect to the time of speaking; but when the time, denoted by shall have, comes to be present, that of the participle loved must be past, for it is declared that the action of it shall then be complete and finished.

We conclude, then, that it is essential to a participle to express both an attribute and time; and that such words as denote time, though they may be in the form of participles, as done is learned, elegent is eloquent, &c. belong to another part of speech, which we now proceed to consider.

SECT. II. OF ADJECTIVES.

82. The nature of verbs and participles being understood, that of adjectives becomes easy. A verb implies a quality, quantity, or relation, as doth, is learned, is eloquent, &c. are all denoted by adjectives.

83. To understand the import and the use of this they have species of words, it must be observed that every adjective the import of abstract adjectives necessarily involves an expression of relation equivalent to that. Thus, a good man is a man of good will; where we fee the attribute denoted by the adjective fully expressed by an adjectival noun. But it is evident.
the back of the horse. In the use of this word, it is well known that the idea first in order, as being the principal subject of the proposition, is commonly the man on the back of the horse; but it is not so always, for the mind may consider the horse as the principal object. Thus when Virgil says,

Insulare solo, et Graecus gloriosus superbus

the energies attributed to the object signified by equestem, make it evident that the horse and not the man is meant; for it is not the property of a man, insulare solo, et graecus gloriosus superbus.

The same observation holds true where the complex object is denoted by two or more words; an adjective, for instance, and a substantive. Thus in the phrase summus mons tertius subida condit, the words summus mons represent a complex conception, of which the constituent ideas are those of height and mountain, connected together by the substantive form of summus. Either of these ideas may be the subject of the proposition; and the expression will accordingly admit of two different significations. If mons be made the subject of the proposition, the meaning will be, ‘the highest mountain rises itself among the clouds.’ If the substantive included in the radical part of summus be made the subject of the proposition, the expression will signify, ‘the summit, or highest part of the mountain, rises itself among the clouds.’ The latter is the true import of the sentence.

From these observations and examples, we shall be enabled to understand the two uses of the adjective. Two uses: It is either employed, as has been already observed, of the adjectival to restrict or modify a general term; or the adjectival substantive. The substantive contained in the adjective is modified by the noun, with which, in the concrete or substantive form, that adjective substantive is joined. The first may be called the direct, the second the inverse, acceptance of adjectives.

The inverse acceptance of adjectives and participles (for both are used in the same manner) has not, except in a very few instances, been noticed by any grammarian; yet the principle involved is no less evident in any language. In order to explain it, we shall produce a few examples; which on any other principle it is impossible to understand.

Livy, speaking of the abolition of the regal authority at Rome, says Regnatum est post ab urbe condita, ad libertatem annos ducentos quadraginta quattuor, ‘Monarchy lifted at Rome, not from the city built (which would convey no meaning), but from the building of the city, to its deliverance,’ &c. Both the participles condita and libertatem are here used inversely; that is, the substantive substantive contained in condita and libertatem is modified or restricted by the substantive urbe and urbem, with which they unite. Again, Ovid, speaking of the contest between Ajax and Achilles for the arms of Achilles, has these lines:

Nam illis etiam seseque Nestora sinit.

Quam repetit, dextrae dejecta Nestora cinerem

Nullum ut iuvate.

Here also the adjective or participle desertum is taken inversely, and the general notion of desertion contained in it is modified or rendered particular by being joined with the substantive Nestora. The meaning of the passage reads, etc., in the substantive Nestora: and the substantive or participles desertum is ‘modified’ or restricted by the substantive Nestora.
The impo

from

and

adjetives

Adjectives

when

referee,

or

But it

is evident that this is nonsense; as Nestor, whether
defected or not defected, could not be a crime.

It were easy to produce many more examples of
adjetives taken inverisly; but these may suffice to illus-
strate the general principle, and to show, that without
attending to it, it is impossible to understand the an-
cient authors. We shall adduce one instance of it from
Shakespear, to evince that it is not

from

itself only to an adjetive or participle, or a verb significant of an attribute; it does not attach itself to the pure verb,
to be a very just appellation, as denoting a part of speech, the natural appendage of such verbs. So great is this dependence in grammatical syntax, that an adverb can no more subsist without its verb, i.e. without some word signifying of an attribute, than a verb or adjective can subsist without its subject. It is the same here as in certain natural subjects. Every colour, for its existence, as much requires a superlative, as theSuperlative for its existence requires a solid body. At the mention of the attributes we reckon quantity and quality; thus we say a white garment, a high mountain, etc. Now some of these quantities and qualities are capable of intensity or remission; or, in other words, one attribute may have them in a greater or lesser degree than another. Thus we say, a garment exceedingly white, a mountain tolerably or moderately high. Hence, then, one copious source of secondary attributes or Adverbs, to denote these two, that is, intensity and remission; such as greatly, tolerably, fairly, extremely, indifferently, etc.

But where there are different intensions of the same attribute, they may be compared together: Thus, if the garment A be exceedingly white, and the garment B more nearly white, we may say, the garment A is more white than the garment B. This paper is white, and so is white; but snow is more white than this paper. In these instances, the adverb more not only denotes intensity, but relative intensity; nay, we speak not here, as we customarily do, of other degree than another. Thus we say, Sophocles was wife, Socrates was more wife than he, but Solomon was the most wife of men. Even verbs, properly speaking, which denote an attribute as well as an action, must admit both of simple and of comparative intensions; but the simple verb is to be admitted of neither the one nor the other. Thus, in the following example, he loves more than X; but the X, if not the Y, is the object of the verb, admits neither of intensity nor remission, but is the same in all possible propositions.

91. From this circumstance of quantities and qualities being capable of intensity and remission, arise the comparison of adjectives, and its different degrees, which cannot well be more than the two species above-mentioned; one to denote simple, and one to denote superlative. We were indeed to introduce more degrees than these, we ought perhaps to introduce infinite, which is absurd. For why stop at a limited number, when, in all subjects susceptible of intention, the intermediate extents are in a manner infinite? Between the first simple white and the superlative white is there an infinite degrees of more white; and the same may be said of more great, more strong, more minute, etc. The doctrine of grammarians about three such degrees of comparison, which they call the positive, the comparative, and the superlative, must be absurd; both because in their positive there is no comparison at all, and because their superlative is comparative as much as their comparative itself. Examples to evince this may be met with everywhere: Socrates was the most wise of all the Athenians; Homer was the sublame of all poets, etc. In this sentence Socrates is evidently compared with the Athenians, and Homer with all other poets. Again, if it be said that Socrates was more wise than any other Athenian, but that Solomon was the most wise of men, is not a comparison of Solomon with mankind in general, as plainly implied in the last clause of the sentence, as a comparison of Socrates with the other Athenians in the first?

But if both imply comparison, it may be asked, In what consists the difference between the comparative and superlative? Does the superlative always express a greater excess than the comparative? No: for through Socrates was the most wise of the Athenians, and is Solomon affirmed to have been more wise than he; so that here a higher superiority is denoted by the comparative more than by the superlative most. Is this then the difference between these two degrees, that the superlative implies a comparison of one with many, while the comparative implies only a comparison of one with one? No: this is not always the case. Either the Pilgrim says, that he is a better wife or more wife than all his mistresses;" where, though the comparative is used, there is a comparison of one with many. The real difference between these two degrees of comparison may be explained thus:

When we use the superlative, it is in consequence of having compared individuals with the species to which they belong, or one or more species with the genus under which they are comprehended. Thus, Socrates was the most wise of the Athenians, and the Athenians were the most enlightened of ancient nations. In the first clause of this sentence, Socrates, although compared with the Athenians, is at the same time considered as one of them; and in the last, the Athenians, although compared with ancient nations, are yet considered as one of those nations. Hence it is that in English the superlative is followed by the preposition of, and in Greek and Latin by the genitive case of the plural number; to show, that the object which has the pre-eminence is considered as belonging to that class of things with which it is compared.

But when we use the comparative degree, the objects compared are set in direct opposition; and the one is considered not as a part of the other, or as comprehended under it, but as something altogether distinct and belonging to a different class. Thus, were one to say, Cicero was more eloquent than the Romans, he would speak absurdly; because every body knows, that of the classes of men expressed by the word Romans Cicero was one, and such a sentence would affirm that orator to have been more eloquent than himself. But when it is said that Cicero was more eloquent than all the other Romans, or than any other Roman, the language is proper, and the affirmation true: for though the persus spoken of were all of the same class or city, yet Cicero is here set in contradistinction to the rest of his countrymen, and is not considered as one of the persons with whom he is compared. It is for this reason that in English the comparative degree is followed by a noun governed by the word of contradistinction then, and in Latin by a noun in the ablative case governed by the preposition pro (a) either expressed or understood. We have already observed, that the ablative case denotes concomitancy, and therefore when
an adjective in the comparative degree is prefixed to a noun, that noun is put in the ablative case, to denote that two things are compared together in company; but by means of the preposition, expressed or understood, that which is denoted by the comparative adjective is seen to be preferred for that which is denoted by the noun.

205 Or by inflection.

We have hitherto considered comparatives as expressed by the words more and most; but the authors, or improvers of language, have contrived a method to retrench the use of these adverbs, by expressing their force by an inflection of the adjective. Thus instead of more fair, they say fairer; instead of most fair, fairest; and the same method of comparison takes place in both the Greek and Latin Languages; with this difference, however, between the genius of these languages and ours, that we are at liberty to form the comparison either in the one method or in the other; whereas in those languages the comparison is seldom if ever formed by the assistance of the adverb, but always by the inflection of the adjective. Hence this inflection is by the Greek and Latin grammarians considered as a necessary accident of the adjective; but it has reached no farther than to adjectives, and participle forms having the nature of adjectives. The attributes expressed by verbs are as susceptible of comparison as those expressed by adjectives; but they are always compared by means of adverbs. The verb being too much diversified already to admit of more variation without perplexity.

206 Comparatives sometimes lose their relative nature.

As there are some qualities which admit of comparison, so there are others which admit of none; such, for example, are those which denote that quality of bodies arising from their figures; as one square table, a quadrangular court, a conical piece of metal, &c. The reason is, that a million of things participating the same figure, participate it equally, if they do it at all. To say, therefore, that while A and B are both quadrangular, A is more or less quadrangular than B, is absurd. The same holds true in all attributes denoting definite quantities of whatever nature: for as there can be no comparison without intention or remission, and as there can be no intention or remission in things always definite, therefore these attributes can admit of no comparison. By the same method of reasoning, we discover the cause why no sublatives are susceptible of these degrees of comparison.

A mountain cannot be said more to be or to exist than a mole-hill; but the more or less must be fought for in their quantities. In like manner, when we refer many individuals to one species, the lion A cannot be called more a lion than the lion B (c); but if more any thing, he is more fierce, more fruitful, or exceeding in some such attribute. So again, in referring many species to one genus, a crocodile is not more an animal than a lizard; nor a tiger more than a cat; but, if any thing, the crocodile and tiger are more bulky, more strong, &c., than

K 2

compared as of the same class; and when we use the comparative, as of different classes; yet is not this distinction always attended to by the best writers in any language. In Latin and Greek the comparative is sometimes used, where in English we should use the superlative; as dextra est forter manus; and in the Gospel is said, that "a grain of mustard-seed is the smallest of all seeds, but when grown up it is the greatest of garden herbs." Even in English, the custom of the language permits us not to say "he is the taller of the two," but must the taller of the two; but we cannot say "he is the taller of the three." For these and other deviations from the general rule no reason is to be found in the nature of things; they are errors made proper by use.

(c) In English, the termination -est is peculiar to the superlative of comparison, to which the definite article is prefixed. Thus we may say, "Homer was the sublimest of poets;" but we cannot say, "Homer was a sublimest poet." Again, we may say, "Homer was a very sublime poet;" but nor, "Homer was the very sublimest poet."
The animals with which they are compared; the excess, as before, being derived from their attributes.

95. Of the adverbs or secondary attributive already mentioned, those denoting intention and resolution may be called adverbs of quantity continuous, as greatly, vailly, tolerably, &c. once, twice, threc, &c. (e) are adverbs of quantity discrete; more and most, less and least, to which may be added equally, proportionally, &c. are adverbs of relation. There are others of quality, as when we say, honestly industrious, modestly brave; they fought bravely, he painted finely.

And here it may be worth while to observe, how the same thing, participating the same essence, assumes different grammatical forms from its different relations. For example, suppose it should be asked, How differ honest, honestly, and honesty? The answer is, They are in essence the same; but they differ in as much as honest is the attributive of a noun, honestly, of a verb, or adjective; and honestly being divided of these, its attributive relations assumes the power of a noun or substantival to, as to stand by itself.

96. The adverbs hitherto mentioned are common to verbs of every species; but there are some which are confined to verbs properly so called, that is, to such verbs as denote motions or energies with their privations. All motion and rest imply time and place as a kind of necessary coincidence. Hence, when we would express the place or time of either, we have recourse to adverbs formed for this purpose, as of place, as when we say he stood there; he went hence, he came thither, of time, as when we say, he stood there; he went thence, he travelled hence, to thence. To these may be added the adverbs which denote the intentions and resolutions peculiar to motion, such as speedily, hastily, swiftly, slowly, &c. as also adverbs of place made out of prepositions, such as upward and downward from up and down. It may, however, be doubted whether some of these words, as well as many others, which do not so properly modify attributes, as mark some remote circumstance attending an attribute or our way of conceiving it, are truly adverbs, though so called by the grammarians. The simple affirmative and negative eves and no are called adverbs, though they surely do not signify that which we hold to be the very essence of the verb, a modification of attributes. Is he learned? No, or Is he brave? Yes, and that he is, or he was, or he is, or he was, or the like.

Adverbs are indeed applied to many purpofes; and their general nature may be better understood by reading a list of them, and attending to their etymology, than by any general description or definition. Many of them seem to have been introduced into language in order to express by one word the meaning of two or three; and are mere abbreviations of nouns, verbs, and adjectives. Thus, the import of the phrase, in what place, is expressed by the single word where; to what place, by whither; from this place, by hence; in a direction ascending, by upwards; at the present time, by now; at what time, by when; at that time, by then; many times, by often; not many times, by seldom, &c.

97. Mr Horne Tooke has, with great industry and accuracy, traced many of the English adverbs from their origin in the ancient Saxon and other northern tongues, and shown them to be either corruptions of other words or abbreviations of phrases and sentences. He observes, that "all adverbs ending in ly, the most prolific branch of the family, are sufficiently understood: the termination being only the word like corrupted; and the corruption to much the more easily and certainly discovered, as the termination remains more pure and distinguishable in the other English languages, in which it is written tick, lyk, lig, liges." He might have added, that in Scotland the word like is, at this day, frequently used instead of the English termination ly; as for a goodly figure, the common people say a good like figure. Upon this principle the greater part of adverbs are resolved into those parts of speech which we have already considered, as honestly into honest-like, vailly into self-like, &c. In that we say of a man he is honestly industrious, we affirm that he is honest-like industrious, or that his industry has the appearance of being honest. Adverbs of a different termination the same acute writer resolves thus: A HAST into the past participle A GAZED, the French exclaimed,—the devil was in arms. All the whole army stood agazed on him. Shakespeare, into the past participle A GONE or COWE. Andek he drives from ASUNDER, separated; the past participle of the Anglo Saxon verb ADJUIN: a word which, in all its varieties, is to be found, he says, in all the northern tongues; and is originally from fand, i.e. fund. To wit, from WITT, to know; as widiject and felicit, in Latin, are abbreviations of widere-late and sine lice. Needs, he resolves into need is, used parenthetically as, "I must needs do such a thing," "I must (need is) do such a thing," i.e. "I must do it, there is need of it." Axon, which our old authors use for immediately, instantly, means, he says, in one; i.e. in one instant, moment, twixt. And, "And right above without more abode," "Axon in all the haste I can, the Dutch, senc is one and senc-en alone; and all-senc-like, only, anciently alone. Alive is on live, or twixt. Thus, "Christ ever on live." Chaucer, AUGHT OF OUGHT: A WHIT or O WHIT; or being formerly written for the article a, or for the numeral one; and whit or whits, in Saxon, signifying a small thing, a point or jot. Awhile, which is usually clasped with adverbs, is evidently a noun with the indefinite article prefixed; a while, i.e. a time. Whilst, anciently and more properly whiles, is plainly the Saxon whilsts, time that. Aloft was formerly written ON-LOFT; as, "And ye, my mother, my fovereine plaiseance." Over al thing, set Christ on loft. Chaucer, Now, says Mr Horne Tooke, left, in the Anglo Saxon, is.
GR A M M A R.

is in the air or the clouds, as in Lyfle Cummende, coming is the clouds, (St Luke.) In the Danish, Luft is air; and Luft is air; and at a strange is Luft is, ‘sto blow up into the air, or aloft.

So in the Dutch, de loof hebben, to fail before the wind; loofen, to ply to windward; loof, the weather gate, &c. From the same root are our other words: Left, lefty, to left, lee, toward, left, &c. It would be needless, as the ingenious author observes, to notice such adverbs as aloft, adays, ahoire, altays, aught, alyed, aback, ahead, afoot, alee, aloud, alyde, afoot, aroound, alynd, &c. These are at first view seen for what they are. Nor shall we follow him through the analysis which he has given of many other adverbs, of the origin is not so obvious as of these. Of the truth of his principles we are satisfied; and have not a doubt, but that upon these principles a man conversant with our earliest writers, and thoroughly skilled in the present languages, may trace every English (s) adverb to its source, and shew that it is no part of speech separate from those which we have already considered. The adverbs, however, of affirmation and negative, are of too much importance to be thus passed over; and as we have never seen an account of them at all satisfactory, except that which has been given by Horne Tooke, we shall transcribe the substance of what he says concerning Aye, Yea, Yes, and No. To us these words have always appeared improperly clasped with adverbs upon every definition which has been given of that part of speech. Accordingly, our author says, that Aye or Yea is the imperative of a verb of northern extraction; and means, have, possess, enjoy. And Yes is a contraction of Ayes, have, possess, enjoy, that. Thus, when it is asked, whether a man be present, if the answer be by the word Ayes, have, possess, or Yes, it is equivalent to have that, enjoy that, belief or that proposition. (See what was said of the nature of interrogative, Chap. IV. n° 76.

The northern verb of which yes is the imperative, is in Danish Ejer, to possess, have, enjoy. Eja, aye or yea; Eje, possession; Ejer, possessor. In Swedish it is Ega, to possess; of which the imperative is Ja, aye; Yea: Egare, possessor. In German, Ja signifies aye or yea; Eigen, possessor; owner; Eigen, own. In Dutch, Eigen is aye, yea.

Greenwood derives not and it's abbreviate no from the Latin Minnow, from the Hebrew; and Junius, from the Greek. Our author very properly observes, that the inhabitants of the North could not wait for a word expressive of different till the establishment of those nations and languages; and adds, that we need not be inquisitive nor doubtful concerning the origin and signification of not and so; since we find that, in the

Danish, nodig, in the Swedish, nodig, and in the Dutch, nood, node, and no, mean averse, unwilling.

So that when it is asked whether a man be, if the answer be no, it is a declaration that he who makes it is averse from, or unwilling to admit that proposition.

98. Most writers on grammar have mentioned a species of adverbs, which they call adverbs of interrogation; such as where, whence, whether, how, &c. But the truth is, that there is no part of speech, which, of itself, denotes interrogation. A question is never asked otherwise than by abbreviation, by a single word, whether that word be a noun, a pronoun, a verb, or an adjective. The word where is equivalent to—in what place; whence to—from what place; and how to—in what manner, &c. In these phrases, in what place, in what manner, the only word that can be supposed to have the force of an interrogative, is what, which is resolvable into that which: But we have already explained, in the chapter of Pronouns, the principles upon which the relative is made to denote interrogation, and the same reasoning will account for the adverbs where, whence, whether, how, &c. being employed as interrogatives. Why we say, where were you yesterday? whence have you come? whether are you going? how do you perform your journey? We merely use to many abbreviations for the following sentence; tell us, or describe to us, the place where (or in which) you were yesterday; the place whence (or from which) you have come; the place to which you are going; the manner in which you perform your journey. And in much for adverbs. We now proceed to those parts of speech which are usually called prepositions and conjunctions, and of which the use is to connect two or more simple sentences into one compound sentence.

CHAPTER VI.

Of Prepositions, Conjunctions, and Interjections.

99. It has been observed, that a man while awake objects, is conscious of a continued train of perceptions and of ideas passing in his mind, which depends little upon his own will; that he cannot to the train add a new idea; and that he can but very seldom break its connection. To the slightest reflection these truths must be apparent. Our first ideas are those which we derive from external objects making impressions on the senses; but all the external objects which fall under our observation are linked together in such a manner as indicates them to be parts of one great and regular system.
When we take a view of the things by which we are surrounded, and which are the archetypes of our ideas, their inherent qualities are not more remarkable than the various relations by which they are connected. Cause and effect, contiguity in time or in place, high and low, prior and posterior, resemblance and contrast, with a thousand other relations, connect things together without end. There is not a single thing which appears solitary and altogether devoid of connection. The only difference is, that some are intimately and some slightly connected, some nearly and some at a distance. That the relations by which external objects are thus linked together must have great influence in directing the train of human thought, so that not one perception or idea can appear to the mind wholly unconnected with all other perceptions or ideas, will be admitted by every man who believes that his senses and intellect represent things as they are.

This being the case, it is necessary, if the purpose of language be to communicate thought, that the speaker be furnished with words, not only to express the ideas of substances and attributes which he may have in his mind, but also to indicate the order in which he views them, and thus point out the various relations by which they are connected. In many instances all this may be done by the parts of speech which we have already considered. The closest connection which we can conceive is that which subsists between a substance and its qualities; and in every language with which we are acquainted, that connection is indicated by the immediate coalescence of the adjective with the substantive; as we say, a good man, a learned man; vir bonus, vir doctus. Again, there is a connection equally intimate, though not so permanent, between an agent and his action; for the action is really an attribute of the agent; and therefore we say, the boy reads, the man writes; the noun coalescing with the verb so naturally, that no other word is requisite to unite them. Moreover, an action and that which is called upon being contiguous in nature, and mutually affecting each other, the words which denote them should in language be mutually attractive, and capable of coalescing without external aid; as, he reads a book, he builds a house, he breaks a joint. Further: because an attribute and its modifications are inseparably united, an adjective or a verb is naturally coalesced with the substantive which illustrates or modifies its signification; and therefore, when we say, he walks slowly, he is prudently brave, it is plain that no other word is necessary to promote the coalescence of the attributes walking and bravery with their modifications of slowly and prudently.

The agreement between the terms of any proposition which constitutes truth is absolutely perfect; but as either of the terms may agree with many other things besides its correlate, some word is requisite in every proposition to connect the particular predicate with the particular subject; and that is the office of the simple verb to be; as the three angles of every rectilinear triangle are equal to two right angles.

Thus we see, that many of the relations subsisting between our ideas may be clearly expressed by means of nouns, adjectives, verbs, and adverbs; and in those languages of which the nouns have cases, there is perhaps no relation of more importance which might not be thus pointed out, without being under the necessity of employing the aid of any additional part of speech.

In English, however, the case is otherwise; for were we to say, "He rode Edinburgh, went the parliament-house, walked his council the court met," we should speak unintelligibly; as in these expressions there is either a total want of connection, or such a connection as produces falsehood and non-sense. In order to give meaning to the passage, the several gaps must be filled up by words significant of the various relations by which the different ideas are connected in the mind; as, "he rode to Edinburgh, went to the parliament-house, and walked with his council till the court met." Of these connecting words, to and with are called prepositions, and and till are usually called conjunctions. Although these prepositions and conjunctions are not absolutely necessary in Greek and Latin as they are in English; yet as there is no language wholly without them, nor any language in which it is not of importance to understand their force, they well deserve a place in universal grammar.

The use of conjunctions and prepositions in language is to connect either sentences or other words; but the theory of these connectives themselves has certainly never been understood, unless Mr. HARRIOT has at least hit upon the truth. Mr. HARRIOT writes about thum and about them, quoting passages from Greek and Latin authors, and produces at last no information. His definitions of both, as parts of speech with signification, are highly absurd; and even the principal distinction which he makes between them seems not to be well founded. Prepositions and conjunctions denote the relations subsisting between the ideas expressed by those words or sentences which they serve to connect; and as relations are contemplated by the mind as well as positive ideas themselves, the words which denote those relations cannot be insignificant. The essential difference between the conjunction and preposition, according to the same author, consists in this, that the former connects sentences, and the latter words: but the fact is often otherwise. An obvious example occurs where the conjunction and connects not sentences but words. "A man of wisdom and virtue is a perfect character." Here it is not meant to be alluded, "that the man of wisdom is a perfect character, and that of virtue is a perfect character:" both these affections would be false. This sentence therefore (and many such will occur) is not resolvable into two: whence it follows, that the conjunction and does not always connect sentences; and the same is frequently the case with other conjunctions.

Horne Tooke's idea of prepositions and conjunctions is, that they do not form distinct classes of words, but are merely abbreviations of nouns and verbs: and with respect to the English language, he has been remarkably successful in proving his position. But though such be undeniably the case in English, it would be rash to conclude a priori that it is so in all other tongues. To establish this general conclusion would require a long and tedious deduction in each particular language: and how much learning, leisure, industry, and acuteness, such an undertaking would require, even in one tongue, it is not easy to determine. In the languages with which we are best acquainted, many conjunctions, and most prepositions have the appearance at least of original words: and though this most acute grammarian, from his knowledge of the northern tongues, has been able to trace the most important of those in English to very
very planfible sources, the fame thing would be difficult in other languages of which the sources are obscure, and abolutely impossible in those of which they are wholly unknown. It is, however, a ftrong pre-emption in favour of his opinion, that grammarians have never been able to assign any general charafteristic of those species of words; which, did they confifte in different parts of speech, one would think could not have fo long remained undiscovered. It is a farther presumption in his favour, that many words in Greek and Latin, as well as in English, which have been called conjuctions, are obviously refolvable upon his principles, and indeed discover their meaning and origin upon mere inspection. We shall therefore content ourselves with recalling the common doctrine respecting these parts of speech as far as it is intelligible; subjoining at the bottom of the page the analysis given by Horne Tooke of the forms important English conjuctions and prepositions; and respecting our readers, who would understand the subjeft, to attend more to the relations between their various ideas, than to the frivolous diftinctions which, in compliance with custom, we are compelled to lay before them. We shall treat first of the conjuction.

Sect. I. Of Conjuctions.

116. A conjuction is a part of speech, of which, as its name implies, the function is to connect either two or more words in a sentence, or to make of two simple sentences one compound sentence. It is ufually faid, that conjuctions never connect words, but sentences only; and that this is the circumftance which diftinguishes them from prepositions. We have already given one example which proves this difference to be ill-founded; we shall now give from Horne Tooke one or two more, which will place its abfurdivty in a still clearer light: Two and two are four; John and Jane are a handsome couple; A and B and C form a triangle. Are two four? Is John a couple and Jane a couple? Does one straight line form a triangle? From the subjoined note it appears, that and (g) may connect any two things which can be connected, as it signifies addition.

Conjuctions connecting sentences, fometimes connect their meaning, and fometimes not. For example, let us take these two sentences, Rome was enflaved, Cæfar was ambitious, and connect them together by the conjuction because; Rome was enflaved because Cæfar was ambitious. Here the meanings, as well as the conjuctions, appear to be connected by that natural relation which fubfists between an effect and its caufe; for the enflaving of Rome was the effect of Cæfar's ambition. That particular relation therefore is that which is denoted by the conjuction because (h), which would be improperly used to connect two sentences between which the relation of an effect to its caufe exists not. If it be faid, manners must be reformed, or liberty will be lost; here the conjuction or, though it joins the sentences, yet as to their meaning is a perfect conjuction. Between the reftate words of manner and the loss of liberty there is certainly a natural relation; but it is not the relation of conftancy or fimilitude, or of caufe and effed, but of contrariety. The relation of contrariety therefore is the fignification of the word or (i). And thus it appears, that though all conjuctions may combine sentences, yet, with refeft to the fefte, some are conjunctive and others are disjunctive.

117. Thofe conjuctions which conjoin both sentences and their meaning are either copulative or continuative. The principal copulative in English is and, which have already been confidered. The continuatives are much more numerous; if, and, because, therefore, wherefore, hence, &c. The difference between them is this: The copulative does no more than barely couple words or sentences, and is therefore applicable to all subjects of which the natures are not incompatible (k). The relation which it denotes is that of juxtaposition or of one thing added to another. Continuatives, on the contrary, by a more intimate connecftion, consolidate sentences into one conftant whole; and are therefore applicable only to subjedts which have an effedtual relation to each other, fuch as that of an effedt to its caufe, or of a caufe to its effedt. For example, it is no way improper to lay, Lyfippus was a fatafly, and Prifian a grammarian; the fun fhines, and the fky is clear; becaufe these are things that may coexif, and yet imply no abfurdivty. But it would be aburd to fay, Lyfippus was a fatafly becaufe Prifian was a grammarian; though not to fay, the fun fhines becaufe the fky is clear. With refeft to the firft, the reason is, that the word becaufe denotes the relation which we have already consider'd. The continuative of Prifian in grammar could not possibly be the caufe of Lyfippus's skill in fagacity; the coincidence between the skill of the one and that of the other, in arts fo very different, was merely accidental. With refeft to the fhining of the fun and the cleaneft of the fky, the cafe is widely different; for the cleaneft of the fky is the cause of the fun's fhining, at leaft fo as to be seen by us.

As to the continuatives, they are either fuppositive, such as if, or positive, such as becaufe, therefore, and, &c. Take examples of each: You will live happily if you live honestly; you have happily because you live honestly; you live happily, therefore you live happily. The difference between these continuatives is this: The fuppositives denote connexions, but do not affect actual exifence.
The reason of all this will be apparent from the analysis given by Horne Tooke of those words which we have called suppositive conjunctions. If and an may be used mutually and indifferently to supply each other's place; for they are both verbs, and of the same import. It is merely the imperative of the Gothic and Anglo-Saxon verb GIVAN, to give; and in those languages, as well as in the English formerly, this suppositive conjunction was pronounced and written as the common imperative give. Thus, "My largest," "Hath lotted her to be your brother's mistreffe, Gif she can be reclaimed: gif not, his prey." Sad Shepherd, Act II. Scene i.f.

Gawain Douglas almost always uses gif for if, as the common people in some counties of Scotland do even at this day; and it is obvious, that our if has always the signification of the English imperative give, and no other. So that the resolution of the construction in the sentence, If you use honestly you will live happily, is simply this, Give you live honestly (taking you live honestly as an abstract noun) you will live happily. Your living happily is declared to depend upon your living honestly as the condition; but give that, and your happiness is positively asserted. In like manner may such sentences be resolved as, "I wonder he can move! that he's not fixed! If that his feelings be the same with mine." Thus, "His feelings be the same with mine, give that, I wonder he can move," &c. And here we cannot forbear giving our assent to the truth of Mr. Tooke's observation, that when the datum upon which any conclusion depends is a sentence, the article that, if not expressed, may always be inferred. We do not, however, think the inference at all times absolutely necessary to complete the syntax; for active verbs govern whole sentences and clauses of sentences as well as substantive nouns. Instances of this occur so frequently in the Latin classics, that they have escaped no man's notice, who has ever read Horace or Virgil with attention. We agree likewise with our most ingenious author, that where the datum is not a sentence, but some noun governed by the verb if or give, the article that can never be inferred. For example, if we be asked, how the weather will dispose of us to-morrow? we cannot say: "If that fair, it will send us abroad; if that foul, it will keep us at home;" but "if fair, it will send us abroad," &c. The reason is obvious: the verb in this case directly governs the noun; and the resolved construction is, "Give fair weather, it will send us abroad; give foul weather, it will keep us at home."

An, the other suppositive conjunction mentioned, is nothing else than the imperative of the Anglo-Saxon verb ANAN, which likewise means to give or to grant. As, "An you had an eye behind you, you might see more detection at your heels than fortunes before you;" that is, "Grant you had an eye behind you, you might see," &c. This account of the two conditional conjunctions in English is so rational and satisfactory, that we are strongly inclined to believe that all those words which are so called, are in all languages to be accounted for in the same manner. Not indeed that they must all mean precisely to give or grant, but some word equivalent; such as, be it, suppose, allow, permit, &c.; which meaning is to be sought for in the particular etymology of each respective language.

Of the causal conjunctions mentioned in the text, because has been already considered; and some account must now be given of the two words since and as. The former of these, according to Mr. H. Tooke, is a very corrupt abbreviation, confounding together different words and different combinations of words. To us it appears to be compounded of sean, seeing; and es, that or it; or of sin, seen, and es. Sean and sin are the present and past participles of the Anglo-Saxon verb seen, to see. In modern English since is used four ways: twas a preposition affecting words, and two as a conjunction affecting sentences. When used as a preposition, it has always the signification of the past participle seen joined to thence (i. e. seen and thereforward), or else the signification of the past participle seen only. When used as a conjunction, it has sometimes the signification of the present participle seeing, or seeing that; and sometimes the signification of the past participle seen, or seen that. We shall give examples of all these significations. If, As a preposition signifying seen and thereforward: "A more amiable sovereign than George III. has not swayed the English sceptre since the conquest." That is, "The conquest seen (or at the completion of the fight of the conquest), and thereforward, a more amiable sovereign than George III. has not swayed the English sceptre since the conquest." Since, taken in this sense, seems rather to be a corruption of sith or sithen, than a compound of sean and es. adly, As a preposition signifying seen simply: "Did George III. reign before or since that example?" 4thly, As a conjunction, since means seeing that: as, "If I should labour for any other satisfaction but that of my own mind, it would be an effect of phrenzy in me, not of hope; since (or seeing that) it is not truth but opinion that can travel through the world without a passport. 4thly, It means seen that, or that seen: as, "Since death in the end takes from all whatsoever fortune or force takes from any one, it were a foolish madness in the shipwreck of worldly things, when all links but the sorrow, to fave that: i. e. "Death in the end takes from all whatsoever fortune or force takes from any one; that seen, it were a foolish madness," &c. As; the other causal conjunction mentioned in the text, is an article meaning always it, or that, or which. Take the following example: "She glides away under the foamy seas As swift as darts or feather'd arrows fly."
Chap. VI.

Therefore (a) the sun is in eclipse. We therefore use causals in the same inferences where, the effect being conspicuous, we seek for its cause, and collectives, in demonstration and science, properly so called, where the cause being first known, by its help we discern effects.

As to causal conjunctions, we may further observe, that there is no one of the four species of causes which they are not capable of denoting. For example, the material cause; the trumpet sounds because it is made of metal. The formal cause; the trumpet sounds because it is long and hollow. The efficient cause; the trumpet sounds because an artist blew it. The final cause; the trumpet sounds because it may raise our courage. It is worth observing, that the three first causes are expressed by the strongest affirmation; because if the fact actually be, there must be also. But this is not the case with respect to the last, which is only affirmed as a thing that may happen. The reason is obvious: for whatever may be the end which set the artist first to work, that end may still be beyond his power to obtain; as, like all other contingents, it may either happen or not. Hence also it is connected by a particular conjunction, that (o), absolutely confined to this cause.

103. We come now to the DISJUNCTIVE CONJUNCTIONS: a species of words which bear this contradictory name, because while they CONJOIN the sentences, they DISJOIN the sense; or, to speak a language more intelligible, they denote relations of diversity or opposition.

That there should be such words, whether called conjunctions or not, is extremely natural. For as there is a principle of union diffused through all things, by which this whole is kept together and protected from dissipation; so is there in like manner a principle of diversity diffused through all, the source of distinction, of number, and of order. Now it is to express in some degree the modifications of this diversity, that these words called DISJUNCTIVE CONJUNCTIONS are employed.

Of these disjunctions, some are simple and some ad

Verseative: Simple; as when we say, without or ad

Verseative. as when we say, it is not day

or it is night: Adverseative: as when we say, it is not

day nor it is night. The difference between these is, that the simple express nothing more than a relation of diver

sity; the adverseative express a relation not barely of diversity, but also of opposition. Add to this that the adverseatives are definite, the simple indefinite. Thus when we say, the number three is not an even number, but (p) an odd; we not only disjoin two opposite attributes, but we definitely affirm the one to belong to

the

110

Disjunctive

conjunctions.

Vol. VIII.

That is, "She glides away (with) that swiftness (with) which darts or feathered arrows fly." In German, where as still retains its original signification and use, it is written so. So is another conjunction of the same import with as, being evidently the Gothic article sa or so, which signifies it or that.

(n) As Mr Harris has called therefore, whereas, &c. collective conjunctions, we have retained the denomination, though perhaps a more proper might be found. It is indeed of little consequence by what name even words of be called, provided the import of the words themselves be understood. Whereas and therefore evidently denote the relation of a cause to its effect. They are compounds of the Oxford words BUKER and then with for or voor; and signify, for which, for those or that. It is worthy of remark, that in some parts of Scotland the common people even at this day use this for these.

(o) We have already considered the word that, and seen that it is never a conjunction, but uniformly a definite article. "The trumpet sounds (for) that it may raise our courage," taking the clause it may raise our courage as an abstract noun in concord with that and governed by for. Or the sentence may be resolved thus: "The trumpet may raise our courage (for) that purpose it sounds."

(p) Mr Horne Tooke has favoured us with some ingenious remarks on the two different derivations of the word but; when used in the two acceptations that are usually annexed to it, viz. that which it bears in the beginning of a sentence, and that which it has in the middle. He has given it as his opinion, that this word, when employed in the former way, is corruptly put for butto, the imperative of the Oxford verb botan, to boot, to superadd, to supply, &c. and that when used in the latter, it is a contraction of be-utan, the imperative of beon-utan, to be out. Our ancient writers made the proper distinction between the orthography of the one word and that of the other. Gawin Douglas in particular, although he frequently confounds the two words, and uses them improperly, does yet abound with many inferences of their proper use; and so contrasted, as to awaken, fays our author, the most inattentive reader. Of the many examples quoted by him, we shall content ourselves with the two following:

"But thy works shall endure in laude and glorie,
"But spot or fault condigne eterne memorie." Pres. face.

"But gif the fates, but pleid,
"At my pleasure suffer it me life to leid." Book 4.

If this derivation of the word but from botan, to superadd, be just, the sentence in the text, "the number three is not an even number but an odd," will be equivalent to, "the number three is not an even number, superadd (it is) an odd number;" and if so, the opposition is not marked (at least directly) by the word but, but by the adjectives even and odd, which denote attributes in their own nature opposite. It is only when but has this sense that it answers to fed in Latin, or to main in French. In the second line of the quotation from Gawin Douglas's Preface, the word but is evidently a contraction of be-utan, and has a sense very different from that of bot in the preceding line. The meaning of the couplet is, "Superadd (to something laid or supped to be said before) thy work shall endure in laude and glorie, be out (i.e. without) spot or fault, &c. And in the following passage from Diug's Preface, the word but, although written in the same manner, is used in both its meanings: "You must anfwer, that she was brought very near the fire, and as good as thrown in or else, that she was provoked to it by a divine inspifation. But that another divine inspifation moved the beholders to believe that she did therein a noble act, this act of her's might have been calumniated." That is,
GRAMMAR.

Chap. VI.

As to adverbial conjunctions, it has been already said, after Mr Harris, that they imply opposition; but the truth seems to be, that they only unite in the same sentence words or phrases of opposite meanings. Now it is obvious, that opposite attributes cannot belong to the same subject: as when we say, Nerus was beautiful, we cannot superadd to this sentence, that he was ugly; we cannot say, he was beautiful but ugly. When there is opposition, it must be either of the same attribute in different subjects; as when we say, "Brutus was a patriot, but Caesar was not." Or of different attributes in the same subject; as when we say, Coriogus was a sophist, but not a philosopher." Or of different attributes in different subjects; as when we say, "Plato was a philosopher, but Hippasus was a sophist." The conjunctions used for all these purposes have been called absolute adverbatives, we think improperly, as the term is often used by the illiterate Scotch for what is, in modern English, properly to be called a conjunction. Mr Locke, speaking of the word but, says, that "it sometimes intimates a stop of the mind, in the course it was going, before it came to the end of it;" to which Mr Tooke replies with truth, that but itself is the forerunner of any word in the language from intimating a stop. On the contrary, it always intimates something to follow; information, that when any man in discourse finishes his words with but, instead of supposing him to have stopped, we always ask, but what?

Besides the adverbitives already mentioned, there are two other species, of which the most important are unless and although. For example, "Troy will be taken, unless the palladium be preferred; Troy will be taken, although Hector defend it." The nature of these adverbatives may be thus explained. As every event is naturally allied to its cause, so by parity of reason it is opposed to its preventive; and as every cause is either adequate or inadequate (inadequate when it endears without being effectual) so in like manner is every preventive. Now adequate preventives are expressed by such adverbatives as unless: "Troy will be taken, unless the palladium be preferred;" that is, this alone is sufficient to prevent it. The inadequate are expressed by such adverbatives as although: "Troy will be taken although Hector defend it." This, therefore, may be called adverbial adequate and inadequate.

Such is the doctrine of Mr Harris; which, although we can discover in it no determinate meaning, we have ventured with others to retain, in respect to our readers, who may be more perceptive than ourselves. The author was a man of great learning; and the subject, as he has treated it, appears to be intricate. But whatever fenfe or nonfence there may be in what he says of causes and preventives, adequate and inadequate, we have no hesitation to affirm that he has totally mistaken the import of the words unless and although. From these being called both preventives, the one adequate and the other inadequate, an unwary reader might be led to infer, that they denote the same idea or the same relation; and that the whole difference between them is, that the expression of the one is more forcible than that of the other. Nothing, however, can be further than this from the truth. The meaning of unless is directly opposite to that of although. Unless (r) and though

is, "You must answer, that she was brought very near the fire, &c. "Superadd (to that answer) be out (or unless or without); for, as will be seen by and by, all those words are of the same import) that another divine inspiration moved," &c. To these remarks and examples it may be worth while to add, that even now but is often used by the illiterate Scotch for without; as nothing is more common than to hear a clown say "He came from home but his breakfast." Having mentioned without as a word of the same import with but when distinguished from bot, it may not be improper to consider that word here; for though in modern English it is entirely confined to the office of a preposition, it was formerly used differently either as a preposition or a conjunction. Without then is nothing but the imperative wythan-utan, from the Anglo-Saxon and Gothic verb worthan withan; which in the Anglo-Saxon language is incorporated with the verb bæon, of. According to this derivation, which is Horne Tooke's, the word without, whether called conjunction or preposition, is the same be without; and such will be its import, should it after all be nothing more than a compound of wæth, which signifies to join and sometimes to be, and ute, on.

(q) Either is nothing more than the distributive pronoun, which every body understands; and or we have already explained.

(x) So low down as in the reign of queen Elizabeth (says Horne Tooke) this conjunction was sometimes written onles or onelle; but more anciently it was written onlies and sometimes onless. Thus, in the trial of Sir John Oldcastle in 1413, "It was not possible for them to make whole Christish eote without some, onlies certain great men were brought out of the way." So, in "The image of governance," by Sir T. Eliott, 1414, "Men do fere to approach to their sovereign Lord, onles they be called. So again, in "A necessary doctrine and erudition for any Christian man, set forth by the kinge's majestie of England," 1543, "Onles ye believe, ye shall not understand." "No man shall be crowned, onles he lawfully fight," "The soul waxeth feble, onlesse the fame be cheerrified." "It cannot be begynne, onlesse by the grace of God." Now, onles is the imperative of the Anglo-Saxon verb onlesan, to difmis, or remoue. Les, the imperative of lessan (which has the same meaning as onlesan), is likewise used sometimes by old writers instead of unless. Inflances might be given in abundance from G. Douglas and Ben. Johnson; but perhaps it may be of more importance to remark, that it is this same imperative les, which, placed at the end of nouns and coalescing with them, has given to our language such adjectives as hopeless, restless, deathless, motionless, &c. i. e. dismis hope, rest, death, motion, &c.

Mr Tooke observes, that all the languages which have a conjunction corresponding to less or unless, as well
Chap. VI.

GRAMMAR.

are both verbs in the imperative mood; the former signifying take away or dismiss; the latter, allow, permit, grant, yield, affect. This being the case, "Troy will be taken unless the palladium be preferred," is a sentence equivalent to "Remove the palladium be preferred" (taking the palladium be preferred as an abstract noun, the preservation of the palladium) Troy will be taken." Again, "Troy will be taken, although Hector defend him," is the same as "Troy will be taken allow Hector (to) defend it." The idea, therefore, expressed by unless is that of the removal of one thing to make way for another; the idea expressed by although (s) is that of allowing one thing to co-exist with another, with which it is apparently incompatible.

104. Before we take leave of this subject, we might treat, as others have treated, of adverbial conjunctions, and conjunctions (of) various other denominations. But of multiplying subdivisions there is no end; and systems, in which they abound, convey for the most part no information. The nature of conjunctions can be thoroughly understood only by tracing each to its root, and allowing it to its parent or cognate tongue; and when

well as the manner in which the place of these words is supplied in the languages which have not a conjunction correspondent to them, strongly justify his derivation which we have adopted. The Greek nisi, the Latin nisi, the Italian se non, the Spanish si non, the French si non, all mean be it not. And in the same manner do we sometimes supply its place in English by but, without, be it not, but, &c. It may be proper just to add, that, according to the same author, the conjunction lest is a contraction of leas, the past participle of lees; and that lest, with the article that, either expressed or understood, means no more than hoc dimississe or quos dimississe.

(s) Although is compounded of al or all, and tho' though, than, or, as the vulgar more purely pronounce it, thaf, thaf, and thof. Now that or thof is evidently the imperative thaf of thaf of the verb thafian or thafigan, to allow, permit, grant, yield, affect; and thafian becomes thaf, though, though (and thech, as G. Douglas and other Scotch authors write it) by a transition of the same sort, and at least as early as that by which hafive becomes have. It is no small confirmation of this etymology, that in the languages which they often used all be, albeit it, all had, all were, all give, instead of although; and that as the Latin si (if) means be it, and nisi and sine (unless and without) mean be not, so nisi (although) means and be it.

(t) In a work of this kind, which professes to treat of universal grammar, it would be impertinent to waste our own and our readers time on a minute analysis of each conjunction which may occur in any one particular language. We shall therefore pursue the subject no farther; but shall subjoin Mr Horne Tooke's table of the English conjunctions, referring those who are desirous of fuller satisfaction to his ingenious work intitled The Diversions of Purley.

[Table of English Conjunctions]

<table>
<thead>
<tr>
<th>IF</th>
<th>AN</th>
<th>UNLESS</th>
<th>EKE</th>
<th>YE</th>
<th>STILL</th>
<th>ELSE</th>
<th>THOUGH</th>
<th>OR</th>
<th>THO'</th>
<th>BUT</th>
<th>BUT</th>
<th>WITHOUT</th>
<th>AND</th>
<th>LEST</th>
<th>is the participle leas of lesan, to dismiss.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>GIP</td>
<td>ANLES</td>
<td>EAC</td>
<td>GET</td>
<td>ALES</td>
<td>THAFG</td>
<td>or</td>
<td>THAF</td>
<td>or</td>
<td>BOT</td>
<td>BE-UTAN</td>
<td>AN-AD</td>
<td>GIFAN</td>
<td>To give.</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>ANAN</td>
<td>ONLESAN</td>
<td>EACAN</td>
<td>GETSAN</td>
<td>STELLAN</td>
<td>AESAN</td>
<td>THAFGAN</td>
<td>or</td>
<td>THAFIAN</td>
<td>or</td>
<td>BOTAN</td>
<td>BEON-UTAN</td>
<td>ANAN-AD</td>
<td>ANAN</td>
<td>To grant.</td>
</tr>
<tr>
<td>AN</td>
<td>ONLESAN</td>
<td>Tofdismiss.</td>
<td>EACAN</td>
<td>Tofadd.</td>
<td>GETSAN</td>
<td>STELLAN</td>
<td>AESAN</td>
<td>Tofget.</td>
<td>Tofput.</td>
<td>Tofdiminish.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

That is the article or pronoun that. As is es, a German article, meaning it, that, or which. And so is sa or so, a Gothic article of the same import as.
ordinary intercourse of life can be answered by the faculty of speech. It is a farther presumption in his favour, that in the rudest languages there are few if any conjunctions; and that even in others which are the most highly polished, such as Greek and Latin as well as English, many of those words which have been called conjunctions are obviously resolvable into other parts of speech. Thus **a** **n** **o** **l** **r** **t** **a** **l** translated, *but* is evidently the nearer gender of either the *nonunitius* or *acquisitive plural* of *alte* another; and when used as a conjunction, it intimates that you are going to *add something to what you have already said*. *Ceterum* has the same meaning, and is nothing but *mas venio*. *Mars* (but in French) is the Latin *majus*; *ut*, *at*, *en*, *que*, is the relative pronoun. Of *quoque*, *quis*, *praetera*, *antequam*, *quamquam*, *quamvis*, *quantumvis*, *quamlibet*, *occiput*; etc. The use, too, is obvious to require being mentioned. Where such revolutions as these can be made, or when the conjunctions of any particular tongue can be traced to their origin in any other, there needs be no dispute about their true import: but when the case is otherwise, and the conjunction either appears to be of any word, or is derived from a source to which it cannot be traced, we would advise such of our readers as wish to speak or write correctly, to difmiss from their minds all considerations of *copulative*, *continuative*, *causal* and *disjunctive* conjunctions, with the rest of that jargon which we have already mentioned; and to inquire diligently in what manner and for what purpose the conjunction in question is used by the best writers, both ancient and modern, of the particular language which they are studying. This will indeed be found a work of labour: but it appears to us to be the only means of discovering the precise relations which such conjunctions were intended to express, and, by consequence, of knowing what words or sentences they are fitted to connect, so as to produce a style at once accurate and perspicuous.

The import of conjunctions in any language to be learned from the best authors ancient and modern.

Prepositions unite two words that refuse to coalesce of themselves.

-- S E C T. II. O F P R E P O S I T I O N S. --

105. By Mr Harris and his followers, a **preposition** is defined to be a part of speech devoid itself of signification, but so formed as to unite two words that are significant, and that refuse to coalesce or unite of themselves. We have already expressed our opinion of that theory which holds certain words to be devoid of signification; but its absurdity, in the present instance, is more than ever glaring. Concerning the number of prepositions, it is well known that hitherto authors have never agreed. The ancient Greek grammarians admitted only 18; the ancient Latin grammarians above 50; though the moderns Sandius, Schopius, Perizonius, Vossius, and Ruddenman, have endeavoured to lessen the number without fixing it. Bishop Wilkins thinks that 36 are sufficient; and Girard says, that the French language has done the business effectually with 32. But if prepositions be words devoid of signification, why should there be disputes respecting their number? or why in any language should there be more than one preposition, since a single unmeaning mark of connection would certainly answer the purpose as well as a hundred? The *cypher*, which has no value of itself, and only serves (if we may use the language of grammarians) to connect and distinguish, and to change the value of figures, is not several and various, but uniformly one and the same. That "the preposition is so formed, as to unite two words which refuse to coalesce or unite of themselves," is indeed true; and this union it effects, *not* by having no signification of its own, but by signifying the relation by which the thing expressed by the united words are connected in nature. Prepositions are to be accounted for in much the same manner as the *causes of nouns*. The necessity of *this species* of words, or of some equivalent invention, follows from the impossibility of having in language a distinct complex term for each distinct collection of ideas which we may have occasion to put together in discourse. The addition or subtraction of any one idea, to or from a collection of ideas, makes it a different collection; and if, after either of these operations, it were to be expressed by the same word as before, nothing could ensue but misrepresentation and falsehood. Now, to use in language a different and distinct complex term for each different and distinct collection of ideas, is equally impossible, as to use a distinct particular term for each particular and individual idea. To supply, therefore, the place of the complex terms which are wanting in a language, are the *causes of nouns* and *prepositions* employed; by the aid of which, complex and general terms are prevented from being infinite or too numerous, and are used only for those collections of ideas which we have most frequent occasion to mention in discourse. By means of prepositions this end is obtained in the most simple manner. For, having occasion to mention a collection of ideas for which there is no single complex term in the language, we either take that complex term which includes the greatest number, though not all the ideas we would communicate; or else we take that complex term which includes all, and the fewest ideas more than those we would communicate; and then, by the help of the preposition, we either make up the deficiency in the one case, or retrench the superfluity in the other.

For instance, having occasion to mention a house of a particular description, and knowing that the term *house* is too general for our purpose, and that the building we have in view has no appropriate name, we say, perhaps, a *house with a party-wall*, or a *house without a roof*. In the first instance, the complex term *house* is deficient, and the preposition directs to add what is wanting. In the second instance, the complex term is redundant as it denotes a *complete house*; the preposition, therefore, directs to take away what is superfluous.

Now, considering prepositions in this the most simple light, as serving only to limit or modify general terms, it is absolutely necessary that they should have meanings of their own; for otherwise, how could we, in the inferences before us, make known by them our intention, whether of adding to or retrenching from, the same general term *house*. If, to a disciple of Mr Harris, we should say, *a house join*; he would reply, *join what*? But he would not contend that *join* is an indeclinable word which has no meaning of its own, because he knows that it is the imperative of a verb, of which the other parts are still in use; and its own meaning is clear, though the fen tence it not completed. If, instead of *join*, we should say, *a house with*; he would still ask the same question, *with what*? But if we were to discourse with him concerning the word *with*, he would probably tell us, that *with* is a preposition, an indeclinable word, which is itself devoid of signification, but so formed as to unite two words that are significant. And yet it would be evident by his question, that he felt it had a meaning of its own, which
Chap. VI.

G R A M M A R.

is in really the same as join (v). Indeed, so far has always been plainly perceived, that with and without are directly opposite and contradictory; and it would puzzle the most acute philosopher to discover opposition and contradiction in two words where neither of them had any signification. Wilkins, therefore has well exprest their meaning, where he says, that with is a preposition "relating to the notion of focial, or circumstance of society assumed; and that without is a preposition relating to the same notion of focial, or circumstance of society denied." 106. But to denote the relation of adding and taking away, are not the only purposes for which prepositions are employed. They all indeed serve to modify some general term or general affirmation, but not precisely in the same way as with and without. It has been already observed, that words significant of those things which coincide in nature, coalesce with one another in syntax, without being beholden to any auxiliary tie. For instance, we use exactly the same expression with its substantive, a word with its substantive; a noun expressing an object acted upon, with a verb denoting action; and an adverb with its verb. Take the following example: THE SPLENDID SUN GENIALLY WARMETH THE FERTILE EARTH. But suppose we were desirous to modify some substantive, or general adjective, without having recourse to prepositions; but we can employ only such prepositions as point out the relation which the air and the beam have to the sun warming the earth. In English, we should say, the splendid sun warmeth the earth. The sentence, as before, remains entire and one; the substantives or adjectives required are both introduced; and not a word which was there before is detruded from its proper place. The import of with we have already discovered; it directs to unite the beam to the sun, as jointly with him performing the operation. But the air has no other connection with this operation but that the air, or passage between the sun and the earth, and therefore the preposition through (x) must denote that relation which subsists between an object in motion, and the medium in which it moves; nor could a preposition of a different import have been employed, without altering the meaning of the whole sentence (v). 107. Mr Harris is of opinion that with, if not all, pre-

(v) This account of prepositions is taken from Horace Tooke; who adds, that the only difference between the two words with and join, is, that the other parts of the Gothic and Anglo-Saxon verb withan, to join, (of which with is the imperative), have ceased to be employed in the language. As with means join, so the corresponding French preposition avez means, and have that, or, have that also. But though with, as the imperative of withan, means join, it has sometimes a very different signification. Mr Tyack in his Glossary has truly observed, that with and by are often synonymous. They certainly are so; but then with seems to be an abbreviation of the imperative of wythan to be; AS WITHOUT IS OF WYTHAN-UTAN TO BE CUIT. This being the case, our two instances in the text will stand thus: a house join a; a party wall; a house be-out a roof. Nor let any one be surprized that we make no difference between the conjunction with out and the preposition without. The word is the same, whether it be employed to unite words or sentences. Prepositions were originally, and for a long time, cladded with conjunctions; and when first separated from them, they were only distinguished by the name of prepositional conjunctions. They are generally used to unite words, but not always; for we may say independently, I came after his departure; or, I came after we departed. By the greater part of grammarians, indeed, after, when employed as in the first sentence, is cladded with the conjunctions. The word, however, is the same in both sentences; its meaning is the same, and its effect precisely the same. The only difference in point of denotation is, that in the first example it is prefixed to a noun, his departure; in the second, it is prefixed to a nominative and a verb be departed. But even the nominative and the verb, thus applied, express no more than a specifying circumstance annexed to the other preposition, I came; and whenever they are rightly apprehended by the mind, they are strips of their prepositional form, and considered abstrusely under a new phaen, his departure. Thus then, the two sentences are synonymous in every respect, excepting the apparent grammatical nature of the words his departure, and be departed; and even these are reduced to one grammatic form in the mind, whenever the import of the prepositions is rightly apprehended. Without, and many other prepositions, especially in the learned languages, are used exactly the same in the two instances which we have given. Horace Tooke, quotes Lord Mansfield for saying, "It cannot be read without the Attorney General contents to it." This, in modern English, is not the common phraseology; but it offends not against any principle of grammar. The nominative and the verb are here, as in the former instance, considered as an abstract noun; "It cannot be read without the content of the Attorney General."

(x) THOROUGH, THOROUGH, THOROW, THROUGH, or THRO', is no other, says Horace Tooke, than the Gothic substantive dauro, or the Teutonic substantive thurh, and, like them, means door, gate, passage. So that the sentence in the text, resolved upon his principles, stands thus: "The splendid sun—join his beams genially warmeth—passage the air, (or, the air being the passage or medium)—the fertile earth." And in the same manner may we translate the preposition through in every instance where through is used in English, or its equivalent preposition in any language; as from the Latin and Italian word porta, (in Spanish puerta and in French porte), have come the Latin and Italian preposition per, the French par and the Spanish por.

(y) If, for instance, we were to substitute with or instead of through, we should in the one case alter the

138

Prepositions originally denoted the various relations of body.

prepositions were originally formed to denote the relations of place. For this opinion we see not sufficient evidence. If indeed we could suppose the inventors of earliest improvements of language to have at all concerned themselves with relations as abstracted from the objects related, we must believe that those which first attracted their attention were the relations subsuming among themselves, and the various bodies with which they are surronded. We must likewise agree with our author, that place is the grand relation which bodies or natural substances maintain at all times to one another; but we do not therefore think that it would abstract place from body; an attempt which, according to some of the most profound philosophers (2), is not only difficult, but absolutely impracticable. But whatever be in this, the relations of cause and effect, of duration and motion, are in themselves as obvious, and as likely to arrest the attention and obtain names, as those of place. Among men totally illiterate, they are evidently more so; for pain and pleasure would suggest the idea of cause and effect as matters of importance. Here is, however, not only the strongest evidence that the inventors of any language had the least idea of abstract relations. They double expressed complex conceptions by nouns and verbs, significant at once of the particular ideas and of the various relations by which they viewed those ideas as combined together in a complex conception. Afterwards, when men's minds became enlarged, and when, from the fluctuation inexpressible from a living language, objects or ideas received new names, the old words, whether nouns or verbs, which were originally employed to express a particular complex conceptions of which certain particular relations made a part, might be retained for the purpose of denoting those and all similar relations; and thus verbs and nouns would degenerate into particles bearing the names of prepositions and conjunctions. For instance, one Anglo-Saxon being desirous to communicate to another his own conception of a house with a party-wall, and having (we shall suppose) no such word in his tongue as a proposition, would naturally utter the word house, defining his friend, at the same time, to add to that well known sound another sound (uttering it) significant of the particular circumstance wanting to complete his complex conception: — a house with (i.e. join) a party wall. The word with, as the imperative of a verb, denotes of course three ideas combined together, viz. a command or wish, an affirmation, and the idea of junctio. But when the word with was diversified from the English language, the imperative with was still retained; but losing its verbal and modal nature, it was thenceforth employed to denote only one of the three ideas for which it originally stood, viz. the idea of junctio. And thus it is, that verbs, and also nouns and adjectives, in passing from one language to another, may become propositions and conjunctions. Thus too it is, that some of those prepositions come to denote the contiguous, and some the detached relation of body. The contiguous, as when we say, Cains walked with a staff; i.e. Cains, join a staff, walked; the statue stood upon a pedestal; i.e. the statue stood (the place of its standing) the higher part of a pedestal; the river ran over a bank; i.e. the river ran (the place of its running) the higher part of a bank. The detached relation, as when we say, He is going to (c) staff, i.e. He is going to the END

meaning, and in the other speak non-ence. "The sun warmeth with the air the fertile earth," is an affirmation that the sun warmeth both the air and the earth; whereas the original entitement affirmed nothing more than that he warmeth the earth. "The sun warmeth of the air the fertile earth," is nonence, as it makes the earth a part, or a consequence, of the air. So necessary is it that prepositions have a meaning, and that the meaning of each be attended to.

(2) The Bishops Berkeley and Law, with the very learned and ingenious Principal Campbell of Aberdeen. See The Principles of Human Knowledge, Law's Notes on King's Origin of Evil, and The Philosophy of Rhetoric.

(a) As the Italian subjunctive case, a house, race, family, nation, &c. in passing to the French, becomes the preposition en, to which there is not, as we know, a preposition of precisely the same import in any language. Senza o senza in Italian becomes sans in French, and means absence. Nor is it necessary that verbs and nouns should always pass from one language to another, in order to be converted into prepositions: The Greek preposition χαρον is evidently the corrupted imperative of χαριν to favor, to disjoin, to separate. The Latin sine is sit ne, be not. The German sonder is the imperative of Sonderen, which has the same meaning as χαριν.

(b) Up, upon, over, above above, have all, says Horne Tooke, one common origin and signification. In the Anglo-Saxon, ufa, upera, uhemest, are the adjectives altus, altior, altissimus. Ufa or upan, up; comparative upera, operes or oper, over or upper; superlative uhemest, upmost or uppermost. Beupan, beufan, on-beufan, bove, above. If this be a just account of the origin of these words, the sentences in the text, where upon, over, and above, occur, will run thus: The statue stood on high a pedestal; "the river ran over a bank;" the sun is risen on the high hills." And here we may observe, that the mere relation between standing, running, &c. and places, is rather inferred from the verb itself, than expressed by a separate word: and the reason is obvious. For if a statue stand, every one knows that it must stand some thing as well as at some time. There is therefore no necessity, whatever elegance there may be in it, for employing any word to denote that relation, which is commonly believed to be signified by on; but it is necessary to infer, between the verb and pedestal, a word significant of place, that pedestal may not be mistaken, by an ignorant person, for a portion of time, or any thing else connected with the standing of the statue.

(c) That to is significant of detached relation, is the language of Mr Harris, which, though it may be allowed in a loose and vulgar sense, is certainly not philosophically just. The preposition to (in Dutch written tuk and to) is the Gothic subjunctive: tau of tautu, signifying all, effect, result, or consummation; which Gothic substantive itself is no other than the past participle tuad or tuadus of the verb taugan age...
Chap. VI.

GRAMMAR.

END (of his journey) Italy; the sun is risen above the hills, i.e. the sun is risen (the place) THE TOP OF THE hills; these figs came FROM Turkey, i.e. these figs came BEGINNING (their journey at) Turkey.

Besides the detached relation of body, Mr Harris is of opinion that the preposition from denotes two other relations not observed than those of motion and respect. Thus if we say, "That lamp hangs from the ceiling, the preposition from assumes a character of quiescence."

But if we say, "That lamp is falling from the ceiling," the preposition in such cases assumes a character of motion."

But this is evidently a mistake: the detached relation in the former instance of the figs, as well as the motion and respect in the present instances, are expected not by the preposition, but by the verbs cause, fall, hang. The word from has as clear, as specific, and at all times as uniform and unequivocal a meaning, as any word in the language, from means merely beginning, and nothing...
thing else. It is simply the Anglo-Saxon and Gothic
noun from, beginning, origin, source, fountain, author
(The). Now if this meaning be applied to Mr Harris's
instances, from will speak clearly for itself, without
the assistance of the two following verbs, which are sup-
poised by him to vary its character.

"These figs came from Turkey."

"That lamp falls from the ceiling."

"That lamp hangs from the ceiling."

came is a complex term for one species of motion;
falls is a complex term for another species of motion;
and *hangs* is a complex (e) term for a species of attach-
ment. Have we occasion to communicate or mention the
commencement or beginning of these motions, and of this
attachment, and also the place where they
commence or begin? To have complex terms for each
occasion of this sort is absolutely impossible; and there-
fore nothing can be more natural or more simple than to
add the signs of these ideas, viz. the word *beginning*
(which will remain always the same) and the name of the
place (which will perpetually vary). Thus,

"These figs came—beginning Turkey."

"That lamp falls—beginning ceiling."

"That lamp hangs—beginning ceiling."

That is,

"Turkey the place of beginning to come."

"Cycling the place of beginning to fall."

"Cycling the place of beginning to hang."

It has been said that no less a man than bishop Wilkins,
that from letters primarily to place, and secondarily to
time. But the truth is, that from relates to every
thing to which beginning relates, and to nothing else.

"From morn till night the eternal larum rang.

That is, "The larum rang beginning morning (or
morning being the time of its beginning) tillnight."

As from always denotes beginning, so to and till
always denote the end. There is, however, this
difference between them, that to denotes the end of any
thing; till the end only of time. We may lay indif-
cernently—"From morn to night," or "From morn
till night, the eternal larum rang;" but we cannot say—
"These figs came from Turkey till England."

That *till* can, with propriety, be opposed to *from* only
when we are talking of time, is evident; for it is a
word compounded of *to* and *while*, i.e. time. And
as the coalescence of these two words *to*—*while*, took
place in the language long before the present super-
fluous of the article the, the phrase—"From morn
till night"—is neither more nor less than—*From
morn to time night*. When we say, "From morn to
night," the word *time* is omitted as unnecessary.

Besides, Mr Harris mentions over as significant,
sometimes of motion, and sometimes of rest; and quotes,
as instances, the following two passages from Milton.

---To support macOS ships

Over the burning marks.

Here, says he, over denotes motion. Again,

*He with looks of cordial love

Hung over her答案

Here over denotes rest. But the truth is, that over

denotes neither motion nor rest in either of the pas-
sages. In the first quotation, indeed, *motion is implied* but it

is implied in the word *steps*; and not in *over*, which
denotes only that the place of the steps was the top of
the burning marks. In the second quotation, *rest* is

implied, and that too a particular *species of rest*; but

it is implied or rather expressed by the verb *hung*, and

over denotes the place of that species of rest.

But though the original use of prepositions

was to denote the relation of body, they could not be

confined to this office only. They by degrees extend-

ed themselves to subjects *incorporate*; and came to be *by
degressions* noted relations, as well intellectual as local. Thus, becaue extended to

in place he, who is above, has commonly the advantage subjects in

over him who's below, therefore we transfer over and un-
corporal.

Der (f) to dominion and obedience. Of a king, we say, be

ruled over his people; of a soldier, be served under his gen-

eral. So too we say, without thought: without attention;

thinking over a subject; under anxiety; from fear; through

jealousy, &c. All which instances, with many others

of like kind, show, that the first word of men, like

their first ideas, had an immediate reference to sensible

objects; and that in all days, when they began to
discern with their intellect, they took these words in which

they

If a man should utter a sentence, and to the end of it subjoin the very general word *do*, the person to whom he
spoke, would naturally ask, *do what*? and this question would, of course, produce an *additional sentence or clause*
of a sentence. Besides, it is to be observed, *thence*, from the Latin preposition is derived, as well
as the Gothic verb, which is the source of the English particles, means not only *to do*, but also *to adduce or bring*;
so that when we say, "he is going to Italy," we do nothing more than *affirm* that "he is going,"
and deliberate the person to whom we speak, to "add Italy to the journey."

From this derivation of the preposition *to*, it will be seen at once upon what principle it is employed to
mark the infinitive mode. In the learned languages that mode is generally known by its termination; but
in English it would be impossible, without the aid of *to* or of some other word significant of action, to distinguish
the verb *love* from the noun *love* or *infant*. (p)

This derivation is Mr Horne Tooke's; and he supports it by the following sentence:

Ner estate

On fruman worthe, he worhte weperman and wifemen; which is Anglo-Saxon of St Matt.

"Annon legitistis, quod qui eos creavit, creavit eos marem et feminam."

"(a) There are complex terms because they are verbs. *Each* denotes an *affirmation and time*; and combined
with these, *came* and *falls* denote motion, and *hangs* denotes rest.

Under and *beneath*, though by the sound they seem to have little connection, are yet in fact almost
the same word, and many very well supply each other's place. *Under* is nothing but *on*, *beneath* is
composed of the imperative *be* and the noun *near*. *Neth* uncompounded having fallen away from
our language, would perhaps be unintelligible, had not the noun *nether* and *nethermost* still continued in
common use. *Neth*; Anglo-Saxon, *nethan*, *nethe*; Dutch, *neder*; Danish, *ned*; German, *niede*;
and Swedish, *nedre* and *nder*; is undoubtedly as much a substantive, and has the same meaning, as the word

Nad in common language it denotes the bottom.
they found already made, and transferred them by metaphor to intellectual conceptions.

Among the relations which may be considered rather as intellectual than corporeal, are those of cause and consequence; and for the denoting of these we have two prepositions, which sometimes appear in direct opposition to one another, and at other times may exchange places without injury to the sense.

"Well! 'tis e'en so! I have got the London diffuse they call love. I am sick of my husband, and for my gallant." — Wycherley's Country Wife.

Here of and for cemented almost in opposition; at least their effects in the sentence appear to be very different; for, by the help of these two prepositions alone, and without the affiance of any other words, the expresses the two contrary affection of loathing and desire. The truth, however, is, that the author, if he had pleased him, might have used of where he has employed for, and for where he has put of. This is evident from the following quotation:

"Marian. Come, Amie, you'll go with us.
Amie. I am not well.
Lionel. She's sick of the young shepherd that be- kilt her." — Sad Shepherd.

In the same manner we may, with equal propriety, say — "We are sick of hunger," or — "We are sick for hunger." And in both cases we shall have expressed precisely the same thing, with only this difference, that, in the former sentence, we declare sickness to be the consequence; in the latter, we declare hunger to be a cause. But to return to the poor country wife; that poor lady seems to have had a complication of distempers; she had, at least, two disorders — a sickness or loathing, and a sickness of love. She was sick for difficult, and sick for love. She was sick of difficult her husband; sick of love her gallant.

Sick for difficult her husband;
Sick for love her gallant.

In the first sentence, as thus stated, sickness is declared to be the consequence of difficult, of which her husband is declared to be the cause. In the second, sickness is declared to be the consequence of love, of which her gallant is declared to be the cause. In the third sentence, disgust is declared to be the cause of her sickness, and the consequence of offspring of her husband. In the fourth, love is declared to be the cause of her sickness, and the consequence of offspring of her gallant.

Thus, then, it appears, that though the two first of these sentences, taken entire, convey the very same meaning with the two last, yet the import of the preposition for is as different from that of of, as cause is from consequence (c). When two words or sentences are linked together by the former of these prepositions, the object expressed by the last word or sentence is declared to be the cause of that which is expressed by the pre- ceding; when two words or sentences are linked toge- ther by the latter preposition, the object expressed by the first word or sentence is declared to be the consequence of or to proceed from, the object expressed by the second. It is therefore a matter of perfect indifference to the sense, whether we say sickness of hunger, or sickness for hunger. The man who speaks little is, wife, or the man is wife, for he speaks little. By means of the preposition of, we declare sickness to be the consequence proceeding from hunger, and sickness to be the consequence we infer from the man's speaking little; by means of for, we declare hunger to be the cause of sickness, and the circumstance of speaking little to be the cause from which we infer the man's wisdom. In the one sentence, or is to be considered as a noun in apposition to sickness, in the other, as a noun in apposition to the man is wife taken abstractly as a noun. In the one sentence, for is to be considered as a noun in apposition to hunger; in the other, as the same noun in apposition to he speaks little, taken abstractly as noun.

In the foregoing use of prepositions, we have seen how they are applied by way of just a position; that is to say, where they are prefixed to a word with a pound, becoming a part of it. But they are also used by with the same word, in the way of composition; that is, they are prefixed to other words to become real parts of them. Thus in Greek we have ἐν ὑποτέλειαν; in Latin, intelligibilis, and in English understand. So also, to foretell, to overthrow, to undervalue, to outrage, &c. and in Greek and Latin other infinities innumerable. In this case the prepositions commonly transfix something of their own meaning into the word with which they are compounded. For example, if we suppose some given space, and a transfix signify out of that space; per, through it; in, within; something sub, under it. Hence e and ex in composition augment, Enormis is something not simply big, but big in excess, something got out of the rule, and beyond the measure. Disc, "to speak," edico, "to speak out," which editionis "an edit," something to effectually spoken as all are supposed to hear and all to obey. — On the contrary, in and sub diminish and lessen. Injustus iniquus, "unjust, inequitable," something that lies within justice and equity, that reaches not so far, that falls short of them. Sumiger, "blackish;" supribucundus, "reddish;" tending to black, and tending to red; but yet under the standard, and below perfection.

Before we dismiss this part of our subject, we shall make the same general remark on prepositions that we formerly made on conjunctuous; viz. that the precise mode of import of each can with certainty be known only by tracing it to its source in some word of known and determinate meaning, either in the language where the preposition itself has place, or in some parent or cognate tongue. And it may be laid down as an infallible rule, that where different languages use the same or a similar particle, that language ought to be considered as its legitimate parent, in which the true meaning of the word can be found, and where its use is common and familiar as that of any other verbs and sub-

(a) Junius derives for from the Greek προ; Skinner, from the Latin pro; but I believe, says Horne Tooke, that it is no other than the Gothic substantive vairina, "caufa." He imagines also that of (in the Gothic and Anglo-Saxon ap) is a fragment of the Gothic and Anglo-Saxon words afara and afora, parent, father, &c. In a word, he considers for and of as nouns or substantives; the former always meaning cause, the latter always meaning consequence, offspring, successor, follower, &c. If this account of these words be just, and we have no doubt of it, the prepositions for and of are in syntax to be considered as nouns in apposition with other nouns, or with sentences taken abstracly as nouns.
When prepositions can be traced to such sources as these, no room can be left for disputes concerning their meaning. In carrying on this etymological pursuit, we find advantages in the nature of prepositions which conjunctions do not afford us. With and without, from and to, with many other words belonging to this class, have meanings directly opposite and contradictory to each other. If, then, by the total or partial extinction of an original language, the root of any one preposition be lost, whilft that of its opposite remains, the philosopher ought to be satisﬁed with reasoning from contrariety; as nothing is more evident, than that the meaning of a word is known when we know with precision the meaning of its opposite. When we meet, however, with a luckless preposition of which no root is left to be dug up, and which has itself no direct opposite in the language, nothing remains but that we inquire for what purpose it is used by the best writers both ancient and modern; and if we can ﬁx upon one meaning which will apply, however awkwardly, to all the places where it occurs, or to the greater part of them, the probability is, that we have discovered the true and original (n) meaning of the preposition; and by keeping that meaning constantly in view, we shall ourselves be enabled to use the word with pertinacity and precision.

Sect. III. Of Interjections.

Besides the above parts of speech, there is another acknowledged in all the languages of Europe, called the interjection; a word which cannot be comprehended under any of the foregoing classes. The genuine interjections are very few in number, and of very little importance, as they are thrown into a sentence without altering its form either in syntax or in signiﬁcation. In the words of Horne Tooke, the bruitish uncultivated interjection has nothing to do with speech, and is only the miserable refuge of the speechless. The dominion of speech, according to the same author, is erected on the downfall of interjections. Without the artful contrivances of language, mankind would have nothing but interjections with which to communicate orally any of their feelings. "The neighing of a horse, the lowing of a cow, the barking of a dog, the purring of a cat, sneezing, coughing, groaning, shrieking, and every other involuntary convulsion with oral sound, have almost as good a title to be called parts of speech as interjections. In the intercourse of language interjections are employed only when the suddenness or vehemence of some affection or passion returns men to their natural state, and makes them for a moment forget the use of speech; or when, from some circumstance, the throats of time will not permit them to exercise it." The genuine interjection, which is always expressive of some very strong sensation, such as an when we feel pain, does not owe its characteristical expression to the arbitrary form of articulation, but derives its whole force from the tone of voice and modulation of countenance and gesture. Of conﬁdence, these tones and gestures express the same meaning, without any relation to the articulation which they may assume; and are therefore universally understood by all mankind. Voluntary interjections are used in books only for embellishment, and to mark forcibly a strong emotion. But where speech can be employed, they are totally useless; and are always insufﬁcient for the purpose of communicating thought. Dr Beattie ranks strange prodigies, amazing, wonderful, O dear, dear me, &c. when used alone, and without apparent grammatical syntax, among the interjections; but he might with as much propriety have considered hardly, truly, really, and even many Latin words, as interjections; for these too are often used alone to supply the place of whole sentences. The truth is, that all men, when suddenly and violently agitated, have a strong tendency to shorten their discourse by employing a single word to express a sentiment. In such cases, the word employed, whether noun, adjective, or verb, would be the principal word of the sentence, if that sentence were completed; and the agitation of the speaker is such, and the cause of it so obvious, that the hearer is in no danger of mistaking the sense, and can himself supply the words that are wanting. Thus if a perfon, after listening to a romantic narrative, were to exclaim, strange! would any man of common sense suppose, that the word strange, because uttered alone, had lost the power of an adjective and became an interjection? No, surely: Every one fees, that the exclamation is equivalent to, That is strange, or That is strange! Real interjections are never employed to convey truth of any kind. They are not to be found amongst laws, in books of civil institutions, in history, or in any treatise of useful arts or sciences; but in rhetoric and poetry, in novels, plays, and romances, where in English, so far from giving pathos to the style, they have generally an effect that is disgusting or ridiculous.

Having now analyzed every part of speech which can be necessary for the communication of thought, or which is acknowledged in any language with which we are acquainted; we shall dismiss the article of Grammar, after annexing a Table, which may present at one view the several classes and subdivisions of words. Of the different modes of dividing the parts of speech, as well as of the little importance of systematic classiﬁcations, we have already declared our decided opinion; but for the sake of those who may think differently from us, we shall in the annexed Table adopt Mr Harri’s classiﬁcation as far as it is intelligible; after informing our readers that Mr Horne Tooke admits only three parts of speech, the article, the noun, and the verb, and considers all other words as corruptions or abbreviations of the two last of these.

(II) For instance, let us suppose that Horne Tooke’s derivation of for, from the Gothic substantive faira, is fanciful and ill-founded, yet there can be little doubt but cause is its true and original meaning, when it is found, that of sixteen examples brought by Greenwood, and forty-six by Johnson, of different signiﬁcations of the word for, there is not one where the noun cause may not be substituted instead of the preposition for; sometimes indeed awkwardly enough, but always without injury to the sense. Even where for seems to be loco alterius, which Lowth afferts to be its primary sense, it will be found to be cause, and nothing else: Thus, He made considerable progress in the study of the law before he quitted that profession for this of poetry; i.e. before he quitted that profession, this of poetry being the cause of his quitting it.
A Grammatical Table

A Systematic View of Words as they are commonly arranged into distinct Classes, with their Subdivisions.
GRAMRIAN, one that is skilled in or teaches grammar.

Anciently the name grammarians was a title of honour, literature, and erudition, being given to persons accounted learned in any art or faculty whatever. But it is otherwise now, being frequently used as a term of reproach, to signify a dry pedling person, employed about words and phrases, but attentive to the true beauties of expression and delicacy of sentiment. The ancient grammarians, called also philologers, must not be confounded with the grammaitists, whole sole business was to teach children the first elements of language: Varro, Cicero, Meffala, and even Julius Caesar, thought it no dishonour to be ranked as grammarians, who had many privileges granted to them by the Roman emperors.

GRAMONT, a town of France, in the Limois, remarkable for its abbey, which is the chief of the order. E. Long. 133. N. Lat. 45. 56.

GRAMPYLAND-SHILL; a chain of high mountains in Scotland, which run from east to west almost the whole breadth of the kingdom. See (Settiff) Alpes and Scotland.—They take their name from only a single hill, the Most Grampyland of Tacitus, where Galgacus waited the approach of Agricola, and where the battle was fought so fatal to the brave nation, as is related in the Battle of the Caledonians.

GRAMPYLAND, a town of Cornwall in England, seated on the river Trelaw, over which there is here a bridge. W. Long. 5. 25. N. Lat. 50. 20. The inhabitants have a considerable manufacture of gloves; and the town sends two members to parliament. Some think that this town is the Voluba of the ancients because it stands on the same river; and that on the building of the bridge, the name was changed into Grandpoint. It was made a borough in the reign of Edward III. by whose charter it was endowed with large privileges, particularly freedom from toll through all Cornwall, a market on Saturday, and three fairs in the year; which the burghers hold of the duchy of Cornwall in free farm, at the rent of about 12 guineas. Its privileges were confirmed by King Henry VIII. but it did not send members to parliament till the reign of Edward VI. It is a corporation with a mayor, 8 magistrates, a recorder, and town-clerk. The mayor is chosen annually the Tuesday before Michaelmas, and the members by the majority of the magistrates and freemen, who are fuch of the inhabitants as pay foot and lot. There is a chapel of ease in the town to the parish-church, which is at Creed, about a quarter of a mile off.

GRAMUS, in ichthyology; a species of dolphin. See Delphinus,

GRANA, a province of Spain, which for a long time was a kingdom distinct from the rest of that country. See the article Spain.—It made a part of the ancient Baetica; and was inhabited by the Baetici, the Britani, &c. and at present it is sometimes called Upper Andalusia. It is bounded to the south and east by the Mediterranean, to the west and north by Lower Andalusia, and to the north-east by Murcia. Its extent from west to east is two hundred and ten miles; but its greatest breadth exceeds not eighty. The air here is temperate and healthy; and though there are many mountains in the province, and some of them very high, yet they are almost even where covered with vines and fruit-trees, together with laurel, myrtle, sweet-basil, thyme, lavender, marjoram, and other aromatic herbs, which give an exquisite taffle to the flesh of their sheep and cattle. A great deal of silk and sugar, flax and hemp, honey and wax is also produced here; besides dates and acorns, superior to the finest nuts; good stone for building; several sorts of gems; sumach, used in dressing goat skins; and galls, of which a dye is made for leather. The valleys, with which the mountains are interferted, are extremely beautiful and fertile. The inhabitants of some of the highest mountains are said to be descendants of the Moors; and, though they are become Roman-catholics, retain, in a great meafure, their ancient customs, manners, and language. The principal rivers in the province are the Genil, or Xeni, and Guadalantin, besides which there are many lesser streams. Abundance of salt is made in this province; which, though neither so populous nor so well-cultivated as when subject to the Moors, yet is as much so as any in Spain. It was the seat of the kingdom possessed by the Moors, and was not reduced and annexed to the crown of Castile until 1492.

GRANADA, the capital of the above province, is situated at the foot of the Sierra Nevada, or the Snowy Mountain, in a whole plain, full of air and fruitful country, an hundred and eighty miles south of Madrid, in W. Long. 2. 30. N. Lat. 36. 56. It stands upon two hills separated by the Darro. The Genil runs under the walls, and these two rivers are formed from the melting of the snow with which the mountain is constantly covered. The Darro is said to carry it small particles of gold; and its name, derived from dat aurum, may be alleged as a proof of this: the Genil, in like manner, rolls with its stream little pieces of silver. When Charles V. came to Granada, in 1526, with the empress Isabella, the city presented him with a crown made of gold gathered from the Darro. The city is large and magnificent, containing a great number of very handsome public and private buildings. Its walls, which are adorned with many towers at equal distances, are said to be ten miles in compass. Here are two castles; one built by the Moors, and the other by Charles V. and Philip II. They both command a very fine prospect; and the first is so large, that it looks like a city by itself; and, it is said, has room enough to accommodate forty thousand people, exclusive of the royal palace, and the convent of St Francis. Here is also a court of inquisition; a royal tribunal; and an university, founded in 1551; with the see of an archbishop, who has a revenue of forty thousand ducats per annum. A great many noblemen, clergy, and wealthy citizens, reside in this city, of which the silk trade and manufacture is very great, and the arsenal is said to be the best furnished of any in Spain. The inhabitants, who are partly descendants of the Moors, are largely supplied with water. There are several fine squares, particularly that called the Bivaramba or Placa Mayor, where the bull-fights are held; and without the city is a large plain, full of towns and villages, called La Vega de Granada.

The Moors are said to regret nothing but Granada, amongst all the lofts they have sustained in Spain; they mention it in all their evening prayers, and supplicate
Granada. heaven to restore it to their possession. The last Moors
ish ambassador who came into Spain obtained permission
of the king to see Granada; he fled tears on enter-
ing the Alhambra, and could not refrain from ex-
claiming, that the folly of his ancestors had deprived
them and their posterity of that delightful country.
Granada had formerly twenty gates: the first, that
of Elvira, which still remains; the second, that of Bi-
balmazar, or of conference, because, with the Moors, it
was a kind of place of resort where they convened on
affairs; the third, Vivarambla, called from its leading
to a grand square which still bears the fame name;
the fourth, Bib Racha, or of provisions; the fifth,
Bita-
tabin, or the gate of the hermits, which led to dif-
different solitude, the abodes of dervises; the sixth, Bib-
mite, or Biblacha, the first gate; the seventh,
the mill gate; the eighth, that of the sun, because it open-
ed to the east; the ninth, the gate of the Alhambra,
called by the Moors Bib Luxar; the tenth, Bib Adam,
or the gate of the bones of Adam; the twelfth, Bib
Ciedra, the gate of the nobles; the Moors kept this
gate shut for a long time, because it had been predic-
ted that the Moors who should one day take the city,
would enter by that gate; the thirteenth, that of
Fuxalauza, or of the hill of almond trees; the four-
teenth, the lion gate, in Arabic, Bib Elecici; the fif-
teenth, the coast gate, called by the Moors Alacabar;
the sixteenth, Bib Almomut, or the gate of the Banners,
at present the magdalen gate; the seventeenth, that of
the Darro; the eighteenth, that of the Mofayca; the
nineteenth, that called the gate of Ecco Homo; the
twentieth, that by the side of the Alhambra.
The Moors have left more monuments in Granada
than in any other city in Spain. From the great num-
ber of inscriptions in and about the city, and the line
decorations of the Alhambra and the Generalif, it might
be supposed these people intended to Make Granada
the great depository of their religion, manners, cus-
toms, and magnificence. There is not a wall which
do not bear some marks of their power; but, not-
withstanding this abundance of monuments, the reign
of the Moors in Spain is still buried in confusion and
obscurety. The ignorance of the Spaniards, their
superstition, and the hatred they bore the Moors, have
much contributed to this darknefs; they have either
destroyed, or suffered to be effaced by time, every
thing which bore the mark of mahometanism, instead
of preserving the monuments of antiquity, which at
the same time were theo of their own glory; and it
may be said, that chance alone, and the solidity of
their construction, much more than curiosity or a love
of the arts, has preserved those which still exist, al-
though daily going to ruin.

An account of the Alhambra has been already
given under its name in the order of the alphabet. From
the hall of Comares there mentioned, there is a modern
little fair-cafe; the old one, which corresponded to the
beauty of the edifice, having been destroyed. At the
top of the fair-cafe is a gallery, a part of which is in-
cluded with an iron railing; this kind of cage is called
the prison of the queen. It was here the wife of the
last king of Granada was imprisoned. The Genoals
and Legris, two families of distinction, bore false wit-
news against her virtue, and occasioned the destruction
of the greatest part of the Abencerrages, another
powerful and numerous family of Granada of whom
they were jealous. The history of this event is given
as follows.

In the year 1491, Abdali, furnamed the Little, still
reigned in Granada; but this city was upon the brink
of ruin, for the principal families were divided against
each other. The Moors had carried their arms against
Jaen, and had been bravely repelled. Abdali was con-
fiding himself in one of his pleasure houses for the de-
fense of his enterprise, when the Zegrifs, who long
had been the secret enemies of the Abencerrages,
took the opportunity of this defeat to represent them
to the king as rebellious subjects, who employed their
immense riches to gain the favour of the people and
declare their sovereigns. They accused Albin Ham-
et the moft rich and powerful among them, of ha-
vying an adulterous commerce with the queen, and pro-
duced witneffe who affirmed they had on a certain fe-
fival fheat, at Generalif, under a bowe of rofe trees,
Albin Hamet in the arms of that princess. The fury
of Abdali may easily be imagined; he swore the de-
struction of the Abencerrages. But the Zegrifs, too
prudent to let his anger break forth, advised him to
dilute, and not to suffer it to be known to that
numerous and powerful family that he was informed
of their perfidy. It will be better, said they, to entice
them into the fiare, and, before they can unite and
put themselves into a state of defence, revenge upon
their heads the insult offered to the crown. This ad-
vice was followed: Abdali went to the Alhambra,
having ordered thirty of his guards to arm themselves,
and the executioner to attend. The Abencerrages
were fent for one by one, and beheaded as soon as they
entered the hall of the lions, where there is still a large
vafe of alabaster, which was quickly filled with blood
and the heads of expiring bodies. Thirty-five heads
had already been struck off, and all the Abencerrages
would have died in the fame manner, had not a page,
who had followed his master, and remained unperce-
vied in the hurry of the execution, taken an oppor-
tunity of withdrawing and giving information to the reft
of the unhappy family of what had passed. Those
immediately assembled their friends in arms, crying out
through the city of Granada, "Treason! treason! Let
the king die! he unjustly puts to death the Aben-
cerrages!" The people, with whom they were favour-
vites, did not hesitate in affifting them: fourteen thou-
sand men were soon found in arms, and immediately
proceeded towards the Alhambra, shaming all the
way. Let the king die! Abdali, surprized his secret
should have been fo soon discovered, and feverely re-
penting of having followed the pernicious counsels he
had received, ordered the caffe gates to be shut; but
they were presently set on fire. Muley Hacen, who had
been forced to abdicate the throne in favour of his son,
having heard the tumult of the people, had one gate
opened, and prefented himself to appeafe the rage of
the citizens; but he no sooner appeared, than he was lift-
ed up by the multitude nearest the gate, who cried out
"Behold our king, we will have no other, long live
Muley Hacen!" and leaving him surrounded by a
strong guard, the Abencerrages, and other nobles, en-
tered the caffe, accompanied by upwards of an hun-
dred soldiers. But they found the queen only, with
her women, and in the utmost conffernation at the
sudden
The Granada, in the art of war, a hollow ball or shell of iron or other metal, about 24 inches in diameter, which being filled with fine powder, is set on fire by means of a small fuse driven into the fuse-hole, made of well-seasoned beech-wood, and thrown by the granadiers into those places where the men stand thick, particularly into the trenches and other lodgements made by the enemy. As soon as the composition within the fuse gets to the powder in the grenade, it bursts into many pieces, greatly to the damage of all who happen to be in its way. Granadoes were invented about the year 1594. The author of the Military Dictionary has the following remark on the use of granades. "Grenades have unaccountably sunk into disuse; but I am persuaded there is nothing more proper than to have grenades to throw among the enemy who have jumped into the ditch. During the siege of Cassel under the Count de La Lippe, in the campaign of 1744, a young engineer
undertook to carry one of the outworks with a much smaller detachment than one which had been repulsed, and succeeded with ease from the use of grenades; which is a proof that they should not be neglected, either in the attack or defence of posts."—The word Granado takes its rise from hence, that the shell is filled with grains of powder, as a pomegranate is with kernels.

GRANARD, a borough, market, fair, and post town in the county of Longford, province of Leinster; it gives title of earl to the family of Forbes; situated 52 miles from Dublin, and about 16 north east of Longford. N. Lat. 53° 44'. W. Long. 7° 30'. Here is a remarkable hill or mount, called the Most of Granard, thought to be artificial, and a fire of a Danish castle or fort; which commands from its summit a most extensive prospect into six or seven adjoining counties. In this town have lately been given annual prizes to the best performers on the Irish harp. Granard has a barracks for a company of foot; and returns two members to parliament; patronage in the families of Macarmey and Greville. Fairs held 3d May and 1st October. This place takes its name from Granard, or "the height of the firm," and was formerly the residence of the chiefs of north Teffia. It is sometimes written Grenard.

GRANARY, a building to lay or store corn in, especially that designed to be kept a considerible time.

Sir Henry Wotton advises to make it look towards the north, because that quarter is the coldest and most temperate. Mr. Worlidge observes, that the best granaries are built of brick, with quarters of timber wrought in the inside, to which the boards may be nailed, with which the inside of the granary must be lined 6d close to the bricks, that there may not be any room left for vermin to shelter themselves. There may be many stories one above another, which should be near the one to the other; because the shallower the corn lies, it is the better, and more easily turned.

The two great cations to be observed in the erecting of granaries are, to make them sufficiently strong, and to expose them to the most drying winds. The ordering of the corn in many parts of England, particularly in Kent, is thus: To separate it from dust and other impurities after it is threshed, they toss it with shovels from one end to the other of a long and large room; the lighter substances fall down in the middle of the room, and the corn only is carried from side to side, or end to end, of it. After this they ferrein the corn, and then bringing it into the granaries, it is spread about half a foot thick, and turned from time to time about twice in a week; once a week they also repeat the fereening it. This sort of management they continue about two months, and after that they lay it a foot thick for two months more; and in this time they turn it once a week, or twice if the season be damp, and now and then ferrein it again. After about five or six months they raise it to two feet thickness in the heaps, and then they turn it once or twice in a month, and ferrein it now and then. After a year, they lay it two and a half or three feet deep, and turn it once in three weeks or a month, and ferrein it proportionably. When it has lain two years or more, they turn it once in two months, and ferrein it once a quarter; and how long ever it is kept, the oftener the turn-

The public granaries at Dantzick are seven, eight, or nine stories high, having a funnel in the midst of every floor to let down the corn from one to another. They are built with securely, that though every way surrounded with water the corn contracts no damp, and the vessels have the convenience of coming up to the walls for their lading. The Russians preserve their corn in subterranean granaries of the figure of a sugar-loaf, wide below and narrow at top; the sides are well plastered, and the top covered with stones. They are very careful to have the corn well dried before it is laid into these stores, and often dry it by means of ovens; the summer dry weather being too short to effect it sufficiently.—Dantzick is the grand florshoene or repository of all the fruitful kingdom of Poland. The wheat, barley, and rye, of a great part of the country, are there laid up in parcels of 20, 30, or 60 lafts in a chamber, according to the size of the room; and this they keep turning every day or two, to keep it sweet and fit for shipping. A thunder storm has sometimes been of very terrible consequence to these stores. All the corn of the growth of former years having been found so much altered by one night's thunder, that though over night it was dry, fit for shipping or keeping, and proper for uses of any fort, yet in the morning it was found clammy and sticking. In this case there is no remedy but the turning of all such corn three or four times a day for two months or longer; in which time it will sometimes come to itself, though sometimes not. This effeet of thunder and lightning is only observed to take place in such corn as is not a year old, or has not sweated thoroughly in the straw before it was threshed out. The latter inconvenience is easily prevented by a timely care; but as to the former, all that can be done is carefully to examine all stores of the last year's corn after every thunder storm, that if any of this have been affected, it may be cured in time; for a neglect of turning will certainly utterly destroy it.

According to Vitruvius's rules, a granary should always be at the top of a house, and have its openings only to the north or east, that the corn may not be exposed to the damp winds from the south and west, which are very deftructive to it; whereas the contrary ones are very necessary and wholesome to it, serving...
Grain. to cool and dry it from all external humidity, from whatever cause. There must also be openings in the roof to be left open in dry weather, partly to let in fresh air, and partly to let out the warm effluvia which are often emitted by the corn. The covering of the roofs should always be of tiles, because in the worst seasons, when the other openings cannot be safe, there will always be a considerable inlet for fresh air, and a way out for the vapours by their joinings, which are never close. If there happen to be any windows to the south, great care must be taken to shut them up in moist weather, and in the time of the hot southern winds. There must never be a cellar, or any other damp place under a granary, nor should it ever be built over stables; for in either of these cases the corn will certainly suffer by the vapours and be made damp in one, and ill-tasted in the other.

M. Du Hamel and Dr Hales recommend various contrivances for ventilating or blowing fresh air through corn laid up in granaries or ships, in order to preserve it sweet and dry, and to prevent its being devoured by weevils or other insects. This may be done by nailing wooden bars or laths on the floor of the granary about an inch distant from each other, when they are covered with hair-cloth only; or at the distance of two or three inches, when coarse wire-work, or basket-work of oak is laid under the hair-cloth, or when an iron plate full of holes is laid upon them. These laths may be laid across other laths, nailed at the distance of 15 inches, and two or more deep, that there may be a free passage for the air under them. The under laths must come about six inches short of the wall of the granary at one end of them; on which end a board is to be let edgewise, and sloping against the wall: by this disposition a large air-pipe is formed. With having an open communication with all the interfices between and under the bars, will admit the passage of air below forcibly through a hole at the extremity of it, into all the corn in the granary, that will consequently carry off the moist exhalations of the corn. The ventilators for supplying fresh air may be fixed against the wall, on the inside or outside of the granary, or under the floor, or in the ceiling; but wherever they are fixed, the handle of the lever that works them must be out of the granary, otherwise the person who works them would be in danger of suffocation by the free admission of air below forcibly through a hole at the extremity of it, into all the corn in the granary, that will consequently carry off the moist exhalations of the corn.

The ventilators for ventilating corn in large bins in granaries, and may be easily moved from one bin to another. If the granary or corn ship be very long, the main air-pipe may pass lengthwise along the middle of it, and convey air, on both sides, under the corn. In large granaries, large double ventilators, laid on each other, may be fixed at the middle and near the top of the granary, that they may be worked by a wind-mill fixed on the roof of the granary in lying, or by a water-mill. The air is to be conveyed from the ventilators through a large trunk or trunks, reaching down through the several floors to the bottom of the granary, with branching trunks to each floor, by means of which the air may be made to pass into a large trunk along the adjoining cross walls: from these trunks several leffer trunks, about four inches wide, are to branch off, at the distance of three or four feet from each other, which are to reach through the whole length of the granary, and their farther ends are to be closed: teams of two or three of an inch are to be left open at the four joinings of the boards, where they are nailed together, that the air may pass through them into the corn. In some of these leffer trunks there may be sliding shutters, in order to stop the passage of the air through those trunks which are not covered with corn; or to ventilate one part of the granary more briskly than others, as there may be occasion. There must also be wooden shutters, hung on hinges at their upper part, so as to shut close of themselves: these must be fixed to the openings in the walls of the granary on their outside; by these means they will readily open to give a free passage for the ventilating air, which ascends through the corn, to pass off, but will instantly shut when the ventilation ceases, and thereby prevent any dampness of the external air from entering: to prevent this, the ventilation should be made only in the middle of dry days, unless the corn, when first put in, is cold and damp.

In leffer granaries, where the ventilators must be worked by hand, if these granaries stand on fiddles, so as to have their lowest floor at some distance from the ground, the ventilators may be fixed under the lowest floor, between the fiddles, so as to be worked by men standing on the ground, without or within the granary. A very commodious and cheap ventilator may be made for small granaries, by making a ventilator of the door of the granary; which may be easily done by making a circular screen, of the size of a quarter of a circle, behind the door: but in order to this, the door must be open, not inwards but outwardly of the granary, so that as it falls back, it may be worked to and fro in the screen; which must be exactly adapted to it in all parts of the circular face of the screen as well as at the top and bottom. But there must be a slot at about eight or ten inches distance from the wall, to prevent the door's falling back farther; that there may be room for a valve in the screen to supply it with air; which air will be driven in by the door, through a hole made in the wall near the floor, into the main air-trunk, in which there must be another valve over the hole in the wall, to prevent the return of the air.

To destroy weevils and other insects with which granaries are apt to be infested.—The preservation of grain from the ravages of insects may be best effected by timely and frequent fumming, and ventilation; as little or no inconvenience will follow corn or malt lodged dry, but what evidently results from a neglect of these precautions. For, whether the obvious damage arise from the weevil, the moth, or the beetle, that damage has ceased at the time the vermin make their appearance under either of these species, they being, when in this last state of existence, only propagators of their respective kinds of vermiculi; which, while they continue in that form, do the mischief.

In this last, or infest state, they eat little, their principal business being to deposit their ova (eggs), which issuing instinct prompts them to do where large collections of grain furnish food for their successors while in a vermicular state. It is therefore the business of industry to prevent future generations of these ravagers, by destroying the eggs previous to their hatching; and this
This bell accomplished by frequent screening, and exposure to draughts of wind or freth air. By frequently \[\ldots\] the cohesion of their ova is broken, and the nidus of those minute worms is destroyed, which on hatching collect together, and spin or weave numerous webs of a cobweb-like substance for their security. To these webs they attach, by an infinity of small threads, many grains of corn together, first for their protection, and then for their food. When their habitations are broken and separated by the screen, they fall through its small interstices, and may be easily removed from the granary with the dust. Those that escape an early screening will be destroyed by subsequent ones, while the grain is but little injured; and the corn will acquire thereby a superior purity. But by inattention to this, and sometimes by receiving grain already infected into the granary, these vermin, particularly the weevil, will, in a short time spread themselves in that state every where upon its surface, and darken even the walls by their number. Under such circumstances a hen or hens, with new hatched chickens, if turned on the heap, will traverse, without feeding (or very sparingly so) on the corn, wherever they spread; and are seemingly inoffensive in the pursuit of these pests. When the number is reduced within reach, a hen will fly up against the walls, and burst them down with her wings, while her chickens seize them with the greatest avidity. This being repeated as often as they want food, the whole species will in a day or two be destroyed. Of the phalana (moth), and the small beetle, they seem equally voracious: on which account they may be deemed the most useful instruments in nature for eradicating these noxious and destructive vermin.

GRANATE, or GARNET: a genus of fossils ranked among the siliceous earths; but, according to M. Magellan, analogous to gems, all of them being composed of the siliceous, argillaceous, and calcareous earths, with a greater or lefs proportion of iron. The opaque and black garnets contain about a fifth part of iron; but the diaphanous ones only 1/10, according to Bergman. The garnets, properly so called, contain a greater quantity of siliceous earth than the chalcedons, and both are now justly ranked with the siliceous earths. The general properties of the garnet, according to Cronstedt, are as follow: 1. It is more fusible as it contains less metallic matter, and is more transparent or glassy in its texture. 2. Mixed with salt of lead, it may, on a piece of charcoal, be converted into glass by the blow-pipe, which cannot be done with a flint. 3. The most transparent garnet may, without any addition, be brought to a black opaque flag by the same means. 4. It is never, as far as is hitherto known, found pure, or without some mixture of metal, especially iron, which may be extracted by the common methods. 5. Th\[\ldots\]
GRANATE. See Garnet.

GRAND, a term rather French than English, tho' used on many occasions in our language. It has the same import with great, being formed of the Latin grandis. In this sense we say, the grand-master of an order, the grand-master of Malta, of the five-masons, &c. So are the grand-master, grand-grand-master, grand-grand-master, &c. grand-father, grand-mother, &c.

In the French polity and outforns there are several officers thus denominated, which we frequently retain in English; as grand almoner, grand ecuyer, grand chamberlain, grand veyer, &c.

GRAND-AFZI. See Assise.

GRANDDIFFORT (diferitio magna), in English law, a writ of ditrectis, so called on account of its extent, which reaches to all the goods and chattels of the party within the county. This writ lies in two cases: either when the tenant or defendant is attached and appears not, but makes default; or where the tenant or defendant hath once appeared, and after makes default. On such occasions, this writ lies by common law, in lieu of a petit cape.

GRAND GALE, among painters, a term used to express that there is something in the picture very great and extraordinary, calculated to fartride, please, and instruct. Where this is found, they say, the painter was a man of grand gale; and they use the words sublima and marvellous, when they speak of a picture, in much the same sense.

GRAND JURY, lancent, sargent, &c. See JURY, &c. GRANDEE, is understood of a lord of the first rank or prime quality.

In Spain, the term grande is used absolutely to denote the prince lords of the court, to whom the king has once given leave to be covered in his presence; there are some grandees for life only; made by the king's say-ing, Be covered for thyself and heirs. These last are reputed far above the former.

There are some who have three or four grandeeships in their family.

GRANDEUR and SUBLIMITY. These terms have a double signification: they commonly signify the quality or circumstance in objects by which the emotions of grandeur and sublimity are produced; sometimes the emotions themselves.

In handling the present subject, it is necessary that the impression made on the mind by the magnitude of an object, abstracting from its other qualities, should be acute. And because the operation of some difficulty, the safest method of judging is, to choose a plain object that is neither beautiful nor deformed, if such a one can be found. The plainest that occurs, is a huge mass of rubbiffh, the ruins perhaps of some extensive building; or a large heap of flones, such as are collected together for keeping in memory a battle or other remarkable event. Such an object, which in miniature would be perfectly indif ferent, makes an impression by its magnitude, and appears agreeable. And supposing it so large as to fill the eye, and prevent the attention from wandering up on other objects, the impression it makes will be so much the deeper. See ATTENTION.

But though a plain object of that kind be agreeable, it is not termed grand; it is not entitled to that character, unless, together with its size, it be possessed of other qualities that contribute to beauty, such as regularity, proportion, order, or colour; and according to the number of such qualities combined with magnitude, it is more or less grand. Thus St Peter's church at Rome, the great pyramid of Egypt, is a most towering above the clouds, a great arm of the sea, and above all a clear and serene sky, are grand; because, beside their size, they are beautiful in an eminent degree. On the other hand, an overgrown whale, having a disagreeable appearance, is not grand. A large building agreeable by its regularity and proportions, is grand; and yet a much larger building delicient of regularity, has not the least tincture of grandeur. A single regiment in battle array, makes a grand appearance; which the surrounding crowd does not, though perhaps ten for one in number. And a regiment where the men are all in one livery, and the horses of one colour, makes a grander appearance, and consequently strikes more terror, than where there is confusion of colour and drefs. Thus greatness or magnitude is the circumstance that distinguishes grandeur from beauty: agreeableness is distinguishing the genus, of which beauty and grandeur are species.

The emotion of grandeur, duly examined, will be found an additional proof of the foregoing doctrine. That this emotion is pleasant in a high degree, requires no other evidence but one to have seen a grand object: and if an emotion of grandeur be pleasant, its cause or object, as observed above, must infallibly be agreeable in proportion.

The qualities of grandeur and beauty are not more dfficnt, than the emotions are which these qualities produce in a spectator. It is observed in the article BEAUTY, that all the various emotions of beauty have one common character, that of sweetnefs and gésity. The emotion of grandeur has a different cha-

N
Demands not strict regularity.

Though regularity, proportion, order, and colour, contribute to grandeur as well as to beauty, yet these qualities are not by far so essential to the former as to the latter. To make out that proportion, some preliminaries are requisite. In the first place, the mind, not being totally occupied with a small object, can give its attention at the same time to every minute part; but in a great or extensive object, the mind, being totally occupied with the capital and striking parts, has no attention left for those that are little or indifferent. In the latter, two similar objects appear not so similar when viewed at different distances; the similar parts of a very large object, cannot be seen but at distant distances; and for that reason, its regularity, and the proportion of its parts, are in some measure lost to the eye; neither are the irregularities of a very large object so conspicuous as of one that is small. Hence it is, that a large object is not so agreeable by its regularity, as a small object; nor so disagreeable by its irregularities.

These considerations make it evident, that grandeur is satisfied with a less degree of regularity, and of the other qualities mentioned, than is requisite for beauty; which may be illustrated by the following experiment. Approaching to a small conical hill, we take an overlook of the hill to be considerably enlarged, so as to make as less sensible of its regularity, it will upon that account appear less beautiful. It will not, however, appear less agreeable, because some slight emotion of grandeur comes in place of what is lost in beauty. And at last, when the hill is enlarged to a great mountain, the small degree of beauty that is left, is sunk in its grandeur. Hence it is, that a towering hill is delightful, if it have but the lightest resemblance of a cone; and a chain of mountains not lefs fo, though deficient in the accuracy of order and proportion. We require a small surface to be smooth; but in an extensive plain, considerable inequalities are overlooked. In a word, regularity, proportion, order, and colour, contribute to grandeur as well as to beauty; but with a remarkable difference, that in passing from small to great, they are not required in the same degree of perfection. This remark serves to explain the extreme delight we have in viewing the face of nature, when sufficiently enriched and diversified with objects. The bulk of the objects in a natural landscape are beautiful, and some of them grand: a flowing river, a spreading oak, a round hill, an extended plain, are delightful: viz. the emotion of beauty; but the emotion of grandeur is so different from these mentioned, as to merit a peculiar name.

The same observation is applicable to works of art. In a small building, the slightest irregularity is disagreeable; but in a magnificent palace, or a large Gothic church, irregularities are less regarded. In an epic poem, we pardon many negligence that would not be permitted in a sonnet or epigram. Notwithstanding such exceptions, it may be justly laid down for a rule, That in works of art, order and regularity ought to be governing principles; and hence the observation of Longinus, "In works of art we have regard to exact proportion; in those of nature, to grandeur and magnificence." The same reflections are in a good measure applicable to sublimity: particularly that, like grandeur, it is a species of agreeableness; that a beautiful object placed high, appearing more agreeable than formerly, produces in the spectator a new emotion, termed the emotion of sublimity: and that the perfection of order, regularity, and proportion, is less required in objects placed high, or at a distance, than at hand.

The pleasurable emotion raised by large objects, has not escaped the poets:

He doth behold the narrow world
Like a Colossus: and we petty men
Walk under his huge legs.

Cleopatra. I dreamt there was an emperor Antony:
Oh fuch another sleep, that I might see
But fuch another man!
His face was as the heavens—and therein fluck
A fun and moon, which kept their course, and lighted
The little O' th' earth.
His legs bestride the ocean, his rear'd arm
Credited the world.

Majesty
Dies not alone—but, like a gulf, deth draw
What's near it with it. It's a rally wheel
Fixed on the summit of the highest mount,
To whom huge fpekes ten thousand letter things
Are mortis'd and adjourn'd—which, when it falls,
Each small amenity, petty confequence,
Attends the build'd round ruin.

The poets have also made good use of the emotion produced by the elevated situation of an object:
Quod ille lyricus statibus inferes,
Sublimi ferial fidera vertice.

Oh thou! the earthly author of my blood,
Whoft youthful spirit, in me regenerate,
Both with a twofold vigour lift me up,
To reach at victory above my head.

Northumberland, thou ladder wherewithal
The mounting Bolingbrooke ascends my throne.

Antony. Why was I rais'd the metier of the world,
Hung in the skies; and blazing as a trave'ld,
Till all my fires were spent; and then cast downward
To be trod out by Caesar?

The description of Paradise in the fourth book of
Paradise
The fishermen that walk upon the beach
Appear like mice; and you tallttering back
Dinlim'd to her cock; her cock, a buoy.

Almost too small for fight. The murr'ning surge,
That on the unnumber'd idle pebbles chafes,
Cannot be hold to high. I'll look no more,
Left my brain turn, and the deficient fight
Tinkle down headlong. *King Lear,* act 4, sc. 6.

A remark is made above, that the emotions of grandeur and sublimity are nearly allied. And hence it is, that the one term is frequently put for the other: an increasing series of numbers, for example, producing an emotion similar to that of mounting upward, is commonly termed *a descending series*; a series of numbers gradually decreasing, producing an emotion similar to that of going downward, is commonly termed *a descending series*; we talk familiarly of going up to the capital, and of going down to the country: from a lesser kingdom we talk of going up to a greater; whence the *anabasis* in the Greek language, when one travels from Greece to Persia. We discover the same way of speaking in the language even of Japan; and its universality proves it the offspring of a natural feeling.

The foregoing observations leads us to consider grandeur and sublimity in a figurative sense, and as applicable to the fine arts. Hitherto these terms have been taken in their proper sense as applicable to objects of light only: and it was of importance to bestow some pains upon that article; because, generally speaking, the figurative sense of a word is derived from its proper sense, which holds remarkably at present. Beauty, in its original signification, is confined to objects of light; but as many other objects, intellectual as well as moral, raise emotions resembling that of beauty, the reference of the effects of beauty to objects of sense we extend the term beauty to these objects. This equally accounts for the terms grandeur and sublimity taken in a figurative sense. Every emotion, from whatever cause proceeding, that resembles an emotion of grandeur or elevation, is called by the same name: thus generosity is said to be an *elevated* emotion, as well as great courage; and that firmness of soul which is superior to misfortunes obtains the peculiar name of *magnanimity.* On the other hand, every emotion that confines the mind, and fixeth it upon things trivial or of no importance, is termed *low.* By its resemblance to an emotion produced by a little or low object of light: thus an appetite for trifling amusements is called *low taste.* The same terms are applied to characters and actions: we talk familiarly of an *elevated* genius, of *great* man, and equally to *littlenesses* of mind: some actions are *great* and *elevated,* and others are *little* and *groveling*.

Sentiments, and even expressions, are characterized in the same manner: an expression or sentiment that raises the mind is designated *great* or *elevated,* and hence the *sublime* in poetry. In such figurative terms, we lose the distinction between *great* and *elevated* in their proper sense; for the resemblance is not to entice us to preserve these terms distinct in their figurative application. We carry this figure still farther. Elevation, in its proper sense, imports superiority of place, and lowness, inferiority of place: and hence a man of superior talents, of superior rank, of inferior parts, of inferior taste, and such like. The veneration we have for our ancestors, and for the ancients in general, being similar to the emotion produced by an

*How fearful
And dizzy 'tis, to cast one's eye so low!
The rocks and gashes, that wing the midway air,
Show scarce so gros as beetles. Half-way down
Hangs one that gathers fampire; dreadful trade!

Methinks he seems no bigger than his head.*
The resemblance in feeling between real and figurative grandeur is humorously illustrated by Addison in an essay criticizing upon English tragedy. *"The ordinary method of making an hero is to clap a huge plume of feathers upon his head, which rises so high, that there is often a greater length from his chin to the top of his head than to the sole of his foot. One would believe, that we thought a great man and a tall man the same thing. As the superb ornamental upon the head make a great man, a princes generally receives her grandeur from those additional incumbrances that fall into her tail: I mean the broad sweeping train that follows her in all her motions; and finds constant employment for a boy who stands behind her to open and spread it to advantage." The Scythians, impressed with the fame of Alexander, were astonished when they found him a little man.

A gradual progress from small to great is not less remarkable in figurative than in real grandeur or elevation. Every one must have observed the delightful effect of a number of thoughts or sentiments, artfully disposed like an ascending series, and making impressions deeper and deeper: such disposition of members in a period is termed a climax.

Within certain limits grandeur and sublimity produce their strongest effects, which lessen by excess as well as by defect. This is remarkable in grandeur and sublimity taken in their proper sense; the grandest emotion that can be raised by a visible object is where the object can be taken in at one view; if so immense as not to be comprehended but in parts, it tends rather to distract than satisfy the mind (A): in like manner, the strongest emotion produced by elevation is where the object is seen distinctly; a greater elevation lessens in appearance the object, till it vanishes out of sight with its pleasant emotions. The fame is equally remarkable in figurative grandeur and elevation; which shall be handled together, because, as observed above, they are often distinguishing. Sentiments may be so strained as to become obscure, or to exceed the capacity of the human mind: against such licence of imagination, every good writer will be upon his guard. And therefore it is of greater importance to observe, that even the true sublime may be carried beyond that pitch which produces the highest entertainment. We are undoubtedly susceptible of a greater elevation than can be inspired by human actions the most heroic and magnanimous; witness what we feel from Milton's description of superior beings: yet every man must be sensible of a more constant and sweet elevation when the history of his own species is the subject: he enjoys an elevation equal to that of the greatest hero, of an Alexander or a Caesar, or an Equamondus: he admires the heroes in their sublime sentiments and most hazardous exploits, with a magnanimity equal to theirs; and finds no stretch to preserve the same tone of mind for hours together without sinking. The case is not the same in describing the actions or qualities of superior beings: the reader's imagination cannot keep pace with that of the poet; the mind, unable to support itself in a strained elevation, falls as from a height; and the fall is immoderate like the elevation: where that effect is not felt, it must be prevented by some obscurity in the conception, which frequently attends the descriptions of unknown objects. Hence the St Francises, St Dominics, and other tetrarch suffants among the Roman Catholics. A mind unable to raise itself to the Supreme Being self-existent and eternal, or to support itself in a strained elevation, finds itself more at ease in using the intercession of some saint whose piety and penances while on earth are supposed to have made him a favourite in heaven.

A strained elevation is attended with another inconvenience, that the author is apt to fall suddenly as well as the reader; because it is not a little difficult to descend, sweetly and easily, from such elevation to the ordinary tone of the subject. The following passage is a good illustration of that observation:

(A) It is justly observed by Addison, that perhaps a man would have been more astonished with the majesty of the air that appeared in one of Lycurgus's statues of Alexander, though no bigger than the life, than he might have been with Mount Athos, had it been cut into the figure of the hero, according to the proposal of Phidias, with a river in one hand and a city in the other. *Spelh. N° 415.*
GRA [109]

In the description of a storm, to figure Jupiter throwing down huge mountains with his thunderbolts, is hyperbolically sublime, if we may use the expression: the tone of mind produced by that image is so distant from the tone produced by a thick flower of rain, that the sudden transition must be unpleasant.

Objects of sight that are not remarkably great nor high, scarce raise any emotion of grandeur or of sublime: and the same holds in other objects; for we often find the mind roused and animated, without being carried to that height. This difference may be discerned in many sorts of music, as well as in some musical instruments: a kettle-drum roules, and a hautboy is animating; but neither of them inspires an emotion of sublimity: revenge animates the mind in a considerable degree; but if we never produce an emotion that can be termed grand or sublime; and perhaps no disagreeable passion ever has that effect.

No desire is so universal than to be exalted and honoured; and upon that account, chiefly, are we ambitious of power, riches, titles, fame, which would suddenly lose their relish did they not raise us above others, and command submission and deference: and it may be thought, that our attachment to things grand and lofty, proceeds from their connection with our favourite passion. This connection has undoubtedly an effect; but that the preference given to things grand and lofty must have a deeper root in human nature, will appear from considering, that many below their time upon low and trifling amusements, without having the least tenerine of this favourite passion: yet these very perfons talk the same language with the rest of mankind; and prefer the more elevated pleasures: they acknowledge a more refined taste, and are ashamed of their own as low and grovelling. This sentiment, constant and universal, must be the work of nature; and it plainly indicates an original attachment in human nature to every object that elevates the mind: some men may have a greater relish for an object not of the highest rank; but they are conscious of the preference given by mankind in general to things grand and sublime, and they are sensible that their peculiar taste ought to yield to the general taste.

What is said above suggests a capital rule for reaching the sublime in such works of art as are susceptible of it; and that is, to present those parts or circumstances only which make the greatest figure, keeping out of view every thing trivial or, for the mind, elevated by an important object, cannot, without relinquish, be forced down to below any share of its attention upon trifles. Such judicious selection of capital circumstances, is by an eminent critic fyled grandeur of manner*. In none of the fine arts is there so great a scope for this rule as in poetry; which, by that means, enjoys a remarkable power of flattening upon objects and events an air of grandeur: when we are spectators, every minute object presents itself in its order; but in describing at second hand, these are laid aside, and the capital objects are brought close together. A judicious taste in thus selecting the most interesting incidents, to give them an united force, accounts for a fact that may appear surprizing; which is, that we are more moved by spirited narrative at second hand, than by being spectators of the event itself, in all its circumstances.

Longinus † exemplifies the foregoing rule by a comparison of two passages.

Ye pow'r's, what madness! how on ships to fail! (Tremendous thought! can thoughtless mortals fail?) For frozen seas they quit the pleasing plain, Plant woods in waves, and dwell amidst the main. Far o'er the deep (a trackless path) they go, And wander oceans in pursuit of wo. No false their hearts, no rest their eyes can find, On heaven their looks, and on the waves their mind; Sun are their spirits, while their arms they rear, And gods are wearied with their fruitless prayer.

Burh as a wave that from the cloud impends, And swell'd with tempests on the ship descends. White are the decks with foam: the winds aloud Howl o'er the masts, and dought through every spout. Pales, trembling, tir'd, the sailors freeze with fear, And instant death on every wave appears.

In the latter passage, the most striking circumstances are selected to fill the mind with terror and affectment. The former is a collection of minute and low circumstances, which scatter the thought, and make no impression; it is at the same time full of verbal antitheses and low conceits, extremely improper in a scene of disharmony.

The following description of a battle is remarkably sublime, by collecting together in the sweet words, those circumstances which make the greatest figure.

"Like autumn's dark storms pouring from two echoing hills, towards each other approached the heroes; as two dark streams from high rocks meet and roar on the plain, loud, rough, and dark in battle, meet Lochlin and Linisfail. Chief mixes his strokes with chief, and man with man; steel founds on steel, and helmets are cleft on high: blood bursts and smokes around: thirings murmur on the polished yew; darts ruth along the sky: spears fall like sparks of flame that gild the flomy face of night."

"As the noise of the troubled ocean when roll the waves on high, as the last peal of the spring heaven, such is the noise of battle. Though Càrime's hundred bards were there, fcele were the voice of a hundred bards to send the deaths to future times; for many were the deaths of the heroes, and wide poured the blood of the valiant." FINGAL.

The following passage in the 4th book of the Iliad is a description of a battle wonderfully ardent, "When now gathered on either side, the hoofds plunged together in sight; shield is hardly laid to shield; spears crash on the brazen corsets; billy buckler with buckler meets; loud tumult rages over all; groans are mixed with hoasts of men; the slain and slayer join in noise; the earth is floating round with blood. As when two rushing flames from two mountains come roaring down, and throw together their rapid waters below, they roar along the gulpful vale; the startled shepherd hears the sound as he staks o'er the distant hills: so, as they mixed in fight, from both armies clamour with loud terror arose." But such general descriptions are not frequent in Homer. Even his single combats are rare. The fifth book is the longest account of a battle that is in the Iliad; and yet contains nothing but a long catalogue of chiefs killing chief

* Spectator, No. 475.

† Claud. 8.
The clouds are split into a thousand small parts in the light; the most eminent architects have governed themselves by the same rule in all their works.

Another rule chiefly regards the sublime, though it is applicable to every sort of literary performance intended for amusement; and that is, to avoid as much as possible abstract and general terms. Such terms, similar to mathematical signs, are contrived to express our thoughts in a concise manner; but images which are the life of poetry, cannot be raised in any perfection but by introducing particular objects. General terms, that comprehend a number of individuals, must be excepted from that rule: our kindred, our clan, our country, and words of the like import, though they scarce raise any image, have, however, a wonderful power over the passions: the greatness of the complex object overbalances the obscurity of the image.

Grandeur, being an extreme vivid emotion, is not readily produced in perfection but by reiterated impressions. The effect of a single impression can be but momentary; and if one feel suddenly somewhat like a swelling or exaltation of mind, the emotion vanishes as soon as felt. Single thoughts or sentiments are often cited as examples of the sublime; but their effect is far inferior to that of a grand subject displayed in its capital parts. We shall give a few examples, that the reader may judge for himself. In the famous action of Thermopylae, where Leonidas the Spartan king, with his chosen band, fighting for their country, were cut off to the last man, a saying is reported of Dianeces, one of the band, which, expressing cheerful and undisturbed bravery, is well intuited to the first place in examples of that kind: talking of the number of their enemies, it was observed, that the arrows shot by such a multitude would intercept the light of the sun; "So much the better (says he), for we then shall in fight the shades."

Samerfes. Ah! Warwick, Warwick, were thou as we are, We might recover all our losses again.

The Queen from France has brought a puissant power. Ev'n now we heard the news. Ah! could we then fly! Warwick. Why, I then would not fly. Third part, Henry VI, act. 5, sc. 3.

Such a sentiment from a man expiring of his wounds, is truly heroic; and must elevate the mind to the greatest height that can be done by a single expression: It will not suffer in a comparison with the famous sentiment Qu'il mourut of Corneille: the latter is a sentiment of indignation merely, the former of firm and cheerful courage.

To cite in opposition many a sublime passage, enriched with the finest images, and drenched in the most nervous expressions, would scarce be fair. We shall produce but one instance, that of Shakespear, which sets a few objects before the eye, without much pomp of language: it operates its effect by representing these objects in a climax, razing the mind higher and higher till it feel the emotion of grandeur in perfection:

The cloud-capt tow'rs, the gorgeous palaces, The solemn temples, the great globe itself, Yea, all which it inheres, shall dissolve, &c.

The cloud-capt tow'rs produce an elevating emotion, heightened by the gorgeous palaces; and the mind is carried still higher and higher by the images that follow.
The cloud-capt tow'r's, the gorgeous palaces,
The solemn temples, the great globe itself,
Yes, all which it inherit, shall dissolve,
And like the baseless fabric of a vision
Leave not a wreck behind—

The elevation of the mind in the former part of this beautiful passage, makes the fall great in proportion, when the most humble of all images is introduced, that of an utter dissolution of the earth and its inhabitants. The mind, when warmed, is more susceptible of impressions than in a cool state; and a depressing or melancholy object listened to, makes the strongest impression when it reaches the mind in its highest state of elevation or cheerfulness.

But a humbling image is not always necessary to produce that effect: a remark is made above, that in describing inferior beings, the reader's imagination, unable to support itself in a strained elevation, falls often as from a height, and sinks even below its ordinary tone. The following instance comes luckily in view; for a better cannot be given: "God said, Let there be light, and there was light." Longinus quotes this passage from Moses as a shining example of the sublime; and it is scarce possible, in fewer words, to convey so clear an image of the infinite power of the Deity: but then it belongs to the present subject to remark, that the emotion of sublimity raised by this image is but momentary; and that the mind, unable to support itself in an elevation so much above nature, immediately sinks down into humility and veneration for a Being so far exalted above groveling mortals. Every one is acquainted with a dispute about that passage between two French critics *, the one positively affirming it to be sublime, the other as positively denying. What has been remarked, shows, that both of them have reached the truth, but neither of them the whole truth: the primary effect of the passage is undoubtedly an emotion of grandeur: which so far justifies Boileau: but then every one must be sensible, that the emotion is merely a flash, which, vanishing instantaneously, gives way to humility and veneration. That indirect effect of sublimity justifies Huet, on the other hand, who being a man of true piety, and probably not much carried by imagination, felt the humbling passions more sensibly than his antagonist did. And laying aside difference of character, Huet's opinion may perhaps be defended as the more solid; because, in such images, the depressing emotions are the more sensibly felt, and have the longer endurance.

The straining an elevated subject beyond due bounds, and beyond the reach of an ordinary conception, is not a vice so frequent as to require the correction of criticism. But false sublimine is a rock that writers of more fire than judgment commonly split on; and therefore a collection of examples may be of use as a beacon to future adventurers. One species of false sublime, known by the name of bombast, is common among writers of a mean genius: it is a serious endeavour, by strained description, to raise a low or familiar subject above its rank; which, instead of being sublime, fails not to be ridiculous. The mind, indeed, is extremely prone, in some animating passions, to magnify its objects beyond natural bounds: but such hyperbolical description has its limits: and when carried beyond the impulse of the propensity, it degenerates into burlesque. Take the following examples:

* Boileau and Huet.

** False sublime.
And both were the laity, wherein to lay up the full gallop, or farmer."

GRANGE, an ancient term for a barn or place wherein to lay up and thresh corn. The word is formed of the Latin grana; or of granum, "grain, corn," &c. Hence also granger or grangier, "a grange-keeper or farmer."

GRANICUS, a small river near the Hellefpoint in Lesser Asia, remarkable for the first victory gained by Alexander the Great over the armies of Darius. — Authors disagree very much about the number of the Persians, though all agree that they were vastly more numerous than the Greeks. Jufcin and Orosius tell us, that the Persian army consisted of 600,000 foot and 20,000 horse; Arrian makes the foot amount to 200,000; But Diodorus tells us, that they were not more than 100,000 foot and 10,000 horse. The Macedonian army did not exceed 30,000 foot and 5000 horse. The Persian cavalry lined the banks of the Granicus, in order to oppose Alexander wherever he should attempt a passage; and the foot were posted behind the cavalry on an easy ascent. Parmenio would have had Alexander to allow his troops some time to refresh themselves; but he replied, that, after having crossed the Hellefpoint, it would be a disgrace to him and his troops to be stopped by a rivulet. Accordingly a proper place for crossing the river was not sooner found, that he commanded a strong detachment of horse to enter; he himself followed with the right wing, which he commanded in person; the trumpets in the mean time sounding, and loud shouts of joy being heard through the whole army. The Persians let fly such showers of arrows against the detachment of Macedonian horse, as caused some confusion; several of their horses being killed or wounded. As they drew near the bank a most bloody engagement ensued; the Macedonians attempting to land, and the Persians putting them back into the river. Alexander, who observed the confusion they were in, took the command of them himself; and landing in spite of all opposition, obliged the Persian cavalry, after an obstinate resistance, to give ground. However, Spithrobates, governor of Ionia, and fon-in-law to Darius, still maintained his ground, and did all that lay in his power to bring them back to the charge. Alexander advanced full gallop to engage him; neither did he decline the combat; and both were slightly wounded at the first encounter. Spithrobates having thrown his javelin without effect, advanced fword in hand to meet his antagonist, who ran him through with his pike as he raised his arm to discharge a blow with his fcyliner. But Rosaces, brother to Spithrobates, at the same time gave Alexander such a furious blow on the head with his battle-ax, that he beat off his plume, and slightly wounded him through the helmet. As he was ready to repeat the blow, Citius with one stroke of his fcyliner cut off Rosaces's head, and thus in all probability saved the life of his sovereign. The Macedonians then, animated by the example of their king, attacked the Persians with new vigour, who soon after betook themselves to flight. Alexander did not pursue them; but immediately charged the enemy's foot with all his forces, who had now passed the river. The Persians, disheartened at the defeat of their cavalry, made no great resistance. The Greek mercenaries retired in good order to a neighbouring hill, whence they sent deputies to Alexander desiring leave to march off unmolested. But he, instead of coming to a parley with them, rushed furiously into the middle of this small body; where his horse was killed under him, and he himself in great danger of being cut in pieces. The Greeks defended themselves with incredible valour for a long time, but were at last almost entirely cut off. In this battle the Persians are said to have lost 20,000 foot and 2500 horse, and the Macedonians only 55 foot and 60 horse.

GRANITE, in natural history, a distinct genus of stones, composed of separate and very large concretions rudely compounded together; of great hardnes, giving fire with steel, not fermenting with acids, and slowly and imperfectly calcinable in a great fire. Of this genus there are three species: 1. The hard white granite, with black spots, commonly called moorstone. This is a very valuable kind, consisting of a beautiful congeries of very variously constructed and differently coloured particles, not diffused among or running into one another, but each pure and distinct, and firmly adhering, but at the same time the whole forming an unconnected stone. 2. The hard red granite variegated with black and white, and common in Egypt and Arabia. 3. The pale whitish granite, variegated with black and yellow. This is sometimes found in strata, but more frequently in loose nodules, and is used for paving the streets.

Some of these kinds of stones are found in almost every country, and in many places they are found of immense bigness. The largest mass of this kind in the known world, lying as an unconnected stone, is near the Cape of Good Hope in Africa, and of which we have the following description in the Philosophical Transactions, vol. 68, p. 102, given by Mr Anderson in a letter to Sir John Pringle. "The stone is so remarkable, that it is called by the people here the Tower of Babel, and by some the Pearl Diamond. It either takes the last name from a place near which it is situated, or it gives names to the tract of cultivated land called the Pearl. It lies upon the top of a ridge of low hills, beyond a large plain, at the..."
Granite. the distance of about thirty miles from the Cape Town; beyond which, at a little distance, is a range of hills of a much greater height. It is of an oblong shape, and lies north and south. The south end is highest; the east and west sides are steep and high; but the top is rounded, and slopes away gradually to the north end, so that you can ascend by that way, and enjoy a most extensive prospect of the whole country. I could not precisely determine its circumference, but it took us above half an hour to walk round it; and by making every allowance for the rugged way, and footing a little, I think the most moderate computation must make it exceed half a mile. The same difficulty occurred with respect to knowing its height; but I think, that, at the south end, it is nearly equal to half its length: or, were I to compare it to an object you are acquainted with, I should say it equalled the dome of St. Paul’s church.

“I am uncertain whether it ought to be considered as the top of the hill, or a detached stone, because there is no positive proof of either, unless we were to dig about its base; but it would certainly impress every beholder, at first sight, with the idea of its being one stone, not only from its figure, but because it is really one solid uniform mass from top to bottom, without any interruption; which is contrary to the general character of the high hills of this country, they being commonly divided, or composed of different strata, at least if we may judge from the rows of plants or shrubs which grow on the sides of the steep rock, and, as I suppose, are produced from the small quantity of earth interposed between them. It has indeed a few fissures, or rather impressions, which do not reach deeper than four or five feet; and near its north end a stratum of a more compact stone runs across, which is not above twelve or fourteen inches thick, with its surface divided into little squares, or oblongs, disposed obliquely. This stratum is perpendicular; but whether it cuts the other to its base, or is superficial, I cannot determine. Its surface is also so smooth that, it does not appear to have formerly been joined to, or separated from, any other part by violence; as is the case with many other large fragments; but enjoys the exact situation where it was originally placed; and has undergone little change from being exposed for so many successive ages to the calcining power of a very hot climate.”

A part of this stone being examined by Sir William Hamilton, he determined it to be a granite, and of the same nature as the top of the hill, or a detached stone, because there is a predominance of quartzo-felspar, and mica; the grey ones of white quartz, grey or violet felt-spar, and black mica. The black granites commonly contain chlorite instead of felt-spar; and the green usually contain green quartz.

On exposing granite to the flame of a blow-pipe, the component ingredients separate from one another. Sir Gerhard having melted some in a crucible, found the felt-spar run into a transparent glass; below it the mica lay in form of black flag, the quartz remaining unaltered. It melted somewhat better when all the three were powdered and mixed together; though even then the quartz was still discernible by a magnifying glass. Hence we may explain the reason why grains of a white colour are sometimes found in volcanic lavas. The mixture of mica prevents the felspar or quartz from splitting or cracking; and hence its insusceptibility and use in furnace-building.

Granites are seldom flaty or laminated. In those which are of a close texture, the quartz and felspar predominate. They take a good polish; for which reason the Egyptians formerly, and the Italians still work them into large pieces of ornamental architecture, for which they are extremely fit, as not being liable to decay in the air. Farber, in his letters from Italy, mentions a kind of stone named granitones, composed of felt-spar and mica: a substance of this kind, which moulders in the air, is found in Finland; which is said to contain salt-petre, and sometimes common salt. In that country it is called repariri. Warton describes 18 species of granites, besides many others akin to this genus. Those described by Cronstedt are, 1. Loose or friable, which comes from France, and is used at the brass-works for casting that metal in. 2. Hard or compact, of which there are two varieties, red and grey. The former is met with of two kinds: viz. fine-grained from Swappari in Lapland, or coarse-grained from the province of Dalne in Sweden. The grey, with other colours, is met with on the coast round Stockholm and Norland in Sweden.

GRANITELLO, a genus of stones of the order of petrae, belonging to the class of faxa. There are two species, 1. That composed of different particles, found in several of the mountainous parts of Sweden. In some of these there is a predominance of quartzo-felspar particles, in others of micaceous; in which last case the stone is flaty, and easily split. 2. Granitello, composed of convoluted particles. This is met with of different colours, as whitish grey, greenish, and reddish.

Both these kinds of stones are used in building furnaces, on account of the powerful resistance they make to the fire; but the latter is preferable to the other, on account of its containing a little of a refractory clayish substance. It is likewise of great use in mills, where the fellow is a coarse sandstone.

GRANIVOROUS, an appellation given to animals which feed on corn or seeds. These are principally of the bird kind.

GRANT, in law, a conveyance in writing of such things as cannot pass or be conveyed by word only; such are rents, reversions, services, &c.

GRANT (Francis), Lord Cullen, an eminent lawyer.
Granter and judge in Scotland, was descended from a younger branch of the family of the Grants of Grant in that kingdom, and was born about the year 1660. When he commenced advocate, he made a distinguished figure at the revolution, by opposing the opinion of the old lawyers, who warmly urged on the inability of the convention of estates to make any disposition of the crown. The abilities he showed in favour of the revolution recommended him to an extensive practice; in which he acquired so much honour, that when the union between the two kingdoms was to be accomplished, queen Anne unexpectedly, and without application, created him a baronet, with a view of securing his interest in that measure; and upon the same principle, the soon after created him a judge, or one of the lords of session. From this time, according to the custom of Scotland, he was styled from the name of his estate, Lord Cullen; and the fame good qualities that recommended him to this honourable office, were very conspicuous in the discharge of it; which he continued for 20 years with the highest reputation, when a period was put to his life by an illness which lasted but three days. He expired without any agony on March 16th 1726.—His character is drawn to great advantage in the Biographia Britannica; where it is observed, among other remarks to his honour, "That as an advocate he was indefatigable in the management of business; but at the same time that he spared no pains, he would use no craft. He had so high an idea of the dignity of his profession, that he held it equally criminal to neglect any honest means of coming at justice, or to make use of any arts to elude it. In respect to fortune, though he was modest and frugal, and had a large practice, yet he was far from being avaricious. His private charities were very considerable, and grew in the same proportion with his profits. He was, besides, very scrupulous in many points; he would not suffer a just cause to be lost through a client's want of munificence. He was such an enemy to oppression, that he never denied his assistance to such as labouring under it; and with respect to the clergy of all professions (in Scotland,) his conscience obliged him to serve them without a fee. When his merit had raised him to the bench, he thought himself accountable to God and man for his conduct in that high office; and that deep sense of his duty, at the same time that it kept him strictly to it, encouraged and supported him in the performance. Whenever he was free to speak, the paper of cause was remarkably full, for his reputation being equally established for knowledge and integrity, there were none, who had a good opinion of their own pretensions, but were moved to bring them before him, and not many who did not fit down satisfied with his decision. This prevailed more especially after it was found that few of his sentences were reversed; and when they were it was commonly owing to himself: for if, upon mature reflection, or upon new reasons offered at the rehearing, he saw any just ground for altering his judgment, he made no scruple of declaring it; being persuaded, that it was more manly, as well as more just, to follow truth, than to support opinion; and his conduct in this respect had a right effect; for instead of lessening, it raised his reputation. He would not, however, with all this great flock of knowledge, experience, and probity, trust himself in matters of blood, or venture to decide in criminal cases on the lives of his fellow-creatures; which was the reason that, though often solicited, he could never be prevailed upon to accept of a seat in the judiciary court.—In his private character he was as amiable as he was respectable in his public. He was charitable without ostentation, disinterested in his friendships, and beneficent to all who had anything to do with him. He was not only strictly just, but so free from any species of vanity, that his lady, who was a woman of great prudence and discretion, finding him more intent on the business committed to him by others than on his own, took upon herself the care of placing out his money; and to prevent his postponed, as he was apt to do, such kind of affairs, when securities offered, he caused the circumstances of them to be stated in the form of cafes, and so procured his opinion upon his own concerns as if they had been those of a client. He was so true a lover of learning, and was so much addicted to his studies, that, notwithstanding the multiplicity of his business while at the bar, and his great attention to his charge when a judge, he nevertheless found time to write various treatises on very different and important subjects: Some political, which were remarkably well-timed, and highly serviceable to the government; others of a more extensive nature, such as his essays on law, religion, and education, which were dedicated to George II. when prince of Wales; by whose command, his then secretary, Mr Samuel Molyneux, wrote him a letter of thanks, in which were many gracious expressions, as well in relation to the piece as to its author. He composed, besides these many discourses on literary subjects, for the exercise of his own thoughts, and for the better discovery of truth; which went no farther than his own closet, and from a principle of modesty were not communicated even to his most intimate friends."
Granulated Cambridge. In 1696, his comedy called the She-gal-
lunts was acted at the theatre-royal in Lincolns-in-
fields, as his tragedy called Heroic Love was in the
year 1698. In 1702 he translated into English the
second Olymian of Demosthenes. He was member for
the county of Cornwall in the parliament which met in
1710; was afterwards secretary of war, comptroller of
the household, then treasurer, and sworn one of the
privy-council. The year following he was created
baron Lanfdowne. On the accession of king George I.
in 1714, he was removed from his treasurer’s place;
and the next year entered his protest against the bills
for attainting lord Bolingbroke and the duke of Or-
mond. He entered deeply into the scheme for rais-
ing an insurrection in the west of England; and be-
ing seized as a suspected person, was committed to the
Tower, where he continued two years. In 1719, he
made a speech in the house of Lords, against the bill
to prevent occasional conformity. In 1722, he with-
drew to France, and continued abroad almost ten years.
At his return in 1732, he published a fine edition of his
works in 2 vols quarto. He died in 1735, leaving no
male issue.

Granville, a sea-port town of France, in Lower
Normandy, partly seated on a rock and partly on a
plain. It gave the title to an English earl, now
extinct.

W. Long. 1. 32. N. Lat. 48. 58.

Granulated, something that has undergone
granulation. See the next article.

Granulation, in chemistry, an operation by
which metallic substances are reduced into small grains,
or roundish particles; the use of which is, to facilitate
their combination with other substances.—This opera-
tion is very simple; it consists only in pouring a
melted metal slowly into a vessel filled with water,
which is in the mean time to be agitated with a broom.
With melted copper, however, which is apt to ex-
plode with great violence on the contact of water,
some precautions are to be observed, of which an ac-
count is given under the article Chemistry, n° 11468.
Lead or tin may be granulated by pouring them when
melted into a box; the internal surface of which is to
be rubbed with powdered chalk, and the box strongly
shaken till the lead has become solid. Metals are gra-
nulated, because their ductility renders them inca-
pable of being pounded, and because filing is long
and tedious, and might render the metal impure by
an admixture of iron from the file.

Grape, the fruit of the vine. See Vine and
Wine. See also Curants and Raisins.

Grape-shot, in artillery, is a combination of small
shot, put into a thick canvas bag, and corded strongly
together, so as to form a kind of cylinder, whose di-
амe is equal to that of the ball adapted to the ca-
non. The number of shot in a grape varies according
to the service or size of the guns: in sea-service nine
is always the number; but by land it is increased to
any number or size, from an ounce and a quarter in
weight to three or four pounds. In sea-service the
bottoms and pins are made of iron, whereas those used
by land are of wood.

Grapes, in the manage, a term used to signify the
arrests or mangy tumours that happen in the horse’s
legs.

Graphometer, a mathematical instrument,
otherwife called a Semi-circle; the use of which is to
observe any angle whose vertex is at the centre of the
infrument in any plane (though it is most commonly
horizontal, or nearly so), and to find how many de-
grees it contains. See Geometry, p. 674, prop. xi. &c.

Graphel, or Grappling, a sort of small an-
chor, fitted with four or five flukes or claws, and
commonly used to ride a boat or other small vesel.

Fire-grappling, an instrument nearly resembling
the former, but differing in the construction of its
flukes, which are furnished with strong bars on
their points. These machines are usually fixed on the
yard-arms of a ship, in order to grapple any adver-
sary whom the intends to board. They are, however,
more particularly useful in Fire-ships for the purposes
described in that article.

Grass, in botany, is defined to be a plant having
simple leaves, a stem generally jointed and tubular, a
hufky calyx (called gluma), and the seed single. Hence
wheat, oats, barley, &c. are properly graises, accord-
ing to the definition given; while clover and some
other similar plants are not graises, though so frequently
called by that name.—Of graises, the leaves are food
for cattle, the small feed for birds, and the larger
graist chiefly for man. And it is observable, that
nature has so provided, that cattle (in grazing) seldom
eat the flower intended to produce feed, unless com-
pelled by hunger.

For the culture of the different sorts of grain, see
Agriculture, n° 122. & seq.; and for that of the
graises commonly so called, see the same article, n°
175, & seq. and the references below.

Culmiferous graises might be divided into two ge-
eral classes, for the purporses of the farmer, that it
might be of use for him to attend to, viz. 1st, Those
which, like the common annual kinds of corn, run
chiefly to seed-stalks; the leaves gradually decaying as
these advance towards perfection, and becoming to-
tally withered or falling off entirely when the seeds are
ripe. Rye-graiz belongs to this class in the strictest
sense. To it likewise may be assigned the vernal-
graises, dog’s-tail graises, and fine bent-graises. 2dly, Those
whose leaves continue to advance even after the seed-
stalks are formed, and retain their verdure and fucce-
sence during the whole seafon, as is the case with the
feine and poa tribes of graises, whose leaves are as
green and succulent when the seeds are ripe and the
flower-stalks fading, as at any other time.

"It is wonderful, Mr Stillingfleet remarks, to see • Trefis rel-
ating to Nat. Hist.
the how long mankind have neglected to make a proper ad-
Vantage of plants of such importance, and which, in
almost every country, are the chief food of cattle.

The farmer, for want of distinguishing and feeding
graises for feed, fills his pastures either with weeds or
bad or improper graises; when, by making a right
choice, after some trials, he might be sure of the best
graises, and in the greatest abundance that his land
admits of. At present, if a farmer wants to lay down
his land to graises, what does he do? he either takes
his feed indiscriminately from his own foul hay-rick,
or sends to his next neighbour for a supply. By this
means, besides a certain mixture of all sorts of rubbiih,
which must necessarily happen, if he chances to have
a large proportion of good feed, it is not unlikely but
that what he intends for dry land may come from moist,
Agriculture.

Now, would the farmer be at the pains of separating once in his life half a pint or a pint of the different kinds of grasses-seeds, and take care to sow them separately, in a very little time he would have wherewithal to flock his farm properly, according to the nature of each soil, and might at the same time spread these seeds separately over the country, by supplying the feeding-thraps. The number of grasses fit for the farmer is, I believe, small, perhaps half a dozen or half a score are all he need to cultivate; and how small the trouble would be of such a task, and how great the benefit, must be obvious to every one at first sight. Would not any one be looked on as wild who should sow wheat, barley, oats, rye, peas, beans, vetches, buck-wheat, turnips, and weeds of all sorts together; yet how it is much less absurd to do what is equivalent in relation to grasses? Does it not import the farmer to have good hay and grass in plenty; and will cattle thrive equally on all sorts of grasses? We know the contrary. Horses will scarcely eat hay which is not perfectly ripe, and even quite dry. It is the farmer to have good hay and stock; only that it might be of use upon all sorts of pastures which have been recommended as the most profitable, viz.

1. Hordeum murinum, Rye-grass vulgo. [Rye-grasses properis is the Secale villosum. Perennial, beardless, Lolium perenne, is also, in some counties of England, improperly called rye-grasses.] See Agriculture, p. 179.

2. Festuca rubra, Purple Fescue-grass. See Agriculture, p. 54.

3. Festuca ovina, Sheep silt. See Agriculture, pp. 36—58. This is perhaps the most valuable grass of all. It is observed to grow and thrive on lands of all qualities and in all situations, from the driest upland pastures to the very moist parts of meadows. It does not remain with its feet till some time after they are ripe, and even quite dry. It makes the thickest and closest pile of any of them, and furnishes a good value of grass in proportion to its leaves. It flowers in June, and is ripe in July.

5. Alopecurus bulbosus, Bulbous Foxtail-grass, is recommended by Dr Anderson, as promising on some occasions to afford a valuable pasture-grass. It is chiefly, he observes, to delight in a moist soil, and therefore promises to be only fit for a meadow pasture grass. The quality that first recommended it to his notice, was the unusual firmness that its matted roots gave to the surface of the ground, naturally soft and moist, in which it grew; which seemed to promise that it might be of use upon chalky soils, chiefly in preventing them from being much poached by the feet of cattle which might pasture upon them. Molay soils especially are so much hurt by poaching, that anything that promises to be of use in preventing it deserves to be attended to.

6. Poa pratensis, Great Meadow-grass, seems to approach in many respects to the nature of the purple-fescue; only that its leaves are broader, and not so long; being only about a foot or 16 inches at their greatest length. Like it, it produces few feed-flaks and many leaves, and is an abiding plant. It affects chiefly the dry parts of meadows, though it is to be found on moat good pastures. It is very retentive of its seeds, and may therefore be suffered to remain till the flaks are quite dry. It blooms the beginning of June, and its seeds are ripe in July.

7. Poa compressa, Creeping Meadow-grass, according to Dr Anderson, seems to be the most valuable grass of any of this genus. Its leaves are firm and succulent, of a dark Saxa-green colour, and flowers upon one another, as to form the richest pile of pasture-grasses. The flower-flaks, if suffered to grow, appear in sufficient quantities; but the growth of these does not prevent the growth of the leaves, both advancing together during the whole summer; and when the flaks fade, the leaves continue as green as before. Its leaves are much larger and more abundant than the common meadow-grasses, Poa trivialis; and therefore it better deserves to be cultivated.

8. Anthoxanthum odoratum, Vernal grass, grows very commonly on dry hills, and likewise on found rich meadow-land. It is one of the earliest grasses we have; and from its being found on such kinds of pastures as sheep are fond of, and from whence excellent mutton comes, it is most likely to be a good grass for sheep-pastures. It gives a grateful odour to hay. In one respect, it is very easy to gather, as it sheds its seeds upon the leaf rubbing. A correspondent of the Bath Society, however, mentions a difficulty that occurs in collecting them, owing to its being surrounded with taller grasses at the time of its ripening, and being almost hid among them. If it be not carefully watched when nearly ripe, it escapes, and gathered within a few days after it comes to maturity, great part of the seed will be lost. The twisted elatic awns, which adhere to the seed, lift them out of their receptacles with the leaf motion from the wind, and the straw and ear remain quite erect. It is found mostly in the moist parts of meadows; very little of it on dry pastures. It flowers about the beginning of May, and is ripe about the middle of June.

9. Cynosurus cristatus, Crested Dog's-tail Grass. Mr Stillington imagines this grass to be proper for parks, from his having known one, where it abounds, that is famous for excellent venison. He recommends it also, from experience, as good for sheep; the best mutton he ever tasted, next to that which comes from hills where the purple and sheep fescue are the finest bent and the silver hair grasses abound, having been from sheep fed with it. He adds, that it makes a very fine turf upon dry sandy or chalky soils: but unless swept over with the scythe, its flowering-STEMS will look brown;
The fame may be faid of thefe two grasfs as of the preceding one.

14. *Festuca fluitans*, Flote Fescue. In a piece published in the Amojnmatas Academicae, vol. 3, intitled Stmata Effulenta, we are informed, that "the feeds of this grasf are gathered yearly in Poland, and from hence carried into Germany; and fometimes into Sweden, and fold under the name of manna feeds. Threfe are much ufed at the tables of the great, on account of their nourishing quality and agreeable taste. It is wonderful (adds the author), that these feeds have hitherto been neglected, since they are fo easily collected and cleaned." There is a clamour on the ear of the fiole-fefcelle, when the feeds are ripe, that tastes like honey; and for this reafon perhaps they are called manna feeds.

Linnaeus (Flor. Seue, art. 95.) fays that the bran of this grasf will cure horfes troubled with botts, if kept from drinking for fome hours.

Concerning this grasf we have the following information by Mr Stillingfleet. "Mr Dean, a very fenible farmer at Hutfomb, Bermfhire, affidured me that a field, always lying under water, of about four acres, that was occupied by his father when he was a boy, was covered with a kind of grasfs, that maintained five farm-horfes in good heart from April to the end of harvest, without giving them any other kind of food, and that it yielded more than they could eat. He, at my defire, brought me some of thefes, which proved to be the flote-fescue with a mixture of the marfh-bent; whether this laft contributes much towards fur-riihing fo good purfure for horfes, I cannot fay. They both throw out roots at the joints of the stalks, and therefore are likewife to grow to a great length. In the index of doubious plants at the end of Ray's Synop-phis, there is mention made of a grasf under the name of *gramen cannum supinum longiflimum*, growing not far from Saliphury, 24 feet long. This muft by its length be a grasf with a creeping falk; and that there is a grasf in Wilthire growing in watery meadows, so valuable, that an acre of it fets from 10 to 12 pounds, I have been informed by feveral perfons. Thefe circum-fances incline me think it muft be the flote-fescue; but whatever grasfs it be, it certainly muft deserve to be inquired after."

15. *Alpecepear pratenfis*, Meadow Fontail. Linnaeus fays that this is a proper grasf to sow on grounds that have been drained.—Mr Stillingfleet was informed, that the flot bay which comes to London is from the meadows where this grasfs abounds. It is scarce in many parts of England, particularly Herefordfhir, Bermfhire, and Norfolk. It might be gathered at almost any time of the year from hay ricks, as it does not feed its feeds without rubbing, which is the cafe of bot few grasfs. It is among the moft graceful of all grasfs to cattle. It is ripe about the latter end of June.

16. *Poa annua*, Annual Meadow Grasf. This grasf (fays Mr Stillingfleet) makes the finest of turfs. It grows every where by way sides, and on rich found commons. It is called in some parts the Suffolk grasf. I have feen whole fields of it in High Suffolk without any mixture of other grasfs; and as some of the flot falt-butter we have in London comes from that county, it is moft likely to be the flot grasf for the dairy. I have feen a whole park in Suffolk covered with this grasf; but whether it affords good venion, I cannot tell, having never tasted of any from it. I should rather think not, and that the bell pailure for fheep is alfo the bell for deer. However, this wants trial. I remarked on Malvern-hill fomething particular in relation to this grasf. A walk that was made there for the convenience of the water drinkers, in lefs than a year was covered in many places with it, though I could not find one fingle plant of it besides in any part of the hill. This was no doubt owing to the frequent reading, which above all things makes this grasf florifh; and therefore it is evident that riding muft be very serviceable to it. It has been objected, that this grasf is not free from bents, by which word is meant the flowing-items. I anfwer, that this is moft certainly true, and that there is no grasf without them. But the flowers and items do not grow fo foon brown as thoef other grasfs; and being much florter, they do not cover the radical leaves fo much; and therefore this grasf affords a more agreeable turf without mov- ing, than any other whatever that I know of."
Grasses are made, for the most part, not by sowing grass seeds, but by laying turfs; and indeed the turfs from a fine common or down are much preferable to sown grasses: but if walks or plots are to be made by sowing, the best way is to procure the feed from those pastures where the grass is naturally fine and clear; or else the trouble of keeping it from spurry or bent grass will be very great, and it will scarce ever look handsome.

In order to sow grass walks, the ground must be first dug; and when it has been drenched and laid even, it must be very carefully raked over, and all the clobs and ftones taken off, and then covered over an inch thick with good mud.

This being done, the seed is to be fown pretty thick, that it may come up close and short; it must then be raked over again, to cover the seed, that if the weather should happen to be windy, it may not be blown away. It ought also to be observed, that where grass is sown in gardens, either for lawns or walks, there should always be a good quantity of the white trefoil or Dutch clover sown with it; for this will make a fine turf much fooner than any other sown grass, and will continue a better verdure than any other of any places that are well filled, or where nothing improves grass so much as turf.

In order to keep grass-plats or walks handsome, and in good order, you may low in autumn fresh feed over any places that are not well filled, or where the grass is dead: but nothing improves grass so much as mowing and constant rolling.

When turf is laid in gardens, it is a general practice to cover the surface of the ground under the turf, either with sand or very poor earth: the design of this is to keep the grass fine, by preventing its growing too rank. This is proper enough for very rich ground: but it is not so for such land as is middling, or but poor; for when this is practized in such places, the grass will soon wear out and decay in patches.

When turf is taken from a common or down, such ought to be chosen as is free from weeds: and when it is designed to be used for years without renewing, the dresting should be laid upon it every other year, either of very rotten dung, ashes, or, where it can be easily procured, very rotten tan; but these dressings should be laid on early in the winter, that the rain may wash them into the ground, otherwise they will occasion the grass to burn, when the warmth of the summer begins.

When grass is sod-dressed, and well rolled and mowed, it may be kept very beautiful for many years; but where it is not dressed, or fed with sheep, it will rarely continue handsome more than eight or ten years.

Grasshopper, in zoology, a species of Gryllus. See Gryllus.

Gratarolus (William), a learned physician in the 16th century, was born at Bergamo in Italy; and taught physic with reputation at Padua: but having embraced the Protestant religion, he retired to Switzerland; where he was made professor of physic. He died at Basle in 1568, aged 52. He wrote several curious works in Latin; amongst which are, 1. The manner of preferring and improving the memory. 2. Of preferring in health travellers, men of letters, magistrates, and studious persons, &c.

Grates for Fires, are composed of ribs of iron placed at small distances from one another, so that the air may have sufficient access to the fuel, and the accumulation of the ashes, which would choke the fire, may be prevented. Grates seem peculiarly adapted to the use of pit-coal, which requires a greater quantity of air to make it burn freely than other kinds of fuel. The hearths of the Britons seem to have been fixed in the centre of their halls, as is yet practiced in some parts of Scotland, where the fire is nearly in the middle of the house, and the family sit all around it. Their fire place was perhaps nothing more than a large stone, depressed a little below the level of the ground, and thereby adapted to receive the ashes. About a century ago, it was only the floor of the room, with the addition of a bank or hob of clay. But it was now changed among the gentlemen for a portable fire-pan, raised upon low supports, and fitted with a circular grating of bars. Such were in use among the Gauls in the first century, and among the Welsh in the tenth.

Gratian, the son of Valentinian I. by his first wife, was declared Augustus by his father at the city of Amiens in 365, and succeeded him in 367; a prince equally exalted for his wit, eloquence, modesty, charity, and zeal against heretics. He affiliated Theodosius with him in the empire, and advanced the poet Antonius to the consulship. He made a great daughter of the Germans at Strafford: and hence was famed Memmius. He was the first emperor who refused the title of Pontifex Maximus, upon the score of its being a Pagan dignity. He was assassinated by Andragathius in 375, in the 24th year of his age.

Gratian, a famous Benedictine monk, in the 12th century, was born at Chiufi, and employed near twenty-four years in compounding a work, intitled Decretum, or Concordantia Diffordantium Canonum, because he there endeavoured to reconcile the canons which seemed contradictory to each other. This work he published in 1151. As he is frequently mistaken, in taking one canon of one council, or one passage of one father, for another, and has often cited false decreals, several authors have endeavoured to correct his faults; and chiefly Anthony Augalwine, in his excellent work, intitled, De emendatione Gratiani. To the decreals of Gratian, the popes principally owed the great authority they exercised in the thirteenth and following centuries.

Gratings, in a ship, are small edges of sawed plank, framed one into another like a lattice or prison grate, lying on the upper deck, between the main-mast and fore-mast, serving for a defence in a close fight, and also for the coolness, light, and convenience of the ship's company.

Gratiola, a genus of the monography order, belonging to the diandra clas of plants. The corolla is irregular; there are two bar- ren flama; the capsule is bilocular; the calyx has seven leaves, with the two exterior ones peltate. There are four species; the most remarkable of which is the officinalis, or common hedge-hyssop. This grows naturally on the Alps and other mountainous parts of Europe. It hath a thick, fibrous, creeping root, which propagates very much, when planted in a proper soil and situation. From this arise several upright square stalks, garnished with narrow
narrow spear-shaped leaves, placed opposite. The flowers are produced on the side of the stalks at each joint; they are shaped like those of the foxglove, but are small, and of a pale yellowish colour. This herb has an emetic and purgative virtue; to answer which intentions, it was formerly used by the common people in England, but was never much prescribed by the physicians, and at last fell totally into disuse. Of late however, it has been the subject of a dissertation by Dr James Kotzevski of Warsaw, in Poland; who gives some remarkable accounts of its effects in mania and obstinately veneral cases. It was given in powder, or in extract, to the quantity of half a dram of the first, and a whole dram of the second, at each dose. From the cases related in his dissertation, the author draws the following conclusions: 1. The gratiola may be given with safety both to male and female patients. 2. In all disorders proceeding from a superabundance of phlegm in the fluids, it appears to be a most effectual remedy. 3. In consequence of this, it is had recourse to with very great advantage in melancholy and mania arising from that state of the system. 4. It powerfully promotes purging, vomiting, sweat, and urine; and is therefore much superior mounted him upon a good horse, with however, its proper objections. That the sublimest gratitude. It is a virtue which is touched with the kindness of a human benevolence, is capable of being affected by the divine goodnesses, and of becoming, under the influence of that affection, a source of the purest and most exalted virtue. The love of God is the sublimest gratitude. It is a mistake therefore, to imagine, that this virtue is omitted in the Scriptures; for every precept, which commands us to love God because he first loved us, presupposes the principle of gratitude, and directs it to its proper object. It is impossible to particularize the several expressions of gratitude, which vary with the character and situation of the benefactor, and with the opportunities of the person obliged; for this variety admits of no bounds. It may be observed, however, that on one part gratitude can never oblige a man to do what is wrong, and what by consequence he is previously obliged not to do: On the other part, it argues a total want of every generous principle, as well as of moral probity, to take advantage of that ascendency, which the conferring of benefits jolly creates, to draw or drive those whom we have obliged into mean or dishonest Gratitude-compliances.

The following pleasing example of genuine gratitude is extracted from Hakewill’s Apol. 1. 4. c. 1. p. 436.

—Francis Frescobald, a Florentine merchant, in Italy, had gained a plentiful fortune, of which he was liberal handed to all in necessity; which being well known to others, though concealed by himself, a young stranger applied to him for charity. Signior Frescobald, seeing something in his countenance more than ordinary, overlooked his tattered clothes; and compassionating his circumstances, asked him “What was he, and of what country?” “I am (answered the young man) a native of England; my name is Thomas Cromwell, and my father-in-law is a poor sheer-man. I left my country to seek my fortune; came with the French army that were routed at Gaillon, where I was a page to a footman, and carried his pike and hurtzner after him.” Frescobald commiserating his necessities, and having a particular respect for the English nation, clothed him gently; took him into his house till he had recovered strength by better diet; and, at his taking leave, mounted him upon a good horse, with 16 ducats of gold in his pockets. Cromwell expressed his thankfulness in a very sensible manner, and returned by land towards England; where, being arrived, he was preferred into the service of Cardinal Wolsey. After the Cardinal’s death, he worked himself to effectually into the favour of King Henry VIII. that his majesty made him a baron, vicount, earl of Essex, and at last made him lord high chancellor of England. In the mean time, Signior Frescobald, by repeated losses at sea and land, was reduced to poverty; and calling to mind (without ever thinking of Cromwell), that some English merchants were indebted to him in the sum of 15,000 ducats, he came to London to procure payment. Travelling in pursuit of this affair, he fortunately met with the lord chancellor as he was riding to court; who thinking him to be the same gentleman that had done him such great kindness in Italy, he immediately alighted, embraced him, and with tears of joy asked him, If he was not Signior Francis Frescobald, a Florentine merchant? “Yes, Sir (said he), and your most humble servant.” “My servant! (said the Chancellor) No; you are my special friend, that relieved me in my wants, laid the foundation of my greatness, and, as such, I receive you; and, since the affairs of my sovereign will not now permit a longer conference, I beg you will oblige me this day with your company at my house to dine with me.” Signior Frescobald was surprized and astonished with admiration who this great man should be that acknowledged such obligations; and so passionately expressed a kindnes for him: but, contemplating a while his voice, his mead, and carriage; he concludes it to be Cromwell, whom he had relieved at Florence; and therefore not a little overjoyed, goes to his house, and attended his coming. His lordship came soon after; and immediately taking his friend by the hand, turns to the lord high admiral and other noblemen in his company, saying, “Don’t your lordships wonder that I am so glad to see this gentleman? This is he who first contributed to my advancement.” He then
Gratitude. then told them the whole story; and, holding
by the hand, led him into the dining-room, and placed
him next himself at table. The company being
gone, the Chancellor made use of this opportunity to
know what affair had brought him into England. Fre­
cobald in a few words gave him the true state of his
circumstances: To which Cromwell replied, "I am for­
ry for your misfortunes, and I will make them as
easy to you as I can; but, because men ought to be just
before they are kind, it is fit I should repay the debt I
owe you." Then leading him into his closet, he lock­
ed the door; and opening a coffer, first took out 16
ducats, delivering them to Frecobald, and said, "My
friend, here is the money you lent me at Florence, with
ten pieces you laid
An­
120
G R A
G R A
with such true feeling of the physician's character,
that the author screamed with approbation. His
raptures were soon checked; for the mimic told him,
with the emphasis of sensibility, that he would sooner
die than prostitute his talents to the rendering such
genuine humanity a public laughing stock. The play­
er's name was Griffin."
GRATZ, a handsome strong town of Germany,
and capital of Styria, with a castle seated on a rock,
and an university. The Jesuits have a college here;
and there are a great number of handsome palaces,
and a fine arsenal. The castle stands on a very lofty
hill, and communicates with the river by means of a
deep well. The emperors-dowager was obliged to re­
tire hither during the war of 1741 and 1742. It
is seated on the river Mauer, in E. Long. 16. 25. N. Lat.
47-4.
GRATIUS, a Latin poet, cotemporary with Ovid,
the author of a poem intitled Cyngnetae, or the
Manner of hunting with dogs; the best edition of which
is that of Leyden, 12mo, with the learned notes of
Janus Ulitius.
GRAVE, in grammar, a species of accent opposite
to acute. The grave accent is expressed thus (');
and flows, that the voice is to be depressed, and the
syllable over which it is placed pronounced in a low
deep tone.
GRAVE, in music, is applied to a sound which is in
a low or deep tone. The thicker the chord or string,
the more grave the tone or note, and the smaller the
acuter. Notes are supposed to be the more grave, in
proportion as the vibrations of the chord are less quick.
GRAVE, in the Italian music, serves to denote the
flowing movement.
GRAVE is also used for a tomb, wherein a person de­
funct is interred.
Graves, among the Jews, were generally out of the
city, though we meet with instances of their interring
the dead in towns. Frequent mention is made of
graves upon mountains, in highways, in gardens, and
private houses. So that nothing on this head feems
to have been determined. The fame may be observed
with respect to the Greeks. The Thebans had a law
that every person who built an house should provide a
burial ground. Men who had distinguished themselves
were frequently buried in the public forum. The moft
general custom was, however, to bury out of the city,
chiefly by the highway side. The Romans were for­
bidden by the law of the 12 tables to bury or to burn
the dead in the city; but some we find had their fe­
pulchres in Rome, though they paid a fine for the in­
dulgence.
GRAVE, a very strong town of the Netherlands, in
Dutch Brabant, seated on the river Maas, beyond
which there is a fort. E. Long. 5. 41. N. Lat. 51. 46.
GRAVEL, in natural history and gardening, a con­
geries of pebbles, which, mixed with a stiff loam,
makes laving and elegant gravel-walks; an ornament
peculiar to British gardens, and which gives them an
advantage over those of other nations.
GRAVEL, in medicine. See the Index subjoined to
that article; and see ALKALI, n. 17.
GRAVEL-Walks. To make these properly, the bot­
tom should be laid with lime-rubbish, large flint-stones,
or any other hard matter, for eight or ten inches thick, to keep weeds from growing through, and over this the gravel is to be laid six or eight inches thick. This should be laid rounding up in the middle, by which means the larger stones will run off to the sides, and may be raked away; for the gravel should never be fenced before it is laid on. It is a common mistake to lay these walks too round, which not only makes them uneasy to walk upon, but takes off from their apparent breadth. One inch in five feet is sufficient proportion for the rise in the middle; so that a walk of 20 feet wide should be four inches higher at the middle than at the edges, and so in proportion. As soon as the gravel is laid, it should be raked, and the large stones thrown back again; then the whole should be rolled both lengthwise and crosswise; and the person who draws the roller should wear shoes with flat heels, that he may make no holes; because holes made in a new walk are not easily remedied. The walks should always be rolled three or four times in very hard showers, after which they will bind more firmly than otherwise they could ever have been made to do.

Gravel, with some loam among it, bides more firmly than the rawer kinds; and when gravel is naturally very hard and sharp, it is proper to add a mixture of loam to it. The best gravel for walks is such as abounds with smooth round pebbles, which, being mixed with a little loam, are bound so firmly together, that they are never afterwards injured either by wet or dry weather. These are not so liable to be turned up by the feet in walking, as the more irregularly shaped pebbles, and remain much more firmly in their places after rolling.

GRAVELINES, a very strong sea-port town of the Netherlands in the French Flanders, with a castle and harbour. It was ceded to France by the treaty of the Pyrenees, and is seated in a marshy country on the river Aa, near the sea, in E. Long. 2° 15'. N. Lat. 50° 59'.

GRAVELY LAND, or SOIL, that abounding with gravel or sand, which easily admits of heat and moisture; and the more loamy such lands are, the more barren they prove.

GRAVENAC, a town of Germany, in the circle of Susebia, and capital of a county of the same name. E. Long. 8° 15'. N. Lat. 48° 22'.

GRAVER, in the art of engraving, a tool by which all the lines, scratches, and shades, are cut in copper, &c. See Engraving.

GRAVESANDE (William James), was born of an ancient and honourable family at Delft in Holland, in 1688. He studied the civil law at Leyden, but mathematical learning was his favourite amusement. When he had taken his doctor's degree in 1707, he settled at the Hague, and practised at the bar, in which situation he cultivated an acquaintance with learned men; with a society of whom, he published a periodical review intitled Le Journal Litteraire, which was continued without interruption from the year 1713 to the year 1722, when he died. The most considerable of his works are, "A treatise on perspective: An introduction to the Newtonian philosophy, or a treatise on the elements of physics confirmed by experiments; A treatise on the elements of algebra, for the use of young students," and "A course of logic and metaphysics." He had intended to have presented the Gravesend, public with a system of morality, but his death prevented the execution. The ministers of the republic consulted him on all occasions wherein his talents were requisite; and his skill in calculation was often of service to them; as was his address in deciphering, for detecting the secret correspondence of their enemies. As professor of mathematics and astronomy at Leyden, none ever applied the powers of nature with more success, or to more useful purposes.

GRAVESEND, a town of Kent in England, situated on the banks of the Thames. It is 23 miles from London; and has a blockhouse well mounted with cannon, to command the ships and river, directly opposite to Tilbury fort in Essex. The town was plundered and burnt by the French and Spaniards in the reign of Richard II. to compensate which, the king, at the request of the abbot of St Mary Le-Grace of Tower-hill, to whom he had granted a manor there called Parrockes, vested it and Milton with the sole privilege of carrying passengers by water from hence to London at 4s. the whole fare, or 2d. a head; which was confirmed by Henry VIII.; but now the fare is 9d. a head in the tilt-boat, and 1s. in the wherry. The former must not take in above 40 passengers, the latter no more than 8. Coaches ply here at the landing of people from London, &c. to carry them to Rochester, at 1s. 6d. each. This town and Milton were incorporated by queen Elizabeth by the name of the parriees (now the mayor), jurats, and inhabitants of Gravesend and Milton: And, as Gravesend is the place where most passengers through Kent from foreign parts take boat for London, that queen, in order to show the grandeur of the metropolis of her kingdom, ordered the lord mayor, aldermen, and city companies, to receive all ambassadors and eminent strangers here in their formalities, and to attend them to London in barges if by water; or if they choose to come by land, they were to meet them on horseback on Blackheath in their livery-gowns. The towns for several miles round are supplied from hence with garden stuffs; of which great quantities are also sent to London, where the sagacity of Gravesend is preferred to that of Battersea. All outward-bound ships are obliged to anchor in this road till they have been visited by the customs officers; and for this purpose a sentry is stationed at the block-house fires a signal; but the homeward-bound all pass by without notice, unless it be to put waiters on board, if they are not supplied beforehand. As the outward-bound generally take in provisions here, the place is full of seamen, who are all in a hurry. The whole town being burnt down in 1727, 5000l. was granted by the parliament in 1731 for rebuilding its church, as one of the 50 new ones. In 1624, one Mr Pinnock gave 21 dwelling-houses here, besides one for a master-weaver, to employ the poor; and here is a charity-school for 24 boys, who are both taught and clothed. The town-house was erected in 1764, and in 1772 an act of parliament empowered the inhabitants to pave and light their streets.

GRAVINA, a town of Italy, in the kingdom of Naples, and Terra di Bari, with a bishop's see, and the title of a duchy. E. Long. 17° N. Lat. 41°.

GRAVINA (John Vincent), an eminent scholar, and illustrious lawyer of Italy, born at Roggiana in 1664.
GRA

GRA

GRA

GRA

as the branded or blackened grey, which has spots quite black dispersed here and there. The dappled grey, which has spots of a darker colour than the rest of the body. The light or silver grey, wherein there is but a small mixture of black hairs. The red or iron grey, which has but a small mixture of white. And the brownish or sandy-coloured grey, where there are bay-coloured hairs mixed with the black.

Gray, a town of France, in the Francia Compte, and capital of the bailiwick of Amont. It is a trading place, and seated on the river Saine, in E. in Long. 5. 41. N. Lat. 47. 30.

Gray (Lady Jane). See Grey.

Gray (Thomas), an admired English poet, was the youngest and only surviving son of a reputable citizen of London, and was born in Cornhill in 1716. He was educated at Eton, where he contracted a friendship with Mr Horace Walpole, and with Mr Richard West, son of the Lord chancellor of Ireland. Mr West and Mr Gray were both intended for the bar, but the former died early in life, and the latter was diverted from that pursuit by an invitation to accompany Mr Walpole in his travels; which he accepted without any determined plan for his future life. During Mr Gray's travels, he wrote a variety of letters to Mr West and to his parents, which are printed with his poems; and when he returned, finding himself in narrow circumstances, yet with a mind indisposed for active employment, he retired to Cambridge, and devoted himself to study. Soon after his return, his friend West died; and the melancholy impressed on him by this event may be traced in his admired "Elegy written in a country churchyard," which is thought to have been begun, if not finished, at this time; though the conclusion, as it stands at present, is certainly different from what it was in the first manuscript copy. The first impulse of his sorrow for the death of his friend gave birth to a very tender sonnet in English, on the Petrarchian model; and also to a sublime apostrophe in hexameters, written in the genuine strain of classical majesty, with which he intended to begin one of his books De Principiis cogitandi.

From the winter of the year 1742, to the day of his death, his principal residence was at Cambridge: from which he was seldom absent any considerable time, except between the years 1750 and 1762; when, on the opening of the British Museum, he took lodgings in Southampton-row, in order to have recourse to the Harlían and other manuscripts there deposited, from which he made several curious extracts, amounting in all to a tolerable-sized folio, at present in the hands of Mr Walpole.

About the year 1747, Mr Mason, the editor of Mr Gray's poems, was introduced to him. The former had written, a year or two before, some imitations of Milton's juvenile poems, viz. A Monody on the death of Mr Pope, and two pieces intituled Il Bellesoq and Il Pacifico on the peace of Aix-la-Chapelle; and the latter revised them, at the request of a friend. This laid the foundation of an intimacy which continued without interruption to the death of Mr Gray.

About the year 1750, Mr Gray had put his last hand to his celebrated Elegy written in a country church-yard, and had communicated it to his friend Mr Walpole, whose good taste was too much charmed with
with it to suffer him to with-hold the light of it from his acquaintance. Accordingly it was shown about for some time in manuscript, and received with all the applause it so justly merited. At last the publisher of one of the magazines having obtained a surreptitious copy of it, Mr Gray wrote to Mr Walpole, declaring that he would put his own manuscript into the hands of Mr Dodley, and order him to print it immediately. This was the start popular of all the author’s publications. It ran through eleven editions in a very short space of time; was finely translated into Latin by Mr Meffirs Andly and Roberts; and in the same year by Mr Lloyd.

From July 1659 to the year 1762, he generally resided in London, with a view, as we have already observed, of having recourse to the British Museum. In July 1758, his grace the duke of Grafton wrote him a polite letter, informing him, that his majesty had been pleased to offer to him the professorship of Modern History in the University of Cambridge, then vacant by the death of Mr Laurence Brocket. This place was valuable in itself, the salary being 400l. a year; but what rendered it particularly acceptable to Mr Gray was its being given him without any solicitation. He was indeed remarkably disinterested in all his pursuits. Though his income, before this addition, was very small, he never read or wrote with a view of making his labours useful to himself. He may be said to have been one of those few persons of the annals of literature, especially in the poetical class, who are devoid of self interest, and at the same time attentive to economy: and also was among mankind in general one of those very few economists, who possess that talent, untinured with the frightful train of avarice. When his circumstances were at the lowest, he gave away such sums in private charity, as would have done credit to an ampler purse. But what chiefly deterred him from seeking any advantage by his literary pursuits, was a certain degree of pride, which led him to despise the idea of being thought an author by profession.

However, it is probable, that early in life he had an intention of publishing an edition of Strabo; for his papers contain a great number of his uncle Antrobus, he was a certain degree of pride, which, if it have not the same grace, have undoubtedly equal dignity. He endeavoured to trace this mode of building from the time it commenced through all the various changes, and to establish its perfection in the reign of Henry VIII. and ended in that of Elizabeth. For this purpose, he did not so much depend upon written accounts, but upon internal evidence which the buildings themselves give of their respective antiquity; since they constantly furnish to the well informed eye, arms, ornaments, and other marks, by which their several ages may be ascertained. On this account he applied himself to the study of heraldry as a preparatory science; and has left behind him a copious number of genealogical papers, more than sufficient to prove him a complete master of it. By these means he arrived at so very extraordinary a pitch of sagacity, as to be enabled to pronounce, at first sight, on the precise time when every particular part of any cathedral was erected. But the favourite study of Mr Gray for the last ten years of his life was natural history, which he then rather refumed than began; as by the instructions of his uncle Antrobus, he was a considerable botanist at 15. The marginal notes which he has left on Linnaeus and other writers on the vegetable, animal, and fossile kingdoms, are very numerous, which latter he considered are on Hudson’s Flora Anglica, and the tenth edition of the Systena Nature; which latter he interleaved and filled almost entirely. While employed on zoology, he read Aristotle’s treatise on that subject with great care, and explained many difficult passages of that obscure ancient by the lights he had received from modern naturalists. In a word, excepting pure mathematics, and the studies dependent on that science, there was hardly any part of human learning in which he had not acquired a competent skill, and in most of them a consummate mastery. To this account of his literary character we may add, that he had a fine taste in painting, prints, gardening, and music; and was moreover a man of good-breeding, virtue, and humanity.

He died in 1771; and an edition of his poems, with memoirs of his life and writings, were published in 1775, by Mr Macon. This gentleman, however, instead of employing his own pen in drawing Mr Gray’s character, has adopted one drawn by the Rev. Mr Temple, rector of Mamhead in Devonshire, in a letter to Mr Bofwell; to whom the public are indebted for communicating it. “Perhaps (says Mr Temple) he was the most learned man in Europe. He was equally acquainted with
with the elegant and profound parts of science, and
that not superficially but thoroughly. He knew every
branch of history, both natural and civil; had read all
the original historians of England, France, and Italy;
and was a great antiquarian. Criticism, metaphysics,
moral politics, made a principal part of his plan of
fludy; voyages and travels of all sorts were his favour-
able amusements; and he had a fine taste in painting,
prints, architecture, and gardening. With such a
fame knowledge, his conversation must have been
equally instructive and entertaining; but he was also
a good man, a well-bred man, a man of virtue and hu-
manity. There is no character without some speck,
some imperfection; and I think the greatest defect in
his was an affection in delicacy, or rather effemina-
ty, and a visible fatisficient, or contempt and disdain
of his inferior sciences. He also had, in some de-
gree, that weakness which disfigured Voltaire so much
in Congreve: though he seemed to value others chiefly
according to the progress they had made in know-
ledge; yet he could not bear to be considered himself
merely as a man of letters; and though without birth,
or fortune, or station, his desire was to be looked up-
on as a private independent gentleman, who might be
read for his amusement. Perhaps, it may be said, What
signifies so much knowledge, when it produces so little?
Is it worth taking so much pains to leave no memo-
rial but a few poems? But let it be considered, that
Mr Gray was, to others, at least innocently employed:
to himself, certainly beneficially. His time passed
agreeably; he was every day making some new ac-
quiertion in science; his mind was enlarged, his heart
softened, and his virtue strengthened, the world and
mankind were shown to him without a mask; and he
was taught to consider every thing as trudging, and un-
worthy the attention of a wise man, except the pur-
fuit of knowledge, and the practice of virtue in that
state wherein God hath placed us."

GRAYLING, in ornithology, a species of Salmo.

In angling for this fish your hook must be armed
upon the thanks with a very narrow plate of lead, which
should be flinderest at the bent of the hook, that the
bait (which is to be a large gudgeon, the uppermost
wing of which must be pulled off) may come over to
the more easily. At the point let there be a cad-
bait in a continnual motion. The jag-tail, which is
a worm of a pale flesh-colour, with a yellow tag on its
tail, is an excellent bait for the grayling in March and
April.

GREASE, a swelling and goutiness of the legs
of a horse. See Farriery, § xxxvi.

GREAT, a term of comparison, denoting a thing
to have more extension than some other to which it is
referred. Thus we say, a great space, a great distance,
a great figure, a great body, &c.

GREAT is likewise used figuratively in matters of
morality, &c. to signify ample, noble, elevated, extra-
ordinary, important, &c. Thus we say, Shakespeare
was a great genius, Da Vinci a great painter, Galileo
a great philosopher, Bolso a great critic, &c.

GREAT is also a title or quality appropriated to cer-
tain princes and other illustrious personages. Thus
we say, the great Turk, the great Mogul, the great
cham of Tartary, the great duke of Florence, &c.

GREAT is also a surname bestowed on several kings
and emperors. Thus we say, Alexander the great;
Cyrus the great; Charles the great, or Charlemagne;
Henry the great of France, &c.

GREAT is also applied to several officers who have
pre-eminence over others. Thus we say, the lord
great chamberlain; the great marshal of Poland, &c.

GREATER TONE, in music. See Tone.

GREATVES (John), an eminent physician and
antiquary, was the eldest son of John Greatis rector of
Colombe, near Alresford in Hampshire, and born in
1602. He was educated in Balliol College in Oxford,
from which he removed to Merton. He was after-
wards, on the foot of his great merit, chosen geo-
metry professor of Gresham College. His ardent thir-
t of knowledge soon carried him into several parts of
Europe, where he eagerly seized every opportunity of
improving it. His next voyage was into the eastern
countries; where nothing remarkable in the heavens,
earth, or even subterraneous places, seems to have
escaped his nice observation. He, with indefatigable
industry, and even at the peril of his life, collected
a considerable number of Arabic, Peric, and Greek,
manuscripts, for archbishop Laud. Of these he knew
the value, as he could master of the languages in
which they were written. He also collected for
that prelate many oriental gems and coins. He took
a more accurate survey of the pyramids than any tra-
veller who went before him. On his return from the
East, he visited several parts of Italy a second time.
During his stay at Rome, he made a particular inquiry
into the true state of the ancient weights and measures.
Soon after he had finished his second voyage, he was
chosen Savilian professor of astronomy at Oxford. He
was eminently qualified for his professorship, as the
works of ancient and modern astronomers were fa-
familier to him. His books relating to oriental learn-
ing, his Pyramideographia, or a description of the pyra-
midis in Egypt, his Epocha Celebrius, and other curious
useful pieces, of which Mr Ward has given us a
catalogue, shew him to have been a great man. Those
which he intended to publish would have shown him
to be a greater; but he was flopped in his great
career by death in 1642.

GREECE, in ornithology. See Columb.

GREECE, the present Romelia, and in many re-
spects one of the most defervingly celebrated coun-
tries in the world, was anciently bounded on the north
by Macedonia and the river Stymphal; on the west by
the Pontian sea; on the south by the Mediterranean;
and on the east by the Egcan sea and Archipelago. It
extended from the Strymon, by which it was parted
from Thrace, to the promontory of Temanus, the south-
most point of Peloponnesus, now the Morea, about
6° 20' of latitude, or nearly 440 English miles, and in
breath from east to west about 359 miles.

The general names by which the inhabitants of this
country were known to the ancients were those of
Græci, or Graeci, from whence the name of Greece
is plainly derived. These names are thought to come from
Græco, the father, or (according to some) the son, of
Thebas, who gave name to Thebais; but some mo-
dern critics choose to derive it from Kagan, the name
with Rom, the son of Pelag, by the transposition of a
letter to soften the sound. These names were after-
wards changed for Achæ and Helphus; the first, as is
supposed,
 Greeks were people in that of der tioned, the fon of Deucalion, and father of Dorus, universally allowed to have been that of Ioloes, which peopled colonies gave this name to all the Japhet, by the daughter of Erichtheus the grand­fol· lver of the daughter of the man named, Iolus, which the Arcadians, the most ancient people in Greece, derived from their pretended founder Pelafgius; who is said to have got such footing in Peloponnesus, that the whole peninsula from him was called Pelasgia. But the most ancient name of all is universally allowed to have been that of Iones, which the Greeks themselves derived from Ion the fon of Xuthus; or, as the fable hath it, of Apollo, by Creusa the daughter of Erichtheus the grandson of Deucalion. Jophues, however, affirms, that their original is of much older date; and that Javan, the fon of Japhet, and grandson of Noah, was the first who peopled those countries; which Bochart hath also rendered very probable. It is true, indeed, that among the Greeks themselves, only the Athenians, and fuch colonies as sprang from them, were called Iones; but it is also plain beyond exception, that other nations gave this name to all the inhabitants of Greece.

The inhabitants of Greece in the first ages, even by the confeffion of their own historians, appear to have been favage scarce a degree removed from brutes. They lived indifferently on every fruit, herb, or root that came in their way; and lay either in the open fields, or at telt sheltered themselves in dens, caves, and hollow trees; the country itself in the mean time remaining one continued uncultivated defert. The firft improvement they made in their way of living, was the exchanging of their old food for the more wholesome acorns, building huts for themselves to sleep in, and covering their bodies with the skins of beafts. For all this it feems, they were beholden to Pelafgius abovementioned (suppofed by fome to be Pel leg fpo•ken of in Scripture), and who was highly reverenced by them on that account. This reformation in their way of life, however, it feems wrought none in their manners. On the contrary, they who had nothing to fight for but a hole to sleep in, began now to envy and rob one another of these slender acquisitions. Thus, in process of time, put them under a necessity of joining themselves into companies under one head, that they might either more safely plunder their neighbours, or preserve what they had got. Laws they had none, except that of the fword: fo that thofe only lived in safety who inhabited the moft barren and craggy places; and hence Greece for a long time had no telted inhabitants, the weakest being always turned out by the strongest. Their gigantic fize and strength, if we may believe Plutarch added much to their influence and cruelty, that they femed to glory in committing the greatest acts of violence and barbarity on thofe that unhappily fell into their hands.

The next advance towards civilization, was their forming themselves into regular societies, to cultivate the lands, and build themfelves towns and cities for their safety. Their original barbarity and mutual vio­lences against each other naturally prevented them from uniting as one nation, or even into any confiderable community: and hence the great number of states into which Greece was originally divided. The most remarkable of these small principalities mentioned in history are the following: In Peloponnesus were thofe of Sieyon, Argos, and Mefenfia, Achaia Propria, Arcadia, and Laconia. In Grecia Propria (that part of Greece which lay without Peloponnesus), were thofe of Attica, Megara, Beotia, Locris, Ephine­mida, Doris, Phocis, Locris, Ozolea, and Etolia. In Epirus were the Molofli, Amphiboli, CaUipolos, Dracopes, Chacoes, Thrifopteri, Almen, and Acarnani. In Thessaly were thofe of Thessaliotis, Epi­olis, Pelaflgiotis, Magnesia, and Phthia. All thofe have at one time or other been severally governed by kings of their own, though we only find the names of many of them mentioned in the histories of the more confiderable kingdoms of Sparta, Attica, thebes, &c.

The erection of these kingdoms, however, for some time, did not much alter the cafe; the inhabitants of the new kingdoms plundered and destroyed one another without mercy. Attica was the only place in any degree free from these incursions, because it was naturally deftitute of everything that could in­vite a plundering enemy; but thofe cities fared much worse which were situated on the sea-coasts, because they were in continual danger of being plundered either by sea or land: for pirates at that time did not infall all thofe seas than robbers did the land. And this was one main caufe why moft of the ancient cities of Greece were situated at some confiderable distance from the shore; but even in thofe, as all their safety con­fisted in the refiftance they could make againft an invader, their habituals were under a necessity of going constantly armed, and being ever on their guard. Another mischief arising from thofe continual piracies and robberies was, that they occasioned the far greater part of the lands to be uncultivated, fo that the people only planted and fowed as much as was barely neceffary for their prefent support; and where there was fuch an universal neglect of agriculture, there could be as little room for any discoveries in other useful arts and trades. Hence, when other na­tions, as the Jews, Egyptians, Midianites, Phornici­ans, &c. had improved themselves to a very high degree, the Greeks feem to have been utter strangers to every useful art.

During this period of favage barbarity, the moft renowned Grecian heroes, as Hercules, Theseus, &c. performed their exploits; which, however exaggerated by poetie fiction, no doubt had a foundation in truth. Some indeed are of opinion that the Grecian heroes are entirely fictitious, and their exploits derived from thofe of the Hebrew worthies, fuch as Sam­fon, Gideon, &c. Yet, confidering the extreme de­gree of barbarity which at that time prevailed through­out Greece, it feems not at all improbable that fome perfons of extraordinary strength and courage might undertake the cafe of the opprefed, and travel about like the more modern knights-errant in quest of ad­ventures.

The firft expedition in which we find the Greeks united, was that againft Troy, the particulars of which are recited under the article Troy. Their success here (which happened about 1184 B.C.) cost them very dear; vast numbers of their bravest warriors being slain; great numbers of the survivors being cast away
away in their return; and many of those who had the
good luck to get back again, being loon after murder-
ed, or driven out of their country. It is probable,
however, that their having flaid for such a long time
in Asia, might contribute to civilize the Greeks some-
what sooner than what they otherwise would have
been; and accordingly from this time, we find their
historians begin to notice them, and as it were begin-
ing to emerge out of darkness. The continual wars, in-
deed, in which they were engaged among themselves,
no doubt, for a long time, prevented them from mak-
ing any considerable progress in those arts in which
they afterwards made great progress. These wars,
which indeed never ceased as long as the Greeks pre-
ferred their liberty, rendered them brave, and skilled
in the military art, above all other nations; but at the
same time they effectually prevented them from mak-
ing permanent conquests, and confined them within the
bounds of their own country; while the different states
were one way or other so equally balanced, that scarce
one of them was able perfectly to subdue another. The
Spartans, however, having, with great difficulty, re-
duced the kingdom of Mecleone, and added its terri-
tories to their own, became the leading people in
Greece. Their superiority was long disputed by A-
thens; but the Peloponnesian war at last determined
that point in favour of the Spartans, when the city of
Athens was taken, and its walls demolished by Lyfan-
der the Spartan general. See ATTICA, no. 164.—By
the battle of Leuctra, the Spartans lost that superiori-
y which they had maintained for 500 years, and
which now devolved on the Thebans. After the death
of Epaminondas, the celebrated Theban general, how-
ever, as no person was found possessed of his abili-
ties, the Thebans were again obliged to yield the superi-
ority to the Spartans. But by this time the Greeks
had become acquainted with the luxuries and elegan-
cies of life; and all the rigour of their original laws
could not prevent them from valuing these as highly
as other people. This did not indeed abate their val-
our, but heightened their mutual animosities; at the
same time that, for the sake of a more easy and com-
fortable life, they became more disposed to submit to
a master. The Persians, whose power they had long
dreaded, and who were unable to reftit them by force
of arms, at last found out (by the advice of Alcibi-
ades) the proper method of reducing the Grecian
power; namely, by affisting them by turns, and sup-
plying one state with money to fight against another,
till they should all be so much reduced, that they
might become an easy prey. Thus the Greeks were
weakened, though the Persians did not reap any ben-
efit from their weakness. Philip of Macedon entered
into the same political views; and partly by intrigue,
partly by force, got himself declared Generalissimo
of Greece. His successor Alexander the Great
completed their subjection; and by destroying the city
of Thebes, and exterminating its inhabitants, struck
such terror throughout Greece, that he was as ful-
ly obeyed by all the states as by any of the rest of his
subjects. During his absence in Persia, however,
they attempted, when he was off the Macedonian yoke,
to rise in revolt by his general Antipater. The news of
Alexander's death was to them a matter of the utmost
joy; but their mutual animosities prevented them
from joining in any solid plan for the recovery of their
liberties, and hence they continued to be oppressed by
Alexander's successors, or other tyrants, till Aratus,
an Achaen, about 268. B. C. formed a design of get-
ting his country free from these oppressors. He per-
uaded a number of the smaller republics to enter into a
league for their own defence, which was called the
Achaean league; and notwithstanding that the repub-
lies, taken singly, had very little strength, they not
only maintained their independency, but soon became
formidable when united. This association continued
to become daily more and more powerful; but received
a severe check from Cleomenes, king of Sparta, which
obliged them to call in Antigonus to their assistance.
This prince overcame Cleomenes at the battle of Sel-
falia, and afterwards made himself master of Sparta.
Thus he became a more formidable enemy than the
one he had conquered, and the recovery of the Gre-
cian liberties was incomplete.

Soon after this, the Greeks began to feel the weight
of a power more formidable than any which they had
formerly experienced; namely, the insidious and haughty republic first intermeddled with the,
Grecian affairs, under pretence of setting them at
liberty from the oppression of Philip of Macedon.
This, by a proper union among themselves, they might
have accomplished; but in this they acted as though
they had been infatuated; receiving with the utmost
joy the decree of the Roman conful, who declared
them free; without considering, that he who had thus
given them liberty, might take it away at his pleasure.
This lesson, however, they were soon taught, by the
total reduction of their country to a Roman province;
and from this time, the Greeks began to suffer under the tyranny of the Turks, and their sufferings
were completed by the taking of Conflantinople in
1453. Since that time, they have groaned under the
yoke of a most despotic government; so that all traces of their former valour, ingenuity, and learning, are
now in a manner totally extinct.

Modern Greece comprehends Macedonia; Albania,
now called Armaut; Epirus; Thessaly, now Jana;
Achaia, now Livadia; the Peloponnesus, now Morea;
the Peloponnesus, now Morea; together with the islands on its coast, and in the Ar-
chipelago. The continent of Greece is seated between
the 36th and 43d degrees of north latitude; and be-
tween the 19th and 27th degrees of longitude, east
of London. To the north it is bounded, by Bulgaria
and Servia, from which it is divided by a ridge of
mountains; to the south, by the Mediterranean sea;
to the east, by Romania and the Archipelago; and
the west, by the Adriatic, or gulph of Venice. Its
length is said to be about 400 miles, and its utmost
breadth about 20 miles. It is a country that is
productive and healthy; and the soil fruitful, though badly
cultivated; yielding corn, wine, delicious fruits, and
abounding with cattle, fowls, and venison. As to re-
ligion,
ligion, Christianity was planted in Greece soon after the death of our Saviour, and flourished there for many ages in great purity; but since the Greeks became subject to the Turkih yoke, they have sunk into the most deplorable ignorance, in consequence of the slavery and thraldom under which they groan, and their religion is now greatly corrupted. It is indeed little better than a heap of ridiculous ceremonies and absurdities. The head of the Greek church is the patriarch of Constantinople; who is chosen by the neighbouring archbishops and Metropolitans, and confirmed by the emperor or grand vizir. He is a person of great dignity, being the head and director of the eastern church. The other patriarchs are those of Jerusalem, Antioch, and Alexandria. Mr Tournefort tells us, that the patriarchates are now generally set to sale, and bestowed upon those who are the highest bidders. The patriarchs, metropolitans, archbishops, and bishops, are always chosen from among the Calyfers or Greek monks. Before the patriarchs receive their patents and the caftan, which is a veil of finley-wooletry, or some other stuff, presented by the grand signior to ambassadors and other persons newly invested with some considerable dignity, they are obliged to make large presents to the vizir, &c. The income of the patriarch of Constantinople is paid to amount to no less than one hundred and twenty thousand guilders, of which he pays the one half by way of annual tribute to the Ottoman Porte, adding six thousand guilders besides as a present at the feast of Bairam. The next peer to a bishop among the clergy is an archimandrite; who is the director of one or more convents, which are called *mandræ*; then come the abbot, the arch-priest, the priest, the deacon, the under-deacon, the chanter, and the lector. The secular clergy are subjected to no rules, and never rise higher than high-priest. They are allowed to marry once; but it must be with a virgin, and before they are ordained. They have neither glebe nor tythes, but depend on the perquisites that arise from their office; and they seldom preach but in Lent. The Greeks have few nunneries; but a great many convents of monks, who are all priests, and students excepted, obliged to follow some handicraft employment, and lead a very obscure life. The Greeks deny the supremacy of the pope, and abhor the worship of images; but have a multitude of pictures of saints in their churches, whom they pray to as mediators. Their faiths are very severe. They believe also in the doctrine of transubstantiation, and that the Holy Ghost does not proceed from the Son. They admit not of purgatory, says Mr Thevenot: but yet they allow a third place, where they lay the blessed remain, in expectation of the day of judgment. At mass they consecrate with leavened bread; and communicate under both kinds, as well the priests, and as well women and children as men. When they carry the sacrament to the sick, they do not prostrate themselves before it, nor expose it to be adored; neither do they carry it in procession, or have any particular feast in honour of it. Baptism is performed among them by plunging the whole body of the child thrice into water. Immediately after baptism, they give it confirmation and the communion; and seven days after that, it undergoes the ceremony of ablution. When a priest is married, among other ceremomies, the bridegroom and bride drink each two glasses of wine; then the glass is given to the priest, who merrily drinks off the rest of the wine, and breaking the glasses, says, so may the bridegroom break the virginity of the bride. As to the charafter of the modern Greeks, they are said to be very covetous, hypocritical, treacherous, great pederasts, and at the same time revengeful to the highest degree; but very superstitious. They are so much defpised by the Turks, that these do not value even a Greek who turns Moslem. The Turks are remarkable for their taciturnity, they never use any unnecessary words; but the Greeks, on the contrary, are very talkative and lively. The Turks generally pralifie what their religion enjoins, but the Greeks do not; and their misery puts them upon a thousand mean shifts and scandalous practices, authorized by bad example, and perpetuated from father to fon. The Greek women have fine features and beautiful complexion: their countenances still very much resemble those of the ancient Greek statues.

GREEK, or GRECIAN, any thing belonging to ancient Greece.

The Greek language, as preferred in the writings of the celebrated authors of antiquity, as Homer, Hesiod, Demosthenes, Aristotle, Plato, Xenophon, &c. has a great variety of terms and expressions, suitable to the genius and occasions of a polite and learned people, who had a taste for arts and sciences. In it, proper names are figurative; which is the reason that the modern languages borrow so many terms from it. When any new invention, instrument, machine, or the like, is discovered, recourse is generally had to the Greek language: the facility wherewith words are there compounded, affording such as will be expressive of its use: such are, barometer, hygrometer, microscope, telescope, thermometer, &c. But of all sciences, medicine most abounds with such terms; as diaphoretic, diagnost, diarrhoea, hemorrhage, hydrophobia, phthisia, atrophy, &c. Besides the copiousness and significance of the Greek, wherein it excels most, if not all, other languages, it has also three numbers, viz. a singular, dual, and plural: also a multitude of tenses in its verbs, which makes a variety in discourse, prevents a certain dryness that always accompanies too great an uniformity, and renders that language peculiarly proper for all kinds of verse. The use of the participles, of the aorist and preterite, together with the compound words already mentioned, give it a peculiar force and brevity without taking any thing from its perspicuity.

It is no easy matter to assign the precise difference between the modern and ancient Greek; which consists in the terminations of the nouns, pronouns, verbs, &c. not unlike what obtains between some of the dialects of the Italian or Spanish. There are also in the modern Greek many new words, not to be met with in the ancient. We may therefore distinguish three ages of the Greek tongue: the first of which ends at the time when Constantinople became the capital of the Roman empire; the second lasted from that period to the taking of Constantinople by the Turks; and the third from that time to this.

Greek Bible. See Bible.

Greek Church, is that part of the Christian church, which
which is established in Greece, extending likewise to some other parts of Turkey. See GREECE.—It is thus called in Europe, Asia, and Africa, in contradistinction from the Latin or Romish church, as also the Eastern church, in distinction from the Western.

The Romanists call the Greek church the Greek schism: because the Greeks do not allow the authority of the pope, but depend wholly, as to matters of religion, on their own patriarchs. They have treated them as schismatics ever since the revolt, as they call it, of the patriarch Photius.

Greek monks and Nuns, of whatsoever order, consider St. Basil as their founder and common father, and esteem it the highest crime to deviate in the least from his constitutions. There are several beautiful convents with churches, in which the monks perform divine service day and night. Some of the monks are cannibales, or live together, wear the same habit, eat at the same table, and perform the same exercises and employments.

Greek Orders, in architecture, are the Doric, Ionic and Corinthian; in contradistinction to the two Latin orders, the Tuscan and Composite. See ORDER.

GREEN, one of the original prismatic colours, exhibited by the refraction of the rays of light. See CHROMATICS AND COLOUR.

GREEN, among painters and dyers. See COLOUR-MAKING, &c. &c.

GREEN-Cloth, a board or court of justice held in the compting-house, of the British king's household, composed of the Lord Steward and officers under him, who sit daily. To this court is committed the charge and oversight of the king's household in matters of justice, and government, with a power to correct all offenders, and to maintain the peace of thencever, or jurisdiction of the court-royal; which is every way about two hundred yards from the front gate of the palace where his majesty resides.

It takes its name, board of green cloth, from a green cloth spread over the board where they sit.

Without a warrant first obtained from this court, none of the king's servants can be arrested for debt.

Clerks of the Green Cloth were two officers of the board of green cloth, who appointed the diet of the king and his household; and kept all records, legers, and papers relating thereto; make up bills, parcels, and debentures for salaries, and provisions and necessaries for the officers of the buttery, pantry, cellar, &c. They also waited upon foreign princes when entertained by his majesty. But this has been lately abolished.

GREEN Finch, in ornithology, the English name of the greenfinch fringilla, with the wings and tail variegated with yellow. See FRINGILLA.

GREEN-House, or CONSERVATORY, a house in a Garden, courted for sheltering and preserving the most curious and tender exotic plants, which in our climate will not bear to be exposed to the open air, especially during the winter season. These are generally large and beautiful structures, equally ornamental and useful.

The length of greenhouses must be proportioned to the number of plants intended to be preserved in them, and cannot therefore be reduced to rule: but their depth should never be greater than their height in the clear; which, in small or middling houses, may be 16 or 18 feet; but in large ones from 20 to 24 feet; and the length of the windows should reach from about one foot and a half above the pavement, and within the same distance of the ceiling, which will admit of a cornice round the building over the heads of the windows. Their breadth cannot be in proportion to their length; for if in the largest building they are more than seven or seven feet and a half broad, they will be extremely heavy and inconvenient.

The piers between the windows must be as narrow as may be to support the building; for which reason they should either be of stone or hard burnt bricks. If the piers are made of stone, they should be 30 inches wide in front, and sloped off behind to about 18 inches, by which means there will be no corners to take off the rays of the sun. If they are of brick, they will require to be at least three feet in front, but they should in the same manner sloped off behind. Over the greenhouse may be rooms for drying and preserving feeds, roots, &c. and behind it a place for tools and other purposes; and both these behind, and the rooms above, will be of great use in keeping off the frosts, so that the wall between these need not be of more than two bricks and a half in thickness.

The floor of the greenhouse, which should be laid either with Bremen squares, Purbeck stone, or flat tiles, must be raised two feet above the surface of the adjoining ground, or if the situation be damp, at least three feet; and if the whole is arch'd with low brick arches under the floor, they will be of great service in preventing damp; and under the floor, about two feet from the front, it will be very advisable to make a flue of ten inches wide and two feet deep; this should be carried the whole length of the house, and then returned back along the hinder part, and there be carried up into funnels adjoining to the tool-house, by which the smoke may be carried off. The fire-place may be contrived at one end of the house, and the door at which the fuel is put in, as also the ash-gate, may be contrived to open into the tool-house, and the fuel being laid in the same place, the whole is out of sight. Bradley advises, that the front of greenhouses, in the colder parts of England, be built in a sweep or semicircle, so that one part or other of it may receive the sun's rays all day. The use of fires must, however, be very sparing in this place; and it is not one winter in three or four that will require them in any part, only when the weather is very severe, and the frost cannot well be kept out any other way, this is an expedient that is good to have in readiness, as it may save a whole house of plants. Within side of the windows, in front of the greenhouse, there should be good strong shutters, made with hinges, to fold back close to the piers, that they may not obstruct the ray of the sun. The back part of the house should be either laid over with flueco or plastered with mortar, and whitewashed, in order to prevent the frosty air from penetrating through the walls. When the greenhouse is wainscoted, the walls should be plastered with lime and hair behind the wainscot, to keep out the cold, and the wainscot, as well as the ceiling, and every part within the house, should be painted white, for the reflection of the sun's rays. There must be a number of trellis with forms of wood upon them, to support the pots of plants; the tallet to be placed hindmost, the lowest within four feet of the windows; and
the rows of plants should rise gradually, so that the heads of the second row should be entirely above the first; and behind them there should be a space of at least five feet, for the convenience of watering the plants, and for a free circulation of air. It has been observed, that the placing of the euphorbiums, cacti, and other succulent plants among orange-trees, and other common greenhouse-plants, is always destructive of them, by making them receive an improper sort of effluvia, which plants of that kind imitate very freely. They should therefore be placed in two wings built at each end of the greenhouse; which, if, well contrived, will be a great beauty as well as use to the building. These wings may be made capable of a greater warmth also by more flues, and may be made to contain a hot-bed of tanners bark for the raising many of the tender plants, natives of warm climates.

Whilist the front of the greenhouse is exactly south, one of the wings may be made to face the south-east and the other the south-west. By this disposition the heat of the sun is reflected from one part of the building to the other all day, and the front of the main greenhouse is guarded from the cold winds. These two wings may be so contrived as to maintain plants of different degrees of hardines, which may be easily effected by the situation and extent of the fire-place, and the manner of conducting the flues: the wing facing the south-east is evidently the most proper for the warmest stoves; this may be divided in the middle by a partition of glass, with glass-doors opening from one division to the other. In each of these there should be a fire-place, with flues carried up against the back-wall, through which the smoke should be made to pass as many times the length of the house as the height will admit of the number of flues; for the longer the smoke is in passing, the more heat will be given to the house with a less quantity of fuel. The other wing, facing the south-west, should be divided and furnished with flues in the same manner; and thus different degrees of heat may be obtained, according to the seasons and the particular sorts of plants that are to be preserved. If there are no fheeds behind these wings, the walls should not be less than three bricks thick; and the back part, having sloping roofs, which are covered with tiles or slates, should be lined with reeds, &c. under the covering. The sloping glass-panes of these houses should be made to slide and take off, so that they may be drawn down more or less in warm weather to admit air to the plants; and the upright glass-panes in front may be so contrived as that every other may open as doors upon hinges, and the alternate glass-panes may be divided into two; the upper part of each should be so contrived as to be drawn down like shutters, so that either of them may be used to admit air in a greater or less quantity as there may be occasion.

As to the management of the plants herein, Mortimer recommends the opening of the mould about them from time to time, and sprinkling a little fresh mould in them, and a little warm dung on that; as also to water them when the leaves begin to wither and curl, and not oftener, which would make them fade and be sickly; and to take off such leaves as wither and grow dry.

Green-Silver, the name of an ancient enclom within Greenland; the manor of Writtle in the county of Essex in England; which is, that every tenant whose fore-door opens to Greenbury shall pay an half-penny yearly to the lord, by the name of green-silver.

Green-Wax, is used where cliates are delivered to the sheriffs out of the exchequer, under the seal of that court, made in green wax, to be levied in the several counties. This word is mentioned in the 45d Stat. Ed. III. c. 9. and 7 Hen. IV. c. 4.

Greenland, a general name by which are denoted the most easterly parts of America, stretching towards the north pole, and likewise some islands to the northward of the continent of Europe, lying in very high latitudes.

This country is divided into West and East Greenland. West Greenland is now determined by the latest maps to be a part of the continent of America, though upon what authority is not very clear. That part of it which the Europeans have any knowledge of is bounded on the west by the strand of the Strait of Davis, and on the east by the northern part of the Atlantic Ocean. It is a very mountainous country, and some parts of it to high that they may be discerned 30 leagues off at sea. The inland mountains, hills, and rocks, are covered with perpetual snow; but the low lands on the sea-side are clothed with verdure in the summer season. The coast abounds with inlets, bays, and large rivers; and is surrounded with a vast number of islands of different dimensions. In a great many places, however, on the eastern coast especially, the shore is inaccessible by reason of the floating mountains of ice. The principal river, called Baaf, falls into the sea in the 64th degree of latitude, where the first Danish lodge was built 1741; and has been navigated above 40 miles up the country.

West Greenland was first peopled by Europeans in the eighth century. At that time a company of Icelanders, headed by one Ericke Rande, were by accident driven on the coast. On his return he represented the country in such a favourable light, that some families followed him thither, where they soon became a colony from Iceland, and by the name of Groenland, or Greenland, on account of its verdant appearance. This colony was converted to Christianity by a missionary from Norway, fent thither by the celebrated Olaf, the first Norwegian monarch who embraced the true religion. The Greenland settlement continued to increase and thrive under his protection; and in a little time the country was provided with many towns, churches, convents, bishops, &c. under the jurisdiction of the archbishop of Drontheim. A considerable commerce was carried on between Greenland and Norway; and a regular intercourse maintained between the two countries till the year 1406, when the last bishop was sent over. From All correspondence was cut off, and all knowledge of Greenland has been buried in oblivion.

This strange and abrupt cessation of all trade and commerce has been attributed to various causes; but the most probable is the following. The colony, from its first settlement, had been harassed by the natives, a barbarous and savage people; agreging in customs, garb, and appearance, with the Eqquimaux found about Hudson's Bay. This nation, called Schreblinges,
Greenland. at length prevailed against the Iceland settlers who inhabited the western district, and exterminated them in the 14th century; inasmuch, that when their brethren of the eastern district came to their assistance, they found nothing alive but some cattle and flocks of sheep running wild about the country. Perhaps they themselves afterwards experienced the same fate, and were totally destroyed by the Scherlings, whose descendants still inhabit the western parts of Greenland, and from tradition confirm this conjecture. They affirm that the houses and villages, whose ruins still appear, were inhabited by a nation of strangers, whom their ancestors destroyed. There are reasons, however, for believing that there may be still some descendants of the ancient Iceland colony remaining in the eastern district, though they cannot be visited by land, on account of the stupendous mountains, perpetually covered with snow, which divide the two parts of Greenland; while they have been rendered inaccessible by sea, by the Vaft quantity of ice driven from Spitzbergen, or East Greenland. One would imagine that there must have been some considerable alteration in the northern parts of the world since the 15th century, so that the coast of Greenland is now become almost totally inaccessible, though formerly visited with very little difficulty. It is also natural to ask, By what means the people of the eastern colony mounted the abovementioned obstacles when they went to the assistance of their western friends; how they returned to their own country; and in what manner historians learned the success or their expedition? Concerning all this we have very little satisfactory information.

All that can be learned from the most authentic records is, that Greenland was divided into two districts, called West Bygd and East Bygd: that the western division contained four parishes and two villages: that the eastern district was still more flourishing, as being nearer to Iceland, sooner settled, and more frequented by shipping from Norway. There are also many accounts, though most of them romantic and slightly affected, which render it probable that part of the eastern colony still subsisted, who, at some time or other, may have given the imperfect relation abovementioned.

This colony, in ancient times, certainly comprised twelve extensive parishes, one hundred and ninety villages; a bishop's fees, and two monasteries. The present inhabitants of the western district are entirely ignorant of this part, from which they are divided by rocks, mountains, and deferts, and still more effectually by their apprehension; for they believe the eastern Greenlanders to be a cruel, barbarous nation, that destroy and eat all strangers who fall into their hands. About a century after all intercourse between Norway and Greenland had ceased, several ships were sent successively by the kings of Denmark in order to discover the eastern district; but all of them miscarried. Among these adventurers, Mogens Heinon, after having surmounted many difficulties and dangers, got off the land; which, however, he could not approach. At his return, he pretended that the ship was arrested in the middle of her course by certain rocks of loadstone at the bottom of the sea. The Greenland fame year, 1576, in which this attempt was made, has been rendered remarkable by the voyage of Captain Martin Frobisher, sent upon the same errand by Queen Elizabeth. He likewise described the land; but could not reach it, and therefore returned to England; yet not before he had failed sixty leagues in the firth which still retains his name, and landed on several islands, where he had some communication with the natives. He had likewise taken possession of the country in the name of Queen Elizabeth; and brought away some pieces of heavy black stone, from which the refiners of London extracted a certain proportion of gold. In the ensuing spring he undertook a second voyage, at the head of a small squadron, equipped at the expense of the public; entered the firths a second time; discovered upon an island a gold and silver mine; bestowed names upon different bays, islands, and headlands; and brought away a loading of ore, together with two natives, a male and a female, whom the English kidnapped.

Such was the success of this voyage, that another armament was fitted out under the auspices of Admiral Frobisher, consisting of 15 sail, including a considerable number of soldiers, miners, smelters, carpenters, and bakers, to remain all the winter near the mines in a wooden fort, the different pieces of which they carried out in the transports. They met with boisterous weather, impenetrable fogs, and violent currents upon the coast of Greenland, which retarded their operations until the season was far advanced. Part of their wooden fort was lost at sea; and they had neither provision nor fuel sufficient for the winter. The admiral therefore determined to return with as much ore as he could procure: of this they obtained large quantities out of a new mine, to which they gave the name of the Counts of Sufleis. They likewise built an house of stone and lime, provided with ovens; and here, with a view to conciliate the affection of the natives, they left a quantity of small morrice-bells, knives, beads, looking-glasses, leaden pictures, and other toys, together with several loaves of bread. They buried the timber of the fort where it could be easily found next year; and sawed corn, pease, and other grain, by way of experiment, to know what the country would produce. Having taken these precautions, they failed from thence in the beginning of September; and after a month's stormy passage, arrived in England: but this noble design was never prosecuted.

Christian IV. king of Denmark, being desirous of discovering the old Greenland settlement, sent three ships thither, under the command of Captain Godfke Lindenow; who is said to have reached the east coast of Greenland, where he traded with the savage inhabitants, such as they are still found in the western district, but few of signs of a civilized people. Had he actually landed in the eastern division, he must have perceived some remains of the ancient colony, even in the ruins of their convents and villages. Lindenow kidnapped two of the natives, who were conveyed to Copenhagen; and the same cruel fraud (a) was practiced.

(a) Nothing can be more inhuman and repugnant to the dictates of common justice than this practice of tearing away poor creatures from their country, their families, and connections: unless we suppose them altogether
Greenland, titled by other two ships which failed into Davis’s Straights, where they discovered divers fine harbours, and delightful meadows covered with verdure. In some places they are said to have found a considerable quantity of ore, every hundred pounds of which yielded twenty-six ounces of silver. The fame Admiral Lindenow made another voyage to the coast of Greenland in the year 1606, directing his course to the westward of Cape Farewell. He coasted along the straits of Davis; and having made some observations on the face of the country, the harbours and islands, returned to Denmark. Carsten Richards, being detached with two ships on the same discovery, deserted the high land on the eastern side of Greenland; but was hindered by the ice from approaching the shore.

Other expeditions of the same nature have been planned and executed with the same bad success, under the auspices of a Danish company of merchants. Two ships returned from the western part of Greenland loaded with a kind of yellow sand, supposed to contain a large proportion of gold. This being assayed by the goldsmiths of Copenhagen, was condemned as useless, and thrown overboard; but from a small quantity of this sand, which was preserved as a curiosity, an expert chemist afterwards extracted a quantity of pure gold. The captain, who brought home this adventure, was so chagrined at his disappointment, that he died of grief, without having left any directions concerning the place where the sand had been discovered. In the year 1654, Henry Moller, a rich Dane, equipped a vessel under the command of David de Nelles, who failed to the west coast of Greenland, from which he carried away three women of the country. Other efforts have been made, under the encouragement of the Danish king, for the discovery and recovery of the old Iceland colony in Greenland; but all of them miscarried, and people began to look upon such expeditions as wild and chimerical. At length the Greenland colony at Bergen in Norway, transported a colony to the western coast, about the 64th degree of latitude; and these Norwegians failed in the year 1712, accompanied by the Reverend Hans Egede, to whose care, ability, and precision, we owe the best and most authentic account of modern Greenland. This gentleman endeavoured to reach the eastern district by coasting towards the north, and continual storms, obliged him to return; and as he could not even find the Strait of Forbisher, he concluded that no such place ever existed. In the year Greenland, 1724, a ship being equipped by the company, failed on this discovery, with a view to land on that side opposite to Iceland; but the vast shoals of ice, which barred the passage of the coast, rendered this scheme impracticable. His Danish majesty, in the year 1728, caused horses to be transported to Greenland, in hope that the settlers might by their means travel over land to the eastern district; but the icy mountains were found impassable. Finally, lieutenant Richards, in a ship which had wintered near the new Danish colony, attempted, in his return to Denmark, to land on the eastern shore; but all his endeavours proved abortive.

Mr. Egede is of opinion, that the only practicable method of reaching that part of the country, will be to coast north-about in small vessels, between the great flakes of ice and the shore; as the Greenlanders have declared, that the currents continually rushing from the bays and inlets, and running north-westwards along the shore, hinder the ice from adhering to the land; so that there is always a channel open, through which vessels of small burden might pass, especially if lodges were built at convenient distances on the shore, for the convenience and direction of the adventurers.

That part of the country which is now visited and settled by the Danes and Norwegians, lies between the 64th and 65th degrees of north latitude; and thus far it is said the climate is temperate. In the summer, which continues from the end of May to the middle of September, the weather is warm and comfortable, while the wind blows easterly; though even at this time storms frequently happen, which rage with incredible violence; and the sea coasts are inflected with fogs that are equally disagreeable and unhealthy. Near the shore, and in the bays and inlets, the low land is clothed with the most charming verdure; but the inland mountains are perpetually covered with ice and snow. To the northward of the 65th degree of latitude the cold is progressively intense; and towards the end of August all the coast is covered with ice, which never thaws till April or May, and sometimes not till the latter end of June. Nothing can exhibit a more dreadful, and at the same time a more dazzling appearance, than those prodigious masses of ice that surround the whole coast in various forms, reflecting a multitude of colours from the sun-beams, and calling to mind the enchanted scenes of romance. Such prospects they yield in calm weather; but when the wind begins together defilute of natural affection; and that this was not the case with those poor Greenlanders, some of whom were brought alive to Copenhagen, appears from the whole tenor of their conduct, upon their first capture, and during their confinement in Denmark. When first captivated, they rent the air with their cries and lamentations; they even leaped into the sea; and, when taken on board, for some time refused all sustenance. Their eyes were continually turned towards their dear country, and their faces always bathed in tears. Even the countenance of his Danish majesty, and the cares of the court and people, could not alleviate their grief. One of them was perceived to shed tears always when he saw an infant in the mother’s arms; a circumstance from whence it was naturally concluded, that he had left his wife with a young child in Greenland. Two of them went to sea in their little canoes in hope of reaching Greenland; but none of them were retaken. Other two made the same attempt; but were driven by a storm on the coast of Schonen, where they were apprehended by the peasants, and reconveyed to Copenhagen. One of them afterwards died of a fever, caught in fishing pearl, during the winter, for the governor of Kolding. The rest lived some years in Denmark; but at length feeling no prospect of being able to revisit their native country, they sunk into a kind of melancholy disorder, and expired.
Greenland, begins to blow, and the waves to rise in vast billows, the violent shocks of those pieces of ice dazzling against one another fill the mind with horror. Greenland is seldom visited with thunder and lightning, but the Aurora Borealis is very frequent and bright. At the time of new and full moon, the tide rises and falls upon this coast about three fathoms; and it is remarkable, that the springs and fountains on shore rise and fall with the flux and reflux of the ocean.

The soil of Greenland varies like that of all other mountainous countries. The hills are very barren, being indeed frozen throughout the whole year; but the valleys and low grounds, especially near the sea, are rich and fruitful. The ancient Norwegian chronicles inform us, that Greenland formerly produced a great number of cattle; and that considerable quantities of butter and cheese were exported to Norway; and, on account of their peculiar excellency, set apart for the king's use. The same histories inform us, that some parts of the country yielded excellent wheat; and that large oaks were found here, which carried acorns as big as apples. Some of these oaks still remain in the southern parts, and in many places the marks of ploughed land are easily perceived. At present, however, the country is destitute of corn and cattle, though in many places it produces excellent pasture; and if properly cultivated, would probably yield grain also. Mr Egede fowed some barley in a bay adjoining to the Danish colony. It sprang up so fast, that by the latter end of July it was in the full ear; but being nipped by a night-frost, it never arrived at maturity. This seed was brought from Bergen; where the summer is of greater heat and duration than in Greenland; but in all probability the corn which grows in the northern parts of Norway would also thrive here. Turnips and coleworts of an excellent taste and flavour are also produced here. The sides of the mountains near the bays are clothed with wild thyme, which diffuses its fragrance to a great distance. The herb tormentil is very common in this country, and likewise many others not described by the botanists. Among the fruits of Greenland we number juniper-berries, blue-berries, bil-berries, and bramble-berrries.

Greenland is thought to contain many mines of metal though none of them are wrought. To the southward of the Danish colony are some appearances of a mine of copper. Mr Egede once received a lump of ore from one of the natives; and here he found calcite of a yellow colour. He once sent a considerable quantity of sand of a yellow colour, intermixed with streaks of vermilion, to the Bergen company. They probably found their account in this present; for they desired him by a letter to procure as much of that sand as possible: but he was never able to find the place where he saw the first specimen. It was one of the smallest among a great number of islands; and the mark he had set up was blown down by a violent storm. Possibly this might be the same mineral of which Captain Frobisher brought to much to England. This country produces rock-crystals both red and white, and whole mountains of the albesos or incom-bustible flax. Around the colony, which is known by the name of Good Hope, they find a kind of buffard marble of various colours, which the natives form into bowls, lamps, pots, &c. All that has been said of Greenland: the fertility of Greenland, however, must be understood only of that part which lies between the 60th and 65th degrees of latitude. The most southern parts are totally destitute of herbs and plants. The wretched inhabitants, cannot find grast in sufficient qualities to stuff into their shoes to keep their feet warm, but are obliged to buy it from those who inhabit the more southern parts.

The animals which abound most in Greenland are, rein-deer, foxes, hares, dogs and white bears. The hares are of a white colour, and very fat; the foxes are of different colours, white, greyish, and bluish; and smaller than those of Denmark and Norway. The natives keep a great number of dogs, which are large, white, or speckled, and rough, with ears standing upright, as is the case with all the dogs peculiar to cold climates. They are timorous and stupid, and neither bay nor bark, but sometimes howl diversely. In the northern parts the natives yoke them in fedges; which, though heaven laden, they will draw on the ice at the rate of 70 miles in a short winter's day. These poor animals are very ill rewarded for their service; being left to provide for themselves, except when their masters happen to catch a great number of seals. On these occasions the dogs are regaled with the blood and entrails; at other times they feebite, like wild-beasts, upon muscles and berries. Here also are found great numbers of ravens, eagles of a prodigious size, falcons, and other birds of prey; and likewise a kind of linnet, which warbles very melodiously. Whales, sword-fish, porpoises, &c. abound on the coasts; also holybut, turbut, cod, haddock, &c. The more dubious animals also, called mermaids, sea-serpents, and krakens, said to be found on the coast of Norway, are said likewise to dwell in these seas. Mr Egede affiries us, that in the year 1734, the sea-serpent was seen off the new Danish colony, and raised its head mast high above the surface of the water. See Kraken, Mermaid, and Sea-Serpents.

The people who now inhabit the western coast of Greenland, and who, without doubt, are the descendents of the ancient Schelings, who exterminated the first Icelandic colony, bear a near resemblance to the Samoedes and Laplanders in their persons, complexion, and way of life. They are short, brawny, and inclined to corpulency; with broad faces, flat noses, thick lips, black hair and eyes, and a yellowish-tawny complexion. They are for the most part vigorous and healthy, but remarkably short-lived; few of them reaching the grand climateric; and many dying in their infancy, and in the prime of youth. They are subject to a weaknes in the eyes, occasioned by the piercing winds and the glare of the snow in the wintertime. The leprosy is known among them, but is not contagious. Those that dwell in the northern parts are miserably tormented with dysenteries, rheums, and pulmonary disorders, boils, and epilepsy. The smallpox being imported among them from Copenhagen in the year 1734, made terrible havoc among these poor people, who are utterly destitute of any knowledge of the medicinal art, and depend entirely for allusion upon the anekskats or conjurers. In their dispositions the Greenlanders are cold, phlegmatic, indolent, and slow of apprehension; but very quiet, orderly, and good.
Greenland.

They live peaceably together; and have every thing in common, without strife, envying, or animosity. They are civil and hospitable, but very different in their social customs. They never wash themselves with water; but lick their paws like the cat, and then rub their faces with them. They eat after their dogs without washing their dishes; devour the lice which devour them; and even lick the sweat, which they scrape off from their faces with their knives. The women wash themselves with their own urine, which they imagine makes their hair grow; and in the winter-time go out immediately after, to let the liquor freeze upon their skin. They will often eat their victuals off the dirty ground, without any vehicle to hold them in; and devour rotten flesh with the greatest avidity. In times of scarcity they will stuff on pieces of old skin, reeds, sea-weed, and a root called taglermet, dressed with trail oil and fat. The dung of rein-deer taken from the intestines, the entrails of partridges, and all sorts of offal, are counted dainties among these savages; and of the scrapings of seals skins they make delicate pan-cakes. At first they could not taste the Danish provisions without abhorrence; but now they are become extremely fond of bread and butter, though they still retain an aversion to tobacco and spirits; in which particular they differ from almost all savages on the face of the earth.

The Greenlanders commonly content themselves with one wife; who is condemned, as among other savage nations, to do all the drudgery, and may be corrected, or even divorced, by the husband at pleasure. Heroes, however, and extraordinary personages, are indulged with a plurality of wives. Their young women are generally chaste and bashful; but at some of their feasts, in the midst of their jollity, a man retires with his neighbour’s wife behind a curtain made of skins; and all the guests, thus coupled, retire in their turns. The women think themselves happy if an angekut or prophet will thus honour them with his caresses. These people never marry within the prohibited degrees of consanguinity, nor is it counted decent in a couple to marry who have been educated in the same family. — They have a number of ridiculous and superstitious customs; among which the two following are the most remarkable. While a woman is in labour, the goolips hold a chamber-pot over her head, as a charm to hasten the delivery. When the child is a year old, the mother licks and lobbies it all over, to render it as the imagines, more strong and hearty.

All the Greenlanders hitherto known speak the same language, though different dialects prevail in different parts of the country. They never wash themselves with double compounds; and is so gutural, that the pronunciation of many words is not to be learned except by those who have been accustomed to it from their infancy. The letters C, D, F, Q, and X, are not known in their alphabet. Like the North Americans, and inhabitants of Kamtschats, they have a great number of long polyyllables. Their words, nouns as well as verbs, are inflected at the end by varying the terminations without the help of articles; but their language being found defective, they have adopted a good many words from the Norwegian dialect. Notwithstanding the endeavours of the Danith missionaries, they have no great reason to boast of the profelytes Greenland have made of the natives Greenland. These savages pay great deference and respect to the Danes, whom indeed they obey as their masters, and hear the truths of the Christian religion expounded without doubting the veracity of their teachers; but at the same time they listen with the most mortifying indifference, without being in the least influenced by what they have heard. They believe in the immortality of the soul, and the existence of a spirit whom they call Tornagarfik; but of whom they have formed the most ridiculous notions. The Angekuts, who are supposed to be his immediate ministers, differ concerning the principles of his existence; some affirming that he is without form or shape; others, that he has the shape of a bear; others, that he has a large human body with only one arm; while others affirm that he is no larger than a man’s finger, with many other absurdities of a similar kind. They have also a peculiar kind of mythology, by which they believe all the elements to be full of spirits, from among which every one of their prophets is supplied with a familiar which they name Tornack; and who is always ready when summoned to his assistance.

The Greenlanders are employed all the year round either in fishing or hunting. At sea they pursue the whales, morays, seals, fish for eating, and sea-fowl. On shore they hunt the rein-deer in different parts of the country. They drive these animals, which feed in large herds, into a narrow circle or defile, where they are easily taken with arrows. Their bow is made of fir-tree, wound about with the twisted sinews of animals: the string is composed of the same stuff; or of seal skin: the arrow is a good third in length, pointed with a bearded iron, or a sharp bone; but those with which they kill birds are blunt, that they may not tear the flesh. Sea-fowls they kill with lances, which they throw to a great distance with surprising dexterity. Their manner of catching whales is quite different from that practised by the Europeans. About 50 persons, men and women, sit out in one long boat, which is called a rose-boat, from one woman, because it is rowed by females only. When they find a whale, they strike him with harpoons, to which are fastened with long lines some seals skins blown up like bladders. These, by floating on the surface, not only discover the back of the whale, but hinder him from diving under water for any length of time. They continue to pursue him until he loses strength, when they pierce him with spears and lances till he expires. On this occasion they are clad in their spring coats consisting of one piece, with gloves, boots, caps made of seal skin: closely laced and fewed that they keep out water. Thus accoutred, they leap into the sea; and begin to slice off the fat, even under water, before the whale is dead. — They have many different ways of killing seals; namely, by flicking them with a small harpoon equipped also with an air-bag; by watching them when they come to breathe at the air-holes in the ice, and striking them with spears; by approaching them in the diggings of their own species, that is, covered with a seal skin, creeping upon the ice, and moving the head from side to side as the seals are accustomed to do. By this stratagem the Greenlander makes towards the unsuspecting
Greenland, pecating seal, and kills him with a spear. The Greenlanders angle with lines made of whale-bone cut very small, by means of which they succeed wonderfully. The Greenland canoe, like that used in Nova Zembla and Hudson’s bay, is about three fathoms in length, pointed at both ends, and three quarters of a yard in breadth. It is composed of thin rafts fastened together with the sinews of animals. It is covered with dressed seal-skins both below and above, in such a manner that only a circular hole is left in the middle, large enough to admit the body of one man. Into this the Greenlander thrusts himself undoubtedly Spitzbergen. The sea, left in the middle, large feals, made of the same materials, but more durable; and above, in such manner to bring to Copenhagell, outfiripped a pinnace of 16 oars, the northward as far as the current ran along. This obstacle for a canoe, fitted with a paddle broad at both ends, he will venture out to sea in the most stormy weather to catch feals and sea-fowl; and if he is overfet, he can easily raise himself by means of his paddle. A Greenland canoe, fitted out with a pinnace, which carried a triangular sail made of the membranes and entrails of seals, and is managed the continent of the coast of Spitzbergen. The sea, as Cil:cular, with the finews of animals, whereas in Greenland is about three yards made of whale-bone country from N. Lat 78° to 80° 15′, which was undoubtedly Spitzbergen. The sea in the neighbourhood of the islands of Spitzbergen abounds very much with whales, and is the common resort of the whole-fishing ships from different countries, and the country itself is frequently visited by these ships, but till the late voyage of the Hon. Capt. Phipps, by order of his Britannic majesty, the situation of it was erroneously laid down. It was imagined that the land stretched to the northward as far as 82° of north latitude; but Capt. Phipps found the most northerly point of land, called Seven Islands, not to exceed 80° 30′ of latitude. Towards the coast he saw other lands lying at a distance, so that the Spitzbergen plainly appeared to be surrounded by water on that side, and not joined to the continent of Asia, as former navigators had supposed. The north and west coasts also he explored, but was prevented by the ice from going far to the northward as he wished. The coast appeared neither habitable nor accessible. It is formed of high, barren, black rocks, without the least marks of vegetation; in many places bare and pointed; in others covered with snow, appearing even above the clouds. The valleys between the high cliffs were filled with snow and ice. “This prospect,” says Capt. Phipps, “would have suggested the idea of perpetual winter, had not the mildness of the weather, the smooth water, bright fun-shine, and constant day-light, given a cheerfulness and novelty to the whole of this romantic scene.”

The current ran along this coast half a knot an hour, north. The height of one mountain seen here was found by geometrical mensuration to be at one time 130 fathom, sandy bottom, not far from the shore, and well sheltered from all winds. Close to this harbour is an island called Amsterdam Island, where the Dutch used formerly to boil their whale-oil; and the remains of some convenience erected by them for that purpose tend to be the original discoverers, and called the Greenland country Spitzbergen, or Sharp Mountains, from the many sharp-pointed and rocky mountains with which it abounds. They alleged that the coast discovered by Sir Hugh Willoughby was some other country; which accordingly the Hollanders delineated on their maps and charts by the name of Willoughby Land; whereas in fact no such land ever existed; and long before the voyage of these Dutchmen, Stephen Barrows, an English shipwrecker, had coasted along a desolate country from N. Lat 76° to 80° 15′, which was undoubtedly Spitzbergen. The sea in the neighbourhood of the islands of Spitzbergen abounds very much with whales, and is the common resort of the whole-fishing ships from different countries, and the country itself is frequently visited by these ships, but till the late voyage of the Hon. Capt. Phipps, by order of his Britannic majesty, the situation of it was erroneously laid down. It was imagined that the land stretched to the northward as far as 82° of north latitude; but Capt. Phipps found the most northerly point of land, called Seven Islands, not to exceed 80° 30′ of latitude. Towards the coast he saw other lands lying at a distance, so that the Spitzbergen plainly appeared to be surrounded by water on that side, and not joined to the continent of Asia, as former navigators had supposed. The north and west coasts also he explored, but was prevented by the ice from going far to the northward as he wished. The coast appeared neither habitable nor accessible. It is formed of high, barren, black rocks, without the least marks of vegetation; in many places bare and pointed; in others covered with snow, appearing even above the clouds. The valleys between the high cliffs were filled with snow and ice. “This prospect,” says Capt. Phipps, “would have suggested the idea of perpetual winter, had not the mildness of the weather, the smooth water, bright sun-shine, and constant day-light, given a cheerfulness and novelty to the whole of this romantic scene.”

The current ran along this coast half a knot an hour, north. The height of one mountain seen here was found by geometrical mensuration to be at one time 130 fathom, sandy bottom, not far from the shore, and well sheltered from all winds. Close to this harbour is an island called Amsterdam Island, where the Dutch used formerly to boil their whale-oil; and the remains of some convenience erected by them for that purpose tend to be the original discoverers, and called the Greenland country Spitzbergen, or Sharp Mountains, from the many sharp-pointed and rocky mountains with which it abounds. They alleged that the coast discovered by Sir Hugh Willoughby was some other country; which accordingly the Hollanders delineated on their maps and charts by the name of Willoughby Land; whereas in fact no such land ever existed; and long before the voyage of these Dutchmen, Stephen Barrows, an English shipwrecker, had coasted along a desolate country from N. Lat 76° to 80° 15′, which was undoubtedly Spitzbergen. The sea in the neighbourhood of the islands of Spitzbergen abounds very much with whales, and is the common resort of the whole-fishing ships from different countries, and the country itself is frequently visited by these ships, but till the late voyage of the Hon. Capt. Phipps, by order of his Britannic majesty, the situation of it was erroneously laid down. It was imagined that the land stretched to the northward as far as 82° of north latitude; but Capt. Phipps found the most northerly point of land, called Seven Islands, not to exceed 80° 30′ of latitude. Towards the coast he saw other lands lying at a distance, so that the Spitzbergen plainly appeared to be surrounded by water on that side, and not joined to the continent of Asia, as former navigators had supposed. The north and west coasts also he explored, but was prevented by the ice from going far to the northward as he wished. The coast appeared neither habitable nor accessible. It is formed of high, barren, black rocks, without the least marks of vegetation; in many places bare and pointed; in others covered with snow, appearing even above the clouds. The valleys between the high cliffs were filled with snow and ice. “This prospect,” says Capt. Phipps, “would have suggested the idea of perpetual winter, had not the mildness of the weather, the smooth water, bright sun-shine, and constant day-light, given a cheerfulness and novelty to the whole of this romantic scene.”

The current ran along this coast half a knot an hour, north. The height of one mountain seen here was found by geometrical mensuration to be at one time 130 fathom, sandy bottom, not far from the shore, and well sheltered from all winds. Close to this harbour is an island called Amsterdam Island, where the Dutch used formerly to boil their whale-oil; and the remains of some convenience erected by them for that purpose
GREENLAND, a sea-port town in Scotland, and one of the ports of the city of Glasgow. It is distant 22 miles from that city; and was formerly called the Bay of St. Lawrence. The Frith of Clyde here expands into a fine bayon four miles wide, and is landlocked on all sides. Greenock is a burgh of barony, and the best built town on all the coast. It is the chief refort of the herring fishe, and otherwise a place of great trade and very populous.—The harbour was made by Sir John Shaw of Greenock, whose ancestor built the church; and the family had here a castle.

GREENWICH, a town of the county of Kent, in England, pleasantly situated on the bank of the Thames, about five miles east from London. Here was formerly a royal palace, built by Humphry duke of Gloucester, enlarged by Henry VII. and completed by Henry VIII. The latter often chose this town for his place of residence; as did also the queens Mary and Elizabeth, who were born in it. The fame duke Humphry began a tower on the top of the steep hill in the park, which was finished by Henry VII. but afterwards demolished, and a royal observatory erected in its place by Charles II. furnished with mathematical instruments for astronomical observations, and a deep dry well for observing the stars in the day time. The palace being afterwards much neglected, King Charles II. (who had enlarged the park, walled it about and planted it), pulled it down, and began another, of which he lived to see the first wing magnificently finished. But king William III. in 1694, granted it, with nine acres of ground thereto belonging, to be converted into a royal hospital for old and disabled seamen, the widows and children of those who lost their lives in the service, and for the encouragement of navigation. The wing, which cost king Charles 36,000 l. is now the first wing of the hospital towards London. The front to the Thames consists of two ranges of stone-built houses with the range of the house in the centre of the area, but detached from any part of the hospital. These buildings perfectly correspond with each other, and have their tops crowned with a stone balustrade. The buildings which are facing the area, correspond with them, though in a finer and more elegant style; and have domes at their ends, which are 120 feet high, supported on coupled columns. Under one of these is the hall, which is finely painted by Sir James Thornhill, and contains many royal portraits; and under the other the chapel, which by accident was destroyed by fire. This fire broke out in the hospital on the second of January 1779, and totally consumed the dome at the S. Ecuador of the building, with the chapel which was the most elegant in the world, the great dining-hall, and eight wards containing the lodgings of near 600 pensioners. The dome was rebuilt about the year 1785; but the repair of the whole damage is not yet completed. On the sides of the grate which open to these buildings from the park, are placed a large terrestrial and celestial globe, in which the stars are gilt; and in the centre of the area is a statue of George II. About 2000 old disabled seamen are maintained in this hospital. Besides private benefactions, to the amount of near L. 60,000 (which appear in tables hung up at the entrance of the hall), the parliament, in the year
Oreenwith 173 '1, fettled his estate, to the value of £6000 per annum. All strangers who see it, pay twopence a month; and this income is applied to the support of the musical school for the sons of sailors. For the better support of which, every seaman in the royal navy, and in the merchant service, pays sixpence a month, fopped out of their pay, and delivered in at the six-penny receiver's office in Tower-hill. On this account, a seaman, who can produce an authentic certificate of his being disabled, and rendered unfit for service, by defending any ship belonging to his Majesty's British subjects, or in taking any ship from the enemy, may be admitted into this hospital, and receive the same benefits from it as if he had been in his Majesty's immediate service. Besides the seamen and widows abovementioned, about 100 boys, the sons of seamen, are bred up for the service of the royal navy; but there are no out-pensioners as at Chelsea. Each of the mariners has a weekly allowance of seven loaves, weighing 16 ounces each; three pounds of beef, two of mutton, a pint of peas, a pound and a quarter of cheese, two ounces of butter, fourteen quart's of beer, and one shilling a-week tobacco money: the tobacco money of the bosomates is two shillings and sixpence a-week each, that of their mates one shilling and sixpence, and that of the other officers in proportion to their rank; besides which, each common pensioner receives once in two years, a suit of blue cloth, a hat, three pairs of stockings, two pair of shoes, five neck-cloths, three shirts, and two night caps. Out of all that is given for showing the hall, only three-pence in the shilling is allowed to the person that shows them; the rest makes an excellent fund for the yearly maintenance of not less than 20 poor boys, who are the sons of mariners that have been either slain or disabled in the service of their country. The park is well stocked with deer, and affords as much variety, in proportion to its size, as any in the kingdom: but the views from the Observatory and the one-tree hill are beautiful beyond imagination, particularly the former. The projection of these hills is so bold, that you do not look down upon a gradually falling slope or flat inclines, but at once upon the tops of the fishing trees, which grow in knots and clumps out of deep hollows and imbrowned dells. The cattle which feed on the lawns, which appear in breaks among them, seem moving in a region of fairy land. A thousand natural openings among the branches of the trees break upon little picturesque views of the swelling turf, which, when illumined by the sun, have an effec pleasing beyond the power of fancy to paint. This is the foreground of the landscape: a little farther, the eye falls on that noble structure the hospital, in the midst of an amphitheatre of wood; then the two reaches of the river make that beautiful :perpective which forms the Life of Dogs, and presents the floating millions of the Thames. To the left appears a fine tract of country, leading to the capital, which there finishes the prospect. The parish-church of Greenwich, rebuilt by the commissioners for erecting the 50 new churches, is a very handsome structure, dedicated to St Alphage, archbishop of Canterbury, who is said to have been slain by the Danes in the year 1012 on the spot where the church now stands. There is a college at the end of the town, fronting the Thames, for the maintenance of 20 decayed old house-keepers, 12 out of Greenwich, and eight who are to be alternately chosen from Snottisham and Castle-Rising in Norfolk. This is called the duke of Norfolk's College, though it was founded and endowed in 1613 by Henry earl of Northampton the duke of Norfolk's brother, and by him committed to the care of the Mercers company. To this college belongs a chapel, in which the earl's body is laid; which, as well as his monument, was removed hither a few years ago from the chapel of Dover castle. The pensioners, besides meat, drink, and lodging, are allowed one shilling and sixpence a week, with a gown every year, linen once in two years, and hats once in four years. In 1560, Mr Lambard, author of the Perambulation of Kent, also built an hospital, called queen Elizabeth's college, said to be the first erected by an English Protestant. There are likewise two charity-schools in this parish. The river Thames is here very broad, and the channel deep; and at some very high tides the water is salt. This is the chief harbour for the king's yachts. The town contains about 1500 houses; and a market on Wednesday and Saturday was erected here in 1737; the direction of which is in the governors of the royal hospital, to which the profits arising from it were to be appropriated.

GREGORIOUS, among zoologists, a term applied to such animals as do not live solitary, but associate in herds or flocks.

GREGORIAN CALENDAR, that which shows the new and full moon, with the time of Easter, and the movable feasts depending thereon, by means of epacts disposed through the several months of the Gregorian year. See CHRONOLOGY, n° 24.

GREGORIAN Telescope. See OPTICS, (Index.)

GREGORIAN Year. See CHRONOLOGY, n° 24.

GREGORY the Great, was born at Rome, of a patrician family. He discovered such abilities in the exercise of the senatorial employments, that the emperor Julian appointed him prefect of Rome. Pope Pelagius II. sent him nuncio to Constantinople, to demand succours against the Lombards. When he thought of enjoying a solitary life, he was elected pope by the clergy, the senate, and the people of Rome. Besides his learning and diligence in instructing the church, both by writing and preaching, he had a very happy talent in winning over princes in favour of the temporal as well as spiritual interest of religion. He undertook the conversion of the English, and sent over some monks of his order, under the direction of Augustine their abbot. His morality with respect to the chastity of churchmen was very rigid, ascertaining that a man who had ever known a woman ought not to be admitted to the priesthood; and he always caufed the candidates for it to be examined upon that point. He likewise vigorously exerted himself against such as were found guilty of calumny. However, he flattered the emperor Phocas, while his hands were yet reeking with the blood of Mauritius, and of his three children, who had been butchered in his sight. He likewise flattered Brunschaut, a very wicked queen of France. He is accused of destroying the noble monuments of ancient Roman magnificence, that those who visited the city might not attend more to the triumphant arches than to holy things; and burnt a multitude of heathen books, Livy in particular. He died in 604.

GREGORY of Nazianzen, given the Divus, was
Gregory, one of the most illustrious ornaments of the Greek church in the fourth age. He was made bishop of Constantinople in 379; but finding his election contested by Timotheus archbishop of Alexandria, he voluntarily resigned his dignity about 382, in the general council of Constantinople. His works are extant, in two volumes, printed at Paris in 1602. His style is said to be equal to that of most of the celebrated orators of ancient Greece.

Gregory (Theodorus), surnamed Thaumaturgus, on account of his miracles, was the scholar of Origen; and was elected bishop of Neocaesarea, the place of his birth, about the year 240, during his absence. He assisted at the council of Antioch, in 255, against Paulus Samoetanus; and died in 270. He had the satisfaction of leaving only seventeen idolaters in his diocese, where there were but seventeen Christians when he was ordained. There is still extant of him, A gratuitous oration to Origen, A canonical epistle, and some other works.

Gregory, bishop of Nyssa, one of the fathers of the church, and author of the Nicene creed, was born in Cappadocia, about the year 331. He was chosen bishop of Nyssa in 372, and banished by the emperor Valens for adhering to the council of Nice. He was nevertheless afterwards employed by the bishops in several important affairs, and died in 376. He wrote Commentaries on the Scriptures; Sermons on the mysteries; Moral discourses; Dogmatical treatises; Panegyrics on the saints; some letters on church-discipline; and other works. His style is very allegorical and affected.

Gregory of Tours, or Georgius Florentinus Gregorius, one of the most illustrious bishops and celebrated writers of the sixth century, was defended from a noble family in Auvergne. He was educated by his uncle Gallus, bishop of Clermont; and distinguished himself so much by his learning and virtue, that a friend of his was chosen bishop of Tours. He afterwards went to Rome to visit the tomb of the apostles, where he contracted a friendship with Gregory the Great, and died in 595. This author was extremely curious with regard to miracles. He wrote, 1. The history of France. 2. The lives of the saints; and other works. The best edition is that published by Father Rumar, 1699.

Gregory (James), one of the most eminent mathematicians of the last century, was a fellow of the Rev. Mr John Gregory minister of Drumoak in the county of Aberdeen, and was born at Aberdeen in 1638. His mother was a daughter of Mr David Anderon of Finzeagh, a gentleman who posseid a singular turn for mathematical and mechanical knowledge. This mathematical genius was hereditary in the family of the Anderons, and from them seems to have been transmitted to their descendants of the name of Gregory. Alexander Anderon, cousin german of the above-mentioned David, was professor of mathematics at Paris in the beginning of the 17th century, and published there in 1672, Supplementum Apollonii redivi, &c. The mother of James Gregory inherited the genius of her family; and observing in her son, while yet a child, a strong propensity to mathematics, she instructed him herself in the elements of that science. He received his education in the languages at the grammar school of Aberdeen, and went through the usual course of academical studies in the Marischal college.

At the age of 24 he published his treatise, intitled Optica Promota, seu abrid radiorum reflexorum at reflectorum mysterior, geometricae nduncta; cui subeditur appendix utilissimorum astronomie problematiorem solvendum exhibens, London 1665: a work of great genius, in which he gave the world an invention of his own, and one of the most valuable of the modern discoveries, the construction of the reflecting telescope. This discovery immediately attracted the attention of the mathematicians, both of Britain and other countries, who were soon convinced of its great importance to the sciences of optics and astronomy. The manner of placing the two specula upon the same axis appearing to Sir Isaac Newton to be attended with the disadvantage of losing the central rays of the larger speculum, he proposed an improvement on the instrument, by giving an oblique position to the smaller speculum, and placing the eye-glasses in the side of the tube. But it is worth remarking, that the Newtonian construction of that instrument was long abandoned for the original or Gregorian, which is at this day universally employed where the instrument is of a moderate size; though Mr Herchel has preferred the Newtonian form of the construction of those immense telescopes, which of late years he has so successfully employed in observing the heavens.

The university of Padua being at that time in high reputation for mathematical studies, James Gregory went thither soon after the publication of his first work; and fixing his residence there for some years, he published, in 1667, Vera Circuli et Hyperboli quadraturæ, in which he propounded another discovery of his own, the invention of an infinitely converging series for the areas of the circle and hyperbola. To this treatise, when republished in 1668, he added a new work, intituled, Geometria pars universalis, in quāvis quantitatum curvarum, rectificationem, &eummutationem, ejusque determinationem, in which he is allowed to have shown, for the first time, a method for the solution of algebraic problems. These works engaged the notice, and procured Mr Gregory the correspondence, of the greatest mathematicians of the age, Newton, Huygens, Halley, and Wallis; and their author being soon after chosen a fellow of the royal society of London, contributed to enrich the Philosophical Transactions at that time by many excellent papers. Through this channel, in particular, he carried on a dispute with Mr Huygens, upon the occasion of his treatise on the quadrature of the circle and hyperbola, to which that able mathematician had flouted some objections. Of this controversy, it is unnecessary to enter into particulars. It is sufficient to say, that, in the opinion of Leibnitz, who allows Mr Gregory the highest merit for his genius and discoveries, Mr Huygens has pointed out, though not errors, some considerable deficiencies in the treatise above mentioned, and shown a much simpler method of attaining the end in view.

In 1668, Mr James Gregory published at London another work intituled Exercitationes Geometricæ which contributed still to extend his reputation. About this time he was elected professor of mathematics in the university of St Andrew's; an office which he held for
Gregory. six years. During his residence there, he married, in 1669, Mary, the daughter of George Jalilefon the celebrated painter, whom Mr Walpole has termed the Vandyke of Scotland, and who was fellow-disciple with that great artist in the school of Rubens at Antwerp.

In 1674, he was called to Edinburgh, to fill the chair of mathematics in that university. This place he had held for little more than a year, when, in October 1675, being employed in showing the satellites of Jupiter through a telescope to some of his pupils, he was suddenly struck with total blindness, and died a few days after, at the early age of 37.

He was a man of an acute and penetrating genius. His temper seems to have been warm, as appears from the conduct of his dispute with Mr Huygens; and, conscious perhaps of his own merits as a discoverer, he seems to have been jealous of losing any portion of his reputation by the improvements of others upon his inventions.

Gregory (David), Savilian professor of astronomy at Oxford, whom Dr Smith has termed sapientissimi ingenii mathematici, was the eldest son of Mr Gregory of Kinnaird, brother of the abovementioned Mr James Gregory.

He was born at Aberdeen in 1661, and received the earlier parts of his education in that city. He completed his studies at Edinburgh; and, being possessor of the mathematical papers of his uncle, foot distinguished himself likewise as the heir of his genius. In the 23d year of his age, he was elected professor of mathematics in the university of Edinburgh; and published, in the same year, Exercitatio Geometrica de dimensionibus figurarum, sive exemplum methodi generalis dimensionis quaedam figurarum, Edinburgh, 1684, 4to. He was very early the excellence of the Newtonian philosophy; and had the merit of being the first who introduced it into the schools by his public lectures at Edinburgh.

He had (says Mr Whitton*) already caused several of his scholars to keep acts, as we call them, upon several branches of the Newtonian philosophy; while we at Cambridge, poor wretches, were ignominiously studying the fictitious hypothesis of the Cartesian.†

In 1691, on the report of Dr Bernard's intention of resigning the Savilian professorship of astronomy at Oxford, David Gregory went to London; and being patronized by Sir Isaac Newton, and warmly befriended by Mr Flamstead the astronomer royal, he obtained the vacant professorship, for which Dr Halley was a competitor. This rivalry, however, instead of animosity, laid the foundation of friendship between these eminent men; and Halley soon after became the college of Gregory, by obtaining the professorship of geometry in the same university. Soon after his arrival in London, Mr Gregory had been elected a fellow of the royal society; and, previously to his election in the Savilian professorship, had the degree of doctor of physic conferred on him by the university of Oxford (A).

In 1693 he published in the Philosophical Transactions a resolution of the Florentine problem de T. fiur- divine veliformi quadribusi; and he continued to communicate to the public, from time to time, many ingenious mathematical papers by the same channel. In 1695, he printed at Oxford Catalogue et Dissertations Sphaericæ Elementa; a work which, as he informs us in his preface, contains the substance of some of his public lectures read, eleven years before, at Edinburgh. This valuable treatise was republished first with additions by Dr William Brown, with the recommendation of Mr Jones and Dr Defaguiriers; and afterwards by the latter of these gentlemen, with an appendix containing an account of the Gregorian and Newtonian telescopes, together with Mr Hadley's tables for the construction of both those instruments. It is not unworthy of remark, that, in the end of this treatise, there is an observation which shows, that what is generally believed to be a discovery of a much later date, the construction of achromatic telescopes, which has been carried to great perfection by Mr Dollond and Mr Ramsden, had suggested itself to the mind of David Gregory, from the reflection on the admirable contrivance of nature in combining the different humours of the eye. The passage is as follows: "Quod siob difficultates physisicas in speculis idoneis torno clarorandi et poliendi, etiamum lentibus uti oporeat, fortasse media diverse denititatis ad lentam objectivam componentem adhibere utile foret, ut a natura factum observavimus in oculi fabrica, ut cristallinos humor (tere ejusdem cum virto virtutis ad radios lucis refringendos) aqueo et vitreo (aque quad refractionem haud absumilibus) conjungitur, ad imaginem quam diffinte fieri poterit, a natura nihil frustra molleente, in oculi fundo depingendum." Catopt. et Disolpl. Sphaer. Elem. Oxon. 1695, p. 98.

In 1702 our author published at Oxford, Astronomiae Physicae et Geometriae Elementa; a work which is accounted his master-piece. It is founded on the Newtonian doctrines, and was esteemed by Sir Isaac Newton himself as a most excellent explanation and defence of his philosophy. In the following year he gave to the world an edition in folio of the works of Euclid in Greek and Latin; in prosecution of a design of his predecessor Dr Bernard, of printing the works of all the ancient mathematicians. In this work, although it contains all the treatises attributed to Euclid, Dr Gregory has been careful to point out such as he found reason, from internal evidence, to believe to be the productions of some inferior geometrician. In prosecution of Dr Bernard's plan, Dr Gregory engaged, soon after, with his colleague Halley, in

(‡) On obtaining the above professorship, he was succeeded in the mathematical chair at Edinburgh by his brother James, likewise an eminent mathematician; who held that office for thirty-three years, and retiring in 1725 was succeeded by the celebrated Maclaurn. A daughter of this professor James Gregory, a young lady of great beauty and accomplishments, was the victim of an unfortunate attachment, which furnished the subject of Mallet's well-known ballad of William and Margaret.

Another brother, Charles, was created professor of mathematics at St Andrew's by queen Anne in 1707. This office he held with reputation and ability for thirty-two years; and, resigning in 1739, was succeeded by his son, who eminently inherited the talents of his family, and died in 1763.
Gregory, in the publication of the Conics of Apollonius; but he had proceeded but a little way in this undertaking when he died, in the 40th year of his age, at Maidenhead in Berkshire, A.D. 1710. To the genius and abilities of David Gregory, the most celebrated mathematicians of the age, Sir Isaac Newton, Dr Halley, and Dr Keill, have given ample testimonies. Besides those works published in his lifetime, he left in manuscript, A Short Treatise of the Nature and Arithmetic of Logarithms, which is printed at the end of Dr Keill's translation of Commandine's Enulid, and a Treatise of Practical Geometry which was afterwards translated, and published in 1745, by Mr MacLaurin.

Dr. David Gregory married, in 1695, Elizabeth, the daughter of Mr Oliphant of Langtown in Scotland. By this lady he had four sons, of whom, the eldest, David, was appointed regius professor of modern history at Oxford by king George I. and died in 1767, in an advanced age, after enjoying for many years the dignity of dean of Christ church in that university.

Gregory (Dr John), professor of medicine in the university of Edinburgh, was the son of Dr James Gregory professor of medicine in King's college Aberdeen, and grandson of James the inventor of the Gregorian telescope. His father was first married to Catharine Forbes, daughter of Sir John Forbes of Monymusk; by whom he had six children, most of whom died in infancy. He married afterwards Anne Chalmers, only daughter of the Rev. Mr George Chalmers principal of King's college, by whom he had two sons and a daughter. John, the youngest of the three, was born at Aberdeen, June 3, 1724. Losing his father when only in the 7th year of his age, the care of his education devolved on his grandfather Principal Chalmers, and on Dr Sinclair on the three Gregory, who, upon the resignation of their father a short time before his death, had been appointed to succeed him in the professorship of medicine in King's college. He likewise owed much in his infant years, and during the whole course of his studies, to the care and attention of his cousin, the celebrated Dr Reid, now of the university of Glasgow. The rudiments of our author's classical education he received at the grammar-school of Aberdeen; and, under the eye of his grandfather, he completed in King's college, his studies in the Latin and Greek languages, and in the sciences of ethics, mathematics, and natural philosophy. His master in philosophy and mathematics was Mr Thomas Gordon, the present philosophy professor of King's college, who has ably filled an academical chair for above half a century.

In 1742, Mr Gregory went to Edinburgh, where the school of medicine was then rising to that celebrity which has since so remarkably distinguished it. Here he attended the anatomical lectures of the elder Dr Monro, of the materia medica and botany, and of Dr Parham on chemistry. The medical society of Edinburgh, instituted for the free discussion of all questions relative to medicine and philosophy had begun to meet in 1737. Of this society we find Mr Gregory a member in 1742, at the time when Dr Mark Akenside, his fellow student, and intimate companion, was a member of the same institution.

In the year 1745 our author went to Leyden, and attended the lectures of those celebrated professors Gaußius, Albinus, and Van Royen. While at this place he had the honour of receiving from the King's college of Aberdeen, his alma mater, whom he regarded as a favourite son, an unqualified degree of doctor of medicine; and soon after, on his return thither from Holland, he was elected professor of philosophy in the same university. In this capacity he read lectures during the years 1747, 1748, and 1749, on the mathematics, on experimental philosophy, and on moral philosophy. In the end of 1749, however, he chose to resign his professorship of philosophy, his views being turned chiefly to the practice of physic, with which he apprehended the duties of this professorship, occupying a great portion of his time, too much interfered. Previously, however, to his settling as a physician at Aberdeen, he went for a few months to the Continent; a tour, of which the chief motive was probably amusement, though, to a mind like his, certainly not without its profit in the enlargement of ideas, and an increased knowledge of mankind.

Some time after his return to Scotland, Dr Gregory married, in 1752, Elisabeth daughter of William Lord Forbes; a young lady who, to the exterior endowments of great beauty and engaging manners, joined a very superior understanding, and an uncommon share of wit. With her he received a handsome addition of fortune; and during the whole period of their union, which was but for the space of nine years, enjoyed the highest portion of domestic happiness. Of her character it is enough to say, that her husband, in that admired little work, A father's Legacy to his Daughters, the last proofs of his affection for them, declares, that, "while he endeavours to point out what they should be, he draws but a very faint and imperfect picture of what their mother was." The field of medical practice at Aberdeen being at that time in a great measure pre-occupied by his elder brother Dr James Gregory, and others of some note in their profession, our author determined to try his fortune in London. Thither accordingly he went in 1754; and being already known by reputation as a man of genius, he found an easy introduction to many persons of distinction both in the literary and polite world. The late George Lord Lyttleton was his friend and patron. An attachment, which was founded on a striking similarity of manners, of tastes, and of dispositions, grew up into a firm and permanent friendship; and to that nobleman, to whom Dr Gregory was wont to communicate all his literary productions, the world is indebted for the publication of the Comparative View of the State and Faculties of Man, which made him first known as an author. Dr Gregory likewise enjoyed the friendship of the late Edward Montague, Esq; and of his lady, the celebrated champion of the Fame of Shakespeare against the cavils and calumnies of Voltaire. At her assemblies, or conversazioni, the reftor of taste and genius, our author had an opportunity of cultivating an acquaintance with many of the most distinguished literary characters of the present times.

In 1754 Dr Gregory was chosen fellow of the roy-
to this work, he signified his intention of comprehending in it the whole series of diseases of which he treated in his lectures on the Practice of Physic; but this intention he did not live to accomplish, having brought down the work no further than to the end of the class of Febrile Diseases.—In his academical lectures Dr. Gregory never attempted to mislead the student by flattering views of the perfection of the science; but was, on the contrary, anxious to point out its defects; wisely judging, that a thorough sensé of the imperfection of an art or science is the first step towards its improvement. In this view he was careful to expound the fallacies of the several theories and hypotheses which have had the most extensive currency, and perpetually inculcated the danger of systematizing with limited experience, or an imperfect knowledge of facts. Yet in the work last mentioned it will appear, from the order in which he has treated of the several diseases, that he did not entirely neglect the systematic arrangements of other authors. These, however, he warned his pupils, that he had not adopted from any conviction of the rectitude of those theories to which they referred, but only as afraid that degree of method, and regularity of plan, which is found to be the best help to the study of any science. Considering a rational theory of physic to be as yet a desideratum, it was his object to communicate to his pupils the greatest portion of practical knowledge, as the only basis on which such a theory could ever be reared. His method, in treating of the several diseases, was first to mention those symptoms which are understood among physicians to characterize or define a disease; proceeding from the general to the more particular series of symptoms and their occasional varieties; to point out accurately the diagnostic symptoms, or those by which one disease is essentially distinguished from others that resemble it, and to mark likewise the prognostics by which a physician is enabled to conjecture the probable event of a disease, whether favourable or otherwise. He then proceeded to specify the various canons, predispensing occasional, and proximate; accounting as far as he thought could be done on just principles, for the appearance of the several symptoms; and, finally, he pointed out the general plan of cure, the particular remedies to be employed, and the cautions requisite in the administration of them. Thus desirous of establishing the science of medicine upon the solid foundation of practice and experience; and knowing that many things affirmed as facts by medical writers have been built upon a very careless observation, while confirming a favourite theory; and that, on the other hand, many real and important facts have, from the same spirit of system, been explained away and discredited; he constantly endeavoured, both by his precept and example, to inculcate to his pupils the necessity of extreme caution either in admitting or in denying medical facts, or what are commonly given as such. To the desire of enforcing this necessary caution is owing that multitude of queries respecting matters of fact, as well as matters of opinion, which occurs in the Elements of the Practice of Physic.

Dr. Gregory, soon after the death of his wife, and, as he himself says, "for the amusement of his solitary hours,"
The preceding years of his life, this work is a most amiable display of the piety and goodness of his heart, and his constant knowledge of human nature and of the world. It manifests such solicitude for their welfare, as strongly recommends the advice which he gives. He speaks of the female sex in the most honourable terms, and labours to increase its estimation, whilst he plainly, yet genteelly and tenderly, points out the errors into which young ladies are prone to fall. It is particularly observable, in what high and honourable terms he speaks of the Holy Scriptures, of Christian worship, and faithful ministers; how warmly he recommends to his daughters the vigorous and devout worship of God in public and private. He dwells largely on that temper and behaviour, which were particularly suited to their education, rank, and circumstances; and recommends that gentleness, benevolence, and modesty, which adorn the character of the ladies, and do particular honour to their sex. His advice, with regard to love, courtship, and marriage, are peculiarly wise, and interesting to them. They show what careful observation he had made on female domestic conduct, and on the different effects of polishing or wanting the virtues and qualities which he recommends. There is something peculiarly curious, animated, and useful, in his directions to them, how to judge of, and manifest an honourable passion in, and towards the other sex, and in the very accurate and useful distillation which he makes between true and false delicacy. Nothing can be more striking and affecting, nothing more likely to give his paternal advice their desired effect, than the respectful and affectionate manner in which he mentions his lady their mother, and the irreparable loss which he and they sustained by her early death. In short, in this tract, the professor shines with peculiar lustre as a husband and father, and it is admirably adapted to promote domestic happiness.

These letters to his daughters were evidently written under the impression of an early death, which Dr Gregory had reason to apprehend from a constitution subject to the gout, which had begun to show itself at irregular intervals even from the 15th year of his age. His mother, from whom he inherited that disease, died suddenly in 1770, while sitting at table. Dr Gregory had prognosticated for himself a similar death, an event of which, among his friends, he often talked, but had no apprehension of the nearness of its approach. In the beginning of the year 1773, in conversation with his son the present Dr James Gregory, the latter remarking, that having for the three preceding years had no return of a fit, he might make his account with a pretty severe attack at that season; he received the observation with some degree of anger, as he felt himself then in his usual state of health. The prediction, however, was too true; for having gone to bed on the 9th of February 1773, with no apparent disorder, he was found dead in the morning.

His death had been instantaneous, and probably in his sleep; for there was not the smallest discomposure of limb or of feature,—a perfect euthanasia.

Dr Gregory, in person, was considerably above the middle size. His frame of body was compacted with symmetry, but not with elegance. His limbs were not active; he flopped somewhat in his gait; and his countenance, from a fullness of feature and a heaviness of eye, gave no external indication of superior power of mind or abilities. It was otherwise when engaged in conversation. His features then became animated, and his eye most expressive. He had a warmth of tone and of gesture which gave a pleasing interest to every thing which he uttered: But, united with this animation, there was in him a gentleness and simplicity of manner, which, with little attention to the exterior and regulated forms of politeness, was more engaging than the most finished address. His conversation flowed with ease; and, when in company with literary men, without affording a display of knowledge, he was liberal of the stores of his mind. He possessed a large share of the social and benevolent affections, which, in the exercise of his profession, manifested themselves in many nameless, but important, attentions to those under his care; attentions which, proceeding in him from an extended principle of humanity, were not squared to the circumstances or rank of the patient, but ever bestowed most liberally where they were most requisite. In the care of his pupils, he was not satisfied with a faithful discharge of his public duties. To many of these strangers in the country, and far removed from all who had a natural interest in their concerns, it was matter of no small importance to enjoy the acquaintance and countenance of one so universally respected and esteemed. Through him they found an easy introduction to an enlarged and elegant society; and, what to them was still more valuable, they experienced in him a friend who was ever easy of access, and ready to affit them to the utmost with his counsel and patronage. The same spirit of philanthropy endeared him in a particular manner to his intimate friends; and, whomsoever he might be ranked most of the Scottih literati of his time. Some time after his death, the professorship of the Theory of Medicine was bestowed upon his eldest son the present Dr James Gregory; who has since succeeded to the Practical Chair, lately filled by that other most eminent professor Dr Cullen.

G R E- hound. See Cant.—Among a litter of gre-hound puppies, the best are always those which are lightest. These will make the nimblest dogs as they grow up. The gre-hound is best for open countries where there is little covert. In these places there will sometimes be a course after a hare of two or three miles or more, and both the dogs and the game in sight all the while. It is generally supposed that the gre-hound bitch will beat the dog in running: but this seems to be an error; for the dog is both longer made, and considerably stronger, than the bitch of the same kind. In breeding these dogs, the bitch is principally to be regarded; for it is found by experience, that the best dog and a bad bitch will not get so good puppies as an indifferent dog with a good bitch. The dog and bitch should be as nearly as may be of the same...
same age; and for the breeding of fine and perfect dogs, they should not be more than four years old. An old bitch may be used with a young dog, but the puppies of a young bitch and an old dog will never be good for anything.

The general food for a gre-hound ought to be chippings or rasings of bread, with soft bones and gristles; and those chippings ought always to be soaked in beef or mutton broth.

The proper exercise of a gre-hound is courting him three times a-week, and rewarding him with blood; which will animate him in the highest degree, and encourage him to persecute his game. But the hare also should ever have fair play. She should have the law, as it is called; that is, have leave to run about twelve score yards before the dog is slipped after her; that he may have some difficulty in the course, and not pick up the game too easily. If he kills the hare, he must never be suffered to tear her; but the must be taken from him, his mouth cleaned of the wool, and the liver and lights given him by way of encouragement. Then he is to be led home, and his feet washed with butter and beer, and about an hour after he is to be fed.

When the dog is to be taken out to course, he should have nothing in the morning but a toast and butter, and then he is to be kennelled till taken out to the field. The kennelling these dogs is of great use, always giving them spirits and nimbleness when they are set loose; and the better way of managing a fine gre-hound, is never to let him stir out of the kennel, except at the times of feeding, walking, or courting.

GRENADA, one of the Caribbee islands, lying in W. Long. 61. 40. N. Lat. 12. o. It is the last of the Windward Caribbees; and lies 30 leagues north of new Andalusia, on the continent. According to some it is 24 leagues in compass; according to others, only 22: and it is said to be 30 miles in length, and in some places 15 in breadth. The chief port, formerly called Louis, now St. George's Islands on the west side of the island, in the middle of a large bay, with a sandy bottom. The island is so prodigious that so many vast vessels, from 300 to 400 tons, may ride secure from storms; and that 100 ships, of 1000 tons each, may be moored in the harbour. A large round bason, which is parted from it by a bank of sand, would contain a considerable number of ships, if the bank was cut through: but by reason of it the large ships are obliged to pass within 50 paces of one of the mountains lying at the mouth of the harbour; the other mountain lying about half a mile distant. The island abounds with wild game and fish, it produces also very fine timber, but the cocoa-tree is observed not to thrive here so well as in the other islands. A lake on a high mountain, about the middle of the island, supplies it with fresh-water streams. Several bays and harbours lie round the island, some of which might be fortified to great advantage; so that it is very convenient for shipping, not being subject to hurricanes. The soil is capable of producing tobacco, sugar, indigo, peache, and millet.

In 1638, M. Poincy, a Frenchman, attempted to make a settlement in Grenada; but was driven off by the Caribbeans, who referred to this island in greater numbers than to the neighbouring ones, probably on account of the game with which it abounded. In 1650, M. Parquet, governor of Martinico, carried over from that island 200 men, furnished with presents to reconcile the savages to them; but with arms to subdue them, in case they should prove insubordinate. The savages are said to have been frightened into submission by the number of the Frenchmen: but, according to some French writers, the chief not only welcomed the new-comers; but, in consideration of some knives, hatchets, scissors, and other toys, yielded to Parquet the sovereignty of the island, referring to themselves their own habitations. The Abbe Raynal informs us, that these first French colonists, imagining they had purchased the island by these trifles, allured the sovereignty, and soon acted as tyrants. The Caribbeans, unable to contend with them by force, took their usual method of murdering all those whom they found in a defenceless state. This produced a war; and the French settlers having received a reinforcement of 300 men from Martinico, forced the savages to retire to a mountain; from whence, after exhausting all their arrows, they rolled down great logs of wood on their enemies. Here they were joined by other savages from the neighbouring islands, and again attacked the French, but were defeated anew; and were at last driven to such desperation, that 40 of them, who had escaped from the slaughter, jumped from a precipice into the sea, where they all perished, rather than fall into the hands of their implacable enemies. From thence the rock was called la mort des Jautmans, from the word leapers; which name it still retains. The French then destroyed the habitations and all the provisions of the savages; but fresh supplies of Caribbeans arriving, the war was renewed with great vigour and great numbers of the French were killed. Upon this they resolved totally to exterminate the nates; and having accordingly attacked the savages unawares, they inhumanly put to death the women and children, as well as the men; burning all their boats and canoes, to cut off all communication between the few survivors and the neighbouring islands. Notwithstanding all these barbarous precautions, however, the Caribbeans continued their depredations, from 200 to 400 men; and their frequent irruptions at last obliged Parquet to sell all his property in the island to the Count de Cerillac in 1657. The new proprietor, who purchased Parquet's property for 30,000 crowns, fent thither a person of brutal manners to govern the island. He behaved with such infupportable tyranny, that most of the colonists retired to Martinico; and the few who remained condemned him to death after a formal trial. In the whole court of justice that tried this miscreant, there was only one man (called Archangeli) who could write. A farrier was the person who impeached him; and he, instead of the signatures, sealed with a horse-shoe; and Archangeli, who performed the office of clerk, wrote round it these words in French, "Mark of Mr de la Rie, counsel for the court."

It was apprehended that the court of France would not ratify a sentence passed with such unusual formalities; and therefore most of the judges of the governor's crime, and witnesses of his execution, disappeared. Only those remained whose obsequies screened them from the pursuit of the laws. By an amicable
G R E N A D A

251 white people, 33 free savages or mulattoes, and 525 slaves. The useful animals were reduced to 64 horses and 350 head of horned cattle. The whole culture consisted of 3 plantations of sugar and 52 of indigo. — The island had been fold in 1664 to the French West India company for 100,000 livres.

This unfavourable state of the affairs of Grenada was changed in 1714. The change was owing to the flourishing condition of Martinico. The richest of the ships from that island were sent to the Spanish coasts, and in their way touched at Grenada to take in refreshments. The trading privileges, who undertook this navigation, taught the people of that island the value of their soil, which only required cultivation. Some traders furnished the inhabitants with slaves and utensils to erect sugar plantations. An open account was established between the two colonies. Grenada was clearing its debts gradually by its rich produce; and the balance was on the point of being closed, when the war in 1744 interrupted the communication between the two islands, and at the same time stopped the progress of the sugar-plantations. This loss was supplied by the culture of coffee, which was purveyed during the hostilities with all the activity and eagerness that industry could inspire. — The peace of 1748 revived all the labours, and opened all the former sources of wealth. In 1753 the population of Grenada consisted of 1262 white people, 175 free negroes, and 11,991 slaves. The cattle amounted to 2208 horses or mules, 2456 head of horned cattle, 3278 sheep, 902 goats, and 331 hogs. The cultivation rose to 83 sugar plantations, 2,725,600 coffee-trees, 115,300 cocoa-trees, and 800 cotton-plants. The provisions consisted of 5,740,450 bushels of cassada, 953,596 banana trees, and 145 squares of potatoes and yams. The colony made a rapid progress, in proportion to the excellence of its soil; but in the course of the last war but one, the island was taken by the British. At this time one of the mounts at the side of St George's harbour was strongly fortified, and might have made a good defence, but surrendered without firing a gun; and by the treaty concluded in 1763 the island was ceded to Britain. On this cession, and the management of the colony after that event, the Abbé Raynal has the following remarks. — "This long train of evils [the ambition and mismanagement of their countrymen] has thrown Grenada into the hands of the English, who are in possession of this conquest by the treaty of 1763. But how long will they keep this colony? Or, will it never again be restored to France? — England has not made a fortunate beginning. In the first enthusiasm raised by an acquisition, of which the highest opinion had been previously formed, every one was eager to purchase estates there. They fold for much more than their real value. This caprice, by expelling old colonists who were inured to the climate, has sent about L. 1,553,000 out of the mother-country. This imprudence has been followed by another. The new proprietors, misled, no doubt, by national pride, have substituted new methods to those of their predecessors. They have attempted to alter the mode of living among their slaves. The negroes, who from their very ignorance are more attached to their customs than other men, have revolted. It hath been found necessary to send out troops, and to shed blood. Grenada. The whole colony was filled with suspicions. The masters who had laid the SLAVES with using violent methods, were afraid of being burnt or mangled in their own plantations. The labours have declined, or been totally interrupted. Tranquillity has at length been restored. The number of slaves has been increased as far as 40,000, and the produce has been raised to the treble of what it was under the French government. The plantations will still be improved by the neighbourhood of a dozen of islands, called the Grenadines or Grenadillos, that are dependent on the colony. They are from three to eight leagues in circumference, but do not afford a single spring of water. The air is wholesome. The ground, covered only with thin bushes, has not been screened from the sun. It exhales none of those noxious vapours which are fatal to the husbandman. Caricaon, the only one of the Grenadines, which the French have occupied, was at first frequented by turtle fishermen; who, in the leisure afforded them by so easy an occupation, employed themselves in clearing the ground. In the course of time, their small number was increased by the accestion of some of the inhabitants of Guadalupe; who, finding that their plantations were destroyed by a particular sort of ants, removed to Caricaon. The island blossomed from the liberty that was enjoyed there. The inhabitants collected about 1200 slaves, by whose labours they made themselves a revenue of near 20,000l. a-year in cotton. — The other Grenadines do not afford a prospect of the same advantages, though the plantation of sugar is begun there. It has succeeded remarkably well at Bequia, the largest and most fertile of these islands, which is no more than twotwelve leagues distant from St Vincent." —

In the year 1779 the conquest of this island was accomplished by D'Eftaign the French admiral, who had been prevented from attempting it before by his engagement against St Vincent. Immediately after his conquest of St Lucia, however, being reinforced by a squadron under M. de la Motte, he set sail for Grenada with a fleet of 26 sail of the line and 12 frigates, having on board 10,000 land forces. He arrived on the second of July; and landed 3000 troops, chiefly Irish, being part of the brigade composed of natives of Ireland in the service of France. These were conducted by Count Dillon, who disposed them in such a manner as to surround the hill that overlooks and commands George's Town, together with the fort and harbour. To oppose these, Lord McCartney, the governor, had only about 150 regulars, and 300 or 400 armed inhabitants; but though all resistance was evidently vain, he determined nevertheless to make an honourable and gallant defence. The preparations made were such as induced D'Eftaign himself to be present at the attack; and, even with his vast superiority of force, the first attack on the entrenchments proved unsuccessful. The second continued two hours; when the garrison were obliged to yield to the immense disparity of numbers which assailed them, after having killed or wounded 300 of their antagonists. Having thus made themselves masters of the intrenchments on the hill, the French turned the cannon of the fort towards the fort which lay under it; on which the governor demanded a capitulation. The terms, however, were
GRENADINES, or GRENAULTS. See the preceding article.—It is there mentioned that the Grenadines do not afford a single drop of fresh water. A small spring however has been lately discovered in the principal island Caricacon, by digging; but being of great value, it is kept locked by the proprietor Mr Mayes. The capital of that island is called Hillborough, in which there is a small church.

GRENAILLE, a name given by the French writers to a preparation of copper, which the Chinese use as a red colour in some of their most useful articles, particularly for that colour which is called oil-red, or red in oil. The china-ware coloured with this is very dear. The manner in which they procure the preparation is thus: they have in China no such thing as silver-coined money, but they use in commerce bars or mazas of silver, these they pay and receive in large bargains; and among a nation so full of fraud as the Chinese, it is no wonder that these are too often adulterated with too great an alloy of copper. They pass, however, in this state in the common payments. There are some occasions, however, such as the paying the taxes and contributions, on which they must have their silver pure and fine: on this occasion they have recourse to certain people, whole sole business it is to refine the silver, and separate it from the copper and the lead it contains. This they do in furnaces made for the purpose, and with very convenient vessels. While the copper is in fusion, they take a small brush, and dip the end of it into water; then striking the handle of the brush, they sprinkle the water by degrees upon the melted copper; a sort of pellicle forms itself by this means on the surface of the matter, which they take off while hot with pincers of iron, and immediately throwing it into a large vessel of cold water, it forms that red powder which is called the grenaille; they res-
GRENOBLE, a large, populous, and ancient town of Dauphiny in France, with a bilious fever. It contains a great number of handsome buildings, particularly the churches and convents. The leather and gloves that are made here are highly esteemed. The leather and gloves that are made here are highly esteemed.

GREVILLE (Folke), lord bishop of Bath, president of the Privy Council, and one of the most learned of English noblemen, was born in the year 1554, and descended from the noble families of Beauchamps of Powick and Wilmot by de Broc. In company with his cousin Sir Philip Sidney, he began his education at a school in Shrewsbury: thence he went to Oxford, where he remained for some time a gentleman commoner, and then removed to Trinity-College in Cambridge. Having left the university, he visited foreign courts, and thus added to his knowledge of the ancient languages a perfect knowledge of the modern. On his return to England he was introduced to Queen Elizabeth by his uncle Robert Greville, at that time in her majesty's service, and by Sir Henry Sidney, lord president of Wales, was nominated to some lucrative employments in that principality.

In the year 1581, when the French commissioners who came to treat about the queen's marriage with the Duke of Anjou were sumptuously entertained with tilts and tournaments, Mr Greville, who was one of the champions, signified himself, as to "win the reputation of a most valiant knight." He continued a constant attendant at court, and a favourite with the queen to the end of her reign; during which he obtained the office of treasurer of marine, and also a grant of the manor of Wedgnoke. As to his knowledge of the modern languages, he was well acquainted with the ancient and several modern languages; he had a very comprehensive knowledge of all affairs relating to commerce, whether foreign or domestic; and his successors were not less, being in his time esteemed the highest commoner in England. He

REVIEWED queen Elizabeth's mercantile affairs so constantly, that he was called the royal merchant; and his house was sometimes appointed for the reception of foreign princes upon their first arrival at London. Greville (see)
the following inscription to be engraved upon the tomb: "Fulke Greville, servant to queen Elizabeth, councillor to king James, and friend to Sir Philip Sidney. Trophæum Pœnsunt." He wrote several works both in verse and prose; among which are, 1. Two tragedies, Alaham and Muffapha. 2. Treatise of Human Learning, &c. in verse, folio. 3. The Life of Sir Philip Sidney. 4. An inquisition upon Fame and Honour, in 86 fannas. 6. Cecilius, a collection of 109 songs. 7. His remains, consisting of political and philosophical poems.

GREVIIUS. See Grevius.

GREW (Nehemiah), a learned English writer, in the 17th century, had a considerable practice as a physician in London, and succeeded Mr. Oldenburgh in the office of secretary to the royal society. In this capacity partizan to an order of council, he drew up a catalogue of the natural and artificial rarities belonging to the society, under the title of Methodus Regali Societatis, &c. 1681. He also wrote, besides several pieces in the Philosophical Transactions, 1. The Comparative Anatomy of the Stomach and Guts, folio. 2. The Anatomy of Plants, folio. 3. Tabulæi de fæculis Cathartici naturæ et usi. 4. Cosmologia Sacra, or a Discourse of the Universe as it is the Creature and Kingdom of God, folio.

GREWIA, in botany: A genus of the polyandria order, belonging to the gynandria clafs of plants; and in the natural method ranking under the 37th order, Columinaræ. The calyx is pentaphyllous; there are five petals, each with a necrariferous scale at the base; the berry is quadrilocular.

Species. 1. The occidentalis, with oval crested leaves, has long been preferred in many curious gardens both in England and Holland. It is a native of the Cape of Good Hope, and grows to the height of 10 or 12 feet. The stem and branches greatly resemble those of the small leaved elm, the bark being smooth, and of the same colour with that when young. The leaves are also very like those of the elm, and fall off in autumn. The flowers are produced singly along the young branches from the wings of the leaves, and are of a bright purple colour. 2. The Africana, with oval spear-shaped serrated leaves, is a native of Senegal in Africa, from whence its seeds were brought by Mr. Adanson. In Britain it rises with a fibrous stalk five or six feet high, sending out many lateral branches, with a brown hairy bark, and garnished with spear-shaped serrated leaves; but the plants have not flowered in Britain.

Gulter and usf. The first sort, though a native of a warm climate, will bear the open air in Britain; only requiring to be sheltered in a green-house during the winter-time. It may be propagated by cuttings or layers planted in pots filled with soft loamy earth. The second sort is tender, and must be kept constantly in a warm bark-lace. In summer, they require a large share of the free air to be admitted to them; and should have water three or four times a-week in warm weather; but in the winter they must be sparingly watered. The negroes of Senegal highly value a decoction of the bark of this last species, and use it as a never-failing remedy against venereal complaints.

GREY, or Gray colour. See Gray.

GREY (Lady Jane), a most illustrious and unfortunate lady, descended of the blood-royal of England by both parents, was the eldest daughter of Henry Grey marquis of Dorset and Frances the daughter of Charles Brandon lord Suffolk, by Mary the dowager of Louis XII. king of France, who was the youngest daughter of Henry VII. king of England. She was born in the year 1537, at Broadgate, her father's seat in Leicestershire. She discovered an early propensity to all kinds of good literature; and having a fine genius improved under the tuition of Mr. Elmer, she made a most surprising progress in the languages, arts, and sciences. She understood perfectly both kinds of philosophy, and could express herself very properly at least in the Latin and Greek tongues; and we are informed by Sir Thomas Chaloner (in Strype's Memorial, Vol. III. p. 93.), that she was well versed in Hebrew, Chaldee, Arabic, French, and Italian; "and (he adds) she played well on instrumental music, wrote a curious hand, and was excellent at the needle."

Chaloner also tells us, that she accompanied her musical instruments with a voice exquisitely sweet in itself affiIced with all the graces that art could bestow.

In the year 1553, the dukes of Suffolk and Northumberland, who were now, after the fall of Somerset, arrived at the height of power, began, on the decline of the king's health, to think how to prevent that reverse of fortune which, as things then stood, they foresaw must happen upon Edward's death. To obtain this end, no other remedy was judged sufficient but a change in the succession of the crown, and transferring it into their own families, by rendering Lady Jane queen. Those most excellent and amiable qualities which had rendered her dear to all who had the happiness to know her, joined to her near affinity to the king, subjected her to become the chief tool of an ambition so notoriously not her own. Upon this very account she was married to lord Guilford Dudley, fourth son of the duke of Northumberland, without discovering to her the real design of the match; which was celebrated with great pomp in the latter end of May; and such a change in the succession of the crown, that he contributed bounteously to the expense of it from the royal wardrobe. The young king Edward VI died in July following; and our fair queen, with infinite reluctance, overpowered by the importunities of her ambitious friends, allowed herself to be proclaimed queen of England, on the strength of a deed of settlement extorted from that prince by her father-in-law the duke of Northumberland, which set aside the succession of queen Mary, queen Elizabeth, and Mary queen of Scots. Her regal pageantry continued but a few days. Queen Mary's undoubted right prevailed; and the unfortunate Lady Jane Grey and her husband were committed to the Tower, and on the 13th of November arraigned and found guilty of high treason. On the 12th of February following they were both beheaded on Tower-hill. Her magnanimity in this dreadful catastrophe was astonishing. Immediately before her execution, she addressed herself to the weeping multitude with amazing composure and coherency: she acknowledged the justice of the law, and died in charity with that wretched world which she had so much reason to execrate. Thus
did the pious Mary begin her reign with the murder of an innocent young creature of 18; who for simplicity of manners, purity of heart, and extensive learning, was hardly ever equalled in any age or country. But, alas! Jane was an obstinate heretic.—A few days before her execution, Fleckenham, the queen's chaplain, with a pious intention to rescue her poor soul from eternal misery, paid her frequent visits in the Tower, and used every argument in his power to convert her to the Popish religion; but he found her so much his superior in argument, that he gave up the contest; resigning her body to the block, and her soul to the devil.

Her writings are, 1. Four Latin Epistles; three to Bullenger, and one to her sister lady Catharine. The last were written, the night before her execution, in a blank leaf of a Greek Testament. Printed in a book intitled Epistle Helvetiae Reformatoribus, vol. ad eos scriptae, et alii, Tigouri, 1742, 8vo. 2. Her conference with Fleckenham. (Ballard). 3. A letter to Dr Harding, her father's chaplain. Printed in the Phoenix, vol. ii. p. 28. 4. A Prayer for her own use during her confinement. In Fox's acts and monuments. 5. Four Latin verses; written in prison with a pin. They are as follows:

Non aliena putes, homini que obstingere possunt:
Sors hominum mibi, tunc erit illa tibi.

Jane Dudley.

Deo juvante, nil nocet livor malus;
Et non juvante, nil iustus labor gravis.

Post tenebras fero lucem.

6. Her speech on the scaffold. (Ballard). It began thus: "My Lords, and you good Christian people who come to see me die; I am under a law, and by that law, as a never-err'ing judge, I am condemned to die: not for any thing I have offended the queen's sudden death, have followed the excess of this law, as a protestor of Law at Wittenberg; whence he passed to Dresden, and was at last recalled to Leipfic to succeed M. Menece. He died in 1734. Besides several academical dissertations, he wrote, 1. Principia jurisprudentiae naturalis, a small work much esteemed; 2. Opera juris publici et privati.

GRIEBNER (Michael Henry), a learned civilian of Germany, was born at Leipfic in 1682. After writing some time in the journal of Leipfic, he was made professor of Law at Wittenberg; whence he passed to Dresden, and was at last recalled to Leipfic to succeed M. Menece. He died in 1734. Besides several academical dissertations, he wrote, 1. Principia jurisprudentiae naturalis, a small work much esteemed; 2. Opera juris publici et privati.

GRIEF, or Sorrow. The influence of this passion on the body is very great. Its effects resemble in several instances those of fear, with, however, some variations, owing perhaps to its being in general of longer duration. Grief diminishes the bodily strength in general, and particularly the force of the heart and circulation; as appears by the frequent sighs and deep respirations which attend it, which seem to be necessary exertions, in order to promote the passage of the blood through the lungs. It diminishes periphraxis, obstructs the menstrual discharge, produces paleness of the skin, and edematous complaints, and chittus of the glandular parts. It aggravates the fever, and the malignity of putrid and contagious distempers, and renders people more apt to receive the infection of them. When it comes on suddenly, and in a great degree, it causes a palpitation of the heart, and renders the pulse irregular. Blindness, gangrene, and sudden death, have followed the excess of this fermentation. Its effects of changing the colour of the hair are well known. Opiates, if not given in large doses, are good cordials in this case.

GRIEVELM, in botany: A genus of the pentagyria order, belonging to the decandria class of plants. The calyx is quinqued; there are five petals; the effects of changing the colour of the hair are well known. Opiates, if not given in large doses, are good cordials in this case.

GRIERSON (Constantia), born of poor parents in the county of Kilkenny in Ireland, was one of the most learned women on record, though she died at the age of 27, in 1733. She was an excellent Greek and Latin scholar; and underfoot history, divinity, philosophy, and mathematics. She proved her skill in Latin by her dedication of the Dublin edition of Tacitus to lord Carteret, and by that of Terence to his son; to whom she also addressed a Greek epigram. She wrote many elegant English poems, several of which were inserted by Mrs Barber among her own. When lord Carteret was lord lieutenant of Ireland, he obtained a patent for Mr Grierfon to be the king's printer; and to reward the uncommon merit of his wife, caused her life to be included in it.

GRIFFON (Griphus, Grifus). In the natural history of the ancients, the name of an imaginary bird of the eagle kind. They represented it with four legs, wings, and a beak; the body representing an eagle, and the lower a lion; they supposed it to watch over gold mines, hidden treasures, &c.
Grimaldi, Francesco, an eminent painter, generally known by the appellation of Bolognese, was born at Bologna in 1606, where he became a disciple of Annibal Caracci, and proved an honour to that illustrious master. From the school of Annibal he went to complete his studies at Rome, and improved himself daily, by copying the works of those artists in which he observed the greatest excellence, until his superior talents recommended him to the favour of Innocent X. Grimaldi, secondly, if not the first, corporation in England. It had anciently three convents and a castle. It is governed by a mayor, high steward, recorder, twelve aldermen, twelve common councilmen, two bailiffs, two coroners, a town clerk, and three sergeant-at-mace. The mayor holds a court here on Tuesday, and the bailiffs on Friday. Here are several streets of good houses, and a church that looks like a cathedral. It was a place of great trade before its harbour was choked up; yet the road before it is a good station for ships that wait for a wind to get out to sea. Its chief trade is in coals and salt brought by the Humbers.

GRINDING, or TRITURATION, the act of breaking or comminuting a solid body, and reducing it into powder. See PULVERIZATION and LEVIGATION.

The painters' colours are ground on a marble or porphyry, either with oil or gum-water.

Grinding is also used for rubbing or wearing off the irregular parts of the surface of a body, and reducing it to the defined figure, whether that be flat, concave, or the like.

The grinding and polishing of glass is a considerable art; for which see Glass-Grinding. For the grinding of optical glasses, see Optics, the Mechanical Part.

The grinding and polishing of glass is a considerable art; for which see Glass-Grinding. For the grinding of optical glasses, see Optics, the Mechanical Part.

The grinding and polishing of glass is a considerable art; for which see Glass-Grinding. For the grinding of optical glasses, see Optics, the Mechanical Part.
GRI

Built and endowed with the malignant influence of that evil spirit, when they see their features and muscles, make horrid grimaces, and at last imitate all the appearance of epileptics.

GRISONs, a people situated among the Alps, and allies of the Swiss. Their country is bounded on the north by the counties of Sursans and Blidenz, the canton of Glaris, and the principality of Lichtenstein; on the south by the canton's Italian bailiwicks, the county of Chavonne, and the Valteline; on the east by the territories of Venice and Milan; and on the west by some of the Italian bailiwicks, and the canton of Uri. It is divided into three leagues, viz. the Grisonor grey league, the league of the house of God, and that of the ten jurisdictions; which unite and form one republic. The two first lie towards the south, and the third towards the north. The length of the whole is above 70 miles, and the breadth about 60. The inhabitants are said to have had the name of Grifons from the grey coats they wore in former times. This country, lying among the Alps, is very mountainous; but the mountains yield good pasture for cattle, sheep, and goats, with some rye and barley: in the valleys there is plenty of grain, pulse, fruits, and wine. This country also abounds with hogs and wild-fowl; but there is a scarcity of fish and fowl, and their horses are mostly purchased of foreigners. The principal rivers are the Rhine, the Inn, and the Adda. Here are also several lakes, most of which lie on the tops of the hills. The language of the Grisons is either a corrupt Italian or the German. Each of the leagues is subdivided into several leffer communities, which are too many democracies; every male above 16 having a share in the government of the community, and a vote in the election of magistrates. Deputies from the several communities constitute the general diet of the Grison leagues, which meets annually, and alternately at the capital of each league; but they can conclude nothing without the consent of their constituents. This country was ancienly a part of Rhetia. After the extinction of the Roman empire in the west, it was some time subject to its own dukes, or those of Swabia. Then the bishop of Coire, and other petty princes, dependent on the emperors of Germany, became masters of great part of it: at last, by the extinction of some, purchase, voluntary grants, and force, it got rid of all its lords, and ered itself into three distinct republics, each of which, as we observed already, is subdivided into a certain number of communities, which are a sort of republics, exercising every branch of sovereignty, except that of making peace or war, sending embassies, concluding alliances, and enacting laws relating to the whole country, which belong to the provincial diets of the several leagues. The communities may be compared to the cities of Holland, and the diets of the several leagues to the provincial states. The particular diets are composed of a deputy from each community; and both in them and the communities every thing is determined by a majority of votes. In the communities, every male above 16 has a vote. Besides the annual provincial diets for choosing the chiefs and other officers, and deliberating on the affairs of the several leagues, there are general diets for what concerns all the three leagues or whole body. In both these, the
representatives can do nothing of themselves, but are tied down to the instructions of their principals. There is a general seal for all the three leagues; and each particular league has a separate seal. Besides the stated times of meeting, extraordinary diets are sometimes summoned, when either the domestic affairs of the state or any foreign minister require it. In the general diets, the Grey League has 28 votes; that of the House of God, 23; and that of the Ten Jurisdictions, 15. These leagues, at different times, have entered into close alliances with the neighbouring cantons and their associates. The bailiwicks belonging in common to the three leagues are those of the Valte-line, Chieavene, Bormio, Meyenfeld, Malans, and Jennins; the officers of which are nominated successively by the several communities every two years. The yearly revenue arising to the Grisons from their bailiwicks is said to amount to about 13,500 florins. The public revenues altogether are but small, though there are many private persons in the country that are rich. However, in case of any extraordinary emergency, they tax themselves in proportion to the necessity of the service and the people’s abilities. They have no regular troops, but a well-disciplined militia; and upon occasion, it is said, can bring a body of 30,000 fighting men into the field: but their chief security arises from the narrow paffes and high mountains by which they are surrounded.

Of the jurifprudence, religion, &c. of the Grisons, the following account is given by Mr Coxe in his travels in Switzerland. Throughout the three leagues the Roman law prevails, modified by the municipal customs. The courts of justice in each community are composed of the chief magistrate, who presides, and a certain number of jurymen, chosen by the people: they have no regular salaries, but receive for their attendance a small sum, arising in some communities from the expenses of the process, which are defrayed by the criminals; in others from a share of the fines. They enjoy the power of pardoning or diminishing the penalty, and of receiving a composition in money. This mode of proceeding supposes what is as absurd in theory as it is contrary to experience, that judges will incline to mercy when it is their interest to convict; or will impartially inflict punishment, even when injurious to their own private advantage. The prisoners are examined in private; frequently tortured for the purpose of forcing confession; when the judges either divide the fines, or remit the punishment for a composition. In some districts a criminal trial is a kind of festival to the judges, for whom a good repast is provided at the expense of the prisoner if convicted; and thus the following allusion, in Garth’s Difpenfary, applied with more wit than truth to our courts of justice, is literally fulfilled:

‘And wretches hang, that jurymen may dine.’

Capital punishments, however, are extremely rare; a circumstance arising not from a want of severity in the penal statutes, or from a propensity to mercy in the judges; but because the latter draw more advantages from finning than executing an offender. In a word, to use the expression of Burnet, which is as true at present as it was in his time, ‘Many crimes go unpunished, if the persons who commit them have either great credit or much money.’ It is remarkable, that torture is more frequently applied, and for smaller delinquencies, in these independent republics, than in the subject provinces. The infliction of it depends entirely upon the arbitrary will of the judges; a majority of whom may order it for an offence which is not capital, nor even punishable by corporal penalties. Thus it is not uncommon, in those communities where fines are divided among the judges, to torture women of loose conduct, for the purpose of compelling them to confess with whom they have been connected; for as such offences are punishable by fines, the more persons are convicted, the larger share of money is distributed among the judges for the trouble of their attendance. Even in the districts where the fines are paid to the community, torture is often no less wantonly inflicted, because, when the prisoner is not found guilty, the expenses of the process fall upon the public, and the judges receive little remuneration. Even in the civil courts most causes are decided by bribing the judges; and appeals in those communities, wherein they are admitted, scarcely serve any other end than to enlarge the sphere of corruption; Coire, and a few other places, are excepted from this general reflection.

The religion of the Grisons is divided into catholic and reformed. The doctrines of the reformation were first preached about the year 1524, and received at Fleisch a small village in the Ten Jurisdictions upon the confines of Sargans; from thence they were extended to Mayenfeld and Malans, and soon afterwards through the whole valley of Pretigau. The new opinions spread with such celerity, that before the end of the 16th century they were embraced by the whole league of the Ten Jurisdictions (excepting part of the community of Alvenew), the greatest part of the House of God, and a few communities in the Grey League. The difference of religion nearly excited a civil war between the two sects, as well at the first introduction of the reformation as at the beginning of the troubles in the Valteline. In the latter instance, the two parties rote in arms; but the Catholics being overpower-d by the Protestants, matters were amicably adjusted. Since that period all religious concerns have been regulated with perfect cordiality. According to the general consent of the three leagues, each community being absolute within its little territory, has the power of appointing its own particular worship, and the inhabitants are free to follow either the Catholic or Reformed persuasion. In the administration of civil affairs religion has no interference: the deputies of the general diet may be members of either communion, as chosen by the communities which they represent. By this moderate and tolerating principle, all religious diffentions have been suppressed as much as possible; and the most perfect amity subsists between the two sects.

In spiritual concerns, the Catholics for the most part are under the jurisdiction of the bishop of Coire. For the affairs of the Reformed churches, each league is divided into a certain number of districts, the ministers whereof assemble twice every year: these assemblies are called colloquia. Each colloquium has its president, and each league a superintendent called a dean. The supreme authority in spiritual concerns is vested in the synod, which is composed of the three deans, and the clergy of each league; the synod assemblies every year alternately in each of the three leagues. Candidates for
for holy orders are examined before the synod. The necessary qualifications for admission into the church ought to be the knowledge of Hebrew, Greek, and Latin; but this rule is not strictly adhered to; many being ordained without the least acquaintance with either of those languages. Formerly Latin was solely used, as well in the debates of the synod as for the purpose of examining the candidates; but at present that tongue grows more and more into disuse, and German is employed in its stead.

The number of reformed parishes in the whole three leagues amounts to 135, in the following proportion:

- In the Grey League 46, in that of God's House 53, and in the League of Ten Jurisdictions 36. The ministers of these churches enjoy but very small salaries. The richest benefices do not perhaps yield more than L. 20, or at most L. 25 per annum, and the poorest sometimes scarcely L. 6. This scanty income is attended with many inconveniences. It obliges the clergy who have families to follow some branch of traffic, to the neglect of their ecclesiastical studies, and to the degredation of their professional character. Another inconvenience is superadded to the narrowness of their income. In most communities the ministers, though confirmed by the synod, are chosen by the people of the parish, and are solely dependent on their bounty. For these reasons, the candidates for holy orders are generally extremely ignorant. They cannot support that expense which is requisite to pursue their studies; they are not animated with the expectation of a decent competence; and, from the dependence of their ecclesiastical studies, and the probability of their professional character.

Another inconvenience is superadded to the narrowness of their income. In most communities the ministers, though confirmed by the synod, are chosen by the people of the parish, and are solely dependent on their bounty. For these reasons, the candidates for holy orders are generally extremely ignorant. They cannot support that expense which is requisite to pursue their studies; they are not animated with the expectation of a decent competence; and, from the dependence of their ecclesiastical studies, and the probability of their professional character.

GRIST, in country affairs, denotes corn ground, or ready for grinding.

GRIT (argillaceous), a genus of argillaceous earth. Its texture is more or less porous, equable, and rough to the touch. It does not give fire with steel, nor effervesce with acids. When fresh broken and breathed upon, it exhales an earthy smell. Mr Kirwan mentions two kinds; one from Hollington near Utzeter, of a yellowish or whitish grey, and about the specific gravity of 2.85. Another, from Kneeply in Staffordshire, is of the specific gravity of 2.68; and is unsuitable for being used for firestones. According to Fabroni the grit-flone is of greater or less hardness, mostly of a grey, and sometimes of a yellowish colour, composed of a silicious and micaceous sand, but rarely of a sparrie kind; with greater or smaller particles closely compacted by an argillaceous cement. It gives some sparkles with steel, is indissoluble for the most part in acids, and vitrifiable in a strong fire. It is used for millstones and whetstones; and sometimes for filtering flames and for building.

GROATS, in country affairs, oats after the hulls are off, or great oat-meal.

GROCERS, anciently were such persons as engaged in all merchandise that was vendible; but now they are incorporated, and make one of the companies of the city of London, which deals in sugar, foreign fruits, spices, &c.

GROENDAST, or SPITZBERGEN. See GREENLAND.

GROGRAM, a kind of stuff made of silk and cotton.

GROIN, that part of the belly next the thigh.—In the Philosophical Transactions we have an account of a remarkable case, where a peg of wood was extracted from the groin of a young woman of 21, after it had remained 16 years in the stomach and intestines, having been accidentally swallowed when she was about five years of age. Vide Vol. LXVII. p. 459.

GROIN, among builders, is the angular curve made by the intersection of two semi-cylinders or arches; and is either regular or irregular. — A regular groin is that tongue grows more and more into disuse, and German is employed in its stead.

According to Fabroni the grit-flone is of greater or less hardness, mostly of a grey, and sometimes of a yellowish colour, composed of a silicious and micaceous sand, but rarely of a sparrie kind; with greater or smaller particles closely compacted by an argillaceous cement. It gives some sparkles with steel, is indissoluble for the most part in acids, and vitrifiable in a strong fire. It is used for millstones and whetstones; and sometimes for filtering flames and for building.

GROATS, in country affairs, oats after the hulls are off, or great oat-meal.

GROCERS, anciently were such persons as engaged in all merchandise that was vendible; but now they are incorporated, and make one of the companies of the city of London, which deals in sugar, foreign fruits, spices, &c.

GROENDAST, or SPITZBERGEN. See GREENLAND.

GROGRAM, a kind of stuff made of silk and cotton.

GROIN, that part of the belly next the thigh.—In the Philosophical Transactions we have an account of a remarkable case, where a peg of wood was extracted from the groin of a young woman of 21, after it had remained 16 years in the stomach and intestines, having been accidentally swallowed when she was about five years of age. Vide Vol. LXVII. p. 459.

GROIN, among builders, is the angular curve made by the intersection of two semi-cylinders or arches; and is either regular or irregular. — A regular groin is that tongue grows more and more into disuse, and German is employed in its stead.
GROSS, a foreign money, in divers countries, answering to the English groat.

Gross is used among us for the quantity of twelve dozen.

Gross weight, is the weight of merchandizes and goods, with their dust and drofs, as also of the bag, cafe, celf, &c. wherein they are contained; out of which gross weight, allowance is to be made of tare and tret.

GROSS, or GROSSUS, in our ancient law writers, denotes a thing absolute, and not depending on another. Thus, vidain in gross, villainus in grofo, was a servant, who did not belong to the land, but immediately to the person of the lord; or a servile person not appendant or annexed to the land or manor, and to go along with the tenures as appurtenant to it; but like other personal goods and chattels of his lord, at his lord’s pleasure and disposal.

Gross, advowson in. See ADYSONSON.

GROSE-BEAN, in zoology, a name by which we commonly call the coccotreufia, called also at other times the how finch. This is the Loxia coccothraustes in the Linnaean fylen.

GROSE-BEAK, in ornithology; a species of Loxia.

GROSSULARIA. See RIBES.

GROTESQUE, or GROTESK, in sculpture and painting, something whimsical, extravagant, and monstrous; consisting either of things that are merely imaginary, and have no existence in nature; or of things so distorted, as to raise surprife and ridicule. The name arises hence, that figures of this kind were so much used to adorn the gratts wherein the tombs of eminent persons or families were inclosed. Such was that of Ovid, whose grato was discovered near Rome about one hundred years ago.

GROYTUS (Hugo), or more properly Hugo de Groote, one of the greatest men in Europe, was born at Delft in 1582. He made so rapid a progress in his studies, that at the age of 15 he had attained a great knowledge in philosophy, divinity, and civil law; and a yet greater proficiency in polite literature, as appeared by the commentary he had made at that age on Martianus Capella. In 1598, he accompanied the Dutch ambassador into France, and was honoured with several marks of efteeem by Henry IV. He took his degree of doctor of laws in that kingdom; and at his return to his native country, devoted himself to the bar, and pleaded before he was 17 years of age. He was not 24 when he was appointed attorney-general. In 1613 he settled in Rotterdam, and was nominated syndic of that city; but did not accept of the office, till a promise was made him that he should not be removed from it. This prudent precaution he took from his foreseeing, that the quarrels of the divines on the doctrine of grace, which had already given rise to many factions in the state, would occasion revolutions in the chief cities. The same year he was sent into England, on account of the divisions that reigned between the traders of the two nations, on the right of fishing in the northern seas; but he could obtain no satisfaction. He was afterwards sent to England, as it is thought, to peruddle the king and the principal divines to favour the Arminians; and he had several conferences with king James on that subject. On his return to Holland, his attachment to Barneveld involved...
The ancient authors referred to dens and grottos, to apply themselves the more attentively to meditation.

Okey-hole, Elder-hole, Peake's-hole, and Pool's-hole are famous among the natural caverns or grottos of Britain.

The entrance to Okey-hole, on the south side of Mendip-hills, is in the fall of the hills, which is beset all about with rocks, and has near it a precipitate descent of near twelve fathoms deep, at the bottom of which there continually issues from the rocks a considerable current of water. The naked rocks above the entrance show themselves about thirty fathoms high, and the whole ascent of the hill above is about a mile, and is very steep. As you pass into this vault, you go at first upon a level, but advancing farther, the way is found to be rocky and uneven, sometimes ascending, and sometimes descending. The roof of this cavern, in the highest part, is about eight fathoms from the ground, and in many particular places it is so low, that a man must stoop to get along. The breadth is not less various than the height, for in some places it is five or six fathoms wide, and in others not more than one or two.

It extends itself in length about two hundred yards. People talk much of certain stones in it, resembling men and women, and other things; but there is little matter of curiosity in these, being only harmless lumps of a common spar. At the farthest part of the cavern there is a good stream of water, large enough to drive a mill, which puts all along one side of the cavern, and at length slides down about six or eight fathoms among the rocks, and then prefiling through the crevices of them, discharges itself into the valley. The river within the cavern is well floored with eels, and has some torrents in it; and these cannot have come from without, there being no great fall near the entrance. In dry summers, a great number of frogs are seen all along this cavern, even to the farthest part of it; and on the roof of it, at certain places, hang vast numbers of bats, as they do in almost all caverns, the entrance of which is either level, or but slightly ascending or descending; and even in the more perpendicular ones they are sometimes found, provided they are not too narrow, and are sufficiently high. The cattle that feed in the pastures through which this river runs, have been known to die suddenly sometimes after a flood; this is probably owing to the waters having been impregnated, either naturally or accidentally, with lead ore.

Elden-hole is a huge profound perpendicular chasm, three miles from Buxton, ranked among the natural wonders of the Peak. Its depth is unknown, and is pretended to be unflammable. Cotton tells us it founded 824 yards; yet the plunger fell down. But he might easily be deceived, unless his plummet was really very heavy; the weight of a rope of that length might well make the landing of the plummet scarce perceivable.

Peake's-hole, and Pool's hole, called also the Devil A—/, are two remarkable horizontal springs under mountains; the one near Castleton, the other just by Buxton. They seem to have owed their origin to the
springs which have their current through them; when
the water had forced its way through the horizontal
 fissures of the strata, and had carried the loose earth
away with it, the loose stones must fall down of course;
and where the strata had few or no fissures, they re-
maincd entire; and so formed these very irregular
arches, which are now so much wondered at. The
water which passes through Pool's-hole is impregnated
with particles of lime-flour, and has incrusted the
whole cavern in such a manner that it appears as one
solid rock.

In grottos are frequently found crystals of the rock,
flaëmites, and other natural conglomations, and those
often of an amazing beauty. M. Homberg conjectures,
from several circumstances, that the marble pilar-
ars in the grotto of Antiparos vegetate or grow.
That author looks on this grotto as a garden, whereof
the pieces of marble are the plants; and endeavours to
show, that they could only be produced by some vege-
tative principle. See Antiparos.

At Foligno in Italy is another grotto consisting of
pillars and orders of architecture of marble, with their
ornaments, &c. fearfully inferior to those of art; but
they all grow downwards: so that if this too be a gar-
den, the plants are turned upside down.

Grotto del Cani, a little cavern near Pozznoli, four
leagues from Naples, the streams whereof are of a
mephitical or noxious quality; whence also it is called
bosca venumula, the poisonous mouth. See Mephit.

"Two miles from Naples (says Dr Mead), just by
the Lago d'Agnano, is a celebrated mofeta, commonly
called la Grotta del Cani, and equally destructive to all
within the reach of its vapours. It is a small grotto
about eight feet high, twelve long, and eight broad; from
the ground arise a thin, subtle, warm fume, visible
within the reach of its air, which from time immemorial hath
issuèd out of the earth in that place in very great quantity, the causes of which
cannot yet be investigated from any of the modern
discoveries concerning that species of air. It proves
pernicious when breathed in too great quantity, by
rarefying the blood too much; and hence the best
method of recovering persons apparently killed by fix-
ed air, is to apply a great degree of cold all over their
bodies, in order to condenfe the blood as much as pos-
ible. This is the reason why the dogs recover when
thrown into the lake Aghano, as above mentioned.
See the articles Blood and Damps.

Grott del Serpi, is a subterranean cavern near the
village of Saffa, eight miles from the city of Brac-
cano in Italy, described by Kircher thus: "The grotto
del serpi is big enough to hold two persons. It is
perforated with several fullary apertures, somewhat in
manner of a sieve; out of which, at the beginning of
the spring season, issues a numerous brood of young
snakes of divers colours, but all free from any parti-
cular poisonous quality. In this cave they expel
their fumes; here lepers, paralytics, arthritics, and
ephelantine patients become quite naked; where, the warmth of the subterranean
fumes resolving them into a sweat, and the serpents
clinging warily all around, licking and fucking
them, they become so thoroughly freed of all their
vicious humours, that, upon repeating the operation
for some time, they become perfectly restored."

This cave Kircher visited himself; and found it
warm, and every way agreeable to the description
given of it. He faw the holes, and heard a murmur-
ing hissing noise in them. Though he missed
seeing the serpents, it not being the season of their
creeping out; yet he saw a great number of their
carcasses, or thoughts, and an ell growing hard by
laden with them.

The discovery of this cave was by the cure of a le-
per going from Rome to fome baths near this place,
losing his way, and being benighted, he happened
upon this cave. Finding it very warm, he pulled off
his clothes; and being weary and sleepy, had the good
fortune not to feel the serpents about him till they had
wrought his cure.

Milky Grotto, Crypta Larentis, a mile distant from
1

Grotto.
the ancient village of Bethlehem, is said to have been thus denominated on occasion of the blessed Virgin, who let fall some drops of milk in giving suck to Jesus in this grotto. And hence it has been commonly sup-
poded, that the earth of this cavern has the virtue of
replenishing milk to women that are grown dry, and even
curing fevers. Accordingly, they are always dig-
ing in it, and the earth is sold at a good rate to
as have faith enough to give credit to the fable. An

to it four parts of bees wax: when melted together,

Cements for artificial grottos may be made thus:

Take two parts of white rosin, melt it clear, and add
to it four parts of bees wax; when melted together, add
or three parts of the powder of the stone you
design to cement, or so much as will give the cement
the colour of the stone; to this add one part of
flower of sulphur: incorporate all together over a
gentle fire, and afterwards knead them with your
hands in warm water. With this cement the stones,
shells, &c. after being well dried before the fire, may
be cemented.

Artificial red coral branches, for the embellishment
of grottos, may be made in the following manner:

Take clear rosin, dissolve it in a bras-pan; to every
ounce of which add two drams of the finest vermilion:
when you have flirred them well together, and have
chopped your twigs and branches, peeled and dried,
take a pencil and paint the branches all over whilst
the composition is warm; afterwards shape them in imitation of natural coral. This done, hold the
branches over a gentle coal-fire, till all is smooth and even
as if polished. In the same manner white coral may
be prepared with white lead, and black coral with
lamp-black.

A grotto may be built with little expence, of glas,
cinders, pebbles, pieces of large flint, shells, mofs,
stones, counterfeit coral, pieces of chalk, &c. all
bound or cemented together with the above described
cement.

GROVE, in gardening, a small wood impervious to
the rays of the sun.

GROVES have been in all ages held in great veneration.
The profeuchæ, and high-places of the Jews, whither
they resort for the purposes of devotion, were probably situated in groves: See Joshua xxiv. 26. The profeuchæ in Alexandria, mentioned by Philo, had groves about them, because he complains that the Alexandrians, in a tumult against the Jews, cut down the trees of their profeuchæ.

The ancient Romans had a sort of groves near sev-
eral of their temples, which were consecrated to some
god, and called luciæ; by Antiphrasius, a non lucendo, as
being shady and dark. The veneration which the ancient
druids had for groves is well known.

Modern groves are not only great ornaments to
gardens; but are also the greatest relief against the
violent heat of the sun, affording shade to walk under
in the hottest parts of the day, when the other parts
of the garden are useless; so that every garden is de-
fective which has not shade.

Groves are of two sorts, viz. either open or close.
Open groves are such as have large shady trees, which
stand at such distances, as that their branches
approach so near to each other as to prevent the rays
of the sun from penetrating through them.

Close groves have frequently large trees standing
in them; but the ground under these are filled with
shrubs or underwood: so that the walks which are in
them are private, and screened from winds; by which
means they are rendered agreeable for walking, at
those times when the air is either too hot or too cool
in the more exposed parts of the garden. These are
often contrived so as to bound the open groves, and
frequently to hide the walls or other inclosures of the
garden: and when they are properly laid out,
with dry walks winding through them, and on the
sides of these sweet-smelling shrubs and flowers ir-
regularly planted, they have a charming effect.

Grove (Henry), a learned and ingenious Prela-
danian divine, was born at Taunton in Somersetshire,
in 1683. Having obtained a sufficient flock of clas-
fical literature, he went through a course of academ-
ical learning, under the Rev. Mr Warren of Taunton, who
had a flourishing academy. He then removed to Lon-
don, and studied some time under the reverend Mr
Rowe, to whom he was nearly related. Here he
contracted a friendship with several persons of merit,
and particularly with Dr Watts, which continued till
his death, though they were of different opinions in
several points warmly controverted among divines.

After two years spent under Mr Rowe, he returned
into the country, and began to preach with great re-
putation; when an exact judgment, a lively imagina-
tion, and a rational and amiable representation of
Christianity, delivered in a sweet and well governed
voice, rendered him generally admired; and the spi-
rit of devotion which prevailed in his sermons procure-
him the esteem and friendship of Mrs Singer, after-
wards Mrs Rowe, which she expressed in a fine ode
on death, addressed to Mr Grove. Soon after his begin-
ning to preach, he married; and on the death of Mr
Warren, was chosen to succeed him in the academy
at Taunton. This obliging him to

The Regulation of Dissenters, drawn up for the use of his pupils. About the same
time, he entered into a private dispute by letter with
Dr Samuel Clarke: but they not being able to con-
vince each other, the debate was dropped with ex-
pressions of great mutual esteem. He next wrote several
papers printed in the Spectator, viz. Numbers 388.
603. 626. 635. The last was republished, by the di-
rection of Dr Gibson bishop of London, in the Evi-
dences of the Christian Religion, by Joseph Addison,
Esq. In 1725, Mr James, his partner in the academy,
dying, he succeeded him in his pastoral charge at
Fullwood, near Taunton, and engaged his nephew
to undertake the other parts of Mr James's work as
 tutor; and in this situation Mr Grove continued till
his death, which happened in 1738. His great con-

Grove.
cern with his pupils, was to inspire and cherish in them a prevailing love of truth, virtue, liberty, and genuine religion, without violent attachments or prejudices in favour of any party of Christians. He repre-
sented truth and virtue in a most engaging light; and though his income, both as a tutor and a minifter, was insufficient to support his family, without breaking into his paternal estate, he knew not how to refuse the call of charity. Besides the above pieces, he wrote, 1. An Essay towards a Demonstration of the Soul's Immortality. 2. An Essay on the Terms of Christian Communion. 3. The Evidence of our Saviour's Resurrection considered. 4. Some Thoughts concerning the Proof of a Future State from Reason. 5. A Discourse concerning the Nature and Design of the Lord's Supper. 6. Wonders the First Spring of Action in the Deity. 7. A Discourse on Saving Faith. 8. Miscellaneous in Prose and Verse. 9. Many of his works, by subscription, in four volumes octavo, with the names of near 700 subscribers, among whom were some of the best judges of merit in the established church.

GROUND, in painting, the surface upon which the figures and other objects are represented. The ground is properly understood of such parts of a piece, as have nothing painted on them, but retain the original colour upon which the other colours are applied to make the representations. A building is said to serve as a ground to a figure when the figure is painted on the building.

The ground behind a picture in miniature, is commonly blue or crimson, imitating a curtain of satin or velvet.

GROUND, in etching, denotes a gumous composition fineaer over the surface of the metal to be etched, to prevent the aquafortis from eating, except in such places where this ground is cut through with the point of a needle. See the article Etching.

GROUND-Fishing, fishing under water without a float, only with a plumb of lead, or a bullet, placed above nine inches from the hook; which is better, because it will roll on the ground. This method of fishing is most proper in cold weather, when the fish swim very low.

The morning and evening are the chief seasons for the ground-line in fishing for trout; but if the day prove cloudy, or the water muddy, you may fish at ground all day.

GROUND-Tackle, a ship's anchors, cables, &c. and in general whatever is necessary to make her ride safe at anchor.

GROUND-Joy, in botany. See Glechoma.

GROUND-Fire, in botany. See Teucrum.

GROUNDSELL. See Senecio.

GROUP, in painting and sculpture, is an assemblage of two or more figures of men, beasts, fruits, or the like, which have some apparent relation to each other. See Painting.—The word is formed of the Italian gruppo, a knot.

The Groups, a cluster of islands lately discovered in the South Sea. They lie in about S. Lat. 18° 12' and W. Long. 142° 42'. They are long narrow slips of land, ranging in all directions, some of them ten miles or upwards in length, but not more than a quarter of a mile broad. They abound in trees, particularly those of the cocoa-nut. They are inhabited by well-made people, of a brown complexion. Most of them carried in their hands a slender pole about 14 feet in length, pointed like a spear; they had likewise something shaped like a paddle, about four feet long. Their canoes were of different sizes, carrying from three to six or seven people, and some of them hoisted a sail.

GROUSE, or Grouse. See Tetrao.

GROUSE, or GREATHED (Robert), a learned and famous bishop of Lincoln, was born at Stow in Lincolnshire, or (according to others) at Stradbroke in Suffolk, in the latter part of the twelfth century. His parents were of poor rank, that when a boy he was reduced to do the meanest offices, and even to beg his bread; till the mayor of Lincoln, struck with his appearance and the quickness of his answers to certain questions, took him into his family, and put him to school. Here his ardor of learning, and admirable capacity for acquiring it, soon appeared, and procured him many patrons, by whose assistance he was enabled to prosecute his studies, first at Cambridge, afterwards at Oxford, and at last at Paris. In these three famous seats of learning, he spent many years in the most indefatigable pursuit of knowledge, and became one of the best and most universal scholars of the age. He was a great master not only of the French and Latin, but also of the Greek and Hebrew languages, which was a very rare accomplishment in those times. We are assured by Roger Bacon, who was intimately acquainted with him, that he spent much of his time for almost forty years in the study of geometry, astronomy, optics, and other branches of mathematical learning, in all which he very much excelled. Theology was his favourite study, in which he read lectures at Oxford with great applause. In the mean time, he obtained several preferments in the church, and was elected and consecrated bishop of Lincoln, A. D. 1235. In this station he became very famous, by the purity of his manners, the popularity of his preaching, the rigour of his discipline, and the boldness with which he reproved the vices and opposed the arbitrary mandates of the court of Rome; of this last it may be proper to give one example. Pope Innocent IV. had granted to one of his own nephews named Frederick, who was but a child, a provision to the first canon's place in the church of Lincoln that should become vacant, and sent a bull to the archbishop of Canterbury, and Innocent, then papal legate in England, commanding them to see the provision made effectual; which they transmitted to the bishop of Lincoln. But that brave and virtuous prelate, boldly, refused to obey this unreasonable mandate, and sent an answer to the papal bull containing the following sentence:—"If we except the sins of Lucifer and Antichrist, there neither is nor can be a greater crime, nor any thing more contrary to the doctrine of the gospel, or more odious and abominable in the sight of Jesus Christ, than to ruin and destroy the souls of men, by depriving them of the spiritual aid and ministry of their pastors. This crime is committed by those who command the benefices intended for the support of able pastors, to be bestowed on those who are incapable of..."
Growth.

Growth, performing the duties of the pastoral office. It is impossible therefore that the holy apostolic fee, which received its authority from the Lord Jesus Christ, for edification, and not for destruction, can be guilty of such a crime, or any thing approaching to such a crime, so hateful to God and so hurtful to men. For this would be a most manifest corruption and abuse of its authority, which would forfeit all its glory, and plunge it into the pains of hell.” Upon hearing this letter, his holiness became frantic with rage, poured forth a torrent of abuse against the good bishop, and threatened to make him an object of terror and abominiation to the whole world. “How dare (said he) this old, deaf, doating fool, disbelieve my testimony! It is given by Bale. He was contrite, devout, and solemn in the church; as a fodderer of the pope, and a support of the church of Rome; for he fell sick at his castle of Bougden that same year; and when he became sensible that his death was drawing near, he called his clergy into his apartment, and made a long discourse to them, to prove that the reigning Pope Innocent IV. was Antichrist. With this exertion his strength and spirits were so much exhausted, that he expired soon after, October 9, 1253. A contemporary historian, who was perfectly well acquainted with him, hath drawn a fine and bold reprimander of the pope and the king, an admonition of the prelates; a corrigent of the monks; an instructor of the clergy; a supporter of the stakes; a censor of the incontinent; a scourge and terror to the court of Rome; a diligent searcher of the scriptures; and a frequent preacher to the people. At his table he was hospitable, polite, and cheerful. In the church he was contrite, devout, and solemn; and in performing all the duties of his office he was venerable, active, and indefatigable. The illustrious Roger Bacon, who was most capable, and had the best opportunities of forming a true judgment of the extent of his learning, by perusing his works, and by frequently conversing with him, hath given this honourable testimony in his favour. “Robert Grouthead bishop of Lincoln, and his friend Friar Adam de Marisco, are the two most learned men in the world, and excel all the rest of mankind both in divine and human knowledge.” This most excellent and learned prelate was a very voluminous writer, and composed a prodigious number of treatises on a great variety of subjects in philosophy and divinity, a catalogue of which is given by Bale.

GROWTH, the gradual increase of bulk and stature that takes place in animals or vegetables, to a certain period. — The increase of bulk in such bodies as have no life, owing to fermentations excited in their substance, or to other causes, is called Expansion, Swelling, &c.

The growth of animals, nay even of the human spe-

cies, is subject to great variations. A remarkable instance of the last was observed in France in the year 1729. At this time the Academy of Sciences examined a boy who was then only seven years old, and who measured four feet eight inches and four lines high without his shoes. His mother observed the signs of puberty on him at two years old, which continued to increase very quick, and soon arrived at the usual standard. At four years old he was able to lift and toss the common bundles of hay into flures in the horses racks; and at six years old could lift as much as a sturdy fellow of twenty. But though he thus increased in bodily strength, his understanding was no greater than is usual with children of his age, and their play things were also his favourite amusements.

Another boy, a native of the hamlet of Bouzanquet, in the diocese of Alais, though of a strong constitution, appeared to be knit and stiff in his joints till he was about four years and a half old. During this time neither father was remarkable of him than an extraordinary appetite, which was satisfied no otherwise than by giving him plenty of the common aliment of the inhabitants of the country, consisting of rye-bread, cheese, bacon, and water; but his limbs soon becoming supple and pliable, and his body beginning to expand itself, he grew up in a extraordinary manner, that at the age of five years he measured four feet three inches; some months after, he was four feet eleven inches; and at six, five feet, and bulky in proportion. His growth was so rapid, that one might fancy he saw him grow: every month, his cloaths required to be made longer and wider; and what was still very extraordinary in his growth, it was not preceded by any sickness, nor accompanied with any pain in the groin or elsewhere. At the age of five years his voice changed, his beard began to appear, and at six he had as much as a man of thirty; in short, all the unquestionable marks of puberty were visible in him. It was not doubted in the country but this child was, at five years old, or five and a half, in a condition of beinggetting other children; which induced the rector of the parish to recommend to his mother, that she would keep him from too familiar a conversation with children of the other sex. Though his wit was riper than is commonly observable at the age of five or six years, yet its progress was not in proportion to that of his body. His mind and manner still retained something childish, though by his bulk and stature he resembled a complete man, which at first sight produced a very singular contrast. His voice was strong and manly, and his great strength rendered him already fit for the labours of the country. At the age of five years, he could carry to a good distance three measures of rye, weighing 84 pounds; when turned of six; he could lift up easily on his shoulders and carry loads of 750 pounds weight in good way off; and these exercises were exhibited by him as often as the curious engaged him thereto by some liberality. Such beginnings made people think that he would soon shoot up into a giant. A mountebank was already soliciting his parents for him, and flattering them with hopes of putting him in a way of making a great fortune. E't all these hopes suddenly vanished. His legs became crooked, his body shrunken, his voice grew feebly, and
fibly weaker, and he at last sunk into a total imbecility.

In the Paris Memoirs also there is an account of a girl who had her menstres at three months of age. When four years old, she was four feet six inches in height, and had her limbs well proportioned to that height, her breasts large and plump, and the parts of generation like those of a girl of eighteen; so that there is no doubt but that she was marriageable at that time, and capable of being a mother of children. These things are more singular and marvellous in the northern than in the southern climates, where the females come sooner to maturity. In some places of the East Indies, the girls have children at nine years of age.

Many other instances of extraordinary growth might be brought, but the particulars are not remarkably different from those already related. — It is at first sight astonishing how children of such early and prodigious growth do not become giants: but when we consider, that the signs of puberty appear so much sooner than they ought, it seems evident that the whole is only a more than usually rapid expansion of the parts, as in hot climates; and accordingly it is observed, that such children, instead of becoming giants, always decay and die apparently of old age, long before the natural term of human life.

GRUB, in zoology, the English name of the hexapod worms, produced from the eggs of beetles, and which at length are transformed into winged insects of the same species with their parents.

GRUBBING, in agriculture, the digging or pulling up of the stubs and roots of trees.

When the roots are large, this is a very troublesome and laborious task; but Mr Mortimer hath shewn how it may be accomplished in such a manner as to save great expense by a very simple and easy method. He proposes a strong iron hook to be made about two feet four inches long, with a large iron ring fastened to the upper part of it. This hook must be put into a hole in the side of the root, to which it must be fastened; and a lever being put into the ring, three men, by means of this lever, may wring out the root, and twist the sap-roots afunder. Stubbs of trees may also be taken up with the same hook, in which work it will save a great deal of labour, though not so much as in the other; because the stubs must be first elft with wedges, before the hook can enter the fides of them, to wrench them out by pieces.

GRUBENHAGEN, a town and castle of the duchy of Brunswick, in Lower Saxony, remarkable for its mines of silver, copper, iron, and lead. E. Long. 9. 30. N. Lat. 51° 16'.

GRUINARDS (from grui, "a crane"), the name of the fourteenth order in Linnaeus's Fragments of a Natural Method, consisting of geranium, and a few other genera which the author considers as allied to it in their habit and external structure.

GRUME, in medicine, denotes a concreted clot of blood, milk, or other substance. Hence grumous blood is that which approaches to the nature of grume, and by its viscidity and flagranting in the capillary vessels produces several disorders.

GRUPPO, or Turned Shaks, a musical grace, designed by Playford to consist in the alternate prolation of two tones in juxta-position to each other, with a close on the note immediately beneath the lower of them. See Shaks.

GRUS, in astronomy, a southern constellation, not visible in our latitude. The number of stars in this constellation, according to Mr Sharp's Catalogue, is 13.

GRUS, in ornithology. See Ardea.

GRUTER (James), a learned philologist, and one of the most laborious writers of his time, was born at Antwerp in 1590. He was but a child when his father and mother, being perfecuted for the Protestant religion by the duchefs of Parma, governours of the Netherlands, carried him into England. Heimbled the elements of learning from his mother, who was one of the most learned women of the age, and besides French, Italian, and English, was a complete midlref of Latin, and well skilled in Greek. He spent some years in the university of Cambridge; after which he went to that of Leyden to study the civil law; but at last applied himself wholly to polite literature. After travelling much, he became professor in the university of Heidelberg; near which city he died, in 1627. He wrote many works; the most considerable of which are, 1. A large collection of ancient inscriptions. 2. Thesaurus criticus. 3. Deliciae poetarum Gallorum, Italorum, & Belgiorum, &c.

GRUYERS, a town of Switerland, in the canton of Friburgh, with a pretty good castle. It is famous for its cheese, which is all its riches. E. Long. 7. 23. N. Lat. 46° 35'.

GRY, a measure containing one tenth of a line. A line is one-tenth of a digit, and a digit one-tenth of a foot, and a philosophical foot one-third of a pendulum, whose diadromes, or vibrations, in the latitude of 45 degrees, are each equal to one-second of time, or one-fifteenth of a minute. GRYLLUS, in zoology, the name of the cricket and locust kinds, which, together with the grasshoppers, make only one genus of insects, belonging to the order of hemiptera. The general characters of the genus are: The head is inflected, armed with jaws, and furnished with palp: The antennae in some of the species are fætaceous, in others filiform: The wings are deflected towards and wrapped round the sides of the body; the under ones are folded up, so as to be concealed under the elytra. All the feet are armed with two nails; and the hind ones are formed for leaping. The genus is subdivided into five different species, or families, as follows:

I. The Acride, Truxalis of Fabricius, or Cricket family properly so called; of which the characters are: Their head is of a conical form, and longer than the thorax; and their antennae are unifirm, or sword-shaped. Of this family there are eight species, none of them found in Britain.

II. The Bulle, or Acrisius of Fabricius: These are
are distinguished by a kind of crest or elevation on the thorax: their antennae are shorter than the thorax, and filiform; and their palpi are equal. — The grasshopper is of a dark-brown colour; sometimes sprinkled with spots of a yellow hue, and decreases to the extremity of the abdomen. This prolongation of the thorax stands instead of elytra, of which this insect is destitute. It has only wings under this projection of the thorax. Linnaeus mentions a spot in the thorax; which, however, is often wanting. This species is everywhere to be found which the"

...bulla-bipunctatus is of a dark-brown colour; sometimes sprinkled with spots of a higher hue. But the nureus and filiform; and their palpi are equal. — The gryllus is often wanting. This species is everywhere to be found where the

..."I. The gryllus domesticus, or the" domesticus and canus"pseudis, the domestic and the field gryllus being one and the same species; only that the former is paler and has..."I. The gryllus domesticus, or the" domesticus and canus pseudis, the domestic and the field gryllus being one and the same species; only that the former is paler and has...

...projecting cross each other; and they are all over of one colour, not rumpled; nor do they wrap round the base composed of three articulations. This feature is of a dark-brown colour;..."I. The gryllus domesticus, or the" domesticus and canus pseudis, the domestic and the field gryllus being one and the same species; only that the former is paler and has...

...end of the abdomen. There are 10 or 11 other species, inhabitants of Europe and America.

...third family, called Acheté, are distinguished by two bristles, situated above the extremity of their abdomen; by having three flewmata; and by the tarsi being composed of three articulations. This family is in many places called Cricket, on account of the sound which the insect makes. There are 28 species enumerated in the new edition of the Systema naturae; of which the most remarkable are...

...Gryllus, or the field cricket, as it is often called, likes best to appear out of its subterraneous habituation. In White's Natural History of Selbourne, a very pleasing account is given of the manners and economy of these insects; which, however, are so shy and cautious, he observes, that it is no easy matter to get a sight of them; for, feeling a person's footsteps as he advances, they hop short in the midst of their song, and retire backwards nimbly into their burrows, where they lurk till all suspicion of danger is over. At first it was attempted to dig them out with a spade, but without any great success; for either the bottom of the hole was inaccessible from its terminating under a great stone; or else, in breaking up the ground, the poor insect was inadvertently squeezed to death. Out of one of so bruised a multitude of eggs were taken, which were long and narrow, of a yellow colour, and covered with a very tough skin. More gentle means were then used, and proved successful: "a pliant stalk of grass, gently introducted into the caverns, will probe their windings to the bottom, and quickly bring out the inhabitant; and thus the humane inquirer may gratify his curiosity without injuring the object of it. It is remarkable, that though these insects are furnished with long legs behind, and brawny thighs for leaping, like grasshoppers; yet when driven from their holes they show no activity, but crawl along in a shiftable manner, so as easily to be taken: and again, tho' provided with a curious apparatus of wings, yet they never exert them when there seems to be the greatest occasion. The males only make that thrilling noise perhaps out of rivalry and emulation, as is the case with many animals which exert some shrill note during their breeding time: it is raised by a brisk friction of one wing against the other. They are solitary beings, living singly male or female, each as it may happen; but there must be a time when the sexes have some intercourse, and then the wings may be useful perhaps during the hours of night. When the males meet they will fight fiercely, as our author found by some which he put into the crevices of a dry stone wall, where he wanted to have made them settle. For tho' they seemed disrelished by being taken out of their knowledge, yet the first that got possession of the chinks would seize on any that were obruped upon them with a vast row of serrated fangs. With their strong jaws, toothed like the fhears of a lober's claws, they perforate and round their curious regular cells, having no fore-claws to dig, like the mole-cricket. When taken in the hand, they never offer to defend themselves, tho' armed with such formidable weapons. Of such herbs as grow before the mouths of their burrows they eat indiscriminately; and on a little platform, which they make just by, they drop their dung; and never, in the day time, seem to stir more than two or three inches from home. Sitting in the entrance of their caverns they chirp all night as well as day from the middle of the month of May to the middle of July; in hot weather, when they are most vigorous, they make the hills echo; and in the stiller hours of darkness, may be heard to a considerable distance. In the beginning of the season their notes are more faint and inward; but become louder as the summer advances, and fixed away again by degrees. — Sounds do not always give us pleasure according to their sweetness and melody; nor do harsh sounds always displease. We are more apt to be captivated or disgusted with the associations which they promote, than with the notes themselves. Thus the thrilling of the field-cricket, though sharp and fridulous, yet marvellously delights some hearers, filling their minds with a train of summer ideas of every thing that is rural, verdurous, and joyous. About the tenth of March the crickets appear at the mouths of their cells, which they then open and bore, and shape very elegantly. All that ever I have seen at that season were in their pupa state, and had only the rudiments of wings, lying under a skin or coat, which must be cast before the insect can arrive at its perfect state; from whence I should suppose that the
old ones of last year do not always survive the winter. In August, their holes begin to be obliterated, and the insects are seen no more till spring. — Not many summers ago I endeavoured to transplant a colony to a terrace in my garden, by boring deep holes in the floring turf. The new inhabitants stayed some time, and fed and fed; but wandered away by degrees, and were heard at a farther distance every morning; so that it appears, that on this emergency they made use of their wings in attempting to return to the spot from which they were taken. — One of these crickets, when confined in a paper cage and set in the sun, and supplied with plants moistened with water, will feed and thrive, and become so merry and loud as to be irksome. As the heats of the dog-days. Though they are frequently confined in a paper cage and set in the sun, and supplied with plants moistened with water, will feed and thrive, and become so merry and loud as to be irksome.

When they become very active, and the mortality among them is great, they emit a shrill noise, which can be heard at a farther distance, and which is exceedingly unpleasant. Mr White informs us, who was once an eye-witness: "for a gardener at an house where he was on a visit, happening to be moving, on the 6th of that month, by the side of a canal, his foot struck too deep, poked off a large piece of turf, and laid open to view a curious scene of domestic economy:

" — — — ingentem late dedit ore fenorum:
"Apparet domus imus, et aris longa patecit:
"Apparent — — penetratae."
There were many caverns and winding passages leading to a kind of chamber, neatly smoothed and rounded, and about the size of a moderate snuff-box. Within this secret nursery were deposited near two eggs of a dirty yellow colour, and enveloped in a tough skin, but too lately excluded to contain any rudiments of young, being full of a viscous substance. The eggs lay but shallow, and within the influence of the sun, just under a little heap of fresh-moulded mould, like that which is raised by ants. When mole-cricketflies fell, they move "cursa undos" rising and falling in curves, like the other species mentioned before. In different parts of this kingdom people call them mole-cricketflies, earthworms, and one another, all very apposite names."

IV. The Tettigoniæ, Grasshoppers, or Locusts, armed at the tail: The females of this family are distinguished by a tubular dart at the extremity of their abdomen: in both sexes the antennæ are cetaceous, and longer than the abdomen; and the tarsi composed of four articulations. Of these insects there are six species enumerated in the Systema Naturæ. They leap by the help of their hinder legs, which are strong and much longer than the fore ones. Their walk is heavy, but they fly tolerably well. Their females deposit their eggs in the ground, by means of the appendices which they carry in their tail, which consist of two lamínæ, and penetrate the ground. They lay a great number of eggs at a time; and those eggs, united in a thin membrane, form a kind of group. The little larvae that spring from them are wholly like the perfect insects, excepting in size, and their having neither wings nor cytra, but only a kind of knobs, four in number, which contain both, but undisplayed. The unfolding of them only takes place at the time of the metamorphosis, when the insect has attained its full growth. In these insects, when examined internally, besides the gullet, we discover a small stomach; and behind that a very large one, wrinkled and furrowed within. Side, there is still a third: so that it is thought, and with some probability, that all the animals of this genus chew the cud, as they so much resemble ruminant animals in their internal conformation.

V. Locustæ (the Gryllis of Fabricius), or Locusta unarmatæ at the tail. This family is distinguished by having the tail purple, without the fetae of the Abhiceæ, or the tube of the Tettigoniæ: their antennæ are filiform, and one half as long as the abdomen. They have three femelina, and three joints to the tail. To part of this description, however, there is an exception in the gryllus locusta-grofhus, the antennæ of which are of a cylindrical form. According to Mr Barbut, "few species vary so much in size and colour. Some of these insects are twice as long as others; the antennæ in most are filiform, but in this particular species cylindrical, composed of about 24 articulations, and one fourth of the length of the body. As to colour, the small individuals are nearly quite red spotted with black, with the under part of the body only of a greenish yellow. The larger subjects are all over a greenish hue, the under part being of a deeper yellow; only the inside of the hinder thighs is red. But what characterizes this species is, the form of the thorax, which has, above, a longitudinal elevation, attended by one on each side, the middle whereof drawing high

VOL. VIII.

to the first, forms a kind of X. Moreover, between the claws that terminate the feet there are small spunge, but larger in this species than the rest. This species is to be met with everywhere in the country. The larvæ of caterpillars very much resemble the perfect insects, and commonly dwell under ground." Of this tribe, 118 other species are enumerated in the Systema Naturæ, natives of different parts of the globe; besides a considerable number noted as unacertained with regard to their being distinct species or only synonyms or varieties of some of the others.

All the Gryllis, except the first family which feed upon other insects, live upon plants; the achei chieflly upon the roots, the tettigoniæ and locusta upon the leaves.

The diminution of Locusta into families (IV. V.), as above characterized, is extremely proper; and the difference of organization upon which it is founded has been observed to be adapted to the mode and the places in which the insects lay their eggs. But by taking the wings into consideration, there might have been formed three tribes or divisions, instead of two, upon the same natural foundation. Thus according to the observations of the Abbé Pouget, those which have their abdomen furnished with the tube or darts above mentioned, stay their eggs in a still spot of earth which instrument perforates. During the operation, the dart opens; and, being hollow and grooved on each side, within, the egg slides down along the grooves, and is deposited in the hole. Of those which have the tail simple, i.e. which have no darts, some have long wings, and some very short. The long-winged fort lay their eggs on the bare ground, and have no use for a perforating instrument; but they cover them with a glutinous substance, which fixes them to the soil, and prevents their being injured either by wind or waters. Those, again, which have short wings deposit their eggs in the sand: and to make the holes for this purpose, they have the power of elongating and retracting their abdominal rings, and can turn their body as on a pivot; in which operation long wings would have been a material impediment.

The annals of most of the warm countries are filled with accounts of the devastations produced by locusts, which sometimes make their appearance in clouds of vast extent. They seldom visit Europe in such swarms as formerly; yet in the warmer parts of it are still formidable. Those which have at uncertain intervals visited Europe in our memory, are supposed to have come from Africa: they are a large species about three inches long. The head and horns are of a brownish colour; it is blue about the mouth, as also on the inside of the larger legs. The shield which covers the back is greenish: and the upper side of the body brown, spotted black, and the under side purple. The upper wings are brown, with small dusky spots, and one larger spot at the tips. The under wings are more transparent, and of a light brown tinted with green, but there is a dark cloud of spots near the tips. Those insects are bred in the warm parts of Asia and Africa, from whence they have often taken their flight into Europe, where they committed terrible devastations. They multiply faster than any other animal in the creation, and are truly terrible in the countries where they breed. Some of them were seen in different
but all this was repairs the damage; but in Europe this ces, however, where they alight, they destroy every journey, and are therefore more voracious dead, as devouring the corn and grass. In the vor. Their bite is thought to contaminate have been equalled by the putrefying carcases of other to the ay.

that was green, they multitude of locusts. After having eaten up every tilloll. To nse the expression of the husbandman, they were covered with them and totally ravaged. The fires put out by the great numbers of swarms that succeeded each other. A day or two after one of these was in motion, others that were just hatched came to glean after them, gnawing off the young branches, and the very bark of the trees. Having lived near a month in this manner, they arrived at their full growth, and threw off their worm-like state, by eating their skins. To prepare themselves for this change, they fixed their hinder part to some bush or twig, or corner of a stone, when immediately, by an undulating motion used on this occasion, their heads would first appear, and soon after the rest of their bodies. The whole transformation was performed in seven or eight minutes time, after which they remained for a little while in a languishing condition; but as soon as the sun and air had hardened their wings, and dried up the moisture that remained after casting off their former flough, they returned to their former greediness, with an addition both of strength and agility. But they did not now continue in one place, but were dispersed in all directions. After laying their eggs, they directed their course northward, and probably perished in the sea.—In that country, however, the amazing fertility of the soil and warmness of the climate generally render the depredations of these insects of little consequence; besides that many circumstances concur to diminish their number. Though naturally herbivorous, they often fight with each other, and the victor devours the vanquished. They are the prey, too, of terents, lizards, frogs, and the carnivorous birds. They have been found in the stomachs of the eagle and different kinds of owls. They are also used as food by the Moors, who go to hunt them, fry them in oil or butter, and sell them publicly at Thebes and other places.

in the year 1750, a cloud of locusts was seen to enter Russia in three different places, and from thence they spread themselves over Poland and Lithuania in such astonishing multitudes, that the air was darkened and the earth covered with their numbers. In some places they were seen lying dead, heaped upon each other to the depth of four feet; in others, they covered the surface like a black cloth; the trees bent with their weight, and the damage which the country sustained exceeded computation.

in 1754, 1755, 1756, and 1757, great devastations were committed in Spain by a species of locusts, of which we have the following description by Don Guillerimo Bowles, published in D'Ilson's Travels through that country. "The locusts are continually seen in the southern parts of Spain, particularly in the pafures and remote uncultivated districts of Estremadura, but in general are not taken notice of, if not very numerous, as they commonly feed upon wild herbs, without preying upon gardens and cultivated lands, or making their way into houses. The peasants look at them with indifference while they are frisking about in the field, neglecting any measure to destroy them till the danger is immediate and this favourable moment to remedy the evil is elapsed. Their yearly number is not very considerable, as the males are far more numerous than the females. If an equal proportion were allowed only for ten years, their numbers would be so great as to destroy the whole vegetative system. Beasts and birds would starve for want of subistence, and even mankind would become a prey to their ravenous appetites. In 1754, their increase was so great from the multitude of females, that all La Mancha and Portugal were covered with them and totally ravaged. The horrors of famine were spread even farther, and affiiled the.
...in an alluvial fertile soil, where the fruits are generally of a large size, and often of a singular beauty. Among them, melons are particularly celebrated for their deliciousness.

The amours of these creatures are objects of surprise and admiration, and their union is such that it is difficult to separate them. When this separation is voluntary, after having lasted some hours, they are so exhausted, that the male retires immediately to the water for refreshment, where, losing the use of his limbs, he found perishes, and becomes an easy prey to the fish; having given life to his offspring at the expense of his own. The female, disembarrassed, the not without violent struggles, spends the remainder of her days in some solitary place, busy in forming a retreat under ground, where she can secure her eggs, of which she generally lays about 40, secreting them by her fugacity from the intemperature of the air, as well as the more immediate danger of the plough or the plaudor of the plaudor; one fatal blow of which would destroy all the hopes of a rising generation. The manner of building this cell is equally surprising. In the hinder part of her body, nature has provided her with a round smooth instrument, eight lines in length, which at its head is as big as a writing quill, diminishing to a hard sharp point, hollow within like the tooth of a viper, but only to be seen with a lens. At the root of this vehicle there is a cavity, with a kind of bladder, containing a glutinous matter, of the same colour, but without the consanguinity or tenacity of that of the flink-worm, as I found by an experiment, made for the purpose, by an infusion in vinegar, for several days, without any effect. The orifice of the bladder corresponds exactly with the instrument which serves to eject the glutinous matter. It is hid under the skin of the belly, and its interior surface is united to the moveable parts of the belly, and can partake of its motions, forming the most admirable contexture for every part of its operations, as she can dispose of this ingredient at pleasure, and eject the fluid, which has three very excellent properties: first, being indissoluble in water, it prevents its young from being drowned; next, it refills the heat of the sun, otherwise the structure would be destroyed by its inhabitants; lastly, it is proof against the frost of winter, so as to preserve a necessary warmth within. For greater security, this retreat is always contrived in a solitary place: for though a million of locusts were to light upon a cultivated field, not one would deposit its eggs there; but wherever they meet a barren and loneome situation, there they are sure to repair and lay their eggs.

These locusts seem to devour, not so much from a ravenous appetite, as from a rage of destroying everything that comes in their way. It is not surprising, that they should be found of the most juicy plants and fruits, such as melons, and all manner of garden fruits and herbs, and feed also upon aromatic plants, such as lavender, thyme, rosemary, &c. which are so common in Spain, that they serve to heat ovens; but it is very singular, that they equally eat mustard seed, onions, and garlic; nay even hemlock; and the most rank and poisonous plants, such as the thorn apple and deadly nightshade. They will even prey upon crowfoot, whose causticity burns the very hides of beasts; and such is their universal taste, that they do not prefer the innocent mallow to the bitter furze, or rue to wormwood, confuming all alike, without predilection or flavour, with this remarkable circumstanee, that during the four years they committed such havoc in Extremadura, the love-apple, or Tylosemon folatiamusic Linnaeus, was the only plant that escaped their rapacious tooth, and claimed a respect to its root, leaves, flowers, and fruit. Naturalists may search for their motives, which I am at a loss to discover; the more as I saw millions of them light on a field near Almaden, and devour the woolen and linen garments of the peasants, which were lying to dry on the ground. The curate of the village, a man of veracity, at whose house I was, assured me, that a tremendous body of them entered the church, and devoured the silk garments that adorned the images of the saints, not sparing even the varnish on the altars. The better to discover the nature of such a phenomenon, I examined the stomach of the locust, but only found one thin and soft membrane, with which, and the liquor it contains, it destroys and dissolves all kind of substances, equally with the most caustic and venemous plants; extracting from them a sufficient and salutary nourishment.

Out of curiosity to know the nature of so formidable a creature, I was urged to examine all its parts with the utmost exactness: its head is of the face of a pea, though longer, its forehead pointing downwards like the handsome Andalician horse, its mouth large and open, its eyes black and rolling, added to a timid aspect not unlike a hare. With such a dastardly countenance who would imagine this creature to be the scourge of mankind! In its two jaws it has four incisive teeth, whose sharp points traverse each other like saws, their mechanism being such as to gape or to cut. This armed, what can resist a legion of such enemies? After devouring the vegetable kingdom, they were, in proportion to their strength and numbers, to become carnivorous like wapts, they would be able to defy whole flocks of sheep, even to the dogs and shepherds; just as we are told of ants in America, that will overcome the fiercest serpents.

The locust spends the months of April, May, and June, in the place of its birth: at the end of June its wings have a fine rose colour, and its body is strong. Flying then in their prime, they assemble for the last time, and burn with a desire to propagate their species; this is observed by their motions, which are unequal in the two sexes. The male is restless and folicitous, the female is coy, and eager after food, flying the approaches of the male, so that the morning is spent in the courtship of the one and the retreat of the other. About ten o'clock, when the warmth of the sun has cleared their wings from the dampness of the night, the females seem uneasy at the approach of the males, who continuing their pursuit, they rise together two feet high, forming a black cloud that darkens the rays of the sun. The clear atmosphere of Spain becomes gloomy, and the finest summer day of Extremadura more dismal than the winter of Holland. The rustling of so many millions of wings in the air, seems like the trees of a forest agitated by the wind. The first direction of this formidable column is always against the wind, which if not too strong, the column will extend about a couple of leagues. The locusts then make a halt, when the most dreadful havoc begins; their senfe of smell being so delicate, they can find at that distance a corn field or a garden, and after demolishing it, rise again in pursuit of another: this may be said to be done in an instant. Each seems to have, as it were,
GRYPHION (Sebastian), a celebrated printer of Lyons in France, was a German, and born at Suabia near Augsburg in 1494. He reformed the art of printing at Lyons, which was before exceedingly corrupt; and the great number of books printed by him are valued by the connoisseurs. He printed many books in Hebrew, Greek, and Latin, with new and very beautiful types; and his editions are no less accurate than beautiful. The reason is, that he was a very learned man, and perfectly versed in the languages of such books as he undertook to print. Thus a certain epigrammatist has observed, that Robert Stephens was a very good corrector, Colinæus a very good printer, but that Gryphius was both an able printer and corrector. This is the epigram:

"Inter tota mortuus librorum qui adhuc, tres sunt
Iulianus: longum estam turbis fama
Ephratam filium, pulchrum Colinæus, utrumque
Gryphius adeo mente magna factus."

He died 1556, in his 63d year: and his trade was carried on honourably in the fame city by his son, Anthony Gryphius. One of the most beautiful books of Sebastian Gryphius is a Latin Bible: it was printed 1550, with the largest types that had then been seen, in 2 Gryphion vols folio.

GRYPHITES, in natural history, in English crow's stone, an oblong foliaceous shell, very narrow at the head, and becoming gradually wider to the extremity, where it ends in a circular limb; the head or beak of this is very hooked or bent inward. They are frequently found in gravel or clay-pits in many countries. There are three or four distinct species of them; some are extremely rounded and convex on the back, others less so; and the plates of which they are composed, are in some smaller and thinner, in others thicker and larger, and in specimens of the same kind.

GUADALAJARA, or GUADALAXARA, a town of Spain, in New-Castile, and district of Alcalá, seated on the river Heráez. W. Long. 2. 45. N. Lat. 40. 56.

GUADALOAJARA, a considerable town of North America, and capital of a rich and fertile province of the same name, with a bishop's see. W. Long. 114. 59. N. Lat. 20. 20.

GUADALAVIAR, a river of Spain, which rises on the confines of Arragon and New Castile, and, running by Turvel in Arragon, crosses the kingdom of Valencia, passes by the town of the same name, and soon after falls into the Mediterranean sea, a little below Valencia.

GUADALQUIVER, one of the most famous rivers of Spain, rises in Andalusia, near the confines of Granada, and running quite through Andalusia, by the towns of Baixa, Andaxar, Cordova, Seville, and St. Lucar, falls at left into the bay of Cadiz.

GUADALOupe, a handfome town in Spain, in Etrimadura, with a celebrated convent, whose structure is magnificent, and is immensely rich. It is seated on a rivulet of the same name. E. Long. 3. 50. N. Lat. 39. 15.

GUADALUPE, one of the Caribbean islands, belonging to the French, the middle of which is seated about N. Lat. 16. 30. W. Long. 61. 20.

This island, which is of an irregular figure, may be about 80 leagues in circumference. It is divided into two parts by a small arm of the sea, which is not above two leagues long, and from 15 to 40 fathoms broad. This canal, known by the name of the Salt River, is navigable, but will only carry vessels of 50 tons burden.

That part of the island which gives its name to the whole colony is, towards the centre, full of craggy rocks, where the cold is so intense, that nothing will grow upon them but fern, and some useless shrubs covered with moss. On the top of these rocks, a mountain called la Souphiere, or the Brimsfe Mountain, rises to an immense height. It exhales, through various openings, a thick black smoke, intermixed with sparks that are visible by night. From all these hills flow numberless springs, which fertilize the plains below, and moderate the burning heat of the climate by a refreshing stream. It is celebrated, both by the gallant, which formerly used to touch at the Windward Islands, had orders to renew their provision with this pure and wholesome water. Such is that part of the island properly called Guadalup. That which is commonly called Grand...
GUA

Guadalupe. Grand Terre, has not been so much favoured by nature. It is indeed less rugged; but it wants springs and rivers. The soil is not so fertile, or the climate so wholesome or so pleasant.

No European nation had yet taken possession of this island, when 550 Frenchmen, led by two gentlemen named Loline and Duplessis, arrived there from Dieppe on the 28th of June 1635. They had been very imprudent in their preparations. Their provisions were very chosen, that they were spoiled in the passage, and they had drifted so few, that they were exhausted in two months. They were supplied with more from the mother-country, St Christopher's, whether from scarcity or design, refused to spare them any; and the first attempts in husbandry made in the country, could not as yet afford any thing. No resource was left for the colony but from the savages; but the superficialities of a people, who cultivate but little, and therefore had never laid up any stores, could not be very considerable. The new comers, not content with what the savages might freely and voluntarily bring, came to a resolution to plunder them; and hostilities commenced on the 16th of January 1636.

The Caribbs, not thinking themselves in a condition openly to repel an enemy who had so much the advantage from the superfluities of their arms, destroyed their own provisions and plantations, and retired to Grand Terre, or to the neighbouring islands. From thence the most desperate came over to the island from which they had been driven, and concealed themselves in the thickest parts of the forests. In the day time, they shot with their poisoned arrows, or knocked down with their clubs, all the Frenchmen who were scattered about for hunting or fishing. In the night, they burned the houses and destroyed the plantations of their unjust spoilers.

A dreadful famine was the consequence of this kind of war. The colonists were reduced to graze in the fields, to eat their own excrements, and to dig up dead bodies for their subsistence. Many who had been slaves at Algiers, held in abhorrence the hands that had broken their fetters; and all of them cursed their existence. It was in this manner that they atoned for the crime of their invasion, till the government of Aubert brought a peace with the savages at the end of the year 1640. The remembrance, however, of hardships endured in an invaded island, proved a powerful incitement to the cultivation of all articles of immediate necessity; which afterwards induced an attention to those of luxury consumed in the mother-country. The few inhabitants who had escaped the calamities they had drawn upon themselves, were soon joined by some disaffected colonists from St Christopher's, by Europeans fond of novelty, by sailors tired of navigation, and by some sea-captains, who prudently chose to commit to the care of a grateful soil the treasures they had saved from the dangers of the sea. But still the prosperity of Guadalupe was stopped or impeded by obstacles arising from its situation.

The facility with which the pirates from the neighbouring islands could carry off their cattle, their slaves, their very crops, frequently brought them into a desperate situation. Intemperate broils, arising from jealousies of authority, often disturbed the quiet of the planters. The adventurers who went over to the windward islands, disdaining a land that was fitter for Guadalupe agriculture than for naval expeditions, were easily drawn to Martinico by the convenient roads it abounds with. The protection of those intrepid pirates brought to that island all the traders who flattered themselves that they might buy up the spoils of the enemy at a low price, and all the planters who thought they might safely give themselves up to peaceful labours. This quick population could not fail of introducing the civil and military government of the Caribbee islands into Martinico. From that time the French ministry attended more seriously to this than to the other colonies, which were not so immediately under their direction; and hearing chiefly of this island, they turned all their encouragements to that way.

It was in consequence of this preference, that in 1700 the number of inhabitants in Guadalupe amounted only to 3825 white people, 235 savages, free negroes, mulattoes, and 6725 slaves, many of whom were Caribbs. Her cultures were reduced to 60 small plantations of sugar, 66 of indigo, a little cocoa, and a considerable quantity of cotton. The cattle amounted to 1620 horses and mules, and 3699 head of horned cattle. This was the fruit of 60 years labour. But her future progress was as rapid as her first attempts had been slow.

At the end of the year 1755, the colony was peopled with 9643 whites, 41,140 slaves of all sex, and of both sexes. Her saleable commodities were the produce of 334 sugar-plantations, 15 plots of indigo, 46,840 items of cocoa, 11,700 of tobacco, 2,257,725 of coffee, 1,274,447 of cotton. For her provisions she had 29 squares of rice or maize, and 1219 of potatoes or yams, 2,028,520 banana trees, and 32,577,950 trenches of castor. The cattle of Guadalupe consisted of 4946 horses, 2924 mules, 125 calves, 13,716 head of horned cattle, 11,162 sheep or goats, 2444 hogs. Such was the state of Guadalupe when it was conquered by the British in the month of April 1759.

France lamented this loss; but the colony had reason to comfort themselves for this disgrace. During a siege of three months, they had seen their plantations destroyed, the buildings that served to carry on their works burnt down, and some of their slaves carried off. Had the enemy been forced to retreat after all these devastations, the island was ruined. Deprived of all affiance from the mother-country, which was not able to send her any succours, and expecting nothing from the Dutch (who, on account of their neutrality, came into her roads), because they had nothing to offer them in exchange, she could never have subsisted till the ensuing harvest.

The conquerors delivered them from these apprehensions. The British, indeed, are no merchants in their colonies. The proprietors of lands, who mostly reside in Europe, send to their representatives whatever they want, and draw the whole produce of the estate by the return of their ships. An agent settled in some sea-port of Great Britain is intrusted with the furnishing the plantation and receiving the produce. This was impracticable at Guadalupe; and the conquerors in this respect were obliged to adopt the custom of the conquered. The British, informed of the advantage the French made of their trade with the colonies,
Andalusia, and falls into the bay or gulf of Cadiz between Càntaro Marino and Agramonte.

GUADIX, a town of Spain, in the kingdom of Granada, with a bishop's see. It was taken from the Moors in 1253, who afterwards retook it, but the Spaniards again got possession of it in 1489. It is situated in a fertile country, in W. Long. 2. 12. N. Lat. 37. 5.

GUAJACUM, LIGNUM VITÆ, or Pockwood: A genus of the monogany order, belonging to the deciduous class of plants; and in the natural method ranking under the 14th order, Cruciferae. The calyx is quill-shaped and unequal; the petals five, and inserted into the calyx; the capsule is angulated, and tri- or quinquelocular.

Species. 1. The officinale, or common lignum vitae used in medicine, is a native of the West India Islands and the warmer parts of America. There it becomes a large tree, having a hard, brittle, brownish bark, not very thick. The wood is firm, solid, ponderous, very recondite, of a blackish yellow colour in the middle, and of a hot aromatic taste. The smaller branches have an agh-coloured bark, and are garnished with leaves divided by pairs of a bright green colour. The flowers are produced in clusters at the end of the branches, and are composed of oval concave petals of a fine blue colour. 2. The candium, with many pairs of oblong lobes, has many small lobes placed along the mid-rib by pairs of a darker green colour than those of the foregoing fort. The flowers are produced in loose bunches towards the end of the branches, and are composed of oval concave petals of a fine blue colour, with petals fringed on the edges. This species is also a native of the West India Islands, where it is called báilard lignum vitae. 3. The Afrum, with many blunt-pointed leaves, is a native of the Cape of Good Hope. The plants retain their leaves all the year, but have never yet flowered in Britain.

Culture. The first species can only be propagated by seeds, which must be procured from the countries where it naturally grows. They must be sown fresh in pots, and plunged into a warm hot-bed, where they will come up in six or eight weeks. While young, they may be kept in a hot-bed of tan-bark under a frame during the summer; but in autumn they must be removed into the bark-flute, where they should constantly remain. The second fort may be propagated the same way; but the third is to be propagated by layers, and will live all the winter in a good green-house.

Uses. The wood of the first species is of very considerable use both in medicine and in the mechanical arts. It is compact and heavy as to sink in water. The outer part is often of a pale yellowish colour; but the heart is blacker, or of a deep brown. Sometimes it is marbled with different colours. It is so hard as to break the tools which are employed in fell ing it; and is therefore seldom used as firewood, but is of great use to the sugar-planters for making wheels and cogs to the sugar-mill. It is also frequently wrought into bowls, mortars, and other utensils. It is brought over hither in large pieces of four or five hundred weight each; and from its hardness and beauty is in great demand for various articles of turnery ware.

The wood, gum, bark, fruit, and even the flowers of...
Guaiacum. of this tree, have been found to possess medicinal virtues; but it is only the three first, and more particularly the wood and resin, which are now in general use in Europe. The wood has little or no smell, except when heated, or while rasping, and then a slight aromatic one is perceived. When chewed, it imparts a mild acrimony, biting the palate and tongue. Its pungency resides in its resinous matter, which it gives out in some degree to water by boiling, but spirit extracts it wholly.

Of the bark there are two kinds: one smooth, the other unequal on the surface: they are both of them weaker than the wood; though, while in a recent state, they are strongly cathartic.

The gum, or rather gummy resin, is obtained by wounding the bark in different parts of the body of the tree, or by what has been called jagging. It exudes copiously from the wounds, though gradually; and when a quantity is found accumulated upon the several wounded trees, hardened by exposure to the sun, it is gathered and packed in small kegs for exportation. This resin is of a friable texture, of a deep greenish colour, and sometimes of a reddish hue; it has a pungent acrid taste but little or no smell, unless heated. The tree also yields a spontaneous exudation from the bark, which is called the native gum, and is brought to us in small irregular pieces, of a bright semipellucid appearance, and differs from the former in being much purer.

In the choice of the wood, which is the freshest, most ponderous, and of the darkest colour, is the best; the largest pieces are to be preferred too; and the best method is to rasp them as wanted, for the finer parts are apt to exhale when the raspings or chips are kept a while.

In choosing the resin, prefer those pieces which have chips of the bark adhering to them, and that easily separate therefrom by a quick blow. The resin is sometimes sophificated by the negroes with the gum of the manchinel tree; but this is easily detected by dissolving a little in spirit of wine or rum. The true gum imparts a whistful or milky tinge, but the manchinel gives a greenish cast. Much advices a few drops of spirit, nitri dulce, to be added to the spirituous portion, and then to be diluted with water, by which the gum is to be precipitated in a blue powder; but the adulteration will appear floating in white froth, &c.

Guaiacum was first introduced into Europe as a remedy for the venereal disease; and appears to have been used in Spain so early as 1508. The great successes attending its administration before the proper use of mercury was known, brought it into such repute, that it is said to have been sold for even old crowns a pound. It did not, however, continue to maintain its reputation; but was found so generally to fail where the disease was deep-rooted, and was at length superseded by mercury, to which it now only serves occasionally as an adjunct in the decumum tignorum, of which guaiacum is the chief ingredient.

The general virtues of guaiacum are those of a warm stimulating medicine; strengthening the stomach and other visceras, and remarkably promoting the urinary and cuticular discharges: hence, in catarrhal defedations, and other disorders proceeding from obstructions of the excretory glands, and where sluggish ferous humours abound, they are eminently useful; rheumatic and other pains have often been relieved by them. They are also laxative. The resin is the most active of these drugs, and the efficacy of the others depends upon the quantity of this part contained in them. The resin is extracted from the wood in part by watery liquors, but much more perfectly by spirituous ones. The watery extract of this wood, kept in the shops, proves not only less in quantity, but considererably weaker than one made with spirit. This last extract is of the same quality with the native resin, and differs from that brought to us only in being purer. The gum or extracts are given from a few grains to a scruple or half a dram, which last dose proves for the most part considerably purgative. The official preparations of guaiacum are, an extract of the wood, a solution of the gum in redistilled spirit of wine and a solution in volatile spirit, and an empyreumatic oil distilled from the wood. The resin dissolved in rum, or combined with water, by means of mucilage or the yolks of eggs, or in form of the volatile mixture or elixir, is much employed in gout and chronic rheumatism. The tincture or elixir has been given to the extent of half an ounce twice a day, and is sometimes usefully combined with laudanum.

GUAUOR, GUALLOR, or Cowaller, a large town of Indofian in Asia, and capital of a province of the same name, with an ancient and celebrated fortress: of great strength. It is situated in the very heart of Hindofian Proper, being about 80 miles to the south of Agra, the ancient capital of the empire, and 150 from the nearest part of the Ganges. From Calcutta it is, by the nearest route, upwards of 800 miles, and 910 by the ordinary one; and about 280 from the British frontiers. Its latitude is 26° 14', and longitude 78° 26', from Greenwich.

In the ancient division of the empire it is clased in the Souah of Agra, and is often mentioned in history. In the year 1008, and during the two following centuries, it was thrice reduced by famine. It is probable that it must in all ages have been deemed a military post of the utmost consequence, both from its situation in respect to the capital, and from the peculiarity of its site, which was generally deemed impregnable. With respect to its relative position, it must be considered that it stands on the principal road leading from Agra to Malwa, Guzerat, and the Decan; and that too near the place where it enters the hilly tract which advances from Bandleund, Malwa, and Agimere, to a parallel with the river Jumna, throughout the greatest part of its course. And from all these circumstances of general and particular situation, together with its natural and acquired advantages as a fortress, the possession of it was deemed as necessary to the ruling emperors of Hindofian as Dover-castle might have been to the Saxons and Normans kings of England. Its palace was used as a state prison as early as 1317, and continued to be such until the downfall of the empire.—On the final disembarkation of the empire, Guuleor appears to have fallen to the lot of a rajah of the Jat tribe; who assumed the government of the district in which it is immediately situated, under the title of Rana of Gohlud or Gold. Since that period it has changed masters more than once: the Mahratta, whose dominions extend to the neighbourhood of
it having sometimes possessed it; and at other times the Rana: but the means of transfer were always either famine or treachery, nothing like a siege having ever been attempted.

Gualeor was in the possession of Madosjee Scindia, a Maharatta chief, in 1779, at the close of which year the council-general of Bengal concluded an alliance with the Rana; in consequence of which, four battalions of sepoys of 500 men each, and some pieces of artillery, were sent to his assistance, his district being over-run by the Marhatters, and himself almost shut up in his fort of Gohud. The grand object of his alliance was to penetrate into Scindia's country, and finally to draw Scindia himself from the western side of India, where he was attending the motions of general Godard, who was then employed in the reduction of Guzerat; it being Mr. Hastings's idea, that when Scindia found his own dominions in danger, he would detach himself from the confederacy, of which he was the principal member, and thus leave matters open for an accommodation with the court of Peonah. It fell out exactly as Mr. Hastings predicted. Major William Popham was appointed to the command of the little army sent to the Rana's assistance; and was very successful as well in clearing his country of the enemy, as in driving them out of one of their own most valuable districts, and keeping possession of it; and Mr. Hastings, who justly concluded that the capture of Gualeor, if practicable, would not only open the way into Scindia's country, but would also add to the reputation of our arms in a degree much beyond the risk and expense of the undertaking, repeatedly expressed his opinion to major Popham, together with a wish that it might be attempted; and-founded his hopes of success on the confidence that the garrison would probably have in the natural strength of the place. It was accordingly undertaken; and the following account of the place, and the manner of getting possession of it, was written by captain Jonathan Scott, at that time Persian interpreter to major Popham, to his brother major John Scott.

"The fortresses of Gualeor stand on a vast rock of about four miles in length, but narrow, and of unequal breadth, and nearly flat at the top. The sides are so steep as to appear almost perpendicular, and for a whole day was not naturally so, it has been scraped away; and the height from the plain below is from 200 to 300 feet. The rampart conforms to the edge of the precipice all around; and the entrance to it is by steps running up the side of the rock, defended on the side next the country by a wall and bastions, and farther guarded by seven stone gateways, at certain distances from each other. The area within is full of noble buildings, reservoirs of water, wells, and cultivated land; so that it is really a little district in itself. At the north-west foot of the mountain is the town, pretty large, and well built; the houses all of stone. To have besieged this place would be vain, for nothing but a surplice or blockade could have carried it."

A tribe of banditti from the district of the Rana had been accustomed to rob about this town, and once in the dead of night had climbed up the rock and got into the fort. This intelligence they had communicated to the Rana, who often thought of availing himself of it, but was fearful of undertaking an enterprise of such moment with his own troops. At length he informed major Popham of it, who sent a party of the robbers to conduct some of his own spies to the spot. They accordingly climbed up in the night, and found that the guards generally went to sleep after their rounds. Popham now ordered ladders to be made; but with so much secrecy, that until the night of the prise only myself and a few others knew it. On the 3d of Augst., in the evening, a party was ordered to be in readiness to march under the command of captain William Bruce; and Popham put himself at the head of two battalions, which were immediately to follow the forming party. To prevent as much as possible any noise in approaching or ascending the rock, a kind of shoes of woolen cloth were made for the sepoys, and stuffed with cotton. At eleven o'clock the whole detachment marched from the camp at Rey-pour, eight miles from Gualeor, through unfrequented paths, and reached it a little before day-break. Just as captain Bruce arrived at the foot of the rock, he saw the lights which accompanied the rounds moving along the rampart, and heard the sentinels cough (the mode of signifying that all is well in the Indian camp or garrison), which might have damped the spirit of many men; but served only to inspire him with more confidence, as the moment for action, that is, the interval between the palling the rounds, was now ascertained. Accordingly when the lights were gone, the wooden ladders were placed against the rock, one of the robbers first mounted, and returned with an account that the guard was retiring to sleep. Lieutenant Cameron, our engineer, next mounted, and tied a rope-ladder to the battlements of the wall; this kind of ladder being the only one adapted to the purpose of scaling the wall in a body (the wooden ones only serving to ascend from crag to crag of the rock, and to assist in fixing the rope-ladders). When all was ready, captain Bruce, with 20 sepoys, grenadiers, ascended without being discovered, and squatted down under the parapet; but before a reinforcement arrived, three of the party had to little recollection as fire on some of the garrison who happened to be lying asleep near them. This had nearly destroyed the whole plan by scattering the sepoy, who was retreating to sleep. Lieutenant Cameron, our engineer, next mounted, and tied a rope-ladder to the battlements of the wall; this kind of ladder being the only one adapted to the purpose of scaling the wall in a body (the wooden ones only serving to ascend from crag to crag of the rock, and to assist in fixing the rope-ladders). When all was ready, captain Bruce, with 20 sepoys, grenadiers, ascended without being discovered, and squatted down under the parapet; but before a reinforcement arrived, three of the party had to little recollection as fire on some of the garrison who happened to be lying asleep near them. This had nearly destroyed the whole plan by scattering the sepoy, who was retreating to sleep. Lieutenant Cameron, our engineer, next mounted, and tied a rope-ladder to the battlements of the wall; this kind of ladder being the only one adapted to the purpose of scaling the wall in a body (the wooden ones only serving to ascend from crag to crag of the rock, and to assist in fixing the rope-ladders).
GUA [169] GUA

Guam. 1780; and which, before the capture of it by the British, was pronounced by the princes of Hindostan, as far as their knowledge in the military art extended, to be impregnable. In 1783 Madajee Scindia besieged this fortresst, then possessed by the Rana of Goohud, with an army of 70,000 men, and effected the reduction by the treachery of one of the Rana's officers, who formed the plan of admission of a party of Scindia's, while they were immediately supported by another party, who attacked an opposite quarter, and got admission also.

GUAM, the largest of the Ladrone islands in the South Sea, being about 40 leagues in circumference. It is the only one among the innumerables islands that lie scattered in the immense South Sea which has a town built in the European style, with a regular fort, a church, and civilized inhabitants. The air is excellent, the water good, the garden stuffs, and fruits are exquisite, the flocks of buffaloes innumerable, as are those of goats and hogs, and all kinds of poultry abound in an astonishing degree. There is no port in which worn-out sailors can be more speedily restored, or find better or more plentiful refreshments, than in this.

But Guam did not formerly enjoy this state of abundance. When it was first discovered by Magellan in 1521, with the other eight principal islands that lie north of it, which, with a multitude of smaller ones, form together that archipelago known by the name of the Ladrones, they were all crowded with inhabitants, but afforded no refreshments to navigators except fish, bananas, cocoa-nuts, and bread fruit; and even these could not be procured but by force, amidst flowers of the arrows and lances of the natives. The Spaniards carried thither from America the first flock of cattle, of fowls, of plants, and seeds, and fruits, as well as garden stuffs, which are all now found in such abundance.

The Ladrone islands, and Guam in particular, were covered with inhabitants when they were discovered. It is said that Guam alone contained upon its coasts more than 20,000 people. These men were ferocious savages and bold thieves, as all the islanders in the south seas are, undoubtedly because they were unacquainted with the rights of property; but they were so savage, so incapable of supporting the yoke of civilization, that the Spaniards, who undertook to bring them under the regulations of law and order, have seen their numbers almost annihilated within the space of two centuries. Under the government of their missionnaires, these fierce islanders, after having long defended, by cruel wars, the right of living like wild beasts under the guidance of infatué, being at last obliged to yield to the superioriety of the Spanish arms, gave themselves up to despair: they took the resolution of administering potions to their women, in order to procure abortions, and to render them sterile, that they might not bring into the world, and leave behind them, beings that were not free, according to the ideas that they had of liberty. A resolution so violent, and so contrary to the views and intentions of nature, was perfidiously in with so much obblivion in the nine Ladrone islands, that their population, which at the time of the discovery consisted of more than 60,000 souls, does not now exceed 800 or 900 in the whole extent of the archipelago. About 20 or 30 years ago, the scattered fragments of the original natives were collected and established in the island of Guam, where they now begin to recover by the wise precautions, and prudent, though tardy, exertions of a government more adapted to the climate of these islands and to the genius of their inhabitants.

The principal settlement, which the Spaniards call the town of Agana, is situated about four leagues north-east of the landing-place, on the sea-shore, and at the foot of some hills not very high, in a beautiful well-watered country. Besides this, there are 21 smaller settlements of Indians round the island, all on the sea-shore, composed of five or six families, who cultivate fruits and grain, and employ themselves in fishing.

The centre of the island is still uncleared. The trees are not very tall, but they are fit for the building of houses and of boats. The forests are in general very thick. The Spaniards at first cleared certain portions of land to turn them into savannahs for the feeding of cattle. The formation of savannahs consists in multiplying within the forests small cleared spots separated only by thickets and rows of trees, and kept clean from shrubs of every kind. The Spaniards sow these spots with grass seeds, and other indigenous plants that are fit for pasturage. These meadows, being effectually shaded on every quarter, preserve their freshness, and afford the flocks and herds a shelter from the sun and the great heat of the noon. The cattle that were formerly brought to the savannahs of Guam from America have multiplied astonishingly: they are become wild, and must be shot when wanted, or taken by stratagem.

The woods are likewise full of goats, of hogs, and fowls, which were all originally brought thither by the Spaniards, and are now wild. The flesh of all these animals is excellent. In the savannahs, and even in the heart of the forests, there is a vast multitude of pigeons, of parrots, of thrushes, and of blackbirds.

Among the indigenous trees of the country, the most remarkable are, the cocoa-nut tree and the bread-fruit tree. The woods are also filled with guavas, bananas, or plantanes of many varieties, citrons, lemons, and oranges, both sweet and bitter; and the small dwarf thorny citrus-orange with red fruit. The sugar-bush abounds in all the Ladrone islands; and as it is constantly in flower, as well as the citron and orange-shrubs, with many other of the indigenous plants, they perfume the air with the most agreeable scents, and delight the eye with the richest colours.

The rivers of Guam, which are either rivulets or torrents, abound in fish of an excellent quality: the Indians, however, eat none of them, but prefer the inhabitants of the sea. The turtle, which grow here as large as those in the island of Ascension, are not eaten either by the Indians or Spaniards.

The cultivated crops lately introduced are, the rice, the maize, the indigo, the cotton, the cocoa, the sugar-cane, which have all succeeded. That of the maize, especially, is of astonishing fertility; it is common to find in the fields where this grain is cultivated plants of twelve feet high, bearing eight or ten spikes from nine to ten inches in length, set round with well-filled seeds. The gardens are stored with mangoes.
GUA [170] GAU

GUAMANGA and pine-apples. The former is one of the finest fruits imaginable: it was brought from Manilla, and may be eaten in great quantity without any bad consequences. Horses have been brought to Guam from Manilla, and asses and mules from Acapulco. The Indians have been taught to tame and domesticate the ox, and to employ him in the draught.

This island, the land of which rises gradually from the sea-shore towards the centre by a gentle acclivity, is not very mountainous. The inhabitants say, that its soil is equally rich and fertile over the whole island, except in the northern part, which forms a peninsula almost defitute of water. But in the rest, you cannot go a league without meeting a rivulet. Upon penetrating a little way into the interior part of the country, to the east and the south of Agana, many springs of fine water are found, forming at little distances, basons of pure water, which, being shaded by thick trees, produce a most agreeable coolness in spite of the heat of the climate.

The indigenous inhabitants are such as they were described by Magellan; of small stature, sufficiently ugly, black, and in general dirty, though they are continually in the water. The women are for the most part handsome, well made, and of a reddish colour. Both sexes have long hair. This feamy people have become by civilisation gentle, passionate, and dancing much, but labour little. They are addicted to drunkenness, for they drink freely of the wine of the cocoa-nut. They love holidays and dancing much, but labour little. They are fond of sweetmeats, of small apples, and cakes. Horses are taught to tame and preserve of any thing; the art of observing what passes, in order to prevent surprize; or the care, precaution, and attention, we make use of to prevent any thing from happening contrary to our intentions or inclinations.

GUARD, in the military art, is a duty performed by a body of men, to secure an army or place from being surprized by an enemy. In garrison the guards are relieved every day; hence it comes that every soldier mounts guard once every three or four days in time of peace, and much oftener in time of war. See Honours.

Advanced Guard, is a party of either horse or foot, that marches before a more considerable body, to give notice of any approaching danger. The guards are either made stronger or weaker, according to situation, the danger to be apprehended from the enemy, or the nature of the country.

VAN GUARD. See Advanced Guard.

Artillery Guard, is a detachment from the army to secure the artillery when in the field. Their corps de garde is in the front of the artillery park, and their sentries dispersed round the same. This is generally a 48-hours guard; and upon a march, this guard marches in the front and rear of the artillery, and must be sure to leave nothing behind: if a gun or waggon breaks down, the officer that commands the guard is to leave a sufficient number of men to assist the gunners and marines in getting it up again.

Artillery Quarter-Guard, is frequently a non-commissioned officer's guard from the royal regiment of artillery, whose corps de garde is always in the front of their encampment.

Artillery Rear-Guard, consists in a corporal and six men, posted in the rear of the park.

Corps de Garde, are soldiers entrusted with the guard of a post, under the command of one or more officers. This word also signifies the place where the guard mounts.

Grand Guard; three or four squadrons of horse, commanded by a field-officer, posted at about a mile or a mile and a half from the camp, on the right and left wing, towards the enemy, for the better security of the camp.

Forage Guard, a detachment sent out to secure the foragers, and who are posted at all places, where either the enemy's party may come to disturb the foragers, or where they may be spread too near the enemy, so as to be in danger of being taken. This guard consists both of horse and foot, and must remain on their posts till the foragers are all come off the ground.

Main Guard, is that from which all other guards are detached. Those who are for mounting guard assemble at their respective captain's quarters, and march from hence to the parade, in good order; where, after the whole guard is drawn up, the small guards are detached to their respective posts: then the flagbearers throw lots for their guards, who are all under
under the command of the captain of the main guard. This guard mounts in garrison at different hours, according as the governor please.

Piguet-guard, a good number of horse and foot, always in readiness in case of an alarm: the horses are generally saddled all the time, and the riders booted.

The foot draw up at the head of the battalion, frequently at the beating of the tattoo; but afterwards return to their tents, where they hold themselves in readiness to march upon any sudden alarm. This guard is to make resistance in case of an attack, until the army can get ready.

Baggage-guard, is always an officer's guard, who has the care of the baggage on a march. The waggons should be numbered by companies, and follow one another regularly: vigilance and attention in the passage of hollow ways, woods, and thickets, must be strictly observed by this guard.

Quarter-guard, is a small guard commanded by a subaltern officer, posted in the front of each battalion, at 222 feet before the front of the regiment.

Rear-guard, that part of the army which brings up the rear on a march, generally composed of all the old grand guards of the camp. The rear-guard of a party is frequently eight or ten horse, about 500 paces behind the party. Hence the advance guard going out upon a party, form the rear-guard in their retreat.

Rear-guard, is also a corporal's guard placed in the rear of a regiment, to keep good order in that part of the camp.

Standard-guard, a small guard under a corporal, out of each regiment of horse, who mount on foot in the front of each regiment, at the distance of 20 feet from the streets, opposite the main-street.

French-guard, only mounts in the time of a siege, and sometimes consists of three, four, or six battalions, according to the importance of the siege. This guard must oppose the besieged when they rally out, protect the workmen, &c.

Provost-guard, is always an officer's guard that attends the provost in his rounds, either to prevent desertion, marauding, robbing, &c. See Provost.

Guard, in fencing, implies a posture proper to defend the body from the sword of the antagonist.

Ordinary guards, such as are fixed during the campaign, and relieved daily.

Extraordinary guards, or detachments, which are only commanded on particular occasions; either for the further security of the camp, to cover the foragers, or for convoys, ejects, or expeditions.

Guards, also imply the troops kept to guard the king's person, and consist both of horse and foot.

Horse guards, in England, are gentlemen chosen for their bravery, to be entrusted with the guard of the king's person; and were divided into four troops, called the 1st, 2d, 3d, and 4th troop of horse-guards. The first troop was raised in the year 1660, and the command given to lord Gerard; the second in 1661, and the command given to Sir Philip Howard; the third in 1663, and the command given to Charles de la Ferté; the fourth in 1692, and the command given to sir George Newburgh. Each troop had one colonel, two lieutenant-colonels, one cornet and major, one guidon and major, four exponents and captains, four brigadiers and lieutenants, one adjutant, four sub-brigadiers and cornets, and 60 private men. But the four troops are now turned into two regiments of life-guards.

Horse-Grenadier guards, are divided into two troops, called the 5th and 6th troops of horse-grenadier guards. The first troop was raised in 1693, and the command given to lieutenant-general Cholmondeley; the second in 1702, and the command given to lord Forrester. Each troop has one colonel, one lieutenant-colonel, one guidon or major, three exponents and captains, three lieutenants, one adjutant, three cornets, and 60 private men.

Teemen of the guard, first raised by Henry VII. in the year 1485. They are a kind of pompous foot-guards to the king's person; and are generally called by a nickname the Beef-eaters. They were anciently 250 men of the first rank under gentry; and of larger stature than ordinary, each being required to be six feet high. At present there are but 100 in constant duty, and 70 more not on duty; and when any one of the 100 dies, his place is supplied out of the 70. They go dressed after the manner of king Henry VIII. time. Their first commander or captain was the earl of Oxford, and their pay is 25. 2d. per day.

Foot-guards are regiments of foot appointed for the guards of his majesty and his palace. There are three regiments of them, called the 1st, 2d, and 3d regiments of foot-guards. They were raised in the year 1660; and the command of the first was given to colonel Ralfel, that of the second to general Monk, and the third to lord Linlithgow. The first regiment is at present commanded by one colonel, one lieutenant-colonel, three majors, 23 captains, one captain-lieutenant, 31 lieutenants, and 24 ensigns; and contains three battalions. The second regiment has one colonel, one lieutenant-colonel, two majors, 14 captains, one captain-lieutenant, 18 lieutenants, 16 ensigns; and contains only two battalions. The third regiment is the same as the second.

The French guards are divided into three within, and those without, the palace.—The first are the gardes du corps, or body-guards; which consist of four companies, the first of which companies was anciently Scots. The Scots guards, infra.

The guards without are the gens d'armes, light-horse, musqueters, and two other regiments, the one of which is French and the other Swiss.

New arrangements, however, have taken place in this department as well as others since the late revolution.

Scott guards, a celebrated band, which formed the first company of the ancient gardes du corps of France. It happened from the ancient intercourse between France and Scotland, that the natives of the latter kingdom had often distinguished themselves in the service of the former. On this foundation the company of Scots guards, and the company of Scots gendarmes, were instituted. Both of them owed their institution to Charles VII. of France, by whom the first standing army in Europe was formed, anno 1454; and their fates cannot but be interesting to Scotchmen. See Gendarmes.

Valour, honour, and fidelity, must have been very conspicuous features of the national character of the
Scots, when so great and civilized a people as the French could be induced to chose a body of them, foreigners as they were, for guarding the persons of their sovereigns.—Of the particular occasion and reasons of this predilection, we have a recital by Louis XII, a succeeding monarch. After setting forth the service which the Scots had performed for Charles VII., in expelling the English out of France, and reducing the kingdom to his obedience, he adds—"Since which reduction and for the service of the Scots upon that occasion, and for the great loyalty and virtue which he found in them, he selected 200 of them for the guard of his person, of whom he made an hundred men at arms, and an hundred life-guards: And the hundred men at arms are the hundred lances of our ancient ordinances; and the life-guard men are those of our guard, who still are near and about our person."—As to their fidelity in this honourable station, the historian, speaking of Scotland, says, "The French have feancient a friendship and alliance with the Scots, that of 400 men appointed for the king's life-guard, there are an hundred of the said nation who are the nearest to his person, and in the night keep the keys of the apartment where he sleeps. There are, moreover, an hundred complete lances and two hundred yeomen of the said nation, besides several that are dispersed thro' the companies: and for so long a time as they have served in France, never hath there been one of them found that hath committed or done any fault against the king or their state; and they make use of them as of their own subjects."

The ancient rights and privileges of the Scottish life-guards were very honourable; especially of the twenty-four first. The author of the Ancient Alliance says, "On high holidays, at the ceremony of the royal touch, the erection of knights of the king's order, the reception of extraordinary ambassadors, and the public entries of cities, there must be six of their number next to the king's person, three on each side: and the body of the king must be carried by them only, wherefoever ceremony requires. They have the keeping of the keys of the king's lodging at night, the keeping of the choir of the chapel, the keeping the boats where the king passes the rivers; and they have the honour of bearing the white silk fringe in their arms, which in France is the coronne couleur. The keys of all the cities where the king makes his entry are given to their captain in waiting or out of waiting. He has the privilege, in waiting or out of waiting, at ceremonies, such as coronations, marriages, and funerals of the kings, and at the baptism and marriage of their children, to take duty upon him. The coronation-robe belongs to him: and this company, by the death or change of a captain, never changes its rank, as do the three others."

This company's first commander, who is recorded as a per son of great valour and military accomplishments, was Robert Patillock, a native of Dundee; and in the band, ever ardent to distingwith itself, continued in great reputation till the year 1578. From the year 1612, the Scots guards were left attended, and their privileges came to be invaded. In the year 1612, they remonstrated to Louis XIII. on the subject of the injustice they had suffered, and set before him the services they had rendered to the crown of France. Attempts were made to re-establish them on their ancient foundation; but no negotiation for this purpose was effectual. The troops of France grew jealous of the honours paid them: the death of Francis II., and the return of Mary to Scotland, at a time when they had much to hope, were unfortunate circumstances to them: the change of religion in Scotland, was an additional blow: and the accession of James VI. to the throne of England, disturbed altogether the interests of France and Scotland. The Scots guards of France had therefore, latterly, no connection with Scotland but the name."

Guard-Boat, a boat appointed to row the rounds amongst the ships of war which are laid up in any harbour, &c. to observe that their officers keep a good looking out, calling to the guard-boat the palsies, and not suffering her crew to come on board, without having previously communicated the watch-word of the night.

Guard-Ship, a vessel of war appointed to superintend the marine affairs in a harbour or river, and to see that the ships which are not commissioned have their proper watchward kept duly, by sending her guard-boats around them every night. She is also to receive seamen who are imprisoned in the time of war.

Guardian, in law, a person who has the charge of any thing; but more commonly it signifies one who has the custody and education of such persons as have not sufficient discretion to take care of themselves and their own affairs, as children and idiots. Their business is to take the profits of the minor's lands to his use, and to account for the same; they ought to sell all movables within a reasonable time, and to convert them into land or money, except the minor is near of age, and may want such things himself; and they are to pay interest for the money in their hands, that might have been so placed out; in which case it will be presumed that the guardians made use of it themselves. They are to sustain the lands of the heir, without making deduction of anything thereon, and to keep it safely for him: if they commit waste on the lands, it is a forfeiture of the guardian ship, 3 Edw. 1. And where persons, as guardians, hold over any land, without the consent of the person who is next intitled, they shall be adjudged trespassers, and shall be accountable; 6 Ann. cap. xviii.

Guardian, or Warden, of the Cinque-ports, is an officer who has the jurisdiction of the five ports, with all the power that the admiral of England has in other places.

Camden relates, that the Romans, after they had settled themselves and their empire in Britain, appointed a magistrate, or governor, over the east parts, where the cinque-ports lie, with the title of comes illo­riti Saxonici per Britanniam; having another, who bore the like title, on the opposite side of the sea. Their business was to strengthen the sea-coast with munition, against the outrages and robberies of the barbarians; and that antiquity takes the warden of the Cinque-ports to have been erected in imitation thereof. The wardenship is a place of value, sufficed worth 700l. per annum.

Guardian of the Spiritualities, the person to whom the spiritual jurisdiction of any diocese is committed, during the time the see is vacant. A guardian of the spi-
spiritualities may likewise be either fixed in law, as the archbishop is of any diocese within his province, or by delegation, as he whom the archbishop or vicar-general for the time appoints. Any such guardian has power to hold courts, grant licenses, dispensations, probates of wills, &c.

GUADELEON, in botany: A genus of the monogynia order, belonging to the oenantha class of plants. The calyx is quadrifid; the petals four; the nectarium cylindrical, having the anthec in its mouth; the calyx is quadrangular, and quadrivulgar; the seeds solitary.

GUARDIANI (Battista), a celebrated Italian poet, born at Ferrara, in 1576. He was great-grandson to Guarino of Verona, and was secretary to Alphonso Duke of Ferrara, who intrusted him with several important commissions. After the death of that prince, he was successively secretary to Vincenzio de Gonzaga, to Ferdinand de Medici grand duke of Tuscany, and to Francis Maria de Feltri duke of Urbino. But the only advantages he reaped under these various dignities, were great encomiums on his wit and com-positions. He was well acquainted with polite literature; and acquired immortal reputation by his Italian poems, especially by his Pastor Fido, the most known and admired of all his works, and of which there have been innumerable editions and translations. He died in 1612.

GUARDIA, or GUARDA, a town of Portugal, in the province of Beira, with a bishop's see. It contains about 2300 inhabitants, is fortified both by art and nature, and has a stately cathedral. W. Long. 5° 17'. N. Lat. 40° 26'.

GUARDSiba, a town of Italy, in the kingdom of Naples, and in the Gonado-di-Molife, with a bishop's see. E. Long. 15° 53'. N. Lat. 51° 50'.

GUARIGAL, or GUERgua, a town of Africa, and capital of a small kingdom of the same name, in Blededugerd, on the south of Mount Atlas. E. Long. 9° 55'. N. Lat. 28° 0'.

GUARIGA, in natural history, the name of a species of monkey found in the West Indies. See SIMIA.

GUSTALLA, a strong town of Italy, in the dukedom of Mantua, with the title of duchy, remarkable for a battle between the French and Imperialists in 1724. It was ceded to the duke of Parma in 1748, by the treaty of Aix-la-Chapelle. It is situated near the river Po, in E. Long. 10° 33'. N. Lat. 44° 45'.

GUATIMALA, the audience of, in North America, and in New Spain, is above 750 miles in length, and 450 in breadth. It abounds in chocolate, which they make use of instead of money. It has 12 provinces under it: and the native Americans, under the dominions of Spain, profess Christiinity; but it is mixed with a great many of their own superstitions. There is a great chain of high mountains, which run across it from E. to W. and it is subject to earthquakes and storms. It is however very fertile; and produces, besides chocolate, great quantities of cochineal and cotton.

GUATIMALA, a province of North America, in New Spain, and in the audience of the same name; bounded on the W. by Soconusco, on the N. by Verapaz and Honduras, on the E. by Nicaragua, and on the S. by the south sea. St. Jago de Guatimala is the capital of the whole audience.

GUATIMALA, a large and rich town of North America, in New Spain; and capital of a government of the same name, with a bishop's see, and an university. It carries on a great trade, especially in chocolate. W. Long. 91° 30'. N. Lat. 14° 0'.

GUATIMALA, the Volcano of, is a mountain, which throws out fire and smoke. St Jago de Guatimala was almost ruined by it in 1541. It was afterwards rebuilt at a good distance from this dreadful mountain. A few years ago, however, it was again destroyed, with circumstances more terrible perhaps than any mentioned in history.

GUAVA, in botany. See Psidium.

GUAXACA, a province of North America, in New Spain, which is very fertile in wheat, Indian corn, cochineal, and cafia. It is bounded by the gulph of Mexico on the north, and by the south sea on the south. It contains mines of gold, silver, and crystal. Guaxaca is the capital town.

GUAXACA, a town of North America, in the Audience of Mexico, and capital of the province of the same name, with a bishop's see. It is without walls, and does not contain above 2000 inhabitants; but it is rich, and they make very fine sweet meats and chocolate. It has several rich convents, both for men and women. W. Long. 100°. N. Lat. 17° 45'.

GUAYRA, a district of the province of La Plata, in South America, having Brafil on the east, and Paraguay on the west.

GUBEN, a handome town of Germany, in Lower Lusatia, seated on the river Neiße, and belonging to the house of Sax-Merlenburg. E. 14° 59'. N. Lat. 51° 15'.

GUBER, a kingdom of Africa, in Negroland. It is surrounded with high mountains; and the villages, which are many, are inhabited by people who are employed in taking care of their cattle and sheep. There are also abundance of artificers, and linen-weavers, who fend their commodities to Tombuto. The whole country is overflowed every year by the inundations of the Niger, and at that time the inhabitants sow their rice. There is one town which contains 8000 families, among whom are many merchants.

GUVIO, a town of Italy, in the territory of the church, and in the duchy of Urbino, with a bishop's see. E. Long. 12° 41'. N. Lat. 45° 18'.

GUDGEON, in ichthyology; a species of cyprius, see Cyprinus.

This fish, though small, is of so pleasant a taste, that it is very little inferior to smelt. They spawn twice in the summer; and their feeding is much like the barbels in stems and on gravel, flying all manner of flies: but they are easily taken with a small red worm, fishing near the ground; and being a leather-mouthed fish, will not easily get off the hook when struck. The gudgeon may be filled with a float, the hook being on the ground; or by hand, with a running line on the ground, without cork or float. But although the small red worm abovementioned is the best bait for this fish, yet waps, gentles, and caddis will do very well. You may also fish for gudgeons with two or three hooks at once, and find very pleasant sport, where they rife any thing large. When you angle for them, stir up the sand or gravel with a long pole; this will make them gather to that place, bite faster, and with more eagerness.

Sea-Gudgeon, Rock fish; or Black Cod. See Gobius.
The Guelphs and GibeJins filled Italy with blood and carnage for many years. The Guelphs stood for the Pope, against the emperor. Their title is referred by some to Conrad III, in the twelfth century; by others, to that of Frederic I.; and by others, to that of his successor Frederic II. in the thirteenth century.

The name of Guelph is commonly said to have been formed from Wolfe, or Wolfe, on the following occasion: the emperor Conrad III. having taken the duchy of Bavaria from Wolfe VI. brother of Henry duke of Bavaria, Wolfe, affiicted by the forces of Roger king of Sicily, made war on Conrad, and thus gave birth to the faction of the Guelfs.

Others derive the name Guelfs from the German Wulf, on account of the grievous evils committed by that cruel faction: others deduce the denomination from that of a German called Guelfe, who lived at Pilsen, and adding that his brother, named Gibel, gave his name to the GibeJins. See the article GIBELINS.

GUELDERTLAND, one of the united provinces, bounded on the W. by Utrecht and Holland, and on the E. by the bishopric of Munster and the duchy of Cleves, on the N. by the Zuyder sea and Overysel, and on the S. it is separated from Brabant by the Meus. Its greatest extent from N. to S. is about 47 miles, and from W. to E. near as much; but its figure is very irregular. The acre of its greatest extent is about 211. Its greatest extent is about 47 miles, and from W. to E. near as much; but its figure is very irregular. The air here is much healthier and clearer than in the maritime provinces, the land lying higher. Excepting some part of what is called the Vechte, the soil is fruitful. It is watered by the Rhine, and its three branches, the Waal, the Yssel, and the Leek, besides lesser streams. In 1792, it was raised to a county by the emperor Henry IV. and in 1339 to a duchy by the emperor Louis of Bavaria. It had dukes of its own till 1528, when it was yielded up to the emperor Charles V. In 1797, it acceded to the union of Utrecht. It is divided into three districts, each of which has its states and diets. Those for the whole province are held twice a year at the capital towns. The province sends 10 deputies to the states-general. Here are computed 285 Calvinist ministers, 14 Roman Catholic congregations, 4 of the Lutheran persuasion, besides 3 of Orangists. The places of most note are Nijmegen, Zutphen, Arnhem, Harderwyk, Loo, &c.

GUELDRES, astrong town of the Netherlands, in the duchy of the same name. It was ceded to the king of Prussia by the peace of Utrecht, and is feared among marines. E. Long. 6. 21. N. Lat. 51. 50.

GUERCINO. See Bargier.

GUERICKE, or Gueriche, (Otho), the most celebrated mathematician of his time, was born in 1602. He was the inventor of the air pump; and author of several works in natural philosophy, the chief of which is Experimenta Magdeburgica. He died in 1686.

GUERNEY, an island in the English channel, on the coast of Normandy, subject to Britain; but (as well as the adjacent islands) governed by its own laws. See JERSEY. It extends from east to west, in the form of a harp, and is thirteen miles and a half from the south-west to north-east, and twelve and a half, where Guettarda, broadest, from east to west. The air is very healthy, and the soil naturally more rich and fertile than that of Jersey; but the inhabitants neglect the cultivation of the land for the sake of commerce: they are, however, sufficiently supplied with corn and cattle, both for their own use and that of their ships. The island is well fortified by nature with a ridge of rocks, one of which abounds with emery, used by lapidaries in the polishing of stones, and by various other artificers. Here is a better harbour than any in Jersey, which occasions its being more reforted to by merchants; and on the south side the shore bends in the form of a crescent, enclosing a bay capable of receiving very large ships. The island is full of gardens and orchards; whence cider is so plentiful, that the common people use it instead of small beer, but the more wealthy drink French wine.

GUETTARDA, in botany: A genus of the heptandria order, belonging to the monotypia class of plants; and in the natural ranking under the 18th order, Trifolium. The male calyx is cylindrical; the corolla cleft into seven parts, and funnel-shaped. The female calyx cylindrical; the corolla cleft into seven parts; one pistil, and the fruit a dry plum.

GUIANA, a large country of South America, is bounded on the east and north by the Atlantic ocean, and the river Oroonoko; on the fourth, by the river of the Amazons; and on the west, by the provinces of Grenada and New-Andalusia, in Terra-Firma, from which it is separated both on the west and north by the river Oroonoko. It extends above 1200 miles from the north-east to the south-west, that is, from the mouth of the river Oroonoko to the mouth of the river of Amazons, and near 600 in the contrary direction.

Most geographers divide it into two parts, calling the country along the coast Caribbeano Proper, and the interior country Guiana Proper: the last is also styled El Dorado by the Spaniards, on account of the immense quantity of gold it is supposed to contain.

The Portuguese, French, and Dutch, have all settlements along the coast. What lies south of Cape North belongs to the first of these nations; the coast between Cape North and Cape Orange is possessed by the natives; French Guiana, Old Cayenne, or Equinoctial France, extending from Cape Orange, 240 miles along the coast, to the river Maroni; where the Dutch territory begins, and extends to the mouth of the Oroonoko.

Along the coast, the land is low, marshy, and subject to inundations in the rainy season, from a multitude of rivers which descend from the inland mountains. Hence it is, that the atmosphere is suffocating, hot, moist, and unhealthy, especially where the woods have not been cleared away. Indeed, the Europeans are forced to live in the most disagreeable situations, and to establish colonies at the mouths of the rivers, amidst flinking marshes, and the putrid ooze of salt marshes, for the convenience of exportation and navigation.

"Dutch Guiana (according to an account lately published by a gentleman who resided several years at Surinam as a physician) was first discovered by Columbus in 1498. It lies between the 7th of north and
and the 5° of south latitude, and between the 33° and 60° of longitude west from London. It is bounded on the north and east, by the Atlantic; on the west, by the rivers Oroonoko and Negro; and on the south, by the river of Amazonas.

It is now divided between the Spaniards, Dutch, French, and Portuguese, but, except its sea-coast, and lands adjacent to its rivers, it has hitherto remained unknown to all but its original natives; and even of these, it is only the Dutch territories that foreigners have any knowledge of; for those of the Spaniards, French, and Portuguese, are inaccessible to them.

"This country, on account of the diversity and fertility of its soil, and of its vicinity to the equator, which passes through it, affords almost all the productions of the different American countries between the tropics, besides a variety peculiar to itself." Dutch Guiana was formerly the property of the English, who made settlements at Surinam, where a kind of corrupt English is still spoken by the negroes. The Dutch took it in the reign of Charles the Second, and it was ceded to them by a treaty in 1674, in exchange for what they had poissied in the province now called New-York.

The land for 50 miles up the country from the sea-coast is flat; and during the rainy seasons, covered two feet high with water. This renders it inconveniently fertile; the earth, for 12 inches deep, being a stratum of perfect manure: an attempt was once made to carry some of it to Barbadoes; but the wood-ants so much injured the vessel, that it never was repeated. The excessive richness of the soil is a disadvantage, for the canes are too luxuriant to make good sugar; and therefore, during the first and second crop, are converted into rum.

There are some trees on this part; but they are small and low, confiding chiefly of a small species of palm, interspersed with a leaf, nearly 30 feet long, and three feet wide, which grows in clusters, called a Troolie; and, at the edges of running-water, with mangroves.

Farther inward, the country rifes; and the soil, though still fertile, is less durable. It is covered with forests of valuable timber, that are always green; and there are some sandy hills, though no mountains; in the French territories, however, there are mountains, according to the reports of the Indians, for they have never been visited by any other people.

In this country the heat is seldom disagreeable: the trade-winds by day, the land breezes in the evening, and the invariable length of the nights, with gentle dews, refresh the air, and render it temperate and balmy.

There are two wet seasons and two dry, of three months each, in every year; and, during more than a month in each wet season, the rain is incessant. The dry seasons commence six weeks before the equinoxes, and continue six weeks after. The wet seasons are more wholesome than the dry, because the rains keep the waters that cover the low lands, near the sea, fresh; and in motion; but during the dry season it flagellates, and, as it wanes, becomes putrid, sending up very unwholesome exhalations. Blossoms, green and ripe fruit, are to be found upon the same tree in every part of the year. There are some fine white and red agates in Guiana, which remain untouched; and mines of gold and silver, which the Dutch will not suffer to be wrought.

The inhabitants of Guiana are either natives, who are of a reddish brown; or negroes and Europeans; or a mixed progeny of these in various combinations. The natives are divided into different tribes; more or less enlightened and polished, as they are more or less remote from the settlement of the Europeans. They allow polygamy, and have no division of lands. The men go to war, hunt, and fish; and the women look after domestic concerns, spin, weave in their fashion, and manage the planting of cassava and manioca; the only things which in this country are cultivated by the natives. Their arms are bows and arrows; sharp poisoned arrows, blown through a reed, which they use in hunting; and clubs made of a heavy wood called iron-wood. They eat the dead bodies of those that are slain in war; and fell for slaves tho' they take prisoners; their wars being chiefly undertaken to furnish the European plantations. All the different tribes go naked. On particular occasions they wear caps of feathers; but, as cold is wholly unknown, they cover no part but that which distinguishes the sex. They are cheerful, humane, and friendly; but timid, except when heated by liquor, and drunkness is a very common vice among them.

Their houfes consist of four flakes set up in a quadrangular form, with two poles, bound together by split nibbes, and covered with the large leaves called treeleis. Their life is ambulatory; and their house, which is put up and taken down in a few hours, is all they have to carry with them. When they remove from place to place, which, as they inhabit the banks of the rivers, they go by water in small canoes, a few vesels of clay made by the women, a flat stone on which they bake their bread, and a rough stone on which they grate the roots of the cassava, a hammock, and a basket, are all their furniture and utensils; most of them, however, have a bit of a looking-glass framed in paper, and a comb.

Their poisoned arrows are made of splinters of a hard heavy wood, called cacario; they are about 12 inches long, and somewhat thicker than a coarse knitting needle: one end is formed into a sharp point; round the other is wound some cotton, to make it fit the bore of the reed through which it is to be blown. They will blow these arrows 40 yards with absolute certainty of hitting the mark, and with force enough to draw blood, which is certain and immediate death. Against this poison no antidote is known. The Indians never use these poisoned arrows in war, but in hunting only, and chiefly against the monkeys; the sight of an animal thus killed may be safely eaten, and even the poison itself swallowed with impunity.

GUIANA, a town, bay, and harbour of South America, in Peru, and capital of an audience of the same name. W. Long. 76° 57'; S. Lat. 2° 00'.

GUIARA, a sea-port town of South-America, and on the Caracca coast. The English attempted to take it in 1739 and 1743; but they were repulsed both times. W. Long. 55° 5'; S. Lat. 10° 59'.

GUICCHARDINI (Francisco), a celebrated historian, born at Florence in 1492. He professed the civil law with reputation, and was employed in several...
G U I

176

G U I

G uicci-

ral embasses. Leo X. gave him the government of

Moderne and Reggio, and Clement VII. that of

Romagna and Bologna. Guicciardini was also lieute-

nant-general of the pope's army, and distinguished

himself by his bravery on several occasions; but Paul

III. having taken from him the government of Bo-

logna, he retired to Florence, where he was made

councillor of state, and was of great service to the

house of Medicis. He at length retired into the coun-

try to write the history of Italy, which he composed

in Italian, and which comprehends what passed from

the year 1494 to 1532. This history is greatly ef-

teeed; and was continued by John Baptift Adriani, his

friend. He died in 1540.

GUICCIARDINI (Lewis), his nephew, composed a

history of the Low Countries, and memoirs of the af-

fairs of Europe, from 1539 to 1560. He wrote with

great spirit against the persecution of the duke D'Alva,

for which he imprisoned him. Died in 1582.

GUIDES, in military language, are usually the

country people in the neighbourhood of an encamp-

ment; who give the army intelligence concerning the

country, the roads by which they are to march, and

the probable route of the enemy.

GUIDI (Alexander), an eminent Italian poet, born

at Pavia in 1650. Having a desire to see Rome, he

there attracted the notice of queen Christina of Swed-

en, who retained him at her court; he befie obtained

a considerable benefice from pope Innocent XI. and

a pension from the duke of Parma. For a good of-

fice he did the flate of Milan with prince Eugenio, he

was enrolled among the nobles and decorations of that

town; and died in 1712. Nature had been kinder to his

intellect than to his exterior form; his body was marbles,
of a small and crooked, his head was

his intellect; he died in 1642. There are several

defigins of this great master in print, etched by him-

self.

GUIDON, a fort of flag or standard borne by the

King's life-guard; being broad at one extreme, and

almost pointed at the other, and slit or divided into two.

The guidon is the ensign or flag of a troop of horse-

guards. See Guard.

GUIDON, the office that bears the gui-

don. The guidon is that in the horse-guards which

the ensign is in the foot. The guidon of a troop of

horse takes place next below the cornet.

GUIDONS, guidons, or fæcola guidonum was a com-

pany of priests established by Charlemagne, at Rome,
to conduct and guide pilgrims to Jerusalem, to visit

the holy places: they were also to affift them in cafe

they fell sick, and to perform the last offices to them
in case they died.

GUIENNE, the largest province of France, bound-

ed on the north by Saintogne, Angoumois, and Li-

mozin; on the eft by Limonin, Auvergne, and Lan-
guedoc; on the south by the Pyrenées, Lower Na-

varre, and Bearn; and on the west by the ocean. It

is about 225 miles in length, and 200 in breadth. It

is divided into the Upper and Lower. The Upper

comprehends Quercy, Rouergue, Armagnac, the terri-

tory of Comminges, and the county of Bigorre. The

Lower contains Bourdeaux, Perigord, Agenois, Con-
domos, Bazadois, the Lander, Proper Gaucny, and

the ditrif of Labour. The principal rivers are, the

Garonne, the Adour, the Tarn, the Aveiron, and the

Lot. Bordeaux is the capital town.

GUIDANDINA, the Nickar tree: A genus of

the monogyinia order, belonging to the decandria clas
of plants; and in the natural method ranking under

the 33d order, Lomentacca. The calyx is monophyl-

lous and salver-shaped; the petals, inserted into the

neck of the calyx, nearly equal. The feed-velvet a le-
gumen.

Species. 1. The bonduc, or yellow nickar. 2. The

boudeculla, or gray nickar. These are climbing plants,
natives of the Weft-Indies, where they rife to the height
of twelve or fourteen feet: the flowers come out at
the wings of the flakks; and are composed of five con-
cave yellow petals. They are succeded by pods
about three inches long and two broad, closely armed
with slender spines, opening with two valves, each
including two hard feeds about the size of children's
marbles, of a yellowish colour. 3. The morings, or

moronga nickar, is a native of the island of Ceylon,
and some places on the Malabar coast. It rifes to the
height of 25 or 30 feet, having flowers produced in
loose bunches from the side of the branches, and com-
poed of an unequal number of petals.

Cultur and Use. These plants being natives of
warm climates, require to be kept through the winter
in a stove in this country. They are propagated by
seeds; but those of the frift fort are so hard, that un-
til they are soaked two or three days in water befor
they are put into the ground, or put into the pots in the
ran-bed to soften their covers, they will remain for years without vegetating.—The roots of the third fort are scraped when young, and used
by the inhabitants of Ceylon and Malabar as those of
horse-radish are in Europe. The wood dyes a beauti-
ful blue colour. It is the lignum nephriticum, or nephri-
tic wood, of the dispensatories; and is brought over in
large, compad, ponderous pieces, without knots, of
a whithil or pale yellow colour on the outside, and dark
coloured or reddith within; the bark is usually rejec-
ted. This wood imparts to water or redifinfed spirit a
dark tincture; appearing, when placed between the
light and the light, of a grayish blue. In other situ-
ations blue: pieces of another wood are sometimes mixed
with it, which give only a yellow colour to water.

The nephritic wood has scarce any smell, and very lit-
tle taste. It stands recommended in difficulty of urine,
nephritic complaints, and all disorders of the kidneys
and urinary passages; and is said to have this peculiar
advant-
advantage, that it does not, like the warmer diuretics, heat or offend the parts. Practitioners, however, have not found these virtues warranted by experience.

GUILD, (from the Saxon gildan, to "pay"), signifies a fraternity or company, because every one was guildare, i.e. to pay something towards the charge and support of the company. As to the original of these guilds or companies: It was a law among the Saxons, that every Freeman of fourteen years of age should find sureties to keep the peace, or be committed: upon which certain neighbours, and should find sureties to keep the peace, or be committed. Saxons, that every freeman of families, enter into an association, for such meetings. But as to the precise time when these guilds had their origin in England, there is nothing of certainty to be found; since they were in use long before any formal licence was granted to them for such meetings. It seems to have been about the close of the eleventh century, says Anderson, in his History of Commerce, vol. i. p. 70, that merchant-guilds, or fraternities, which were afterwards styled corporations, came first into general use in many parts of Europe. Mr Madox, in his Firma Burgi, chap. i. § 9. thinks, they were hardly known to our Saxon progenitors, and that they might be probably brought into England by the Normans; although they do not seem to have been very numerous in those days. The French and Normans might probably borrow them from the free cities of Italy, where trade and manufactures were much earlier propagated, and where possibly such communities were first in use. These guilds are now companies joined together, with laws and orders made by themselves, by the licence of the prince.

GUILD, in the royal boroughs of Scotland, is still used for a company of merchents, who are freemen of the borough. See Borough.

Every royal borough has a dean of guild, who is the next magistrate below the bailiff. He judges of the controversies among men concerning trade; disputes between inhabitants touching buildings, lights, water-courses, and nuisances; calls courts, at which his brethren of the guild are bound to attend; manages the common stock of the guild; and amercies and collects fines.

GUILD, Guild, or Gold, is also used among ancient writers, for a copperation or mult, for a fault committed.

GUILD-HALL, or Guild-Hall, the great court of judicature for the city of London. In it are kept the mayor's court, the sheriff's court, the court of huffings, court of conscience, court of common-council, chamberlain's court, &c. Here also the judges sit upon nisi prius, &c.

GUILDFORD, or Guildford, a borough-town of Surrey, situated on the river Wye, thirty one miles south-west of London. Near it are the ruinous walls of an old castle, this having been in the Saxon times a royal villa, where many of the kings used to pass the festivals. Here is a corporation consisting of a mayor, recorder, aldermen, &c. which sent members to parliament ever since parliament had a being. The great road from London to Chichester and Portsmouth lies through this town, which has always been famous for good inns, the cleanliness of linen, and other excellent accommodations; and the affizes are often held here. Its manufacture formerly was cloth, of which there are still some small remains. Here is a school founded by king Edward VI. also an almshouse endowed with lands worth 300l. a year, of which 100l. is employed in setting the poor at work, and the other 200l. for the maintenance of a master, 12 brethren, and 8 sisters, who are to have 25. 6d. a-week. There are, besides, two charity schools for 30 boys and 20 girls. There were three churches in this town, but one of them fell down in April 1740. There is a fine circular course for horse-matches, which begins when the Newmarket races are ended. King William III. founded a plate of 100 guineas to be run for here every May, and used to honour the race with his presence, as did once king George I. The river Wey is made navigable to the town, and by it a great quantity of timber is carried to London, not only from this neighbourhood, but from Sussex and Hampshire woods, above 30 miles off, from whence it is brought hither in the summer by land carriage. This navigation is also of great support to Farnham market, corn bought there being brought to the mills on this river within seven miles distance, and, after being ground and dressed, is sent down in barges to London. The road from thence to Farnham is very remarkable, for it runs along upon the ridge of a high chalky hill, called St Catherine's, no wider than the road itself, from whence there is an extensive prospect, viz. to the N. and N. W. over Bagshot-Heath, and the other way into Sussex, and almost to the South Down. The town sends two members to parliament, and gives title of earl to the North family.

GUILEMET, in ornithology. See COLUMBUS.

GUILLIM, (John), of Welsh extraction, was born in Herefordshire, about the year 1505. Having completed his education at Brazen-nose college, Oxford, he became a member of the college of arms in London; and was made rouge croix pursuivant, in which post he died in 1583. He published, in 1679, a celebrated work, intitled the Display of Heraldry, folio, which has gone through many editions. To the fifth, which came out in 1679, was added A treatise of honor civil and military, by captain John Logan.

GUINEA, a large tract of country lying on the west side of the continent of Africa, extends along the coast three or four thousand miles, beginning at the river Senegal, situated about the 17th degree of north latitude (being the nearest part of Guinea as well to Europe as to North-America). From that river to the river Gambia, and in a southerly course to Cape Sierra Leone, is comprehended a coast of about 700 miles; being the same tract for which Queen Elizabeth granted charters to the first traders to that coast. From Sierra Leone, the land of Guinea takes a turn to the eastward, extending that course about 1500 miles, including those several divisions known by the names of the Grain Coast, the Ivory Coast, the Gold Coast, and the Slave...
Slave Coast, with the large kingdom of Benin. From thence the land runs southward along the coast about 1200 miles, which contains the kingdoms of Congo and Angola; where the trade for slaves ends. From which to the southermost cape of Africa, called the Cape of Good Hope, the country is settled by Caffres and Hottentots, who have never been concerned in the making or selling slaves.

1. Of the parts which are above mentioned, the first is that situated on the great river Senegal, which is said to be navigable more than 1400 miles, and is by travellers described to be very agreeable and fruitful. Mr Brue, principal factor for the French African company, who lived 16 years in that country, after describing its fruitfulnes and plenty Ilear the company, who lived 16 years in that country, after great and small cattle, and poultry numerous: the which lies about the Slave river Gambia, the voyage he made up the river Gambia, or in other parts of Africa, is navigable about 600 miles, which contains the kingdoms of Guinea.

* Allley's Collett. p. 38, 39.

The same author, in the account of a voyage he made up the river Gambia, the mouth of which lies about 300 miles south of the Senegal, and is navigable about 600 miles up the country, says, "that he was surprized to see the land so well cultivated; scarce a spot lay unimproved; the low lands divided by small canals were all fowed with rice, &c. the higher ground planted with millet, Indian corn, and confort of different sorts; their beef excellent; poultry plenty and very cheap, as well as all other commodities of life." Mr Moor, who was sent from England about the year 1725, in the service of the African company, and refided at James Fort on the river Gambia, or in other factories on that river, about five years, confirms the above account of the fruitfulness of the country. Captain Smith, who was sent in the year 1726 by the African company to survey their settlements throughout the whole coast of Guinea, says, "the country about the Gambia is pleasant and fruitful; provisions of all kinds being plenty and exceeding cheap. The country on and between the two aforementioned rivers is large and extensive, inhabited principally by those three negro nations known by the name of Jalois, Fulis, and Mandingos. The Jaloos possess the middle of the country. The Fulis principal settlement is on both sides of the Senegal; great numbers of these people are also mixed with the Mandingos, which last are mostly settled on both sides the Gambia. The government of the Jaloos is represented as under a better regulation than can be expected from the common opinion we entertain of the negroes. We are told in Allley's Collection, "that the king has under him several ministers of state, who assist him in the government of the state. The grand Jerofo is the chief justice through all the king's dominions, and goes in circuit from time to time to hear complaints and determine controversies. The king's treasurer exercises the same employment, and has under him alkairs, who are governors of towns or villages. That the kendi, or viceroy, goes the circuit with the chief justice, both to hear causes and inspect into the behaviour of the alkairs, or chief magistrate of every village in their several districts." Valconelas, an author mentioned in the Collection, says, "the ancientest are preferred to be the prince's counsellors, who keep always about his person; and the men of most judgment and experience are the judges."

The Fulis are settled on both sides of the river Senegal: their country which is very fruitful and populous, extends near 400 miles from east to west. They are generally of a deep tanney complexion, appearing to bear some affinity to the Moors, whofhe are known to be made slaves. They have chiefs of their own, who rule with much moderation. Few of them will drink brandy, or any thing stronger than water and sugar, being strict Mahometans. Their form of government goes on easy, because the people are of a good quiet disposition, and do well instructed in what is right, that a man who does ill is the abomination of all, and none will support him against the chief. In these countries the natives are not covetous of land, desiring no more than what they use; and as they do not plough with horses and cattle, they can live but very little; therefore the kings are willing to give the Fulis leave to live in their country and cultivate their lands. If any of their people are known to be made slaves, all the Fulis will join to redeem them; they also support the old, the blind, and lame, amongst themselves, and as far as their abilities go, they supply the necessaries of the Mandingos, great numbers of whom they have maintained in famine." The author, from his own observations, says, "They were rarely angry, and that he never heard them abuse one another."

The Mandingos are said by Mr Brue before mentioned, "to be the most numerous nation on the Gambia, besides which, numbers of them are dispersed over all these countries, by the most rigid Mahometans amongst the negroes, they drink neither wine nor brandy, and are palter than the other negroes. The chief of the trade goes through their hands. Many are industrious and laborsious, keeping their ground well cultivated, and breeding a good flock of cattle. Every town has an alkair, or governor, who has great power; for most of them having two common fields of clear ground, one for corn, and the other for rice, the alkair appoints the labour of all the people. The men work the corn ground, and the women and girls the rice ground; and as they all equally labour, so he equally divides the corn amongst them; and in case any are in want, the others supply them. This alkair decides all quarrels, and has the first voice in all conferences in town affairs." Some of these Mandingos, who are settled at Galem, far up the river Senegal, can read and write Arabic tolerably; and are a good hospitable people, who carry on a trade with the inland nations. "They are extremely populous in those parts, their women being fruitful, and they not suffering any person amongst them, but such as are guilty of crimes, to be made slaves." We are told from Jobson, "that the Mahometan Negroes say their prayers thrice a day. Each village has
has a priest who calls them to their duty. It is surprising (says the author), as well as commendable, to see the modesty, attention, and reverence they observe during their worship. He asked some of their priests the purport of their prayers and ceremonies; they answered always was, "that they adored God by profaning themselves before him: that by humbling themselves, they acknowledged their own insignificance, and farther intreated him to forgive their faults, and to grant them all good and necessary things, as well as deliverance from evil." Joubon takes notice of several good qualities in these negro priests, particularly their great forbearance. They gain their livelihood by keeping school for the education of the children. The boys are taught to read and write. They not only teach school, but rove about the country, teaching and instructing, for which the whole country is open to them; and they have a free course through all places, though the kings may be at war with one another.

The three fore-mentioned nations practise several trades, as smiths, potter, tailors, and weavers. Their smiths particularly work neatly in gold and silver, and make knives, hatchets, reaping hooks, spades, and flares to cut iron, &c. Their potters make neat tobacco pipes, and pots to boil their food. Some authors say that weaving is their principal trade: this is done by the women and girls, who spin and weave very fine cotton cloth, which they dye blue or black. Moore says, the Jalofs particularly make great quantities of the cotton cloth; their pieces are generally 27 yards long, and about nine inches broad, their looms being very narrow; these few neatly together, so as to supply the use of broad cloth.

It was in these parts of Guinea that Dr. Adanfon, correspondent of the Royal Academy of Sciences at Paris, was employed from the year 1759 to the year 1753, wholly in making natural and philosophical observations on the country about the rivers Senegal and Gambia. Speaking of the great heats in Senegal, he says, "it is to them that they are partly indebted for the fertility of their lands; which is so great, that, with little labour and care, there is no fruit nor grain but grows in great plenty."

"Of the soil on the Gambia, he says, "it is rich and deep, and amazingly fertile; it produces spontaneously, and almost without cultivation, all the necessaries of life, grain, fruit, herbs, and roots. Every thing matures to perfection, and is excellent in its kind." One thing which always surprized him, was the prodigious rapidity with which the sap of trees repairs any loss they may happen to sustain in that country; "And I was never (says he) more astonished, than when landing four days after the locusts had devoured all the fruits and leaves, and even the buds of the trees, to find the trees covered with new leaves, and they did not seem to me to have suffered much." "It was then (says the author) the first sensation; you might see them in shoals approaching towards land. Some of those shoals were 50 fathoms square, and the fish crowded together in such a manner, as to roll upon one another, without being able to swim. As soon as the negroes perceive them coming towards land, they jump into the water with a basket in one hand, and swim with the other. They need only to plunge and to lift up their basket, and they are sure to return loaded with fish." Speaking of the appearance of the country, and of the disposition of the people, he says, "which way forever I turned mine eyes on this pleasant spot, I beheld a perfect image of pure nature: an agreeable solitude, bounded on every side by charming landscapes; the rural situation of cottages in the midst of trees; the ease and indulgence of the negroes, reclined under the shade of their spreading foliage, the simplicity of their dress and manners; the whole revived in my mind the idea of our first parents, and I seemed to contemplate the world in its primitive state. They are, generally speaking, very good-natured, sociable, and obliging. I was not a little pleased with this my first reception; it convinced me, that there ought to be a considerable abatement made in the accounts I had read and heard every where of the savage character of the Africans. I observed, both in the negroes and Moors great humanity and sociableness, which gave me strong hopes that I should be very happy amongst them, and meet with the successes I desired in my inquiries after the curiosities of the country." He was agreeably amused with the conversation of the negroes, their fables, dialogues, and witty stories with which they entertain each other alternately, according to their custom. Speaking of the remarks which the natives made to him with relation to the stars and planets, he says, "it is amazing, that such a rude and illiterate people should reason so pertinently in regard to those heavenly bodies; there is no manner of doubt, but that with proper instruments, and a good will, they would become excellent astronomers."

2. That part of Guinea known by the name of the Grain and Ivory Coast, extends about 300 miles. The soil is said to be in general fertile, producing abundance of rice and roots; indigo and cotton thrive without cultivation, and tobacco would be excellent if carefully manufactured; they have fift in plenty; their flocks greatly increase; and their trees are loaded with fruit. They make a cotton cloth, which fells well on the coast. In a word, the country is rich, and the commerce advantageous, and might be greatly augmented by such as would cultivate the friendship of the natives. These are represented by some writers as a rude, treacherous people: whilst several other authors give them a very different character, describing them as sensible, courteous, and the fairest traders on the coast of Guinea. In the Collection, they are said to be averse to drinking to excess, and such..."
of the negroes, or are fomented by the Europeans, as those brought from the back country. Here we find the natives more reconciled to the European manners and trade; but, at the same time, much more inured to war, and ready to affult the European traders in procuring loadings for the great number of vessels which come yearly on those coasts for slaves.

This part of Guinea is agreed by historians to be in general, extraordinary fruitful and agreeable; producing (according to the difference of the soil) vast quantities of rice and other grain, plenty of fruit and roots, palm wine and oil, and fish in great abundance, with much tame and wild cattle. Bofman, principal factor for the Dutch at D'Elmina, "speaking of the country of Axim, which is situated towards the beginning of the Gold Coast," says, "The Negro inhabitants are generally very rich, driving a great trade with the Europeans for gold: That they are industriously employed either in trade, fishing, or agriculture; but chiefly in the culture of rice, which grows here in an incredible abundance, and is transported hence all over the Gold Coast: the inhabitants, in lieu, returning full fraught with miller, jams, potatoes, and palm oil." The same author, speaking of the country of Ante, says, "This country, as well as the Gold Coast, abounds with hills, enriched with extraordinary high and beautiful trees; its valleys, between the hills, are wide and extensive, producing in great abundance very good rice, miller, jams, potatoes, and other fruits, all good in their kind." He adds, "In short, it is a land that yields its manurers as plentiful a crop as they can wish, with great quantities of palm wine and oil, besides being well furnished with all sorts of tame as well as wild beasts; but that the last fatal wars had reduced it to a miserable condition, and stripped it of most of its inhabitants:"

The adjoining country of Petu, he says, "was formerly so powerful and populous, that it struck terror into all the neighbouring nations; but it is at present so drained by continual wars, that it is entirely ruined; there does not remain inhabitants sufficient to till the country, though it is so fruitful and pleasant, though the country of Ante just before described; frequently (says our author), when walking through it before the last war, I have seen it abound with fine well built and populous towns, agreeably enriched with vast quantities of corn, cattle, palm wine, and oil. The inhabitants all applying themselves without any distinction to agriculture; some grow corn, others prepare soil, and draw wine from palm trees, with both which it is plentifully stored."

Smith gives much the same account of the before-mentioned parts of the Gold Coast; and adds, "the country about D'Elmina and Cape Coast, is much the same for beauty and goodnesse, but more populous; and the nearer we come towards the Slave Coast, the more delightful and rich all the countries are; producing all sorts of trees, fruits, roots, and herbs, that grow within the torrid zone." Barbot also remarks, with respect to the countries of Ante and Adom, "That the soil is very good and fruitful in corn and other produce; which it affords in such plenty, that besides what serves for their own use, they always export great quantities for sale: they have a competent number of cattle, both tame and wild, and the rivers abundantly flowed.
The inland people are said to live in great union and friendship, being generally well tempered, civil, and tractable; not apt to shed human blood, except when much provoked; and ready to afill one another. In the Collection it is said, "That the fishing business is esteemed on the Gold Coast next to trading; that those who profess it are more numerous than those of other employments. That the greatest number of these are at Kommando, Mina, and Korman-tin; from each of which places, there go out every morning (Tuesday excepted, which is the Fifth day, or day of rest) five, fix, and sometimes eight hundred canoes, from 13 to 14 feet long, which spread themselves two leagues at sea, each fisherman carrying in his cabin a sword, with bread, water, and a little fire on a large flue to roast fish. Thus they labour till noon, when the sea breeze blowing fresby, they return on the shore, generally laden with fish; a quantity of which the inland inhabitants come down to buy, which they fell again at the country markets."

Smith says, "The country about Acra, where the English and Dutch have each a strong fort, is very delightful, and the natives courteous and civil to strangers." He adds, "That this place seldom fails of an extraordinary good trade from the inland country, especially for slaves, whereof several are supposed to come from very remote parts, because it is not uncommon to find a Malayian or two amongst a parcel of other slaves: The Malayans are generally natives of Malacca, in the East-Indies, situated several thousand miles from the Gold Coast." They differ very much from Guinea negroes, being of a tawny complexion, with long black hair.

Most parts of the slave coasts are represented as equally fertile and pleasant with the gold coast. The kingdom of Whidah has been particularly noted by travellers. Smith and Bofman agree, "That it is one of the most delightful countries in the world. The great number and variety of tall, beautiful, and shady trees, which seem planted in groves; the verdant fields everywhere cultivated, and no other division than by those groves, and in some places a small foot-path, together with a great number of villages, contribute to afford the most delightful prospect; the whole country being a fine, easy, and almost imperceptible ascent for the space of 40 or 50 miles from the sea. That the farther you go from the sea, the more beautiful and populous the country appears. That the natives were kind and obliging, and of industrious, that no place which was thought fertile could escape being planted, even within the hedges which inclose their villages. And that the next day after they had reaped, they fowed again."

Snelgraves also says, "The country appears full of towns and villages; and being a rich soil, and well cultivated, looks like an entire garden." In the Collection, the husbandry of the negroes is described to be carried on with great regularity. "The rainy season approaching, they go into the fields and woods, to fix on a proper place for sowing; and as here is no property in ground, the king's licence being obtained, the people go out in troops, and first clear the ground from bushes and weeds, which they burn. The field thus cleared, they dig it up a foot deep, and so let it remain for eight or ten days, till the rest of their neighbours have disposed their ground in the same manner. They then confult about sowing, and for that end assemble at the king's court the next day. The king's grain must be sown first. They then go again to the field, and give the ground a second digging, and sow their seed. Whilst "the king or governor's land is sowing, he sends out wine and flesh, ready dressed, enough to serve the labourers. Afterwards, they in like manner sow the ground allotted for their neighbours as diligently as that of the king's, by whom they are also fed; and to continue to work in a body for the public benefit till every man's ground is tilled and sowed. None but the kings, and a few great men, are exempted from this labour. Their grain soon sprouts out of the ground. When it is about a man's height, and begins to ear, they raise a wooden house in the centre of the field, covered with straw, in which they let their children to watch their corn, and fright away the birds."

Bofman speaks in commendation of the civility, kindness, and great industry of the natives of Whidah. This is confirmed by Smith, who says, "The natives here seem to be the most gentleman-like negroes in Guinea, abounding with good manners and ceremony to each other. The inferior pay the utmost deference and respect to the superior, as do wives to their husbands, and children to their parents. All here are naturally industrious, and find constant employment; the men in agriculture, and the women in spinning and weaving cotton. The men, whose chief talent lies in husbandry, are unacquainted with arms; otherwise, being a numerous people, they could have made a better defence against the king of Dahome, who subdued them without much trouble. According to the Collection, there are, throughout the gold coast, regular markets in all villages, furnished with provisions and merchandise, held every day in the week except Tuesday, whence they supply not only the inhabitants, but the European ships. The negro women are very expert in buying and selling, and extremely industrious; for they will repair daily to market from a considerable distance, loaded like pack-horses, with a child perhaps at their back, and a heavy burden on their heads. After selling their wares, they buy fish and other necessaries, and return home loaded as they came. There is a market held at Sabi every fourth day, also a weekly one in the province of Apolagus, which is so referred to, that there are usually 5 or 6000 merchants. Their markets are so well regulated and governed, that seldom any disorder happens; each species of merchandise and merchants have a separate place allotted them by themselves. The buyers may haggle as much as they will, but it must be without noise or fraud. To keep order, the king appoints a judge; who, with four officers well armed, inspect the markets, hears all complaints, and in a summary way decides all differences; he has power
power to seize, and fell as slaves, all who are cach-
ed in stealing or disturbing the peace. In these mar-
kets are to be found men, women, children, oxen, sheep,
goats, and fowls of all kinds; European cloths, linen
and woollen; printed calicoes, silk, grocery ware,
china, gold-dust, iron in bars, &c. In a word, most
fords of European goods, as well as the produce of
Africa and Asia. They have other markets, refem-
bring our fairs once or twice a year, to which all the
country repair; for they take care to order the day so
in different governments as not to interfere with each
other."

With respect to government, Smith says, "that the
gold coast and slave coast are divided into dif-
ferent districts, some of which are governed by their
chiefs or kings: the others, being more of the na-
ture of a commonwealth, are governed by some
of the principal men, called Caboceros; who, Bofman
says; are properly denominated civil fathers, whose pro-
vince is to take care of the welfare of the city or vil-
lage, and to appease tumults." But this order of go-

government has been much broken since the coming
of the Europeans. Both Bofman and Barbot mention
murder and adultery to be severely punished on the
coast, frequently by death; and robbery by a fine pro-
portional to the goods stolen.

The income of some of the kings is large. Bofman
says, "that the king of Whidah's revenues and duties
on things bought and sold are considerable; he having
the title of all things sold in the market, or imported
into the country." Both the abovementioned authors
say, the tax on slaves shipped off in this king's domi-
nions, in some years, amounts to near L. 20,000.

Bofman tells us, the Whidah negroes have a faint
idea of a true God, ascribing to him the attributes
of an almighty power and omnipresence: but God, they
say, is too high to condescend to think of mankind;
wherefore he commits the government of the world to
those inferior duties which they worship." Some au-
thors say, the wife of these negroes are sensible of
their mistake in this opinion; but dare not forsake
their own religion, for fear of the populace rising and
killing them. This is confirmed by Smith, who says,
"that all the natives of this coast believed there is one
true God, the author of them and all things; that
they have some apprehension of a future state; and
that almost every village has a grove, or public place
of worship, to which the principal inhabitants, on a
day, resort to make their offerings."

In the Collection it is remarked as an excellency in
the Guinea government, "that however poor they
may be in general, yet there are no beggars to be found
amongst them; which is owing to the care of their
chief men, whose province it is to take care of the wel-
fare of the city or village, it being part of their of-

cine to see that such people may earn their bread by
their labour; some are bet to blow the smith's be-
lows, others to prep palm oil, or grind colours for
their mats, and fell provision in the markets. The
young men are lifted to serve as soldiers, so that they
suffer no common beggar." Bofman ascribes a fur-
ther reason for this good order*, viz. "that when a
negro finds he cannot Dobst, he binds himself for
a certain term of money, and the master to whom he
is bound is obliged to find him necessaries; that the ma-
ster sets him a fort of task, which is not in the least
flavish, being chiefly to defend his master on oc-
casions, or in fowing time to work as much as himself
pleases."

Adjoining to the kingdom of Whidah are several
small governments, as Coto, great and small Popo,
Adrard, &c. all situated on the slave coast, where the
chief trade for slaves is carried on. These are go-
verned by their respective kings, and follow much the same
customs with those of Whidah, except that their prin-
cipal living is on plunder and the slave trade.

4. Next adjoining to the Slave Coast, is the king-
dom of Benin, which, though it extends but about
170 miles on the sea, yet spreads so far inland as to be
effected the most potent kingdom in Guinea. By
accounts, the oil and produce appear to be in a great
measure like those before described, and the natives
are represented as a reasonable good-natured people.
Arts says*, "they are a sincere, inoffensive people, and do
not injustice either to one another or to tran-
gers." Smith confirms this account, and says, "that p. 388.
the inhabitants are generally very good-natured, and
exceeding courteous and civil. When the Europeans
make them presents, which in their coming thither to
trade they always do, they endeavour to return them
doubly." Bofman tells us, "that his countrymen the
Dutch, who were often obliged to trust them till
they returned the next year, were sure to be honestly
paid their whole debts."

There is in Benin a considerable order in govern-
ment; theft, murder, and adultery, being severely
punished. Smith says, "their towns are governed
by officers appointed by the king, who have power
to decide in civil cases, and to raise the public taxes;
but in criminal cases, they must send to the king's
court, which is held at the town of Oedo or Great
Benin. This town, which covers a large extent of
ground, is about 60 miles from the sea." Barbot
tells us, "that it contains 30 streets, 20 fathom wide,
and almost two miles long, commonly extending in a
straight line from one gate to another; that the gates are
guarded by soldiers; that in these streets markets are
held every day, for cattle, ivory, cotton, and many
forts of European goods. This large town is divided into
several wards or districts, each governed by its respec-
tive king of a street, as they call them, to
nerv the inhabitants, and to keep good order. The inhabi-

tants are very civil and good natured, conde[n
ging to what the Europeans require of them in a civil way." The
same author confirms what has been said by others of
their justice in the payment of their debts; and adds,
"that they, above all other Guineans, are very ho-
net and just in their dealings; and they have such an
aversion for theft, that by the law of the country it is
punished with death."

We are told by the same author, "that the king of Benin is able upon occasion
to maintain an army of 100,000 men; but that, for
the most part, he does not keep 30,000. See the ar-
cicle BENIN.

5. The last division of Guinea from which slaves
are imported, are the kingdoms of Congo and Anglo-
a: these lie to the south of Benin, extending with
the intermediate land about 1200 miles on the coast.
Great numbers of the natives of both these kingdoms
profess the Christian religion, which was long since

* Bofman, p. 119.

* Smith, P. 193.
of the climate, a rice, that it hardly bears any price, with fruits, roots, and palm oil in plenty. The natives are generally a quiet people, who discover a good understanding, and behave in a friendly manner to strangers, being of a mild conversation, affable, and easily overcome with reason. In the government of Congo, the king appoints a judge in every particular division, to hear and determine disputes and civil causes; the judges imprison and release, or impose fines, according to the rule of custom, but in weighty matters, every one may appeal to the king, before whom all criminal causes are brought, in which he gives sentence; but seldom condemneth to death. The town of Leango stands in the midst of four lordships, which abound in corn, fruits, &c. Here they make great quantities of cloth of divers kinds, very fine and curious; the inhabitants are seldom idle; they even make needle-work caps as they walk in the streets. The slave trade is here principally managed by the Portuguese, who carry it far up into the inland countries. They are said to send off from these parts 15,000 slaves each year. At Angola, about the tenth degree of south latitude, ends the trade for slaves.

As all these countries lie between the tropics, the air is excessively hot, especially from the beginning of September to the end of March; which, with the coolness of the nights, the frequent thick, flinking, sulphurous mists, and the periodical rains, when the flat country is overflowed, makes it very unhealthy, especially to Europeans. The natives, however, are little affected with the unhealthy air. According to Barbot, they keep much within doors in tempestuous times; and when exposed to the weather, their skins being supplied and pores closed by daily anointing with palm oil, the weather can make little impression on them. They generally, therefore, enjoy a good state of health, and are able to procure to themselves a comfortable subsistence, with much less care and toil than is necessary in our more northern climate. They lead a life of ease; they are not subject to the cold or the heat, for the climate is of such a nature that they can cultivate the land, and the periodical rains, whereby the land is regularly moistened, and being in many places covered by rivers, which run from north to south, and fall into the Atlantic, render the country extremely fertile, and being in many places improved by culture, abound with grain and fruits, which grow naturally over their huts, and which they afford an agreeable shade, as they are abundantly flocked with good clean vessels for most household uses, being of different sizes, from half a pint to several gallons.

The distempers the Europeans are subject to on this coast, are fevers, fluxes, and colics, which are occasioned by indifferent water and bad air; their settlements lying near the coast, where the fogs and fumes arising from the ooze and salt marshes, and the flinking fih the natives dry on the beach, corrupt the air, and render it fatal to the foreigners. The most temperate men find it difficult to preserve their health; but a great many suffer their death by their intemperance, or negligence, exposing themselves to the cold air in the evening, after a very hot day. This sudden change, from one extreme to the other, has often very bad effects in hot climates.

Of mountains in Guinea, the most remarkable are those of Sierra Leone. The principal caps are those of Cape Blanco, Cape Verd, Cape Leon, Cape St Ann's, Cape Palmas, and Cape Three-Poons, Cape Formosa, Cape Monte, Cape St John, Cape Lopas, Cape Lede, and Cape Negro. The chief bays are the Cyprian or Cintra Bay, and the Bite of Guinea. Of the rivers, the most considerable are those of Coanzo and Ambriti, the Zanga, the Lunde, the Cameron, the Formosa, the Volta, the Sierra Leone, and the Sherbro. All these run from east to west (except the Volta, which runs from north to south), and fall into the Atlantic.

Besides gold, ivory, and slaves, Guinea affords indigo, wax, gum-fenega, gum-tragascanth, and a variety of other gums and drugs.

The most ancient account we have of the country is that of the negroes, particularly that part situated on the Guinea coast between the two great rivers of Senegal and Gambia, which are the third and seventh in length and the fourth and seventh in the extent of their mouths. These are the rivers of the southern coast of Africa, which have been distinguished by the name of Senegal and Gambia, and which are the principal rivers of that country. They rise in the interior of the continent, and flow into the Atlantic Ocean. The Senegal rises in the interior of the country, and flows into the Atlantic Ocean, where it discharges its waters. The Gambia rises in the interior of the country, and flows into the Atlantic Ocean, where it discharges its waters. The Gambia is a much larger river than the Senegal, and is navigable for a greater distance. The coast of Guinea is also distinguished by the name of the Gambia, which is the name of the river that crosses it.

The history of the negroes, particularly that part situated on the Guinea coast between the two great rivers of Senegal and Gambia, is written by John Leo, a Moor, born at Oronada in Spain, before the Moors were totally expelled from that kingdom. He resided in Africa; but being on a voyage from Tripoli to Tunis, was taken by some Italian corsairs, who finding him possessed of several Arabian books, besides his own manuscripts, apprehended him to be a man of learning, and as such presented him to Pope Leo X. This pope encouraging him, he embraced the Romish religion, and his description of Africa was published in Italian. From these writings we gather, that after the Mahometan religion had extended to the kingdom of Morocco, some of the promoters of it crossing the sandy deserts of Numidia, which separate that country from Guinea, found it inhabited by men, who, though under no regular government, and destitute of that knowledge which the Arabs were so well skilled in, lived in content and peace. The first author particularly remarks, 'that they never made war, or travelled abroad, but employed themselves in tending their herds, or laboured in the ground.' J. Leo says, p. 65. 'That they lived in common, having no property in land, no tyrant nor superior lord, but supported themselves in an equal state, upon the natural produce of the country, which afforded plenty of roots, game, and honey.'
That ambition or avarice never drove them into foreign countries to subdue or cheat their neighbours. Thus they lived without toil or superfluities. The ancient inhabitants of Morocco, who wore coats of mail, and used swords and spears headed with iron, coming amongst these harmless and naked people, soon brought them under subjection, and divided that part of Guinea which lies on the rivers Senegal and Gambia into 15 parts; those were the 15 kingdoms of the negroes, over which the Moors presided, and the common people were negroes. These Moors took the negroes, the Mahometan religion, and arts of life; particularly the use of iron, before unknown to them. About the 14th century, a native negro, called Heli Ischia, expelled the Moors conquerors; but though the negroes threw off the yoke of a foreign nation, they only changed a Libyan for a negro master. Heli Ischia himself becoming king, led the negroes on to foreign wars, and established himself in power over a very large extent of country. Since Leo's time, the Europeans have had very little knowledge of those parts of Africa, nor do they know what became of this great empire. It is highly probable that late boke into pieces, and the negroes again refumed many of their ancient customs; for in the account published by Moore, in his travels on the river Gambia, we find a mixture of the Moorish and Mahometan customs, joined with the original simplicity of the negroes. It appears by accounts of ancient voyages, collected by Hackluit, Purchas and others, that it was about 50 years before the discovery of America, that the Portuguese attempted to sail round Cape Bojador, which lies between their country and Guinea: this, after divers repulses occasioned by the violent currents, they effected; when landing on the western coasts of Africa, they soon began to make incursions into the country, and to seize and carry off the native inhabitants. As early as the year 1434, Alonzo Gonzales, the first who is recorded to have met with the natives, being on that coast, pursued and attacked a number of them, when some were wounded, as was also one of the Portuguese; which the author records as the first blood spilt by Christians in those parts. Six years after, the fame Gonzales again attacked the natives, and took 12 prisoners, with whom he returned to his vessels: he afterwards put a woman on shore, in order to induce the natives to redeem the prisoners; but the next day 150 of the inhabitants appeared on horses and camels, provoking the Portuguese to land; which they not daring to venture, the natives discharged a volley of stones at them, and went off. After this, the Portuguese still continued to send vessels on the coast of Africa: particularly we read of their falling on a village, whence the inhabitants fled, and, being pursued, 25 were taken: "He that ran belt (says the author), taking the most. In their way home they killed some of the natives, and took 55 more prisoners. Afterwards Dini lasanes Diagrama, with two other vessels, landed on the island Arguin, where they took 54 moors; then running along the coast 80 leagues farther, they at several times took 30 slaves; but here seven of the Portuguese were killed. Then being joined by several other vessels, Dini lasanes proposed to destroy the island, to revenge the loss of the seven Portuguese; of which the Moors being apprised, fied, so that no more than 12 were found, whereof only four could be taken, the rest being killed, as also one of the Portuguese. Many more captures of this kind on the coast of Barbary and Guinea are recorded to have been made in those early times by the Portuguese; who, in the year 1481, erected their first fort at D'Elmina on that coast, from whence they soon opened a trade for slaves with the inland parts of Guinea.

From the foregoing accounts, it is undoubted, that the practice of making slaves of the negroes owes its origin to the early incursions of the Portuguese on the coast of Africa, solely from an inordinate desire of gain. This is clearly evidenced from their own historians, particularly Cada Mofo, about the year 1455, who writes, "That before the trade was settled for purchasing slaves from the Moors at Arguin, sometimes vol. i. four, and sometimes more Portuguese vessels, were used p. 516. to come to that gulf, well armed; and, landing by night, would surprize some fisherman's villages: that they even entered into the country, and carried off Arabs of both sexes, whom they sold in Portugal." And also, "That the Portuguese and Spaniards, settlement four of the Canarian Islands, and go to the other island by night, and fell some of the natives of both sexes, whom they sold to be sold in Spain." After the settlement of America, those devastations, and the captivating the miserable Africans, greatly increased.

Anderfon, in his History of Trade and Commerce, p. 336, speaking of what passed in the year 1508, writes, "That the Spaniards had by this time found that the miserable Indian natives, whom they had made to work in their mines and fields, were not so obedient and proper for those purposes as negroes brought from Africa: wherefore they, about that time, began to import negroes for that end into Hifpaniola, from the Portuguese settlements on the Guinea coasts; and also afterwards for their finger-works." It was about the year 1551, towards the latter end of the reign of Edward VI. when some London merchants sent out the first English ship on a trading voyage to the coast of Guinea. This was soon followed by several others to the same parts; but the English not having then any plantations in the West-Indies, and consequently no occasion for negroes, such ships traded only for gold, elephants teeth, and Guinea pepper. This trade was carried on at the hazard of losing their ships and cargoes, if they had fallen into the hands of the Portuguese, who claimed an exclusive right of trade, on account of the several settlements they had made there. In 1554, we find captain Thomas Windham trading along the coast with 140 men, in three ships, and falling as far as Benin, which lies about 3000 miles down the coast, to take in a load of pepper. Next year John Lock traded along the coast of Guinea as far as D'Elmina, when he brought away considerable quantities of gold and ivory. He speaks well of the natives, and says, "That whoever will deal with them must behave civilly, for they will not traffic if ill used." In 1555, William Towerfon traded in a peaceable manner with the natives, who made complaint to him of the Portuguese, who were then settled in their castle at D'Elmina; saying, "They were bad men; who made them slaves if they could take them, putting iron on their legs."
This had example of the Portuguese was soon followed by some evil disposed Englishmen: for the same captain Towerow relates, "That in the course of his voyage, he perceived the natives near St. Elaine unwillling to come to him, and that he was at last attacked by them; which he understood was done in revenge for the wrong done them the year before by one captain Gainew, who had taken away the negro captain's son and three others, with their gold, &c. This caused them to join the Portuguese, notwithstanding their hatred of them, against the English." The next year captain Towerow brought these men back again; whereupon the negroes showed him much kindness. Quickly after this, another instance of the same kind occurred in the case of Captain George Fennor, who being on the coast with three vessels, was also attacked by the negroes, who wounded several of his people, and violently carried three of his men to their town. The captain sent a messenger, offering anything they desired for the ransom of his men: but they refused to deliver them; letting him know, "That three weeks before an English ship, which came in the road, had carried off three of their people; and that till they were brought again, they would not restore his men, even though they should give their three ships to relieve them." It was probably the evil conduct of the same, and some other Englishmen which was the occasion of what is mentioned in Hill's Naval History, viz. "That when captain Hawkins returned from his first voyage to Africa, queen Elizabeth sent for him, when she expressed her concern, left any of the African negroes should be carried off without their free consent; which declared would be detestable, and would call down the vengeance of heaven upon the undertakers." Hawkins made great promises, which nevertheless he did not perform; for his next voyage to the coast appears to have been principally calculated to procure negro slaves, in order to sell them to the Spaniards in the West Indies; which occasioned the same author to use these remarkable words: "Here began the horrid practice of forcing the Africans into slavery: an injustice and barbarity, which, so far as there is vengeance in heaven for the worst of crimes, will some time be the destruction of all who act or who encourage it." This captain Hawkins, afterwards Sir John Hawkins, seems to have been the first Englishman who gave public countenance to this wicked traffic; for Anderfon, before mentioned, at p. 401, fays, "That in the year 1562, captain Hawkins, affiled by subscription of sundry gentlemen, now fitted out three ships; and having learnt that negroes were a very good commodity in the Indies, he fixed on negroes; and sailed with them for Guinea; where he sold them, and his English commodities, and loaded his three vessels with hides, sugar, ginger, &c. with which he returned home anno 1563, making a prosperous voyage." As it proved a lucrative business, the trade was continued both by Hawkins and others, as appears from the Naval Chronicle, p. 55; where it is said, "That in the year 1564, captain John Hawkins, with two ships of 700 and 400 tons, sailed for Africa; that on the 10th of December they anchored to the South of Cape Verdi, where the captain manned the boat, and sent 80 men in armour into that country, to see if they could take some negroes: but the natives flying from them, they returned to their ships, and proceeded farther down the coast. Here they had certain days, engaging their men a shore, in about (as the author fays) to burn and spoil their towns and take the inhabitants. The land they observed to be well cultivated, there being plenty of grain and fruit of several sorts, and the towns pretty laid out. On the 25th, being informed by the Portuguese of a town of negroes called Byamba, where there was not only a quantity of gold, but 140 inhabitants, they resolved to attack it, having the Portuguese for their guides; but by mismanagement they took but ten negroes, having seven of their own men killed and 27 wounded. They then went farther down the coast; when having procured a number of negroes, they proceeded to the West Indies, where they sold them to the Spaniards," And in the same Naval Chronicle, at p. 76, it is said, "That in the year 1567, Francis Drake, before performing his voyage round the world, went with Sir John Hawkins in his expedition to the coast of Guinea, where taking in a cargo of slaves, they determined to steer for the Caribbean Islands." How queen Elizabeth suffered from grievances an infringement of the right of mankind to be perpetrated by her subjects, and how she was persuaded, about the 30th year of her reign, to grant patents for carrying on a trade from the north part of the river Senegal to 100 leagues beyond Siera Leone, which gave rise to the African Company, is hard to account for, any otherwise than that if any, vol. iv. p. 85, it arose from the misrepresentation made to her of the situation of the negroes, and of the advantages it was pretended they would reap from being made acquainted with the Christian religion. This was the case of Louis XIII. of France: who, Labat, in his account of the isles of America, tells us, "that extremely uneasy at a law by which the negroes of his colonies were to be made slaves; but it being strongly urged to him as the readiest means of converting the Christians, he acquiesced therewith." Nevertheless, some of the Christian powers did not so easily give way in this matter: for we find, "That Cardinal Cibo, one of the pope's principal ministers of state, wrote a letter on behalf of the college of cardinals, or great council at Rome, to the missionaries in Congo, complaining that the pernicious and abominable abuse of selling slaves was yet continued; requiring them to remedy the same if possible; but this the missionaries law little hopes of accomplishing, by reason that the trade of the country lay wholly in slaves and ivory." It has been urged in justification of this trade, that by purchasing the captives taken in battle, they save the lives of so many human creatures, who otherwise would be sacrificed to the implacable revenge of the victors. But this pretence has been refuted by an appeal to reason and fact. For if the negroes apprehended they should be cruelly put to death if they were not sent away: why, it is asked, do they manifest such reluctance and dread as they generally do, at being brought from their native country? Smith, in his Account, p. 28, says, "The Gambians abhor slavery, and will attempt any thing, though ever so desperate, to avoid it." And Thomas Phillip, in his account of a voyage he performed to the coast of Guinea, writes, "They (the negroes) are to lodge to
Guinea.

leave their own country, that they have often leaped out of the canoe, boat, or canoe, into the sea, and kept under water till they were drowning, to avoid being taken up." But had the fact even been otherwise, the above plea is urged with an extreme bad grace, when it is notorious that the very wars said to be productive of such cruelty were fomented by the infamous arts of the Europeans. From the foregoing accounts, as well as other authentic publications of this kind, it appears, that it was the unwarrantable lust of gain which first stimulated the Portuguese, and afterwards other Europeans, to engage in this horrid traffic. By the most unquestionable relations of those early times, the natives were an inoffensive people, who, when civilly used, traded amicably with the Europeans. It is recorded of those of Benin, the largest kingdom in Guinea, that they were a gentle, loving, peaceful, and religious people; and Reynolds says, "They found more sincere proofs of love and good will from the natives, than they could find from the Spaniards and Portuguese, even though they had relieved them from the greatest misery."

And from the same relations there is no reason to think otherwise, that they generally lived in peace amongst themselves; there occurring no accounts of any wars at that early period, nor of any savage captives taken in battle.

In fact it was long after the Portuguese had made a practice of violently forcing the natives of Africa into slavery, that we read of the different negotiations making war upon each other, and selling their captive.

And probably this was not the case, till those bordering on the coast, who had been used to supply the vessels with necessaries, had become corrupted by their intercourse with the Europeans, and were excited by drunkenness and avarice to join them in carrying on those wicked schemes, by which those unnatural wars were perpetrated; the inhabitants kept in continual alarms; the country laid waste; and, as Moore expresses it, "infinite numbers sold into slavery." But that the Europeans are the principal cause of these devastations, is particularly evidenced by one whole connection with the trade would rather induce him to reject it in the fairest colours, viz. Captain Smith, the peron sent in the year 1726 by the African company to survey their settlements; who, from the information he received of one of the factors who had resided ten years in that country, says, "That the differing natives account it their greatest unhappiness, that they were ever visited by the Europeans."

"That we Christians introduced the traffic of slaves; and that before our coming they lived in peace."

In the accounts relating to the African trade, we find this melancholy truth farther attested by some of the principal directors in the different factories; particularly A. Brue fays, "That the Europeans were far from desiring to act as peace-makers amongst the negroes; which would be acting contrary to their interest, since the greater the wars, the more slaves were procured." And William Bowson also remarks, "That one of the former commanders gave large sums of money to the negroes of one nation, to induce them to attack some of the neighbouring nations; which occasioned a battle which was more bloody than the wars of the negroes usually are." This is confirmed by J. Barbot, who says, "That the country of D'El-

mima, which was formerly very powerful and populous, was in his time so much drained of its inhabitants by the inconstant wars fomented amongst the negroes by the Dutch, that there did not remain inhabitants enough to till the country."

It has also been advanced as an argument in favour of keeping the negroes in bondage, that there are slaves in Guinea, and that those amongst us might be so in their own country. Not to dwell upon the inconsistency of our giving any countenance to slavery, because the Africans, whom we effeminate into a horrid and savage people, allow of it, and perhaps the more from our example; the very circumstance stated, when inquired into, must afford cause of blushing, rather than serve as a palliation of such iniquitous conduct: for it will appear, that the slavery endured in Guinea is by no means to be excused as that in the colonies. Captain Moore, speaking of the natives living on the river Gambia, says, "That some of the negroes have many house slaves, which are their great glory; that those slaves live so well and easy that it is sometimes a hard matter to know the slaves from their masters or mistresses. And that though in some parts of Africa they fell their slaves born in the family; yet on the river Gambia they think it a very wicked thing." The author adds, "He never heard of but one that ever sold a family slave, except for such crimes as they would barely be sold if they had been free." And in Clio's Collection, speaking of the condition of the negroes in that large extent of country farther down the coast, particularly denominated the Coast of Guinea, it is said, "They have not many slaves on the coast; none but the king or nobles are permitted to buy or sell any; so that they are allowed only what are necessary for their families, or till the ground." The same author adds, "That they generally use their slaves well, and seldom correct them."

From the foregoing account of the natural disposition of the negroes, and the fruitfulness of most parts of Guinea, which are confirmed by authors of candour, who, from their own knowledge, may well be concluded, that the negroes acquaintance with the Europeans might have been a happiness to them; but these forgetful of their duty as men and Christians, have conducted themselves in so iniquitous a manner, as must necessarily raise in the minds of the thoughtful and well disposed negroes the utmost scorn and detestation of the very name of Christians. All other considerations have given way to an inextinguishable desire of gain, which has been the principal and moving cause of the most detestable and barbarous scene that was perhaps ever acted upon the face of the earth; instead of making use of that superior knowledge with which the Almighty, the common Parent of mankind, had favoured them, to strengthen the principle of peace and good will in the breasts of the incautious negroes, the Europeans have, by their bad example, led them into excess of drunkenness, debauchery, and avarice: whereby every pallion of corrupt nature being inflamed, they have been easily prevailed upon to make war and capture one another, as well to furnish means for the excesses they have been habituated to, as to satisfy the greedy desire of gain in their profligate employers; who, to this intent have furnished them with prodigious quantities of arms and ammunition.
guinean. Thus they have been hurried into confusion, distress, and all the extremities of temporal misery; every thing, even the power of their kings, has been made subservient to this wicked purpose; for instead of being protectors of their subjects, some of those rulers, corrupted by the excessive love of spirituous liquors, and the tempting baits laid before them by the factors, have invaded the liberties of their unhappy subjects, and are become their oppressors.

Here it may be necessary to observe, that the accounts we have of the inhabitants of Guinea are chiefly given by persons engaged in the trade, who, from selfish interested views, have described them in such colours as were least likely to excite compassion and respect, and endeavoured to reconcile to mankind a violation of the rights of mankind to the minds of the purchasers; yet they cannot but allow the negroes to be possessed of some good qualities, though they are not so much as possible to be salved over them. A particular instance of this appears in Atley’s Collection, vol. ii. p. 73; where the author, speaking of the Mandingos settled at Galam, which is situated 300 miles up the Senegal, after saying that they carry on trade to all the neighbouring kingdoms, and amassed riches, adds, “That excepting the vices peculiar to the blacks, they are a good sort of people, honest, hospitable, just to their word, laborious, industrious, and very ready to learn arts and sciences.” Here it is difficult to imagine what vices can be peculiarly attendant on a people so well disposed as the author describes these to be. With respect to the charge some authors have brought against them, as being void of all natural affection, it is frequently contradicted by others. In vol. ii. of the Collection, p. 275 and 629, the negroes of North Guinea and the Gold Coast are said to be fond of their children, whom they love with tenderness. And Bofman says, p. 340: “Not a few in his country (viz. Holland) fondly imagine, that parents here sell their children, men their wives, and one brother the other; but those who think so, deceive themselves; for this never happens on any other account but that of necessity, or some great crime.” The same is repeated by J. Barbot, p. 326, and also confirmed by Sir Hans Sloane in the introduction to his natural history of Jamaica; where, speaking of the negroes, he says, “They are usually thought to be haters of their own children; and therefore it is believed that they sell and dispose of them to strangers for money: but this is not true; for the negroes of Guinea being divided into seven captainships, as well as the Indians of America, have wars; and besides those slain in battle, many prisoners are taken, who are sold as slaves, and brought thither: but the parents here, although their children are slaves for ever, yet have a great love for them, that no matters dare fell or give away one of their little ones, unless they care not whether their parents hang themselves or no.” J. Barbot, speaking of the occasion of the natives of Guinea being represented as a treacherous people, ascribes it to the Hollander’s (and doubtless other Europeans) usurping authority, and fomenting divisions between the negroes. At p. 110, he says, “It is well known that many of the European nations trading amongst these people, have very unjustly and inhumanly, without any provocation, stolen away, from time to time, abundance of the people, not only on this coast, but almost every where in Guinea, who have come on board their ships in a harrased and confining manner: thefe they have in great numbers carried away, and sold in the plantations, with other slaves which they had purchased.” And although some of the negroes may be justly charged with indolence and rapine, yet many others are frequently mentioned by authors as a careful, industrious, and even laborious people.

By an enquiry into the laws and customs formerly in use, and still in force amongst the negroes, particularly on the Gold Coast, it will be found, that provision was made for the general peace, and for the safety of individuals; even in W. Bofman’s time, long after the Europeans had established the slave-trade, the natives were not publicly enslaved, any other wise than in punishment for crimes, when prisoners of war, or by a violent exertion of the power of their corrupted kings. Where any of the natives were stolen in order to be sold to the Europeans, it was done secretly, or at least only connived at by those in power: this appears from Barbot and Bofman’s account of the matter, both agreeing that man-stealing was not allowed on the Gold Coast. The first says, “Kidnapping or stealing of human creatures is punished there, and even sometimes with death.” And Bofman, whose long residence on the coast enabled him to speak with certainty, says, “That the laws were severe against murder, thiev ery, and adultery,” and adds, “That man-stealing was punished on the Gold Coast with rigid severity, and sometimes with death itself.” However it may be concluded, that the sale of the greatest part of the negroes to the Europeans is supported by violence, in defiance of the laws, through the knavery of their principal men, who (as is too often the case with those in European countries), under pretence of encouraging trade, and increasing the public revenue, disregard the laws and customs, and speak of the conntry generally advife with their head-men, scarceIy.

Moore also mentions man-stealing as being disencouraged by the negro governments on the river Gambia, and speaks of the enslaving the peaceable inhabitants, as a violence which only happens under a corrupt administration of justice. He says, “The kings of that country generally advise with their head-men, fearfully doing any thing of consequence without consulting them first, except the king of Barfial, who being subject to hard-drinking is very absolute. It is to this king’s inelastic thirst for brandy, that his subjects and families are in so precarious a situation.” Whenever this king wants goods or brandy, he sends a messenger to the English governor at James’s Fort, to desire he would send a vessel there with a cargo; this news being not at all welcome, the governor sends accordingly, against the arrival of the vessel, the king goes and roundabout some of his enemies towns, seizing the people, and telling them for such commodities as he is in want of, which commonly are brandy, guns, powder, balls, pistols, and cutlasses, for his attendants and soldiers: and coral and silver for his wives and concubines. In case he is not at war with any neighbouring king, he then falls upon one of his own towns, which are numerous, and uses them in the same manner. He often goes with some of his troops by atown in the day time, and returning in the night, sets fire
to three parts of it, and putting guards at the fourth, there feizes the people as they run out from the fire; he ties their arms behind them, and marches them either to Joss or Cohone, where he sells them to the Europeans.

Mr. Brue, the French director, gives much the same account, and says, "That having received goods, he wrote to the king, that if he had a sufficient number of slaves, he was ready to trade with him. This prince, as well as the other negro monarchs, has always a sure way of supplying his deficiencies, by selling his own subjects, for which they seldom want a pretence. The king had recourse to the method, by seizing 300 of his own people, and sent word to the director that he had the slaves ready to deliver for the goods." It seems the king wanted double the quantity of goods which the factor would give him for these 300 slaves; but the factor refusing to trust him as he was already in the company's debt, and perceiving that this refusal had put the king much out of temper, he proposed that he should give him a licence for taking many more of his people as the goods he still wanted were worth; but this the king refused, saying, it might occasion a disturbance among his subjects. Except in the above instance and some others, where the power of the negro kings is unlawfully exerted over their subjects, the slave-trade is carried on in Guinea with some regard to the laws of the country, which allow of none to be sold but prisoners taken in their national wars, or people adjudged to slavery in punishment for crime, but the largeness of the country, the number of kingdoms or commonwealths, and the great encouragement given by the Europeans, afford frequent pretences and opportunities to the bold designing provincials of one kingdom, to surprise and seize upon not only those of a neighbouring government, but also the weak and helpless of their own; and the unhappy people, taken on such occasions, are, with impunity, sold to the Europeans. These practices are doubtless disapproved of by the most considerate amongst the negroes; for Bofman acquaints us, that even their national wars are not agreeable to such. He says, "If the person who occasioned the beginning of the war be taken, they will not customarily admit him to ransom, though his weight in gold should be offered, for fear he should in future form some new design against their repose."

We shall conclude this article with the following account of the shocking methods used in the carrying on of the slave trade, as described by factors of different nations.

Mr. Moore, a factor for the English African Company on the river Gambia, writes, "That there are a number of negro traders, called joueurs, or merchants, who follow the slave-trade as a busines: their place of residence is so high up the country as to be six weeks travel from James' Fort, which is situated at the mouth of that river. These merchants bring down elephants, and in some years 2000 slaves, most of which, they say, are prisoners taken in war. They buy them from the different princes who take them; many of them are Bombrongs and Petcharies; nations who each of them have different languages, and are brought from a vast way inland. Their way of bringing them is tying them by the neck with leather thongs, at about a yard distant from each other, 30 or 40 in a string, having generally a bundle of corn or elephants' teeth upon each of their heads. In their way from the mountains, they travel through very great woods, where they cannot for some days get water; so they carry in skin bags enough to support them for a time. I cannot (adds Moore) be certain of the number of merchants who follow this trade, but there may, perhaps, be about 100, who go up into the inland country with the goods which they buy from the white men, and with them purchase, in various countries, gold, slaves, and elephants' teeth. Besides the slaves which the merchants bring down, there are many bought along the river: These are either taken in war, as the former are, or men condemned for crimes; or else people stolen, which is very frequent. Since the slave trade has been used, all punishments are changed into slavery; there being an advantage on such condemnation, they fear for crimes very hard, in order to get the benefits of selling the criminal."

John Barbot, the French factor, in his account of the manner by which the slaves are procured, says, "The slaves fold by the negroes are for the most part prisoners of war, or taken in the incursions they make into their enemies' territories; others are stolen away by their neighbours, when found abroad on the road, or in the woods; or else in the corn fields, at the time of the year when their parents keep them there all the day to fear away the devouring small birds. Speaking of the transactions on that part of Guinea called the Gulf Coast, where the Europeans have the most factories, and from whence they bring away much the greater number of slaves, the same author says, "The inhabitants of Coto do much mischief in stealing those slaves they sell to the Europeans from the inland country.—That the inhabitants of Poro excel the former; being endowed with a much larger share of courage, they rob more successfully, by which means they increase their riches and trade." The author particularly remarks, "That they are encouraged in their practice by the Europeans: sometimes it happens, according to the successes of the inland excursions, that they are able to furnish 200 slaves, or more, in a few days."

And he says, "The inhabitants of Fida, or Whidah, are so expeditions in trading for slaves, that they deliver 1000 a month."—"Hit here happens to be no stock of slaves there, the factor must trust the blacks with his goods, to the value of 300 l. or 200 l. which goods they carry up into the inland country to buy slaves at all markets for above 600 miles up the country, where they are kept like cattle in Europe; the slaves sold there being generally prisoners of war, taken from their enemies like other booty, and perhaps some few sold by their own countrymen, in extreme want, or upon a famine, as also some as a punishment of heinous crimes." So far Barbot's account. That given by Bofman is as follows: "When the slaves which are brought from the inland countries come to Whidah, they are put in prison together, when we meet concerning buying them, they are all brought out together in a large plain, where, our surgeons, they are thoroughly examined, and that naked, both men and women, without the least distinction or modesty. Thos which are approved as good, are foton one side; in the mean while a burning fire, with the arms of

name

"After vol. ii. p. 69."

"---v---"
name of the company, lies in the fire, with which ours are marked on the breast. When we have agreed with the owners of the slaves, they are returned to their prisons; where, from that time forward, they are kept at our charge, and cost us two pence a day each slave, which serves to libel them like criminals on bread and water; so that to save charges, we send them on board our ships the very first opportunity: before which, their masters strip them of all they have on their backs, so that they come on board stark naked, as well women as men. In which condition they are obliged to continue, if the master of the ship is not so charitable (which he commonly is) as to belowe something on them to cover their nakedness. Six or seven hundred are sometimes put on board a vessel, where they lie as close together as it is possible for them to be crowded."

When the great income which arises to the negro kings on the Slave Coast, from the slaves brought through their several governments to be shipped on board the European vessels, is considered, we have no cause to wonder that they give so great a countenance to that trade. Bofman says, "That each ship which comes to Whidah to trade, reckoning one with another, either by toll, trade, or Custom, pays about 400l., and sometimes 50 ships come hither in a year." Barbot confirms the same, and adds, "That in the neighbouring kingdom of Aroh, the duty to the king is the value of 70 or 80 slaves for each trading ship, which is near half as much more as at Whidah. Nor can the Europeans concerned in the trade, with any degree of propriety, blame the African kings for countenancing it, while they continue to send vessels on purpose to take in the slaves which are thus stolen, and that they are permitted, under the sanction of national laws, to sell them to the colonies."

According to a late sensible writer, Mr. Ramsey, "the annual British export to these coasts is estimated at 500,000l., including a considerable quantity that is annually exchanged with American and other foreign traders there; about 5000 cool. of ivory, gold dust, gun, &c. The greatest part of the profits of the slave trade are raised on the sugar plantations. If by establishing factories, and encouraging civilisation on the coast of Africa, and returning some of our West-Indian slaves to their original country, we tried to make up for our past treachery to the natives, and instructed the inhabitants in the culture of tobacco, indigo, cotton, rice, &c. to barter with us for our manufactures, and supply us with those articles, our demand for which has been so advantageous to America, great would be our profits. Were Africa civilized, and could we procure the affection of the natives, and introduce gradually our religion, manners, and language among them, we should open a market that would fully employ our manufacturers and seamen, morally speaking, till the end of time. And while we enriched ourselves, we should contribute to their happiness. For Africa, in its highest probable state of culture, could not possibly interfere with the staple of Britain, so as to hinder an extensiv and mutually advantageous trade from being carried on between the countries. The great difference of climate and soil must always distinguish the supplies and wants of each."

This slave-trade indeed has been long considered as disgraceful to an enlightened age; and in this country a spirit is arisen which seems bent on annihilating it altogether, or so changing the nature of it as to blend humanity with policy. During the session of 1788, the philanthropy of parliament, supported by that of the nation, paid a very particular attention to this odious branch of traffic. It was, however, a subject of too comprehensive a nature, and too materially connected with our African commerce at large and our West-Indian colonies to come to an immediate decision upon it. Parliament, therefore, was obliged to content itself for that time with a temporary bill to regulate the shipping and carrying slaves in British vessels from those coasts. But the public attention has been since kept awake by a great variety of publications on both sides of the question; and the final arrangement of this important business, in which the honour of the British commerce and the British character, as well as the happiness of millions of our noble African brethren, is involved, is expected to take place during the present session 1791. — This traffic in human beings is not, however, without its advocates. But the most specious arguments of its ablest defenders reach no farther than political expediency, which can never alter the real nature of things. That in question would not remain less an unjust, cruel, and wicked trade, in its very nature eternally and unalterably wrong. Its abolition, therefore, not in a rash, but in a gentle and equitable way as circumstances will allow, is devoutly to be wished, and it is hoped may be accomplished."

New Guinea, a long and narrow island of the East-Indies, very imperfectly known. It was supposed to be connected with New-Holland, until Captain Cook discovered the strait which separates them. New Guinea, including Papua, its north-western part (which according to Bougainville's conjecture is separated from it by a strait), reaches from the equator to the 11th degree of south latitude, and from 130 to 150 degrees east longitude; in one part it does not appear to be above 50 miles broad. It was first visited by an European ship in 1599. Dampier, a Portuguese, who made the discovery of the north-west part of this country, called it Terra de Papaus or Papos. Van Schoten a Dutch discoverer, afterwards gave the name of New-Guinea to its south-western parts. Admiral Roggewein also touched here; and before him Dampier, 1st January 1700. Captain Cook made the coast of New-Guinea, in latitude 6 degrees 15 minutes, longitude 158 east, on the 3d of September, and landed in the pinnae, accompanied by Mr. Banks, Doctor Solander, nine of the ship's crew, and servants well armed, and leaving two seamen to take care of the boat, advanced some little way up the country; but coming to the skirts of a thick wood, they judged it prudent to proceed no further, lest they should fall into an ambuscade of the natives, and their retreat to the boat be cut off. Having advanced about a quarter of a mile from the boat, three Indians rushed out of the wood with a horrid shout; they drew their darts, and showed such a hostile disposition, that the party, to prevent the destruction of these people, returned to the boat, as they had no intention forcibly to invade their country, either to gratify their curiosity, and it was evident nothing could be done upon friendly terms. When they got on board the boat, they rowed along the shore, and the number of Indians assembled.
femed seemed to be between 60 and 100. They made much the same appearance as the New-Hollanders, being stark naked and their hair cropped short. All the while they were gaming defiance, and throwing something out of their hand which burnt exactly like gun-powder, but made no report; what these fires were, or for what purpose intended, could not be guessed at; those who discharged them had in their hands a short piece of flick, possibly a hollow cane, which they swung from their side, and immediately fire and smoke issued, exactly resembling the discharge of a musket, and of no longer duration. This wonderful phenomenon was observed from the ship; and the deception was so great, that the people on board thought they had fire-arms; and even in the boat if they had not been so near as that they must have heard the report, if there had been any, they would have thought they had been firing volleys. After looking at them attentively for some time, without taking any notice of their dancing and vociferation, the sailors fired some muskets over their heads. Upon hearing the balls rattling among the trees, they walked leisurely away, and the boat returned to the ship. Upon examining some weapons which the natives had thrown, they were found to be light darts, about four feet long, very ill made, of a reed or bamboo cane, and pointed with hard wood, in which there were many barbs. They were discharged with great force, for at 60 yards distance they went beyond the party; but in what manner they were thrown could not be exactly seen. But the general opinion was, that they were thrown with a flick in the manner practised by the New-Hollanders.

The land here is very low, as is every other part of the coast; but it is covered with a luxuriance of wood and herbage that can scarcely be conceived. Here the cocoa-nut, plan,ain, and bread-fruit, flourish in the highest perfection.

GUINEA, a gold coin, struck and current in Britain. The value or rate of guineas has varied: it was first struck on the footing of 20s. by the scarcity of gold was afterwards advanced to 21s. 6d. but it is now sunk to 2ts. The pound weight troy of gold is cut in zis. See GUINEA-Pig. See COMPANY. See Company (African.) See GUINEA-Hen. In ornithology. See Numida. See GUINEA-Wheat. See ZEA.

GUITUSCOA, the north-east division of the province of Biscay in Spain, situated on the confines of Navarre.

GUISE, a small town of France in Picardy, and in Tierache, with a very strong castle, and the title of a duchy. It is seated on the River Guise, in E. Long. 1. 42. N. Lat. 49. 44.

GUISE (Henry) of Lorraine, duke of Guise (eldest son of Francis of Lorraine duke of Guise), memorable in the history of France as a gallant officer; but an imperious, turbulent, fidelious subject, who placed himself at the head of an armed force, and called his rebel hand, The League. The plan was formed by the cardinal, his younger brother; and under the pretext of defending the Roman Catholic religion, the king Henry III, and the freedom of the state, against the design of the Huguenots, or French Protestants, they carried on a civil war, massacred the Huguenots, and governed the king, who forbid his appearance at Paris; but Guise now became an open rebel, entered the city against the king's express order, and put to the sword all who opposed him; the streets being barricaded to prevent his progress, this fatal day is called in the French history, The day of the barricades. Masses of Paris, the policy of the Guises failed them: for they suffered the king to escape to Blois, though he was de­ferred in his palace at Paris by his very guards. At Blois, Henry convened an assembly of the states of France; the duke of Guise had the boldness to appear to a commoner sent to him for that purpose; a forced re­conciliation took place between him and the king, by the advice of this assembly; but it being accidentally discovered, that Guise had formed a design to de­throne the king, that weak monarch, instead of re­voluntely bringing him to justice, had him privately assassinated, December 23, 1568, in the 38th year of his age. His brother the cardinal shared the same fate the next day.

GUITTAR, GUITARRA, a musical instrument of the stringed kind, with five double rows of strings: of which those that are braids are in the middle, except it be for the burden, an octave lower than the fourth. —This instrument was first used in Spain and by the Italians. In the former country it is still greatly in vogue. There are few of that nation who cannot play on the guitar; and with this instrument they fer­enade their missresses at night. At Madrid, and other cities in that country, it is common to meet in the streets young men equipped with a guitar and a dark lanthorn, who, taking their station under the windows, sing, and accompany their voices with this instrument; and there is scarce an artificer or day-labourer in any of the cities or principal towns who does not entertain himself with his guitar.

GULDENSTAEDT (John Anthony), was born at Riga, April 26, 1745; received the rudiments of his education in that town; and in 1762 was admitted into the medical college of Berlin. He completed his studies at Frankfort upon the Oder, and in 1767 received the degree of M. D. in that university. On account of his knowledge of foreign languages, and the considerable progress he had made in natural his­tory, he was considered as a fit person to engage in the expeditions which were planned by the imperial aca­demy. Being invited to St. Petersburg, he arrived in that city in 1768, was created adjoint of the academy, and afterwards, in 1770, member of that society, and professor of natural history. In June 1761 he set out upon his travels, and was absent seven years. From Moscow, where he continued till March 1769, he pas­sed to Voronetz, Tzaritzin, Afracan, and Kiljar, a fortress upon the western shore of the Caffian, and close to the confines of Persia. In 1770 he had explored the districts watered by the river Terek, Sunha, and Aik­sa, in the eastern extremity of Caucasus; and in the course of the ensuing year penetrated into Ossetia, in the highest part of the same mountain; where he col­lected
GUL

GUL, or Gullet, is represented in engraving by perpendicular lines. It is a term of itself to denote martial prowess, boldness, and hardihood; for the ancients used this colour to make themselves terrible to their enemies, to flirt up magnanimity, and to prevent the seeing of blood, by the likeness of the colours; for which reason perhaps it is used by the English. But, according to G. Leigh, if this tincture is compounded with

Or.	Delfire.
Arg.	Envy.
Azu.	Arduor.
Ver.	Strength.
Sab.	Wariness.

This colour is by the generality of the English heralds ranked before azure; but French heralds, N. Upton and his followers, prefer azure to it.

GULL, in ichthyology. See Larus.

GULF, a broad and capacious bay comprehended between two promontories, and sometimes taking the name of a sea when it is very extensive; but particularly when it only communicates with the sea by means of a strait. Such are the Euxine or Black sea, otherwise called the Gulf of Constanza; the Adriatic Sea, called also the Gulf of Venice; the gulf of Sicily near Barbary; and the gulf of Lions near France. All these gulfs are in the Mediterranean.

There are, besides the gulf of Mexico, the gulf of St Lawrence, and the gulf of California, which are in North-America. There are also the gulf of Persia, otherwise called the Red Sea, between Persia and Arabia; the gulf of Bengal in India; and the gulfs of Cochinchina and Kamtchatka, near the countries of the same name.

The word comes from the French gulf, and that from the Italian gulfos, which signifies the same. Some deduce these further from the Greek γαλαγωγος, which signifies the same. Gullart again derives from the Hebrew גול, a gulf. Du Cange derives them from the barbarous Latin gulfam, or gulfus, which signifies the same thing.

GULLET. See Gula.

GUM (Gummi), is a concrete vegetable juice, of no particular smell or taste, becoming viscous and tenacious when moistened with water; totally dissolving in water into a liquid, more or less glutinous in proportion to the quantity of the gum; not dissolving in vicious spirits or in oils; burning in the fire to a black coal, without melting or catching flame; suffering no dissipation in the heat of boiling water.

The true gums are gum arabic, gum tragacanth, gum senega, the gum of cherry and plum trees, and such like. All else have more or less of resin in them.

Gum-Arabic is the produce of a species of Mimosarum; which see.

GUM. The medical character of gum arabic is its glutinous quality, in consequence of which it serves to incrustate and obtund thin acrid humour, to prove useful in tickling coughs, alvine fluxes, hoarseness, in fluxes of the belly with gripes, and where the mucus is abraded from the bowels or from the uina.

The true gum arabic is more cooling than the other simple gums, so should be preferred.

One ounce of gum arabic renders a pint of water considerably glutinous: four ounces gives it a thick syrupy

CON-
confidence: but for mucilage, one part gum to two parts water is required; and for some purgatives an equal proportion will be necessary.

In Dr. Percival's Essays we have the following curious account, by Mr. Henry, of the faculty which this gum bath of dissolving and keeping suspended in water not only resinous but also other substances, which should seem likely to be at all affected by it.

"One scruple of balsam of tolu, rubbed with half an ounce of distilled rain-water, added gradually to it for 15 minutes, formed a mixture, which on standing about a minute subsided, but re-united by shaking: being left by a few days, the balsam became a concrete mass, not again miscible by shaking up the bottle. The same quantity required more triturating to mix it with common pump-water. One scruple of the same, rubbed with 15 grains of gum arabic, was nearly as long in perfectly uniting with half an ounce of distilled water as that without the gum. This was perhaps owing to the latter piece being more resinous; however, though on long standing there was a small sediment, it immediately reunited a week after by agitation. Fifteen grains of balsam capivari united very smoothly with half an ounce of distilled water, by the medium of three grains of gum arabic. Five grains of the gum were not so effectual with pump-water. Balsam Peru ten drops, with gum arabic three grains, distilled water half an ounce, formed a neat white emulsion, but with common water a very unequal mixture. Gum myrrh (powdered that there might be no difference in the several quantities used), half a scruple, dissolved readily with gum arabic three grains, in both kinds of water, and even mixed with them by longer triturating without any medium, but more easily with distilled than common spring water. Olibanum, mastich, gum guaiacum, and galbanum, may likewise be mixed with water by rubbing, without any gum arabic or egg. The spring water made use of in these experiments was very alumineous.

"In the making of all the saline preparations, when any considerable quantities of water are used, distilled or pure rain or river water is greatly to be preferred; for the calcareous, alumineous, and felsinement matter, which so much abounds in most spring water, will render any salt dissolved in it very impure. The solution of crude mercury with mucilage of gum arabic being so easily accomplished, and it being very disagreeable to many patients, and to some almost impossible, to swallow pills, boluses, or electuaries, I was induced to try whether calomel, cinnabar, and the other heavy and metalline bodies commonly administered only under their forms, might not by the same means be rendered miscible with water, so as to be given more agreeably in a liquid form. I accordingly rubbed ten grains of cinnabar of antimony and a scruple of gum arabic, with a sufficient quantity of distilled water to form a mucilage, and added a drachm of simple fyrup and three drachms more of water. This makes an agreeable little draught; and having stood about half an hour without depositing any sediment, I added three drachms more of water to it; and notwithstanding the mucilage was rendered so much more dilute, very little of the cinnabar subsided even after it had stood some days.

Steel simply prepared, and prepared tin, were both mixed with water by their own weight of gum arabic, and remained suspended, except a very small portion of each, which was not reduced to a sufficiently fine powder.

"Five grains of calomel were mixed with two drachms of distilled water and half a drachm of simple fyrup by means of five grains of gum arabic, which kept it sufficiently suspended: a double quantity of the gum preferred the mixture uniform still longer. In this form it will be much more easily given to children than in fyrups, conserves, &c. as a great part of it is generally waisted, in forcing those viscid vehicles into them; and it may be joined with feammony and other resinous purgatives by the same method, and of these perhaps the gum arabic would be the best corrector.

"Gum arabic likewise greatly abates the disagreeable taste of the corrosive sublimate, mixed with water instead of brandy; and (from the few trials I have made) it's easier on the stomach, and will not be so apt to betray the patient by the smell of the brandy.

"Mr. Plenck, who first introduced us in the method of mixing quicksilver with mucilage, observes (and experience confirms the truth of it), that this preparation is not so apt to bring on a spitting as the argent. vis. mixed by any other medium, or as the saline and other mercurial preparations.—How far the theory by which he accounts for it may be just is not of much importance; but it may perhaps be worth while to inquire, whether it would not be equally effectual in preventing calomel, and the other preparations of mercury, from affecting the mouth,—if so, is it not improper, where a salivation is intended, to give emulsions with gum arabic and other mucilaginous liquors for the patient's common drink, as by that means the spitting may be retarded? And, on the contrary, may it not be a useful medicine to diminish the effu-charge when too copious?

"The following case may in some measure serve to confirm the above observation.—A gentleman, always easily affected by mercurials, having taken about 26 grains of calomel in doses from 1 to 3 grains, notwithstanding he was purged every third day, was suddenly seized with a salivation. He spat plentifully, his breath was very fetid, teeth loofe, and his gums, fauces, and the margin of his tongue, greatly ulcerated and inflamed. He was admitted to the following garle. B. Gum. arb. fesamum. folve in aqua fum. bullient, feli., &c. &c. et add. mel. rufii. unc. unam. M. 5. gargar. And to drink freely of a pitan prepared with ag. hard. lib. ij. gum. arabic unc. ij. nitr. pur. drachm. ij. fescar. alb. unc. j. His purgative was repeated the succeeding morning. The next day his gums were less inflamed, but the lothu on his tongue, &c. were still as foul: his spitting was much the same; he had drank about a pint of the pitan. Some f. vitrioli was added to the gargar. From this day to the fourth he was purged every day without effect, his salivation still continued, his mouth was no better, he had neglected the mucilaginous drink. This evening he was persuaded to drink about a pint of it which remained, and he had it repeated, and drank very freely of it that night. On the fifth morning the purgative was again repeated. Though it operated very little, yet the change was very surprizing: his mouth was nearly well, and his phytalism greatly decreased. The pitan was repeated;
GUM [193] GUN

...and on the fiftth day, being quite well, he was permitted to go abroad.

In Mr. Hesselqui's Travels we have an instance of the extraordinary nutritive virtues of this gum. The Abyssinians (says he) make a journey every year to Cairo, to sell the products of their country. They must travel over terrible deserts, and their journey depends as much on the weather as a voyage at sea; consequently they know as little as a seaman how long they must be on their journey; and the necessaries of life may chance to fall them when the journey lasts too long. This happened to the Abyssinian caravan in the year 1740, their provisions being consumed when they had still two months to travel. They were then obliged to search for something among their merchandise where with they might support nature; and found nothing more proper than gum arabie, of which they had carried a considerable quantity along with them. This served to support above 1000 persons for two months; and the caravan at last arrived at Cairo without any great loss of people either by hunger or diseases.

Gum Senega, is a gum extremely resembling gum arabic. It is brought to us from the country through which the river Senega runs, in loose or tingle drops; but these are much larger than those of the gum arabic usually are; sometimes it is of the bigness of an egg, and sometimes much larger: the surface is very round or wrinkled, and appears much lighter than the inner substance where the mafles are broken. It has no smell, and scarce any taste. It is probably produced from a tree of the same kind with the former. The virtues of it are the same with the gum arabic; but it is rarely used in medicine, unless as mixed with the gum arabic: the dyers and other artificers consume the great quantities of it that are annually imported hither. The negroes dissolve it in milk, and in that state it was sold at Cairo without any great loss of people either by hunger or diseases.

Gum Tragacanth, the gum of the tragacanth, a thorny bush growing in Crete, Aisa, and Greece. See Astragalus.

Other substances known by the name of gums are as follow:

Gum Ammoniac. See Ammoniac.
Gum Elmi. See Amyris.
Gum Keno. See Keno.
Gum Guaiacum. See Guaiacum.
Gum Lacco. See Cocusc and Lacco.

Gum, among gardeners, a kind of granate incident to fruit-trees of the fone kind, arising from a corruption of the sap, which, by its vividness, not being able to make its way through the fibres of the tree, is, by the protrusion of other juice, made to extravasate and ooze out upon the bark.

When the dissenter surrounds the branch, it admits of no remedy; but when only on one part of a bough, it should be taken off to the quick, and some cow dung clapped on the wound, covered over with a linen cloth, and tied down. M. Quinquinie directs to cut off the morbid branch two or three inches below the part affected.

Gumma, a folt of venereal excrecence on the periodontium of the bones.

GUMS, in anatomy, the hard fliehy substance in either jaw, through which the teeth spring from the jawbone. See Anatomy, vol. 102.

The gums are apt to become spongy, and to separate from the teeth; but the cause in frequently a flopy kind of cruit, which forms itself therein, which when separated, the gums soon return to their former state, especially if rubbed with a mixture of the infusion of rotes four parts, and the tincture of myrrh one part. The fcurvy is another disorder, which affects the gums. This disorder, when not manifeft in any other part, sometimes appears in this: indeed, when a scurvy disorder invades the whole habit its first symptom is a putrid flate of the gums.

GUN, in the military art, a fire-arm, or weapon of offence, which forcibly discharges a ball or other hard and solid matter through a cylindrical tube, by means of inflamed gun-powder. See Gun-powder.

The word gun now includes most of the species of fire-arms; pistols and mortars being almost the only ones excepted from this denomination. They are divided into great and small guns: the former including all that we also call cannon, ordnance, or artillery; the latter includes musquets, carabines, musqueions, blunderbusses, fowling-pieces, &c.

It is not known at what time these weapons were first invented. Though, comparatively speaking, the introduction of guns into the western part of the world is but of a modern date; yet it is certain that in some parts of Asia they have been used, though in a very rude and imperfect manner, for ages. Philostratos speaks of a city near the river Aphasia in the Indies, which was said to be impregnable, and that its inhabitants were relations of the gods, because they threw thunder and lightning upon their enemies. Hence some imagine that guns were used by the eastern nations even in the time of Alexander the Great; but however this may be, many of our modern travellers assert that they were used in China as far back as the year of Christ 85, and have continued in use ever since.

The first hint of the invention of guns in Europe is in the works of Roger Bacon, who flourished in the 13th century. In a treatise written by him about the year 1280, he proposes to apply the violent explosive force of gun-powder for the destruction of armies. In 1320, Bartholomew Schwartz, a German monk, is commonly said to have invented gun-powder, though it is certainly known that this composition is described by Bacon in some of his treatises long before the time of Schwartz. The following is said to have been the manner in which Schwartz invented gun-powder. Having pounded the materials for it in a mortar, which he afterwards covered with a fone, a spark of fire accidentally fell into the mortar and set the mixture on fire; upon which the explosion blew the fone to a considerable distance. Hence it is probable that Schwartz might be taught the simplest method of applying it in war; for Bacon seems rather to have conceived the manner of using it to be by the violent effect of the flame unconfined, and which is indeed capable of producing annihilating effects. The figure and name of mortars given to species of old artillery, and their employment (which was throwing great stone-bullets at an elevation), very much corroborates this conjecture.

Soon after the time of Schwartz, we find guns commonly made use of as instruments of war. Great A a guns
GUN

Guns were first used. They were originally made of iron bars folded together, and fortified with iron hoops; some of which are still to be seen, viz: one in the Tower of London, two at Woolwich, and one in the royal arsenal at Lisbon. Others were made of thin sheets of iron rolled up together and hooped; and in emergencies they were made of leather, with plates of iron or copper. These pieces were made in a rude and imperfect manner, like the first essays of many new inventions. Stone balls were thrown out of them, and a small quantity of powder used on account of their weakneſs. These pieces had no ornaments, were placed on their carriages by rings, and were of a cylindrical form. When or by whom they were made is uncertain; the Venetians, however, used cannon at the siege of Clandia Jeda, now called Chigga, in 1266, which were brought thither by two Germans, with some powder and leaden balls; as likewise in the wars with the Genoese in 1379. King Edward III. made use of the cannon at the siege of Creauté in 1346, and at the siege of Calais in 1347. Cannon were made use of by the Turks at the siege of Confitantinople, then in possession of the Christians, in 1394, and in that of 1452, when a weight of 100 lb. but they generally burst either the first, second, or third shot. Louis XII. had one cast at Tours, of the fame fize, which threw a ball from the Battille to Charenton. One of those famous cannon was taken at the siege of Dièu in 1545, by Don John de Castro; and is in the caftle of St. Julian da Barra, 10 miles from Lisbon: its length is 20 feet 7 inches, diameter at the centre 6 feet 3 inches, and it discharges a ball of 100 lb. It has neither dolphins, rings, nor button; is of a curious kind of metal; and has a large Indoran inscription upon it, which says it was cast in 1400.

Formerly the cannon were dignified with uncommon names; for, in 1505, Louis XII. had 12 brads cannon cast, of an extraordinary fize, called after the names of the 12 peers of France. The Spanish and Portuguese called them after their faints. The emperor Charles V. when he marched before Tunis, found before him the 23 apostles. At Milan there is a 70 pounder, called the Pimantelle; and one at Bovis-le-duc, called the Devil. A 60 pounder at Dover-calle, called Queen Elizabeth's pocket-pistol. An 80 pounder in the tower of London (formerly in Edinburgh-calle), called Mount-meg. An 80 pounder in the royal arsenal at Berlin, called the Thunderer. An 80 pounder at Malaga, called the Terrible. Two curious 60 pounders in the arsenal at Bremen, called the Messengers of bad news. And, lastly, an uncommon 70 pounder in the caftle of St. Angelo at Rome, made of the nails, that covered the copper-plates which covered the ancient Pantheon, with this inscription upon it: Ex clavis trahabilibus porticus Agrippae.

In the beginning of the 15th century these uncommon names were generally abolished, and the following more universal ones took place, viz:

<table>
<thead>
<tr>
<th>Pounders</th>
<th>Cwt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannon royal, or earthcach</td>
<td>=48</td>
</tr>
<tr>
<td>Bafliſte cannon, or 4 earthcach</td>
<td>=36</td>
</tr>
<tr>
<td>2 Carthou</td>
<td>=24</td>
</tr>
<tr>
<td>Whole culverins</td>
<td>=18</td>
</tr>
</tbody>
</table>

Demi culverins = 9 = 90
Falcon =6 = 60
Sacker = 5 = 50
Sackr = 6 = 60
Bafliſte = 8 = 80
Serpentine = 4 = 40
Afpie = 2 = 20
Dragon = 6 = 60
Syren = 60
Falconet = 3, 2, & 1 = 15, 10, 5.

Moyens, which carried a ball of 10 or 20 ounces, &c.

Robiner, which carried a ball of 16 ounces.

These curious names of beasts and birds of prey were adopted on account of their swiftness in motion or of their cruelty, as the falconet, falcon, sacker, and culverin, &c. for the swiftness in flying; the bafilſte, serpentine, afpie, dragon, syren, &c. for their cruelty. At present cannon take their names from the weight of the ball they discharge. Thus a piece that discharges a ball of 24 pounds is called a 24 pounder; one that carries a ball of 12 pounds, is called a 12 pounder; and so of the rest, divided into the following forts, viz:

Ship-guns, confiling in 42, 36, 22, 18, 12, 9, and 6 pounders.

Garrison-guns, in 42, 32, 24, 18, 12, 9, and 6 pounders.

Battering-guns, in 24, 18, and 12 pounders.

Field-pieces, in 12, 9, 6, 3, 2, 1, and ½ pounders.

Mortars are thought to have been fully as ancient as cannon. They were employed in the wars of Italy, to throw balls of red-hot iron, stones, &c. long before the invention of shells. These last are thought to be of German invention, and the use of them in war to have been taught by the following accident. A citizen of Venlo, at a certain festival celebrated in honour of the duke of Cleves, threw a number of shells, one of which fell on a house and set fire to it, by which misfortune the greatest part of the town was reduced to ashes. The first account of shells used for military purposes is in 1435, when Naples was besieged by Charles VIII. History informs us with more certainty, that shells were thrown out of mortars at the siege of Walthendomk, in Guelderland, in 1568, by the earl of Mansefield. Mr Maltar, an English engineer, first taught the French the art of throwing shells, which they practiced at the siege of Motte in 1634. The method of throwing red-hot balls out of the mortars was first certainly put in practice at the siege of Stralsund in 1675 by the elector of Brandenburgh, though some lay in 1653 at the siege of Bremen. For the proper dimensions of guns, their weight, the metal of which they are formed, &c. see the article GUNNERY.

Muskets were first used at the siege of Rhede in the year 1529. The Spaniards were the first who armed part of their foot with these weapons. At first they were very heavy, and could not be used without a rest. They had match-locks, and did execution at a great distance. On their march the soldiers carried only the rests and ammunition, and had boys to bear their muskets after them. They were very slow in loading, not only by reason of the unwieldiness of their pieces, and
GUNNERY.

Plate CCXXIV.

A Cannon Mounted on its Carriage.

A Morter Mounted on its Carriage.

Petard

Cartouches.

inside Bomb.

Shot in y form of Pine Apples

Angels.

Cartridge.

Chain Shot.

Ibokara & Valliance sculp.
GUN

and because they carried the powder and ball separate, but from the time it took to prepare and adjust the match; so that their fire was not near to brisk as ours is now. Afterwards a lighter matchlock musket came in use; and they carried their ammunition in bandoliers, to which were hung several little casks of wood covered with leather, each containing a charge of powder. The balls were carried loose in a pouch, and a priming-horn hanging by their side. The muskets with reits were used as late as the beginning of the civil wars in the time of Charles I. The lighter kind succeeded them, and continued till the beginning of the present century, when they also were diffused, and the troops throughout Europe armed with firelocks.

GUNDELIA, in botany: A genus of the polygamia segregata order, belonging to the syngentes class of plants; and in the natural method ranking under the 49th order, Compositae. There is scarce any calyx, but quincuncialis, with tubular hermaphrodite stamens, the receptacle briefly, with scarce any poppus.

GUNELLUS, in ichthyology. See Brennus.

GUNNER, an officer appointed for the service of the cannon, or one skilled to fire the guns.

GUNNER, an officer carries a field staff, and a large powder-horn in a firing over his left shoulder: he marches by the guns; and when there is any apprehension of danger, his field staff is armed with match. His business is to lay the gun to, and to help to load and traverse her.

Muster GUNNER, a patent-officer of the ordnance, who is appointed to teach all such as learn the art of gunnery, and to certify to the master-general the sufficiency of any person recommended to be one of the king’s gunners. To every scholar he administers an oath not to serve, without leave, any other prince or state; or teach any one the art of gunnery but such as have taken the said oath.

GUNNERA, in botany; a genus of the diandria order, belonging to the gymnosperms class of plants. The amentum consists of uniflorous scales there is neither calyx nor corolla; the germen is bidentate, with two styles and one seed.

GUNNERY,

The art of charging, directing, and exploding firearms, as cannons, mortars, muskets, &c. to the best advantage.—As this art depends greatly on having the guns and shot of a proper size and figure, and well adapted to each other, it hence follows that the proper dimensions, &c. of cannons and small arms come properly to be considered under the present article.

Sect. I. History of Gunnery.

The ancients, who knew not the use of gunpowder and fire-arms, had notwithstanding machines which were capable of discharging stones, darts, and arrows, with great force. These were actuated chiefly by the elastic force of ropes, or of strong springs, and required a great number of men to work them; for which reason, the explosion of gunpowder, as acting instantaneously, and seemingly with irresistible force, seemed to be a more proper succedaneum for all the powers by which the military engines in former times were actuated. It soon appeared, however, that this force was not very easily applied. Though the experiment of Bartholomew Schwartz, mentioned under the article Gun, had given a good hint towards this application in a successful manner, yet the violent reaction of the inflamed powder on the containing vessels rendered them very apt to burst, to the great danger of those who stood near them. The gunpowder in those days, therefore, was much weaker than it is now made; indeed this proved a very insufficient remedy for the inconvenience above-mentioned. It was also soon discovered, that iron bullets of much less weight than stone ones would be more efficacious if impelled by greater quantities of stronger powder. This occasioned an alteration in the manner and form of the cannon, which were now cast of brass. These were lighter and more manageable than the former, at the same time that they were stronger in proportion to their bore. Thus they were capable of enduring greater charges of a better powder than what had been formerly used.

and their iron-bullets (which were from 40 or 60 pounds weight), being impelled with greater velocities were more effectual than the heaviest stones could ever prove. This change took place about the latter end of the 15th century.

By this means powder compounded in the manner now practised over all Europe came first in use. But the change of the proportion of materials was not the only improvement it received. The method of granting it is undoubtedly a considerable advantage. At first the powder was always in the form of fine meal, such as it was reduced to by grinding the materials together. It is doubtful whether the first granting of powder was intended to increase its strength, or only to render it more convenient for filling into small charges and the charging of small arms, in which alone it was applied for many years, whilst meal-powder was still made use for cannon. But at last the additional strength which the granted powder was found to acquire from the free passage of the air between the grains, occasioned the meal powder to be entirely laid aside.

For the last two hundred years, the formation of cannon hath been very little improved: the best pieces of modern artillery differing little in their proportions from those used in the time of Charles V. Indeed lighter and shorter pieces have been often proposed and essayed; but though they have their advantages in particular cases, yet it seems now to be agreed that they are altogether insufficient for general service. But though the proportions of the pieces have not been much varied within that period, yet their use and application have undergone considerable alterations; the same ends being now accomplished by smaller pieces than what were formerly thought necessary. Thus the battering cannon now universally approved of are those formerly called demi-cannons, carrying a ball of 24 pounds weight; it being found by experience, that their stroke, though less violent than that
Theory of larger pieces, is yet sufficiently adapted to the strength of the usual profiles of fortification; and that the facility of their carriage and management, and the ammunition they spare, give them great advantages beyond the whole cannons formerly employed in making breaches. The method also of making a breach, by first cutting off the whole wall as low as possible before its upper part is attempted to be beat down, seems also to be a considerable modern improvement in the practical part of gunnery. But the most considerable improvement in the practice is the method of firing with small quantities of powder; and elevating the piece so that the bullet may just go clear of the parapet of the enemy, and drop into their works. By this means the bullet, coming to the ground at a small angle, and with a small velocity, does not bury itself, but bounds or rolls along in the direction in which it was fired: and therefore, if the piece be placed in the line with the battery it is intended to fince, or on the front: it is to sweep, each shot takes the whole length of that battery or front; and has thereby a much greater chance of disabling the defenders, and dismounting their cannon, than it would have if fired in the common manner. This method was invented by Vauban, and was by him styled Batterie a Ricochet. It was first put in practice in the year 1692 at the siege of Aeth.—Something similar to this was put in practice by the king of Prussia at the battle of Rofbach in 1757. He had several six-inch mortars, made with trunnions and mounted on travelling carriages, which fired obliquely on the enemy's lines, and amongst their horse. They were charged with eight ounces of powder, and elevated at an angle of one degree fifteen minutes, and did great execution; for the shells rolling along the lines with burning-fuses made the floutest of the enemy not wait for their barruling.

Sect. II. Theory of Gunnery.

The use of fire-arms had been known for a long time before any theory concerning them was attempted. The first author who wrote profeffedly on the flight of cannon-shot was Tartalea. In 1537 he published a book, at Venice, intitled Nova Scientia; and afterwards another, intitled Quasai et Inventions diversi, printed at the same place in 1546, in which he treats profeffedly on these motions. His discoveries were few, on account of the imperfect state of mechanical knowledge at that time. However, he determined that the greatest range of cannon was with an elevation of 45 degrees. He likewise determined, (contrary to the opinion of practitioners), that no part of the tract described by a bullet was a right line: although the curvature was in some cases so little, that it was not attended to. He compared it to the surface of the sea; which, though it appears to be a plane, is yet undoubtedly incurvated round the centre of the earth. He also assumes to himself the invention of the gunner's quadrant, and often gave shrewd guesses at the event of some untried methods. But as he had not opportunities of being conversant in the practice, and founded his opinions only on speculation, he was condemned by most of the succeeding writers, though often without any sufficient reason. The philosophers of those times also intermeddled in the questions hence arising, and many disputes on motion were set on foot (especially in Italy), which continued till the time of Galileo, and probably gave rise to his celebrated Dialogues on motion. These were published in the year 1638; but in this interval, and before Galileo's doctrine was thoroughly established, many theories of the motion of military projectiles, and many tables of their comparative ranges at different elevations, were published; all of them egregious fallacious, and utterly irreconcileable with the motions of these bodies. Very few of the ancients indeed refrained from indulging themselves in speculations concerning the difference between natural, violent, and mixed motions; although scarce any two of them could agree in their theories.

It is strange, however, that, during all these contests, so few of those who were intruded with the charge of artillery though it worth while to bring these theories to the test of experiment. Mr Robins informs us, in his Preface to the New Principles of artillery, that he had met with no more than four authors who had treated on this subject. The first of these is Collado, who has given the ranges of a falcon carrying a three-pound shot to each point of the gunner's quadrant. But from his numbers it is manifest, that the piece was not charged with its customary allowance of gun-powder. The results of his trials were, that the point-blank shot, or that in which the path of the ball did not sensibly deviate from a right line, extended 268 paces. At an elevation of one point (or 7½ of the gunner's quadrant) the range was 594 paces; at an elevation of two points, 794 paces; at three points, 954 paces; at four, 1010: at five, 1040; and at six, 1053 paces. At the seventh point, the range fell between those of the third and fourth; at the eighth point, it fell between the ranges of the second and third; at the ninth point, it fell between the ranges of the first and second; at the tenth point, it fell between the point-blank distance and that of the first point; and at the eleventh point, its fell very near the piece.—The spaces spoke of by this author are not geometrical ones, but common steps.

The year after Collado's treatise, another appeared on the same subject by one Bourne an Englishman. His elevations were not regulated by the points of the gunner's quadrant, but by degrees; and he ascertains the proportions between the ranges at different elevations and the extent of the point-blank shot. According to him, if the extent of the point-blank shot be represented by r, the range at 5° elevation will be 2r; at 10° it will be 3r, at 15° it will be 4r; at 20° it will be 4½, and the greatest random will be 5½. This last, he tells us, is in a calm day when the piece is elevated to 42°; but according to the strength of the wind, and as it favours or opposes the flight of the shot, it may be from 45° to 360°.—He hath not informed us with what piece he made his trials; though by his proportions it seems to have been a small one. This however ought to have been attended to, as the relation between the extent of different ranges varies extremely according to the velocity and density of the bullet.

After him Eldred and Anderson, both Englishmen, published treatises on this subject. The first published...
G U N N E R Y

Sect. II.

Theory.

Galileo's theory.

In 1638, Galileo, printed his dialogue on motion. In these he pointed out the general laws observed by nature in the production and composition of motion; and he was the first who described the action and effects of gravity on falling bodies. On these principles he determined, that the flight of a cannon shot, or any other projectile, would be in the curve of a parabola, except in as far as it was diverted from that track by the resistance of the air. He has also proposed the means of examining the inequalities which arise from thence, and of discovering what sensible effects that resistance would produce in the motion of a bullet at some given distance from the piece.

Though Galileo had thus shown, that independent of the resistance of the air, all projectiles would, in their flight describe the curve of a parabola; yet those who came after him, seem never to have imagined that it was necessary to consider how far the operations of gunnery were affected by this resistance. The subsequent writers indeed boldly asserted, without making the experiment, that no considerable variation could arise from the resistance of the air in the flight of shells or cannon shot. In this persuasion they supported themselves chiefly by considering the extreme rarity of the air, compared with those dense and ponderous bodies; and at last it became an almost generally established maxim, that the flight of these bodies was nearly in the curve of a parabola.

In 1674, Mr Anderon, abovementioned published his tracts on the nature and effects of the gun, in which he proceeds on the principles of Galileo, and firemoufly afferts, that the flight of all bullets is in the curve of a parabola; undertaking to answer all objections that could be brought to the contrary. The same thing was also undertaken by Mr Blondel, in a tracts published at Paris in 1683; where, after long discussion, the author concludes, that the variations from the air's resistance are so slight as scarcely merit notice. The same subject is treated of in the Philosophical Transactions, No. 216, p. 68, by Dr Halley; and he also, sway'd by the very great disproportion between the density of the air and that of iron or lead, thinks it reasonable to believe, that the opposition of the air to large metal-shot is scarcely discernible; although in small and light shot he owns that it must be accounted for.

But though this hypothesis went on smoothly in speculation; yet Anderon, who made a great number of trials, found it impossible to support it without some new modification. For though it does not appear that he ever examined the comparative ranges of either cannon or musket shot when fired with their usual velocities, yet his experiments on the ranges of shells thrown with small velocities (in comparison of those abovementioned), convinced him that their whole track was not parabolical. But instead of making the proper inferences from hence, and concluding the resistance of the air to be of considerable efficacy, he framed a new hypothesis; which was, that the shell or bullet, at its first discharge, flew to a certain distance in a right line, from the end of which line only it began to describe a parabola. And this right line, which he calls the line of the impulse of the fire, he supposed to be the same in all elevations. Thus, by assigning a proper length to this line of impulse, it was always in his power to reconcile any two shots made at different angles, let them differ as widely as we please to suppose. But this he could not have done with three shots; nor indeed doth he ever tell us the event of his experiments when three ranges were tried at one time.

When Sir Isaac Newton's Principia was published, Laws of he particularly considered the resistance of the air to the air's re-projectiles which moved with small velocities; but as resistance laid; he never had an opportunity of making experiments down by on those which move with such prodigious velocities, he did not imagine that a difference in velocity could make such differences in the resistance as are now found to take place. Sir Isaac found, that, in small velocities, the resistance was increased in the duplicate proportion of the velocities with which the body moved; that is, a body moving with twice the velocity of another of equal magnitude, would meet with four times as much resistance as the first, with thrice the velocity it would meet with nine times the resistance, &c. This principle itself is now found to be erroneous, with regard to military projectiles, though, if it had been properly attended to, the resistance of the air might even from thence have been reckoned much more considerable than was commonly done. So far, however, were those who treated this subject scientifically, from giving a proper allowance for the resistance of the atmosphere, that their theories differed most egregiously from the truth. Huygens alone seems to have attended to this principle; for, in the year 1699, he published a treatise on Gravity, in which he gave an account of some experiments tending to prove, that the track of all projectiles moving with very swift motions was widely different from that of a parabola. The rest of the learned acquiesced in the justness of Galileo's doctrine, and very erroneous calculations concerning the ranges of cannon were accordingly given. Nor was any notice taken of these errors till the year 1716. At that time Mr Reffons, a French officer of artillery, distinguished by the number of sieges at which he had served, by his high military rank, and by his abilities in his profession, gave a memoir to the Royal Academy, of which he was a member, importing, that, although it was agreed, that theory joined with practice did constitute the perfection of every art; yet experience had taught him, that theory was of very little service in the use of mortars: That the works of M. Blondel had jolly enough described the several parabolic lines, according to the different degrees of the elevation of the piece; but that practice had convinced him, there was no theory in the effect of gunpowder; for having endeavoured, with the greatest precision, to point a mortar according to these calculations, he had never been able to establish any solid foundation upon them.

From the history of the academy, it doth not appear that the sentiments of Mr Reffons were at any time controverted, or any reason offered for the failure of the
The theory of projectiles when applied to use. Nothing farther, however, was done till the time of Benjamin Robins, who in 1742 published a treatise, intitled, New Principles of Gunningry, in which he hath treated particularly not only of the resistance of the atmosphere, but almost every thing else relating to the flight of military projectiles, and indeed advanced the theory of gunnery much nearer perfection than ever it was before.

The first thing considered by Mr Robins, and which is indeed the foundation of all other particulars relative to gunnery, is the explosive force of gunpowder. This he determined to be owing to an elastic fluid similar to our atmosphere, having its elastic force greatly increased by the heat. “If a red-hot iron (says he) be included in a receiver, and the receiver be exhausted, and gunpowder be then let fall on the iron, the powder will take fire, and the mercurial gage will suddenly descend upon the explosion; and though it immediately ascends again, it will never rise to the height it first fell to, but will continue depressed by a space proportioned to the quantity of powder which was let fall on the iron. The same proportion likewise takes place when gunpowder is fired in the air: first a small quantity of powder is placed in the upper part of a glass tube, the lower part of which is immersed in water, and the fluid be made to rise near to the top, that only a small portion of air is left in that part where the gunpowder is placed; if in this situation the communication of the upper part of the tube with the external air is closed, and the gunpowder fired, which may be easily done by means of a burning-glass, the water will in this experiment descend upon the explosion, as the quicksilver did in the last; and will always continue depressed below the place at which it flooded before the explosion. The quantity of this depression will be greater if the quantity of powder be increased, or the diameter of the tube be diminished.

When any considerable quantity of gunpowder is fired in an exhausted receiver, by being let fall on a red-hot iron, the mercurial gage instantly descends upon the explosion, and as suddenly ascends again. After a few vibrations, none of which except the first are of any great extent, it seemingly fixes at a point lower than where it flood before the explosion. But even when the gage has acquired this point of apparent rest, it still continues rising for a considerable time, although by such imperceptible degrees, that it can only be discovered by comparing its place at distant intervals: however, it will not always continue to ascend, but will rise and flow, till at last it will be absolutely fixed at a point lower than where the mercury flooded before the explosion. The same circumstances nearly happen, when powder is fired in the upper part of an unexhausted tube, whose lower part is immersed in water.

That the elasticity or preffure of the fluid produced by the firing of gunpowder is, ceteris paribus, directly as its density, may be proved from hence, that if in the same receiver a double quantity of powder be let fall, the mercury will subside twice as much as in the firing of a single quantity. Also the descents of the mercury, when equal quantities of powder are fired in different receivers, are reciprocally as the capacities of those receivers, and consequently as the density of produced fluid in each. But as, in the usual method of trying this experiment, the quantities of powder are so very small that it is difficult to ascertain these proportions with the requisite degree of exactness, I took a large receiver containing about 520 inches, and letting fall at once on the red-hot iron one drachm or the sixteenth part of an ounce avoirdupois of powder, the receiver being first nearly exhausted; the mercury, after the explosion, was subducted two inches exactly, and all the powder had taken fire. Then heating the iron a second time, and exhausting the receiver as before, two drachms were let down at once, which sunk the mercury three inches and three quarters; and a small part of the powder had fallen beside the iron, which (the bottom of the receiver being well) did not fire, and the quantity which thus escaped did appear to be nearly sufficient, had it fallen on the iron, to have sunk the mercury a quarter of an inch more; in which case the two descents, viz. two inches and four inches, would have been accurately in the proportion of the respective quantities of powder; from which proportion, as it was, they very little varied.

As different kinds of powder produce different quantities of this fluid, in proportion to their different degrees of goodness, before any definite determination of this kind can take place, it is necessary to ascertain the particular species of powder that is proposed to be used. (Here Mr Robins determines in all his experiments to make use of government-powder, as consisting of a certain and invariable proportion of materials, and therefore preferable to such kinds as are made according to the fancy of private persons.)

"This being settled, we must further premise the two principles: 1. That the elasticity of this fluid increases by heat and diminishes by cold, in the same manner as that of the air; 2. That the density of this fluid, and consequently its weight, is the same with the weight of an equal bulk of air, having the same elasticity and the same temperature. Now, from the last experiment it appears, that \(\frac{7}{4} \) of an ounce avoirdupois or about 27 grains Troy of powder, sunk the gage, on its explosion, two inches; and the mercury in the barometer standing at near 30 inches, \(\frac{7}{4} \) ths of an ounce avoirdupois, or 410 grains Troy, would have filled the receiver with a fluid whose elasticity would have been equal to the whole preffure of the atmosphere, or the same with the elasticity of the air we breathe; and the content of the receiver being about 520 cubic inches, it follows, that \(\frac{7}{4} \) ths of an ounce of powder will produce 520 cubic inches of a fluid possessing the same degree of elasticity with the common air; whereas an ounce of powder will produce near 575 cubic inches of such a fluid.

"But in order to ascertain the density of this fluid, we must consider what part of its elasticity, at the time of this determination, was owing to the heat it received from the included hot-iron and the warm receiver. Now the general heat of the receiver being manifestly less than that of boiling water, which is known to create the elasticity of the air to somewhat more than \(\frac{1}{4} \) of its augmented quantity; I collect from hence and other circumstances, that the augmentation of elasticity from this cause was about \(\frac{1}{4} \) of the whole: that is, if the fluid arising from the explosion had been reduced to the temperature of the external air, the defect of the
the mercurial gauge, instead of two inches, would have been only 1 1/2 inch; whence 575, reduced in the proportion of five to four, become 460; and this last number represents the cubic inches of an elastic fluid equal in density and elasticity with common air, which are produced from the explosion of 1 ounce avoidupolfe of gun-powder; the weight of which quantity of fluid, according to the usual estimation of the weight of air, is 131 grains; whence the weight of this fluid is 132 or 133, this nearly of the weight of the generating powder.

The ratio of the bulk of gunpowder to the bulk of this fluid may be determined from considering that 17 drams avoided so of powder fill two cubic inches, if the powder be well shook together; therefore augmenting the number last found in the proportion of 16 to 17, the resulting term 488 is the number of cubic inches of an elastic fluid, equal in density with the air produced from two cubic inches of powder; whence the ratio of the respective bulk of the powder, and of the fluid produced from it, is in round numbers as 1 to 244.

This calculation was afterwards justified by experiments.

If this fluid, instead of expanding when the powder was fired, had been confined in the same space which the powder filled before the explosion then it would have had, in that confined state, a degree of elasticity 244 times greater than that of common air; and this independent of the great augmentation this elasticity would receive from the action of the fire in that instant.

Hence, then, we are certain, that any quantity of powder, fired in a confined space, which it adequately fills, exerts, at the instant of its explosion, against the sides of the vessel containing it, and the bodies it impels before it, a force at least 244 times greater than the elasticity of the common air, or, which is the same thing than the pressure of the atmosphere; and this without conferring the great addition which this force will receive from the violent degree of heat with which it is affected at that time.

To determine how far the elasticity of air is augmented when heated to the extremity of red-hot iron, I took a piece of a musket-barrel about six inches in length, and ordered one end to be closed up entirely; but the other end was drawn out conically, and finished in an aperture of about ½ of an inch in diameter. The tube thus fitted, was heated to the extremity of a red heat in a smith's forge; and was then immersed with its aperture downwards in a bucket of water, and kept there till it was cool: after which it was taken out carefully, and the water which had entered it in cooling was exactly weighed. The heat given to the tube at each time, was the beginning of what workmen call a white heat; and to prevent the rushing in of the aqueous vapour at the immersion, which would otherwise drive out great part of the air, and render the experiment fallacious, I had an iron wire filed tapering, so as to fit the aperture of the tube, and with this I always stopped it up before it was taken from the fire, letting the wire remain in till the whole was cool, when, removing it, the due quantity of water would enter. The weight of the water thus taken in at three different trials was 610 grains, 595 grains, and 600 grains, respectively. The content of the whole cavity of the tube was 796 grains of water; whence the spaces remaining unfilled in these three experiments were 186, 201, and 196 grains respectively. These spaces undoubtedly contained all the air which, when the tube was red-hot, extended through its whole length, and that the elasitic force by which the air contained in this tube, when heated to the extreme heat of red-hot iron, was to the elasiticity of the same air, when reduced to the temperature of the ambient atmosphere, as the whole capacity of the tube to the respective spaces taken up by the cooled air; that is, as 796 to 186, 201, 196: or taking the medium of these three trials, as 796 to 194.

As air and this fluid appear to be equally affected by heat and cold, and consequently have their elasitcites equally augmented by the addition of equal degrees of heat to each; if we suppose the heat with which the flame of fired powder is endowed to be the same with that of the extreme heat of red-hot iron, then the elasiticity of the fluid generated by the explosion, being augmented in the extremity of this heat in the ratio of 194: to 796, it follows, that as 244 be augmented in this ratio, the resulting number, which is 999, will determine how many times the elasiticity of the flame of fired powder exceeds the elasiticity of common air, supposing it to be confined in the same space which the powder filled before it was fired. Hence then the absolute quantity of the pressure exerted by gunpowder at the moment of its explosion may be ascertained; for, since the fluid then generated has an elasiticity of 999, or in round numbers 1000 times greater than that of the atmospheric, and since common air by its elasiticity exerts a pressure on any given surface equal to the weight of the incumbent atmosphere with which it is in equilibrium, the pressure exerted by fired powder before it dilates itself is 1000 times greater than the pressure of the atmosphere; and consequently the quantity of this force, on a surface of an inch square, amounts to above six ton weight; which force, however, in the proportion of the state of the fire, ever, diminishes as the fluid dilates itself. But though we have here supposed that the heat of gunpowder when fired in any considerable quantity, is the same with iron heated to the extremity of red heat, or to the beginning of a white heat, yet it cannot be doubted but that the fire produced in the explosion is somewhat varied (like all other fires) by a greater or lesser quantity of fuel; and it may be presumed, that, according to the quantity of powder fired together, the flame may have all the different degrees, from a languid red heat to that sufficient for the vitrification of metals. But as the quantity of powder requisite for the production of this last mentioned heat, is certainly greater than what is ever fired together for any military purpose, we cannot be far from our scope, if we suppose the heat of such quantities as are usually fired to be nearly the same with that of red-hot iron; allowing a gradual augmentation to this heat in larger quantities and diminishing it when the quantities are very small."

Havmg.
Having thus determined the force of the gunpowder, Mr. Robins next proceeds to determine the velocity with which the ball is discharged. The solution of this problem depends on the two following principles. 1. That the action of the powder on the bullet ceases as soon as the bullet is got out of the piece. 2. That all the powder of the charge is fired and converted into elastic fluid before the bullet is sensibly moved from its place.

"The first of these (says Mr. Robins) will appear manifest, when it is considered how suddenly the flame will extend itself on every side, by its own elaticity, when it is once got out of the mouth of the piece; for by this means its force will then be dissipated, and the bullet no longer sensibly affected by it."

"The second principle is indeed less obvious, being contrary to the general opinion of almost all writers on this subject. It might however be sufficient for the proof of this position, to observe the prodigious compression of the flame in the chamber of the piece. Tho' who attend to this circumstance, and to the easy passage of the flame through the intervals of the grains, may soon satisfy themselves, that no one grain contained in that chamber can continue for any time uninfamed, when thus surrounded and pressed by such an active fire. However, not to rely on mere speculation in a matter of so much consequence, I confidered, that if part only of the powder is fired, and that successively; then by laying a greater weight before the charge (suppose two or three bullets instead of one), a greater quantity of powder would necessarily be fired, since a heavier weight would be a longer time in passing through the barrel. Whence it should follow, that two or three bullets would be impelled by a much greater force than one only. But the contrary to this appears by experiment; for firing one, two, and three bullets laid contiguous to each other with the same charge respectively, I have found that their velocities were not much different from the reciprocal of their subduplicate quantities of matter; that is, if a given charge would communicate to one bullet a velocity of 1700 feet in a second, the same charge would communicate to two bullets a velocity from 1230 to 1300 feet in a second, and to three bullets a velocity from 1050 to 1110 feet in the same time. From hence it appears, that, whether a piece is loaded with a greater or less weight of bullet, the action is nearly the same; since all mathematicians know, that if bodies containing different quantities of matter are successively impelled through the same space by the same power acting with a determined force at each point of that space; then the velocities given to these different bodies will be reciprocally in the subduplicate ratio of their quantities of matter. The excess of the velocities of the two and three bullets above what they ought to have been by this rule (which are that of 1200 and 980 feet in a second), undoubtedly arises from the flame, which, escaping by the side of the first bullet, acts on the surface of the second and third.

"Now, this excess has in many experiments been imperceptible, and the velocities have been reciprocally in the subduplicate ratios of the number of bullets, to sufficient exactness; and where this error has been greater, it has never arisen to an eighth part of the whole; but if the common opinion was true, that a small part only of the powder fires at first, and other parts of it successively as the bullet passes through the barrel, and that a considerable part of it is often blown out of the piece without firing at all; then the velocity which three bullets received from the explosion ought to have been much greater than we have found it to be.—But the truth of this second postulate more fully appears from those experiments, by which it is shown, that the velocities of bullets may be ascertained to the same exactness when they are acted on through a barrel of four inches in length only, as when they are discharged from one of four feet.

"With respect to the grains of powder which are often blown out unfired, and which are always urged as a proof of the gradual firing of the charge, I believe Diego Uffano, a person of great experience in the art of gunnery, has given the true reason for this accident; which is, that some small part of the charge is often not ramm'd up with the rest, but is left in the piece before the wad, and is by this means expelled by the blast of air before the fire can reach it."

13. Instantaneous firing of powder.

14. Why some powder is blown out of the mouth of a cannon without being fired.
consequently the line LP will determine a line proportion-
al to the uniform force of gravity in every point;
whilst the hyperbola FHQB determines in like manner
such lines as are proportional to the impelling
force of the powder in every point; whence by the
39th Prop. of lib. 1. of Sir Isaac Newton’s Principia,
the areas FLPB and FHQB are in the duplicate
proportion of the velocities which the ball would acquire
when aed upon by its own gravity through the space
FB, and when impelled through the same space by the
force of the powder. But since the ratio of AF to
AB and the ratio of FH to FL are known, the ratio
of the area FLPB to the area FHQB is known; and
therefore its subduplicate. And since the line FB is gi-
gen in magnitude, the velocity which a heavy body
would acquire when impelled through this line by its
own gravity is known; being no other than the velo-
city it would acquire by falling through a space equal
to that line: find then another velocity to which this
latter mentioned velocity bears the given ratio of the sub-
duplicate of the area FLPB to the area FHQB; and
this velocity thus found is the velocity the ban will ac­
quire when impelled through the space FB by the ac­
tion of the inflated powder.

Now to give an example of this: Let us suppose
AB, the length of the cylinder, to be 45 inches, its di-
ameter DC, or rather the diameter of the ball, to be
4ths of an inch; and AF, the extent of the powder,
to be 21 inches; to determine the velocity which
will be communicated to a leaden ball by the explo-
sion, supposing the bullet to be laid at first with its
surface contiguous to the powder.

By the theory we have laid down, it appears,
that at the first instant of the explosion the flame will
exert, on the bullet lying close to it, a force 1000
times greater than the pressure of the atmosphere.
The medium pressure of the atmosphere is reckoned equal
to a column of water 33 feet in height; whence, lead
being to water as 11.245 to 1, this pressure will be
equal to that of a column of lead 349 inches in height.
Multiplying this by 1000, therefore, a column of lead
34900 inches (upwards of half a mile) in height,
would produce a pressure on the bullet equal to what
is exerted by the powder in the first instant of the ex-
plosion; and the leaden ball being 4ths of an inch in
diameter, and consequently equal to a cylinder of lead
of the same base half an inch in height, the pressure at
first acting on it will be equal to 34900x2, or 69800
times its weight: whence FL to FH as 1 to 69800;
and FB to FA as 45—21; or 42 21; that is,
as 339 to 21; whence the rectangle FLPB is to the re-
cangle AFHS as 339 to 21x69800, that is, as 1 to 4324. —And from the known application of the loge-
theories to the mensuration of the hyperbolic spaces it
follows, that the rectangle AFHS is to the area FHQB
as 43,429, &c. is to the tabular logarithm of AB.

In order to compare the velocities communicated
to bullets by the explosion, with the velocities result-
ing from the theory by computation, it is necessary
that the actual velocities with which bullets move
should be discovered. The only methods hitherto prac-
ticed for this purpose, have been either by observing
the time of the flight of a shot through a given space,
or by measuring the range of a shot at a given elevation
and thence computing, on the parabolic hypo-
thesis,
Theory. What degree of velocity would produce this range.—The first method labours under this insurmountable difficulty, that the velocities of these bodies are often so swift, and consequently the time observed is so short that an imperceptible error in that time may occasion an error in the velocity thus found of 2, 3, 4, 5, or 600 feet, in a second. The other method is so fallacious, by reason of the resistance of the atmosphere (to which inequality the first is also liable), that the velocities thus assigned may not perhaps be the part of the actual velocities sought.

The simplest method of determining this velocity is by means of the instrument represented fig. 1, where ABCD represents the body of the machine composed of the three poles B, C, D, spreading at bottom, and joining together at the top A; being the same with what is vulgarly used in lifting and weighing very heavy bodies, and is called by workmen the triangles. On two of these poles, towards their tops, are screwed on the fockets RS; and on these fockets the pendulum EFGHK is hung by means of its cross-piece EF, which becomes its axis of suspension, and on which it must be made to vibrate with great freedom. The body of this pendulum is made of iron, having a broad part at bottom, and its lower part is covered with a thick piece of wood GKI, which is fastened to the iron by screws. Something lower than the bottom of the pendulum there is a brace OP, joining the two poles to which the pendulum is suspended; and to this brace there is fastened a contrivance MNU, made with two edges of steel, bearing on each other in the line UN, something in the manner of a drawing-pen; the strength with which these edges press on each other being diminished or increased at pleasure by means of a screw Z going through the upper piece. There is fastened at the bottom of the pendulum a narrow ribbon LN, which passes between these steel edges, and which afterwards, by means of an opening cut in the lower piece of steel, hangs loosely down, as at W.

This instrument thus fitted, if the weight of the pendulum be known, and likewise the respective distances of its centre of gravity, and of its centre of oscillation from its axis of suspension, it will thence be known what motion will be communicated to this pendulum by the percussion of a body of a known weight moving with a known degree of celerity, and striking it in a given point; that is, if the pendulum be supposed at rest before the percussion, it will be known what vibration it ought to make in consequence of such a determined blow; and, on the contrary, if the pendulum, being at rest, is struck by a body of a known weight, and the vibration which the pendulum makes after the blow is known, the velocity of the striking body may from thence be determined.

Hence then if a bullet of a known weight strikes the pendulum, and the vibration which the pendulum makes after the blow is known, the velocity of the striking body may thence be determined.

Now the extent of the vibration made by the pendulum after the blow, may be measured to great accuracy by the ribbon LN. But let the pendulum be so regulated by the screw Z, that the motion of the ribbon between them may be free and easy, though with some minute resistance; then setting the pendulum at rest, let the part LN between the pendulum and its edges be drawn straight, but not strained, and fix a pin in that part of the ribbon which is then contiguous to the edges: let now a ball impinge on the pendulum; then the pendulum swinging back will draw out the ribbon to the just extent of its vibration, which will consequently be determined by the interval on the ribbon between the edges LN and the place of the pin.

The weight of the whole pendulum, wood and all, was 651, 3 oz. its centre of gravity was 32 inches distant from its axis of suspension, and 200 of its small weights were performed in the time of 253 seconds; whence its centre of oscillation (determined from hence) is 62; inches distant from that axis. The centre of the piece of wood GKI is distant from the same axis 66 inches.

In the compound ratio of 65 to 62, and 66 to 62, take the quantity of matter of the pendulum to a 4th quantity, which will be 42 lb. 2 oz. Now geometers will know, that if the blow be struck on the centre of the piece of wood GKI, the pendulum will resist to the stroke in the manner as if this last quantity of matter only (42 lb. 2 oz.) was concentrated in that point, and the rest of the pendulum was taken away: whence, supposing the weight of the bullet impinging in that point to be the 4th of a pound, or the 4th of this quantity of matter nearly, the velocity of the point of oscillation after the stroke will, by the laws observed in the congress of such bodies as rebound not from each other, be the 4th of the velocity the bullet moved with before the stroke; whence the velocity of this point of oscillation after the stroke being ascertained, that multiplied by 305 will give the velocity with which the ball impinged.

But the velocity of the point of oscillation after the stroke is easily deduced from the chord of the arch, through which it ascends by the blow; for it is a well known proposition, that all pendulous bodies ascend to the same height by their vibratory motion as they would do, if they were projected directly upwards from their lowest point, with the same velocity they have in that point: wherefore, if the verfed line of the ascending arch be found (which is easily determined from the chord and radius being given), this verfed line is the perpendicular height to which a body projected upwards with the velocity of the point of oscillation would arrive; and consequently what that velocity is, can be easily computed by the common theory of falling bodies.

For instance the chord of the arch, described by the ascent of the pendulum after the stroke measured on the ribbon, has been sometimes 17½ inches; the distance of the ribbon from the axis of suspension is 7½ inches; whence reducing 17½ in the ratio of 7½ to 66, the resuling number, which is nearly 16 inches, will be the chord of the arch through which the centre of the board GKI ascended after the stroke; now the verfed line of the arch, whose chord is 16 inches, and its radius 66, is 3,93929; and the velocity which would carry a body to this height, or, which is the same thing, the velocity which a body would acquire by descending through this space, is nearly that of 3½ feet in 1/14.
GUNNERY.

Section II.

Theory.

"To determine then the velocity with which the bullet impinging on the centre of the wood, when the chord of the arch described by the ascent of the pendulum, in consequence of the blow, was 17½ inches measured on the ribbon, no more is necessary than to multiply 3½ by 505, and the resulting number 1641 will be the feet which the bullet would describe in 10, if it moved with the velocity it had at the moment of its percussion: for the velocity of the point of the pendulum, on which the bullet struck, we have just now determined to be that of 3½ feet in 10; and we have before shown, that this is the 17th of the velocity of the bullet. If then a bullet weighing ½th of a pound strikes the pendulum in the centre of the wood GKH, and the relation drawn out 17½ inches by the blow; the velocity of the bullet is that of 1641 feet in 10. And since the length the ribbon is drawn is always nearly the chord of the arch described by the ascent, (it being placed so as to differ insensibly from those chords which most frequently occur), and these chords are known to be in the proportion of the velocities of the pendulum acquired from the stroke; it follows, that the proportion between the lengths of ribbon drawn out at different times, will be the same with that of the velocities of the impinging bullets; and consequently, by the proportion of these lengths of ribbon to 17½, the proportion of the velocity with which the bullets impinge, to the known velocity of 1641 feet in 10, will be determined.

"Hence then is shown in general how the velocities of all kinds may be found out by means of this instrument; but that those who may be disposed to try these experiments may not have unforeseen difficulties to struggle with, we shall here subjoin a few observations, which it will be necessary for them to attend to, both to secure success to their trials and safety to their persons.

"And first, that they may not conceive the piece of wood GKH to be an unnecessary part of the machine, we must inform them, that if a bullet impelled by a full charge of powder should strike directly on the iron, the bullet would be beaten into shivers by the stroke, and these shivers will rebound back with such violence, as to bury themselves in any wood they chance to light on, as I have found by hazardous experience; and besides the danger, the pendulum will not in this instance ascertain the velocity of the bullet, because the velocity with which the parts of it rebound is unknown.

"The weight of the pendulum, and the thickness of the wood, must be in some measure proportioned to the size of the bullets which are used. A pendulum of the weight here described will do very well for all bullets under three or four ounces, if the thickness of the board be increased to seven or eight inches for the heaviest bullets; beech is the toughest and properest wood for this purpose.

"It is hazardous standing on the side of the pendulum, unless the board be so thick, that the greatest part of the bullet's force is lost before it comes at the iron; for if it strikes the iron with violence, the shivers of lead, which cannot return back through the wood, will force themselves out between the wood and iron, and will fly to a considerable distance.

"As there is no effectual way of hardening the wood to the iron but by fowings, the heads of which must come through the board; the bullets will sometimes light on those fowings, from whence the shivers will differ from themselves on every side.

"When in these experiments so small a quantity of powder is used, as will not give to the bullet a velocity of more than 400 or 500 feet in 10; the bullet will not stick in the wood, but will rebound from it entire, and (if the wood be of a very hard texture) with a very considerable velocity. Indeed I have never examined any of the bullets which have thus rebounded, but I have found them indented by the bodies they have struck against in their rebound.

"To avoid then these dangers, to the braving of which in philosophical researches no honour is annexed; it will be convenient to fix whatsoever barrel is used, on a strong heavy carriage, and to fire it with a little slow match. Let the barrel too be very well fortified in all its length; for no barrel (I speak of musket barrels) forged with the usual dimensions will bear many of the experiments without bursting. The barrel I have most relied on, and which I procured to be made on purpose, is nearly as thick at the muzzle as at the breech; that is, it has in each place nearly the diameter of its bore in thickness of metal.

"The powder used in these experiments should be exactly weighed: and that no part of it be scattered in the barrel, the piece must be charged with a ladle in the same manner as is practised with cannon; the wad should be of tow of the same weight each time, and no more than is just necessary to confine the powder in its proper place: the length of the cavity left behind the ball should be determined each time with exactness; for the increasing or diminishing that space will vary the velocity of the shot, although the bullet and quantity of powder be not changed. The distance of the mouth of the piece from the pendulum ought to be such, that the impulse of the flame may not act on the pendulum; this will be prevented in a common barrel charged with a pound of powder, if it be at the distance of 16 or 18 feet: in larger charges the impulse is sensible farther off; I have found it to extend to above 25 feet; however, between 25 and 18 feet is the distance I have usually chosen.

"With this instrument, or others similar to it, Mr. Account of Robins made a great number of experiments on bar Mr. Roberts of different lengths, and with different charges of gun powder. He hath given us the results of 61 of these, with many others, and having compared the actual velocities with the computed ones, his theory appears to have come as near the truth as could well be expected. In seven of the experiments there was a perfect coincidence; the charges of powder being fix or twelve pennyweights; the barrels 4½, 24, 32, and 7½ inches in length. The diameter of the first (marked A) was ½th of an inch; of the second (B) was the same; and of D, 83 of an inch. In the rest of the experiments, another barrel (C) was used, whole length was 12.575 inches, and the diameter of its bore 3½ inches. In 14 more of the experiments, the difference between the length of the chord of the pendulum's arch shown by the theory and the actual experiment was ½th of an inch over or under. This showed an error in the theory varying according to the different lengths of the chord from ½ to ⅞ of the whole; the charges of powder were..."
GUNNERY.

Sect. II.

The error was

From these experiments Mr. Robins deduces the following conclusions: "The variety of these experiments, and the accuracy with which they correspond to the theory, leave us no room to doubt of its certainty. This theory, as here established, supposes that, in the firing of gunpowder, about $\frac{1}{4}$ of its substance is converted by the sudden inflammation into a permanently elastic fluid, whose elasticity, in proportion to its heat and density, is the same with that of common air in the like circumstances; it farther supposes, that all the force exerted by gunpowder in its most violent operations, is no more than the action of the elasticity of the fluid thus generated; and these principles enable us to determine the velocities of bullets impelled from fire-arms of all kinds; and are fully sufficient for all purposes where the force of gunpowder is to be estimated.

"From this theory many deductions may be made of the greatest consequence to the practical part of gunnery. From hence the thickness of a piece, which will enable it to confine, without bursting, any given charge of powder, is easily determined, since the effort of the powder is known. From hence appears the inconclusiveness of what some modern authors have advanced, relating to the advantages of particular forms of chambers for mortars and cannon; for all their laboured speculations on this head are evidently founded on very erroneous opinions about the action of fired powder. From this theory we are taught the necessity of leaving the same space behind the bullet when we would, by the same quantity of powder, communicate to it an equal degree of velocity; since, on the principles already laid down, it follows, that the same powder has a greater or less degree of elasticity, according to the different spaces it occupies. The method which I have always practised for this purpose has been by marking the rammer; and this is a maxim which ought not to be dispensed with when cannon are fired at an elevation, particularly in those called by the French batteries à ricochet.

"From the continued action of the powder, and its manner of expanding described in this theory, and the length and weight of the piece, one of the most essential circumstances in the well directing of artillery may be easily ascertained. All practitioners are agreed, that no shot can be depended on, unless the piece be placed on a solid platform; for if the platform shakes with the first impulse of the powder, it is impossible but the piece must also shake which will alter its direction, and render the shot uncertain. To prevent this accident, the platform is usually made extremely firm to a considerable depth backwards; so that the piece is not only well supported in the beginning of its motion, but likewise through a great part of its recoil. However, it is sufficiently obvious, that when the bullet is separated from the piece, it can be no longer affected by the trembling of the piece or platform; and, by a very easy computation, it will be found, that the bullet will be out of the piece before the latter hath recoiled half; whereas, if the platform be sufficiently solid at the beginning of the recoil, the remaining part of it may be much lighter; and hence a more compendious method of constructing platforms may be found out.

"From this theory also it appears how greatly these authors have been mistaken, who have attributed the force of gunpowder, or at least a considerable part of it, to the action of the air contained either in the powder or between the intervals of the grains; for they have supposed that air to exist in its natural elastic state, and to receive all its addition of force from the heat of the explosion. But from what hath been already delivered concerning the increase of the air's elasticity by heat, we may conclude that the heat of the explosion cannot augment this elasticity to five times its common quantity; consequently the force arising from this cause only cannot amount to more than the 200th part of the real force exerted on the occasion.

"If the whole substance of the powder was converted into an elastic fluid at the instant of the explosion, then from the known elasticity of this fluid affixed by our theory, and its known density, we could easily determine the velocity with which it would begin to expand, and could thence trace out its future augmentations in its progress through the barrel; but as we have shown that the elastic fluid, in which the activity of gunpowder consists, is only $\frac{1}{4}$ of the substance of the powder, the remaining $\frac{3}{4}$ is, in the explosion, be mixed with the elastic part, and will by its weight retard the activity of the explosion; and yet they will not be so completely united as to move with one common motion; but the unelastic part will be more accelerated than the rest, and some will not even be carried out of the barrel, as appears by the considerable quantity of unelastic matter which adheres to the inside of all fire-arms after they have been used.---These inequalities in the expansive motion of the flame oblige us to recur to experiments for its accurate determination.

"The experiments made use of for this purpose were of two kinds. The first was made by charging the barrel A with 19 pennyweights of powder, and a small
small wad of tow only: and then placing its mouth 19 inches from the centre of the pendulum. On firing it in this situation, the impulse of the flame made it pass through an arch whose chord was 13.3 inches, whence, if the whole substance of the powder was supposed to strike against the pendulum, and each part to strike with the same velocity, that common velocity must have been at the rate of about 2650 feet in a second.—But as some part of the velocity of the flame was lost in passing through 19 inches of air: I made the remaining experiments in a manner not liable to this inconvenience.

I fixed the barrel A on the pendulum, so that its axis might be both horizontal and also perpendicular to the plane HK; or, which is the same thing, that it might be in the plane of the pendulum's vibration: the height of the axis of the piece above the centre of the pendulum was six inches; and the weight of the piece, and of the iron that fastened it, was 12 lb. The barrel in this situation being charged with 12 penny-weights of powder, without either ball or wad, only put together with the rammer; on the discharge the pendulum ascended through an arch whose chord was 10 inches, or reduced to an equivalent blow in the centre of the pendulum, supposing the barrel away, it would be 14.4 inches nearly.—The same experiment being repeated, the chord of the ascending arch was 10.1 inches, which reduced to the centre, is 14.6 inches.

To determine what difference of velocity there was in the different parts of the vapour, I loaded the piece again with 12 penny-weights and rammed it down with a wad of tow, weighing one penny-weight. Now, I conceived that this wad being very light, would presently acquire that velocity with which the elastic part of the fluid would expand itself when uncomprised; and I accordingly found, that the chord of the ascending arch was by this means increased to 12 inches, or at the centre to 17.2; whence, as the medium of the other two experiments is 14.5, the pendulum ascended through an arch 2.8 inches longer, by the additional motion of one penny-weight of matter, moving with the velocity of the swiftest part of the vapour; and consequently the velocity with which this penny-weight of matter moved, was that of about 7000 feet in a second.

It will perhaps be objected to this determination, that the augmentation of the arch through which the pendulum vibrated in this case was not all of it owing to the quantity of motion given to the wad, but part of it was produced by the confinement of the powder, and the greater quantity thereby fired. But if it were true that a part only of the powder fired when there was no wad, it would not happen that in firing different quantities of powder without a wad the chord would increase and decrease nearly in the ratio of these quantities; which yet I have found it to do: for with nine pennyweights that chord was 7.3 inches, which with 12 pennyweights we have seen was only 10, and 10.1 inches; and even with three pennyweights the chord was two inches; deficient from this proportion by 5 only; for which defect too other valid reasons are to be ascribed.

And there is still a more convincing proof that all the powder is fired, although no wad be placed before the charge, which is, that the part of the recoil arising from the expansion of powder alone is found to be no greater when it impuls a leaden bullet before it than when the same quantity is fired without any wad to confine it. We have seen that the chord of the arch through which the pendulum rose from the expansive force of the powder alone is 10, or 10.1; and the chord of that arch, when the piece was charged in the customary manner with a bullet and wad, I found to be the first time 22.1, and the second 22.4, or at a medium 22.36. Now the impulse of the ball and wad, if they were supposed to strike the pendulum in the same place in which the barrel was suspended, with the velocity they had acquired at the mouth of the piece, would drive it through an arch whose chord would be about 12.3; as is known from the weight of the pendulum, the weight and position of the barrel, and the velocity of the bullet determined by our former experiments: whence, subtracting this number 12.3 from 22.36, the remainder 10.26 is nearly the chord of the arch which the pendulum would have ascended through from the expansion of the powder alone with a bullet laid before it. And this number, 10.26, differs but little from 10.1, which we above found to the chord of the ascending arch, when the same quantity of powder expanded itself freely without either bullet or wad before it.

Again, that this velocity of 7000 feet in a second is not much beyond that most active part of the flame acquires in expanding, is evinced from hence, that in some experiments a ball has been found to be discharged with a velocity of 2400 feet in a second: and yet it appeared not that the action of the powder was at all diminished on account of this immense celerity: consequently the degree of swiftness with which in this instance, the powder followed the ball without losing any part of its pressure, must have been much more of what the powder alone would have expanded with, had not the ball been there.

From these determinations may be deduced the force of retardation; since their action depends entirely on the impulse of the flame: and it appears that a quantity of powder properly dispersed in such a machine, may produce as violent an effect as a bullet of twice its weight, moving with a velocity of 1400 or 1500 feet in a second.

In many of the experiments already recited, the ball was not laid immediately contiguous to the powder, but at a small distance, amounting, at the utmost, only to an inch and a half. In these cases the greatest velocity when laid at a distance from the powder, being as 12.18. or 24 inches, we cannot then apply to this ball the same principles which may be applied to those laid in contact, or nearly so, with the powder: for when the surface of the fired powder is not confined by a heavy body, the flame dilates itself with a velocity far exceeding that which it can communicate to a bullet by its continued pressure: consequently, as at the distance of 12, 18, or 24 inches, the powder will have acquired a considerable degree of this velocity of expansion, the first motion of the ball will not be produced by the continual pressure of the powder, but by the actual percussion of the flame.
flame; and it will therefore begin to move with a quantity of motion proportioned to the quantity of this flame, and the velocities of its respective parts.

From hence then it follows, that the velocity of the ball, laid at a considerable distance before the charge ought to be greater than what would be communicated to it by the pressure of the powder acting in the manner already mentioned; and this deduction from our theory we have confirmed by manifold experience; by which we have found, that a ball laid in the barrel A, with its hinder part 17 inches from its breech, and impelled by 12 pennyweights of powder, has acquired a velocity of about 1400 feet in a second; when, if it had been acted on by the pressure of the flame only, it would not have acquired a velocity of 1200 feet in a second. The same we have found to hold true in all other greater distances (and also in lesser, though not in the same degree), and in all quantities of powder: and we have likewise found, that these effects nearly correspond with what has been already laid down about the velocity of expansion and the elastic and unelastic parts of the flame.

From hence too arises another consideration of great consequence in the practice of gunnery; which is, that no bullet should at any time be placed at a considerable distance before the charge, unless the piece is extremely well fortified; for a moderate charge of powder, when it has expanded itself through the vacant space, and reaches the ball, will, by the velocity each part has acquired, accumulate itself behind the ball, and thereby be condensed prodigiously; whence if the barrel be not extremely firm in that part, it must by means of this reinforced elasticity, infalubly burst. The truth of this reasoning I have experienced in an exceeding good Tower-musket, forged of very tough iron; for charging it with 12 pennyweights of powder, and placing the ball 16 inches from the breech, on firing it, the part of the barrel just behind the barrel was swelled out to double its diameter like a blown bladder, and two large pieces of two inches long were burst out of it.

Having seen that the entire motion of a bullet laid at a considerable distance from the charge, is acquired by two different methods in which the powder acts on it: the first being the percussion of the parts of the flame with the velocity they had respectively acquired by expanding, the second the continued pressure of the flame through the remaining part of the barrel; I endeavoured to separate these different actions, and retain that only which arose from the continued pressure of the flame. For this purpose I no longer placed the powder at the breech, from whence it would have full scope for its expansion; but I scattered it as uniformly as I could through the whole cavity left behind the bullet; imagining that by this means the progressive velocity of the flame in each part would be prevented by the expansion of the neighboring parts; and I found, that the ball being laid 11 inches from the breech, its velocity, instead of 1400 feet in a second, which it acquired in the last experiments, was now no more than 1150 feet in the second, which is 100 feet short of what according to the theory should arise from the continued pressure of the powder only.

The reason of this deficiency, was doubtless, the intense motion of the flame; for the ascent of the powder thus distributed through so much larger a space than it could fill, must have produced many reverberations and pulsations of the flame; and from these internal agitations of the fluid, its pressure on the containing surface will (as is the cause of all other fluids) be considerably diminished; and in order to avoid this irregularity, in all other experiments I took care to have the powder closely confined in so small a space as possible, even when the bullet lay at some little distance from it.

With regard to the resistance of the air, which so remarkably affects all military projectiles, it is necessary to premise, that the greatest part of authors have established it as a certain rule, that while the body moves in the flame medium, it is always resisted in the duplicate proportion of its velocity; and, if the resisted body move in one part of its track with three times the velocity with which it moved in some other part, then its resistance to the greater velocity will be nine times the resistance to the lesser. If the velocity in one place be four times greater than in another, the resistance of the fluid will be 16 times greater in the first than in the second, &c. This rule, however, though pretty near the truth when the velocities are confined within certain limits, is excessively erroneous when applied to military projectiles, where such resistances often occur as could scarcely be effected, on the commonly received principles, even by a treble augmentation of its density.

By means of the machine already described, I have it in my power to determine the velocity with which a ball moves in any part of its track, provided I can direct the piece in such a manner as to cause the bullet to impinge on a pendulum placed in that part: and therefore charging a musket-barrel three times successively with a leaden ball ⅓ of an inch in diameter, and about half its weight of powder; and taking such precaution in weighing of the powder and placing it, that I was assured by many previous trials, that the velocity of the ball could not differ by 20 feet in a second from its medium quantity; I fired it against the pendulum placed at 25, 75, and 125 feet distance from the mouth of the piece respectively; and I found that it impinged against the pendulum, in the first case, with a velocity of 1670 feet in a second; in the second case, with a velocity of 1550 feet in a second; and in the third case, with a velocity of 1425 feet in a second; fo that, in passing through 50 feet of air, the bullet lost a velocity of 120 or 125 feet in a second; and the time of its passing through that space being about $\frac{5}{4}$ or $\frac{7}{8}$ of a second, the medium quantity of resistance must, in these instances, have been about 120 times the weight of the ball; which (as the ball was nearly $\frac{1}{4}$ of a pound) amounts to about 10 lb. avoirdupois.

Now, if a computation be made according to the method laid down for compressed fluids in the 38th proposition of Newton's "Principia," supposing the weight of water to that of air as 850 to 1, it will be found that the resistance to a globe of ⅞ of an inch diameter, moving with a velocity of about 1600 feet in a second, will not, on these principles amount to any more than 4½ lb. avoirdupois; whence, as we know that the rules contained in that proposition are very
Sec. II.

G U N N E R Y.

Theory. very accurate with regard to flow motions, we may hence conclude, that the resistance of the air in flow motions is less than in that of swift motions, in the ratio of 4: to 1; a proportion between that of 1 to 2, and 1 to 3.

“Again, I charged the same piece a number of times with equal quantities of powder, and balls of the same weight; taking all possible care to give to every shot an equal velocity; and, firing three times against the pendulum placed only 25 feet from the month of the piece, the medium of the velocities with which the ball impinged was nearly that of 1690 feet in a second: then removing the piece 175 feet from the pendulum, I found, taking the medium of five shots, that the velocity with which the ball impinged at this distance was 1500 feet in a second; whence the ball, in passing through 150 feet of air, lost a velocity of about 350 feet in a second; and the resistance computed from these numbers comes out something more than in the preceding instance; it amounting here to between 11 and 12 pounds avoidujoife; whence, according to these experiments, the resisting power of the air to swift motions is greater than to flow ones, in a ratio which approaches nearer to that of 3 to 1 than in the preceding experiments.

“Having thus examined the resistance to a velocity of 1700 feet in a second, I next examined the resistance to smaller velocities: and for this purpose, I charged the same barrel with balls of the same diameter, but, with less powder, and placing the pendulum at 25 feet distance from the piece, I fired against it five times with an equal charge each time; the medium velocity with which the ball impinged, was that of 1180 feet in a second; then removing the pendulum to the distance of 250 feet, the medium velocity of five shots, made at this distance, was that of 950 feet in a second; whence the ball, in passing through 255 feet of air, lost a velocity of 230 feet in a second; and as it passed through that interval in about \(\frac{1}{6} \) of a second, the resistance to the middle velocity will come out to be near \(\frac{1}{3} \) times the gravity of the ball, or 2lb. 1oz. avoidujoife. Now, the resistance to the same velocity, according to the laws observed in flowery motions, amounts to \(\frac{1}{6} \) of the same quantity; whence, in a velocity of 1065 feet in a second, the resisting power of the air is augmented in no greater a proportion than that of 7 to 11; whereas we have seen in the former experiments, that to fill greater degrees of velocity the augmentation approached very near the ratio of one to three.

“But farther, I fired three shot, of the same size and weight with those already mentioned, over a large piece of water; so that their dropping into the water being very discernible, both the distance and time of their flight might be accurately ascertained. Each shot was discharged with a velocity of 400 feet in a second; and I had satisfied myself by many previous trials of the same charge with the pendulum, that I could rely on this velocity to tent feet in a second. The first shot flew 313 yards in four seconds and a quarter, the second flew 319 yards in four seconds, and the third 373 yards in five seconds and a half. According to the theory of resistance established for flow motions, the first shot ought to have spent no more than 3.2 seconds in its flight, the second 3.28, and the the third 4 seconds: whence it is evident, that every shot was retarded considerably more than it ought to have been had that theory taken place in its motion: consequently the resistance of the air is very sensibly increased, even in such a small velocity as that of 400 feet in a second.

“As no large shot are ever projected in practice Plate with velocities exceeding that of 1700 feet in a second, it will be sufficient for the purposes of a practical gun, Fig. 3, to determine the resistance to all lesser velocities: which may thus be exhibited. Let AB be taken to AC, in the ratio of 1700 to 1 in the second to the given velocity to which the resisting power of the air is required. Continue the line AB to D, so that BD may be to AD, as the resisting power of the air to flow motions is to its resisting power to a velocity of 1700 feet in a second; then shall CD be to AD as the resisting power of the air to flow motions is to its resisting power to the given velocity represented by AC.

“From the computations and experiments already mentioned, it plainly appears, that a leaden ball of one inch diameter, and weighing nearly 2 oz. avoidujoife, if it be fired from a barrel of 45 inches in length, with half its weight of powder, will issue from that piece with a velocity which, if it were uniformly continued, would carry it near 1700 feet in a second. If, instead of a leaden ball, an iron one, of an equal diameter, was placed in the same situation in the same piece, and was impelled by an equal quantity of powder, the velocity of such an iron-bullet would be greater than that of the leaden one in the subduplicate ratio of the specific gravities of lead and iron; and supposing that ratio to be as three to two, and computing on the principles already laid down, it will appear, that an iron bullet of 24 lb. weight, shot from a piece of 10 feet in length, with 16 lb. of powder, will acquire from the explosion a velocity which, if uniformly continued, would carry it nearly 1650 feet in a second.

“This is the velocity which, according to our theory, a cannon-ball of 24 lb. weight is discharged with when it is impelled by a full charge of powder; but if, instead of a quantity of powder weighing two-thirds of the ball, we suppose the charge to be only half the weight of it, then its velocity will on the same principles be no more than 1490 feet in a second. The fame would be the velocities of every lighter bullet fired with the same proportions of powder, if the lengths of all pieces were constantly in the same ratio with the diameters of their bore; and although according to the usual dimensions of the smaller pieces of artillery, this proportion does not always hold, yet the difference is not great enough to occasion a very great variation from the velocities here assigned; as will be obvious to any one who shall make a computation thereon. But in these determinations we suppose the windage to be no more than is just sufficient for putting down the bullet easily; whereas in real service, either through negligence or unskilfulness, it often happens, that the diameter of the bore of a musket exceeds the diameter of the bullet; that great part of the inflamed fluid escapes by its side; whence the velocity of the shot in this case may be considerably less than what we have assigned. However, this perhaps may be compensated by the greater heat which in all probability attends the firing of these large quantities of powder.

“From
From this great velocity of cannon-shot we may clear up the difficulty concerning the point-blank shot which on diameter the invention of Anderson's strange hypothesis.

Having our author deceived by not knowing how greatly the primitive velocity of the heaviest shot is diminished in the course of its flight by the resistance of the air. And the received opinion of practical gunners is more difficult to account for; since, when they agree that every shot flies in a straight line to a certain distance from the piece, which imaginary distance they have called the extent of the point-blank shot, we need only suppose, that, within that distance they thus determine, the deviation of the path of the shot from a straight line is not very perceptible in their method of pointing. Now, as a shot of 241b. fired with two-thirds of its weight of powder, will, at the distance of 500 yards from the piece, be separated from the line of its original direction by an angle of little more than half a degree; those who are acquainted with the inaccurate methods often used in the directing of cannon will easily allow, that so small an aberration may not be attended to by the generality of practitioners, and the path of the shot may consequently be deemed a straight line; especially as other causes of error will often intervene much greater than what arises from the incurvation of this line by gravity.

We have now determined the velocity of the shot both when fired with two-thirds of its weight and with half its weight of powder respectively; and on this occasion I must remark, that on the principles of our theory, the increasing the charge of powder will increase the velocity of the shot, till the powder arrives at a certain quantity; after which, if the powder be increased the velocity of the shot will diminish. The quantity producing the greatest velocity, and the proportion between that greatest velocity and the velocity communicated by greater and lesser charges, may be thus asigned. Let AB represent the axis of the piece; draw AC perpendicular to it, and to the asymptotes AC and AB draw any hyperbola LF, and draw BF parallel to AC; and now the point D, where the rectangle ADEG is equal to the hyperbolic area AD; will represent that height of the charge which communicates the greatest velocity to the shot: whence AD being to AB as 1 to 2.71828, as appears from the table of logarithms, from the length of the line AD thus determined, and the diameter of the bore, the quantity of powder contained in this charge is easily known. If, instead of this charge, any other filling the cylinder to the height AI be used, draw IH parallel to AC, and through the point H to the same asymptotes AC and AB describe the hyperbola HK; then the greatest velocity will be the velocity communicated by the charge AI, in the subduplic part of the rectangle AB to the same rectangle diminished by the trilinear space KKK.

It hath been already shown, that the resistance of the air on the surface of a bullet of 2 of an inch diameter, moving with a velocity of 1670 feet in a second, amounted to about 101b. It hath also been shown that an iron-bullet weighing 241b, if fired with 161b of powder (which is usually esteemed its proper bultering charge), acquires a velocity of about 1650 feet in a second, scarcely differing from the other: whence as the surface of this last bullet is more than 54 times greater than the surface of a bullet of 2 of an inch diameter, and their velocities are nearly the same, it follows, that the resistance on the larger bullet will amount to more than 5401b, which is near 25 times its own weight.

The two last propositions are principally aimed against those theorists who have generally agreed in supposing the flight of shot and shells to be nearly in the curve of a parabola. The reason given by those authors for their opinion is the supposed inconsiderable resistance of the air; since, as it is agreed on all sides that the tract of projectiles would be a perfect parabola if there was no resistance, it has from thence been too rashly concluded, that the interruption which the ponderous bodies of shells and bullets would receive from such a rare medium as air would be scarcely sensible, and consequently that their parabolic flight would be hereby scarcely affected.

Now the prodigious resistance of the air to a bullet of 241b, weight, such as we have here established it, sufficiently confutes this reasoning; for how erroneous must that hypothesis be, which neglects as inconsiderable a force amounting to more than 20 times the weight of the moving body! But here it is necessary to assume a few particulars, the demonstrations of which, on the commonly received principles may be seen under the article PROJECTILES.

1. If the resistance of the air be so small that the motion of a projected body is in the curve of a parabola, then the axis of that parabola will be perpendicular to the horizon, and consequently the part of the curve in which the body ascends will be equal and similar to that in which it descends.

2. If the parabola in which the body moves is terminated on a horizontal plane, then the vertex of the parabola will be equally distant from its two extremities.

3. Also the moving body will fall on that horizontal plane in the same angle, and with the same velocity with which it was first projected.

4. If a body be projected in different angles but with the same velocity, then its greatest horizontal range will be when it is projected in an angle of 45° with the horizon.

5. If the velocity with which the body is projected is known, then this greatest horizontal range may be thus found. Compute, according to the common theory of gravity, what space the projected body ought to fall through to acquire the velocity with which it is projected: then twice that space will be the greatest horizontal range, or the horizontal range when the body is projected in an angle of 45° with the horizon.

6. The horizontal ranges of a body, when projected with the same velocity at different angles, will be between themselves as the sines of twice the angle in which the line of projection is inclined to the horizon.

7. If a body is projected in the same angle with the horizon but with different velocities, the horizontal ranges will be in the duplicate proportion of those velocities.

These postulates which contain the principles of the modern art of gunnery are all of them falre, for,
To put a musket-ball \(\frac{1}{2} \) of an inch in diameter, fired with half its weight of powder, from a piece 45 inches long, moves with a velocity of near 700 feet in a second. Now, if this ball flew in the curve of a parabola, its horizontal range at 45° would be found by the fifth postulate to be about 17 miles. But all the practical writers assure us, that this range is equally short of half a mile. Diego Ufano assigns to an arquebus, four feet in length, and carrying a leaden ball of \(\frac{1}{4} \) oz. weight (which is very near our dimensions), an horizontal range of 797 common paces, when it is elevated between 40 and 50 degrees, and charged with a quantity of fine powder equal in weight to the ball. Merianus also tells us, that he found the horizontal range of an arquebus at 45° to be less than 400 fathom, or 800 yards; whence, as either of these ranges are short of half an English mile, it follows, that a musket-shot, when fired with a reasonable charge of powder at the elevation of 45°, flies not \(\frac{1}{2} \) part of the distance it ought to do if it moved in a parabola. Nor is this great contradiction of the horizontal range to be wondered at, when it is considered that the resistance of this bullet when it first issues from the piece amounts to 120 times its gravity, as hath been experimentally demonstrated, in \(\text{no. 23} \).

To prevent objections, our next instance shall be in an iron bullet of 24 lb. weight, which is the heaviest in common use for land service. Such a bullet fired from a piece of the common dimensions with its greatest allotment of powder hath a velocity of 1650 feet in a second, as already shown. Now, if the horizontal range of this shot, at 45°, be computed on the parabolic hypothesis by the fifth postulate, it will come out to be about 16 miles, which is between five and six times its real quantity; for the practical writers all agree in making it less than three miles.

But farther, it is not only when projectiles more with these very great velocities that their flight sensibly varies from the curve of a parabola; the same aberration often takes place in such as move slow enough to have their motion traced out by the eye: for there are few projectiles that can be thus examined, which do not visibly disagree with the first, second, and third postulate; obviously descending thro' a curve, which is shorter and less inclined to the horizon than that in which they ascended. Alto the highest point of their flight, or the vertex of the curve, is much nearer the place where they fall to the ground than to that from whence they were at first discharged.

I have found too by experience, that the fifth, sixth, and seventh postulates are excessively erroneous when applied to the motions of bullets moving with small velocities. A leaden bullet \(\frac{1}{2} \) of an inch in diameter, discharged with a velocity of about 400 feet in a second, and in an angle of 10° 5' with the horizon, ranged on the horizontal plane no more than 448 yards; whereas its greatest horizontal range found by the fifth postulate to be at least 1700 yards, the range at 10° 5' ought by the fifth postulate to have been 1050 yards; whence, in this experiment, the range was about \(\frac{1}{2} \) of what it must have had if the commonly received theory been true.

From this and other experiments, it is clearly proved, that the track described by the flight even of the heaviest shot, is neither a parabola, nor approaching to a parabola, except when they are projected with very small velocities. The nature of the curve really described by them is explained under the article Projects. But as a specimen of the great complication of that subject, we shall here infer an account of a very extraordinary circumstance which frequently takes place therein.

"As gravity acts perpendicularly to the horizon, it is evident, that if no other power but gravity deflected a projected body from its course, its motion would be constantly performed in a plane perpendicular to the horizon, pulling through the line of its original direction; but we have found, that the body in its motion often deviates from this plane, sometimes to the right hand, and at other times to the left; and this in an incurvated line which is convex towards the plane: so that the motion of a bullet is frequently in a line having a double curvature, it being bent towards the horizon by the force of gravity, and again bent out of its original direction to the right or left by some other force: in such case no part of the motion of the bullet is performed in the same plane, but its track will lie in the surface of a kind of cylinder, whose axis is perpendicular to the horizon.

This proposition may be indisputably proved by the experience of every one in the least conversant with the practice of gunnery. The same piece which will carry its bullet within an inch of the intended mark at 10 yards distance, cannot be relied on to 10 inches in 100 yards, much less to 30 inches in 300 yards. Now this inequality can only arise from the track of the bullet being incurvated sideways as well as downwards: for by this means the distance between that incurvated line and the line of direction will increase in a much greater ratio than that of the distance; these lines being coincident at the mouth of the piece, and afterwards separating in the manner of a curve and its tangent, if the mouth of the piece be considered as the point of contact.—To put this matter out of all doubt, however, I took a barrel carrying a ball \(\frac{1}{2} \) of an inch diameter, and fixing it on a heavy carriage, I satisfied myself of theeadines and truth of its direction, by firing at a board 1\(\frac{1}{2} \) feet square, which was placed at 180 feet distance; for I found, that in 16 successive shots I missed the mark but once. Now, the same barrel being fixed on the same carriage, and fired with a small quantity of powder, so that the shock on the discharge would be much less, and consequently the direction less changed, I found, that at 750 yards distance the ball flew sometimes 100 yards to the right of the line it was pointed on, and sometimes as much on the left. I found too, that its direction in the perpendicular line was not less uncertain, it falling one time above 200 yards short of what it did at another; although by the nicest examination of the piece after the discharge, it did not appear to have flared in the least from the position it was placed in.

The reality of this double curvated track being thus demonstrated, it may perhaps be asked, what can be the cause of a motion so different from what has been heretofore supposed? And to this I answer, That the deflection in question must be owing to some power acting obliquely to the progressive motion of the body;
Theory.

body; which power can be no other than the resistence of the air. If it be farther asked, how the resistence of the air can ever come to be oblique to the progressive motion of the body! I farther reply, that it may sometimes arise from inequalities in the refuse surface; but that its general cause is doublets a whirling motion acquired by the bullet about its axis: for by this motion of rotation, combined with the progressive motion, each part of the bullet's surface will strike the air very differently from what it would do if there was no such whirl; and the obliquity of the action of the air arising from this cause will be greater as the motion of the bullet is greater in proportion to its progressive one.

"This whirling motion undoubtedly arises from the friction of the bullet against the side of the piece; and as the rotatory motion will in some part of its resolution confpire with the progressive one, and another part be equally opposed to it; the resistence of the air on the fore part of the bullet will be hereby affected, and will be increased in that part where the whirling motion confpires with the progressive one, and diminished where it is opposed to it means the whole effort of the resistence, instead of being opposed to the direction of the body, will become oblique thereto, and will produce those effects already mentioned. If it was possible to predict the position of the axis round which the bullet should whirl, and that axis was unchangeable during the whole flight of the bullet, then the aberration of the bullet by this oblique force would be in a given direction; and the incurvation produced thereby would regularly extend the same way from one end of its track to the other. For instance, if the axis of the whirl was perpendicular to the horizon, then the incurvation would be to the right or left. If that axis was horizontal, and perpendicular to the direction of the bullet, then the incurvation would be upwards or downwards. But as the first position of this axis is uncertain, and as it may perpetually shift in the course of the bullet's flight; the deviation of the bullet is not necessarily either in one certain direction, or tending to the same side in one part of its track that it does in another, but more usually is continually changing the tendency of its deflection, as the axis round which it whirls must frequently shift its posision to the progressive motion by many inevitable accidents.

"That a bullet generally acquires such a rotatory motion, as here describ'd, is, I think demonstrable: however, to leave no room for doubt or dispute, I confirmed it, as well as some other parts of my theory, by the following experiments.

"I caused the machine to be made represented in Plate CCXXV. fig. 4. BCDE is a brafs barrel, movable on its axis, and so adjusted by means of frictions wheels, not represented in the figure, as to have no friction worth attending to. The frame in which this barrel is fixed is so placed that its axis may be perpendicular to the horizon. The axis itself is continued above the upper plate of the frame, and has fastened on it a light hollow cone, AFG. From the lower part of this cone there is extended a long arm of wood, GH, which is very thin, and cut feather-edged. At its extremity there is a contrivance for fixing on the body, whose resistence is to be investigat'd (as here the globe P); and to prevent the arm GH from swaying out of its horizontal position by the weight of the annexed body P, there is a brace, AH, of fine wire, fastened to the top of the cone which supports the end of the arm.

"Round the barrel BCDE, there is wound a fine silk line, the turns of which appear in the figure; and after this line hath taken a sufficient number of turns, it is conducted nearly in a horizontal direction to the pully L over which it is passed, and then a proper weight M is hung to its extremity. If this weight be left at liberty, it is obvious that it will defend by its own gravity, and will, by its decent, turn round the barrel BCDE, together with the arm GH, and the body P fastened to it. And whilst the resistence on the arm GH and on the body P is less than the weight M, that weight will accelerate its motion; and thereby the motion of GH and P will increase, and consequently their resistence will increase, till at last this resistence and the weight M become nearly equal to each other. The motion with which M descends, and with which P revolves, will not then be very different. When resistance is not difficult to conceive, that, by proper observations made with this machine, the resistence of the body P may be determined. The most natural method of proceeding in this investigation is as follows: Let the machine first have acquired its eqluable motion, which it will usually do in about five or six turns from the beginning; and then let it be observed, by counting a number of turns, what time is taken up by one revolution of the body P: then taking off the body P and the weight M, let it be examined what smaller weight will make the arm GH revolve in the same time as when P was fixed to it; this smaller weight being taken from M, the remainder is obviously equal in effort to the resistence of the revolving body P; and this remainder being reduced in the ratio of the length of the arm to the semi-diameter of the barrel, will then become equal to the absolute quantity of the resistence. And as the time of one revolution is known, and consequently the velocity of the revolving body, there is hereby discovered the absolute quantity of the resistence to the given body P moving with a given degree of celerity.

"Here, to avoid all objections, I have generally chose when the body P was removed, to fix in its stead a thin piece of lead of the same weight, placed horizontally; so that the weight which was to turn round the arm GH, without the body P, did also carry round this piece of lead. But the mathematicians will easily allow that there was no necessity for this precaution.—The diameter of the barrel BCDE, and of the silk string wound round it, was 2.06 inches. The length of the arm GH, measured from the axis to the surface of the globe P, was 49.5 inches. The body P, the globe made of wood, was placed on the flat top of the board; its surface very neatly coated with marbled paper. It was not much different from the size of a 12lb. shot, being in diameter 4.5 inches, so that the radius of the circle described by the centre of the globe was 51.75 inches. When this globe was fixed at the end of the arm, and a weight of half a pound was hung at the end of the string at M, it was examined how soon the motion of the defending weight M, and of the revolving body P, would become equal as to force. With this view, three
Sect. II.

G U N N E R Y.

Theory.

three revolutions being suffered to elapse, it was found that the next 10 were performed in 27½, in less than 3½, and 82/3; so that the first 10 were performed in 27½, the second in 27½, and the third in 27½.

These experiments sufficiently evince, that even with half a pound, the smallest weight made use of, of the motion of the machine was sufficiently equable after the first three revolutions.

"The globe abovementioned being now fixed at the end of the arm, there was hung on it a weight of 3½ lb.; and 10 revolutions being suffered to elapse, the succeeding 20 were performed in 27½. Then the globe being taken off, and a thin plate of lead, equal to it in weight, placed in its room; it was found, that instead of 3½ lb. a weight of one pound would make it revolve in less time than it did before; performing now 20 revolutions after 10 were elapsed in the space of 27½.

"Hence then it follows, that from the 3½ lb. first hung on, there is less than 1 lb. to be deduced for the resistance on the arm; and consequently the resistance on the globe itself is not less than the effort of 3½ lb. in the situation M; and it appearing from the former measures, that the radius of the barrel is nearly 1/8 of the radius of the circle, described by the centre of the globe; it follows, that the absolute resistance of the globe, when it revolves 20 times in 27½, (about 25 feet in a second,) is not less than the 50th part of two pounds and a quarter, or of 36 ounces; and this being considerably more than half an ounce, and the globe nearly the size of a twelve-pound shot, it irrefragably confirms a proposition I had formerly laid down from theory, that the resistance of the air to a 12 lb. iron shot, moving with a velocity of 25 feet in a second, is not less than half an ounce.

"The rest of the experiments were made in order to confirm another proposition, namely, that the resistance of the air within certain limits is nearly in the duplicate proportion of the velocity of the resisted body. To investigate this point, there were successively hung on at M, weights in the proportion of the numbers 1, 4, 9, 16; and letting 10 revolutions first elapse, the following observations were made on the rest.—With 1 lb. the globe went 20 turns in 54/4, with 2 lb. it went 20 turns in 27½, with 4 lb. it went 30 turns in 27½, and with 8 lb. it went 40 turns in 27½. Hence it appears, that no resistances proportioned to the numbers 1, 4, 9, 16, have correspondent velocities of the resisted body in the proportion of the numbers 1, 2, 3, 4: which proves, with great nicety, the proposition abovementioned.

With regard to the rotatory motion, the first experiment was to evince, that the whirlings motion of a ball combining with its progressive motion would produce such an oblique resistance and defective power as had already mentioned. For this purpose a wooden ball of 4½ inches diameter was suspended by a double string, about eight or nine feet long. Now, by turning round the ball and twisting the double string, the ball when left to itself would have a revolving motion given it from the untwisting of the string again. And if, when the string was twisted, the ball was drawn to a considerable distance from the perpendicular, and there let go, it would at first, before it had acquired its revolving motion, vibrate stealthily enough in the same vertical plane, vibrate stealthily enough in the same vertical plane; but when, by the untwisting of the string, it had acquired a sufficient degree of its whirling motion, it constantly deviated to the right or left of its first tract; and sometimes proceeded so far as to have its direction at right angles to that in which it began its motion; and this deviation was not produced by the string itself, but appeared to be entirely owing to the resistance being greater on the one part of the leading surface of the globe than the other. For the deviation continued when the string was totally untwisted; and even during the time that the string, by the motion the globe had received, was twisting the contrary way. And it was always easy to predict, before the ball was let go, which way it would deviate, only by considering on what side the whirl would be combined with the progressive motion, for on that side always the deflection was greater than on the side where the whirl and progressive motion were opposed to one another.

Though Mr. Robinson considered this experiment as an incontestable proof of the truth of his theory, he undertook to give ocular demonstration of this deflection of musket-bullets even in the short space of 100 yards.

"As all projectiles," says he, "in their flight, are acted upon by the power of gravity, the deflection of a bullet from its primary direction, supposes that deflection to be upwards or downwards in a vertical plane; because, in the vertical plane, the action of gravity is compounded and entangled with the defetcive force. And for this reason my experiments have been principally directed to the examination of that deflection which carries the bullet to the right or left of that plane in which it began to move. For it appears at any time that the bullet has shifted from that vertical plane in which the motion began; this will be an incontestable proof of what we have advanced. Now, by means of screens of exceeding thin paper, placed parallel to each other at proper distances, this deflection in question may be many ways investigated. For by firing bullets which shall traverse the screens, the flight of the bullet may be traced; and it may easily appear whether they do or do not keep invariably to one vertical plane. This examination may proceed on three different principles, which I shall here separately explain.

"For first, an exactly vertical plane may be traced out upon all these screens, by which the deviation of any single bullet may be more readily investigated, only by measuring the horizontal distance of its trace from the vertical plane thus delineated; and by this means the absolute quantity of its aberration may be known. Or if the description of such a vertical plane should be estimated a matter of difficulty and nicety, a second method may be followed; which is that of resting the piece in some fixed notch or socket, so that though the piece may have some little play to the right and left, yet all the lines in which the bullet can be directed shall intersect each other in the centre of that fixed socket: by this means, if two different shots are fired from the piece thus fixed, the horizontal distances made by the two bullets on any two screens ought to be in the same proportion to each other as—C e 2 the
the respective distances of the screens from the socket in which the piece was laid. And if the horizontal distances differ from that proportion, then it is certain that one of the shots at least hath deviated from a vertical plane, although the absolute quantities of deviation cannot hence be assigned; because it cannot be known what part of it is to be imputed to one bullet, and what to the other.

But if the constant and invariable position of the notch or socket in which the piece was placed, be thought too hard an hypothesis in this very nice affair; the third method, and which is the simplest of all, requires no more than that two shot be fired through three screens without any regard to the position of the piece each time; for in this case, if the shots diverge from each other, and both keep to a vertical plane, then if the horizontal distances of their traces on the first screen be taken from the like horizontal distances on the second and third, the two quantities will differ in the same proportion with the distances of the second and third screen from the first. And if they are not in this proportion, then it will be certain that one of them at least hath been deflected from the vertical plane; though here, as in the last case, the quantity of that deflection in each will not be known.

All these three methods I have myself made use of at different times, and have ever found the success agreeable to my expectation. But the most eligible method seemed to be a compound of the two last. The apparatus was as follows.—Two screens were set up in the larger walk in the charter-house garden; the first of them at 25 feet distance from the wall, which was to serve for a third screen; and the second 200 feet from the same wall. At 50 feet before the first screen, or at 300 feet from the wall, there was placed a large block weighing about 200 lb. weight, and having fixed into it an iron bar with a socket at its extremity, in which the piece was to be laid. The piece itself was of a common length, and bored for an ounce ball. It was each time loaded with a ball of 17 to the pound, so that the windage was extremely small, and with a quarter of an ounce of good powder. The screens were made of the thinnest flax paper; and the resistence they gave to the bullet (and consequently their probability of deflecting it) was so small, that a bullet lighting on the third near the extremity of one of the screens, left a fine thin fragment of it towards the edge entire, which was so very weak that it was difficult to handle it without breaking. These things thus prepared, five shots were made with the piece refted in the notch above mentioned; and the horizontal distances between the first shot, which was taken as a standard, and the four succeeding ones, both on the first and second screen and on the wall, and measured in inches, were as follows:

<table>
<thead>
<tr>
<th>First Screen</th>
<th>Second Screen</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 2</td>
<td>1.75 R.</td>
<td>16.7 R.</td>
</tr>
<tr>
<td>3</td>
<td>3.15 L.</td>
<td>15.6 L.</td>
</tr>
<tr>
<td>4</td>
<td>4.25 L.</td>
<td>15.0 L.</td>
</tr>
</tbody>
</table>

Here the letters R and L, denote that the shot in question went either to the right or left of the first.

If the position of the socket in which the piece was placed be supposed fixed, then the horizontal distances measured above on the first and second screen, and on the wall, ought to be in proportion to the distances of the first screen, the second screen, and the wall from the socket. But by only looking over these numbers, it appears, that none of them are in that proportion; the horizontal distance of the first and third, for instance, on the wall being above nine inches more than it should be by this analogy.

If, without supposing the invariable position of the socket, we examine the comparative horizontal distances according to the third method described above, we shall in this case discover diversifications still more extraordinary; for, by the numbers set down, it appears, that the horizontal distances of the second and third shot on the two screens, and on the wall, are as under:

<table>
<thead>
<tr>
<th>First Screen</th>
<th>Second Screen</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>1.6 R.</td>
<td>9.4 R.</td>
</tr>
<tr>
<td>3</td>
<td>6.4 L.</td>
<td>2.3 R.</td>
</tr>
<tr>
<td>4</td>
<td>4.7 R.</td>
<td>8.5 R.</td>
</tr>
<tr>
<td>5</td>
<td>12.6 R.</td>
<td>6.5 R.</td>
</tr>
</tbody>
</table>

Here, again, on the supposed fixed position of the piece, the horizontal distance on the wall between the first and third will be found above 16 inches less than it should be if each kept to a vertical plane; and like irregularities, though smaller, occur in every other experiment. And if they are examined according to the third method set down above, and the horizontal distances of the third and fourth, for instance, are compared, those on the first and second screen, and on the wall, appear to be thus:

<table>
<thead>
<tr>
<th>First Screen</th>
<th>Second Screen</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>21.25</td>
<td>38.5</td>
</tr>
</tbody>
</table>

And if the horizontal distance on the first screen be taken from the other two, the remainders will be 15 and 27.4; where the least of them, instead of being five times the first, as it ought to be, is 23.35 short of it; so that here is a deviation of 35 inches.

From these experiments it is evident that the question seems to be incontestably evinced. But to give some further light to this subject, I took a barrel of the same bore with that hitherto used; and bent it at about three or four inches from its muzzle to the left, the bend making an angle of three or four degrees with
with the axis of the piece. This piece, thus bent was fired with a loo[...]

—Strange "anomaly... view of evincing the ... markably happen.

yet towards the right; and this, upon trial, did moll... track of... bullet from the crooked piece might

Of the bullets... of the bullets on the wall, it appeared that the bullet from the crooked piece, though it diverged from the track on the two screens, had now crooked that track, and was deflected considerably to the right of it... that though the bullet from the crooked piece might first be caunted to the left, and had diverged from the track of the other bullet with which it was compared, yet by degrees it deviated again to the right... and by the very circumstances which we have all along de.

"I have now only to add, that as I suspected the conl... revolveing motion of the bullet, compounded with its progressive one, might be consid... it be denied by some computits upon the principles hitherto received of the action of fluids; I thought proper to annex a few experiments, with a view of evincing the strange deficiency of all theories of this fort hitherto established, and the unexpected and wonderful varieties which occur in these matters. The proposition which I advanced for this purpose be...

Strange anomaly in the resistance of the air.
must render the event of each shot very precarious. The resistance of the atmosphere simply considered without any of those anomalies arising from its density at different times, is a problem which, notwithstanding the labours of Mr. Robins and others, hath not been completely solved; and, indeed, if we consider the matter in a physical light, we shall find, that without some other data than those which are yet obtained, an exact solution of it is impossible.

It is an objection that hath been made to the mathematical philosophy, and to which in many cases it is most certainly liable, that it considers the resistance of matter more than its capacity of giving motion to other matter. Hence, if in any case matter acts both as a resisting and moving power, and the mathematician overlooks its effort towards motion, founding his demonstrations only upon its property of resisting, these demonstrations will certainly be false, though they should be supported by all the powers of geometry. It is to an error of this kind we are to attribute the great differences already taken notice of between the calculations of Sir Isaac Newton, with regard to the resisting force of fluids, and what actually takes place upon trial. These calculations were made upon the supposition that the fluid through which a body moved could do nothing else but resist it; yet it is certain, that the air (the fluid with which we have to do at present) proves a source of motion, as well as resistance, to all bodies which move in it.

To understand this matter fully, let ABC represent a crooked tube made of any solid matter, and a, b, c two pistons which exactly fill the cavity. If the space between these pistons is full of air, it is plain they cannot come into contact with each other on account of the elasticity of the included air, but will remain at some certain distance as represented in the figure. If the piston b is drawn up, the air which presses in the direction Cb acts as a resisting power, and the piston will not be drawn up with such ease as if the whole was in vacuo. But though the column of air pressing in the direction Cb acts as a resisting power on the piston b, the column pressing in the direction Ab will act as a moving power upon the piston a. It is therefore plain, that if b is moved upwards till it comes to the place marked d, the other will descend to that marked c. Now, if we suppose the piston a to be removed, it is plain, that when b is pulled upwards to d, the air descending through the leg Ab will press on the under side of the piston b, as strongly as it would have done upon the upper side of the piston a, had it been present. Therefore, though the air falling down through the leg CB resists the motion of the piston b when drawn upwards, the air pressing down through the leg AB forwards it as much: and accordingly the piston b may be drawn up or pulled down at pleasure, and with very little trouble. But if the orifice at A is stopped, so that the air can only exert its resisting power on the piston b, it will require a considerable degree of strength to move the piston from b to d.

If now we suppose the tube to be entirely removed (which indeed answers no other purpose than to render the action of the air more evident), it is plain, that if the piston is moved either up or down, or in any other direction we can imagine, the air presses as much upon the back part of it as it resists it on the fore part; and of consequence, a ball moving through the air with any degree of velocity, ought to be as much accelerated by the action of the air behind, as it is retarded by the action of that before. Here then it is natural to ask, If the air accelerates a moving body as much as it retards it, how comes it to make any resistance at all? Yet certain it is, that this fluid doth resist, and that very considerably. To this it may be answered, that the air is always kept in some certain state or constitution by another power which rules all its motions, and it is this power undoubtedly which gives the resistance. It is not to our purpose at present to inquire what that power is; but we see that the air is often in very different states: one day, for instance, its parts are violently agitated by a storm; and another, perhaps, they are comparatively at rest in a calm. In the first case, nobody hesitates to own, that the storm is occasioned by some cause or other, which violently resists any other power that would prevent the agitation of the air.

In a calm, the case is the same; for it would require the same exertion of power to excite a tempest in a calm day, as to allay a tempest in a stormy one. Now it is evident, that all projectiles, by their motion, agitate the atmosphere in an unnatural manner; and consequently are resisted by that power, whatever it is, which tends to restore the equilibrium, or bring back the atmosphere to its former state.

If no other power besides that above-mentioned acted upon projectiles, it is probable that all resistance to their motion would be in the duplicate proportion of their velocities; and accordingly, as long as the velocity is small, we find it generally is so. But when the velocity comes to be exceedingly great, other sources of resistance arise. One of these is a subduction of part of the moving power; which though not properly a resistance, opposing another power to it, is an equivalent thereto. This subduction arises from the following cause. The air, as we have already observed, presses on the hinder part of the moving body by its gravity, as much as it resists the forepart of it by the same property. Nevertheless, the velocity with which the air presses upon any body by means of its gravity, is limited; and it is possible that a body may change its place with great velocity that the air hath not time to rush in upon the back part of it, in order to afflict its progressive motion. When this happens to be the case, there is in the first place a deficiency of the moving power equivalent to 15 pounds on every square inch of surface; at the same time that there is a positive resistance of as much more on the forepart, owing to the gravity of the atmosphere, which must be overcome before the body can move forward.

This deficiency of moving power, and increase of resistance, do not only take place when the body moves with a very great degree of velocity, but in all motions whatever. It is not in all cases perceptible, because the velocity with which the body moves, frequently bears but a very small proportion to the velocity with which the air presses in behind it. Thus, supposing the velocity with which the air rushes into a vacuum to be 1200 feet in a second, if a body moves with a velocity of 20, 40, or 50 feet in a second, the force with which the air presses on the back part is but $\frac{1}{2}$ at the utmost less than that which resists on the forepart, which
G U N N E R Y.

Sect. II.

Theory. which will not be perceptible; but if, as in the case of bullets, the velocity of the projectile comes to have a considerable proportion to the velocity wherewith the air rushes in behind it; then a very perceptible and otherwise unaccountable resistance is observed, as we have seen in the experiments already related by Mr Robins. Thus, if the air presses in with a velocity of 1200 feet in a second, if the body changes its place with a velocity of 600 feet in the same time, there is a resistance of 15 pounds on the fore part, and a pressure of only 7½ on the back part. The resistance therefore not only overcomes the moving power of the air by 7½ pounds, but there is a deficiency of other 7½ pounds owing to the want of half the pressure of the atmosphere on the back part, and thus the whole loss of the moving power is equivalent to 15 pounds; and hence the exceeding great increase of resistance observed by Mr Robins beyond what it ought to be according to the common computations. — The velocity with which the air rushes into a vacuum is therefore a defeudating in gunnery. Mr Robins supposes that it is the same with the velocity of sound; and that when a bullet moves with a velocity greater than that of 1200 feet in a second, it leaves a perfect vacuum behind it. Hence he accounts for the great increase of resistance to bullets moving with such velocities; but as he does not take notice of the loss of the air’s moving power, the anomalies of all lesser velocities are inexplicable on his principles. Nay, he even tells us, that Sir Isaac Newton’s rule for computing resistances may be applied in all velocities less than 1100 or 1200 feet in a second, though this is expressly contradicted by his own experiments mentioned in the last.

Though for these reasons it is evident how great difficulties must occur in attempting to calculate the resistance of the air to military projectiles, we have not even yet discovered all the sources of resistance to these bodies when moving with immense velocities. Another power by which they are opposed (and which at last becomes greater than any of those hitherto mentioned), is the air’s elasticity. This, however, will not begin to show itself in the way of resistance till the velocity of the moving body becomes considerably greater than that by which the air presses into a vacuum. Having therefore first ascertained this velocity, which we shall suppose be 1200 feet in a second, it is plain, that if a body moves with a velocity of 1800 feet in a second, it must compress the air before it; because the fluid hath neither time to expand itself in order to fill the vacuum left behind the moving body, nor to rush in by its gravity. This compression will be resisted by its elastic power, which thus becomes a new source of resistance, increasing without any limit, in proportion to the velocity of the moving body. If now we suppose the moving body to set out with a velocity of 2400 feet in a second, it is plain that there is not only a vacuum left behind the body, but the air before it is compressed into half its natural space. The loss of motion in the projectile therefore is now very considerable. It first looses 15 pounds on every square inch of deficiency on account of the moving power of the air behind it; then it looses 15 pounds more on account of the resistance of the air before it; again it looses 15 pounds on account of the elasticity of the compressed air; and lastly another 15 pounds on account of the vacuum behind which takes off the weight of the atmosphere, that would have been equivalent to one half of the elasticity of the air before it. The whole resistance therefore upon every square inch of surface moving with this velocity is 60 pounds, besides that which arises from the power tending to preserve the general state of the atmosphere, and which increases in the duplicate proportion of the velocity as already mentioned. If the body is supposed to move with a velocity of 4800 feet in a second, the resistance from the air’s elasticity will then be quadrupled, or amount to 60 pounds on the square inch of surface; which, added to the other causes, produces a resistance of 105 pounds upon the square inch; and thus would the resistance from the elasticity of the air go on continually increasing, till at last the motion of the projectile would be as effectually stopped as if it was fired against a wall. This obstacle therefore we are to consider as really insuperable by any art whatever, and therefore it is not advisable to use larger charges of powder than what will project the shot with a velocity of 1200 feet in a second. To this velocity the elasticity of the air will not make great resistance, if indeed it do make any at all; for though Mr Robins hath conjectured that air rushes into a vacuum with the velocity of sound, or between 11 and 1200 feet in a second; yet we have no decisive proof of the truth of this supposition. At this velocity indeed, according to Mr Robins a very sudden increase of resistance takes place; but this is denied by Mr Glenie, who supposes that the resistance proceeds gradually; and indeed it seems to be pretty obvious, that the resistance cannot very suddenly increase, p. 48, 50, if the velocity is only increased in a small degree. Yet it is certain, that the swiftest motions with which cannon-balls can be projected are very soon reduced to this standard; for Mr Robins acquaints us, that “a 24-pound shot, when discharged with a velocity of 2000 feet in a second, will be reduced to that of 1200 feet in a second in a flight of little more than 500 yards.”

In the 71st volume of the Philosophical Transactions, Mr Thomson has proposed a new method of determining the velocities of bullets, by measuring the force of the recoil of the piece. As in all cases action and reaction are supposed to be equal to one another, it appears that the momentum of a gun, or the force of its recoil backwards, must always be equivalent to the force of its charge; that is, the velocity with which the gun recoils, multiplied into its weight, is equal to the velocity of the bullet multiplied into its weight; for every particle of matter, whether solid or fluid, that flies out of the mouth of a piece must be impelled by the action of some power, which power must re-act with equal force against the bottom of the bore. — Even the fine invisible elastic fluid that is generated from the powder in its inflammation, cannot put itself in motion without reacting against the gun at the same time. Thus we see pieces, when they are fired with powder alone, recoil as well as when their charges are made to impel a weight of shot, though the recoil is not in the same degree in both cases. It is easy to determine the velocity of the recoil in any given case, by suspending the gun in an horizontal position by two pendulous rods, and measuring the arc of its ascent by means of a ribbon, as mentioned under the
Thus, if \(W \) is put equal to \(c \), and the charge is made to impel one or more bullets, as has been determined by a great variety of experiments.

If therefore a gun, supplied according to the method preferred, is fired with any given charge of powder, but without any bullet or wad, and the recoil is observed, and if the same piece is afterwards fired with the same quantity of powder, and a bullet of a known weight, the excess of the velocity of the recoil in the latter case, over that in the former, will be proportional to the velocity of the bullet; for the difference of these velocities, multiplied into the weight of the gun, will be equal to the weight of the bullet multiplied into its velocity. — Thus, if \(W \) is put equal to the weight of the gun, \(U \) the velocity of the bullet when fired with a given charge of powder without any bullet; \(V \) the velocity of the recoil, when the same charge is made to impel a bullet; \(B \) the weight of the bullet, and \(v \) its velocity; it will be
\[
\frac{V - U + W}{B} \]

To determine how far this theory agreed with practice, an experiment was made with a charge of 1865 grains of powder without any bullet, which produced a recoil of 5.5 inches; and in another, with a bullet, the recoil was 5.6 inches; the mean of which is 5.55 inches; answering to a velocity of 1.1358 feet in a second. In five experiments with the same charge of powder, and a bullet weighing 380 grains, the mean was 14.6 inches; and the velocity of the recoil answering to the length just mentioned, is 2.0880 feet in a second; consequently \(V - U \), or 2.9880, is equal to 1.8322 feet in a second. But as the velocities of recoil are known to be as the cords of the arcs through which the barrel ascends, it is not necessary, in order to determine the velocity of the bullet, to compute the velocities \(V \) and \(U \); but the quantity \(V - U \), or the difference of the velocities of the recoil when the given charge is fired with and without a bullet, may be computed from the value of the difference of the chords by one operation. — Thus the velocity answering to the chord 9.05, is that of 1.8322 feet in a second, is just equal to \(V - U \), as was before found.

In this experiment the weight of the barrel with its carriage was just 474 pounds, to which \(\frac{1}{2} \) of a pound were to be added on account of the weight of the rods by which it was suspended; which makes \(W = 48 \) pounds, or 336,000 grains. The weight of the bullet was 380 grains; whence \(B \) is to \(W \) as 380 to 336,000; that is, as \(1 \) to \(7 \frac{799}{100} \) very nearly. The value of \(V - U \), answering to the experiments before mentioned, was found to be 1.8322, consequently the velocity of the bullet \(= \frac{1.8322 \times 5.55}{336,000} \) feet per second. This method, after being suspended by a string, was fired with a given charge of powder without any bullet, the recoil was 4.5, 4.9, or 4.4; \(C - c \) therefore was 13.24, 13.28, or 13.32 inches; and the velocity of the bullet = 8.84 + 13.35 = 1045 feet in a second; the velocities by the pendulum coming out 10.40 feet in the same space of time.

In the far greatest number of experiments to determine the comparative accuracy of the two methods, a surprizing agreement was found between the last mentioned and that by the pendulum; but in some few the differences were very remarkable. Thus, in two where the recoil was 12.92, and 13.28 the velocity, by computation from the chords is 1050 feet per second; but in computing by the pendulum it amounted only to 903; but in their some inaccuracy was suspected in the experiment with the pendulum, and that the computation from the recoil was most to be depended upon. In another experiment, the velocity by the recoil exceeded that by the pendulum by no less than 346 feet; the former showing 2109, and the latter only 1763 feet in a second. In two others the pendulum was also deficient, though not in such a degree. In all these it is remarkable, that where the difference was considerable, it was still in favour of the recoil. The deficiency in these experiments appears to have been somewhat embarrassing to our author. "It cannot be supposed, says he, that it arose from any imperfection in Mr Robin's method of determining the velocities of bullets; for that method is founded upon such principles as leave no room to doubt of its accuracy; and the practical errors that occur in making the experiments, and which cannot be entirely prevented, or exactly
GUNNERY.

Theory. exactly compensated, are in general so small, that the difference in the velocities cannot be attributed to them. It is true the effect of those errors is more likely to appear in experiments made under such circumstances as the present; for the bullet being very light \(A \), the arc of the pendulum was but small; and a small mistake in measuring the chord upon the ribbon would have produced a very considerable error in computing the velocity of the bullet: Thus a difference of one-tenth of an inch, more or less, upon the ribbon, in that experiment where the difference was greatest, would have made a difference in the velocity of more than 120 feet in a second. But, independent of the pains that were taken to prevent mistakes, the striking agreement of the velocities in so many other experiments, affords abundant reason to conclude, that the errors arising from those causes were in no case very considerable.—But if both methods of determining the velocities of bullets are to be relied on, then the difference of the velocities, as determined by them in these experiments, can only be accounted for by supposing that it arose from their having been determined by the resistance of the air in the passage of the bullets from the mouth of the piece to the pendulum: and this supposition will be much strengthened when we consider how great the resistance of the air is to bodies that move very swiftly in it; and that the bullets in these experiments were not only projected with great velocities, but were also very light, and consequently more liable to be retarded by the resistance on that account.

"To put the matter beyond all doubt, let us see what the resistance was that these bullets met with, and how much their velocities were diminished by it. The weight of the bullet in the most erroneous experiment was 90 grains; its diameter 0.78 of an inch; and it was projected with a velocity of 2109 feet in a second. If now a computation be made according to the law laid down by Sir Isaac Newton for compressed fluids, it will be found that the resistance to this bullet was not less than 87 pounds avoirdupois, which is something more than 600 times its own weight. But Mr. Robins has shown by experiment, that the resistance of the air to bodies moving in it with very great velocity, is near three times greater than Sir Isaac has determined it; and as the velocity with which this bullet was impelled is considerably greater than any in Mr. Robins's experiments, it is highly probable, that the resistance in this instance was at least 2000 times greater than the weight of the bullet.

"The distance from the mouth of the piece to the pendulum was 12 feet; but, as there is reason to think that the blast of the powder, which always follows the bullet, continues to act upon it for some tolerable space of time after it is out of the bore, and, by urging it on, counterbalances, or at least counteracts in a great measure, the resistance of the air, we will suppose that the resistance does not begin, or rather that the motion of the bullet does not begin to be retarded, till it has got to the distance of two feet from the muzzle. The distance, therefore, between the barrel and the pendulum, instead of 12 feet, is to be estimated at 10 feet; and as the bullet took up about \(\frac{1}{4} \) part of a second in running over the space, it must in that time have lost a velocity of about 335 feet in a second, as will appear upon making the computation; and this will very exactly account for the apparent diminution of the velocity in the experiment: for the difference of the velocities, as determined by the recoil and the pendulum = 2109—1763 = 346 feet in a second, is extremely near 335 feet in a second, the diminution of the velocity by the resistance as here determined.

"If the diminution of the velocities of the bullets in the two subsequent experiments be computed in like manner, it will turn out in one 65, and in the other 23, feet in a second; and, making these corrections, the comparison of the two methods of ascertaining the velocities will stand thus:

<table>
<thead>
<tr>
<th>Velocities by the pendulum</th>
<th>1763</th>
<th>1317</th>
<th>1136</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance of air to be added</td>
<td>355</td>
<td>65</td>
<td>33</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Velocity by the recoil</td>
<td>2109</td>
<td>1450</td>
<td>1283</td>
</tr>
</tbody>
</table>

Difference after correction | +11 | +48 | +119 |

"It appears therefore, that notwithstanding these corrections, the velocities as determined by the pendulum, particularly in the last, were considerably deficient. But the manifest irregularity of the velocities, in those instances, affords abundant reason to conclude, that it must have arisen from some accidental cause; and therefore that little dependence is to be put upon the result of those experiments. I cannot take upon me to determine positively what the cause was which produced this irregularity, but I strongly suspect that it arose from the breaking of the bullets in the barrel by the force of the explosion: for these bullets as has already been mentioned, were formed of lead, including lesser bullets of plaster of Paris; and I well remember to have observed at that time several small fragments of the plaster which had fallen down by the side of the pendulum. I confess I did not then pay much attention to this circumstance, as I naturally concluded that it arose from the breaking of the bullet in penetrating the target of the pendulum; and that the small pieces of plaster I saw upon the ground, had fallen out of the hole by which the bullet entered. But if the bullets were not absolutely broken in pieces in firing, yet if they were considerably bruised, and the platter, or a part of it, were separated from the lead, such a change in the form might produce a great increase in the resistance, and even their initial velocities might be affected by it; for their form being changed from that of a globe to some other figure, they might not fit the bore; and a part of the force of the charge might be lost by the windage.—That this actually happened in the experiment last mentioned, seems very probable; as the velocity with which the bullet was projected, as it was determined by the recoil, was considerably less in proportion in that experiment than in many others which preceded and followed it in the same fet.

"As allowance has been made for the resistance of the air in these cases, it may be expected that the same

\[D \]

\[d \]

should

(a) They were made of lead including a nucleus of Paris plaster.
GUNNERY.

Sect. III.

Theory. It may happen that the augmentation of the force, on account of one of these circumstances, may be infuficient to counterbalance the diminution of it arising from the other, and if it should be found upon trial, that this is the case in general, in pieces as they are now constructed, and with all the variety of shot that are made use of in practice, it would be of great use to know the fact: but when, with Mr Robins, concluding too hastily from the result of a partial experiment, we suppose, that because the sum total of the prejudice of the elastic fluid upon the bullet, during the time of its passage through the bore, happens to be the same when bullets of different weights are made use of, that therefore it is always so, our reasonings may prove very inconclusive, and lead to very dangerous errors."

In the prosecution of this subject Mr Thomson proves mathematically, as well as by actual experiment, that the theory laid down by Mr Robins in this respect is erroneous. The excess is in favour of heavy bullets, which acquire a velocity greater than they ought to do according to Mr Robins's rule; and so considerable are the errors, that in one of Mr Thomson's experiments, the difference was no more than 20 inches in a second. When the weight of the bullet was increased four times, the action of the powder was found to be nearly doubled; for in one experiment, when four bullets were discharged at once, the collective pressure was as 1; but when only a single bullet was made use of, it was no more than 0,5825; and on the whole he concludes, that the velocity of bullets is in the reciprocal sub-triplicate ratio of their weights. Our author observes also, that Mr Robins is not only mistaken in the particular just mentioned, but in his conclusion with regard to the absolute force of gunpowder compared with the pressure of the atmosphere; the latter being to the force of gunpowder as 1 to 1000 according to Mr Robins; but as 1 to 1308 according to Mr Thomson.

Sect. III. Practice of Gunnery.

With regard to the practical part of gunnery, which ought to consist in directing the piece in such a manner, as always to hit the object against which it is pointed, there can be no certain rules given. The following maxims are laid down by Mr Robins as of use in practice.

1. In any piece of artillery whatever, the greater the quantity of powder it is charged with, the greater will be the velocity of the bullet.

2. If two pieces of the same bore, but of different lengths, are fired with the same charge of powder, the longer will impel the bullet with a greater celerity than the shorter.

3. If two pieces of artillery different in weight, and formed of different metals, have yet their cylinders of equal bores and equal lengths; then with like charges of powder and like bullets they will each of them discharge their shot with nearly the same degree of celerity.

4. The ranges of pieces at a given elevation are no just measures of the velocity of the shot; for the same piece fired successively at an invariable elevation, with the powder, bullet, and every other circumstance as nearly
Section III. GUNNERY.

Practice. nearly the same as possible, will yet range to very different distances.

5. The greatest part of that uncertainty in the ranges of pieces which is described in the preceding maxim, can only arise from the resistance of the air.

6. The resistance of the air acts upon projectiles in a twofold manner: for it opposes their motion, and by that means continually diminishes their celerity; and it besides diverts them from the regular track they would otherwise follow; whence arise those deviations and indentions already treated of.

7. That action of the air by which it retards the motion of projectiles, though much neglected by writers in artillery, is yet in many instances, of an immense force; and hence the motion of these refitted bodies is totally different from what it would otherwise be.

8. This retarding force of the air acts with different degrees of violence, according as the projectile moves with a greater or lesser velocity; and the resistances observe this law. That to a velocity which is double another, the resistance within certain limits is fourfold; to a treble velocity, ninefold; and so on.

9. But this proportion between the resistances to two greater velocities, does not hold if one of the velocities be less than that of 1200 feet in a second, and the other greater. For in this case the resistance to the greater velocity is near three times as much as it would come out by a comparison with the smaller, according to the law explained in the last maxim.

10. To the extraordinary power exerted by the resistance of the air it is owing, that when two pieces of different bores are discharged at the same elevation, the piece of the largest bore usually ranges farthest, provided they are both fired with fit bullets, and the culmatory allotment of powder.

11. The greatest part of military projectiles will at the time of their discharge acquire a whirling motion round their axis by rubbing against the inside of their respective pieces; and this whirling motion will cause them to strike the air very differently from what they would do had they no other than a perpendicular motion. By this means it will happen, that the resistance of the air will not always be directly opposed to their flight; but will frequently act in a line oblique to their course, and will thereby force them to deviate from the regular track they would otherwise describe. And this is the true cause of the irregularities described in maxim 4.

12. From the sudden trebling the quantity of the air's resistance, when the projectile moves swifter than at the rate of 1200 feet in a second (as has been explained in maxim 9), it follows that whatever be the regular range of a bullet discharget with this last mentioned velocity, that range will be but little increased how much soever the velocity of the bullet may be still farther augmented by greater charges of powder.

13. If the same piece of cannon be successively fired at an invariable elevation, but with various charges of powder, the greatest charge being the whole weight of the bullet in powder, and the least not less than the fifth part of that weight; then if the elevation be not less than eight or ten degrees, it will be found, that some of the ranges with the least charge will exceed some of those with the greatest.

14. If two pieces of cannon of the same bore, but of different lengths, are successively fired at the same elevation with the same charge of powder; then it will frequently happen that some of the ranges with the shorter piece will exceed some of those with the longer.

15. In distant cannonadings, the advantages arising from long pieces and large charges of powder are but of little moment.

16. In firing against troops with grape-shot, it will be found, that charges of powder much less than those generally used are the most advantageous.

17. The principal operations in which large charges of powder appear to be more efficacious than small ones, are the running of parapets, the dismounting of batteries covered by float merlons, or battering in breach; for, in all cases, if the object be but little removed from the piece, every increase of velocity will increase the penetration of the bullet.

18. Whatever operations are to be performed by artillery, the least charges of powder with which they can be effected are always to be preferred.

19. Hence, then, the proper charge of any piece of artillery is not that allotment of powder which will communicate the greatest velocity to the bullet (as most practicioners formerly maintained); nor is it to be determined by an invariable proportion of its weight to the weight of the ball: but, on the contrary, it is such a quantity of powder as will produce the least velocity for the purpose in hand; and, instead of bearing always a fixed ratio to the weight of the ball, it must be different according to the different business which is to be performed.

20. No field-piece ought at any time to be loaded with more than of, or at the utmost of, the weight of its bullet in powder; nor should the charge of any battering piece exceed of the weight of its bullet.

21. Although precepts very different from those we have here given have been often advanced by artillerists, and have been paid to be derived from experience; yet is that pretended experience altogether fallacious: since from our doctrine of resistance established above, it follows, that every speculation on the subject of artillery, which is only founded on the experimental ranges of bullets discharged with considerable velocities, is liable to great uncertainty.

The greatest irregularities in the motion of the bullets described as we have seen, owing to the whirling motion on their axis, acquired by the friction against the sides of rifed barrels. These pieces have the insides of their cylinders cut with a number of spiral channels; so that it is in reality a female screw, varying from the common screws only in this, that its threads, or ribs, are less delected, and approach more to a right line; it being usual for the threads with which the rifed barrel is indented, to take little more than one turn in its whole length. The numbers of these threads are different in each barrel, according to the size of the piece and the fancy of the workman; and in like manner the depth to which they are cut is not regulated by any invariable rule.

The usual method of charging these pieces is this: When the proper quantity of powder is put down; a

D d 2 cor

leaden
杖. A leaden bullet is taken, a small matter larger than the
bore of the piece was before the rifle were cut: and this bullet
when laid on the mouth of the piece, and con¬
sequently too large to go down of itself, it is forced
by a strong rammer impelled by a mallet, and by re¬
peated blows is driven home to the powder; and the
fronts of the lead giving way to the violence with
which the bullet is impelled, that zone of the bullet
which is contiguous to the piece varies its areolar
form, and takes the shape of the inside of the barrel;
so that it becomes part of a male screw exactly an¬
swering to the indents of the rifle.

In some parts of Germany and Switzerland, how¬
ever, an improvement is added to this practice; espe¬
cially in the larger pieces which are used for shooting
at great distances. This is done by cutting a piece
of very thin leather, or of thin feltian, in a circular
shape, somewhat larger than the bore of the barrel.
This circle being greased one side, is laid upon the
muzzle with its areolar side downwards; and the bullet
being then placed upon it, is forced down the barrel
with it: by which means the leather or feltian incloses
the lower half of the bullet, and by its interposition
between the bullet and the rifles, prevents the lead
from being cut by them. But it must be remembered,
that in the barrels where this is practised, the rifles
are generally shallow, and the bullet ought not to be
too large. But as both these methods of charging at
the mouth take up a good deal of time; the rifled
barrels which have been made in Britain, are con¬
trived to be charged at the breech, where the piece is
for this purpose made larger than in any other part.
The powder and bullet are put in through the side of
the barrel by an opening, which, when the piece is
loaded, is then filled up with a screw. By this means,
when the piece is fired, the bullet is forced through
the rifles, and acquires the spiral motion already de¬
scribed: and perhaps somewhat of this kind, says
Mr. Robins, though not in the manner now practised,
would be of all others the most perfect method for the
construction of these kinds of barrels.

From the whirling motion communicated by the
rifles, it happens, that when the piece is fired, that
indentation of the bullet follows the sweep of the
rifles: and thereby, besides its progressive motion, ac¬
cquires a circular motion round the axis of the
barrel, which circular motion will be continued to the bullet
after its separation from the piece; and thus a bullet
discharged from a rifled barrel is constantly made to
whirl round an axis which is coincident with the line
of its flight. By this whirling on its axis, the aber¬
rations of the bullet which proves so prejudicial to all
operations on gunnery, is almost totally prevented.

The reason of this may be easily understood from con¬
sidering the flow motion of an arrow through the air.
For example, if a bent arrow, with its wings not placed
in some degree in a spiral position, so as to make it
revolve round its axis as it flies through the air, were
shot at a mark with a true direction, it would con¬
stantly deviate from it, in consequence of being pre¬
ferred to one side by the convex part opposing the
air obliquely. Let us now suppose this deviation in a
flight of 1000 yards to be equal to 10 yards. Now,
if the same bent arrow were made to revolve round its
axis once every two yards of its flight, its greatest de¬
viation would take place when it had proceeded only
one yard, or made half a revolution; since at the end
of the next half revolution it would again return to
the same direction it had at first; the convex side of
the arrow having been once in opposite positions.
In this manner it would proceed during the whole course
of its flight, constantly returning to the true path at
the end of every two yards; and when it reached the
mark, the greatest deflection to either side that could
happen would be equal to what it makes in proceeding
one yard, equal to one part of the former, or
3.6 inches, a very small deflection when compared with
the former one. In the same manner, a cannon-
ball which turns not round its axis, deviates greatly
from the true path, on account of the inequalities on
its surface; which, although small, cause great devia¬
tions by reason of the resistance of the air, at the same
time that the ball acquires a motion round its axis
in uncertain direction occasioned by the friction
against its sides. But by the motion acquired from
the rifles, the error is perpetually corrected in the
manner just now described; and accordingly such
pieces are much more to be depended on, and will
do execution at a much greater distance, than the
other.

The reasons commonly alleged for the superiority
of rifled pieces over common ones, are, either that the
inflammation of the powder is greater, by the resist¬
ance which the bullet makes by being thus forced into
the barrel, and that hereby it receives a much greater
impulse; or that the bullet by the compounding
of its circular and revolving motions, did as it were bore
the air, and thereby flew to a much greater distance
than it would otherwise have done; or that by the
same boring motion it made its way through all solid
substances, and penetrated into them much deeper
than when fired in the common manner. But Mr.
Robins hath proved these reasons to be altogether
erroneous, by a great number of experiments made
with rifled-barrelled pieces. "In these experiments," says
he, "I have found that the velocity of the bullet fired
from a rifled barrel was usually less than that of the
bullet fired from a common piece with the same pro-
portion of powder. Indeed it is but reasonable to
expect that this should be the case; for if the rifles
are very deep, and the bullet is large enough to fill
them up, the friction bears a very considerable pro-
portion to the effort of the powder. And that in this
case the friction is of consequence enough to have its
effects observed, I have discovered by the continued
use of the same barrel. For the metal of the barrel
being soft, and wearing away space, its bore by half
a year's use was considerably enlarged, and consequen-
tly the depth of its rifles diminished; and then I found
that the same quantity of powder would give to the
bullet a velocity near a tenth part greater than what
it had done at first. And as the velocity of the bul-
et is not increased by the use of rifled barrels, so nei-
ther is the distance to which it flies, nor the depth of
its penetration into solid substances. Indeed these two
facts suppress us not at the first sight too chimerical to
deferve a formal confutation. But I cannot help ob-
serving, that those who have been habituated to the
use of rifled pieces are very excusable in giving way to
these prepossessions. For they constantly found, that
with
with them they could fire at a mark with tolerable success, though it were placed at three or four times the distance to which the ordinary pieces were suppos’d to reach. And therefore, as they were ignorant of the true cause of this variety, and did not know that it arose only from preventing the deflection of the ball; it was not natural for them to imagine that the superiority of effect in the rifled piece was owing either to a more violent impulse at first, or to a more easy passage through the air.

In order to confirm the foregoing theory of rifled-barrelled pieces, I made some experiments by which it might be seen whether one side of the ball discharged from them uniformly keeps foremost during the whole course. To examine this particular, I took a rifled barrel carrying a bullet of six to the pound; but instead of its leaden bullet used a wooden one of the same fize, made of a soft springy wood, which bent itself easily into the rifles without breaking. And firing the piece thus loaded against a wall at such a distance as the bullet might not be shivered by the blow, I always found, that the same surface which lay foremost in the piece continued foremost without any sensible deflection during the time of its flight. And this was easily to be observed, by examining the bullet; as both the marks of the rifles, and the part that impinged on the wall, were sufficiently apparent. Now, as these wooden bullets were but the 16th part of the weight of the leaden ones; I conclude, that if there had been any unequal resistance or deflective power; its effects must have been extremely sensible upon this light body, and consequently in some of the trials I made the surface which came foremost from the piece must have been turned round in another situation.

But again, I took the same piece, and loading it now with a leaden ball, I let it nearly upright, sloping it only three or four degrees from the perpendicular in the direction of the wind; and firing it in this situation, the bullet generally continued about half a minute in the air, it rising by computation to near three quarters of a mile perpendicular height. In these trials I found that the bullet commonly came to the ground to the leeward of the piece, and at such a distance from it, as nearly corresponded to the angle of its inclination, and to the effort of the wind; it usually falling not nearer to the piece than 100, nor farther from it than 350 yards. And this is a strong confirmation of the almost steady flight of this barrel for about a mile and a half; for were the same trial made with a common piece, I doubt not but the deviation would often amount to half a mile, or perhaps considerably more; though this experiment would be a very difficult one to examine, on account of the little chance there would be of discovering where the ball fell.

It must be observed, however, that though the bullet impelled from a rifed-barrelled piece keeps for a time to its regular track with sufficient nicety; yet if its flights be so far extended that the track becomes considerably incurvated, it will then undergo considerable deflections. This, according to my experiments, arises from the angle at last made by the axis on which the bullet turns, and the direction in which it flies; for that axis continuing nearly parallel to itself, it must necessarily diverge from the line of the flight of the bullet, when that line is bent from its original direction; and when it once happens that the bullet whirls on an axis which no longer coincides with the line of its flight, then the unequal resistance formerly described will take place, and the deflecting power hence arising will perpetually increase as the track of the bullet, by having its range extended, becomes more and more incurvated.—This matter I have experienced in a small rifle-barrelled piece, carrying a leaden ball of near an ounce weight. For this piece, charged with one drachm of powder, ranged about 350 yards at an angle of 12 degrees with sufficient regularity; but being afterwards elevated to an angle of 24 degrees, it then ranged very irregularly, generally deviating from the line of its direction to the left, and in one case not less than 100 yards. This apparently arose from the cause above-mentioned, as was confirmed from the constant deviation of the bullet to the left; for by considering how the revolving motion was continued with the progressive one, it appeared that a deviation that way was to be expected.

The next remedy I can think of for this defect is the making use of bullets of an egg-like form instead of spherical ones. For if such a bullet hath its shorter axis made to fit the piece, and it be placed in the barrel with its smaller end downwards, then it will acquire by the rifles a rotation round its larger axis; and its centre of gravity lying nearer to its base than its hinder part, its longer axis will be constantly forced by the resistance of the air into the line of its flight; as we see, that by the same means arrows constantly lie in the line of their direction, however that line be incurvated.

But besides this, there is another circumstance in the use of these pieces, which renders the flight of their bullets uncertain when fired at a considerable elevation. For I find by my experiments, that the velocity of a bullet fired with the same quantity of powder from a rifled barrel, varies much more from itself in different trials than when fired from a common piece.—This, as I conceive, is owing to the great quantity of friction, and the impossibility of rendering it equal in each experiment. Indeed, if the rifles are not deeply cut, and if the bullet is nicely fitted to the piece, so as not to require a great force to drive it down, and if feather or feltian well greased is made use of between the bullet and barrel, perhaps, by a careful attention to all these particulars, great part of the inequality in the velocity of the bullet may be prevented, and the difficulty in question be in some measure obviated: but, till this be done, it cannot be doubted, that the range of the same piece, at an elevation, will vary considerably in every trial, although the charge be each time the same. And this I have myself experienced, in a number of diversified trials, with a rifed-barrelled piece loaded at the breech in the English manner. For here the rifles being indented very deep, and the bullet too large as to fill them up completely, I found, that though it flew with sufficient exactness to the distance of 400 or 500 yards; yet when it was raised to an angle of about 12 degrees at which angle, being fired with one-fifth of its weight in powder, its medium range is nearly 1000 yards; in this case, I say, I found that its range was variable, although the greatest care was taken to prevent any inequalities.
in equalities in the quantity of powder, or in the manner of charging. And as, in this case, the angle was too small for the first mentioned irregularity to produce the observed effects; they can only be imputed to the different velocities which the bullets each time received by the unequal action of the friction.

Thus we see, that it is in a manner impossible entirely to correct the aberrations arising from the resistance of the atmosphere; as even the rifle-barrelled pieces cannot be depended upon for more than one-half of their actual range at any considerable elevation. It becomes therefore a problem very difficult of solution to know, even within a very considerable range, how far a piece will carry its ball with any probability of hitting its mark, or doing any execution. The best rules hitherto laid down on this subject are those of Mr. Robins. The foundation of all his calculations is the velocity with which the bullet flies off from the mouth of the piece. Mr. Robins himself had not opportunities of making many experiments on the velocities of cannon-balls, and the calculations from smaller ones cannot always be depended upon. In the 68th volume of the Phil. Trans. Mr. Hutton hath recited a number of experiments made on cannon carrying balls from one to three pounds weight. His machine for discovering the velocities of these balls was the same with that of Mr. Robins, only of a larger size. His charges of powder were two, four, and eight ounces; and the results of 15 experiments which seem to have been the most accurate, are as follow.

<table>
<thead>
<tr>
<th>Velocity with two ounces</th>
<th>Velocity with four ounces</th>
<th>Velocity with eight ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>708 foot in 1"</td>
<td>1608 feet in 1"</td>
<td>1419 feet in 1"</td>
</tr>
<tr>
<td>684</td>
<td>1520</td>
<td>1353</td>
</tr>
<tr>
<td>698</td>
<td>944</td>
<td>1443</td>
</tr>
<tr>
<td>703</td>
<td>973</td>
<td>1363</td>
</tr>
<tr>
<td>748</td>
<td>957</td>
<td>1415</td>
</tr>
<tr>
<td>5.3507</td>
<td>5.4906</td>
<td>5.6986</td>
</tr>
</tbody>
</table>

Mean velo. 708 993 1397

In another course, the mean velocities, with the same charges of powder, were 673, 873, 1162. The mean velocities of the balls in the first course of experiments (says Mr. Hutton) with two, four, and eight ounces of powder, are as the numbers 1, 1.414, and 1.993: but the subduplicate ratio of the weights (two, four, and eight) give the numbers 1, 1.414, and 1, to which the others are sufficiently near. It is obvious, however, that the greatest difference lies in the last number, which answers to the greatest velocity. It will still be a little more in defect if we make allowance for the weights of the balls; for the mean weights of the balls with the two and four ounces in 183 ounces, but of the eight ounces it is 183: diminishing therefore the number 1.993 in the reciprocal subduplicate ratio of 183 to 183, it becomes 1.095, which falls short of the number 2 by 0.015, or the 133d part of itself. A similar defect was observed in the other course of experiments; and both are owing to three evident causes, viz. 1. The less length of cylinder through which the ball was impelled; for with the eight-ounce charge it lay three or four inches nearer to the muzzle of the piece than with the others. 2. The greater quantity of elastic fluid which escaped in this case than in the others by the windage. This happens from its moving with a greater velocity; in consequence of which, a greater quantity escapes by the vent and windage than in smaller velocities. 3. The greater quantity of powder blown out unfired in this case than in that of the lighter velocities; for the ball which was impelled with the greater velocity, would be sooner out of the piece than the others, and the more so as it had a less length of the bore to move through; and so powder fire in time, which cannot be denied, though indeed that time is manifestly very short, a great quantity of it must remain unfired when the ball with the greater velocity leaves from the piece, than when that which has the less velocity goes out, and still the more so as the bulk of powder which was at first to be inflamed in the one case so much exceeded that in the others.

Let us now compare the corresponding velocities in both cases. In the one they are 701, 993, 1397; in the other, 673, 873, 1162. Now the ratio of the first two numbers, or the velocities with two ounces of powder, is that of 1 to 1.1436, the ratio of the next two is that of 1 to 1.1375, and the ratio of the last is that of 1 to 1.2022. But the mean weight of the shot for two and four ounces of powder, was 28½ ounces in the first course and 18½ in this; and for eight ounces of powder, it was 28½ in the first and 18¾ in this. Taking therefore the reciprocal subduplicate ratios of these weights of shot, we obtain the ratio of 1 to 1.224 for that of the balls which were fired with two ounces and four ounces of powder, and the ratio of 1 to 1.241 for the balls which were fired with eight ounces. But the real ratios above found are not greatly different from these: and the variation of the actual velocities from this law of the weights of shot inclines the same way in both courses of experiments. We may now collect into one view the principal inferences that have resulted from these experiments.

1. It is evident from them, that powder fires almost instantaneously.

2. The velocities communicated to balls or shot of the same weights with different quantities of powder, are nearly in the subduplicate ratio of these quantities; a very small variation in defect taking place when the quantities of powder become great.

3. When shot of different weights are fired with the same quantity of powder, the velocities communicated to them are nearly in the reciprocal subduplicate ratio of their weights.

4. Shot which are of different weights, and impelled by different quantities of powder, acquire velocities which are directly as the square roots of the quantities of powder, and inversely as the square roots of the weights of the shot nearly.

The velocities of the bullets being thus found as Mr. Robins nearly as possible, the ranges may be found by the following rules laid down by Mr. Hutton, and by Mr. Robins of 1 to 1.224: nearly as possible, the ranges may be found by the following rules laid down by Mr. Hutton, and by Mr. Robins of 1 to 1.224.

1. Till the velocity of the projectile surpasses that of 1100 feet in a second, the resistance may be reckoned to be in the duplicate proportion of the velocity, and its mean quantity may be reckoned about half an ounceavoirdupois on a 12-pound shot, moving with a velocity of about 25 or 26 feet in a second.

2. If the velocity be greater than that of 1200 or 1700 feet in a second, then the absolute quantity of the resistance in these greater velocities will be nearly three times as great as it should be by a comparison with
Sect. III.

G U N N E R Y.

With the smaller velocities.—Hence then it appears, that if a projectile begins to move with a velocity less than that of 1100 feet in 1", its whole motion may be supposed to be considered on the hypothesis of a resistance in the duplicate ratio of the velocity. And if it begins to move with a velocity greater than this last mentioned, yet if the first part of its motion, till its velocity be reduced to near 1100 feet in 1", be considered separately from the remaining part in which the velocity is less than 1100 feet in 1"; it is evident, that both parts may be truly aligned on the same hypothesis; only the absolute quantity of the resistance is three times greater in the first part than in the last. Wherefore, if the motion of a projectile on the hypothesis of a resistance in the duplicate ratio of the velocity be truly and generally aligned, the actual motions of resisted bodies may be thereby determined, notwithstanding the increased resistances in the great velocities. And, to avoid the division of the motion into two, I shall show how to compute the whole at one operation with little more trouble than if no such increased resistance took place.

To avoid frequent circumscriptions, the distance to which any projectile would range in a vacuum on the horizontal plane at 45° of elevation, I shall call the potential random of that projectile; the distance to which the projectile would range in vacuo on the horizontal plane at any angle different from 45°, I shall call the potential range of the projectile at that angle; and the distance to which a projectile really ranges, I shall call its actual range.

If the velocity with which a projectile begins to move is known, its potential random and its potential range at any given angle are easily determined from the common theory of projectiles: or more generally, if either its original velocity, its potential random, or its potential range, at a given angle, are known, the other two are easily found out.

To facilitate the computation of resisted bodies, it is necessary, in the consideration of each resisted body, to align a certain quantity, which I shall denominate F', adapted to the resistance of that particular projectile. To find this quantity F to any projectile given, we may proceed thus: First find, from the principles already delivered, with what velocity the projectile must move, so that its resistance may be equal to its gravity. Then the height from whence a body must descend in a vacuum to acquire this velocity is the magnitude of F sought. But the concise way of finding this quantity F to any shell or bullet is this: If it be of solid iron, multiply its diameter measured in inches by 300, the product will be the magnitude of F expressed in yards. If, instead of a solid iron-bullet, it is a shell or a bullet of some other substance; then, as the specific gravity of iron is to the specific gravity of the shell or bullet given, so is the F corresponding to an iron-bullet of the same diameter to the proper F for the shell or bullet given. The quantity F being thus aligned, the necessary computations of these resisted motions may be dispatched by the three following propositions, always remembering that these propositions proceed on the hypothesis of the resistance being in the duplicate proportion of the velocity of the resisted body.

How to apply this principle, when the velocity is so great as to have its resistance augmented beyond this rate,

shall be shown in the corollary to be annexed to the first proposition.

<table>
<thead>
<tr>
<th>Angle of Elevation</th>
<th>Actual Distance in Yards</th>
<th>Potential Distance in Yards</th>
<th>Actual Range in Yards</th>
<th>Potential Range in Yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
<tr>
<td>1°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
<tr>
<td>2°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
<tr>
<td>3°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
<tr>
<td>4°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
<tr>
<td>5°</td>
<td>1.3256</td>
<td>12.5267</td>
<td>1.3256</td>
<td>12.5267</td>
</tr>
</tbody>
</table>

"PROP. I. Given the actual range of a given shell or bullet at any small angle not exceeding 8° or 10°, to determine its potential range, and consequently its potential random and original velocity.

"Sol. Let the actual range given be divided by F corresponding to the given projectile, and find the quote in the first column of the preceding table; then the corresponding number in the second column multiplied into F will be the potential range sought: and thence by the methods already explained, the potential random and the original velocity of the projectile is given.

Exam. An 18 pounder, the diameter of whose shot is about 5 inches, when loaded with 2 lb. of powder, ranged at an elevation 3° 50' to the distance of 975 yards.

"The F corresponding to this bullet is 1500 yards, and the quote of the actual range by this number is 65; corresponding to which, in the second column, is .871; whence 871 F, or 1225 yards, is the potential range sought; and this, augmented in the ratio of the sine of twice the angle of elevation to the radius, gives.
gives 10050 yards for the potential random; whence it will be found, that the velocity of the projectile was that of 98 4 feet in a second.

"Cor. 1st. If the converse of this proposition be desired; that is, if the potential range in a small angle be given, and thence the actual range be fought; this may be solved with the same facility by the same table: for if the given potential range be divided by its correspondent F, then opposite to the quote found in the second column, there will be found in the first column a number which multiplied into F will give the actual range required. And from hence it follows, that if the actual range be given at one angle, it may be found at every other angle not exceeding 5° or 10°.

"Cor. 2d. If the actual range at a given small angle be given, and another actual range be given, to which the angle is fought; this will be determined by finding the potential range corresponding to the two given actual ranges; then the angle corresponding to one of these potential ranges being known, the angle corresponding to the other will be found by the common theory of projectiles.

"Cor. 3d. If the potential range deduced from the actual range by this proposition exceeds 13000 yards; then the original velocity of the projectile was so great as to be affected by the treble resistance described above; and consequently the real potential range will be greater than that which is here determined. However, in this case, the true potential range may be thus nearly assigned. Take a 4th continued proportional to 13000 yards, and the potential range found by this proposition, and the 4th proportional thus found may be assumed for the true potential range sought. In like manner, when the true potential range is given greater than 13000 yards, we must take two mean proportional between 13000 and this range*; and the frif of these mean proportional must be assumed instead of the random given, in every operation described in these propositions and their corollaries. And this method will nearly allow for the increased resistance in large velocities, the difference only amounting to a few minutes in the angle of direction of the projected body, which provided that angle exceeds two or three degrees is usually scarce worth attending to.

"Of this process take the following example.

"A 24 pounder fired with 12 pounds of powder, when elevated at 70° 15', ranged about 2500 yards. Here the F being near 1700 yards, the quote to be sought in the first column is 147, to which the number corresponding in the second column is 2.256; whence the potential range is near 4350 yards, and the potential random thence resulting 17400. But this being more than 13000, we must, to get the true potential range, take a 4th continued proportional to 13000 and 17400; and this 4th proportional, which is about 21000 yards, is to be esteemed the true potential range sought; whence the velocity is nearly that of 1730 feet in a second.

"Scholium. This proposition is confined to small angles, not exceeding 8° or 10°. In all possible cases of practice, this approximation, thus limited, will not differ from the most rigorous solution by so much as what will often intervene from the variation of the density of the atmosphere in a few hours time; so that the errors of the approximation are much short of other inevitable errors, which arise from the nature of this subject.

"PROP. II. Given the actual range of a given shell or bullet, at any angle not exceeding 45°, to determine its potential range at the same angle; and thence its potential random and original velocity.

"Sol. Diminish the F corresponding to the shell or bullet given in the proportion of the radius to the cosine of $\frac{1}{2}$ of the angle of elevation. Then, by means of the preceding table, operate with this reduced F in the same manner as is prescribed in the solution of the last proposition, and the result will be the potential range fought; whence the potential random, and the original velocity, are easily determined.

"Exam. A mortar for sea-service, charged with 30lb. of powder, has sometimes thrown its shell, of 12 inches diameter, and of 237 lb. weight, to the distance of 2 miles, or 5450 yards. This at an elevation of 45°. The F to this shell, if it were solid, is 3825 yards; but as the shell is only $\frac{1}{2}$ of a solid globe, the true F is no more than 3060 yards. This, diminished in the ratio of the radius to the cosine of $\frac{1}{2}$ of the angle of elevation, becomes 2544. The quote of the potential range by this diminished F is 1384; which fought in the first column of the preceding table gives 2280 for the corresponding number in the second column; and this multiplied into the reduced F, produces 5800 yards for the potential range fought, which, as the angle of elevation was 45°, is also the potential random: and hence the original velocity of this shell appears to be that of about 748 feet in a second.

"Cor. The converse of this proposition, that is, the determination of the actual range from the potential range given, is easily deduced from hence by means of the quote of the potential range divided by the reduced F; for this quote searched out in the second column will give a corresponding number in the first column, which multiplied into the reduced F, will be the actual range fought.

"Also, if the potential range of a projectile be given, or its actual range at a given angle of elevation; its actual range at any other angle of elevation, not greater than 45°, may hence be known. For the potential range will assign the potential range at any given angle; and thence, by the method of this corollary, the actual range may be found.

"Exam. A fit musquet-bullet fired from a piece of the standard dimensions, with $\frac{1}{2}$ of its weight in good powder, acquires a velocity of near 900 feet in a second; that is, it has a potential random of near 8400 yards. If now the actual range of this bullet at 15° was fought, we must proceed thus: From the given potential random it follows, that the potential range at 15° is 4200 yards; the diameter of the bullet is $\frac{1}{2}$ of an inch; and thence, as it is of lead, its proper F is 337.5 yards, which, reduced in the ratio of the radius to the cosine of $\frac{1}{2}$ of 15°, becomes 321 yards. The quote of 4200 by this number is 12.7 nearly; which, being fought in the second column, gives 3.2 nearly for the corresponding number in the first column; and this multiplied into 321 yards (the reduced F) makes 1039 yards for the actual range fought.

"Exam. II. The same bullet, fired with its whole weight in powder, acquires a velocity of about 2100 feet.
GUNNERY.

Sec. III. Practice.

A foot in a second, to which there corresponds a potential random of about 45700 yards. But this number greatly exceeding 13000 yards, it must be reduced by the method described in the third corollary of the first proposition, when it becomes 19700 yards. If now the actual range of this bullet at 15° was required, we shall from hence find, that the potential range at 15° is 9850 yards, which divided by the reduced F of the last example, gives for a quote 2975: and hence following the steps prescribed above, the actual range of this bullet comes out 1396 yards, exceeding the former range by no more than 337 yards; whereas the difference between the two potential ranges is above ten miles. Of such prodigious efficacy is the resistance of the air, which hath been hitherto treated as too insignificant a power to be attended to in laying down the theory of projectiles!

SCHOL. I must here observe, that as the density of the atmosphere perpetually varies, increasing and diminishing often by 1/20 part, and sometimes more, in a few hours, for that reason I have not been over rigorous in forming these rules, but have considered them as sufficiently exact when the errors of the approximation do not exceed the inequalities which would take place by a change of 1/20 part in the density of the atmosphere. With this restriction, the rules of this proposition may be safely applied in all possible cases of practice. That is to say, they will exhibit the true motions of all kinds of shells and cannon-balls, so far as 45° of elevation, and of all musket bullets fired with their largest customary charges, if not elevated more than 30°. Indeed, if experiments are made with extraordinary quantities of powder, producing potential randoms greatly surpassing the usual rate; then in large angles some further modifications may be necessary. And though, as these cases are beyond the limits of all practice, it may be thought unnecessary to consider them; yet to enable those who are disposed to examine these uncommon cases, I shall here insert a proposition, which will determine the actual motion of a projectile at 45°, how enormous forever its original velocity may be. But as this proposition, will rather relate to speculative than practical cases, instead of supposing the actual range known, thence to align the potential random, I shall now suppose the potential random given, and the actual range to be thence investigated.

PROP. III. Given the potential random of a given shell or bullet, to determine its actual range at 45°.

SOL. Divide the given potential random by the F corresponding to the shell or bullet given, and call the quotient q, and let 1 be the difference between the tabular logarithms of 25 and of q, the logarithm of 10 being supposed unity; then the actual range sought is 34 F-2F - 10 F, where the double sine of 2F is to be thus understood; that if q be less than 25, it must be -2F; if it be greater, then it must be +2F. In this solution, q may be any number not less than 3, nor more than 2500.

Cor. Computing in the manner here laid down, we shall find the relation between the potential randoms, and the actual range at 45°, within the limits of this proposition, to be expressed in the following table.

<table>
<thead>
<tr>
<th>Potential Randoms</th>
<th>Actual Range at 45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 F</td>
<td>1,5 F</td>
</tr>
<tr>
<td>6 F</td>
<td>2,1 F</td>
</tr>
<tr>
<td>10 F</td>
<td>2,6 F</td>
</tr>
<tr>
<td>20 F</td>
<td>3,2 F</td>
</tr>
<tr>
<td>30 F</td>
<td>3,6 F</td>
</tr>
<tr>
<td>40 F</td>
<td>3,8 F</td>
</tr>
<tr>
<td>50 F</td>
<td>4,0 F</td>
</tr>
<tr>
<td>100 F</td>
<td>4,6 F</td>
</tr>
<tr>
<td>200 F</td>
<td>5,1 F</td>
</tr>
<tr>
<td>500 F</td>
<td>5,8 F</td>
</tr>
<tr>
<td>1000 F</td>
<td>6,4 F</td>
</tr>
<tr>
<td>2500 F</td>
<td>7,0 F</td>
</tr>
</tbody>
</table>

Whence it appears that, when the potential random is increased from 3 F to 2500 F, the actual range is only increased from 1,5 F to 7,0 F, so that an increase of 2497 F in the potential random produces no greater an increase in the actual range than 5 F, which is not its 7/20 part; and this will again be greatly diminished on account of the increased resistance, which takes place in great velocities. So extraordinary are the effects of this resistance; which we have hitherto taught to regard as inconsiderable.

That the justness of the approximations laid down in the 2d and 3d propositions may be easier examined; I shall conclude these computations by inferring a table of the actual ranges at 45° of a projectile, which is refilled in the duplicate proportion of its velocity. This table is computed by methods different from those hitherto described, and is sufficiently exact to serve as a standard with which the result of our other rules may be compared. And since whatever errors occur in the application of the preceding propositions, they will be most sensible at 45° of elevation, it follows, that hereby the utmost limits of those errors may be ascertained.

<table>
<thead>
<tr>
<th>Potential Randoms</th>
<th>Actual ranges at 45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 F</td>
<td>1,063 F</td>
</tr>
<tr>
<td>2,5 F</td>
<td>2,282 F</td>
</tr>
<tr>
<td>5 F</td>
<td>4,203 F</td>
</tr>
<tr>
<td>7,5 F</td>
<td>5,908 F</td>
</tr>
<tr>
<td>10 F</td>
<td>7,223 F</td>
</tr>
<tr>
<td>1,25 F</td>
<td>8,860 F</td>
</tr>
<tr>
<td>1,5 F</td>
<td>9,735 F</td>
</tr>
<tr>
<td>1,75 F</td>
<td>1,058 F</td>
</tr>
<tr>
<td>2,0 F</td>
<td>1,179 F</td>
</tr>
<tr>
<td>2,5 F</td>
<td>1,249 F</td>
</tr>
<tr>
<td>3,0 F</td>
<td>1,495 F</td>
</tr>
<tr>
<td>3,5 F</td>
<td>1,624 F</td>
</tr>
<tr>
<td>4,0 F</td>
<td>1,738 F</td>
</tr>
<tr>
<td>4,5 F</td>
<td>1,840 F</td>
</tr>
<tr>
<td>5,0 F</td>
<td>1,930 F</td>
</tr>
<tr>
<td>5,5 F</td>
<td>2,015 F</td>
</tr>
<tr>
<td>6,0 F</td>
<td>2,097 F</td>
</tr>
<tr>
<td>6,5 F</td>
<td>2,169 F</td>
</tr>
<tr>
<td>7,0 F</td>
<td>2,247 F</td>
</tr>
<tr>
<td>7,5 F</td>
<td>2,339 F</td>
</tr>
<tr>
<td>8,0 F</td>
<td>2,390 F</td>
</tr>
<tr>
<td>8,5 F</td>
<td>2,474 F</td>
</tr>
<tr>
<td>9,0 F</td>
<td>2,567 F</td>
</tr>
<tr>
<td>9,5 F</td>
<td>2,511 F</td>
</tr>
<tr>
<td>10,0 F</td>
<td>2,564 F</td>
</tr>
<tr>
<td>11,0 F</td>
<td>2,651 F</td>
</tr>
</tbody>
</table>
GUNNERY.

<table>
<thead>
<tr>
<th>Practice</th>
<th>Potential Randoms</th>
<th>Actual Range at 45°</th>
</tr>
</thead>
<tbody>
<tr>
<td>13°</td>
<td>F</td>
<td>2,804</td>
</tr>
<tr>
<td>15°</td>
<td>F</td>
<td>2,937</td>
</tr>
<tr>
<td>20°</td>
<td>F</td>
<td>3,106</td>
</tr>
<tr>
<td>25°</td>
<td>F</td>
<td>3,557</td>
</tr>
<tr>
<td>30°</td>
<td>F</td>
<td>3,809</td>
</tr>
<tr>
<td>50°</td>
<td>F</td>
<td>3,998</td>
</tr>
</tbody>
</table>

We have now only to consider that part of practical gunnery which relates to the proportions of the different parts of cannon, the metal of which they are made, &c.

Formerly the guns were made of a very great length, and were on that account extremely troublesome and unmanageable. The error here was first discovered by accident; for some cannon, having been cast by mistake two feet and a half shorter than the common standard, were found to be equally efficacious in service with the common ones, and much more manageable. This soon produced very considerable alterations in the form of the artillery throughout Europe; but in no country have greater improvements in this respect been made than in Britain. For a long time brass, or rather a kind of bell-metal, was thought preferable to cast iron for making of cannon. The composition of this metal is generally kept a secret by each particular founder. The author of the Military Dictionary gives the following proportion as the most common, viz. "To 240 lb. of metal fit for calling they put 68 lb. of copper, 50 lb. of brass, and 12 lb. of tin. To 420 lb. of metal fit for calling the Germans put 368 lb. of copper, 203 lb. of brass, and 307 lb. of tin. Others use 100 lb. of copper, 6 lb. of brass, and 9 lb. of tin; while some make use of 100 lb. of copper, 10 lb. of brass, and 15 lb. of tin. This composition was both found to be very expensive, and also liable to great inconveniences in the using. A few years ago, therefore, a proposal was made by Mr. Muller for using iron guns of a lighter construction than the brass ones, by which he supposed that a very great saving would be made in the expense; and likewise that the guns of the new construction would be more manageable, and even efficacious, than the old ones. "The reduction of the expense (says Mr. Muller) of the very large artillery necessary for sea and land service, is to be considered under two heads; the one, To diminish the weight; and the other, Not to use any brass field-artillery, but only iron, to lessen the great burthen of our ships of war, and to carry larger calibers than those of other nations of the same rate. If the weights of our guns are diminished, they will require fewer hands to manage them, and of consequence a smaller number will be exposed to danger at a time: and if we carry larger calibers, our rates will be a match for larger ships.

"The advantage of using iron guns in the field instead of brass, will be that the expences are lessened in proportion to the calib of brass to that of iron, which is as 8 to 1.

"The only objection against iron is, its pretended brittleness: but as we abound in iron that is stronger and tougher than any brass, this objection is invalid. This I can affirm; having seen some that cannot be broken by any force, and will flatten like hammered iron; if then we use such iron, there can be no danger of the guns burfting in the most severe action.

"Though brass guns are not liable to burft, yet they are sooner rendered un serviceable in action than iron. For by the softnes of the metal, the vent widens so fast, and they are so liable to bend at the muzzle, that it would be dangerous to fire them; as we found by experience at Belleisle, and where we were obliged to take guns from the ships to finish the siege.

"These being undeniable facts, no possible reason can be assigned against using iron guns in both sea and land service, and thereby lessen the expences of artillery so considerably as will appear by the following tables.

Lengths and Weights of Iron Ship-Guns.

Of the different parts and proportions of guns.

"Though brass guns are not liable to burst, yet they are sooner rendered un serviceable in action than iron. For by the softnes of the metal, the vent widens so fast, and they are so liable to bend at the muzzle, that it would be dangerous to fire them; as we found by experience at Belleisle, and where we were obliged to take guns from the ships to finish the siege.

"These being undeniable facts, no possible reason can be assigned against using iron guns in both sea and land service, and thereby lessen the expences of artillery so considerably as will appear by the following tables.

Lengths and Weights of Iron Ship-Guns.

Old Pieces. New Pieces.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>12</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>17</td>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>32</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>41</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>53</td>
<td>3</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>55</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

"Guns of this construction appear sufficiently strong from the proof of two three-pounders made for Lord Egmont, and they even may be made lighter and of equal service.

Length and Weight of Battering Pieces.

Old Brass. New Iron.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>55</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total 227 Total 151.

Diff. 72.

"That these guns are sufficiently strong, is evident from the former trial; besides, there are several 32 pounders of the same dimensions and weight now existing and serviceable; thought cast in king Charles II.'s time.

N. B.
Sect. III.

GUNNERY.

This and other proposals for reducing the weight.

N. B. These battering pieces may serve in garri-

It appears from these tables, that no proportion

Some Examples to show what may be saved by this

The old Royal George carried 100 brass guns, which

The expense of these guns is then

A set of iron guns of the same

The ton cost 16 pounds, and the

The Royal George carries then

That is, 12.5 times more than the new iron set costs:

The difference between the weight of the old and new is

The difference between the expense is then

A set of the old iron guns for a 12

The difference between the weight of the old and new is

A set of the new first-rate weighs 127.8 tons

The Royal George cost 204.4 pounds

The difference between the expense is

A set of brass battering pieces weighs 11.36 tons

A ton costs 150 pounds, and the set 1476.8 pounds

A set of the new weighs

That is, the old set costs 11 times, and 632 over, more than the new set; or 11 sets of the new could be made at less expense than one of the old.

This table shows what may be saved in the navy; and if we add those on board sloops, the different garrisons, and the field train, with the great expense of the carrizen in the field, it may be found pretty near as much more.

<table>
<thead>
<tr>
<th>Num. of Guns</th>
<th>Weight of Old</th>
<th>Weight of New</th>
<th>Differ.</th>
<th>Num. of Ships</th>
<th>Total difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4367</td>
<td>2556</td>
<td>1811</td>
<td>5</td>
<td>968</td>
</tr>
<tr>
<td>90</td>
<td>3537</td>
<td>2200</td>
<td>1336</td>
<td>9</td>
<td>1287</td>
</tr>
<tr>
<td>80</td>
<td>3108</td>
<td>1827</td>
<td>1287</td>
<td>7</td>
<td>904</td>
</tr>
<tr>
<td>74</td>
<td>1091</td>
<td>1840</td>
<td>752</td>
<td>32</td>
<td>4016</td>
</tr>
<tr>
<td>70</td>
<td>2997</td>
<td>1796</td>
<td>1200</td>
<td>10</td>
<td>12005</td>
</tr>
<tr>
<td>64</td>
<td>2543</td>
<td>1305</td>
<td>1238</td>
<td>23</td>
<td>2845</td>
</tr>
<tr>
<td>60</td>
<td>2177</td>
<td>1185</td>
<td>992</td>
<td>30</td>
<td>20782</td>
</tr>
<tr>
<td>56</td>
<td>1851</td>
<td>1035</td>
<td>816</td>
<td>19</td>
<td>16078</td>
</tr>
<tr>
<td>54</td>
<td>1385</td>
<td>705</td>
<td>680</td>
<td>8</td>
<td>5284</td>
</tr>
<tr>
<td>40</td>
<td>1344</td>
<td>712</td>
<td>632</td>
<td>9</td>
<td>6298</td>
</tr>
<tr>
<td>40</td>
<td>1344</td>
<td>712</td>
<td>632</td>
<td>9</td>
<td>6298</td>
</tr>
<tr>
<td>36</td>
<td>953</td>
<td>450</td>
<td>513</td>
<td>15</td>
<td>5343</td>
</tr>
<tr>
<td>32</td>
<td>956</td>
<td>435</td>
<td>521</td>
<td>28</td>
<td>14020</td>
</tr>
<tr>
<td>28</td>
<td>593</td>
<td>285</td>
<td>308</td>
<td>23</td>
<td>7095</td>
</tr>
<tr>
<td>24</td>
<td>531</td>
<td>225</td>
<td>276</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>421</td>
<td>191</td>
<td>230</td>
<td>15</td>
<td>3453</td>
</tr>
</tbody>
</table>

Difference between the weights : 26398

Expenses of the

| Brass guns of two first rates | 203918 | 15 |
| Iron dixto | 43369 | 5 |

We get L 257028. 0. 0
GUNNERY.

Sect. III.

Fig. 8. shows Mr. Galcoigne's newly-invented or rather improved gun called a carronade; and which, in June 1779, was by the king and council instituted a standard navy-gun, and to of them appointed to be added to each ship of war, from a first-rate to a sloop. Of this gun the Carron company have published the following account.

"The carronade is made fo short, that it is worked with its carriage in the ship's port; the trunnions lying immediately over the sill of the port: it is correctly bored; and the shot being perfectly round, fills the barrel with such exactness, that the least possible of the impulse of the powder escapes, upon explosion, between the cylinder and the shot; which last is thereby more truly directed in its flight. The bottom of the cylinder is a hemisphere, to which the end of the carriage is not liable to stick, and in which the smallest charge of powder envelopes the shot, exhausting nearly the whole of its impelling force upon it; the trunnions are placed so as to lessen the recoil, and that the gun cannot rest against the sides of the carriage, and is balanced with the utmost facility. There are views cast upon the vent and muzzle, to point the gun quickly to an object at 250 and 500 yards distance. There is an handle A fixed upon the pommel-end of the gun, by which it is horizontally ranged and pointed; and there is a ring cast upon the cap-cable, through which the breech-pin is received, the only rope used about these guns.

"The carronade is mounted upon a carriage B, with a perfectly smooth bottom of strong plank, without tracks; instead of which there is fixed on the bottom of the carriage, perpendicular from the trunnions, a gudgeon C of proper length, with an iron washer D and pin E at the lower end thereof. This gudgeon is let into a corresponding groove F, cut in a second carriage G, called a slide-carriage; the washer supported by the pin over-reaching the under-edges of the groove H. This slide-carriage is made with a smooth upper surface, upon which the gun-carriage is moved, and by the gudgeon always kept in its right station to the port; the groove in the slide-carriage being of a sufficient length to allow the gun to recoil and be loaded within board. The slide-carriage, the groove included, is equally broad with the fore-part of the gun-carriage, and about four times the length; the fore-part of the slide-carriage is fixed by hinged-bolts I, to the quick-work of the ship below the port, the end lying over the fill, close to the outside plank, and the groove reaching to the fore end; the gudgeon of the gun-carriage, and consequently the trunnions of the gun, are over the fill of the port when the gun is run out; and the port is made of such breadth, with its sides bevelled off within board, that the gun and carriage may range from bow to quarter. The slide-carriage is supported from the deck at the hinder end, by a wedge K, or rep-flood; which being altered at pleasure, and the fore-end turning upon the hinge-bolts, the carriage can be constantly kept upon a horizontal plane, for the more easy and quick working of the gun when the ship lies along.

"The gun on carriages being in their places, the breech-pin, which must be strong and limber, is received through the ring on the breech, then led th'o' an eye-bolt drove downwards, the eye standing up-right upon the upper edge of each check of the gun-carriage; from th'o' eye-bolts the ends of the breech-pin rope are feized down as usual to an eye bolt driven into the quick-work on each side, in a line with the lower surface of the slide-carriage.

"The gun being mounted and ready for action, is loaded with 1/9th part of the weight of its ball in service charge of powder put into a waddon-carriage, and the end tied up with worsted yarn, and placed next to the slot; and with a single ball, well rammed home upon and without a wadding between them; the gun being then run out in the port, is ranged and elevated with great facility, by means of the handle on the pommel; and, by the views, very quickly pointed. Upon discharge, the gun attempts to kick upwards, which being prevented by the washer of the gudgeon bearing hard against the under part of the slide-carriage, the recoil takes place; and the gudgeon sliding backwards in the groove (the washer still bearing against an iron plate on the under edge of the groove), till the gun is brought up by the breeching rope, as much re-action succeeds as slackens the rope, so that the gun and carriage may be instantly turned fore and aft by the handle, and loaded again.

"This gun has many singular advantages over the others of light construction. It is so extremely light, that the smallest ships can carry almost any weight of shot (the 12-pounder weighing under 500 wt. and the other calibers in proportion), and that without being attended with the inconveniences imputed generally to light guns, since it cannot injure its carriage, or jump out of its station in the port upon recoil; and it will never heat.

"It can be easily managed and worked of all calibers, from the 12 pounders downwards with two hands, and the 18 and 24-pounders with three hands. It may be readily ranged, pointed, and discharged, twice in three minutes, which doubles the strength of the ship against an enemy of equal force. It is wont upon a horizontal plane to windward or to leeward how much sooner the ship lies along under a press of sail; and therefore, besides being hampered with no tackles or other ropes, except the breech-pin rope, it may be worked with as much ease and expedition in chase or in a gale of wind as in lying to for action. —It can be ranged from bow to quarter, so as to bring a broadside to bear in a circuit of above 10 points of the compass on each side. —It is no more expensive in ammunition than the old guns of two thirds less weight of shot; and it requires very few hands above the complement necessary for navigating merchant-ships, and increases the strength of privateers crews, by exposing few hands at the guns, and augmenting the number at small arms.

"Though the carronade cannot, strictly speaking, throw its shot to an equal distance with a longer gun; yet, from the finics of the shot to its cylinder, the powers of this gun will greatly surpass the expectations of such as are not intimately acquainted with the effects of the elastic force of fired powder, since, with 1/9th part of the weight of its ball, at very small elevations, it will range its shot to triple the distance at which ships generally engage, with sufficient velocity for the greatest execution, and with all the accuracy in
G U N N E R Y.

Sec. III.

Practice.

There have been two seeming disadvantages imputed to this gun, which it does not merit, viz. the
nicety of fitting the shot to the bore of the gun, and its incapacity to hold more than two shot at one
close; for, however just it may be the cylinder, and however perfect and smooth may be the bore of
its corresponding shot, and admitting that the impulse of the shot acts through the centre of gravity
of the shot, and also that the shot consequently leaves the piece in a direction parallel to the axis of its
cylinder; yet, if the shot is less powdered charged, but it becomes more or less infected by its gravity, and
deflected, according to its velocity, by the resistance of the air and wind.

These irregularities are of little importance in close sea-fights, and, being the effect of natural causes, are
common to all. Besides these, the deviation of a shot from its true direction, is further augmented by the
windage between the cylinder and its shot; but the greatest uncertainty in the flight of a shot, making
allowance for the action of its gravity, and the air's resistance, springs from the defects of the shot itself.
Round-shot for ship-guns are seldom nicely examined; and, unless they are cast solid and truly globular, and free
of all hollows, roughness, and other outside blemishes, and well fitted to the gun, cannot even be discharged in
the direction of the axis of the piece; to the disapprobation of those that use such, and to the discredit of the
gun-founder, however justly the piece is viewed, or dispaired; but, being impelled against the surface of the
cylinder, bounds and rebounds from side to side, acquires a rotatory motion, and when cast hollow withal,
and breaking within the cylinder before discharge, (which sometimes happens, especially with double charges),
ever fails to injure; and, when often repeated, may at last burst the very best guns. Round-shot should not be taken on board a ship, without being examined as to its shape and surface; gauged for its
and weighed that it be not above or below the standard more than half an ounce in the pound of its respective caliber. Good shot
then, being of the same importance to all guns, removes the first objection.

If the direction of the flight of a shot to its object is affected by so many seeming trivial causes, how much
more uncertain must it be, when two or more shot are discharged together from one gun? for the shot next
the powder being impelled with more celerity than that immediately before it, strikes against it after discharge,
and sometimes shivers itself to pieces, and never fails to change obliquely the direction of both; and this
happens with round and double-headed, &c. and all double charges; and which, from their various figures,
cannot reach an object at the same elevations with the round-shot; especially when these other shots are of
greater weight than the round, which is often the case. However frightful a broadside with double charges
may appear at sea, more confusion is created by them, and more time lost within board, by the strain and ex-
ceeding recoil, than real damage done without board by the additional charge: for upon a trial on shore,
where the effect can be traced, it will be found, that, at 100 yards distance, more shot will take place within
in a small compass by single than by double charges; and the charges will be oftener repeated in a given
time, without heating the gun; and these facts being established, remove also the second objection.

The following account of the proof of one of these guns will perhaps serve to give a more adequate idea of
the great usefulness of them, than any description:

On Monday, Oct. 4. 1779, there was an experiment made at Carron, before the earl of Dunmore, &c. &c. with a 68-pounder carronade, nearly of the
weight of a British navy 74-pounder gun, and charged with the same quantity (viz. 6 lb. of powder.—The
carronade was mounted, on its proper carriages, into a port of the dimensions of a 74 gun ship's lower-deck
dort; was pointed without elevation, at a centre of eight inches diameter, marked on a bulk's head of the
thickness of two feet five inches solid wood, at 163 yards distance; behind which, at 168 yards, there
was another bulk's head of two feet four inches thick; and behind that again, at 170 yards distance, a bank of
earth. The shot pierced the bulk's head each time, and was buried from three to four feet into the bank,
and the splinters were thrown about to a considerable distance on all sides.

1st shot struck 1 foot 7 inches below the horizontal line, and 5 feet from the mark. 1st shot struck 1 foot 7 inches below the horizontal line, and 5 feet from the mark.
2d do. ditto 2 feet ditto, 2d do. ditto 2 feet ditto, 3d do. do. through the horizontal line 3d do. do. through the horizontal line
4th do. do. ditto 4th do. do. ditto
5th do. do. ditto 5th do. do. ditto
6th do. do. 2 inches below 6th do. do. 2 inches below
7th do. do. touched the lower part of ditto 7th do. do. touched the lower part of ditto
8th do. do. 2 inches below 8th do. do. 2 inches below
9th do. do. 2 feet below 9th do. do. 2 feet below
10th do. do. 3 inches below 10th do. do. 3 inches below

The carronade was laid each time by the views without an instrument; and the shot were all to the
left of the mark, owing to a small error in disparting the views; the third, fourth, and fifth shot, made one
fracture, as did also sixth, seventh, and eighth, and
the sixth and eighth struck the same porte.

The Carronade was easily worked with four men, and may be readily worked and discharged on board a
The above dimensions are taken from some elegant 4 pound guns, which were made for the prince of Aufturias by the Carron company.

The rifles make one spiral turn in the length of the bore; but go no nearer to the breech, in their full size, than two calibers; and then terminate with a gentle flop in half a caliber more, so as not to prevent the cartridge with the powder from being easily lented home to the bottom of the gun, which would otherwise constantly happen with the flannel cartridges, and even sometimes with paper ones, if not made to enter very loofly. The shape of the rifles is semicircular, their breadth being equal to the diameter, which is $\frac{3}{4}$ of a caliber, and their depth equal to the semidiameter, or $\frac{3}{4}$ of a caliber.

The bullets, fig. 10, are of lead, having six knobs cast on them to fit the rifles of the gun. Being thus made of soft metal, they do not injure the rifles; and may also save an army the trouble of carrying a great quantity of shot about with them, since a supply of lead
GUNNERY.

Sect. III.

Practice.

lead may be had in most countries from roofs, &c.,
which can be cast into balls as occasion requires. Lead
likewise being of greater specific gravity than calib-
iron, flies to a much greater distance.

Rifled ordnance of any caliber might be made to
carry iron shot for battering or for other purposes;
provided holes, that are a little wider at their bottom
than at their upper parts, be cast in a zone round
the ball, for receiving afterwards leaden knobs to fit
the rifles of the cannon; by which means, the iron shot
will have its intended line of direction preferred, with-
out injuring the rifles more than if the whole line of
lead, the rotatory motion round its axis, in the line of
its direction (which corrects the aberration) being com-
mmunicated to it by the leaden knobs, following the
spiral turn of the rifles in its progress out of the gun.
It is particularly to be observed, that the balls must be
made to glide down into the piece, so that the car-
tridge with the powder and the bullet may be both fit
home together, with a single pull of the hand, without
any wadding above either powder or ball; by which
means, the gun is quickly loaded, and the ball flies
farther than when it is forcibly driven into the gun, as
was found from many experiments. The only reason
why, in common rifled muskets, the bullets are ram-
med in forcibly, is this, that the zone of the ball which
is contiguous to the inside of the bore may have the
figure of the rifles imprinted upon it, in such a manner
as to become part of a male screw, exactly fitting the
indents of the rifle, which is not at all necessary in the
present case, the figure of the rifles being originally
cast upon the ball. These knobs retard the flight of
the ball in some degree: but this small disadvantage
is fully made up by the ease with which the gun is
loaded, its service being nearly as quick as that of a
common field-piece; and the retardation and quantity
of the whirling motion which is communicated to the
bullet being constantly the same, it will not in the
least affect the experiments made with them, in order to
determine the resistence of the air.

In order to hit the mark with greater certainty than
can be done in the common random method, these
guns are furnished with a sector, the principal parts of
which are,
1. The limb, which is divided in such a
manner as to show elevations to 15 or 20 degrees.
The length of the radius is five inches and an half, and its
nominal is 3 divided as to show minutes of a degree.
2. The telescope, AB, fig. 11. an achromatic refrac-
tor, is seven inches in length (such as is used in Had-
ley's quadrants, that are fitted for taking distances of
the moon from the sun, or stars, in order to obtain the
longitude at sea), having crofs hairs in it.
3. The parallel cylindric bar, CD, is $\frac{1}{2}$ of an inch in di-
meter, having two rectangular ends EF, each half an inch
square and an inch long. On one end of the eye next
the limb of the sector, is a mark corresponding to a
similar one in the hinder cock of the gun with which it
must always coincide when placed on the gun. The
length of the parallel bar, together with its ends, is
seven inches. This bar is fixed to the sector by means
of two hollow cylinders, G, H, which allow the sector
a motion round the bar. There is a finger-screw, a, up-
on the hollow cylinder, G, which is fitted, in order to
tighten it at pleasure upon the bar.
4. The circular level, fig. 11. and 12, for setting the plane of the
sector always perpendicular when placed upon the gun, is
$\frac{1}{2}$ of an inch in diameter. There is a small screw, b, to
adjust the level at right angles to the plane of the
sector.
5. The finger-screw c, for fixing the index
of the sector at any particular degree of elevation
proped.

The line of collimation (that is, the line of vision
cut by the intersecting point of the two crofs-hairs in
the telescope (must be adjusted truly parallel to the bar
of the sector when at 0 degrees. This is done by
placing the sector so that the vertical hair may exactly
cover some very distant perpendicular line. If it again
covers it when the sector is moved, by turning it half
round upon the bar, which has all the while been kept
steady and firm, that hair is correct: if not, correct
half the error by means of the small screws, c d e,
fig. 11. and 12, at the eye-end of the telescope, and
the other half by moving the bar; place it again to
cover the perpendicular line, and repeat the above oper-
tion till the hair covers it in both positions of the
sector.

Then turn the sector, till the horizontal hair cov-
er the same perpendicular line, and turning the sector
half round on its bar, correct it, if wrong, in the same
manner as you did the vertical hair.

N. B. Of the four small screws at the eye-end of
the telescope, those at the right and left hand move
whatever hair is vertical, and those at top or underneath
move whatever hair is horizontal.

On the side of the gun, upon the first reinforce, are
cast two knobs, F, fig. 9. and 14. having their middle
part distant from each other six inches, for fixing
on the brass cocks, A, fig. 14. and 15. which receive
the rectangular ends of the parallel cylindric bar of
the sector, when placed on the gun.

The next adjustment is to make the parallel bar, and
line of collimation of the telescope, when set at 0 de-
gress, parallel to the bore of the gun, and consequently
to the direction of the shot. The gun being loaded,
the cartridge picked, and the gun primed, place the
sector in the cocks of the gun, and having first set the
sector to what elevation you think necessary, bring the
intersecting of the crofs-hairs in the telescope upon the
centre of the mark, the limb of the sector being set
vertically, from the least elevation, to make the parallel
line, falling through the centre of the mark, the line
of collimation of the telescope and direction of the shot
agree. But if it hit to the right of the mark, so much
do they differ. In order to correct which, bring the
gun into the same position it was before firing, and
secure it there. Then file away as much of the fore-
cock, on the side next the gun, as will let the inter-
section of the crofs-hairs fall somewhere on the line pass-
ing perpendicularly through the point where the shot
fell; and it is then adjusted in that position, so much
being filed off the side of the cock at a, fig. 14. and
18., as will allow the side b to be screwed closer, that
the ends of the parallel bar may have no shake in the
cocks. To correct it in the other position, and so to
find the true 0 degrees of the gun, that is, to bring the
line of collimation of the telescope, parallel bar, and
bar of the gun, truly parallel to each other, repeat
the above with the trunnions perpendicular to the ho-
rizon, the sector being turned a quarter round upon its
bar.
GUNNERY

Sect. III.

Practice.

bar, so as to bring its plane vertical. The deviation of the shot found in this way is corrected by deepening one of the cocks, so that the vertical hair of the telescope may be brought to cover the line passing perpendicularly through the point where the bullet hits; the gun being placed in the same position it was in before it was fired. This adjustment being repeated two or three times, and any error that remains being corrected, the gun is fit to be mounted on its carriage for service. It is to be observed, that this cock will fit any gun, if the cocks and rectangular ends, &c. of the parallel bar be of the above dimensions, and will be equally applicable to all such pieces whose cocks have been adjusted, as if it had been adjusted separately with each of them. And if the cock be set at any degree of elevation, and the gun moved so as to bring the intersection of the cross hairs on the object to be fired at (the limb of the sector being vertical), the bore of the gun will have the same elevation above it, in the true direction of the shot, whatever position the carriage of the gun is standing in. A telescope with cross hairs, fixed to a common rifled mufket, and adjusted to the direction of the shot, will make any person, with a very little practice, hit an object with more precision than the most experienced markman.

For garrison-service, or for batteries, the ship or garrison carriage, with two iron staples on each side to put through a couple of poles to carry these guns from place to place with more dispatch, are as proper as any. But, for the field, a carriage like that at fig. 16, where the shafts pull in upon taking out the iron pins a b, and moving the cross bar a, upon which the breach of the gun rests, as far down as the shafts were pushed in, is the properest; since the whole can then be carried like a hand-barrow, over ditches, walls, or rough ground, all which may be easily understood from the figure.

The principal advantage that will accrue from the use of rifled ordnance, is the great certainty with which any object may be hit when fired at with them, since the shot deviates but little from its intended line of direction, and the gun is capable of being brought to bear upon the object with great exactness, by means of the telescope of cross hairs.

The other pieces of artillery commonly made use of are mortars, howitzes, and royals. The mortars are a kind of short cannon of a large bore, with chambers for the powder, and are made of brass or iron. Their use is to throw hollow shells filled with powder, which falling on any building, or into the works of a fortification, burn, and with their fragments destroy everything near them. Cascales are also thrown out of them; which are a sort of shells with five holes, filled with pitch and other materials, in order to set buildings on fire; and sometimes baskets full of stones, of the size of a man's fist, are thrown out of them upon an enemy placed in the covert-way in the time of a siege. Of late the ingenious General Defaguliers has contrived to throw bags filled with grape-shot, containing in each bag from 400 to 600 shot of different dimensions, out of mortars. The effect of these is tremendous to troops forming the line of battle, passing a desfile, or landing, &c. the shot pouring down like a shower of hail on a circumference of above 300 feet.

Mortars are chiefly distinguished by the dimensions of their bore; for example, a 13th-inch mortar is one the diameter of whose bore is 13 inches, &c.—The land-mortars are those used in sieges, and of late in battles. They are mounted on beds, and both mortar and bed are transported on block carriages. There is likewise a kind of land-mortars mounted on travelling carriages, invented by Count Bayeburg, which may be elevated to any degree; whereas all the English mortars are fixed to an angle of 45°. This suffices, however, does no appear to have any foundation in reason. In a siege, shells should never be thrown with an angle of 45 degrees, excepting one case only; that is, when the battery is so far off, that they cannot otherwise reach the works; for when shells are thrown out of the trenches into the works of a fortification, or from the town into the trenches, they should have as little elevation as possible, in order not to bury themselves, but to roll along the ground, whereby they do much more damage, and occasion a much greater consolation among the troops, than if they sink into the ground. On the contrary, when shells are thrown upon magazines, or any other buildings, the mortars should be elevated as high as possible, that the shells may acquire a greater force in their fall, and consequently do more execution.

There are other kinds of mortars, called partridge-mortars, hand-mortars, and firelock-mortars; which last are also called bombards. The partridge-mortar is a common one, surrounded with 12 other little mortars bored round its circumference, in the body of the metal; the middle one is loaded with a shell, and the others with grenades. The vent of the large mortar being fired, communicates its fire to the rest; so that both the shell and grenades go off at once. Hand-mortars were frequently used before the invention of cohorns. They were fixed at the end of a staff four feet and a half long, the other end being fixed with iron to stick in the ground; and while the bombardier with one hand elevated it at pleasure, he fired it with the other. The firelock mortars, or bombards, are small mortars fixed to the end of a firelock. They are loaded as all common firelocks are; and the grenade, placed in the mortar at the end of the barrel, is discharged by a flint-lock. To prevent the recoil hurting the bombardier, the bombards rest on a kind of halberd made for that purpose.

The chamber in mortars is the place where the powder is lodged. They are of different forms, and made variously by different nations; but the cylindric seems to be preferable to any other form.

The howitzer is a kind of mortar mounted on a field carriage like a gun; it differs from the common mortars in having the trunnions in the middle, whereas those of the mortar are at the end. The construction of howitzers is as various and uncertain as that of mortars, excepting that the chambers are all cylindric. They are distinguished by the diameter of their bore; for instance, a 10-inch howitzer is that which has a bore of 10 inches diameter, and so of others. They were much more lately invented than mortars, and indeed are plainly derived from them.
GUNNERY.

Section III.

Practice.

53. Instruments used in loading cannon.

55. Parts of a mortar.

Practice.

Royals are a kind of small mortars, which carry a shell whose diameter is 5.5 inches. They are mounted on beds in the same way as other mortars.

Fig. 17, represents a mortar; and the names of its parts are as follow:

- AB, the whole length of the mortar.
- AC, the muzzle.
- CD, chace.
- DE, reinforce.
- EF, breech.
- GA, trunnions.
- a, vent.
- b, dolphin.
- cc, vent-aftragal and fillets.
- dd, breech-ring and ogee.
- ff, reinforce-ring and ogee.
- gg, reinforce-aftragal and fillets.
- hh, muzzle-aftragal and fillets.
- Jl, muzzle-ring and ogee.
- ll, interior part.
- m, shoulders.
- n, breech.
- oo, chamber.
- p, bore.
- qr, vent.

The mortar-beds are formed of very solid timber, and placed upon very strong wooden frames, fixed in such a manner that the bed may turn round. The forepart of these beds is an arc of a circle described from the centre on which the whole turns.

There are several instruments employed in the loading of cannon. The names of these are as follow:

1. The lantern or ladle, which serves to carry the powder into the piece, and which consists of two parts, viz. of a wooden box, appropriated to the caliber of the piece for which it is intended, and of a caliper and a half in length with its vent; and of a piece of copper nailed to the box, at the height of a half caliper.—This lantern must have three calibers and a half in length, and two calibers in breadth, being rounded at the end to load the ordinary pieces.

2. The rammer is a round piece of wood, commonly called a box, fastened to a stock 12 feet long, for the pieces from 12 to 33 pounds; and to the 8 and 4 pounders, which serve to drive home the powder and ball to the breech.

3. The sponge is a long flaff or rammer, with a piece of sheep or lamb-skin wound about its end, to serve for scouring the cannon when discharged, before it be charged with fresh powder; to prevent any spark of fire from remaining in her, which would endanger the life of him that should load her again.

4. Wad-screw consists of two points of iron turned serpent-wife, to extract the wad out the pieces when one wants to unload them, or the dirt which had chanced to enter into it.

5. The boteaux are flacks two or three feet long, and an inch thick, split at one end, to hold an end of the match twisted round it, to fire the cannon.

6. The priming-iron is a pointed iron-rod, to clear the touch-hole of the pieces of powder or dirt; and also to pierce the cartridge, that it may sooner take fire.

Vol. VIII.

7. The primer, which must contain a pound of powder at least, to prime the pieces.

8. The quoin of mire, which are pieces of wood with a notch on the side to put the fingers on, to draw them back or push them forward when the gunner points his piece. They are placed on the sole of the carriage.

9. Lead-plates, which are used to cover the touch-hole, when the piece is charged, lest some dirt should enter it and spoil it.

Before charging the piece, it is well fponged, to clean it of all filth and dirt within it; then the proper managing weight of gunpowder is put in and rammed down; care being taken that the powder be not bruised in ramming, which weakens its effect; it is then run over by a little quantity of paper, hay, or the like; and lastly, the ball is thrown in.

To point, level, or direct the piece, so as to play against any certain point, is done by the help of a quadrant with a plummet; which quadrant consists of two branches made of brass or wood; one about a foot long, eight lines broad, and one line in thickness; the other four inches long, and the same thickness and breadth as the former. Between these branches is a quadrant, divided into 90 degrees, beginning from the shorter branch, and furnished with thread and plummet.

The longest branch of this instrument is placed in the cannon's mouth, and elevated or lowered till the thread cuts the degree necessary to hit the proposed object. Which done, the cannon is primed, and then set fire to. The method by the fecor, however, proposed by Dr. Lind, is certainly in all cases to be preferred.

A 24 pounder may very well fire 90 or 100 shots every day in summer, and 60 or 75 in winter. In case of necessity it may fire more; and some French officers of artillery assure, that they have caused such a piece to fire every day 150 shots in a siege. A 16 and a 12 pounder fire a little more, because they are easier served. There have even been some occasions where 200 shots have been fired from these pieces in the space of nine hours, and 138 in the space of five. In quick firing, tubes are made use of. They are made of tin; and their diameter is two-tenths of an inch, being just sufficient to enter into the vent of the piece. They are about six inches long, with a cap above, and cut flaring below, in the form of a pen; the point is strengthened with some folder, that it may pierce the cartridge without bending. Through this tube is drawn a quick-match, the cap being fitted with mealed powder moistened with spirits of wine. To prevent the mealed powder from falling out by carriage, a cap of paper or flannel fleeced in spirits of wine is tied over it. To range pieces in a battery, care must be taken to reconnoitre well the ground where it is to be placed, and the avenues to it. The pieces must be armed each with two lanterns or ladies, a rammer, a sponge, and two priming-irons. The battery must also be provided with carriages, and other implements, necessary to removal the pieces which the enemy should chance to dismount.

To serve expeditiously and safely a piece in a battery, it is necessary to have to each a sack of leather,
234

G U N N E R Y.

Sect. III.

Practice.

large enough to contain about 20 pounds of powder to charge the lantern or ladies, without carrying them to the magazine; and to avoid thereby making those trains of powder in bringing back the lantern from the magazine, and the accidents which frequently happen thereby.

A battery of three pieces must have 50 gabions, because six are employed on each of the two sides or epaulements, which make 12, and nine for each of the two merlons.

There ought to be two gunners and six soldiers to each piece, and an officer of artillery.

The gunner posted on the right of the piece must take care to have always a pouch full of powder and two priming irons; his office is to prime the piece, and load it with powder. The gunner on the left fetches the powder from the little magazine, and fills the lantern or ladle which his comrade holds; after which, he takes care that the match be very well lighted, and ready to set fire to the piece at the first command of the officer.

There are three soldiers on the right and three on the left of the piece. The two first take care to ram and sponge the piece, each on his side. The rammer and sponge are placed on the left, and the lantern or ladle on the right. After having rammed well the wad put over the powder and that put over the bullet, they then take each a handspike, which they pass between the forewheels of the wheel, the ends whereof will pass under the head of the carriage, to make the wheel turn round, leaning on the other end of the handspike, towards the embrasure.

It is the office of the second soldier on the right to provide wad, and to put it into the piece, as well over the powder as over the bullet; and that of his comrade on the left to provide 50 bullets, and every time the piece is to be charged, to fetch one of them and put it into the piece after the powder has been rammed. Then they both take each a handspike, which they pass under the hind part of the wheel, to pull it in battery.

The officer of artillery must take care to have the piece diligently served.

In the night he must employ the gunners and soldiers, who shall relieve those who have served 24 hours to repair the embrasures.

If there be no water near the battery, care must be taken to have a cask filled with it, in which to dip the sponges and cool the pieces every 10 or 12 rounds.

The carriage for a mortar of 12 inches of diameter must be 6 feet long, the flasks 12 inches long and 10 thick. The trunnions are placed in the middle of the carriage.

The carriage of an 18 inch mortar must be 4 feet long, and the flasks 11 inches high and 6 thick.

To mount the mortars of new invention, they use carriages of cast iron.

In Germany, to mount mortars from 8 to 9 inches, and carry them into the field, and execute them horizontally as a piece of cannon, they make use of a piece of wood 8 feet 3 inches long, with a hole in the middle to lodge the body of the mortar and its trunnions as far as their half diameter, and mounted on two wheels four feet high, to which they join a van train proportioned to it, and made like those which serve to the carriages of cannons.

Having mounted the mortar on its carriage, the next thing is to caliber the bomb by means of a great calibcr, the two branches whereof embrace the whole circumference of the bomb; these two branches are brought on a rule where the different calibers are marked, among which that of the bomb is found.

If no defect be found in the bomb, its cavity is filled, by means of a funnel, with whole gunpowder; a little space or liberty is left, that when a fusee or wooden tube, of the figure of a truncated cone, is driven thro' the aperture (with a wooden mallet, not an iron one for fear of accident), and fastened with a cement made of quicklime, ashes, brick-dust, and steel filings, worked together in a glutinous water, or of four parts of pitch, two of colophony, one of turpentine, and one of wax, the powder may not be bruised. This tube is filled with a combustible matter made of two ounces of nitre, one of sulphur, and three or more of gunpowder dust well rammed. See FUZEE.

This fusee set on fire burns slowly till it reaches the gunpowder; which goes off at once, bursting the shell to pieces with incredible violence. Special care, however, must be taken that the fusee be so proportioned as that the gunpowder do not take fire ere the shell arrives at the defined place; to prevent which, the fusee is frequently wound round with a wet clammy thread.

Batteries consist.—1. Of an epaulement to shelter the mortars from the fire of the enemy. 2. Of platforms on which the mortars are placed. 3. Of small magazines of powder. 4. Of a boyan, which leads to the great magazine. 5. Of ways which lead from the battery to the magazine of bombs. 6. Of a great ditch before the epaulement. 7. Of a berm or retraite.

The platforms for mortars of 12 inches must have 9 feet in length and 6 in breadth. 1. The lambourds for common mortars must be four inches thick; those of a concave chamber of 8 lb. of powder, 5 inches; those of 12 lb. 6 inches; those of 18 lb. 7 inches or thereabouts. Their length is at discretion, provided there be enough to make the platforms 9 feet long. The forepart of the platform will be situated at two feet distance from the epaulement of the battery. The bombadiers, to shelter themselves in their battery, and not be seen from the town besieged, raise an epaulement of 7 feet or more high, which epaulement has no embrasures.

To serve expeditiously a mortar in battery, there are required,—five strong handspikes; a dame or rammer, of the caliber of the conic chamber, to ram the wad and the earth; a wooden knife a foot long, to place the earth round the bomb; an iron scraper two feet long, one end whereof must be four inches broad and roundwise, to clean the bore and the chamber of the mortar, and the other end made in form of a spoon to clean the little chamber; a kind of brandard to carry the bomb, a shovel, and pick-axe.

The officer who is to mind the service of the mortar must have a quadrant to give the degrees of elevation.

Five bombardiers, or others, are employed in that service: the first must take care to fetch the powder to charge the chamber of the mortar, putting his priming-iron in the touch-hole before he charges the chamber; and
The mortar, in order to
Of tables to discover the different distances from the principles already laid down,
he takes an handspike in the same place to put himself behind the carriage of the mortar, in order to help to push it into battery: having laid down his handspike, he takes out his priming-iron, and primes the touch-hole with fine powder.

The second follower on the right and left will have by that time brought the bomb ready loaded, which must be received into the mortar by the first follower, and placed very strait in the bore or chafe of the mortar.

The first on the right will furnish him with earth to put round the bomb, which he must take care to ram close with the knife given him by the second on the left.

This done, each shall take a handspike, which the two first on the right and left shall put under the pegs of retreat on the forepart, and the two behind under those of the hindpart, and they together push the mortar in battery.

Afterwards the officer points or directs the mortar.

During that time, the first follower takes care to prime the touch-hole of the mortar, without ramming the powder; and the left on the right must have the match ready to set fire to the fusee of the bomb on the right, while the first is ready with his on the left to set fire to the touch-hole of the mortar, which he ought not to do till he sees the fusee well lighted.

The foremost followers will have their handspikes ready to raise the mortar upright as soon as it has discharged, while the hindmost on the left shall with the scraper clean the bore and chamber of the mortar.

The magazine of powder for the service of the battery shall be situated 15 or 20 pieces behind, and covered with boards and earth over it.—The loaded bombs are on the side of the laden magazine, at five or six pieces distance.

The officer who commands the service of the mortar must take care to discover as much as possible with the eye the distance of the place where he intends to throw his bomb, giving the mortar the degree of elevation according to the judgment he has formed of the distance. Having thrown the first bomb, he must diminish or increase the degrees of elevation according to the place on which it shall fall. Several make use of tables to discover the different distances according to the differences of the elevations of the mortar, especially the degrees of the quadrant from 1 to 45: but these, from the principles already laid down, must be fallacious.

The petard is the next piece of artillery which deserves our attention; and is a kind of engine of metal, somewhat in shape of a high-crowned hat, serving to break down gates, barricades, draw bridges, or the like works, which are intended to be surprized. It is very short, narrow at the beech and wide at the muzzle, made of copper mixed with a little brass, or lead with tin.

The petards are not always of the same height and bigness: they are commonly 10 inches high, 7 inches of diameter at top, and 10 inches at bottom. They weigh commonly 40, 45, and 50 pounds.

The madrier, on which the petard is placed, and where it is tied with iron circles, is of two feet for its greatest width, and of 18 inches on the sides, and no thicker than a common madrier. Under the madrier are two iron-bars paffed crosswise, with a book, which serves to fix the petard.

To charge a petard 15 inches high, and 6 or 7 inches of caliber or diameter at the bore, the inside must be first very well cleaned and heated, so that the hand may bear the heat; then take the left powder that may be found, throw over it some spirit of wine, and expose it to the sun, or put it in a frying-pan; and when it is well dried, 5 lb. or 6 lb. of this powder is put into the petard, which reaches within three fingers of the mouth: the vacancies are filled with tow, and flopped with a wooden-tampion; the mouth being strongly bound up with cloth tied very tight with ropes; then it is fixed on the madrier, that has a cavity cut in it to receive the mouth of the petard, and fastened down with ropes.

Some, instead of gunpowder for the charge, use one of the following composition, viz. gunpowder seven pounds, mercury sublimate one ounce, camphor eight ounces; or gunpowder six pounds, mercury sublimate three ounces, and sulphur three; or gunpowder six, beaten glass half an ounce, and camphor three quarters.

Before any of these pieces are appropriated for service, it is necessary to have each undergo a particular trial of its soundness, which is called a proof, to be made by or before one authorized for the purpose, called the proof-master.

To make a proof of the piece, a proper place is chosen, which is to be terminated by a mound of earth very thick to receive the bullets fired against it, that none of them can run through it. The piece is laid on the ground, supported only in the middle by a block of wood. It is fired three times; the first with powder of the weight of the bullet, and the two others with; of the weight; after which a little more powder is put in to finge the piece, and after this, water, which is impressed with a spunge, putting the finger on the touch-hole to discover if there be any cracks; which done, they are examined with the car, which is a piece of iron with three grafts, dipped in the form of a triangle, and of the caliber of the piece; then it is visited with a wax-candle, but if of very little service in the small pieces, because if they be a little long the smoke extinguishes it immediately. See Plate CCXXIV.

Besides the large pieces already mentioned, invented for the destruction of mankind, there are others arms called small guns; viz. muskets of rammers, common muskets, fults, carabiners, musketons, and pithole.

A musket, or musquet, is a fire-arm borne on the shoulder, and used in war, formerly fired by the application of a lighted match, but as present with a flint and lock. The common musket is of the caliber of 20 leaden balls to the pound, and receives balls from 22 to 24: its length is fixed to 3 feet 8 inches from the muzzle to the touch-pan.
GUNNERY.

GUNPOWDER, a composition of saltpetre, sulphur, and charcoal, mixed together and usually granulated; which easily takes fire, and, when fired, rarifies or expands with great vehemence, by means of its elastic force.

It is to this powder we owe all the action and effect of guns, ordnance, &c. so that the modern military art, fortification, &c. in a great measure depend thereon.

Invention of Gunpowder. See Gun.

Method of making Gunpowder. Dr Shaw's receipt for this purpose is as follows: Take four ounces of refined saltpetre, an ounce of brimstone, and six drams of small coal; reduce these to a fine powder, and continue beating them for some time in a stone mortar with a wooden pestle, wetting the mixture between whiles with water, so as to form the whole into an uniform paste, which is reduced to grains, by passing it through a wire-sieve fit for the purpose; and in this form being carefully dried, it becomes the common gunpowder.

For greater quantities mills are usually provided, by means of which more work may be performed in one day than a man can do in a hundred.

The nitre or saltpetre is refined thus: Dissolve four pounds of rough nitre as it comes to us from the Indies, by boiling it in as much water as will commodiously suffice for that purpose: then let it flow for two or three days in a covered vessel of earth, with sticks laid across for the crystals to adhere to. These crystals being taken out, are drained and dried in the open air.

In order to reduce this salt to powder, they dissolve a large quantity of it in as small a proportion of water as possible; then keep it constantly filtering over the fire till the water exhales and a white dry powder is left behind.

In order to purify the brimstone employed, they dissolve it with a very gentle heat; then strain and pass it through a double strainer. If the brimstone should happen to take fire in the melting, they have an iron cover that fits on close to the melting-vessel, and damps the flame. The brimstone is judged to be sufficiently refined if it melts, without yielding any fetid odour, between two hot iron-plates, into a kind of red sub stance.

The coal for the making of gunpowder is either that of willow or hazel, well charred in the usual manner, and reduced to powder. And thus the ingredients are prepared for making this commodity; but as these ingredients require to be intimately mixed, and as there would be danger of their firing if heat in a dry form, the method is to keep them continually moist, either with water, urine, or a solution of sal ammoniac: they continue thus stamping them together for 24 hours; after which the mass is fit for coming and drying in the sun, or otherwise, so as sedulously to prevent its firing.

Different kinds of Gunpowder. The three ingredients of gunpowder are mixed in various proportions according as the powder is intended for muskets, great guns, or mortars; though these proportions seem not to be perfectly adjusted or settled by competent experience.

Semicnowitz, for mortars, directs an hundred pounds of saltpetre, twenty-five of sulphur, and as many of charcoal; for great guns, an hundred pounds of saltpetre, fifteen pounds of sulphur, and eighteen pounds of charcoal; for muskets and pistols, an hundred pounds of saltpetre, eight pounds of sulphur, and ten pounds of charcoal. Mithiész extols the proportion of one pound of saltpetre to three ounces of charcoal, and two or two and a quarter of sulphur; than which, he affirms, no gunpowder can possibly be stronger. He adds, that the usual practice of making the gunpowder weaker for mortars than guns, is without any foundation, and renders the expense needlessly much greater: for whereas to load a large mortar, twenty-four pound of common powder is required, and consequently, to load it ten times, two hundred and forty pound, he shows, by calculation, that the same effect would be had by one hundred and fifty pound of the strong powder.

On this subject Mr Thomson observes, that almost all those who have written upon gunpowder, particularly those of the last century, have given different receipts for its composition; and he proposes it as a query, Whether these differences have not arisen from observing that some kinds of powder were better adapted to particular purposes than others, or from experiments made on purpose to ascertain the fact? "There is one circumstance (he says) that would lead us to suppose that this was the case. That kind of powder designed for mortars and great guns was weaker than that intended for small arms: for if there is any foundation for these conjectures, it is certain, that the weakest powder, or the heaviest in proportion to its elastic force, ought to be used to impel the heaviest bullets; and particularly in guns that are imperfectly formed, where the vent is large, and the windage very great. I am perfectly aware (adds he), that an objection may here be made, viz. that the elastic fluid generated from gunpowder must be supposed to have the same properties very nearly, whatever may be the proportion of its several ingredients: and that therefore the only difference there can be in powder is, that..."
one kind may generate more of this fluid, and another
les; and that when it is generated it acts in the same
manner, and will alike cleave, and with the same ve-
locity, by any passage it can find. But to this an-
swer, that though the fluid may be the same, as it un-
doubtedly is, and though its density and elasticity
may be the same in all cases, at this instant of its ge-
eration; yet in the explosion, the elastic and unelastic
parts are so mixed together, that I imagine the fluid
cannot expand without taking the grous matter along
with it; and the velocity with which the flame issue
at the vent is to be computed from the elacticity of
the fluid, and the density or weight of the fluid and
grois matter taken together, and not simply from the
density and elacticity of the fluid."

To increase the strength of powder, Dr Shaw thinks
it proper to make the grains considerably large, and to
have it well lifted from the small dust. We see that
gunpowder is capable of being burnt, even in its present
state; but when the grains are large, the flame of one grain
has a ready passage to another, so that the whole par-
cel may thus take fire nearly at the same time, other-
wise much force may be lost, or many of the grains
may go away as shot unburst.

In the 71st volume of the Phil. Trans. Mr Thomfon
gives an account of several attempts to augment the
force of gunpowder by the addition of different ingre-
dients. The power of steam has by many been over-
rated to such a degree, as to be supposed capable of
answering the purposes of gunpowder; but no at-
tempts to accomplish this have ever succeeded in any
degree. Mr Thomfon attempted to combine the forces
of steam and gunpowder together in the following man-
ner. Having procured a number of air bladders of
very small siphons, he put different quantities of water
into them from the size of a small pea to that of a
pistol bullet, and tying them up with some very fine
thread, hung them up to dry on the outside. He then
provided a number of cartridges made of fine paper,
and filled them with a quantity of gunpowder equal
to the usual charge for a common horfeman's pistol.
A small board was used for the propelling body, a bullet, fired in
an oaken plank about six feet from the muzzle, and observed the recoil and penetration of the bullet. He
next tried the effect of one of these small bladders of
water when put among the gunpowder, but always
found the force of the powder very much diminished,
and the larger the quantity of water the greater was
the diminution; the report of the explosion was also
diminishing in a still greater proportion than the force
of the bullet or recoil. It being supposed that the
bladder had burst, and thus by wetting the gunpowder
preventing fire from taking fire, the experiment was re-
peated with highly rectified spirit of wine, but the
diminution of the force was very little inferior to what
it had been by water. Etherial oil of turpentine,
and small quantities of quicksilver were also tried, but
with no better success than before. Thinking, how-
ever, that the failure of the quicksilver might be owing
to its having been too much in a body, the experiment
was repeated with the metal dispersed in small particles
through the powder. To accomplish this dispersion
the more completely, 30 grains of Ethiopis mineral were
mixed very intimately with 145 grains of powder;
but still the force of the bullet was much less than if
the powder had been used without any addition.

The explosion of pulvis fulminans appears vastly supe-
rior to that of gunpowder; some salt of tartar in its
pure state, was mixed in the proportion of 20 grains
to 145 of powder; but on firing the gun the force
was still found that the force of the explosion was heightened.
Sal ammoniac was next tried; which, under certain
circumstances, is found to produce a great quantity of
air or elastic vapour; but on mixing 20 grains of it
with 145 of gunpowder, the force of the explosion
was still found to be diminished. As most of the me-
tals, when dissolved in acids, particularly brafs in
spirit of nitre, are found to produce much elastic vapour, it
was thought worth while to try whether the force of
powder could be augmented by this means. Twenty
grains of brafs dust were therefore mixed with 145
grains of powder; but still the force of the explosion
was not augmented. In our author's opinion, how-
soever, neither brafs dust nor Ethiopis mineral diminish
the force of the explosion otherwise than by filling up
the interspaces between the grains, obstructing the pas-
sage of the flame, and thus impeding the progress of
the inflammation. Thus it appears, that little hope
remains of augmenting the force of gunpowder by
any addition either of liquid or inflammablebodies; the
reason is obvious, viz. because all of them, the liquids
especially, absorb great quantities of heat before they
then over vaporized; and this vapour, after
it is formed, requires more heat to make it expand
more forcibly than air; hence, as the effects of
powder depend entirely upon the emission of a quan-
tity of air, and its rarefaction by vehement heat, the
power must be greatly diminished by the aborption
of this heat, which ought to be spent in rarefying the
air. Even solid bodies cannot be set on fire without
a previous absorption of heat to convert them into va-
pour; but liquids have this property still more than
solids, as is explained under the article CHEMISTRY,
EVAPORATION, &c. and must therefore diminish the
explosive force still more. Lime added to gunpowder,
however, is said to augment the power of the explo-
sion by one third.

In his experiments on gunpowder, Mr Thomfon had
the curiosity to compare the strength of aurum fulmi-
nans, when enclosed in a gun barrel, with that of com-
mon gunpowder; but his experiment only verified
what has been found by others, viz. that this powder,
which in the open air makes such a violent report,
has in close vessels scarce any power, comparati-
vely speaking, either of explosion or projecting a
bullet. Mr Thomfon, however, taking it for granted
that the power of aurum fulminans would be much
greater than that of gunpowder, took care to have a barrel of uncommon strength prepared for the
experiment. The weight of it was 71l. 5 oz.; the
length 13,25 inches, and the width of the bore
0.45 inches. This barrel, being charged with 27,44
grains of aurum fulminans and two leaden bullets,
which, together with the leather put about them
were made fit the bore without wincage, weighed
427 grains: it was laid upon a charging-dish of live
coals at the distance of about ten feet from the pen-
dulum, and the piece was directed against the centre
of the pendulum. Some minutes elapsed before the
powder exploded; but when it did so, the explosion
In order to determine the goodness of powder by Mr. Thomfon's method, it is necessary to have a barrel suspended by two iron rods in such a manner that it can easily move backward or forward by the vibration of the rods; and the space it moves through ascertained by marking it on a piece of ribbon. The barrel being then charged with powder, and fitted with a proper bullet, is to be fired, and the recoil marked upon the ribbon. The experiment is to be repeated three or four times, or oftener, if there is any difference in the recoil; the extremes of which may be marked with black lines on the ribbon, and the word proof written upon the middle line between the two. But if the experiments are made with sufficient accuracy, there will commonly be very little difference in the length to which the ribbon is drawn out. Thus the comparative goodness of powder may easily be ascertained; for the stronger the powder is, the greater will be the recoil, and consequently the greater length to which the ribbon will be drawn out; and if care is taken in proportioning the charge to the weight of the bullet, to come as near as possible to the medium proportion that obtains in practice, the determination of the goodness of gunpowder from the result of this experiment cannot fail to hold good in actual service. The bullets should be made to fit the bore with very little windage; and it would be better if they were all cast in one mould, and in the same parcel of lead, as in that case their weights and dimensions would be more accurately the same; and the experiments would of course be more conclusive. The flated charge of powder might be half an ounce, and it should always be put in a cartridge; and after the piece is loaded, it should be primed with other powder, first taking care to prick the cartridge by thrusting a priming wire down the vent.

From several experiments it appears, that the effect of the charge is considerably augmented or diminished, according to the greater or less force employed in ramming it down. To prevent this inconvenience, Mr. Thomfon advises the use of a cylindrical ramrod of wood, fitted with a metal ring about an inch or an inch and a half in diameter; which being placed in that part of the bore which goes up into the bore, will prevent the powder from being too much compressed. In making experiments of this kind, however, it is necessary to pay attention to the heat of the barrel as well as to the temperature of the atmosphere; for heat and cold, dryness and moisture, have a very sensible effect upon gunpowder to augment or diminish its force. When a very great degree of accuracy therefore happens to be requisite, it will be proper to begin by firing the piece two or three times, merely to warm it; after which three or four experiments may be made with standard powder, to determine the proof; mark a second time, for the strength of powder is different at different times, and at different places of the atmosphere. After this the experiments may be made with the powder that is to be proved, taking care to preserve the same interval of time between the discharges, that the heat of the piece may be the same in each trial.

Having thus determined the comparative degrees of strength of two different kinds of powder, their comparative value may be ascertained by augmenting the quantity of the weaker powder till the velocity of the bullets
bullets in both cases becomes the same. The strong powder is therefore precisely as much more valuable than the weak, as it produces the same effect with a smaller quantity. Thus if a quarter of an ounce of one kind of powder discharges a bullet with the same velocity that half an ounce of another kind does, it is plain that the former is twice as valuable as the latter, and ought to be sold at double the price.—By comparisons of this kind, Mr Thompion found that the best battle powder (so called from its being made at the village of Battle in Kent) is stronger than government powder, in the proportion of 4 to 3; and from a comparison of the prices, it appears that the former is no less than 4i per cent. dearer than it ought to be; and consequently, that whoever uses it in preference to government powder, does it at a certain loss of 4i per cent. of the money it costs him.

There has been much talk of a white powder, which, if it answered the character given it, might be a dangerous composition; for they pretend that this white powder will throw a ball as far as the black, yet without making a report; but none of the white powder we have seen, answers to this description. I was convinced that I could not be more surprised (says he), upon taking hold of the barrel immediately after an experiment when it was fired with 330 grains of powder without any bullet, to find it so very hot that I could scarce bear it in my hand, evidently much hotter than I had ever found it before, notwithstanding the flame charge of powder had been made use of in the two preceding experiments; and in both these experiments the piece was loaded with a bullet, which one would naturally imagine, by confining the flame, and prolonging the time of its action, would heat the barrel much more than when it was fired with powder alone. I was convinced that I could not be mistaken in the fact: for it had been my constant practice to take hold of the piece to wipe it out as soon as an experiment was finished, and I never before had found any inconvenience from the heat in holding it. But in order to put the matter beyond all doubt, after letting the barrel cool down to the proper temperature, I repeated the experiment twice with the same charge of powder and a bullet; and in both these trials the heat of the piece was evidently much less than what it was in the experiment above mentioned. Being much struck with this accidental discovery of the great degree of heat that pieces acquire when they are fired with powder, without any bullet, and being desirous of finding out whether it is a circumstance that obtains universally, I was very attentive to the heat of the barrel after each of the succeeding experiments: and I confinately found the heat sensibly greater when the piece was fired with powder only, than when the flame charge was made to impel one or more bullets.”

To account for this, our author supposes that very little of the heat acquired in firing a piece of ordnance comes from the powder; for the time that it continues in the piece, perhaps not exceeding the four hundred times of a second, is so small, that were the flame of the bulk of the heat, instead of four times, as Mr Hobson supposes, hotter than red hot iron, it is by far too short to communicate a sensible degree of heat to one of our large pieces of cannon. Besides, if the heat of the flame was sufficient to communicate such a degree of heat to the gun, it must undoubtedly be capable of burning up all combustible bodies that come in its way, and of melting lead shot when such were used: but instead of this, we frequently see the finest paper discharges from the mouth of a gun without being inflamed, after it has fulfilled the action of the fire through the whole length of the bore; and the smallest lead-shot is discharged without being melted. The objection drawn from the heat of bullets taken up immediately after being discharged from fire-arms does not hold; for bullets discharged from air-guns and even cross bows are likewise found hot, especially when they happen to strike...
GUN

Strike any hard body, and are much flattened. If a musket ball be discharged into water, or against any very soft body, it will not be sensibly heated; but if it hits a plate of iron or any other body which it cannot penetrate, it will be broken in pieces by the blow, and the disfigured parts will be found in a fine little shott of actual fusion. Hence our author concludes, that bullets are not heated by the flame but by percussion. Another objection is, that the vents of brass guns are frequently enlarged to such a degree by repeatedly firing them, that the piece becomes useless. But this proves only that brass is easily corroded by the flame of the gunpowder; which indeed is the case with iron also. We cannot suppose that in either case any real solution takes place: on the contrary, it is very evident that it does not; for when the vents of firearms are lined with gold, they will remain without enlargement for any length of time, though it is well known that gold is much more easily melted than iron. As the heat communicated to bullets, therefore is not of the action. The heat acquired by bullets is to be attributed, in our author's opinion, to the motion and friction of the internal parts of the metal among themselves by the violent action of the flame upon the inside of the bore. To generate heat, the action of the powder must be not only sufficient to strain the metal, and produce a motion in its parts, but this effect must be extremely rapid; and the effect will be much augmented if the exertion of the force and the duration of its action are momentaneous; for in this case the fibres of the metal that are violently fretched will return with their full force and velocity, and the swift vibratory motion and attrition abovementioned will be produced. Now the effort of any given charge of powder upon the gun is very nearly the same whether it be fired with a bullet or without; but the velocity with which the generated elastic fluid makes its escape, is much greater when the powder is fired alone than when it is made to impel one or more bullets; the heat ought therefore to be much greater in the former than in the latter case as has been found by experiment. “But to make this matter still plainer, (says our author), we will suppose any given quantity of powder to be confined in a space that is just capable of containing it, and that in this situation it is set on fire. Let us suppose this space to be the chamber of a piece of ordnance, and that a bullet or any other solid body is so firmly fixed in the bore, immediately upon the charge that the whole effort of the powder shall not be able to remove it as the powder goes on to be inflamed, and the elastic fluid to be generated, the preassure upon the inside of the chamber will be increased, till at length all the powder being burnt, the strain upon the metal will be at its greatest height, and in this situation things will remain; the cohesion or elasticity of the particles of metal counterbalancing the preassure of the fluid.—Under these circumstances very little heat would be generated; for the continued effort of the elastic fluid would approach to the nature of the preassure of a weight; and that concussion, vibration, and friction among the particles of the metal, which in the collision of elastic bodies is the cause of the heat produced, would fearfully take effect. But instead of being firmly fixed in its place, let the bullet now be moveable, but let it give way with great difficulty and by slow degrees. In this case the elastic fluid will be generated as before, and will exert its whole force upon the chamber of the piece; but as the bullet gives way to the preassure, and moves on in the bore, the fluid will expand itself and grow weaker, the particles of the metal will gradually return to their former situations; but the velocity with which the metal resists itself being but small, the vibration that remains in the metal after the elastic fluid has made its escape will be very languid, as will the heat be which is generated by it. But if instead of giving way with so much difficulty, the bullet is made lighter, so as to afford but little resistance to the elastic fluid in making its escape, or if it is fired without any bullet at all; then, there being little or nothing to oppose the passage of the flame through the bore, it will expand itself with an amazing velocity, and its action upon the gun will cease almost in an instant; the strained metal will restore itself with a very rapid motion, and a sharp vibration will ensue, by which the piece will be much heated.”

This reasoning of Mr Thomson’s, however, seems not to be very well founded. In the first place, we are by no means certain that heat is produced by the motion or vibration of the particles of a solid body among each other. On the contrary, even in the hottest bodies we cannot be made sensible of vibration existing among their particles, while certain sounds will cause the most solid substances vibrate perceptibly, and yet without producing any heat.—From this as well as innumerable other experiments, it is probable, that heat consists in the emission of a certain subtile fluid from the heated body, which is every moment replaced from the atmosphere, or from some other source. Hence the more air that has access to any burning body, the hotter it will become, and the more will any other that is in its vicinity be heated. This is evident from the contrivance of Argand’s lamp, which is neither more nor less than the admission of a larger quantity of air to the same quantity of flame. The case is the same with the firing of gunpowder, when a bullet is put into the piece, the access of the air is much more effectually prevented than when only a simple wadding is made use of. In consequence of this, no sooner is the powder fired without a bullet, than the external air rushes down the bore, mingleth with the flame, and vehemently augments the heat, as well as the absolute force of the explosion. It is true, that without the external air, the nitre in the gunpowder itself produces as much air as to inflame it very violently; but this does not prove that it could not be inflamed still more by the admission of more air. Besides, when the external air is thus admitted, the flame itself is agitated by its admission, and driven against the sides of the piece with a force superior to what it has by the mere expansive preassure; whence the heat must also be considerably augmented, in the same manner that the heat of any other body will be by the having flame blown against it instead of being blown away from it, or suffered to burn quietly by its side. Thus, without any recourse to an unknown and conjectural vibration among the particles of a solid metal, we may account for the augmented head of a piece charged only with powder, and likewise in some measure for the prodigious
gunpowder.

The force of gunpowder is manifestly augmented in close vessels, as has been already laid, by being rammed down or compressed together: but this arises from another cause, namely, that a greater quantity of flame is comprized into the same space than when the powder is not rammed; and this is comprehended when the flame is in proportion to the compression of the powder in the chamber of the piece. But in this case the flame is probably less powerful than in the former, though the quantity inclosed in a small space may probably make up for the quality. Mr. Thomson’s experiments on the increased force of gunpowder by compression are as follow:—Having put a charge of 218 grains of powder, inclosed in a cartridge of very fine paper, gently into the bore of the piece, the velocity of the bullets, at a mean of four experiments, was at the rate of 1235 feet in a second; but in a medium of three experiments, when the same quantity of powder was rammed down by five or six strokes of the ramrod, the velocity was 1329 feet in a second. "Now (says he) the total force or pressure exerted by the charge upon the bullet, is as the square of its velocity; and 1235 is to 1329 as 1,776 is to 1; or nearly as 6 is to 5; and in that proportion was the force of the given charge of powder increased by being rammed.—When, instead of ramming the powder, or prefling it gently together in the bore, it is put into a space larger than it is capable of filling, the force of the charge is thereby very feibly leffened, as Mr. Robins and others have found by repeated trials. In my 30th experiment, the charge, confisting of no more than 165 grains of powder, was made to occupy 3.2 inches of the bore, instead of 1.45 inches, which space it just filled. When it was gently pulied into its place without being rammed, the consequence was, that the velocity of the bullet, instead of being 1100 feet or upwards in a second, was only at the rate of 914 feet, and the recoil was leffened in proportion. Hence we may draw this practical inference, that the powder with which a piece of ordnance or a fire-arm is charged, ought always to be prefled together in the bore; and if it is rammed to a certain degree, the velocity of the bullet will be full farther increased. It is well known that the recoil of a musket is greater when its charge is rammed than when it is not; and there cannot be a stronger proof that ramming increases the force of powder."

To recover damaged Gunpowder. The method of the powder-merchants is, to put part of the powder on a flat cloth, to which they add an equal weight of what is really good; and with a knife mingle it well together, dry it in the sun, and barrel it up, keeping it in a dry and proper place. Others again, if it be very bad, restore it by moflening it with vinegar, water, urine, or brandy: then they beat it fine, leare it, and to every pound of powder add an ounce, a half, or two ounces, according as it is decayed, of melted saltpetre. Afterwards, these ingredients are to be moflened and mixed well, so that nothing can be discerned in the composition, which may be known by cutting the mass; and then they granulate it as aforesaid. In case the powder be in

G - length

manner quite spoiled, the only way is to extract the saltpetre with water according to the usual manner, by boiling, filtering, evaporating, and crystallizing; and then with fresh sulphur and charcoal to make it up anew again.

In regard to the medical virtues of gunpowder, Boerhaave informs us, that the flame of it affords a very healthy flame in the height of the plague, because the explosive acid vapour of nitre and sulphur corrects the air, and that the same vapour, if received in a small close pent-up place, kills infects.

It is enabled by 5 and 10 of Geo. I. and 5 Gee. II. c. 20, that gunpowder be carried to any place in a covered carriage; the barrels being close-jointed; or in cases and bags of leather, &c. And persons keeping more than 200 pounds weight of gunpowder at one time, within the cities of London and Westminster, &c. are liable to forfeitures if it be not removed; and justices of peace may issue warrants to search for, seize, and remove the same.

Gun-Smither, a maker of small fire-arms, as muskets, fowling-pieces, pistols, &c.

Gun-Smithery, the business of a gun-smith, or the art of making fire-arms of the smaller forts, as muskets, fowling-pieces, pistols, &c.

The principal part of these instruments is the barrel, which ought to have the following properties.

1. Lightness, that it may accommodate the person who carries it as little as possible. 2. Sufficient strength and other properties requisite to prevent its bursting by a discharge. 3. It ought to be constructed in such a manner as not to recoil with violence. And, 4. It ought to be of sufficient length to carry the shot to at great a distance as the force of the powder employed is capable of doing.

The manufacture of fire-arms is now carried to such a degree of perfection by different European nations, that it may perhaps be justly doubted whether any farther improvement in the qualities just mentioned can be made. For the materials, the finest iron that can be procured is to be made use of. The belt in Britain are formed of flubs as they are called, or old horse-shoe nails, which are gathered and wrought over by gun-smiths from farriers, and from poor people who subsist by picking them up on the great roads leading to London. These are sold at about 1s. per cwt. and 28 pounds are requisite to form a single musket barrel. The method of manufacturing them from this material is as follows: A hoop of about an inch broad, and six or seven inches diameter, is placed in a perpendicular situation, and the flubs, previously well cleaned, piled up in it with their heads outward on each side, till the hoop is quite filled and wedged tight with them. The whole then resembles a rough circular cake of iron which being heated to a white heat, and then strongly hammered, coalesces into one solid lump. The hoop is now removed, and the hearings and hammerings repeated till the iron is rendered very tough and close in the grain; when it is drawn out into pieces of about 24 inches in length, half an inch or more in breadth, and an half an inch in thickness.

Four of these pieces are employed for one barrel; but in the ordinary way a single bar of the best soft iron is employed. The workmen begin with hammering out this into the form of a flat ruler having its
length and breadth proportioned to the dimensions of the intended barrel. By repeated heating and hammering, this plate is turned round a tempered iron rod called a mandril, the diameter of which is considerably smaller than the intended bore of the barrel. One of the edges of the plate being laid over the other, about half an inch and a half wide, is placed in a hole in the anvil, and driven into it, with a mandril being then introduced for three inches at a time, hammering it briskly, but with moderate strokes, upon an anvil which has a number of semicircular furrows in it, adapted to barrels of different sizes. Every time the barrel is withdrawn from the fire, the workman strikes it gently against the anvil once or twice in an horizontal direction. By this operation the particles of the metal are more perfectly consolidated, and every appearance of a seam in the barrel is obliterated. The mandril being then again introduced into the cavity of the barrel, the latter is very strongly hammered upon it in one of the semicircular hollows of the anvil, by small portions at a time; the heastings and hammerings being repeated until the whole barrel has undergone the operation, and its parts rendered as perfectly continuous as if they had been formed out of a solid piece. To effect this completely, three welding heats are necessary when the very best iron is made use of, and a greater number for the coarser kinds. The French workmen imagine, that by giving the barrel, while in the fire, slight horizontal strokes with the hammer, so as to communicate a vibratory motion to the iron, those particles are thrown off which are in a state of fusion and cannot easily be converted into malleable iron; but considering the great number of operations already described which the metal has undergone, we can scarce suppose this to be of much consequence.

The next operation in forming the barrels is the boring of them, which is done in the following manner: Two beams of oak, each about six inches in diameter, and six or seven feet long, are placed horizontally and parallel to one another; having each of their extremities mortised upon a strong upright piece about three feet high, and firmly fixed. A space of three or four inches is left between the horizontal pieces, in which a piece of wood is made to slide by having at either end a tenon let into a groove which runs on the inside of each beam throughout its whole length. Through this sliding piece a strong pin or bolt of iron is driven or screwed in a perpendicular direction, having at its upper end a round hole large enough to admit the breech of the barrel, which is secured in it by means of a piece of iron that serves as a wedge, and a vertical ferret passing through the upper part of the hole. A chain is fastened to a staple in one side of the sliding piece which runs between the two horizontal beams; and passing over a pulley at one end of the machine, has a weight hooked on to it. An upright piece of timber is fixed above this pulley and between the ends of the beams, having its upper end perforated by the axis of an iron crank furnished with a square socket; the other axis being supported by the wall, or by a strong post, and loaded with a heavy wheel of cast iron to give it force. The axes of this crank are in line with the hole in the bolt already mentioned. The borer being then fixed into the socket of the crank, has its other end, previously well oiled, introduced into the barrel, whose breech part is made fast in the hole of the bolt; the chain is then carried over the pulley, and the weight hooked on the crank being then turned with the hand, the barrel advances as the borer cuts its way, till it has passed through the whole length. The boring bit consists of an iron rod somewhat longer than the barrel, one end of which fits the socket of the mandril, the other being adapted to a cylinder of tempered steel about an inch and a half in length, having its surface cut after the manner of a perpetual screw, with five or six threads, the obliquity of which is very small. The breadth of the furrows is the same with that of the threads, and their depth sufficient to let the metal cut by the threads pass through them easily. Thus the bit gets a very strong hold of the metal; and the threads, being sharp at the edges, soon out and remove all the inequalities and roughness from the inside of the barrel, and render the cavity smooth and equal throughout. A number of bits, each a little larger than the former, are afterwards successively passed through the barrel in the same way, until the bore has acquired the magnitude intended. By this operation the barrel is very much heated, especially the first time the borer is passed through it, by which means it is apt to warp. To prevent this in some measure, the barrel is covered with a cloth kept constantly wetted, which not only preserves the barrel from an excess of heat, but likewise prevents the temper of the bit from being destroyed. The borer itself must also be withdrawn from time to time; both to clean it from the shavings of the metal and to oil it, or repair any damages it may have undergone. Every time a fresh bit has been passed through the barrel, the latter must be carefully examined, to see if it has warped; and likewise if there are any spots, by the workmen called black, on its inside. When warped, it must be straightened on the anvil; for which a few slight strokes on the convex parts will be sufficient; and this is termed fitting up the barrel. When black spots are perceived on the corresponding part on the outside must be marked, and driven in by gentle strokes with the hammer, when they will be completely removed by passing the borer another time through the piece.

The equality of the bore is of the utmost consequence to the perfection of a barrel; inform the greatest possible accuracy in every other respect will not make amends for any deficiency in this respect. The method used by gunsmiths to ascertain this is by a cylindrical plug of tempered steel highly polished, about an inch in length, and fitting the bore exactly. This is screwed upon the end of an iron rod, and introduced into the cavity of the barrel, where it is moved backwards and forwards; and the places where it passes with difficulty being marked, the boring bit is repeatedly passed until it moves with equal ease through every part. Any person who wishes to know the merit of his piece in this respect, may do it with tolerable accuracy by means of a plug of lead cast on a rod of iron; or even by a musket ball filed exactly to the bore, and pulled through the barrel by a cord; taking care, however, not to use much force lest the ball be flattened, and its passage thus rendered difficult.

The last step towards the perfection of the inside of the barrel is termed fine boring, by which is meant the smoothing it in such a manner as to remove all marks and inequalities left by the borer. The fine borer resembles
fembles the other in its general construction: but instead of the piece of steel cut in form of a screw which belongs to that, it is furnished with a square breech 10 or 12 inches long, highly polished, and very sharp, by which means it cuts the metal very smoothly. It is found to answer the purpose best when only two of its edges are allowed to work, the other two are covered with slips of oiled paper, one or more additional slips being put on each time that the instrument is passed through the barrel. The fine-borer is frequently passed through from the muzzle to the breech, and from the breech to the muzzle, until the whole inside presents a perfectly equal and polished surface; the barrel being likewise examined and set up, if requisite, after each time. It is absolutely necessary that this instrument should be perfectly true, and not in the least cait or warped in the tempering.

Besides the operations above described, another, called polishing, is usually performed in gun-barrels, though it is doubtful whether this last be attended with any good effect or not. It is performed by a cylinder of lead, five or six inches long, cast upon a rod of iron, and filed exactly to the bore. The lead being then covered with very fine emery and oil, is wrought backwards and forwards through the whole length of the barrel until the inside has acquired the requisite degree of polish. The disadvantages of this operation are that it is scarce possible to perform it without precluding more upon one part than another, and thus producing some degree of inequality on the inside, which is of very great consequence to fire-arms. The polish thus given is likewise very perishable, so that the fine-boring may justly be considered as the last operation necessary for the inside of a barrel; and it is then proper to give the external form and proportions by means of a file. For this purpose, four faces are first formed upon it, then eight, then 16; and so on till it be quite round, excepting the part next the breech, called the reinforced part, which is always left of an octagonal form. It being absolutely necessary that the barrel should be equally thick on every side, gunsmiths employ, for accomplishing this purpose, a particular tool named a file-diffuser. This consists of an iron rod bent in such a manner as to form two parallel branches about an inch distant from one another. One of these branches is introduced into the barrel, and kept closely applied to the side, by means of one or more springs with which it is furnished: the other defends parallel to this on the outside, and has several screws passing through it with their points directed to the barrel. By screwing these until their points touch the surface of the barrel, and then turning the instrument round within the bore, we perceive where the metal is too thick, and how much it must be reduced, in order to render every part perfectly equal through its circumference. It may be made long enough to reach the whole length of the barrel, though it will be more convenient to have it only half as much, and to introduce it first at one end and then at the other. Instead of rounding the barrel by means of a file and compasses, however, some people do so by turning it in a lathe; which is no doubt more expedients, though neither so certain nor exact. A file as long as a gun barrel cannot without great difficulty, be prevented from springing considerably under the tool employed to reduce or smooth it in turning; whence it is found, that by this operation barrels are more frequently warped than by all the borings they undergo; and there is now this farther inconvenience, that they cannot be set up as formerly, without danger of destroying them entirely.

The barrels being thus bored and formed externally, it is customary for the gunsmiths in France to folder the loops and aim before they breech the barrel. The English, however, do not restrict themselves in this manner: for as soft folder is sufficient for fastening on these, they never use any other; while the French, who use hard folder, must of confluence employ a great heat. Thus the inside is roughened sometimes to considerably, that it is necessary to repeat the fine-boring; which could not be done without injuring the threads of the ferew formed for the breech, if the barrel were prepared for the latter without foldering on the former.

The first tool employed in forming the breech-screw is a plug of tempered steel, somewhat conical, with the threads of a male screw upon its surface, and by the workmen termed a screw tap. This being introduced into the barrel, and worked from left to right and back again, until it has marked out the four first threads of the screw, another left conical tap is introduced; and when this has carried the impression of the screw as far as it is intended to go, a third one, nearly cylindrical, is made use of, scarcely differing from the plug of the breech intended to fill the screw thus formed in the barrel. The plug itself has its screw formed by means of a screw-plate of tempered steel, with several female screws, corresponding with the taps employed for forming that in the barrel. Seven or eight threads are a sufficient length for a plug; they ought to be neat and sharp, so as completely to fill the turns made in the barrel by the tap. The breech-plug is then to be case-hardened, or to have its surface converted into steel, by covering it with thavings of horn, or the parings of the hoofs of horses, and keeping it for some time red hot; after which it is plunged in cold water.

The only thing now requisite for completing the barrels is to give them a proper colour; as a preparation for which their outside ought to be evenly polished with oil and emery. This being done, it was the custom to give such a degree of heat as would make them blue throughout; but as this cannot be effected without a partial calcination of the surface, which of consequence affects the inside also, the blue colour has been for some time disfavored, and a brown one substituted in its place. To give this colour, the pieces are first rubbed over with aquafortis or spirit of salt diluted with water; after which they are laid by till a complete coat of rost is formed upon them: a little oil is then applied; and the surface, being rubbed dry, is polished by means of a hard brush and bees-wax.

Thus the common musket-barrels for the purposes especially of sportmanship are made: but there are some other methods of manufacture, by which the barrels are made to differ in some respects from those just described, and are thought to be considerably improved. One kind of these are called twisted barrels, and by the English workmen are formed out of the plates made of steel formerly described. Four of these, of the size already mentioned, are requisite to make one barrel. One of them heated red hot for five or six inches is turned
GUN

GUN

[244]

GUN

turned like a cork-screw by means of the hammer and anvil; the remaining parts being treated successively in the same manner until the whole is turned into a spiral, forming a tube the diameter of which corresponds with the bore of the intended barrel. There are generally sufficient to form a barrel of the ordinary length, i.e. from 32 to 38 inches; and the two which form the breech or strongest part, called the reinforced part, are considerably thicker than those which form the muzzle or fore part of the barrel. One of these tubes is then welded to a part of an old barrel, to serve as an handle, after which the turns of the spiral are united by heating the tube two or three inches at a time to a bright white heat, and striking the end of it several times against the anvil in a horizontal direction with considerable strength, which is called jumping the barrel, and the heats given for this purpose are called jumping heats. The next step is to introduce a mandrel into the cavity, and to hammer the heated portion lightly in order to flatten the ridges or hurs raised by the jumping at the place where the spirals are joined. As soon as one piece is jumped throughout its whole length, another is welded to it, and treated in the same manner, until the four pieces are united, when the part of the old barrel is cut off, as being no longer of any use. The welding is repeated three times at least, and is performed exactly in the same manner as directed for plain barrels; and the piece may afterwards be finished accordingly to the directions already given.

The operation for the French twisted barrels is very different from that just mentioned, and much more exceptionable. It consists in heating the barrel by a few inches at a time to a strong red heat; one end is then screwed into a vice, and a square piece of iron with an handle like an auger is introduced into the other. By means of the fibre the fibres of the heated portion are twirled into a spiral direction, which is supposed to re-ful the effort of the inflamed powder better than the other. To render this operation complete, however, it must be observed, that when once the several portions of the barrel have been twisted, the subsequent heats ought not to be very great, or the grain of the metal will regain its former state, and the barrel be no better for the twisting than before. To twist a barrel in this manner, also, it will be necessary to forge it at least half a foot longer than it is intended to be, that a sufficient length may be kept cold at each end to give a sufficient purchase to the vice and twisting instrument; and these portions must afterwards be cut off before the barrel is bored, or two pieces of an old barrel may be welded to the muzzle and breech of that which is to be twisted, and cut off when the operation is over. These pieces may also be made stronger than usual to resist the force of the vice and twisting instrument; and in order to give the latter a firmer hold, the cavity of the muzzle may be made of a square form. The English workmanship are unanimously of opinion that this method of twisting is really injurious to the barrel, by straining the fibres of the metal. At any rate, from the injudicious methods followed by the French artists, the greatest part of their barrels, felt to be twisted, are not so in reality; there being at least six or seven inches at the muzzle, and seven or eight at the breech, which are not affected by the operation.

The French ribbon barrels have a great resemblance to the English twisted ones; but the process for making them is much more operose, though it seems not to posses any real advantage over that used by the English artists. A plate of iron, about the twelfth part of an inch in thickness, is turned round a mandril, and welded its whole length in the same manner as a plain barrel. Upon this slight barrel, which is called the lining, a plate of iron about an inch in breadth, and bevelled off at the edges, is by means of successive heats rolled in a spiral direction; after which it is termed the ribbon, and must have a thickness corresponding with that part of the barrel which it is to form. As it would, however, be difficult to form a ribbon of sufficient length for the whole barrel, it is made in several pieces; and when one piece is rolled on, another is welded to its end, and the operation continued until the lining is entirely covered. The edges are so much bevelled, that the one folds over the other about a quarter of an inch. After the ribbon is all rolled on, the barrel must be heated by two or three inches at a time, and the turns of the spiral united to each other and to the lining by being welded in the same manner as the twisted barrel; though, from what has been said of the construction of these barrels, it is plain that the operation of jumping cannot be admitted in them. The barrel is afterwards bored in such a manner that almost the whole of the lining is cut out, and scarce anything left but the ribbon with which the lining was covered.

The superiority of twisted and ribbon barrels over the plain kind gave occasion to a third sort named wired barrels. These were invented by an ingenious workman at Paris named Barrois; whose method was as follows: Upon a thin barrel, filed and dressed as usual, he rolled, as close as possible, and in a spiral direction, a tempered iron wire about the thickness of a crow-quill, the first layer covering only the reinforced part. The turns of the wire were folded to each other and to the barrel with a composition which he kept a secret. The wired part was then filed smooth and bright, but not so much as to weaken it; a second layer of wire was applied over the first, extending two-thirds of the length of the barrel; and this being smoothed and brightened like the first, a third layer was applied, which covered the two former and reached quite to the muzzle.

The barrels made after this manner are supposed to be much superior to others, though the supposition seems not to be well founded. It is certain that wire is not preferable to other iron as a material for gun-barrels; and the folder used by M. Barrois in a quantity nearly equal to the wire itself, must be accounted a defect as far as it was used; for no metal has yet been found equal to iron for the purposes of gunsmiths: so that by the use of so much of this folder in the composition of the barrel, it must be undoubtedly weaker than if it had been all made of iron. We are not to suppose the wire absolutely free from flaws; and even though it were, there will always be small cavities between its turns, which the folder cannot fill completely. Besides, as the operation of wiring was performed by M. Barrois upon a barrel that had been previously bored and dressed within, the repeated heats to which it was afterwards subjected in folding, if they did not cause it warp, at least rendered it fo rough
rough that it was necessary to fine-bore it afterwards. The only advantage therefore which these barrels were found to possess was their beautiful appearance; which was greatly overbalanced by the circumstances just mentioned, as well as by the extravagant prices at which they were sold; a single barrel being sold at 51. and a double one at twice that sum; whence the fate of them never answered the expectation of the inventor, and after his death nobody thought of making them.

The Spanish barrels have long been held in great estimation, both on account of their being formed of better iron than those of other countries, and likewise from an opinion of their being more perfectly forged and bored. Thofe made at Madrid are the best, and even of those thus as have been made by former gunsmiths are in the greatest estimation. The most celebrated Spanish gunsmiths were Nicholas Bizz, who lived in the beginning of the present century, and died in 1724; and the barrels fabricated by him in the former part of his life are held in the greatest estimation. Thofe of his contemporaries, Juan Belan and Juan Fernandez, are not less valued; all of their barrels selling in France at 1000 livers, or 451. 152. sterl. The successors of these great artists were Diego Elquiabal, Alonso Martinez, Agonin Ortiz, Matthias Viera, Luis Santos, Juan Santos, Francisco Garcia, Francisco Targarone, Joseph Cano, and N. Zelaya. The most celebrated now in life are Francisco Loper, Salvador Cenarro, Miguel Zeguarras, Iñuroro Soler, and Juan de Soto. The three first are gunsmiths to the king; and the barrels made by all of them sold for 451. 152. sterl. Altogether all the Madrid barrels are composed of the old shoes of horsfes and mules, which are collected for the purpose. They are manufactured first by welding longitudinally, and then being joined together in four or five pieces like the English barrels made from flue, as already mentioned. In this, and indeed all other operations for making gun barrels, an immense waste of the iron takes place; but that of the Spanish iron is by far the greatest, a mass of 40 or 45 pounds being required to make one barrel, which when rough from the forge weighs only six or seven pounds; so that from 30 to 38 pounds are lost in the hammerings. It may perhaps, however, be doubted, whether the iron be really purified by this waste; for it is certain, that by long continued working in the fire it may be rendered totally useless and destroyed; neither can we be assured that the other advantages pretended to result from their mode of manufacture are of any consequence. The Spanish artificers likewise value themselves on giving the inside of their barrels a very high polish; but the advantage of this, as has already been observed, is extremely dubious. The only thing requisite in a gun-barrel is that it do not leak; that is, that the mark of the bullet be not perceived on the inside after it has been discharged, by some of the lead rubbed off as it passes through. In the opinion of very good judges, therefore, it is better to take a barrel immediately after it has undergone the operation of fine-boring than to give it any higher polish; and in support of this opinion, M. de Marolles, an author of great reputation, informs us, that he has seen a barrel rough from the borner throw a charge of shot deeper into a quire of paper than one which was highly polished within, though the length, bore, and charge were the same in both.

As the Spanish iron is universally allowed to be excellent, it has not been unreasonably supposed that the superiority of the barrels manufactured in that kingdom is owing more to the goodness of the material than to the skill of the workmen. It must be observed, however, that instead of making the plates overlap a little in the place where they join, they give one of them a complete turn; so that every Spanish barrel may be said to be double throughout its whole length. The different portions of the iron are also forged in such a manner, that the grain of the iron is diffipated in a spiral manner; whence it has the same effect with a ribbon or twisted barrel. The outside is finished by turning them in a lathe; whence probably they are always less elegantly wrought than the French and English pieces. The great value put upon them is also thought to be more owing to fancy than to any real good qualities they possess. Formerly they were made from three to three feet and a half long; their bore being such as to admit a bullet from 22 to 24 in the pound; and their weight from three to three pounds and an half. The reinforced part extends two-fifths of the length; and at 10 or 12 inches from the breech there is placed a sight, such as is usually put upon rifle-barrels or those intended only for ball. According to Espinas, arquebus-bearer to Philip IV, the weight of a Spanish barrel ought to be four pounds and an half when their length is 42 inches; but both weight and length are now much reduced, they seldom exceeding the dimension already mentioned. Next to the barrels made at Madrid, the most esteemed are those of Biscay; and of these, those of Bispindul and St. Olabe at Placentia in Biscay; and of Jenn and Clement Padwettu, Eudal Pous, and Martin Marechal, at Barcelona; the usual price of them being about 31. 10s. sterl.

Having now described the method of forging barrels, we shall next proceed to give an account of those imperfections to which they are sometimes liable, and which render them apt to burst or recoil with violence. The principal of these are the chink, crack, and flaw. The first is a small rent in the direction of the length of the barrel; the second across it; and the third is a kind of scale or small plate adhering to the barrel by a narrow base from which it spreads out like the head of a nail from its shaft, and when separated leaves a pit or hollow in the metal. The chink or flaw are of much worse consequence than the crack in fire-arms, the force of the powder being exerted more upon the circumference than the length of the barrel. The flaw is much more frequent than the chink, the latter scarce ever occurring in plain barrels formed out of a single plate of iron, and then only when the metal is deficient in quality. When flaws happen on the outside, they are of no great consequence; but in the inside they are apt to lodge moisture and foulnefs which corrode the iron, and thus the cavity enlarges continually till the piece bursts. This accident, however, may arise from many other causes besides the defect of the barrel itself. The best pieces will burst when the ball is not sufficiently ramm'd home, by which is meant that there is left between it and the powder. A very small windage or passage for the inflamed powder between the sides of the barrel and ball will be sufficient to prevent the
The truth of this I have experienced in a very good Tower musket forged of very tough iron: for charging it with 12 pennyweight of powder, and placing the ball 16 inches from the breach, on the firing of it the part of the barrel just behind the bullet was swelled out to double its diameter like a blown bladder, and two large pieces of two inches in length were bursting out of it. A piece will frequently burst from having its mouth flapped up with earth or snow; which accident forms an obstacle to the expansion of the flame in leaping a ditch in which they have affixed themselves with their fouling-piece, putting the mouth of it to the ground; and when this does not happen, it is only to be accounted for from the flapping being extremely slight. For the same reason a musket will certainly burst if it be fired with the muzzle immersed nearly a very little way in water. It will also burst from an overcharge; but when such an accident happens in other circumstances, it is most probably to be attributed to a defect in the workmanship, or in the iron itself. These defects are principally an imperfection in the welding, a deep flaw having taken place, or an inequality in the bore; which last is the most common of any, especially in the low-priced barrels.

The reason of a barrel's bursting from an inequality in the bore is, that the elastic fluid, set free by the inflammation of the powder, and endeavouring to expand itself in every direction, being repelled by the stronger parts, acts with additional force against the weaker ones, and frequently bursts through them. Which would not have done had the tubes been equally thick and strong throughout. With regard to defects arising from bad quality of the iron, it is impossible to say any thing certain. As the choice of the materials depends entirely on the gunsmith, the only way to be assured of having a barrel made of proper metal is to purchase it from an artist of known reputation, and to give a considerable price for the piece.

The recoil of a piece becomes an object of importance only when it is very great; for every piece recoils in some degree when it is discharged, the most frequent cause of an excessive recoil is an inequality in the bore of the barrel; and by this it will be occasioned even when the inequality is too small to be perceived by the eye. The explanation of this upon mechanical principles indeed is not very easy; for as it is there an irremovable law, that action and reaction are equal to one another, we should be apt to suppose that every time a piece is discharged it should recoil with the whole difference between the velocity of the bullet and that of the inflamed powder. But were this the case, no man could fire a musket without being destroyed; for the bullet flies out only with a velocity of 1700 feet in a second, or not much more, while that of the powder, as calculated by Mr. Robins, is not less than 7000 feet in the same space. But was the recoil to be made with the difference of these velocities, or with one half of it, it is plain that no man could bear it. The same thing therefore must take place in the recoil of a musket which Dr. Prieley observed in his experiments on the explosion of inflammable and dephlogisticated air, viz. that the force is exerted much more upon the part farthest from that where the inflammation begins than upon that next to it. At any rate, however, the strength of the recoil will always be found proportional to the weight of the piece; that is, the lighter the piece is, the greater the recoil, and vice versa. The recoil may be increased by any thing which retards the passage of the shot; whence it is also augmented by the fouling of the barrel by repeated firing. M. de Marolles informs us also, that a piece will recoil, if, from the breech-plug being made too short, some turns of the screw remain empty; as in these a part of the powder is lodged which forms a ditch in which the powder is blown; though in what manner this explosion takes place is not very apparent, as, though the powder lodged there might contribute little or nothing to the force of the explosion, it can scarce be shown to stand in the way of it. The fame author likewise informs us that a barrel mounted upon a very straight block will recoil more than one that is considerably bent. Sometimes also a fouling-piece will recoil from the sportsman applying it improperly to his shoulder; though this last circumstance seems likewise inexplicable. It is most probable therefore that the supposed greater recoil taken notice of in this case, arises only from the usual recoil being more feebly felt in one position than another.

The cause to which too great a recoil in muskets has been usually attributed, is the placing of the touch-hole at some distance from the breech-plug; so that the powder is fired about the middle, or towards its fore-part, rather than at its base. To avoid this, some artists form a groove or channel in the breech-plug, as deep as the second or third turn of the screw; the touch-hole opening into this channel, and thus firing the powder at its very lowest part. It appears, however, from a number of experiments made upon this subject by M. le Clerc gunsmith to the king of France, that it made very little difference with regard to the recoil, whether the touch-hole was close to the breech: or an inch distant from it. The only circumstance to be attended to with respect to its situation therefore is, that it be not quite close to the breech-plug: as in such a case it is found to be more apt to be choked up than when placed about a quarter of an inch from it.

The only other circumstance now to be determined with regard to musket-barrels is their proper length. Formerly it was supposed that the longer they were made, the greater would be the distance to which they carried the shot, and that without any limitation. This opinion continued to prevail till about half a century ago, when it was first propounded as a doubt whether long barrels carried farther than short ones. With regard to cannon, indeed, it had long before this time been
...been known that they might be made too long; and Balhazar Killar, a celebrated cannon-founder in the reign of Louis XIV. was able to account for it. When asked by Mons. Suriry de St Remy, why the culverin of Nancy, which is 22 feet long, did not carry a ball equally far with a shorter piece? he replied, that 'the powder, when inflamed, ought to quit the cavity of the piece in a certain time, in order to exert its whole force upon the bullet; by a longer stay, part of the force is lost; and the same cause may produce an inequality in the shots, by giving a variation to the bullet, so as to destroy its rectilinear course, and throw it to one side or other of the mark.' Mr. Robins, who on this as well as every other question in gunnery has almost exhausted the subject, informs us, that 'if a musket-barrel, of the common length and bore be fired with a leaden bullet and half its weight of powder, and if the same barrel be afterwards shortened one half and fired with the same charge, the velocity of the bullet in this shortened barrel will be about one-sixth less than what it was when the barrel was entire; and if instead of shortening the barrel, it be increased to twice its usual length, when it will be near eight feet long, the velocity of the bullet will not hereby be augmented more than one-eighth part. And the greater the length of the barrel is in proportion to the diameter of the bullet, and the smaller the quantity of powder, the more considerable will these alterations of velocity be.' From these considerations it appears, that the advantages gained by long barrels are by no means equivalent to the disadvantages arising from the weight and incumbrance of carrying them; and from a multitude of experiments it is now apparent, that every one may choose what length be pleases, without any sensible detriment to the range of his piece. The most approved lengths are from 32 to 38 inches.

An opinion has generally prevailed among sportsmen, that by some unknown manoeuvre the gunsmith is able to make a piece, loaded with small shot, throw the contents fo close together that even at the distance of 40 or 50 paces the whole will be confined within the breadth of a hat. From such experiments as have been made in this subject, however, it appears, that the closefens or wideness with which a piece throws its shot is liable to innumerable variations from causes which no skill in the gunsmith can possibly reach. So variable are these causes, that there is no possibility of making the same piece throw its shot equally close twice successively. In general, however, the closer the wadding is, the better disposed the shot seems to be to fall within a small compass. 'The closefens of the shot therefore would seem to depend in a great measure on preventing the flame of the powder from inflaming itself among its particles; whence the following method is said to be practised with success by those who shoot for a wager at a mark with small shot; viz. to put in the shot by small quantities at a time, ramming down a little tow or thin paper over each; so as to fill the interfaces of the grains, and thus prevent the flame from getting in amongst the grains and scattering them. In firing with small shot, a curious circumstance sometimes occurs, viz. that the grains, instead of being equally distributed over the space they strike, are thrown in clusters of 10, 12, 15, or more; whilst several considerable spaces are left without a grain in them. Sometimes one-third or one half of the charge will be collected into a cluster of this kind; nay, sometimes, though much more rarely, the whole charge will be collected into one mass, so as to pierce a board near an inch thick at the distance of 40 or 45 paces. Small barrels are said to be more liable to this clustering than large ones; and M. de Marolles informs us, that this is especially the case when the barrels are new, and likewise when they are fresh-warmed; though he acknowledges that it did not always happen with the barrels he employed even after they were warmed. It is probable, therefore, that the closefens of the shot depends on some circumstance relative to the wadding rather than to the mechanism of the barrel.

Some pieces are composed of two or more barrels joined together; in which case the thickness of each of the barrels is somewhat less than in single-barrelled pieces. After being properly dressed each of them is fixed flat on the side where they are to join each other, so that they may fit more closely together. The corresponding notches are then made at the muzzle and breech of each barrel; and into these are fitted two small pieces of iron to hold them more strongly together. Being then united by turning the contiguous parts, a triangular piece of iron called the rib is inserted on in like manner, running the whole length on the upper side; which serves to hold them more strongly together. After this they are to be polished and polished in the manner described for single barrels. Great care should be taken that the barrels joined in this manner should be quite equal in strength to one another, and that both should be quite upright, or of an equal thickness throughout. If any inequality takes place in the strength of the barrels, the weaker will be warped by the action of the stronger, and the warping from this cause has sometimes been so considerable as to render one of the barrels useless. To bring every part of the circumference of each barrel to an equal strength as nearly as possible, so that no part may be strained by the explosion, that side where they touch each other must be so reduced, that the partition between the two cylinders may be no thicker than either barrel was at the same place before it was filed to join in this manner. Formerly the double-barrelled pieces were made with one barrel lying over the other, each barrel having a separate pan, hammer, and hammer-spring, but only one cock for both. The barrels were therefore made to turn round at the place where the breeches joined with the fock, so that as soon as one was fired off, the other could be brought into its place by pulling a spring moved by the guard with the right hand, while with the left the barrels were turned upon their common axis; and as soon as the charged-barrel was thus brought into its proper situation, the spring defended into a notch and kept it firm. But this method was found to be too complicated and embarrased, though upon the same plan three and four barrels were sometimes mounted upon one fock; but these pieces were intolerably heavy, and have no real superiority over the double-barrelled pieces which do not turn round, and which of consequence are now only made use of.

In forging barrels of all kinds, it is of considerable importance to have them made at first as near as possible...
ble to the weight intended when they are finished, so
that very little be taken away by the boring and filing:
for as the outer surface, by having undergone the ac-
tion of the hammer more immediately than any other
part, is then on that side more compressed and pure, we should
carefully to remove as little of it as possible; and the
same holds, though in a less degree, with the inside,
which is to be cut with the borer. Pit-rolls are
forged in one piece, two at a time, joined by their
muzzles, and are bored before they are cut smaller;
by which means there is not only a saving of time and
labour, but a greater certainty of the bore being the
same in both.

GUNTER (Edmund), an excellent English mathe-
matician and astronomer, was born in Hertfordshire in
1581, and studied at Westminster-school; from whence
he removed to Oxford, where he took the degree of
master of arts in 1605, and afterwards entered into holy
orders. In 1615 he took the degree of bachelor of
divinity: but being peculiarly eminent for his know-
ledge in the mathematics, he had two years before been
chosen professor of astronomy in Gresham-college, Lon-
don; where he distinguished himself by his lectures
and writings. He invented a small portable quadrant;
and also the famous line of proportions, which, after
the inventor, is called Gunter's scale. He likewise
published Canon Triangulorum; and a work intitled
Of the Sectors, Cross-staff, and other instruments. This
last was published, with an English translation of his
Canon Triangulorum, in 1640, by Samuel Fuller profes-
or of Gresham-college. Mr Gunter died at that col-
lege in 1626.

Gunter's Line, a logarithmic line, usually graduated
upon scales, sectors, &c.

It is also called the line of lines and line of number:
being only the logarithms graduated upon a ruler,
which therefore serves to solve problems instrumentally
in the same manner as logarithms do arithmetically.
It is usually divided into 100 parts, every tenth where-
of is numbered, beginning with 1 and ending with 10:
so that if the first great division, marked 1, stand for
one tenth of any integer, the next division marked 2,
will stand for two tenths, 3, three-tenths, and so on;
and the intermediate divisions will in like manner be
marked the most compact and pure: if each of the
great divisions represent integers, then will the
lessor divisions stand for integers; and if the greater
divisions be supposed each 100, the subdivisions will be
each 10.

Use of Gunter's Line. 1. To find the product of two
numbers. From 1 extend the compasses to the multi-
plier; and the same extent, applied the same way from
the multiplicand, will reach to the product. Thus if
the product of 4 and 8 be required, extend the compas-
ses from 1 to 4, and that extent laid from 8 the
same way will reach to 32, their product. 2. To di-
vide one number by another. The extent from the divi-
sor to unity will reach from the dividend to the quo-
tient: thus, to divide 36 by 4, extend the compasses
from 4 to 1, and the same extent will reach from 36
to 9, the quotient sought. 3. To three given numbers
to find a fourth proportional. Suppose the numbers 6,
8, 9: extend the compasses from 6 to 8; and this ex-
tent, laid from 9 the same way, will reach to 12, the
fourth proportional required. 4. To find a mean pro-
portional between the two given numbers. Suppose 8
and 52; extend the compasses from 8, in the left-hand par-
t of the line, to 52 in the right; then bisecting this
distance, its half will reach from 8 forward, or from
52 backward, to 16, the mean proportional sought.
5. To extract the square root of any number. Suppose 25
bisect the distance between 1 on the scale and the point
representing 25; then of this distance, set off from
1, will give the point representing the root 5.

In the same manner the cube root, or that of any
higher power, may be found by dividing the distance
on the line between 1 and the given number into as
many equal parts as the index of the power expresses;
then one of those parts, set from 1, will find the point
representing the root required.

Gunter's Quadrant, one made of wood, brass, &c.,
containing a kind of stereographic projection of the
sphere, on the plane of the equinoctial; the eye being
supposed placed in one of the poles.

Gunter's Quadrant, called by navigators simply the
gunter, is a large plain scale, generally two feet long,
and about an inch and a half broad, with artificial
lines delineated on it, of great use in solving questions
in trigonometry, navigation, &c.

GUNWALE, or GUNNEL, is the uppermost wale
of a ship, or that piece of timber which reaches on ei-
ther side from the quarter-deck to the forecastle, being
the uppermost bend which finishes the upper works of
the hull, in that part in which are put the flancheons
which support the wale-trees.

GURK, an episcopal town of Carinthia in Germany,
47. 10.

GURNARD, in ichthyology. See Trigla.

GUST, a sudden and violent squall of wind, bur-
ftling from the hills upon the sea so as to endanger the
shipping near the shore. These are peculiar to some
coasts, as those of South Barbary and Guinea.

GUSTAVIA, in botany; a genus of the poly-
andria order, belonging to the monadelphous class
of plants. There is no caulix: the petals very numerous;
the berry multilocular; the seeds appendaged.

Gustavus I. king of Sweden, son of Eric de
Vasa duke of Gripsholm. Christian II. king of Den-
mark having made himself master of the kingdom of
Sweden, confined Gustavus at Copenhagen; but he
making his escape wandered a long time in the forests,
till the cruelties of the tyrant having occasioned a re-
revolution, he was first declared governor of Sweden,
and in 1513 elected king. This prince introduced
Lutheranism into his dominions, which in a little time
spread itself all over the kingdom. He died in 1560;
having made his kingdom hereditary, which was before
elective. See SWEDEN.

Gustavus Adolphus, surnamed the Great, king
of Sweden, was born at Sockholm in 1594, and succe-
eded his father Charles in 1611. He espoused the caufe
of the Protestants in Germany, who were opprified
and almost entirely ruined by the emperor Ferdinand.
He was a great warrior, and gained many victories,
whereof an account is given under the article SWEDEN.
He was at last killed in the battle of Lutzen, where
his troops got the victory, and defeated two of the
empire's armies.

GUTHALUS, or Gunnalus (anc. geogr.), is thought
GUY [249]

Guy, thought to be the Videutus of Ptolemy. Now the Oder; which rising in Moravia, runs through Sileia, Brandenburg, and Pomerania, into the Baltic.

GUTTA, a Latin term for what in English we call drops.

Gutta Rojava, in medicine, denotes a red or pimpled face; a distemper which, though not always owing its original to hard drinking, is nevertheless most incident to tipplers of strong beer, wines, spirits, &c.

Gutta Serena, a disease in which the patient, without any apparent fault in the eye, is deprived of sight. See (Index subjoined to) Medicine.

GUTTA, in architecture, are ornaments in the form of little cones used in the Doric cornice, or on the architrave underneath the triglyphs, representing a ffort or drops of bells.

GUTTURAL, a term applied to letters or sounds pronounced or formed as it were in the throat.

GUTTY, in heraldry, a term used when any thing is charged or sprinkled with drops. In blazoning, the colour of the drops is to be named; as goutty of table, of gules, &c.

GUY (Thomas), an eminent bookseller, founder of the hospital for old and lame in Southwark bearing his name, was the son of Thomas Guy lighterman and coad-dealer in Horley-down, Southwark. He was put apprentice, in 1660, to a bookseller in the porch of Mercer's-chapel; and set up trade with a flock of about 200 l. in the house that forms the angle between Cornhill and Lombard-street. The English Bibles being at that time very badly printed, Mr Guy engaged with others in a scheme for printing them in Holland and importing them; but this being put a stop to, he contrived with the university of Oxford for their privilege of printing them, and carried on a great bible-trade for many years to a considerable advantage. Thus he began to accumulate money, and his gains refted in his hands; for being a single man, and very penurious, his expences could not be great when it was his custom to dine on his shop-counter which no other table covering than an old newspaper; he was moreover as little scrupulous about the style of his apparel. The bulk of his fortune, however, was acquired by purchasing fennat tickets during queen Anne's wars, and by Southsea flock in the memorable year 1720. To show what great events spring from trivial causes, it may be obferved, that the foundation of the Hospital, was the greatest part of his innumerable fortune to charitable purposes, to the indigent officiousness of his maid-servant in interfering with the mending of the pavement before the door. Guy had agreed to marry her; and, preparatory to his nuptials, had ordered the pavement before his door, which was in a neglected state, to be mended, as far as to a particular flone which he pointed out. The maid, while her matter was out, inculcantly looking on the paviers at work, faw a broken place that they had not repaired, and mentioned it to them; but they told her that Mr Guy had directed them not to go to far. Well, says she, do you mend it? tell him I bade you, and I know he will not be angry. It happened, however, that the poor girl presumed too much on her influence over her careful lover, which a few extraordinary flhillings expence turned the scale totally against her: the men obeyed; Guy was enraged to find his orders exceeded, his matrimonial scheme was renounced, and he built hospitals in his old age. In the year 1707 he built and furnished three wards on the north side of the outer court of St Thomas's Hospital in Southwark, and gave 100 l. to it annually for eleven years preceding the erection of his own hospital: and, some time before his death, erected the slated iron-gate, with the large house on each side, at the expense of about 5000 l. He was 76 years of age when he formed the design of building the hospital contiguous to that of St Thomas's, which bears his name, and lived to see it rooted in; dying in the year 1744. The charge of erecting this vast pile amounted to 18,793 l. and he left 219,499 l. to endow it; a much larger sum than had ever been dedicated to charitable uses in Britain by any one man. He erected an alms-house with a library at Tanworth in Staffordshire (the place of his mother's nativity, and for which he was representative in parliament) for 14 poor men and women; and for their pensions, as well as for the putting out poor children apprentices, bequeathed 125 l. a-year. Lastly he bequeathed 1000 l. to every one who could prove themselves in any degree related to him.

GUY, a rope used to keep steady any weighty body, whilst it is hoisting or lowering, particularly when the ship is shaken by a tempestuous sea.

Guy is likewise a large thick rope, extending from the head of the main-mast to the head of the fore-mast, and having two or three large blocks fastened to the middle of it. This is chiefly employed to sustain the tackle used to haul in and out the cargo of a merchant ship, and is accordingly removed from the main-head as soon as the vessel is laden or delivered.

Guy's Cliff, in Warwickshire, a great cliff on the west side of the Avon and the north side of Warwick, where in the Britons time was an oratory, and in that of the Saxons a hermitage, where Guy earl of Warwick, who is said to have retired to it after his fatigues by the toils and pleasures of the world, built the chapel, and habited with the hermit; and that from thence it had the name. This hermitage was kept up to the reign of Henry VI. when Rich. Beauchamp earl of Warwick established a chantry here, and in memory of the famous Guy erected a large statue of him in the chapel eight feet in height, and raised a roof over the adjacent springs. The chapel is in the parish of St Nicholas, in the suburbs of Warwick.

GUYON (Johanna Mary Bourdiers de la Mothe), a French lady, memorable for her writings, and for her sufferings in the cause of Quietism, was descended from a noble family, and born at Montargis in 1648. She gave some extraordinary symptoms of illumination from her earliest infancy; and tried to take the veil before she was of age to dispose of herself; but her parents obliged her to marry a gentleman to whom they had promised her. She was a widow at the age of 28; when diturbing herself in, and making many convictions, the way of contemplation and prayer known by the name of Quietism, complaints were made of her spiritualism, and she was confined by order of the king, and severely examined for eight months. She was discharged; but was afterwards involved in the persecution of the archbishop of Cambrai, and thrown into the Bastille, where the underwent many examinations: but nothing being made out against her, she once more obtained
obtained her liberty, and lived private to her death in 1717. She spent her latter years in mystical reveries; covering her tables, ceilings, and every thing that would receive them, with the failies of a visionary imagination. Her pious verses were collected after her death in 5 vols. intitled Cantiques spirituels, ou d’Emblemes sur l’Amour Divin. Her publications were, Le moyen court et tres facile de faire Oraisons; and Le Cantiques des Cantiques de Salomon interprete felon le sens mystique; which were condemned by the archbishop of Paris.

GWINIAD, in ichthyology. See SALMUS.

GYARUS (anc. geog.), one of the Cyclades, 12 miles in compass, lying to the east of Delos. It was a defart island, and allotted for a place of banishment by the Romans.

GYBING, the art of shifting any boom-fail from one side of the mast to the other. In order to understand this operation more clearly, it is necessary to remark, that by a boom-fail is meant any sail whose whole bottom is extended by a boom, the fore-end of which is hooked on its respective mast; so as to swing occasionally on either side of the vessel, describing an arch, of which the mast will be the centre. As the wind or the course changes, it also becomes frequently necessary to change the position of the boom, together with its sail, which is accordingly shifted to the other side of the vessel as a door turns upon its hinges. The boom is pulled out by the effort of the wind upon the sail, and is refrained in a proper situation by a strong tackle communicating with the vessel’s stern, and called the back. It is also confined on the fore-part by another tackle called the guy.

GYGUS (anc. geog.), called also Colours; a lake of Lydia, distant 40 stadia, or 5 miles, from Sardes.

GYGES (fab. hist.), a Lydian, to whom Candaules, king of the country, showed his wife naked. The queen was so incensed at this instance of impiety and infamy of her husband, that she ordered Gyges either to prepare for death himself, or to put Candaules to death. He chose the latter; and marrying the queen, ascended the vacant throne about 718 years before the Christian era. He was the first of the Mermnads who reigned in Lydia. He reigned 38 years, and distinguished himself by the regularity with which he made the oracle of Delphi (Herod. i. c. 8.)—According to Plato, Gyges defended into a chain of the earth, where he found a brazen horse, whose sides he opened, and saw within the body of the carcase a man of uncommon size, from whose finger he took a brazen ring. This ring, when he put it on his finger, rendered him invisible; and by means of its virtue he introduced himself to the queen, murdered her husband, and married her and usurped the crown of Lydia. (Gic. Off. iii. c. 9.)

GYNASIARCH, in antiquity, the director of the gymnasion. He had two deputies under him; the one called xyflarch, who presided over the athletes, and had the oversight of wrestling; the other was gymnaster, who had the direction of all other exercises.

GYNASIUM, in Grecian antiquity, a place fitted for performing exercises of the body, &c.—The word is Greek, formed of γυμνός, “naked”; by reason they anciently put off their clothes, to practise with the more freedom. Gymnasia, according to Potter, were first used at Lacedemon, but were afterwards very common in all parts of Greece; and imitated, very much augmented, and improved, at Rome. There were three principal gymnasia at Athens; the academy where Plato taught; the Lyceum, noted for Aristotle’s lectures; and the Cynoarges, allotted for the populace.

Vitruvius describes the structure and form of the ancient gymnasia, lib. v. cap. 11. They were called gymnasia, because several of the exercises were performed naked; and palæstre, from wrestling, which was one of the most usual exercises there: the Romans some times also called them thermae, because the baths and gymnasia were made a principal part of the building.—It appears that they did not perform their exercises quite naked so early as the time of Homer, but always in drawers; which they did not lay aside before the 72d Olympiad. One Orppus is said to have been the first who introduced the practice; for having been wrosted by means of his drawers undoing and entangling him, he threw them quite aside, and the rest afterwards imitated him. They were not single edifices, but a knot of buildings united, being sufficiently capacious to hold many thousands of people at once; and having room enough for philosophers, rhetoricians, and the professors of all other sciences to read their lectures, and wrestlers, dancers, and all others who had a mind to exercise, at the same time without the least disturbance or interruption. They consisted of a great many parts. Vitruvius recites no less than 12, viz. 1. The exterior portico, where the philosophers, rhetoricians, mathematicians, physicians, and other virtuosos, read public lectures, and where they also disputed and rehearsed their performances. 2. The ephebeum, where the youth assembled very early, to learn their exercises in private, without any spectators. 3. The coryceum, apodyterion, or gymnasterion, a kind of wardrobe, where they stripped, either to bathe, or exercise. 4. The elaeothemum, alipiterion, or unctarium, appointed for the unctions, which either preceded or followed the use of the bath, wrestling, pancratias, &c. 5. The con.jfaceium or consilium, in which they covered themselves with sand or dust, to dry up the oil or sweat. 6. The palaestra, properly called, where they practised wrestling, the pancratias, gymnastics, and divers other exercises. 7. The palaestriarium or tennis-court, reserved for exercises wherein they used balls. 8. Large unpaired avenues, which comprehended the space between the porticos and the walls wherein the edifice was surrounded. 9. The xystis, which were porticoes for the wrestlers in winter or bad weather. 10. Other xystis or open avenues, allotted for summer and fine weather, some of which were quite open, and others planted with trees. 11. The baths, consisting of several different apartments. 12. The stadium, a large space of a semicircular form, covered with sand, and surrounded with seats for the spectators.

For the administration of the gymnasia, there were different officers: the principal were, 1. The gymnarch, who was the director and superintendant of the whole. 2. The xyflarch, who presided in the xystis or stadium. 3. The gymnasiarch, or master of the exercises, who undertook their different effects, and could accommodate them to the different complections of the athlete. 4. The pedotribus, whose business was mechanically to teach the exercises, without understanding their
GYMNASIUM.

Gymnastics, or gymnastic art, denotes the art of performing exercises of the body, whether for defence health, or diversion. See Gymnasium.

Several modern writers have treated of this art. M. Buret has given the history of gymnastics in the Memoirs of the Royal Academy of Inscriptions.

On the first establishment of society, men, being apprised of the necessity of military exercises, for repelling the insults of the neighbours, invented games and proposed prizes to animate their youth to combat divers kinds. And as running, leaping, strength and dexterity of arm in throwing the javelin, driving a ball, or rolling a quoit, together with wrestling, &c. were exercises suited to the manner of fighting in those days; so the youth vied to excel in them, in the presence of the aged, who sat as their judges, and dispensed prizes to the conquerors; till what was originally only amusement, became at length a matter of such importance, as to interest great cities and entire nations in its practice. Hence arose an emulation and eagerness to excel, in hopes, one day, of being proclaimed and crowned conquerors in the public games, which was the highest honour a mortal could arrive at; nay, they went so far as to imagine, that even gods and demigods were not intemible of what men were so captivated with; and, in consequence hereof, to introduce the greatest part of these exercises into their religious ceremonies, the worship of their gods, and the funeral honours done to the manes of the dead. Though it be hard to determine the precise epocha of the gymnastic art, yet it appears from several passages in Homer, and particularly the 23d book of the Iliad, where he describes the games celebrated at the funeral of Patroclus, that it was not unknown at the time of the Trojan war. From that description, which is the earliest monument now extant of the Grecian gymnastics, it appears, that they had chariot-races, boxing, wrestling, foot-races, gladiators, throwing the discus, drawing the bow, and hurling the javelin; and it should seem, from the particular account Homer gives of these exercises, that even then the gymnastic art wanted little of perfection: so that when Galen says there was no gymnastic art in Homer's days, and that it began to appear no earlier than Plato, he is to be understood of the medicinal gymnastics only. This lat indeed had its rise later; because while men continued sober and laborious, they had no occasion for it; but when luxury and idleness had reduced them to the sad necessity of applying to physicians, these, who had found that nothing contributed so much to the preservation and re-establishment of health as exercises, proportioned to the different complexities, ages, and sexes, did not fail to refer them to the practice of gymnastics.

According to Plato, one Herodicus, prior a little time to Hippocrates, was the first who introduced this art into physic; and his successors, convinced by experience of its usefulness, applied themselves in earnest to improve it. Hippocrates, in his book of Regimen, has given instances of it, where he treats of exercise in general, and of the particular effects of walking, with regard to health. Also of the different sorts of races, either on foot or horseback; leaping, wrestling, the exercise of the suspended ball, called eurryces, chronometry, unctions, frictions, rolling in the sand, &c. But as physicians did not adopt all the exercises of the gymnastic art in their practice, it came to be divided between them and the masters of martial and athletic exercises, who kept schools, the number of which was greatly increased in Greece. At length the Romans also caught the fame taste; and, adopting the military and athletic exercises of the Greeks, they improved and advanced them to the utmost pitch of magnificence, not to say extravagance. But the declension of the empire involved the arts in its ruin, and, among others, gymnastics and medicine; which left unhappily then relinquished the title it had to the former, and has neglected to resume it ever since.

GYMNOPIRIS, in natural history, a name given by Dr. Hill to the pyrite of a simple internal structure, and not covered with a crust. See Pyrites.

Of these are only two species. 1. A green variously shaped kind. 2. A botryoid kind.

The first species is the most common of all the pyrites, and appears under a great diversity of shapes, it is very hard and heavy, very readily gives fire with steel, but will not at all burn with aquafortis. The second species is very elegant and beautiful, and its usual colour is very agreeable pale green; but what most distinguishes it from all other pyrites, is, that its surface is always beautifully elevated into tubercles of various sizes, resembling a cluster of grapes.

GYMNOSEPHISTS, a set of Indian philosophers, famous in antiquity; so denominated from their going barefoot. The word is formed of the Greek γυμνοσθέφω, q. d. a fophit or philospher who goes naked.

This name was given to the Indian philosophers, whom the excessive heat of the country obliged to go naked; as that of Peripatetics was given to those who philosophized walking. The Gymnosophists, however, did not go absolutely naked; but only clothed themselves in natural raiment.
Gymnosomia [252]

Gymnosomia

Gymnosomia, belonging to the order of apodes. They have two tentacula at the upper lip; the eyes are covered with the common skin; there are five rays in the membrane of the gills; the body is compressed, and carinated on the belly with a fin. There are five species, the most remarkable of which is the electricus, or electric eel, called by the French anguille tremblante. This species is peculiar to Surinam; and is found in the rocky parts of the river, at a great distance from the sea. The most_plate accurate description we have of this fish is in the Philoso-

Phical Transactions for 1775, where Alex. Garden, M. D. gives an account of three of them brought to Charleston in South Carolina. The largest was about three feet eight inches in length, and might have been from 10 to 14 inches in circumference about the thickest part of its body. The head was large, broad, flat, and smooth, impressed here and there with holes, as if perforated with a blunt needle, especially towards the sides, where they were more regularly ranged in a line on each side. There were two nostrils on each side; the first large, tubular, and elevated above the surface; the others small, and level with the skin. The eyes were small, flatish, and of a bluish colour, placed about three quarters of an inch behind the nostrils. The whole body, from about four inches below the head was clearly distinguished into four longitudinal parts or divisions. The upper part or back was of a dark colour, and separated from the other parts on each side by the internal lines. These lines took their rise at the base of the head, just above the pectoral fins, and run down the sides, gradually converging as the fish grew smaller to the tail. The second division was of a lighter and clearer colour than the first, inclining to blue. It seemed to swell out on each side; but towards the under part of it is again contracted and sharpened into the third part or carina. This part is easily distinguished from the other two by its thinness, its apparent laxness, and by the reticulated skin of a more grey and light colour, with which it is covered. The carina begins about six or seven inches below the base of the head; and gradually deepening or widening as it goes along, reaches down to the tail, where it is thinnest. The fourth part is a long, deep, soft, and heavy one, which takes its rise about three or four inches, and is moat below the head; and thus runs down the sharp edge of the carina to the extremity of the tail. The situation of the anus was very singular; being an inch more forward than the pectoral fins. Externally it seemed to be a pretty large rima, but the formed excrements were only the size of a quill of a common dung-hill-fowl. There were two pectoral fins situated just behind the head, scarcely an inch in length; of a very thin, delicate consistence, and orbicular shape. They seemed to be chiefly useful in supporting and raising the head of the fish when he came up to breathe; which he was obliged to do every four or five minutes. Across the body were a number of fine bony or circular divisions, or rather rings of the skin. By means of these the fish seemed to partake of the vermicular nature, had the power of lengthening or shortening its body like a worm, and could swim backwards as well as forwards, which is another property of the vermicular tribe. Every now and then it laid itself on one side in the water as if to rest.—For an account of the singular properties of this fish, see ELECTRICITY, p. 355.

Gymnotus in ichthyology, a genus of fishes belonging to the order of apodes. They have two tentacula at the upper lip; the eyes are covered with the common skin; there are five rays in the membrane of the gills; the body is compressed, and carinated on the belly with a fin. There are five species, the most remarkable of which is the electricus, or electric eel, called by the French anguille tremblante. This species is peculiar to Surinam; and is found in the rocky parts of the river, at a great distance from the sea. The most_plate accurate description we have of this fish is in the Philoso-

Phical Transactions for 1775, where Alex. Garden, M. D. gives an account of three of them brought to Charleston in South Carolina. The largest was about three feet eight inches in length, and might have been from 10 to 14 inches in circumference about the thickest part of its body. The head was large, broad, flat, and smooth, impressed here and there with holes, as if perforated with a blunt needle, especially towards the sides, where they were more regularly ranged in a line on each side. There were two nostrils on each side; the first large, tubular, and elevated above the surface; the others small, and level with the skin. The eyes were small, flatish, and of a bluish colour, placed about three quarters of an inch behind the nostrils. The whole body, from about four inches below the head was clearly distinguished into four longitudinal parts or divisions. The upper part or back was of a dark colour, and separated from the other parts on each side by the internal lines. These lines took their rise at the base of the head, just above the pectoral fins, and run down the sides, gradually converging as the fish grew smaller to the tail. The second division was of a lighter and clearer colour than the first, inclining to blue. It seemed to swell out on each side; but towards the under part of it is again contracted and sharpened into the third part or carina. This part is easily distinguished from the other two by its thinness, its apparent laxness, and by the reticulated skin of a more grey and light colour, with which it is covered. The carina begins about six or seven inches below the base of the head; and gradually deepening or widening as it goes along, reaches down to the tail, where it is thinnest. The fourth part is a long, deep, soft, and heavy one, which takes its rise about three or four inches, and is moat below the head; and thus runs down the sharp edge of the carina to the extremity of the tail. The situation of the anus was very singular; being an inch more forward than the pectoral fins. Externally it seemed to be a pretty large rima, but the formed excrements were only the size of a quill of a common dung-hill-fowl. There were two pectoral fins situated just behind the head, scarcely an inch in length; of a very thin, delicate consistence, and orbicular shape. They seemed to be chiefly useful in supporting and raising the head of the fish when he came up to breathe; which he was obliged to do every four or five minutes. Across the body were a number of fine bony or circular divisions, or rather rings of the skin. By means of these the fish seemed to partake of the vermicular nature, had the power of lengthening or shortening its body like a worm, and could swim backwards as well as forwards, which is another property of the vermicular tribe. Every now and then it laid itself on one side in the water as if to rest.—For an account of the singular properties of this fish, see ELECTRICITY, p. 355.

Gymnotus in ichthyology, a genus of fishes belonging to the order of apodes. They have two tentacula at the upper lip; the eyes are covered with the common skin; there are five rays in the membrane of the gills; the body is compressed, and carinated on the belly with a fin. There are five species, the most remarkable of which is the electricus, or electric eel, called by the French anguille tremblante. This species is peculiar to Surinam; and is found in the rocky parts of the river, at a great distance from the sea. The most_plate accurate description we have of this fish is in the Philoso-

Phical Transactions for 1775, where Alex. Garden, M. D. gives an account of three of them brought to Charleston in South Carolina. The largest was about three feet eight inches in length, and might have been from 10 to 14 inches in circumference about the thickest part of its body. The head was large, broad, flat, and smooth, impressed here and there with holes, as if perforated with a blunt needle, especially towards the sides, where they were more regularly ranged in a line on each side. There were two nostrils on each side; the first large, tubular, and elevated above the surface; the others small, and level with the skin. The eyes were small, flatish, and of a bluish colour, placed about three quarters of an inch behind the nostrils. The whole body, from about four inches below the head was clearly distinguished into four longitudinal parts or divisions. The upper part or back was of a dark colour, and separated from the other parts on each side by the internal lines. These lines took their rise at the base of the head, just above the pectoral fins, and run down the sides, gradually converging as the fish grew smaller to the tail. The second division was of a lighter and clearer colour than the first, inclining to blue. It seemed to swell out on each side; but towards the under part of it is again contracted and sharpened into the third part or carina. This part is easily distinguished from the other two by its thinness, its apparent laxness, and by the reticulated skin of a more grey and light colour, with which it is covered. The carina begins about six or seven inches below the base of the head; and gradually deepening or widening as it goes along, reaches down to the tail, where it is thinnest. The fourth part is a long, deep, soft, and heavy one, which takes its rise about three or four inches, and is most below the head; and thus runs down the sharp edge of the carina to the extremity of the tail. The situation of the anus was very singular; being an inch more forward than the pectoral fins. Externally it seemed to be a pretty large rima, but the formed excrements were only the size of a quill of a common dung-hill-fowl. There were two pectoral fins situated just behind the head, scarcely an inch in length; of a very thin, delicate consistence, and orbicular shape. They seemed to be chiefly useful in supporting and raising the head of the fish when he came up to breathe; which he was obliged to do every four or five minutes. Across the body were a number of fine bony or circular divisions, or rather rings of the skin. By means of these the fish seemed to partake of the vermicular nature, had the power of lengthening or shortening its body like a worm, and could swim backwards as well as forwards, which is another property of the vermicular tribe. Every now and then it laid itself on one side in the water as if to rest.—For an account of the singular properties of this fish, see ELECTRICITY, p. 355.
GYNECUM, among the ancients, the apartment of the women, a separate room in the inner part of the house, in which they employed themselves in spinning, weaving, and needle-work.

GYNACOCRACY, denotes the government of women, or a state where women are capable of the supreme command. Such are Britain and Spains.

GYNACOCRATUMENI, an ancient people of Sarmatia Europæa, inhabiting the eastern banks of the river Tanais, near its opening into the Pallas Moesias; thus called, as authors relate, because they had no women among them; or, rather, because they were under the dominion of women. The word is formed of γυναῖκα, and ἀρχήν, signifying, of women I overcome, q. d. overcome by women.

F. Hardouin, in his notes on Phinys, says, they were thus called, because after a battle which they lost against the Amazons, on the banks of the Themrodon, they were obliged to have their commerce with them, in order to get them children: Et quod victrix ad procurandam subobtem. Hardouin calls them the husbands of the Amazons, Amazoneon cunhassa; for, as the author observes, the word unde must be retrenched from Phinys, having been falsified into the text by people who were not masters of the author's meaning, unde Amazoneon cunhassa. See Amazons. They who take the Amazons for a fabulous people, will conclude the fame of the Gynacocratumeni.

GYNANDRIA, (from γυναῖκα a woman; and ἄνδρα a man.) The name of the 20th clade in Linnaeus's sexual system, consisting of plants with hermaphrodite flowers, in which the stamens are placed upon the style, or, to speak more properly, upon a pillar-shaped receptacle, resembling a style, which sits in the middle of the flower, and bears both the stamens and pistil; that is, both the supposed organs of generation. See Botany. p. 430.

The flowers of this clade, says Linnaeus, have a monstrous appearance, arising, as he imagines, from the singular and unusual situation of the parts of fructification.

GYPSES, or EGYPTIANS, an outlandish tribe of vagrants, who disguising themselves in uncouth habits, finear their faces and bodies, and framing to themselves a canting language, wander up and down, and, under pretence of telling fortunes, curing diseases, &c., abuse the common people, trick them of their money, and steal all that they can come at.

They are a strange kind of commonwealth among themselves of wandering impostors and jugglers, who made their first appearance in Germany about the beginning of the 16th century. Munster, it is true, who is followed and relied upon by Spelman, fixes the time of their first appearance to the year 1417: but as he owns that the first whom he ever saw were in 1529, it is probably an error of the press for 1517; especially as other historians inform us, that when Sultan Selim conquered Egypt in the year 1517, several of the natives refused to submit to the Turkish yoke, and revolted under one Zinganeus; whence the Turks call them Zinganees; but being at length surrounded and banished, they agreed to differ from small parties all over the world, where their supposed skill in the black art gave them an universal reception in that age of perfidy and credulity. In the compass of a very few years they gained such a number of idle proteluses (who imitated their language and complexion, and beat themselves to the face with chains, being, and pilfering), that they became troublesome, and even formidable to most of the states of Europe. Hence they were expelled from France in the year 1569, and from Spain in 1591. And the government of England took the alarm much earlier: for in 1530 they are described by Stat. 22. Hen. VIII. c. 10, as "an outlandish people calling themselves Egyptians, using no craft nor fear of merchandize, who have come into this realm, and gone from house to house, and place to place, in great companies, and did great, subtle, and crafty means to deceive the people; hearing them in hand that they by palmistry could tell mens and women fortunes; and so many times by craft and subtilety have deceived the people of their money, and also have committed many heinous felonies and robberies." Whereas they are directed to avoid the realm, and not to return under pain of imprisonment, and forfeiture of their goods and chattels; and upon their trials for any felony which they may have committed, they shall not be entitled to a jury of moditated. And afterwards it is enacted, by statutes 33 and 24 Eliz., and Mary, c. 4, and 5th Eliz. c. 20, that if any such persons shall be imported into the kingdom, the importer shall forfeit 40l. And if the Egyptians themselves remain one month in the kingdom, or any person being 14 years old, whether natural born subject or stranger which hath been seen or found in the fellowship of such Egyptians, or which hath disguised himself or herself like them, shall remain in the same one month at one or several times, it is felony without benefit of clergy. And Sir M. Hale informs us, that at one Sudfolk aijxe no less than 13 persons were executed upon these statutes a few years before the restoration.

But, to the honour of the national humanity, there are no instances more modern than this of carrying these laws into practice; and the last singular act is itself now repealed by 23 Geo. III. c. 54.

In Scotland they seem to have enjoyed some share of indulgence; for a writ of privy seal, dated 1594, supports John Faw, lord and earl of Little Egypt, in the execution of justice on his company and folk, conform to the laws of Egypt, and in punishing certain persons who there named who rebelled against him, left him, robbed him, and refused to return home with him. James's subjects are commanded to assist in apprehending them, and in afflicting Faw and his adherents to return home. There is a like writ in his favour from Mary Q. of Scots 1553, and in 1554 he obtained a pardon for the murder of Nunan Small. So that it appears he had lived long in Scotland, and perhaps some of the time in England; and from him this kind of flattering people might receive the name of Faw Gang, which they still retain.

A very circumstantial account of this singular race of vagrants has been lately given in an express Inqury concerning them, written in German by H. M. D. Grummel, and translated by Mr. Rapin. It is incredible to think how this regular swarm of bandits has spread itself over the face of the earth. They wander about in Asia, in the interior parts of Africa, and, like locusts, have over-run most of the European nations.
In Italy Gypies. In the reigns of Henry VIII. and queen Elizabeth, as we have seen, they were set up as a mark of general persecution in England; yet their numbers do not appear to have much diminished. Spain is supplied by Mr Twiss to contain 40,000 of these vagrants; but by others 60,000; and by some even double that number. They are left numerous in France in consequence of the strictness of the police. In Italy they abound, especially in the dominions of the church, on account of the bad police and the prevalence of superstition, which permit and entice them to deceive the ignorant. They are scattered, thought not in great numbers, through Germany, Denmark, Sweden, and Russia; but their chief population is in the south-east parts of Europe, which seem to be the general rendezvous of the gypsy nation. At a moderate computation Europe contains more than seven hundred thousand of these vagabonds. For near four centuries they have wandered through the world; and in every region, and among every people, whether barbarous or civilized, they have continued equally unchanged by the lapse of time, the variation of climate, and the force of example. Their singular physiognomy and particular manners are the same in every country. Their fair complexion receives no darker shade from the wearing of old laced coat, while the rest of the garment is dirty and ragged. In Hungary, Transylvania, their summer habitations are tents; in Spain, nor acquire any new industry in England: in Turkey they behold the mosque and the crescent with equal indifference. The only science which they have attained is a childish way of thinking; and their wild fancies are derived from a former wayward; for they are executed by criminals, flayers of mankind, and executioners of criminals, slayers of men, and horse-dealing; and in Hungary and Transylvania, the fort of regular government, rather nominal than real or effective. They have their leaders or chiefs, whom they dignify by the Slavonian title, Waywode. To this dignity every person is eligible who is of a family descended from a former waywode; but the preference is generally given to those who have the best clothes and the most wealth; who are of a large stature, and not past the meridian of life. Of religion, however, they have no sense; though, with their usual cunning and hypocrisy, they profess the established faith of every country in which they live. They also speak the languages of the respective countries, yet have a language of their own; from whence derived, authors differ. The only science which they have attained is music. Their poetry is ungrammatical and indifferent rhyme.

Their general character and capacities are thus described: Imagine a people of a childish way of thinking; their minds filled with raw, undigested conceptions; guided more by sense than reason; using underhand affection, and reflection for only as they promote the gratification of any particular appetite; and you have a perfect sketch of the gypsy character. They are lively, unconcerned, loquacious, and chattering; fickle in the extreme, consequently inconstant in their pursuits; faithless to every body, even their own sect; void of the least emotion of gratitude, frequently rewarding benefactors with the most infectious malignity. Fears makes them flavishly compliant when under suspicion; but having nothing to apprehend, like other timorous people, they are cruel. Desire of revenge often causes them to take the most desperate resolutions. To such a degree of violence is their fury sometimes excited, that a mother has been known in the excess of passion, to take her infant by the feet, and therewith strike the object of her anger, when no other instrument has readily prefented itself. They are so addicted to drinking, as to sacrifice what is most necessary to them, that they may feast their palate with spirits. They have, too,
nothing (continues our author) can exceed the unreasoned depravity of manners existing among these people, I allude particularly to the other sex.Unchecked by any idea of shame, they give way to every desire. The mother endeavours, by the most scandalous arts, to train up her daughter for an offering to sensuality; and this is scarcely grown up before she becomes the seducer of others. Laziness is so prevalent among them, that were they to subsist by their own labour only, they would hardly have bread for two of the seven days in the week. This indolence increases their propensity to idleness and lolling; the common attendants on idleness. They seek to avoid themselves of every opportunity to satisfy their lawless desires. Their universal bad character therefore for fickleness, indecency, ingratitude, revenge, malice, rage, depravity, laziness, knavery, thieves, and cunning, though not deficient in capacity and cleverness, render these people of no use in society, except as soldiers to form marrowing parties. Persons in their company, and under their disfigure, have formed dangerous designs against cities and countries. They have been banished from almost all civilized states, in their turn, except Hungary and Transylvania, and to little purpose. Our author is of opinion, that as Turkey would allow them toleration, it would be better for the European states to take some steps for cultivating and civilizing them, and making them useful. But while they are insensible of religion and strongly attached to their own manners, it is to be feared the attempt will be impracticable. This appears from a very intelligent Hungarian lady's experience on the subject, communicated in a letter as follows: 'There are a great number of them on my estates, but I have permitted two families in particular to establish themselves at the place of my own residence, under the express condition that no others shall come here and join them. I took all possible pains to make them reparable creatures. I got the elder ones to work; the younger ones tend the cattle. I observed that they were more fond of horses than any thing else; for which reason I placed a gypsey under each groom. I had their children clothed, that none of them might be running about naked, according to their usual practice. It appeared, however, that custom was become nature with them. The old ones worked diligently so long as any body flood over them; the moment their back was turned, they all got together in a circle, their legs across, facing the sun, and chattered. Thus they cannot possibly earn more, indeed hardly so much, as would find them bread, although very cheap with us; for the bread I give them does not stand me in half a krenzter the pound. Even in winter they cannot bear a hat on their head nor shoes on their feet. The boys run like wild things wherever they are sent, either on foot or on horstback; but they spoil horses unmercifully; so as to make them run down with blood. They cannot be brought by any means whatever to dress horses. Cloath them as you will, they always fell or lose their cloaths. In a word, one cannot but consider them as void of reason; it is really shocking to see even well grown children put whatever they find into their mouths, like infants before they can speak; wherefore they eat every think, even carrion, let it think never so much. Where a mortality happens among the cattle, there these wretched beings are to be found in the greatest number.'

The origin of this people, as we have seen, has been generally believed to be Egyptian; and that belief is as old as their existence in Europe. Thomaeus, Salmon the English geographer, and lately Signior Grifelini, have endeavoured to prove it by satisfactory evidence. This theory, however, according to our author, is without foundation. The Egyptian descent of these people, he thinks, is not only delusive of proofs, but the most positive evidence is found to contradict it. Their language differs entirely from the Coptic; and their customs are very different from those of the Egyptians. They are indeed to be found in Egypt; but they wander about there as strangers, and form a differentiated people, as in other countries. The expressions of Bellonius are strong and decisive: 'No part of the world, I believe is free from those banditti, wandering about in troops; whom we by mistake call Egyptians and Bohemians. When we were at Cairo, and in the villages bordering on the Nile, we found troops of these throstle thieves sitting under palm trees; and they are esteemed foreigners in Egypt as well as among us.'

The Egyptian descent of the gypseys being rejected, our author next endeavours to show that they come from Hindoostan. The chief basis of his theory, however, is no other than that very dubious one, a similarity of language. He adds a long vocabulary of the gipsy and the Hindoostanic languages; in which, it must be confessed, many words are the same; but many are different. A principal proof which he adduces on this head is from the relation of Captain Szekely von Doba, to whom a printer in 1763 related, that a preacher of the Reformed church, when a student at Leyden, being intimately acquainted with three young Malabar students, took down 1000 of their words, which he fancied corresponded with the gipsy language; and they added, that a tract of land in their island was named Osigania. He repeated these words to the Raber gypseys, who explained them without trouble or hesitation. This account was published in the Vienna Gazette. Supposing these three young men to be sons of Bramins, who use the Sanscrit, the common language of Hindoostan comes as near to that as modern Italian to pure Latin. The comparison of
the two languages takes up above 30 pages; and Mr. Grellman thinks it establishes his system. The same opinion is maintained by Mr. Marfden, in a paper upon this subject in the 7th volume of the Archæologia. The numerals, however, both in Hindostanic and gipsy, differ greatly as stated by the two authors. And here, as in other such comparisons, one is astonished at the credulity of the comparers of orthoepy and orthography (as a periodical critic observes), which can have no connection in languages with which we are not perfectly familiar, even were both languages reduced to writing by their respective people; how much less, then, where one of the two languages is never reduced to writing, as is the case of the gipsy, but is blended with the language of the country where the clan resides? This appears from the correspondence of several words in all languages with the gipsy. Mr. Grellman acknowledges the two gipsy versions of the Lord's Prayer, at different periods, differ so widely, that one would almost be inclined to doubt whether they were really the same language. We think we can discern a few words differently indeed written, but probably pronounced alike. Nor can we, in all the parts, in which Chamberlayne gives the Lord's Prayer, perceive the least resemblance to the gipsy name of father, Dade and Daid, except in the Welsh, Taad. In prosecuting his argument, Mr. Grellman does not intimate the similarity of colour between the two peoples, nor on the cowardice common to both, nor on the attachment of the Indians to tents, or letting their children go naked; all these being traits to be met with in other nations; but he dwells on the word Prager, the name of one of the first gipsy leaders, and of the Indo-fanian god of marriage; also on the correspondence between the travelling smiths in the two peoples, who carry two pairs of bellows; the Indian's boy blows them in India, the Traveller's in Europe; as if every travelling tinker, in every nation where tinkers travel, had not the same journeymen. In lascivious dances and chiroantry the two people agree; nor are they uncommon in other parts of the globe. The excessive loquacity of the two people is produced as similar; as if no other nations in the world were loquacious. Paiser remembrance are, a fondness for farron, and the intermarrying only with their own people. The last postulatum is that the gipsies are of the lowest class of Indians, namely, Parisa, or, as they are called in Hindostan, Suders. He compares the manners of this class with those of the gipsies, and enumerates many circumstances in which they agree: some of the comparisons are frivolous, and prove nothing. As an instance of which we may take the following: 'Gipsies are fond of being about horses; the Suders in India like-wisely, for which reason they are commonly employed as horse-keepers by the Europeans resident in that county.' This reasoning does not prove that the gipsies are Suders, any more than they are Arabians or Yorkshire farmers.

The objections, however, to which this learned and ingenious work of the author's theory is liable, are such as only show it to be by no means satisfactory; but do not prove that it is wrong. It may possibly be right; and upon this supposition the cause of their emigration from their country, he conjectures, not without probability, to be the war of Timur Beg in India. In the years 1408 and 1409 this conqueror ravaged India; and the progress of his arms was attended with devastation and cruelty. All who made resistance were destroyed; those who fell into the enemy's hands were made slaves; of these, very, very, very, very, very many were put to death. Ason is an occasion an universal panic took place, what could be more natural than that a great number of terrified inhabitants should endeavour to save themselves by flight? In the last place, the author endeavours to trace the route by which the gipsies came from Hindostan to Europe: but here he justly acknowledges that all that can be said on the subject is mere far-fetched; and, upon the whole, after perusing all the preceding details, the reader will probably be of opinion that there still hangs a cloud over the origin of this extraordinary race.

GYPSOPHILA, in botany: A genus of the diasy order, belonging to the decandria class of plants; and in the natural method ranking under the 22d order, Caryophylla. The calyx is monophyllous, campanulated, and angulated; the petals are five in number, ovate, and fiddle; the capsule globose and unilocular.

GYPSUM, PLASTER-STONE, or Alabaster; a natural combination of the calcareous earth with vitriolic acid. See ALABASTER.

The properties of gypsum, according to Cronstedt, are. 1. It is looser and more friable than a calcareous earth. 2. It does not effervesce with acids either in its crude or calcined state; or at all in a very slight degree, in proportion to what it wants of the vitriolic acid for the complete saturation of its base. 3. It falls into powder in the fire very readily. 4. When burnt without being made red-hot, its powder readily concretes with water into a mass which soon hardens; but without any sensible heat being excited in the operation. 6. According to our author, it is nearly as difficult of fusion as limestone; and shows almost the same effect upon other bodies with limestone, though the acid of vitriol seems to promote the vitrification. M. Magellan, however, informs us, that he has found most of the gypseous kind, particularly the fibrous, to melt in the fire pretty easily by themselves. 7. When melted in the fire with borax, it puffs and bubbles very much, and for a long time during the fusion. According to M. Magellan, when a small quantity of any gypsum is melted together with borax, the galls becomes colourless and transparent; but some sorts of alabaster and sparre gypse, when melted in quantity with borax, yield a fine yellow transparent coloured glas, resembling that of the best topazes; but if too much of the gypsum is used in proportion to the borax, the galls becomes opaque, just as it happens with the pure lime-stone. 8. When burnt with any inflammable matter it emits a sulphurous smell, and may thus be decomposed, as well as by either of the fixed alkaline salts; but if this last method is followed, there ought to be five or six times as much salt as there is of gypsum. 9. On being decomposed in this manner the residuum commonly shows some signs of iron. The species are.

1. Friable gypseous earth of a white colour, found in Saxony.

2. Indurated gypsum of a solid texture, the particles of which are not visible, commonly called Alabaster. This is sometimes found unsaturated with vitriol acid;
GYP [257]

GYP

Gypseum, in which case only it will effervesce with aquafortis, as it is said to do under the Article Alabaster. It is very easily fawed or cut, and takes a dull polish. It is of several kinds; as, white; clear transparent from Periba, opaque from Italy and Trapans in Sicily; of a yellow colour, of which there are likewise two kinds, transparent and opaque; the former being met with in the mountain countries, the latter in Spain. Brunnet informs us, that in this country there are a great many kinds, varieties, viz: with coarse or with fine fibres. This is found composed of capillary cryllals, sometimes white and sometimes with great celerity in circles on the surface of the water. It is soluble in 300 times its weight of warm water, or 450 times its weight of boiling water. It is well known by its property of forming an hard mass with water after being highly burned; and during this condensation a flight degree of heat is produced, though less than that when line is flaked. It is often employed in building, and may be taken off and used again for the same purpose.

4. Fibrous gypsum, or plaster stone, has likewise two varieties, viz: with coarse or with fine fibres. It is of a white colour.

5. Selenites, or spar-like gypsum, by some also called glacies mace, and confounded with the clear and transparent mica. It is found of two kinds, clear and transparent, or yellowish and opaque.

6. Crystalized gypsum, or gypseous drusen. This is found composed of wedge-shaped and sometimes of capillary cryllals, sometimes white and sometimes yellowish.

7. Sphaleritic gypsum is found of a great many different forms and colours. When found in large pieces it commonly varies between white and yellow, and likewise in its transparency in different parts of the same mass. It is used as alabaster in several works.

Before the countries already mentioned, England abounds with subfances of a gypseous nature. There are plenty in Derbyshire and Nottinghamshire, so fine as to be used like alabaster, that is, to take a fine polish. In the countries just mentioned there are large pits of this kind, also in most of the cliffs of the Severn, especially at the Old Passage at Somerfethire. A very fine semiopaque gypseous drusen is found in Derbyshire. Very fine fibrous sides are also found in the above-mentioned pits of stone, and many other places. Selenites everywhere abound, so that it is impossible to enumerate the different places. Very fine gypseous drusen are found in Sheppy Isle, and some exceedingly beautiful, large and clear as crystal, have been dug from the sail-rocks at Nantwich in Chester. The selenites rhomboïdales is found in plenty in England. There are very rare in other countries. Shotover hill in Oxfordshire is remarkable for them. The slate of Sheppy affords a kind of spar-like gypsum, of a fibrous nature, and always accreting like the radiations of a star on the sepiaria, and thence called stella septaria.

The principal use of gypsum is as a material for small statues and figures of various kinds, also for moulds for casting wax-works, &c. It has lately been introduced as a manure in France and America, though its success in this respect has not yet been sufficiently experienced.

GYR-FALCO, in zoology, the name of a large and fierce species of falcons, called in English the jer falcon. See Falcon.

It is a very bold and daring bird, attacking all other fowl without revenge, particularly the hen and fow kinds. The other falcons are all afraid of this.

GYRINUS, in zoology, a genus of insects of the coleoptera order. The generic characters are: The plate antennae are cylindrical, stiff, and shorter than the cæs upsetting head; and the eyes are four, two on the upper and two on the under part of the head. Mr Barbut, however, says that the eyes only appear on the upper and under parts of the head, but that they are not four. The nubit, or common water-flea, is of a bright black color; the feet are yellow, flat, and large; the insect is in length one-third of an inch. It feeds with great celerity in circles on the surface of the waters and is very difficult to catch, plunging down instantaneously when attempted to be taken. There are eight other species, which frequent the waters in different parts of the globe.

GYSHORN, a town of Germany, in the duchy of Lunenburgh, situated on the river Aller, in E. Long. 10. 45. N. Lat. 52. 30.

H.

The eighth letter and sixth consonant in our alphabet; though some grammarians will have it to be only an aspiration, or breathing. But nothing can be more ridiculous than to dispute its being a distinct sound, and formed in a particular manner by Vol. VIII.

the organs of speech, at least in our language: witness the words eat and beat, arm and harm, ear and bear, at and hat, &c. as pronounced with or without the h.

It is pronounced by a strong expiration of the breath between
HAB

Habda].

The family of the Phoenicians, the most ancient Greeks, and Romans, used the same figure with our H, which is used as a numeral, denotes 200; and with a dath over it, HF, 200,000.

As an abbreviation, H was used by the ancients to denote homo, hares, hara, &c. Thus H. B. flood for hares bonus; and H. S. corrupted for LLS. fierce; and H. A. for Hadrianus.

HABAG, or HAAG, a town of the duchy of Bavaria in Germany, seated on a hill on the west side of the river Inn, in E. Long. 12. 23. N. Lat. 48. 16.

HABBKUK, one of the twelve leffer prophets, whose prophecies are taken into the cannon of the Old Testament. The name is written in the Hebrew with n $bbet$; and signifies "a wrestler." There is no precise time mentioned in Scripture when this Habakkuk lived; but from his predicting the ruin of the Jews by the Chaldeans, it may be concluded that he prophesied before Zedekiah, or about the time of Manasseh. He is reported to have been the author of several prophecies which are not extant; but those that are indubitably his, are contained in three chapters. In these the prophet complains very pathetically of the disorders in the kingdom of Judaea. God reveals to him, that he would shortly punish them in a very terrible manner by the arms of the Chaldeans. He foretells the conquests of Nebuchadnezzar, his metamorphosis, and death. He foretells, that the vast designs of Jehoiakim would be frustrated. He speaks against a prince (probably the king of Tyre) who built with blood and iniquity; and he accuses another king (perhaps the king of Egypt) of having intoxicated his friend, in order to unloose his nakedness. The third chapter is a song or prayer to God, whose majesty he describes with the utmost grandeur and splendour of expression.

HABET, a province of Africa, in Barbary, and in the kingdom of Fez. It is surrounded by the Mediterranean, the Straits of Gibraltar, and the Atlantic Ocean. The principal towns are Arelaa, Tetuan, and Ceuta; which last is in possession of the Spaniards.

HABDALA, a ceremony of the Jews observed on the evening of the sabbath, when every one of the family is come home. At that time they light a taper or lamp, with two wicks at least. The master of the family then takes a cup, with some wine, mixed with fragrant spices, and having repeated a psalm or two of scripture, as for example, "I will take the cup of salvation," &c. Psal. cxxi. and "The Jews had light and gladness," &c. Ezech. viii. he blest the wine and spices. Afterwards he blest the light of the fire, and then ca's his eyes on his hands and nails, as remembering that he is going to work. The whole is intended to signify, that the sabbath is over, and is from that moment divided from the day of labour which follows. For this reason the ceremony is called Habdala, which signifies "distinction." After the ceremony is over, and the company breaks up, they with one another, not "a good night," but "a good week."

HABEAS CORPUS, in law, is the great remedy in cases of False Imprisonment. The incapacity of the three other remedies referred to under that article, to give complete relief in every case, hath almost entirely antiquated them, and hath caused a general recourse to be had, in behalf of persons aggrieved by illegal imprisonments to the present writ, the most celebrated in the English law. Of this there are various kinds made use of by the courts at Westminster, for removing prisoners from one court into another for the more easy administration of justice. Such is the habeas corpus ad respondendum, when a man hath a cause of action against one who is confined by the process of some inferior court; in order to remove the prisoner, and charge him with this new action in the court above. Such is that ad satisfaciendum, when a prisoner hath had judgment against him in an action, and the plaintiff is desirous to bring him up to some superior court to charge him with proceeds of execution. Such also are those ad profitendum, tesiicandum, de liberandum, &c.; which issue when it is necessary to remove a prisoner, in order to prosecute or bear testimony in any court, or to be tried in the proper jurisdiction wherein the fact was committed. Such is, lastly, the common writ ad factandum et recipiendum, which issues out of any of the courts of Westminster, when a person is sued in some inferior jurisdiction, and is desirous to remove the action into the superior court; commanding the inferior judges to produce the body of the defendant, together with the day and cause of his caption and detainer (whence the writ is frequently denominated an habeas corpus cum causa), to do and receive whatsoever the king's court shall consider in that behalf. This is a writ granter of common right, without any motion in court, and it instantly supersedes all proceedings in the court below. But, in order to prevent the surreptitious discharge of prisoners, it is ordered by statute 1 & 2 P. & M. c. 13, that no habeas corpus shall issue to remove any prisoner out of any goal, unless signed by some judge of the court of which it is awarded. And, to avoid vexatious delays by removal of frivolous causes, it is enacted by statute 21 Jac. 1. c. 22, that, where the judge of an inferior court of record is a barrister of three years standing, no cause shall be removed from thence by habeas corpus or other writ, after issue or demurrer deliberately joined: that no cause, if once remanded to the inferior court by writ of procedendo or otherwise, shall ever afterwards be again removed; and that no cause shall be removed at all, if the debt or damages laid in the declaration do not amount to the sum of five pounds. But an expediunt having been found out to elude the latter branch of the statute, by procuring a nominal plaintiff to bring another action for five pounds or upwards (and then by the course of the court the habeas corpus removed both actions together), it is therefore enacted by statute 12 Geo. I. c. 29, that the inferior court may proceed in such actions as are under the value of five pounds, notwithstanding other actions may be brought against the same defendant to a greater amount.

But the great and efficacious writ, in all manner of illegal
the times, and the
CGRups.

ar! faciendum, j'rttbjiciendu1lt, fuch applications. It
awarding fuch writ
submitted to, and receive whatever the Judge or court
awarding such writ shall consider in that behalf. This
is a high prerogative writ, and therefore by the
common law issuing out of the court of king's bench, not
only in term time but during the vacation, by a
fiat from the chief justice, or any other of the judges,
and running into all parts of the king's dominions;
for the king is at all times intitled to have an account
why the liberty of any of his subjects is restrained,
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
is
for the king
in
meut
which occurred the common pleas
ged him: but if he were committed for any criminal
absolute exemption from imprisonment in all cases, is
wherever that restraint may be
Habas

own account of the matter, whose remonstrance was not cooled at the distance of forty and twenty years.

These pitiful evasions gave rise to the statute 16 Car. I. c. 10. § 8, whereby it is *enacted*, that if any person be committed by the king himself in person, or by his privy council, or by any of the members thereof, he shall have granted unto him, without any delay upon any pretence whatsoever, a writ of *habeas corpus*, upon demand or motion made to the court of king's bench or common pleas; who shall thereupon, within three court-days after the return is made, examine and determine the legality of such commitment, and do what to justice shall appertain, in delivering, bailing, or remanding such prisoner. Yet still in the case of Jenks, before alluded to, who in 1676 was committed by the king in council for a turbulent speech at Guildhall, new shifts and devices were made side of to prevent his enlargement by law; the chief justice, (as well as the chancellor) declining to award a writ of *habeas corpus ad subjiciendum* in vacation, too late, for he thought proper to award the usual writs *ad deliberationem*, &c. whereby the prisoner was discharged at the Old Bailey. Other abuses had also crept into daily practice, which had in some measure defeated the benefit of this great constitutional remedy. The party imprisoned was at liberty to delay his obedience to the first writ, and might wait till a second and a third, called *alias* and *pluribus*, were inflicted before he produced the party; and any other vexatious shifts were practiced to detain state-prisoners in custody. But whoever will attentively consider the English history, may observe, that the flagrant abuse of any power, by the crown or its ministers, has always been productive of a struggle which either discovers the exercise of that power to be contrary to law, or (if legal) restrains it for the future. This was the case in the present instance. The oppression of an obscure individual gave birth to the famous *habeas corpus* act, 31 Car. II. c. 2, which is frequently confidered as another *modus charta* of the kingdom; and by consequence has also in the course of time reduced the method of proceeding on these writs (though not within the reach of that statute, but existing merely at the common law) to the true standard of law and liberty.

The statute itself *enacts*, 1. That the writ shall be returned and the prisoner brought up, within a limited time according to the distance, not exceeding in any case twenty days. 2. That such writs shall be endorsed, as granted in pursuance of this act, and signed by the person awarding them. 3. That on complaint and request in writing by or on behalf of any person committed and charged with any crime (unless committed for treason or felony expressed in the warrant, or for satisfaction of the fine, or as necessary thereon before the fact, or convicted or charged in execution by legal process), the lord chancellor, or any of the twelve judges in vacation, upon viewing a copy of the warrant, or affidavit that a copy is denied, shall (unless the party has neglected for two terms to apply to any court for his enlargement) award a *habeas corpus* for such prisoner, returnable immediately before himself or any other of the judges; and upon the return made shall discharge the party, if bailable, upon giving security to appear and answer to the accusation in the proper court of judicature. 4. That officers and keepers neglecting to make due returns, or not delivering to the prisoner on his warrant within six hours after demand a copy of the warrant of commitment, or shifting the custody of a prisoner from one to another without sufficient reason or authority (specified in the act), shall for the first offence forfeit 100l. and for the second offence 200l. to the party grievances, and be disabled to hold his office. 5. That no person, once delivered by *habeas corpus*, shall be committed for the same offence, on penalty of 500l. 6. That every person committed for treason or felony, shall, if he requires it the first week of the next term, or the first day of the next session of *eye* and *termine*, be indicted in that term or session, or else admitted to bail; unless the king's writs cannot be produced at that time; and if acquitted, or if not indicted and tried in the second term or session, he shall be discharged from his imprisonment for such impromptu offence: but that no person, after the assizes shall be opened for the county in which he is detained, shall be removed by *habeas corpus*, till after the assizes are ended; but shall be left to the justice of the judges of assize. 7. That any such prisoner may move for and obtain his *habeas corpus* as well out of the chancery or exchequer as out of the king's bench or common pleas; and the lord chancellor or judges denying the same, or (if legal) restraining the party grievously the same, shall be discharged from his imprisonment for such impromptu offence. 8. That the writ of *habeas corpus* shall run into the counties palatine, five ports, and other privileged places, and the islands of Jersey and Guernsey. 9. That no inhabitant of England (except persons contriving, or consorts praying to be transported; or having committed some capital offence in the place to which they are sent) shall be sent prisoner to Scotland, Ireland, Jersey, Guernsey or any places beyond the seas, within or without the king's dominions: on pain that the party committing the advice, aiders, and abettors, shall forfeit to the party grievances a fine not exceeding than 500l. to be recovered with treble costs; shall be disabled to bear any office of trust or profit; shall incur the penalties of *præmunitio*; and shall be incapable of the king's pardon. This is the substance of that great and important statute: which extends (we may observe) only to the case of commitments for such criminal charge as can produce no inconvenience to public justice by a temporary enlargement of the prisoner; all other cases of unjust imprisonment being left to the *habeas corpus* at common law. But even upon writs at the common law it is now expected by the court, agreeable to ancient precedents and the spirit of the act of parliament, that the writ should be immediately obeyed, without waiting for any *alias* or *pluribus*; otherwise an attachment will issue. By which admirable regulations, judicial as well as parliamentary, the remedy is now complete for removing the injury of unjust and illegal confinement. A remedy the more necessary, because the oppression does not always arise from the ill-nature, but sometimes from the mere inattention, of government. For it frequently happens in foreign countries (and has happened in England during the temporary suspensions of the statute), that persons
HAB

HABEDASH, in commerce, a seller of hats and other small wares. The master and wardens of the company of haberdashers in London, calling to their assistance one of the company of cappers, and another of the hat-makers, and mayors, &c. of towns, may search the wares of all haters who work hats with foreign wool, and who have not been apprentices to the trade, or who dye them with any thing but copperas and galls, or woof and madder; in which cases they are liable to penalties by flat, 8. Eliz. cap. 7. and 9 Geo. II. cap. 22.

For the etymology of this denomination, see Ber-

DASH.

HABERGION, or HAUSERGEON, HABERGETUM, a coat of mail; an ancient piece of defensive armour, in form of a coat, defending from the neck to the middle, and formed of little iron rings or mailles, linked into each other. — The word is also written haberge, hauger, hauere, hauerto, hauert, and hauerk. Spelman takes it to have been from the ancient French hâtre, " high," and hârge, " armour, covering;" as serving to defend the upper part of the body. Du Cange and Skinner choose to derive it from the French hâtre, " hat," and hârge, " to cover;" as if it were a peculiar defence for the neck. Others will have it formed of al, alla, q. d. all, and berge, " to cover;" as importing it a cover for the whole body.

HABAICOT (Nicholas), a celebrated surgeoan, born at Bonny in Gainsbols, acquired great reputation by his skill in his profession; and by his writings; and died in 1624. He wrote a treatise on the plague, and left several manuscripts in the hands of his son. His printed works are: 1. Poems under the title of Cassbura. 2. The Queen of Arragon, a tragico-comedy. 3. Observations upon History. 4. The history of Edward IV. king of England, written and published at the desire of Charles I. This work is composed in a very droll manner.

HABIT, in philosophy, an aptitude or disposition either of mind or body, acquired by a frequent repetition of the same act. See Custom and Habit.

Habit is also used for dres or garb, or the composition of garments, wherewith a person is covered. The principal part of the drapery worn by the Jews and Greeks was the muirica and the χειριστή. The μυηζης was an upper garment, consisting of a loose square piece of cloth wrapped round the body; the χειριστή was an under garment, or tunic, which was fastened round the body and embraced it closely, falling down to the mid-thigh. It is proper in this place to observe that a person divested of this upper garment or φασμα, in the easter{e}n language, is styled naked, and in this sense David danced naked before the ark.

The several sorts of garments in use with both sexes, amongst the Romans, were the toga, tunica, peluna, laceria, chlamys, paludamentum, lana, floa, pallium or pallae. See Toga, &c.

For the habits of the priests amongst the Jews, Greeks, and Romans, see the article PRIESTS.

HABIT is particularly used for uniform garments of the religious, conformable to the rules and order whereof they make profession; as the habit of St Benedict, St Augustine, &c.

In this sense we say absolutely, such a person has taken the habit; meaning he has entered upon a noviciate in a certain order. So he is said to quit the habit, when he renounces the order. See vow.

The habits of the several religious are not supposed to have been calculated for singularity or novelty; the founders of the orders, who were at first chiefly inhabitants of deferts and solitudes, gave their monks the habit usual among the country people. Accordingly, the primitive habits of St Anthony, St Hilary, St Benedict, &c. are described by the ancient writers as consisting chiefly of thick skins, the common dress of the peasants, shepherds, and mountaineers, of that time; and the same they gave to their disciples.

The orders established in and about cities and inhabited places took the habit worn by other ecclesiastics at the time of their institution. Thus, St Dominic gave his disciples the habit of regular canons, which he himself had always worn to that time. And the like may be said of the Jesuits, Barnabites, Theatins, Oratians, &c. who took the common habit of the ecclesiastics at the time of their foundation. And what makes them differ so much from each other, as well as from the ecclesiastical habit of the present times, is, that they have always kept invariably to the same form; whereas the ecclesiastics and laity have been changing their mode on every occasion.

HABITE and REPUTE, in Scots law, the common opinion of the people; among whom a person lives, with respect to any circumstance relating to him.

HABITUDE, among schoolmen, the respect or relation one thing bears to another. See Relation.

HABSBURGH, or HABSBURG, an ancient castle of Swisserland, in the canton of Bern. It is the place where the ancient counts of Hapsburg resided, and is seated near the lake of Lucern, and to the south of the town of that name. E. Long. 8. fol. N. Lat. 47. 22.

HACHA, a sea-port town of South America, in Terra Firma, seated at the mouth of a river of the same name. Here the Spanish galleons touch at their arrival in South America, from whence express are sent to all the settlements to give them notice of it. W. Long. 72. 8. N. Lat. 11. 30.

HACKET (John), bishop of Litchfield and Coventry, was born in 1592. In 1623, he was made chaplain to James I. and prebendary of Lincoln: and soon after obtained the rectory of St Andrew's Holborn, with that of Cheam in Surrey; his patron telling him, he intended Holborn for wealth, and Cheam for health. In 1642 he was presented to a prebendary and refidentiary; but was deprived of the enjoyment of them, as well as of St Andrew's, by the ensuing troubles. He then lived retired at Cheam with little disturbance, until he recovered his preferment by the restoration of Charles II. by whom he was preferred to the see of Litchfield and Coventry in 1661. Finding the beautiful cathedral of Litchfield almost battered to the ground,
HACKNEY, a parish of Middlesex, on the north-east side of London, containing no less than 12 hamlets. At the bottom of Hackney-Marsh, through which the river Lea runs, between Old-Ford and the Wyck, there have been discovered the remains of a great stone causeway, by which, the Roman coins, &c. found there, was no doubt one of the famous highways made by the Romans. The church here is of a very ancient foundation, so old as Edward II. and the number of its bells near 80. That part of London called Mare Street; the middle Church Street; and the north part: Clapton Dorleston and Shacklewell are of the west, and Hummerton, which leads to the Marsh, on the east. Here are three meeting-houses and several boarding-schools, besides the free schools in the church-yard, a charity-school, and 17 almshouses. It was from this place that the coaches let to the people in London first received their name; for in the last century, many people having gone on visit to see their friends at Hackney, it occasioned them often to hire hores or carriages, so that in time it became a common name for such horses, coaches, and chairs as were let to the people of London; and the name has now diffused itself not only throughout Britain, but likewise Ireland.

Hackney Coaches, those exposed to hire in the streets of London; and some other great cities, at rates fixed by authority. See Coach.—These first began to ply in the streets of London, or rather waited at inns, in the year 1625, and were only 20 in number; but in 1635 they were so much increased, that king Charles issued an order of council for restraining them. In 1637, he allowed 50 hackney-coachmen, each of whom might keep 12 horses. In 1652, their number was limited to 200; and in 1654, it was extended to 300. In 1661, 400 were licenced, at £1. annually for each. In 1694, 300 were allowed, and taxed by the 2 and 6 of W. & M. at 41. per annum each. By 9 Anne cap. 23. 800 coaches were allowed in London and Westminster; but by 8 Geo. III. cap. 24, the number is increased to 1000, which are to be licenced by commissioners, and to pay a duty of 5 l. per week to the king. On Sundays there were formerly only 175 hackney-coaches to ply, which were to be appointed by commissioners; but their number is now unlimited.

The fare of hackney coachmen in London, or within ten miles of the city, is 12 shillings and sixpence per day, allowing 12 hours per day. By the hour it is 1s. 6d. for the first, and 1s. for every hour afterwards; none are obliged to pay above 1s. for any distance not exceeding a mile and a half; or above 1s. 6d. for any distance not exceeding two miles. Where hackney coachmen refuse to go at, or exact more than, their limited hire, they are subject to a forfeit not under 10s. nor exceeding 3 l. and which the commissioners have power to determine. Every hackney-coach must be provided with check strings, and every coachman plying without them incurs a penalty of 3s.—Drivers of hackney coaches are to give way to perfons of quality and gentlemen's coaches, under the penalty of 3s. The duty arising from licences to hackney-coaches and chairs in London, forms a branch of the king's extraordinary and perpeetual revenue *. This revenue is governed by commissioners of its own, and is in truth a benefit to the subject; as the expense of it is felt by no individual, and its necessary regulations have established a competent jurisdiction, whereby a very refractory race of men may be kept in some tolerable order.

HADDON, the English name of a species of Gadus.

Haddersleben, a sea-port town of Denmark, in the duchy of Slewich, with a strong citadel, built upon a small island. It is seated on a bay of the Baltic Sea, and has a well-frequented harbour. E. Long. 9° 55'. N. Lat. 57° 24'.

Hades, in the Scriptures is used in various senses. Sometimes it signifies the invisible regions of the dead, sometimes the place of the damned, and sometimes the grave. In Greek authors it is used to signify in general the regions of the dead. See HELL.

HADLEY, a town of Suffolk, seated in a bottom on the river Preffon. It consists of about 600 houes; with a very handsome church, a chapel of ease, and a Presbyterian meeting-houe. The streets are pretty broad, but not paved. Large quantities of yarn are spun here for the Norwich manufacture; and this town had once a considerable woollen manufacture, which is now decayed. E. Long. 1° 0'. N. Lat. 52° 7'.

HADRIAN. See Adrian.

Hæmagogos, among physicians, a compound
Hæmatites, or Blood Stone, a hard mineral substance, red, black, or purple, but the powder of which is always red. It is found in mafes sometimes spherical, semi-spherical, pyramidal, or cellular, that is like a honeycomb. It contains a large quantity of iron. Forty pounds of this metal have been extracted from a quintal of stone; but the iron is of such a bad quality, that this ore is not commonly smelted. The great hardness of hematites renders it fit for furnishing and polishing metals.

Hæmatopus, the Sea-pigeon, in ornithology, a genus belonging to the order of Grallæ. The beak is compressed, with an equal wedge shaped point; the nostrils are linear; and the feet have three toes without nails. There is but one species, viz. The ostroleucus, or oyster-catcher, a native of Europe and America. It feeds upon shell-fish near the sea-shore, particularly oysters and limpets. In observing an oyster which gapes wide enough for the insertion of its bill, it thrusts it in, and takes out the inhabitant; it will also force the limpets from their adhesion to the rocks with sufficient ease. In turn it feeds on marine insects and worms. With these birds are often seen in considerable flocks in winter; in the summer they are met with only in pairs, though chiefly in the neighbourhood of the sea or salt rivers. The female lays four or five eggs, on the bare ground, on the floor, above a high-water mark; they are of a greenish grey, bloched with black. The young are said to be hatch'd in about three weeks. These birds are very wild when in flocks; yet are easily brought up tame, if taken young.

Hæmatoxylum, logwood, or Campeachy wood; a genus of the monogynia order, belonging to the decandria class of plants; and in the natural method ranking under the 3rd order, Lonontaceæ. The calyx is quiquinpartite; the petals five; the capsule lanceolated; unilocular, and bivalved; the valves navicular or keeled like a boat.

Of this genus there is only one species, viz. the campechianum, which grows naturally in the bay of Campeachy at Honduras, and other parts of the Spanish West-Indies, where it rises from 16 to 24 feet high. The stems are generally crooked, and very deformed; and seldomed thicker than a man's thigh. The branches, which come out on each side, are crooked, irregular, and armed with strong thorns, garnished with winged leaves, composed of three pair of obtuse lobes indent'd at the top. The flowers come in a racemus from the wings of the leaves, standing erect, and are of a pale yellowish colour, with a purple empanelment. They are succeeded by berries, which are of a beautiful red colour when ripe.

Culture. All these plants are natives of the Cape of Good Hope, and do not propagate very fast in Europe; their roots seldom putting forth many off-sets. The best method of managing them is to have a bed of good earth in a bricked pit, where they may be covered with a cluster of bright and tubulous flowers. It hath a large bulbous root, from which in the autumn come out two broad flat leaves of a fleshy consistence, shaped like a tongue, which turn backward on each side, and spread on the ground, so that they have a strange appearance all the winter. In the spring thehe decay; so that from May to the beginning of August they are deftitute of leaves. The flowers are produced in the autumn just before the leaves come out. 2. The carinatus, with keel shaped leaves, has a taller stalk and paler flowers than the former; its leaves are nodous, but hollowed like the keel of a boat. 3. The puniceus, with large spear-shaped waved leaves, grows about a foot high, and hath flowers of a yellowish red colour. These are succeeded by berries, which are of a beautiful red colour when ripe.
HAEMOPTYSIS, HEMOPTYSIS, or Hemoptoe, a spitting of blood. See (Index subjoined) to Medicine.

HÆMORRHAGY, (compound of αἷμα "blood," and μείζον "I burst forth,")) in medicine, a flux of blood at any part of the body; arising either from a rupture of the vessels, as when they are too full or too much pressed; or from an erosion of the same, as when the blood is too sharp and corrosive.—The haemorrhagy, properly speaking, as underflow by the Greeks, was only a flux of blood at the nose; but the moderns extend the name to any kind of flux of blood, whether by the nose, mouth, lungs, stomach, intestines, fundament, matrix, or whatever part. See Medicine and Surgery.

HÆMORRHOIDAL, an appellation given by anatomists to the arteries and veins going to the intineum rectum.

HÆMORRHoids, or Piles, an haemorrhage or issue of blood from the haemorrhoidal vessels. See (Index subjoined) to Medicine.

HÆMUS, (anc. "geg.,") a vast ridge, running from Illyricum towards the Euxine, (Pliny;) so high as to afford a prospect both of the Euxine and Adriatic.

Here, in after ages, was constituted a province called Haemimontis, or Haimontus.

HÆRETICO COMBURENDO, a writ which anciently lay against an heretic, who, having once been convicted of heresy by his bishop, and having abjured it, afterwads falling into it again, or into some other, is therupon committed to the secular power. This writ is thought by some to be as ancient as the common law itself; however, the conviction of hereby by the common law was not in a pagan ecclesiastical court, but before the archbishop himself in a provincial synod, and the delinquent was delivered up to the king to do with him as he pleased: so that the crown had a control over the spiritual power. But by 2 Hen. IV. cap. 15, the diocesan alone, without the intervention of a synod, might convict of heretical tenets; and unless the convict abjured his opinions, or if after abjuration he relapsed, the sheriff was bound to execute, if required by the bishop, to commit the unhappy victim to the flames, without waiting for the content of the crown. This writ remained in force, and was actually executed on two Anabaptists in the seventh of Elizabeth, and on two Arians in the ninth of James I. Sir Edward Coke was of opinion, that this writ did not lie in his time; but it is now formally taken away by statute 29 Car. II. cap. 9. But this statute does not extend to take away or abridge the jurisdiction of Protestant archbishops or bishops, or any other judges of any ecclesiastical courts, in cases of atheism, blasphemy, heresy, or schism, and other damnable doctrines and opinions; but they may prove and punish the same according to his majesty's ecclesiastical laws, by excommunication, deprivation, degradation, and other ecclesiastical censures, not extending to death, in such sort and no other, as they might have done before the making of Haelem this act. Sec. 2. See Heresy.

HAERLEM. See Harlem.

HAG, in zoology. See Myxine.

HAGARENS, the descendants of Ishmael. They are called also Ishmaelites and Saracens; and lastly, by the general name of Arabians.

As to the Hagarans, they dwelt in Arabia the Happy, according to Pliny. Strabo joins them with the Nabathæans, and Charlotæans, whose habitation was rather in Arabia Deserta. Others think their capital was Petra, otherwise Agra, and consequently they should be placed in Arabia Petraea. The author of the Lxxviii. Psalm, ver. 6, joins them with the Moabites; and in the Chronicles it is said (1 Chr. v. 10.), that the sons of Reuben, in the time of Saul, made war against the Hagarans, and became masters of their country eastward of the mountains of Gilead. This therefore was the true and ancient country of the Hagarans. When Trajan came into Arabia, he besieged the capital of the Hagarans, but could not take it. The sons of Hagar valued themselves of old upon their wisdom as appears by Baruch iii. 23.

HAGEDORN (Frederick,) a celebrated German poet, was born at Hainburgh, where his father was resident for the king of Denmark, in 1708. He finished his studies at Jena; and, in 1718, published a number of poetical pieces in Germany, which were well received. He afterwards came to England, where he obtained the friendship of many of the learned; and, at his return, was made secretary to the English Hamburgh company, a lucrative employment that left him sufficient time for cultivating the muse. In 1738, he published his Fables and Tales, the first collection of the kind which Germany can boast. He afterwards published other pieces of poetry of different kinds, as Moral Poems, Epigrams, and five books of Songs; which of all his poetical pieces are most esteemed. He died in 1754.

HAGENAU, a town of Germany, and capital of a bailiwick of the same name, which was formerly imperial, but now belongs to the French. It was taken by them in 1673; the Imperialists retook it in 1702; after which it was several times taken and retaken by both parties; but at last the French got possession of it in 1706. It is divided by the river Motter into two parts; and is seated near a forest of its own name, in E. Long. 7. 53. N. Lat. 48. 49.

HAGGI, the tenth of the small prophets, was born, in all probability, at Babylon, in the year of the world 3457, from whence he returned to Zerbhabel. It was this prophet who by command from God (Ezra, v. 1, 2, &c.) exhorted the Jews, after their return from the captivity, to finish the rebuilding of the temple, which they had intermitted for 14 years. His remonstrances had their effect; and to encourage them to proceed in the work, he assurred them from God, that the glory of this latter house should be greater than the glory of the former house; which was accordingly fulfilled, when Christ honoured it with his presence: for with respect to the building, this latter temple was nothing in comparison of the former.

We know nothing certain of Haggai's death. The Jews pretend, that he died in the last year of the
HAG [265]

Hague.

Hagiography, a name given to part of the books of scripture, called by the Jews Cetuvim. The word is compounded of σαββαν, "holy;" and γενεαν, "I write." The name is very ancient: St. Jerom makes frequent mention of it; before him, St. Epiphanius called these books simply Πανοιρια.

The Jews divide the sacred writings into three classes: The Law, which comprehends the five books of Moses: The Prophets, which they call Neviim: And the Cetuvim דתובים, called by the Greeks, &c. Hagiography; comprehending the book of Psalms, Proverbs, Job, Daniel, Ezra, including also the book of Nehemiah, Chronicles, Canticles, Ruth, the Lamentations, Ecclesiastes, and Esther.

The Jews sometimes call these books the Writings, by way of eminence, as being written by immediate inspiration of the Holy Spirit. Thus says Kimchi, in his preface to the Psalms, Maimonides in More Neioch, and Elias Levita in his Thesebi, under the word הָנָקַע.

They distinguish the hagiographers, however, from the prophets; in that the authors of the former did not receive the matters contained in them by the way called Prophecy, which consists in dreams, visions, whispers, ecstasies, &c. but by mere inspiration and direction of the Spirit.

HAGUE, a town of the United Provinces, in Holland, situated in E. Long. 4° 10. N. Lat. 58° 49'.—In Latin it is called Haga Comititi; in French, La Haye; in Dutch, der Haag, or "S Graaenhage, i.e. the Earl's Grove or Wood, from the wood near which it is built, and in which the earls of Holland had a country-house. Though it sends no deputies to the states, it is one of the most considerable towns in Holland, pleasantly situated, and exceedingly beautiful. It may indeed compare with almost any city in Europe, though geographers account it but a village. The inhabitants also breathe a better air than those of the other cities, as it stands on a dry soil, somewhat higher than the rest of the country. It has no gates or walls, but is surrounded by a moat over which there are many draw-bridges. Two hours are required to walk round it, and it contains about 40,000 or 50,000 souls. It is a place of much splendor and business, being the seat of the high courts of the republic and province of Holland, and the residence of the stadtholder and foreign ambassadors; and there are a great many fine streets and squares in it. In the inner court all the high colleges and courts of justice hold their assemblies: there also the foot-guards do duty, as the horse-guards in the outer, when the states are sitting. Le Platt is an open airy place, in form of a triangle, adorned with neat and beautiful buildings: the Veyerberg is an eminence, laid out into several fine shady walks, with the Vyeer, a large basin of water, at the bottom: the Voorhout is the most celebrated part of the Hague, and consists of the mall, and walks edged with trees on each side, planted with trees, being much the same as St. James's park at London: the palace of Olydam, or Waalenaar, is built in a very elegant style; the prince and princesses go by way of palace at the north sea; with several trees, laid out in several streets, and surrounded with falsely houes. The Jewish synagogue is well worth being seen by a curious traveller; as also the palaces of the prince of Orange, the hotel of Spain, the new Voorhout, the mausoleum of the baron of Olydam in the great church, and the several hospitals. The environs of the Hague are exceedingly pleasant. Among other agreeable objects are the wood, with the palace of Orange at the extremity of it, called the haus in the wood; the village of Scheveling; and the lands-bills along the north sea; with the village of Voorburg, and the charming seats and fine gardens round it. Two miles from the Hague is Blywick, a village: and, a quarter of a mile from that, a noble palace belonging to the prince of Orange, famous for the treaty of peace concluded there in 1677. Leodouwien, where Margaret, countess of Hennepurg, and daughter of Florence IV, count of Holland and Zealand, is laid to have been delivered of 365 children at a birth in 1276, is about five miles from the Hague. Five miles beyond Leodouwien, and not far from the beautiful village of Graevenside, is Honlarucuck, another palace belonging to the prince of Orange, and one of the finest structures in the Low Countries.

HAHN (Simon Frederick), a celebrated German historian. At ten years of age he was not only far advanced in the Latin, but understood several living languages. Four years after he pronounced a speech on the origin of the cloyer at Bergen, the place of his birth, which was printed with some other pieces; and in 1708 he published a Continuation of Meliumius's Chronicle of Bergen. After having for several years given public lectures at Hall, he became, at the age of 24, protector of history at Helmitand, and was at length counsellor, historian, and librarian, to the king of Great Britain, elector of Hanover. He died in 1729, aged 27. Besides the above, and some other works, he wrote, 1. The first volume of the History of the Empire. 2. Colleccio monimentorum veterum et recentium meditatorum, 2 vols 8vo.

HAI-NAN. See HAINAN.

Hai-Tang, a beautiful Chinafe shrub, originally brought from the bottom of the rocks which border the sea-coast. It has been cultivated in China for more than 14 centuries; and is celebrated as often in the works of the Chinese poets, as roses and lilacs are in those of ours. Painters and embroiderers ornament almost all their works with its foliage and flowers. The stalk of the hai-tang is of a cylindric form, and grows almost opposite another on the branches, and at the same distance as the knots. Their colour above is a deep green; that below is much lighter, and almost effaced by their fibres which are large, and of a delicate purple: all these leaves together have a beautiful

Vol. VIII.
Hall-Tang. tifil effect to the eye. The flowers grow in bunches at the extremities of the branches. Each flower is composed of four petals, two great and two small, resembling in colour the bloom of a peach tree, and which have almost the same figure as the blossoms of our cherry trees. The two large are cemented one upon the other, in the form of a purée; and when they blow, the two small also in their turn; and then the whole four represent a crocus. The pistil is composed of very bright yellow grains, which separate for the support of a slender stalk, which rises above the petals. The calyx, which surrounds each of the flowers, is composed of two purple-coloured leaves, united in form of a purée. In proportion as the flowers grow and increase in size, the two leaves of the calyx open, become pale and dry, and drop off. The flowers, supported by small stalks, separate one from the other, and produce of themselves other flowers, which rise up from a new calyx.

This plant is propagated from seed, but with difficulty. It thrives best in a sandy soil; dung or mould destroys it; and great care must be taken to refresh it only with the purest water. As it cannot endure the sun in any season, it is always planted below walls that are exposed to the north. It generally begins to flower about the end of August. After it has produced seed, all its branches are cut; and it commonly shoots forth new ones before the fruiting;

but it is necessary to heap up gravel and pieces of brick round its root, to prevent them from rooting. Notwithstanding all the care that is taken to cultivate this tree at Peking, it does not thrive so well there as in the southern provinces. The smell of it leaves has an affinity both to that of the violet; but it is weaker, and never extends to any great distance.

Hail, in natural history, a meteor generally defined frozen rain, but differing from it in that the hailstones are not formed of single pieces of ice, but of many little spherules agglutinated together, which form figures of snow, as the flowers grow; and when they coming from the clouds, many of which weighed five ounces, and some half a pound, and being five or six inches about, were of various figures; some round, others half round; some smooth, others embossed and crenated; the icy substance of them was very transparent and hard, but there was a snowy kernel in the middle of them.

In Hertfordshire, May 4. the same year, after a severe storm of thunder and lightning, a flower of hail succeeded, which far exceeded the former; some persons were killed by it, their bodies beat all black and blue; vast oaks were split, and fields of rye cut down as with a scythe. The stones measured from 10 to 15 or 14 inches about. Their figures were various; some oval, others picked, some flat. Philos. Trans. No. 219.

Hail is one of the natural phenomena for which it is almost impossible to account in any satisfactory manner. It is certain, that on the tops of mountains hailstones, as well as drops of rain, are very small, and continually increase in bulk till they reach the lower grounds. It would seem, therefore, that during their passage through the air, they attract the condensed vapour which increases them in size. But here we are at a loss how they come to be solid hard bodies, and not always soft, and composed of many small flakes like snow. The flakes of snow, if once they become ice, as they descend, as well as the drops of rain or hailstones; but why should the one be in soft crystals, and the other in large hard lumps, seeing both are produced from condensed vapour? Some modern philosophers ascribe the formation of hail to electricity. Signior Beccaria supplies hail to be formed in the higher regions of the air, where the cold is intense, and where the electric matter is very copious. In these circumstances, a great number of particles of water are brought near together.

At Life in Flanders, in 1686, fell hailstones of a very large size; some of which contained in the middle a dark brown matter, which thrown on the fire, gave a very great report. Phil. Trans. No. 203.

Dr Halley and others also relate, that in Cheshire, Lancashire, &c. April 29. 1697, a thick black cloud, coming from Carnarvonshire, disposed the vapours to congeal in such a manner, that for about the breadth of two miles, which was the limit of the cloud, in its progress for the space of 60 miles, it did inconceivable damage; not only killing all sorts of fowl and other small animals, but splitting trees, knocking down horfes and men, and even ploughing up the earth; so that the hailstones buried themselves under ground an inch or an inch and a half deep. The hailstones, many of which weighed five ounces, and some half a pound, and being five or six inches about, were of various figures; some round, others half round; some smooth, others embossed and crenated; the icy substance of them was very transparent and hard, but there was a snowy kernel in the middle of them.
HAILING, the salutation or accosting of a ship at a distance, either at sea, or in a harbour. The usual expression is, "Hail, the ship ahoy!" To which she answers, "Holla! Whence came ye? Where are ye bound? Good voyage! What cheer? All well! How fare ye?" &c.

HAILLAN (Bernard de Girard, lord of), a celebrated French historian. After having made some figure in the literary world, and as a translator, he applied himself to history with such success, that in 1571, Charles IX. made him historiographer of France. His history of France extends from Pharamond to the death of Charles VII. and is the first complete history of that kingdom composed in the French tongue. He was honoured by Henry III. with several marks of favour; and proposed to continue his history to the reign of Henry IV. but did not perform his promise. He died at Paris in 1610.

HAIMSUCKEN. See HAMESUCKEN.

HAINAN, a considerable island of Asia, situated in between 18° and 20° N. Lat. It is subject to China, and belongs to the province of Quang-ton. It has on the north the province of Quang-hi; on the south the channel formed between the bank Paracel and the eastern coast of Cochinchina; on the west, the same kingdom and part of Tong-kiao; and on the east, the Chine sea. Its extent from east to west is between 60 and 70 leagues, and from north to south 45; this island therefore is about 160 leagues in circumference. Kiu-tcheou-fon, its capital, stands on a promontory, and ships often anchor at the bottom of its walls. Two different kinds of mandarins command here, as in all the other provinces of China: the first are called literati; the second, mandarins of arms, or military officers. Its jurisdiction extends over three cities of the second class and ten of the third. The greater part of the island is under the dominion of the emperor of China; and the rest is independent, and inhabited by a free people, who have never been subdued. Compelled to abandon their plains and fields to the Chines, they have retreated to the mountains in the centre of the island, where they are sheltered from the insults of their neighbours. These people formerly had a free and open correspondence with the Chinese. Twice a year they exposed, in an appointed place, the gold which they dug from their mines, with their eagle-wood and cambla, so much esteemed by the Orientals. A deputy was sent to the frontiers, to examine the cloths and other commodities of the Chinese, whose principal traders repaired to the place of exchange fixed on; and after the Chinese wares were delivered, they put into their hands with the greatest fidelity what they had agreed for. The Chinese governors made immense profits by this barter.

The emperor Kang-li, informed of the prodigious quantity of gold which passed through the hands of the mandarins by this traffic, forbade his subjects, under pain of death, to have any communication with these islanders: however, some private emigrants of the neighbouring governors still find the means of having intercourse with them; but what they get at present by this clandestine trade is little, in comparison of that which they gained formerly. The natives of this island are very deformed, small of stature, and of a copper colour: both men and women wear their hair thruf through a ring on their forehead; and above they have a small hat, from which hang two strings that are tied under the chin. Their dresses consist of a piece of black or dark-blue cotton cloth, which reaches from the girdle to their knees: the women have a kind of robe of the same stuff, and mark their faces from the eyes to the chin with blue stripes made with indigo.

Among the animals of this island are a curious species of large black apes, which have the shape and features of a man; they are said to be very fond of women: there are also found here crows with a white ring round their necks; starlings which have a small crest on their bills; a species like black-birds of a deep blue colour, with yellow eyes rising half an inch; and a multitude of other birds remarkable for their colour or song. Besides mines of gold and lapis lazuli, which enrich the island of Hainan, it produces in abundance various kinds of curious and valuable wood. The great decorator of the present emperor caused some of it to be transported to Peking, at an immense expense, to adorn an edifice which he intended for a mausoleum. The most valuable is called by the natives hooli, and by the Europeans rose or violet-wood from its finell; it is very durable, and of a beauty which nothing can equal; it is therefore reserved for the use of the emperor.

Hainan, on account of its situation, riches, and extent deserves to be ranked among the most considerable islands of Asia. Not far from thence is another small island, commonly called San-cian. It is celebrated by the death of St Francis Xavier: his tomb is still to be seen on a small hill, at the bottom of which is a plain covered on one side with wood, and on the other ornamented with several gardens. This island is not a desert, as some travellers have pretended; it contains five villages; the inhabitants of which are poor people, who have nothing to subsist on but rice and the fish which they catch.

HAINAUT, a province of the Netherlands, belonging partly to France and partly to the house of Austria. It is bounded to the south by Champagne and Picardy; to the north by Flanders; to the east by the duchy of Brabant, the county of Namur, and the bishopric of Liege; and to the west by Artois and Aosta. Flanders
Hainault, Flanders. Its extent from north to south is about 45 miles, and about 48 from east to west. The air is pleasant and temperate, and the soil fruitful: it abounds in rich pastures, corn-fields, woods, and forests, coal, iron, lead, beautiful marble, flate, and other useful stones: it is well watered by rivers and lakes, and breeds abundance of black cattle, and sheep whose wool is very fine. Its principal rivers are the Schelde, and the Dender. This province is reckoned to contain 24 walled towns, 950 villages, one duchy, and several principalities, earldoms, peerdoms, and baronies. The abbots in it are 27. For spiritual matters, the greater part of it is subject to the archbisho of Cambrai, and the rest to the bishop of Liege and Arras. The flates of the province consist of the clergy, nobility, and commoners. The clergy are the abbots, deputies of the chapters, and rural deans; but the chapters of St Waudru, and St Germain, in Mons, fend no deputies, as they contribute nothing to the public taxes. The nobility consists of the earls and barons, and all those who by their birth have a right to a seat in the assembly of the flates. The commoners are composed of the deputies of the towns. The clergy in this county are uncommonly rich. The flates meet only when they are summoned by the sovereign; but there is a standing committee at Mons which meet weekly. This county had counts of its own, till the year 1456; when Philip the Good, duke of Burgundy, arrived to the possession of it, upon the death of Jaqueline, the heiress, without issue. The French acquired that part of it which they possess, part by the peace of the Pyrenees, and partly by those of Nimeguen and Refwick. The arms of this county are quartered, and contain four lions, in a field or. For the government of it, there is a sovereign council, at the head of which is the high bailiff, who has very great authority; he represents the sovereign, is governor of Mons, and captain-general of the province.

Hair, small filaments issuing out of the pores of the skin of animals; and serving most of them as a tegument or covering*. In lieu of hair, the naked-nails of some animals is covered with feathers, wool, down, &c., &c.

Hair is found on all parts of the human body, except the soles of the feet and the palms of the hands. But it grows longest on the head, chin, breast, in the arm-pits, and about the privities.

The ancients held the hair a part of excrement, fed only with excrementitious matter, and no proper part of a living body. They supposed it generated of the filigious parts of the blood, exhaled by the heat of the body to the surface, and then condensed in passing through the pores. Their chief reasons were, that the hair being cut, will grow again space, even in extreme old age, and when life is very low; that in hectic and consumptive people, where the rest of the body is continually emaciating and attenuating, the hair shall thrive: nay, and that it will grow again in dead carcases. They added, that hair does not feed and grow like the other parts, by intraoeception, &c. by a juice circulating within it; but, like the nails, by juxtaposition, each part next the root, thrufing forward that immediately before it.

But the moderns are agreed, that every hair does properly and truly live, and receive nutriment to fill and dif tend it like the other parts, which they argue hence, that the roots do not turn grey in aged persons sooner than the extremities, but the whole changes colour at once, and the like is observed in boys, &c. which shows that there is a direct communication, and that all the parts are affected alike.

It may be observed, however, that, in propriety, the life and growth of hairs is of a different kind from that of the rest of the body; and is not immediately derived therefrom, or reciprocated therewith. It is rather of the nature of vegetation. They grow as plants do out of the earth; or as some plants shoot from the parts of others; from which though they draw their nourishment, yet each has, as it were, its several life and a distinct economy. They derive their food from some juices in the body, but not from the nutritious juices of the body, whence they may live, tho' the body be starved.—Wulterus, in the Philosophical Collections, gives an account of a woman buried at Nurnberg, whose grave being opened 43 years after her death, there was hair found issuing forth plentifully through the clefts of the coffin; insomuch that there was reason to imagine the coffin had some time been covered all over with hair. The cover being removed, the whole corpse appeared in its perfect shape; but, from the crown of the head to the sole of the foot, covered over with a thick-fet hair, long and curled. The fextion going to handle the upper part of the head with his fingers, the whole furniture fell at once, leaving nothing in his hand but a handful of hair; there was neither skull nor any other bone left; yet the hair was solid and strong enough.—Mr Arnold, in the same collection, gives a relation of a man hanged for theft, who, in a little while, while he yet hung upon the gallows, had his body strangely covered over with hair.

Some moderns, however, deny the authenticity of these and similar instances.

The hairs ordinarily appear round or cylindrical; but the microscope also discovers triangular and square ones; which diversity of figure arises from that of the pores, to which the hairs always accommodate themselves. Their length depends on the quantity of the proper humour to feed them, and their colour on the quality of that humour: whence, at different stages of life, the colour usually differs. Their extremities split into two or three branches, especially when kept dry, or suffered to grow too long; so that what appears only a single hair to the naked eye, seems a brush to the microscope.

The hair of a mouse, viewed by Mr Derham with a microscope, seemed to be one single transparent tube, with a pith made up of fibrous substances, running in dark lines, in some hairs transversely, in others spirally. The darker medullary parts or lines, he observes, were no other than small fibres convolved round, and lying closer together than in the other parts of the hair. They run from the bottom to the top of the hair; and he imagines may serve to make a gentle evacuation of some humour out of the body. Hence the hair of hairy animals, this author suggests, may not only serve as a fence against cold, &c. but as an organ of insensible perspiration.

Though the external surface of the body is the natural place for hairs, we have many well attested instances
The hair of both Jewish and Grecian women engaged a principal share of their attention, and the Roman ladies seem to have been no less curious with respect to theirs. They generally wore it long, and dressed it in a variety of ways, ornamenting it with gold, silver, pearls, &c. On the contrary, the men amongst the Greeks and Romans, and amongst the latter Jews, wore their hair short, as may be collected from books, medals, statues, &c. This formed a principal distinction in dress between the sexes. This observation illustrates a passage in St Paul’s epistle to the Corinthians (1 Cor. xi. 14, 15.)

St Paul forbids the Corinthian women, when praying by divine inspiration, to have their heads dishevelled; probably because this made them resemble the heathen priestesses, when actuated by the pretended influence of their gods.

Amongst the Greeks, both sexes, a few days before marriage, cut off and consecrated their hair as an offering to their favourite deities. It was also customary among them to hang the hair of the dead on the doors of their houses previous to interment. They likewise tore, cut off, and sometimes shaved their hair, when mourning for their deceased friends or relations, which they laid upon the corpse or threw into the pile, to be consumed together with the body. The ancients imagined that no person could die till a lock of hair was cut off; and this act they supposed was performed by the invisible hand of death, or Iris, or some other messenger of the gods. This hair, thus cut off, they fancied consecrated the person to the infernal deities, under whose jurisdiction the dead were supposed to be. It was a sort of frit fruits which sanctified the whole. (See Virg. Æn. 4. 694.)

Whatever was the fashion, with respect to the hair, in the Grecian states, slaves were forbidden to imitate the freemen. The hair of the slaves was always cut in a particular manner called ὑπὸ μετακόλασθος, which they no longer retained after they procured their freedom.

It was esteemed a notable honour among the ancient Gauls to have long hair, and hence came the appellation Gallia comata. For this reason Julius Cæsar, upon subduing the Gauls, made them cut off their hair as a token of submisision. — It was with a view to this, that such as afterwards quitted the world to go and live in clausures, procured their hair to be shaved off; to show that they bid adieu to all earthly ornaments, and made a vow of perpetual subjection to their superiors.

Greg. of Tours assures us, that in the royal family of France, it was a long time the peculiar mark and privilege of kings and princes of the blood to wear long hair, artfully dressed and curled; every body else was obliged to be polled, or cut round, in sign of inferiority and obedience. Some writers assure us, that there were different cuts for all the different qualities and conditions; from the prince, who wore it at full length, to the slave or villain, who was quite smooth.

To cut off the hair of a son of France, under the first race of kings, was to declare him excluded from the right of succeeding to the crown, and reduced to the condition of a subject.

In the eighth century, it was the custom of people of quality to have their children’s hair cut the first time by
by persons they had a particular honour and esteem for; who, in virtue of this ceremony, were reputed a sort of spiritual parents or godfathers thereof: Tho’ this practice appears to have been more ancient; inasmuch as we read, That Constantine sent the pope the hair of his son Heraclius, as a token that he desired him to be his adoptive father.

The parade of long hair became still more and more obnoxious in the progress of Christianity, as something utterly inconsistent with the profession of persons who bore the cross. Hence numerous injunctions and cautions to the contrary. —Pope Anicetus is commonly supposed to have been the first who forbade the clergy to wear long hair: but the prohibition is of an older standing in the churches of the east; and the letter wherein that decree is written, is of a much later date than that pope. —The clerical tonsure is related by Hilarus Episcopæus, as of apostolical institution.

Long hair was anciently held so odious, that there is a canon still extant of the year 1096, importing, that such as wore long hair should be excluded coming into church while living, and not to be prayed for when dead. We have a furious declamation of Luitprand against the emperor Phocas, for wearing long hair, after the manner of the other emperors of the east, all except Theophilus, who being bald, enjoined all his subjects to shave their heads.

The French historians and antiquaries have been very exact in recording the head of hair of their several kings. Charlemagne wore it very short, his son Charles the Bald had none at all. Under Hugh Capet it began to appear again; this the ecclesiastics took in dudgeon, and excommunicated all who let their hair grow. Peter Lombard expostulated the matter so warmly with Charles the Young, that he cut off his hair; and his successors for some generations wore it very short. —A professor of Utrecht, in 1650, wrote expressly on the question, Whether it be lawful for men to wear long hair? and concluded for the negative. —Another divine named Reves, who had written for the affirmative, replied to him.

The ancient Britons were extremely proud of the length of their hair, and were at much pains in dressing and adorning their heads. Some of them carried their tonsure for and admiration of their hair to an extravagant height. It is said to have been the last and most earnest request of a young warrior, who was taken prisoner and condemned to be beheaded; that no flave might be permitted to touch his hair, which was remarkably long and beautiful, and that it might not be stained with his blood. We hardly ever meet with the description of a fine woman or beautiful man, in the poems of Ossian, but the hair is mentioned as one of their greatest beauties. Not contented with the natural colour of their hair, which was commonly fair or yellow, they made use of certain waxes and gums to stain it still brighter. One of these waxes was a composition of lime, the ashes of certain vegetables, and tallow. They made use of various arts also to make the hair of their heads grow thick and long; which last was not only esteemed a great beauty, but was considered as a mark of dignity and noble birth. Boudiccia, queen of the Iceni, is described by Dio with very long hair, flowing over her shoulders, and reaching down below the middle of her back.

The Britons shaved all their beards, except their upper lips; the hair of which they, as well as the Gauls, allowed to grow to a very convenient length.

In after-times, the Anglo-Saxons and Danes also considered fine hair as one of the greatest beauties and ornaments of their persons, and were at no little pains in dressing it to advantage. Young ladies before marriage wore their hair uncovered and untipt, flowing in ringlets over their shoulders; but as soon as they were married, they cut it shorter, tied it up, and put on a head-dress of some kind or other according to the prevailing fashion. To have the hair entirely cut off was to great a disgrace, that it was one of the greatest punishments inflicted on those women who were guilty of adultery. The Danish soldiers who were quartered in the English, in the reign of Edgar the Peaceable and of Ethelred the Unready, were the beaux of those times, and were particularly attentive to the dressing of their hair; which they combed at least once every day, and thereby captivated the affections of the English ladies. The clergy, both secular and regular, were obliged to have the crowns of their heads, and keep their hair short, which distinguished them from the laity; and several canons were made against their concealing their tonsure, or allowing their hair to grow long. The shape of this clerical tonsure was the subject of long and violent debates between the English clergy on the one hand, and those of the Scots and Picts on the other; that of the former being circular, and that of the latter only semicircular. It appears very plainly, that long flowing hair was universally esteemed a great ornament; and the tonsure of the clergy was considered as an act of mortification, and self-denial, to which many of them submitted with reluctance, and endeavoured to conceal as much as possible. Some of them who affected the reputation of superior sanctity, inveighed with great bitterness against the long hair of the laity; and laboured earnestly to persuade them to cut it short, in imitation of the clergy. Thus the famous St. Wulfian bishop of Worcester, is said to have declaimed with great vehemence against luxury of all kinds, but chiefly against long hair as most criminal and most unchristian. The Earl of Warwick (says William of Malmesbury in his life of St. Wulfian) were very vicious in their manners, and plunged in luxury through the long peace which they had enjoyed in the reign of Edward the Confessor. The holy prelate Wulfian reproved the wicked of all ranks with great boldness, but he rebuked those with the greatest severity who were proud of their long hair. When any of those vain people bowed their heads before him to receive his blessing, before he gave it, he cut a lock of their hair with a little sharp knife, which he carried about him for that purpose; and commanded them, by way of penance for their sins, to cut all the rest of their hair in the same manner. If any of them refused to comply with this command, he regarded the most dreadful judgments upon them, reproached them for their effeminacy, and foretold, that as they imitated women in the length of their hair, they would imitate them in their cowardice, when their country was invaded; which was accomplished at the landing of the Normans."

This continued to be long a topic of declamation among the clergy, who even represented it as one of the
Hair may be changed from a red, grey, or other disagreeable colour, to a brown or deep black, by a solution of silver. The liquors sold under the name of hair waters, are at bottom no more than solutions of silver in aquafortis, largely diluted with water, with the addition perhaps of other ingredients, which contribute nothing to their efficacy. The solution should be fully saturated with the silver, that there may be no more acid in it than is necessary for holding the metal dissolved; and besides dilution with water, a little spirit of wine may be added for the further dilution of the acid. It must be observed, that for diluting the solution, distilled water, or pure rain-water, must be used; the common spring-waters turning it milky, and precipitating a part of the dissolved silver. It is to be observed also that if the liquor touches the skin, it has the same effect on it as on the matter to be stained, changing the part moistened with it to an indelible black.—Hair may be dyed of any colour in the same manner as wool. See Dyeing.

Hair which does not curl or buckle naturally is brought to it by art, by first boiling and then baking in the following manner: After having picked and forced the hair, and dipped it in parcels according to lengths, they roll them up and tie them tight down upon little cylindrical instruments, either of wood or earthen ware, a quarter of an inch thick, and hollowed a little in the middle, called pipes; in which fpace they are put in a pot over the fire, there to boil for about two hours. When taken out, they let them dry; and when dryed, they spread them on a sheet of brown paper, cover them with another, and thus tend them to the paffy cook; who making a crust or collin around them of common paste, sets them in an oven till the crust is about three-fourths baked. The end by which hair grew to the head is called the head of the hair; and the other, with which they begin to give the buckle, the point. Formerly the peruke-makers made no difference between the ends, but curled and waved them by either indifferently; but this made them unable to give a fine buckle; hair wov'n by the point never taking a right curl. Foreigners own themselves obliged to the English for this discovery, which was first carried abroad by a peruke-maker of that country.

Hair is also used in various other arts and manufactures.—In particular, the hair of the beavers, hares, co-}

Hairs, in farriery, is generally called the coat; and, with regard to horses, deserves particular consideration.

The hair growing on the fetlock serves as a defence to the prominent part of it in travelling in stoney ways or in frosty weather. If the hair of a horse's neck, and the parts most uncovered, be close, smooth, and sleek, it is an indication of his being in health and good case. In order to make the hair of an horse soft and sleek, he must be kept warm at heart, for the least inward cold will caufe the hair to tare; also sweat him often, for that will loosen and raise the dust and filth that renders his coat foul; and when he is in the heat of a sweat, scrape off all the white foam, sweat, and filth, that is raised up with an old sword-blade: and also when he is blooded, if you rub him all over with his front.
his own blood, repeating it two or three days, and carry and dress him well, it will make his coat shine as if covered with a fine varnish.

Hair falling from the mane or tail is caused either by his having taken some heat, which has engendered a dry maggot; or from some surfeit, which causes the evil humour to resort to those parts. To cure this, anoint the horse’s mane and crest with black soap; make a strong lace of aheres, and wash it all over with it. But if a canker should grow on a horse’s tail, which will eat away both flesh and bone; then put some oil of vitriol to it, and it will consume it; and if you find that the vitriol corrodes too much, you need only to wet it with cold water, and it will put a stop to it.

If you would take away hair from any part of a horse’s body, boil half a pound of lime in a quart of water, till one fourth part is consumed, to which add an ounce of opium; make this into a platter, and lay it on.

Hair, or Down, of plants; a general term expressive of all the hairy and glandular appearances on the surface of plants, to which they are supplied by naturalists to serve the double purpose of defensive weapons and vessels of secretion.

These hairs are minute threads of greater or less length and solidity; some of them visible to the naked eye; whilst others are rendered visible only by the help of glases. Examined by a microscope, almost all the parts of plants, particularly the young flasks or stems, appear covered with hairs.

Hairs on the surface of plants present themselves under various forms; in the leguminous plants they are generally cylindrical; in the mallow tribe, terminated in a point; in agrimony, shaped like fish-hook; in nettle, awl-shaped and jointed; and in some compound flowers with hollow or funnel-shaped florets, they are terminated in two crooked points.

Probable as some experiments have rendered it, that the hairs on the surface of plants contribute to some organical secretion, their principal use seems to be to preserve the parts in which they are lodged from the bad effects of violent frictions, from winds, from extremes of heat and cold, and such like external injuries.

M. Guettard, who has established a botanical method from the form, situation, and other circumstances of the hairy and glandular appearances on the surface of plants, has demonstrated, that these appearances are generally confant and uniform in all the plants of the same genus. The same uniformity seems to characterise all the different genera of the same natural order.

The different forms of hairs which form the down upon the surface of plants were imperfectly distinguished by Grew in 1682, and by Malpighi in 1686. M. Guettard just mentioned was the first who examined the subject both as a botanist and a philospher. His observations were published in 1747.

Hair-Cloth, in military affairs, are large pieces of cloth made with half hair. They are used for covering the powder in waggons, or upon batteries; as also for covering charged bombs or hand-grenades, and many other uses in magazines.

Hair-Powder. See STARCH.
Hair-Worm. See GORDIU.

HAKE, in ichthyology, the English name of a fish common in the English and some other seas, and called by authors the muliceps and lucius marius. This fish was used of old dried and salted. Hence the proverb obtains in Kent, As dry as a bake.

HAKLUYT (Richard), a naval historian, is supposed to have been born in London, about the year 1533, and defended of a genteel family in Herefordshire, as the name frequently occurs in the lift of high sheriffs for that county in former reigns. He was educated at Westminster-school; and thence, in 1570, removed to Christchurch, Oxford; where he applied himself particularly to the study of cosmography, and read public lectures in that science. Sir Edward Stafford being sent ambassador to France in 1585, Mr Hakluyt was one of his attendants, probably in the capacity of chaplain. He was at this time master of arts and professor of divinity. In 1585 he obtained the royal mandate for the next vacant prebend of Bristol to which prebend he succeeded during his residence at Paris. Conspicuous for his favourite cosmographical inquiries, in searching the French libraries, he found a valuable history of Florida, which had been discovered about 20 years before by Captain Laudumine and others; thence he caused to be published at his own expense, in the French language, and soon after revised and republished Peter Martyr’s book De orbis Novo. After five years residence in France, Mr Hakluyt returned to England in company with lady Shefield, sister to the lord admiral Howard. In the year 1589 he published his collection of Voyages in one folio volume, which in 1598 was republished in three. In 1605 our author was made prebendary of Westminster; which, with the Rectory of Wetheringsett in the county of Suffolk, seems to have been the summit of his preferment. He died in 1616, and was buried in Westminster-abbey: bequeathing to his son Edmund his manor of Bridge Place, and several houses in Tothill Street, Westminster. He was an indefatigable and faithful historian. His works are, 1. A Collection of Voyages and Discoveries, a small volume. 2. History of Florida, abovementioned. 3. The principal Navigations, Voyages, and Discoveries of the English Nation, made by Sea or over Land to the farthest distant quarter of the Earth, at any time within the compass of these 1500 years, in three vols folio. 4. The Discoveries of the World, from the first Original to the Year 1555, written in the Portuguese tongue by Ant. Galvano; corrected, much amended, and translated into English, by Richard Hakluyt.

Virginia richly valued, by the Description of the Main Land of Florida, her next neighbour, &c. written by a Portugal gentleman of Elvas, and translated by Richard Hakluyt. Besides these, he left several manuscripts, which were printed in Purchas’s collection.

HALBERSTADT, a small principality of Germany, bounded on the north-east by the duchy of Magdeburg, on the south by the principality of Anhalt, on the west by the diocese of Hildenheim, on the east by part of the electorate of Saxony, and on the north by Brunswic Wolfenbuttle. It is near 40 miles in length and 30 in breadth. The soil in general is fertile in corn and flax; and there are some woods, though in general soil is barren. There are three large towns in it which send representatives to the diet, together with 10 small ones, and 91 country-towns and villages.
HALBERT or HALBARD, in the art of war, a well-known weapon carried by the ferrymen of foot and dragoons. It is a sort of spear, the shaft of which is about five feet long, and made of ash or other wood. Its head is armed with a steel point, not unlike the point of a two-edged sword. Besides this sharp point which is in a line with the shaft, there is a cross piece of steel, flat and pointed at both ends; but generally with a cutting edge at one extremity, and a bent sharp point at the other; so that it serves equally to cut down or to pull withal. It is also useful in determining the ground between the ranks, and adjoining the files of a battalion. The word is formed of the German hal, "hall," and bard, "an hatchet." Voëlius derives it from the German halbe, of hel, "clara, splendens," and baert, "ax.

The halbert was anciently a common weapon in the army, where there were companies of halbardiens. It is said to have been used by the Amazons, and afterwards by the Rhétzians and Vindelicians about the year 526.

It was called the Danisf ax, because the Danes bore an halberd on the left shoulder. From the Danes it was derived to the Scots, from the Scots to the English Saxons, and from them to the French.

HALCYON, in ornithology, a name given by the ancients to the alcedo or king's fisher. See Alcedo.

HALCYON DAYS, in antiquity, a name given to seven days before and as many after the winter solstice; by reason the halcyon, invited by the calmness of the weather, laid its eggs in nests built in the rocks, close by the brink of the sea, at this season.

HALDE (John Baptif du), a learned French Jesuit, born at Paris in 1674. He was extremely well versed in Asiatic geography; and he have of his compilation a work intitled Grand Description de la Chine & de la Tartarie, from original memoirs of the Jesuitical missionaries, in 4 vols folio. He was also concerned in a collection of letters begun by father Gobien, called Des lettres edifiantes, in 18 vols; and published some Latin poems and orations. He died in 1743.

Vol. VIII.
HAL

not suffer the trial to go on till he had paid him for his buck." The gentleman answered, that "he never fold his venison; and that he had done nothing to him which he did not do to every judge who had gone that circuit:" which was confirmed by several gentlemen present. The lord chief baron, however, would not suffer the trial to proceed till he had paid for the present; upon which the gentleman withdrew the record. In short, he was in 1671 advanced to be lord chief justice of the king's bench; but about four years after this promotion, his health declining, he resigned his post in February 1675-6, and died in December following. This excellent man, who was an ornament to the bench, to his country, and to human nature, wrote, 1. An Essay on the Gravitation and Non-gravitation of Fluid Bodies. 2. Observations touching the Torricellian Experiment. 3. Contemplations, moral and divine. 4. The Life of Pomponius Atticus, with political and moral Reflections. 5. Observations on the Principles of Natural Motion. 6. The primitive Origin of Mankind. He also left a great number of manuscripts in Latin and English, upon various subjects; among which are his pleas of the Crown, since published by Mr Emlyn in two volumes folio; and his Original Inmutation, Power, and Jurisdiction of Parliaments.

Hales (Stephen), D. D. a celebrated divine and philosopher was born in 1672. He was the sixth son of Thomas Hales, Esq; the eldest son of Sir Robert Hales, created a baronet by king Charles H. and Mary the heirs of Richard Langley of Abbots-Wood in Hertfordshire. In 1696 he was entered a pensioneer at Bensett-college, Cambridge; and was admitted a fellow in 1703, and became bachelor of divinity in 1711. He soon discovered a genius for natural philosophy. Botany was his first study; and he used frequently to make excursions among Gogmagog hills, Flesh, and other substances. This work, which contained many useful instructions for voyagers, was dedicated to the lords of the admiralty. The same year he exhibited to the Royal Society an account of some further experiments towards the discovery of medicines for dissolving the stone in the kidneys and bladder, and preferring meat in long voyages; for which he received the gold medal of Sir Godfrey Copley's donation. The year following he published some account of Experiments and Observations on Mr Stephen's Medicines for dissolving the stone, on which their disSolvent power is inquired into and demonstrated.

In 1741 he read before the Royal Society an account of an instrument which he invented, and called a ventilator, for conveying fresh air into mines, hospitals, prisons, and the close parts of ships; he had communicated it to his particular friends some months before; and it is very remarkable, that a machine of the same kind, for the same purpose, was in the spring of the same year invented by one Martin Triewald, an officer in the service of the king of Sweden, called captain of mechanics, for which the king and senate granted him a privilege in October following, and ordered every ship of war in the service of that state to be furnished with one of them; a model also of this machine was sent into France, and all the ships in the French navy were also ordered to have a ventilator of the same fort. It happened also, that about the same time one Sutton, who kept a coffee-house in Aldergate-street,
H a l

H a l

inventor of another contrivance to draw off the foul air out of ships by means of the cook-room fire: but poor Sutton had not interest enough to make mankind accept the benefit he offered them; tho' its superiority to Dr Hales's contrivance was evident, and among others, Dr Mead and the late ingenious Mr Benjamin Robins gave their testimony in its favour: (See An-Pipes.) The public, however, is never indebted to the ingenuity and benevolence of Dr Hales, whose ventilators came more easily into use for many purposes of the greatest importance to life, particularly for keeping corn sweet, by blowing through it fresh flowers of air; a practice very soon adopted by France, a large granary having been made, under the direction of Duhamel, for the preservation of corn in this manner, with a view to make it a general practice.

In 1743, Dr Hales read before the Royal Society a description of a method of conveying liquors into the abdomen during the operation of tapping, and it was afterwards printed in their Transactions. In 1745, he published some experiments and observations on tar-water, which he had been induced to make by the publication of a work called Siris, in which the late learned and most excellent Dr Berkley, bishop of Cloyne, had recommended tar-water as an universal medicine: on this occasion several letters passed between them on the subject, particularly with respect to the use of tar-water in the disease of the horned cattle. In the same year he communicated to the public, by a letter to the editor of the Gentleman's Magazine, a description of a back-heaver, which will winnow and clean corn much sooner and better than can be done by the common method. He also, at the same time, and by the same channel, communicated to the public a cheap and easy way to preserve corn sweet in sacks; an invention of great benefit to farmers, especially to poor leavers, who want to keep small quantities of corn for sometime, but have no proper granary or repository for that purpose. He also the same year took the fame method to publish directions how to keep corn sweet in heaps without turning it, and to sweeten it when musty. He published a long paper, containing an account of several methods to preserve corn by ventilators, with a particular description of several forts of ventilators, illustrated by a cut, so that the whole mechanism of them may be easily known, and the machine constructed by a common carpenter. He published also in the same volume, but without his name, a detection of the fallacious boasts concerning the efficacy of the liquid shell in dissolving the stone in the bladder. In 1746 he communicated to the Royal Society a proposal for bringing small passable fomes soon, and with ease, out of the bladder; and this was also printed in their Transactions. In the Gentleman's Magazine for July 1747, he published an account of a very considerable improvement of his back-heaver, by which it became capable of clearing corn of the very small grain, seeds, blacks, smut-balls, &c. to such perfection as to make it fit for seed-corn. In 1748 he communicated to the Royal Society a proposal for checking, in some degree, the progres of fires, occasioned by the great fire which happened that year in Cornhill: And the substance of this proposal was printed in their Transactions. In the same year he also communicated to the Society two memoirs, which are printed in their Transactions; one on the great benefit of ventilators, and the other on some experiments in electricity. In 1749 his ventilators were fixed in the Savoy prifon, by order of the right hon. Henry Fox, Esq.; then secretary at war, afterwards lord Holland; and the benefit was so great, that though 50 or 100 in a year often died of the jail-diffemp, before, yet from the year 1749 to the year 1752 inclusive, no more than four persons died, though in the year 1750 the number of prisoners was 240; and of those four, one died of the small-pox, and another of intemperance. In the year 1750 he published some considerations on the causes of earthquakes; occasioned by the flight shocks felt that year in London. The substance of this work was also printed in the Philosophical Transactions. The same year he exhibited an examination of the strength of several purging waters, especially of the water of Jeffer's Well, which is printed in the Philosophical Transactions.

Dr Hales had now been several years honoured with the esteem and friendship of his royal highnesses Frederick prince of Wales; who frequently visited him at Teddington, from his neighbouring palace at Kew, and took a pleasure in surprizing him in the midst of those curious researches into the various parts of nature which almost incessantly employed him. Upon the prince's death, which happened this year, and the settlement of the household of the princes-dowager, he was, without his solicitation, or even knowledge, appointed clerk of the closet or almoner to her royal highnesses. In 1751 he was chosen by the college of physicians to preach the annual sermon called Crowne's lecture: Dr William Crowne having left a legacy for a sermon to be annually preached on "the wildom and goodness of God displayed in the formation of man." Dr Hales's text was, With the ancient is wisdom, and in length of days understanding. Job xii. 12. This sermon, as usual, was published at the request of the college. In the latter end of the year 1752, his ventilators, worked by a windmill, were fixed in Newgate, with branching trunks to 24 wards; and it appeared that the disproportion of those that died in the gaol before and after this establishment was 100 to 25. He also published alio a farther account of their successes, and some observations on the great danger arising from foul air, exemplified by a narrative of several persons seized with the gaol-fever by working in Newgate.

On the death of Hans Sloane, which happened in the year 1753, Dr Hales was elected a member of the Academy of Sciences at Paris in his room. The same year the published in the Gentleman's Magazine some farther considerations about means to draw the foul air out of the sick rooms of occasional army-hospitals, and private houses in town. He also published many other curious particulars relative to the use and success of ventilators. The same year a description of a sea-gage, which the doctor invented to measure unfathomable depths, was communicated to the public in the same miscellany: this paper was drawn up about the year 1732 or 1733, by the doctor, for the late Col. Campbell, Esq.; who employed the ingenious Mr Hawkglue to make the machine it describes, which was tried in various depths, and answered with great exactness,
H A L [2 7 6] H A L

Hales, yet was at last lost near Bermuda. In 1754, he communicated to the Royal Society some experiments for keeping water and fish sweet with lime-water, an account of which was published in the Philosophical Transactions. He also continued to enrich their memoirs with many useful articles from this time till his death, particularly a method of forwarding the distillation of water by blowing hot air up through the latter during the operation. In 1777 he communicated to the editor of the Gentleman's Magazine an easy method of purifying the air, and regulating its heat in melon-frames and green-houses; also further improvements in his method of distilling sea-water.

His reputation and the interest of his family and friends might causily have procured him farther preferment; but of farther preferment he was not deserving; for being nominated by his late Majesty to a canonry of Windsor, he engaged his princely patron to recollect his nomination. That a man so devoted to philosophical studies and employments, and so conscientious in the discharge of his duties, should not desire any preferment which would reduce him to the dilemma either of neglecting his duty, or foregoing his amulemen, is not strange; but that he would refuse an honourable and profitable appointment, for which no duty was to be done that would interrupt his habits of life, can scarce be imputed to his temperance and humility without impeaching his benevolence; for if he had no wish of any thing more for himself, a liberal mind would surely have been highly gratified by the distribution of so considerable a sum as a canonry of Windsor would have put into his power, in the reward of industri, the alleviation of distress, and the support of helpless indigence. He was, however, remarkable for social virtue and sweetmeats of temper; his life was not only blameless, but exemplary in a high degree; he was happy in himself, and beneficial to others, as appears by this account of his attainments and pursuits; the constant serenity and cheerfulness of his mind, and the temperance and regularity of his life, concurred, with a good constitution, to preserve him in health and vigour to the uncommon age of four-score and four years. He died at Teddington in 1761; and was buried, pursuant to his own directions, under the tower of the parish-church, which he built at his own expense not long before his death. — Her royal highness the princess of Wales erected a monument to his memory in Westminster abbey.

HALESIA, in botany: A genus of the monogynous order, belonging to the dodecandria class of plants; and in the natural method ranking under the 18th order, Bisexuales. The calyx is quadridentate, superior; the corolla, quadrifid; the nut quadrangular and pennis.ous.

HALESWORTH, a town of Suffolk in England, seated on a neck of land between two branches of the river Blith, 101 miles from London. It is a well frequented thriving place, and has a trade in linen yarn and sailcloth. It has one large church, and about 300 good houses, but the freestone is neither wide nor power enough; the town is raised a great deal of hemp, &c. Long. 1 40. N. Lat. 52. 30.

HALF-BLOOD, in law, is where a man marries a second wife, the first being dead, and by the first venter he has a son, and by his second venter has like wise a son; the two brothers, in this case, are of half-blood. See Consanguinity and Descent.

HALF-MERK; a noble, or 6s. 8d.

HALF-MOON, in fortification; an outwork composed of two faces, forming a slight angle, whose gorge is in form of a crescent or half-moon, whence the name.

HALFPENNY, a copper coin, whose value is expressed by its name, in reference to the penny.

HALI-BEIGH, first dragoon or interpreter at the Grand Signior's court in the 17th century, was born of Christian parents in Poland; but having been taken by the Tartars when he was young, they sold him to the Turks, who brought him up in their religion in the feraglio. His name, in his native country, was Bobownik. He learnt many languages, and Sir Paul Ricaut owns he was indebted to him for several things which he relates in his Present state of the Ottoman empire. He held a great correspondence with the English, who persuaded him to translate some books in the Turkish language, and had him sent back to the bosom of the Christian church, but died before he could accomplish the design. Dr Hyde published his book Of the liturgy of the Turks, their pilgrimages to Mecca, their circumcision and visiting of the sick. He translated the catechism of the church of England, and the bible, into the Turkish language. The MS. is lodged in the library of Leyden. He wrote like wise a Turkish grammar and dictionary.

HALICARNASSUS, (anc. geog.) a principal town of Caria, said to be built by the Argives, and situated between two bays, the Ceramicus and Jaxius. It was the royal residence, (called Zephyr's formerly); especially of Mausolus, who made more illustrious by his monument. This monument was one of the seven wonders, and erected by Artemisia. Halicarnassus, or Halicarnassitis, was the gentilicious name of Herodotus and Dionysius. The former was called the Father of History; and the latter was not only a good historian but also a critic.

HALIEUTICS, HALIETICA ALETTICA, formed of aniet, fisherman, which is derived from an; sea; books treating of fishes, or the art of fishing.—We have still extant the halieutics of Opian.

HALIFAX, the capital of the province of Nova Scotia in America, situated in W. Long. 64. 30. N. Lat. 44. 45. It was founded in 1749, in order to secure the British settlements there from the attempts of the French and Indians. It was divided into 35 squares, each containing 16 lots of 40 by 60 feet; one established church, and one meeting-house, and a small number of houses out of the regular streets. The town was surrounded by pickettngs, and guarded by forts on the outside; but since the commencement of the American troubles, it has been very strongly fortified. Along the river Chebucto, to the southward of the town, are buildings and fish-flakes for at least two miles, and to the northward on the river for about one mile. The plan, however, has been greatly improved by the Earl of Halifax, who was the original writer. The proclamation issued for this settlement, offered 50 acres of land to every soldier and sailor who would settle in that part...
Halifax, part of America, without paying any rent, or doing any service for ten years; and no more than one shilling per annum for each 50 acres ever afterwards: to every soldier and tailor who had a wife and children, ten acres more were added to every individual of his family, and for every increase that should afterwards happen in the same proportion: To each subaltern officer 80 acres, and 15 for each of his family; 200 acres to each ensign; 500 to each lieutenant; 400 to each captain; 600 to every officer in rank above a captain, and 30 for each of his family. The government also engaged to transport and maintain the new setters for one year at its own expense, and to furnish them with such arms, provisions, utensils, implements, &c. as should be necessary to put them in a way to cultivate their lands, to build habitations, and to commence a fishery. The same conditions were likewise offered to all carpenters and other handicraftsmen; and surgeons were offered the same conditions with the ensigns.—This proclamation was published in March and by the month of May 27,000 persons had embarked themselves. They accordingly embarked, and established themselves in the bay of Chebucto; calling their city Halifax from the title of their patron. Before the end of October the same year, 350 comfortable wooden houses were built, and as many more during the winter.—The same year in which the settlers embarked, the government granted them 40,000 acres for their expenses. In 1750, they granted 57,582; 1751, 35; for the same purpose; in 1752, 53,927; 1755, 148,461; in 1752, 61,492; 1751, 203,451; in 1753, 94,615; 1754, 38,447; 1755, 40,018, 76, 68.—The place has at length attained a degree of splendor beyond what might have been expected; for which it has been equally indebted to the late war, to the great increase of population from the exiled loyalists, and the fostering care of Great Britain; inomuch, that the number of inhabitants has been more than doubled during the last ten years.

The harbour is perfectly sheltered from all winds at the distance of 12 miles from the sea, and is so spacious, that a thousand full of ships may ride in it without any apprehension. Upon the beach are built a number of commodious wharfs, which have from 12 to 18 feet water at all times of the tide, for the convenience of loading and unloading ships. The streets of the town are regularly laid out, and crofs each other at right angles; the whole riding gradually from the water upon the side of a hill, whose top is regularly fortified, but not so as to be able to withstand a regular attack. Many considerable merchants reside at this place, and are possessed of shipping to the amount of several thousand tons, employed in a flourishing trade both with Europe and the West Indies. There is a small but excellent carreling yard for ships of the British navy that are upon this station, or that may have occasion to come in to refit, and take water, fuel, or fresh provisions on board, in their passage to and from the West Indies. It is always kept well provided with naval stores; and ships of the line are hove down and repaired with the greatest care and safety. Several batteries of heavy cannon command the harbour, particularly those that are placed upon George's Island, which being very steep and high, and situated in mid-channel, a little way below the town is well calculated to annoy vessels in any direction, as they must of necessity pass very near it before they are capable of doing any mischief. Above the carreling yard, which is at the upper end of the town, there is a large basin or piece of water, communicating with the harbour below, near 20 miles in circumference, and capable of containing the whole navy of England, entirely sheltered from all winds, and having only one narrow entrance, which, as we observed before, leads into the harbour. There are a number of detached settlements lately formed by the loyalists upon the basin; the lands at a small distance from the water being generally thought better than those near to Halifax; but what success may attend their labours, will require some time to determine. An elegant and convenient building has been erected near the town for the convalescents of the navy; but the healthiness of the climate, has as yet prevented many persons from becoming patients, scarcely any ships in the world being so free from complaint of every kind; as those that are employed upon this station. There is a very fine light-house, standing upon a small island, just off the entrance of the harbour, which is visible, either by night or day, six or seven leagues off at sea.

Halifax, earl of. See Savile.

Halifax, a town in the west riding of Yorkshire in England, seated on the river Calder, in W. Long. 2°. N. Lat. 55°. 45. It has the title of an earldom, and is very eminent for the clothier trade. The parish is said to be the most populous, if not the most extensive, in England: for it is above 30 miles in circumference; and, besides the mother church at Halifax, and 16 meeting-houses, has 12 chapels, 1,000 of which are parochial. What is a little singular, all the meeting-houses here, except the quakers, have bells and burying-grounds. The woollens principally manufactured here are kerseys and shawls. Of the former it is affirmed, that one dealer hath sent by commission 60,000 pounds worth in a year to Holland and Hamburg; and of the latter, it is said, 100,000 pieces are made in this parish yearly. The inhabitants here and in the neighbouring towns are so entirely employed in woollen manufactures, that agriculture is but little minded. Most of their provisions of all sorts are brought from the north and east riding, and from Lancashire, Cheshire, Nottinghamshire, and Warwickshire. The markets are very much crowded for the buying and selling provisions and manufactures. The cloths, at the first erection of the woollen manufactures in these parts, having been frequently stolen off the tenters in the night, a law was made, by which the magistrates of Halifax were empowered to pass sentence on, and execute all offenders, if they were taken in the fact, or owned it, or if the stolen cloth was found upon them, provided also the crime was committed, and the criminal apprehended, within the liberties of the forest of Hardwick. Those found guilty were executed in the following manner: an axe was drawn by a pully to the top of a wooden engine, and fastened by a pin, which being pulled out, the axe fell down in an infiant, and did its work. If they had stole an ox, horse, or any other beast, it was led with them to the scaffold, and there fastened by a chord to the pin, that held up the axe; and when the signal was given...
given by the jurors, who were the first burgheins within the several towns of the forest, the beast was driven away, and the pin plucked out, upon which the axe fell and did its office. This severe and summary course of justice gave occasion to a litany, which is still more frequent in the mouths of the beggars and vagrants of these parts, than is the common prayer, viz.

"From hell, hell, and Halifax, good Lord deliver us," though neither the engine, nor manner of proceeding against them, are now in use.

HALIOTIS, the ear-shell, a genus of infects belonging to the order of vermes testacea. This is an animal of the snail-kind, with an open shell resembling an ear. There are seven species, distinguished by the figure of their shells. See Plate CXXXIV.

HALTZ, a town of Poland, and capital of a territory of the same name, in Red Russia, in the territory of the Baltic Sea, and opposite to Jutland. It contains a fine hour of a fine house and palace. Vitruvius mentions three kinds of halls: the rectangular, with four columns supporting the platform or ceiling; the Corinthian, with columns all round let into the wall, and vaulted over; and the Egyptian, which had a peristyle of inflated Corinthian columns, bearing a second order with a ceiling.

The hall is properly the finest as well as first member of an apartment: and in the houses of ministers of state, magnificates, &c. is the place where they dispatch business, and give audience. In very magnificent buildings, where the hall is larger and loftier than ordinary, and placed in the middle of the house, it is called a saloon.

The length of a hall should be at least twice and a quarter its breadth; and in great buildings, three times its breadth. As to the height of halls, it may be two-thirds of the breadth; and, if made with an arched ceiling, it will be much handier, and less liable to accidents by fire. In this case, its height is found by dividing its breadth into five parts, five of which will be the height from the floor to the under side of the key of the arch.

Hall is also particularly used for a court of justice; or an edifice wherein there is one or more tribunals.

In Westminster-hall are held the great courts of England, viz. the king's bench, chancery, common pleas, and exchequer. In adjoining apartments is likewise held the high court of parliament.

Westminster-hall was the royal palace or place of residence of ancient British kings; who ordinarily held their parliaments, and courts of judicature, in their dwelling-houses (as is still done by the kings of Spain), and frequently sat in person in the courts of judicature, as they still do in parliament. A great part of this palace was burnt under Henry VIII. what remains is still reserved for the said judicatures. The great hall, where the courts of the king's bench, &c. are kept, is said to have been built by William Rufus; others say by Richard I. or II. It is reckoned superior in point of dimensions, to any hall in Europe; being 300 feet long and 100 broad.

Hall (Joseph), an eminent prelate of the church of England, was born in 1574, and educated at Cambridge. He became professor of rhetoric in that university, and then successively was made rector of Halifax in Suffolk, prefected to the living of Waltham in Essex, made prebendary of Wolverhampton, dean of Worcester, bishop of Exeter, and lastly of Norwich. His works testify his zeal against Popery, and are much esteemed. He lamented the divisions of the Protestants, and wrote something concerning the means of putting an end to them. July 1616, he attended the embassy of lord Doncaster into France, and upon his return was appointed by his majesty to be one of the divines, who should attend him into Scotland. In 1618 he was sent to the synod of Dort with other divines, and pitched upon to preach a Latin sermon before that assembly. But being obliged to return from thence before the synod broke up, on account of his health, he was by the states presented with a gold medal. He wrote, 1. Miscellaneous epistles. 2. Mundus alter et idem. 3. A just cenure of travellers. 4. The Christian Seneca. 5. Satires, in five books. A century of meditations; and many other works, which besides the above farti, make in all five volumes in folio and quarto. He died in 1656.

Hall (John), a poet of distinguished learning, was born at Durham, and educated at Cambridge, where he was esteemed the brightest genius in that university. In 1646, when he was but 19 years of age, he published his Horae Vaticae, or Essays; and the same year came out his poems. He translated from the Greek Hierocles upon the golden verses of Pythagoras; before which is an account of the ingenious translator and his works, by John Davies of Kidwelly. He died in 1656, aged 29.

HALLAGE, a fee or toll paid for cloth brought to be sold in Blackwell-hall, London.

HALLAMAS, in old English writers, the day of all-hallows, or all-faints, viz. November 1. It is one of the cross quarters of the year which was computed, in ancient writings, from Hallamas to Candlemas.

HALLAND, a country of Sweden, in the island of Schonen, lying along the sea-coast, at the entrance of the Baltic Sea, and opposite to Jutland. It is 60 miles along the coast, but is not above 12 in breadth. Hallstadt is the capital town.

HALLATON, a town of Leicestershire, in England. It is seated on a rich soil, 12 miles south-east of Leices ter, in E. Long. 0. 50. N. Lat. 52 35. 40.

HALLE, a little dimpstoned town of the Austrian Netherlands, in Hainault. The church of Notre Dame contains an image of the Virgin Mary, held in great veneration. E. Long. 2. 15. N. Lat. 50. 44. 50.

Halle, a handsome and considerable town of Germany, in the circle of Upper Saxony, and in the duchy of Magdeburg, with a famous university and falt-works. It belongs to the king of Prussia; and is seated in a pleasant plain on the river Sdle, in E. Long. 12. 23. N. Lat. 51. 36.

Halle, a free and imperial town of Germany, in Slesvia, famous for its falt-pits. It is seated on the river Kocher, among rocks and mountains, in E. Long. 10. 50. N. Lat. 49 49.

HALLEIN, a town of Germany, in the circle of Bavaria, and archbishopric of Salzburg; seated on the
HAL

Hallelujah, the river Salza, among the mountains, wherein are
mines of salt, which are the chief riches of the town
and country. E. Long. 12. 15. N. Lat. 47. 32.

Hallelujah, a term of rejoicing, sometimes
sung or reheard at the end of verses on such occasions.
The word is Hebrew; or rather, it is two Hebrew
words joined together; one of them yah, hallelu, and
the other m yah; an abridgment of the name of God,
who is Jehovah. The first signifies laudare, "praise ye," and
the other, Dominum, "the Lord."

St. Jerome first introduced the word hallelujah into
the church service; for a considerable time it was only
used once a year in the Latin church, viz. at Easter:
but in the Greek church it was much more frequent.
St. Jerome mentions its being sung at the interments
of the dead, which still continues to be done in that
city, as also on some occasions in the time of Lent.

In the time of Gregory the Great, it was appointed
to be sung all the year round in the Latin church,
which raised some complaints against that pope, as
providing too much into the Greek way, and introducing
the ceremonies of the church of Constantinople into
that of Rome. But he excused himself by alleging,
that this had been the ancient usage of Rome; and
that it had been brought from Constantinople at
the time when the word hallelujah was first introduced un-
der pope Damascus.

HALLER (Albert Van), an eminent physician,
was born at Bern, on the 16th of October 1708. He
was the son of an advocate of considerable eminence
in his profession. His father had a numerous family,
and Albert was the youngest of five sons. From the
first period of his education, he showed a very great
genius for literature of every kind; to forward the
progress of his studies, his father took into his family
a private tutor, named Abraham Billodz; and such was
the discipline exerted by this pedagogue, that the accidental
light of him, at any future period of life, excited in Haller very great uneasiness, and renewed all
his former terrors. According to the accounts which
are given us, the progress of Haller's studies, at the
earliest periods of his life was rapid almost beyond belief.
When other children were beginning only to read, he
was studying Bayle and Moreri: and at nine years of
age he was able to translate Greek, and was beginning
the study of Hebrew. Not long after this, however, the
course of his education was somewhat interrupted
by the death of his father; an event which happened
when he was in the 13th year of his age. After this
he was sent to the public school at Bern, where he ex-
hibited many specimens of early and uncommon genius.
He was distinguished for his knowledge in the Greek
and Latin languages; but he was chiefly remarkable
for his poetical genius; and his essays of this kind,
which were published in the German language, were
read and admired throughout the whole empire. In the
26th year of his age he began the study of medicine
at Tubingen, under those eminent teachers Duvernoy
and Camerarius, and continued there for the space of
two years, when the great reputation of the jolly cele-
brate Boerhave drew him to Leyden. Nor was this
distinguished teacher the only man from whose su-
premier abilities he had there an opportunity of profi-
ing. Ruych was still alive, and Albinus was rising
into fame. Animated by such examples, he spent all
the day, and the greatest part of the night, in the most
intense study; and the proficiency which he made,
gained him universal esteem both from his teachers and
fellow students. From Holland, in the year 1727, he
came to England. There, however, his stay was but
short; and it was rather his intention to visit the illu-
trious men of that period, than to prosecute his stu-
dies at London. He formed connections with some of
the most eminent of them. He was honored with the
friendship of Douglas and Cheifelden; and he met with
a reception proportioned to his merit from Sir Hans
Sloane, president of the Royal Society. After his vif-
fit to Britain, he went to France; and there, under
the latter of whom he resided during his stay in Paris,
he had opportunities of prosecuting anatomy, which
he had not before enjoyed. But the zeal of our young
anatomist was greater than the prejudices of the people
at that period, even in the enlightened city of Paris,
could admit of. An information being lodged against
him to the police for defecring dead bodies, he was
obliged to cut short his anatomical investigations by a
precipitate retreat. Still, however, intent on the farther
prosecution of his studies, he went to Basil, where he
became a pupil to the celebrated Bernoulli.

Thus improved and instructed by the lectures of the
most distinguished teachers of that period, by uncom-
non natural abilities, and by unremitting industry, he
returned to the place of his nativity in the 26th year
of his age. Not long after this, he offered himself as a
candidate, first for the office of physician to an hospital,
and afterwards for a professorship. But neither the cha-
acter which he had before he left his native country,
nor the fame which he had acquired, and supported
while abroad, were sufficient to combat the interest op-
posed to him. He was disappointed in both; and it
was even with difficulty that he obtained, in the fol-
lowing year, the appointment of keeper of a public
library at Bern. The exercise of this office was indeed
by no means limited to his great abilities: but it was
agreeable to him, as it afforded him an opportunity
for that extensive reading by which he has been so judi-
ciously distinguished. The neglect of his merit which marked
his first outfit, neither diminished his ardour for medi-
cal pursuits, nor detracted from his reputation either
at home or abroad. And soon after he was nominated
a professor in the university of Gottingen, by King
George II. The duties of this important office he dis-
charged, with no less honour to himself than advantage
to the public, for the space of 17 years; and it afforded
him an ample field for the exertion of those great talents
which he possessed. Extensively acquainted with the
sentiments of others respecting the economy of the
human body, struck with the diversity of opinions
which they held, and sensible that the only means of
investigating truth was by careful and candid exper-
iments, he undertook the arduous task of exploring the
phenomena of human nature from the original source.
In these pursuits he was no less industrious than suc-
cessful, and there was hardly any function of the body
on which his experiments did not reflect either a new or a
stronger light. Nor was it long necessary for him, in

HALLERIA (Dr Edmund), an eminent astronomer, was the only son of a soap-boiler in London, and was born in 1656. He first applied himself to the study of the languages and sciences, but at length gave himself up wholly to that of astronomy. In 1676 he went to the island of St Helena to complete the catalogue of fixed stars, by the addition of those which lie near the south pole; and having delineated a planisphere in which he laid them all down in their exact places, he returned to England in 1678. In the year 1680 he took what is called the grand tour, accompanied by his friend the celebrated Mr Nellon. In the midway between Calais and Paris, Mr Halley had a sight of a remarkable comet, as it then appeared a second time that year, in its return from the sun. He had the November before seen it in its descent; and now hastened to complete his observations upon it, in viewing it from the royal observatory of France. His design in this part of his tour was, to settle a friendly correspondence between the two royal astronomers of Greenwich and Paris: and in the mean time to improve himself under so great a master as Cassini. From thence he went to Italy, where he spent great part of the year 1681; but his affairs calling him home, he returned to England. In 1683, he published his Theory of the Variation of the Magneticall Compass; in which he supposes the whole globe of the earth to be a great magnet, with four magneticall poles, or points of attraction: but afterwards thinking that this theory was liable to great exceptions, he procured an application to be made to King William, who appointed him commander of the Paramour Pink, with orders to seek by observations the discovery of the rule of variations, and to lay down the longitudes and latitudes of his majesty's settlements in America.——He set out on this attempt on the 24th of November 1698: but having crossed the line, his men grew sickly; and his lieutenant mutinying, he returned home in June 1699. Having got the lieutenant tried and califhired, he set sail a second time in September following, with the same ship and another of less bulk, of which he had also the command. He now traversed the vast Atlantic ocean from one hemisphere to the other as far as the ice would permit him to go; and having made his observations at St Helena, Brazil,
Halmstadt. The name is still retained at Lufton, and other places in Herefordshire, England. See Motte.

HALMSTEAD. See Helmstadt.

HALO, or CORONA, in natural history, a coloured circle appearing round the body of the sun, moon, or any of the large stars. See Corona.

HALORAGUS, in botany: A genus of the tetragnita order, belonging to the octandria class of plants. The calyx is quadrifid above: there are four petals; a dry plum, and a quadrilocular nut.

HALSTEAD, a town of Eifex in England, seated on the river Coln, 43 miles from London. It has an old church, the fleece of which was once burnt down by lightning, but rebuilt at the expense of an individual.

(Halland, Efq.) The town consists of about 600 pretty good houses, and is situated on a rising ground, but the streets are not paved. The inhabitants are about 4000 in number. Here is a good manufactury of says, bays, callimancoes, &c. also a good free school for 40 boys, and a very antique Bridewell. Its market on Friday is noted for corn.

HALT, in war, a paufe or stop in the march of a military body.—Some derive the word from the Latin haltus, "breath," it being a frequent occasion of halting to take breath; others from aliter, because in halting they raised their pikes on end, &c.

HALTER, in the manege, a head-stall for a horse, of Hungary leather, mounted with one, and sometimes two straps, with a second throat-band, if the horse is apt to unhalter himself.

HALTER-CAF, is an excoriation of the pattern, occasioned by the halter's being entangled about the foot, upon the horse's endeavouring to rub his neck with his hinder feet. For the cure of this, anoint the place, morning and evening, with equal quantities of linseed oil and brandy, well mixed.

HALTERISTA, in antiquity, a kind of players at dices; denominated from a peculiar kind of discus called by the Greeks ἀρτός, and by the Latins halter. See Discus.

Some take the discus to have been a leaden weight or ball which the vaulters bore in their hands, to secure and keep themselves the more steady in their leaping. Others will have the halter to be a lump or mass of lead or stone, with an hole or handle fixed to it, by which it might be carried; and that the halterists were those who excercised themselves in removing these masses from place to place.

Hier. Mercorialis, in his treatise De arte gymnastica, l. ii. c. 12. distinguishes two kinds of halterita; for though there was but one halter, there were two ways of applying it. The one was to throw or pitch it in a certain manner; the other only to hold it out at arm's end; and in this posture to give themselves divers motions, swinging the hand backwards and forwards according to the engraven figures thereof given us by Mercorialis.—The halter was of a cylindrical figure, smaller in the middle, where it was held, by one diameter, than at the two ends. It was always a foot long, and there was one for each hand; it was either of iron, stone, or lead.

Galen, De tend. valetud. lib. i. v. & vi. speaks of this-
HAM [282]

HAM

this exercise, and show of what use it is in purging the body of peccant humours; making it equivalent both to purgation and phlebotomy.

HALTON, or Haulton, i.e. High Town, a town of Cheshire, 186 miles from London. It stands on a hill, where a castle was built anno 1071, and is a member of the duchy of Lancaster; which maintains a large jurisdiction in the country round it, by the name of Haulton Fee, or the honour of Halton, having a court of record, prison, &c. within themselves. About Michaelmas every year, the king’s officers of the duchy keep a law-day at the castle, which still remains a flate-

fully building: once a fortnight a court is kept here, to determine all matters within their jurisdiction; but felons and thieves are carried to the shire of Lincoln, Nottingham, York, Lancafer, of Kent, to receive their sentence. By the late inland navigation, it has communication with the rivers Mersey, Dee, Ribble, Ouse, Trent, Darwent, Severn, Humber, Thames, Avon, &c. which navigation, including its windings, extends about 500 miles, in the counties of Lincoln, Nottingham, York, Lancaster, Welfmoreland, Stafford, Warwick, Leicester, Oxford, Worcester, &c.

Haltwhistle, a town of Northumberland in England, situated in E. Long. 2° c. N. Latt. 55° 0. It is a pretty well-built, and affords good entertainment for travellers.

Halymore, properly signifies an holy or ecclesiastical court. See Halmote.

There is a court held in London by this name before the Lord Mayor and sheriffs, for regulating the bakers. It was annually held on Sunday next before St Thomas’s day, and for this reason called the Halmote, or Holy-court.

Halyss, (anc. geog.) the noblest river of the Hither Asia, through which it had a long course, was the boundary of Creesus’s kingdom to the east. Running down from the foot of mount Taurus, through Cataonia and Cappadocia, it divided almost the whole of the Lower Asia, from the sea of Cyprus down to the Euxine, according to Herodotus; who seems to extend its course too far. According to Strabo, himself a Cappadocian, it had its springs in the Great Cappadocia. It separated Paphlagonia from Cappadocia; and received its name ορός τος αλας, from falt, because its waters were of a falt and bitter taste, from the nature of the foil over which they flowed. It is famous for the defeat of Creesus king of Lydia, who was misled by the ambiguous word of this oracle:

χριστος ουδεν διηνεμευται αλγε δια νους.

If Creesus passes over the Halyss he shall destroy a great empire.

That empire was his own. See CREESUS and LYDIA.

halysford, in old writers, were persons who enjoyed land, by the pious service of repairing some church, or defending a sepulchre.

This word also signifies such persons in the diocese of Durham, as held their lands to defend the corps of St Cuthbert, and who from thence claimed the privilege of not being forced to go out of the bishopric.

HAMP, or Sham (anc. geog.) the country of the Buzzima (Gen. xiv. 5.) the situation whereof is not known.

HAM, the youngest son of Noah. He was the father of Cush, Mizraim, Phut, and Canaan; each whereof had the several countries peopled by them.

With respect to Ham, it is believed that he had all Africa for his inheritance, that he peopled it with his children. As for himself, it is thought by some that he dwelt in Egypt; but M. Bagnac is rather of opinion, that neither Ham nor Mizraim ever were in Egypt, but that their posterity settled in this country, and called it by the name of their ancestors. And as to Ham’s being worshipped as a god, and called Jupiter Hammon, he thinks people may have been led into this mistake by the similitude of names; and that Jupiter Hammon was the fun, to which divine honours have been paid at all times in Egypt. However that may be, Africa is called the land of Ham, in several places of the psalms, (Psal. lxvii. 51. civ. 23. cv. 22.)

In Plutarch, Egypt is called Chemia; and there are some footsteps of the name of Ham or Cham observed in Ptolemaisin, Pithia-chemmis, which are cantons of Egypt.

HAM, a saxon word used for “a place of dwelling;” a village or town; hence the termination of some of our towns, Nottingham, Buckingham, &c. Also a home close, or little narrow meadow, is called a ham.

HAM is also a part of the leg of an animal; being the inner or hind part of the knee, or the ply or angle in which the leg and thigh, when bent, incline to each other.

HAM, in commerce, &c. is used for a leg or thigh of pork, dried, seasoned, and prepared, to make it keep, and to give it a brisk agreeable flavour.

Wellphalia hams, so much in vogue, are prepared by salting them with saltpetre, pricking them in a pretentious or ten days, then steeping them in juniper-water, and drying them by the smoke of juniper-wood.

A ham may be salted in imitation of those of Wellphalia, by sprinkling a ham of young pork with salt for one day, in order to fetch out the blood; then wiping it dry, and rubbing it with a mixture of a pound of brown sugar, a quarter of a pound of saltpetre, half a pint of bay salt, and three pints of common salt, well stirred together in an iron pan over the fire till they are moderately hot: let it lie three weeks in this salting, and be frequently turned, and then dry it in a chimney.

HAM, a city of Germany, in the circle of Wellphalia, capital of the county of Mark, and subject to the king of Prussia. It is seated on the river Lippe, on the frontiers of Munster. The adjacent country abounds in corn, hemp, and flax; and the inhabitants get a good deal of money by travellers. It was formerly a Hanse-town, but is now reduced. E. Long. 7°. 53. N. Lat. 51° 42.

HAM, a town of Picardy, in France, seated on the river Somme, among marshes. It has three parishes, and there is here a round tower whose walls are 36 feet thick. It was taken by the Spaniards in 1557, but restored by treaty. E. Long. 3°. 9. N. Lat. 49° 45.

HAMADAN. See Amaday.

HAMADRYADES (formed of μακα together, and ὑδρά, of ὑδρα oke), in antiquity, certain fabulous deities reverend among the ancient heathens, and believed to preside over woods and forests, and to be in-
The Hamades were supposed to live and die with the trees they were attached to; as is observed by Servius on Virgil, Eclog. x. ver. 62. after Mneфонmachus, the scholiast of Apollo, &c. who mentions other traditions relating thereto.

The poets, however, frequently confound the Hamadryads with the Naiades, Nymphs, and rural nymphs in general; witness Catulus, Carm. ixvii. ver. 23. Ovid, Fast. Iv. 229. Met. i. ver. 605. xiv. ver. 628. Propertius, Eleg. xx. 32. Virg. Ecl. x. ver. 64. Georg. iv. ver. 382, 383. Pallas calls them Querquetulane, as being ified or sprung from oaks. An ancient poet, Pherecydes, in Athenaeus, lib. iii. calls the vine, fig-tree, and other fruit-trees, Hamadryades, from the name of their mother the oak.

This common idea among the ancients, of nymphs or intellectual beings annexed to trees, will account for their worshipping of trees; as we find they did, not only from their poets but their historians. Livy speaks of an ambassador's addressing himself to an old oak, as to an intelligent person and a divinity, Lib. iii. § 25.

HAMAH, a town of Turkey in Asia, in Syria, situated in E. Long. 36. 15. N. Lat. 35. 15. By some travellers it is corruptly called Amael and Amant. Some mistake it for the ancient Apaneus; but this is now called Aṣiāmiyāb, and is situated a day's journey from Hamah. Hamah is situated among hills, and has a castle seated on a hill. It has all along been a considerable place, and in the 13th century had princes of its own. It is very large, and being seated on the ascent of a hill, the houses rise above one another, and make a fine appearance. It is, however, like most other towns under the Turkish government, going to decay. Many of the houses are half ruined; but those which are still standing, as well as the mosques and cafle, have their walls built of black and white stones, disposed in such a manner as to form various figures. The river Afis, the ancient Orontes, runs by the side of the castle, and fills the ditches round it, which are cut very deep into the rock. This river, leaving the castle, passes through the town from south to north, and has a bridge over it, though it is pretty broad. In its course through the town it turns 18 great wheels, called by the natives fell, which raise quantities of water to a considerable height, and through it into canals supported by arches, by which means it is conveyed into the gardens and fountains. There are some pretty good bazaars or market-places in Hamah, where there is a trade for linen, which is manufactured there, and sent to Tripoli to be exported to Europe.

HAMAMELIS, WITCH HAZEL; A genus of the digynna order, belonging to the tetrastria class of plants; and in the natural method ranking with those of which the order is doubtfull. The involucrum is triphyllous, the proper calyx tetrphyllous; there are four petals; the nut horned and bilocular. There is but one species, a native of Virginia. It hath a shrubby or woody stem, branching three or four feet high; oval, indented, alternate leaves, resembling those of common hazel; and flowers growing in clusters from the joints of the young branches, but not succeeded by seeds in Britain.—The plant is hardly, and is admitted as a variety in gardens; but its flowers are more remarkable for their appearing in November and December, when the leaves are fallen, than for their beauty. It may be propagated either by seeds or layers. HAMAM LEET, a town 12 miles east from Tunis, noted for its hot baths, which are much referred to by the Tunisians, and are efficacious in rheumatism and many other complaints. Here the Bey has a very fine bath, which he frequently permits the consuls and other persons of distinction to use.

HAMATH, a city of Syria, capital of a province of the same name, lying upon the Orontes. "The entering into Hamath," which is frequently spoken of in scripture. (Job. xiii. 5. Judges iii. 2. Kings xxv. 2. and 2 Chron. vii. 1.) in the narrow pass leading from the land of Canaan through the valley which lies between Libanus and Antilbanus. This entrance into Hamath is set down as the northern boundary of the land of Canaan, in opposition to the southern limits, the Nile or river of Egypt. Josephus, and St Jerome attribute it to Hamath to be Syriamirtot, the Thracian, and many other good geographers maintain it to be Emefa in Syria. Joshua (xix. 35.) assignds the city of Hamath to the tribe of Naphtali. Toi king of Hamath cultivated a good understanding with David, (2 Sam. viii. 9.) This city was taken by the king of Judah, and retaken from the Syrians by Jeroboam the second, (2 Kings xiv. 28.) The kings of Assyria made themselves masters of it upon the declension of the kingdom of Israel, and transplanted the inhabitants of Hamath into Samaria (2 Kings xvii. 24. and xviii. 34. &c.)

HAMAXOBI, HAMAXOBIAKS, in the ancient geography, a people who had no houses, but lived in carriages. The word is formed from ևעָנָא a carriage or chariot, and וָלֶשׁ.life.

The Hamaxoebi, called also Hamaxobites, were an ancient people of Sarmatia Europea, inhabiting the southern part of Muscovy, who instead of houfes had a fort of tents made of leather, and fixed on carriages to be ready for shifting and travel.

HAMBDEN (John), a celebrated patriot, descended from the ancient family of Hambden in Buckinghamshire, was born in 1654. From the university he went to the inns of court, where he made a considerable progress in the study of the law. He was chosen to serve in the parliament which began in Westminster February 5. 1626; and served in all the succeeding parliaments in the reign of Charles I. In 1636 he became universally known, by his refusal to pay ship-money, as being an illegal tax; upon which he was prosecuted, and his carriage throughout this transgression gained him a great charactar. When the long parliament began, the eyes of all men were fixed on him as their fater patriae. On January 5. 1642, the king ordered articles of high treason and other misdemeanours to be prepared against Lord Kimbolton, Mr. Hambden, and four other members of the House of Commons, and went to that house to seize them; but they were then retired. Mr. Hambden afterwards made a speech in the house to clear himself of the charge laid against him. In the beginning of the wars he commanded a regiment of foot, and did good ser-
Hamburg, vice to the parliament at the battle of Edgehill. He received a mortal wound in an engagement with prince Rupert, in Chalgrave-field in Oxfordshire, and died in 1643. He is said to have had the art of Socrates to a great degree, of interrogating, and under the notion of doubts, intimated objections, so that he infused his own opinions into those from whom he pretended to learn and receive them. He was, says his panegyrist, a very wise man and of great parts; and polished of the most absolute spirit of propriety to govern the people, that ever was in any country: he was master over all his appetites and passions, and had thereby a very great ascendant over other mens: he was of an industry and vigilance never to be tired out, of parts not to be imposed upon by the most subtle, and of courage equal to his best parts.

Hamburg, an imperial city of Germany, seated in E. Long. 9° 40', N. Lat. 54° 0'. Its name is derived from the old German word Hamme, signifying a wood, and Burg, a castle; and stands on the north-side of the river Elbe. This river is not less than four miles broad opposite the city. It forms two spacious harbours, and likewise runs through most part of it in canals. It flows above Hamburg many miles; but when the tide is accompanied with north-west winds, a great deal of damage is done by the inundations occasioned thereby. There are a great many bridges over the canals, which are mostly on a level with the streets, and some of them have houses on both sides. In the year 833, Ludovicus Pius erected Hamburg first into a bishopric, and afterwards into an archbishopric; and Adolphus III. duke of Saxony, among many other great privileges, granted it the right of fishing in the Elbe, eight miles above and below the city. The king of Denmark, since they have succeeded to the counts of Holstein, have continually claimed the sovereignty of this place, and often compelled the citizens to pay large sums to purchase the consent of their liberties. Nay, it has more than once paid homage to the kings of Denmark; who, notwithstanding, keep a minister here with credentials, which is a sort of acknowledgment of its independency and sovereignty. Though Hamburg has been constantly summoned to the diet of the empire ever since the year 1618, when it was declared a free imperial city by a decree of the aulic council; yet it waves this privilege, in order to keep fair with Denmark. By their situation among a number of poor princes, the Hamburgers are continually exposed to their rapacious enemies, especially that of the Danes, who have extorted vast sums from them. The city is very populous in proportion to its bulk; for though many must walk with ease round the ramparts in two hours, yet it contains, exclusive of Jews, at least 100,000 inhabitants. Here are a great many charitable foundations, the regulations of which are greatly admired by foreigners. All persons found begging in the streets are committed to the house of correction to hard labour, such as the raising of Brazil and other kinds of wood. There is an hospital into which unmarried women may be admitted for a small sum, and comfortably maintained during the residue of their lives. The number of hospitals in this place is greater in proportion to its greatness than in any other Protestant city in Europe. The revenue of the orphan-house alone is said to amount to between 50 and 60,000 l. There is a large sumptuous hospital for receiving poor travellers that fall sick. In one of their work-houses or houses of correction, those who have not performed their task are hoisted up in a basket over the table in the common-hall while the rest are at dinner, that they may be tantalized with the fire and smell of what they cannot taste. The established religion of Hamburg is Lutheranism; as for the Calvinists and the Reformed-catholics, they go to the ambassador's chapels to celebrate their divine service and worship. They have here what they call a private confession, previous to the holy communion, which differs in nothing from that of the church of England, and the abolition is the same, only the poorest of the people here are forced to give a fee to the priests on these occasions. Their churches which are ancient large fabrics, are open thorough-fares, and in some of them there are book-sellers' shops. The pulpit of St Catherine's is of marble, curiously carved and adorned with figures and other ornaments of gold; and its organ, reckoned one of the best in Europe, has 6000 pipes. The cathedral is very ancient, and its tower lean as if just going to fall; yet on account of the singularity and beauty of its architecture, the danger attending it has been hitherto overlooked. There are still a dean and chapter belonging to this church, though secularized; from whose court there lies no appeal, but to the imperial chamber at Wetzlar. The chapter consists of a provost, dean, 13 canons, eight minor canons, and 30 vicarii immunes, besides others who are under the jurisdiction of the city. The cathedral, with the chapter, and a number of houses belonging to them, are under the immediate protection of his Britannic majesty as duke of Bremen, who disposes of the prebends that fall in six months of the year, not faceely, but alternately with the chapter. Hamburg is almost of a circular form, and six miles in compass. In one part, the gates, and three entrances by water, viz. two from the Elbe and one from the Alster, being divided into the old and new, which are strongly fortified with moats, ramparts, bastions, and out-works. The ramparts are very lofty, and planted with trees; and of such a breadth, that several carriages may go abreast. In the New-town, towards Altena, are several streets of mean houses inhabited by Jews. Through that entrance from the Elbe, called the lower Brum, pass all ships going to or coming from sea. Every morning, at the opening of it, is seen a multitude of boats or small barks, whose cargoes consist of milk, fruits, and all kinds of provisions, rubbing in at the same time. There are some fine chimes here, especially those of St Nicholas, which play every morning early, at one o'clock in the afternoon, and on all festivals and solemnities. The other public structures in this city, besides the churches, make no great appearance: however, the yard, arsenal, and two armories, are well worth seeing. There are several convents or cloisters still remaining; which having been secularized, are now possessed by the Lutherans. One of them holds its lands by this tenure, "That they offer a glass of wine to every malefactor who is carried by it for execution." There is a fine exchange, though inferior
HAMBURG, to the amount of several hundred thousand pounds a year: they have also a great trade with Spain, Portugal, and Italy, which is carried on mostly in English bottoms, on account of their Mediterranean pales. Their whale-fishery is also very considerable, 50 or 60 ships being generally sent out every year in this trade. Add to these a variety of manufactories, which are performed here with great felicity; the chief of which are, sugar-baking, calico-printing, the weaving of damasks, brocades, velvets, and other rich silks. The inland trade of Hamburg is superior to that of any in Europe, unless perhaps we should except that of Amsterdam and London. There is a paper published here at stated times called the Preiseurant, specifying the course of exchange, with the price which every commodity and merchandise bore last upon the exchange. There is also a board of trade, erected on purpose for the advancing every project for the improvement of commerce. Another great advantage to the merchants is, the bank, or stock-office, was established in 1659, which has a flourishing credit. To supply the poor with corn at a low price, here are public granaries, in which great quantities of grain are laid up. By charters from several emperors, the Hamburgers have a right of coinage, which they actually exercise. The English merchants, or, Hamburg Company, as it is called, enjoy great privileges; for they hold a court with particular powers, and a jurisdiction among themselves, and have a church and minister of their own.—This city has a district belonging to it of considerable extent, which abounds with excellent pastures, inhabited by a considerable number of cattle, and in a considerable revenue to the state. Besides the militia or trained bands, there is an establishment of regular forces, consisting of 12 companies of infantry, and one troop of dragoons, under the commandant, who is usually a foreigner, and one who has distinguished himself in the service. There is also an artillery company, and a night-guard; the last of which is posted at night all over the city, and calls the hours.

HAMEL (John Baptiste du), a very learned French philosopher and writer in the 17th century. At 18 he wrote a treatise, in which he explained in a very simple manner Theodorus's three books of Sphcerics; to which he added a tract upon trigonometry, extremely peripnisous, and designed as an introduction to astronomy. Natural philosophy, as it was then taught, was only a collection of vague, knotty, and barren questions; when our author undertook to establish it upon right principles, and published his Astrationes Physicae. In 1666 Mr Colbert proposed to Louis XIV. a scheme, which was approved of by his majesty, for establishing a royal academy of sciences;
HAMELIN, a strong town of Germany, in the duchy of Calenberg in Lower Saxony. It is situated at the extremity of the duchy of Brunswick, to which it is the key, near the confluence of the rivers Hamel and Wefer, in E. Long. 9. 55. N. Lat. 52. 13.

HAMELLIA, in botany: a genus of the mono-gynia order, belonging to the pentandria class of plants; and in the natural method ranking with those of which the order is doubtful. The corolla is quinquedental; the berry quinquelocular, inferior, polypermous.

HAMESECKEN, BURGARY, or NOITURAL HOUSE. breaking, was by the ancient English law called Hame-secken, as it is in Scotland to this day. — Violating the privilege of a man's house in Scotland is as severely punished as ravishing a woman.

HAMI, or Ham, a country of Asia, subject to the Chinese. It is situated to the north-east of China, at the extremity of that desert which the Chinese call Chana, and the Tartars Cobi; and is only 20 leagues distant from the most westerly point of the province of Chenfi. This country was inhabited in the early ages by wandering people, named Long. About the year 950 before the Christian era, they revolted from their Tartar masters, and sent deputies to pay homage to the emperor of China, and preferred some fabrics by way of tribute. The civil wars by which China was torn about the end of the sixteenth century, the same vicissitudes, the same misfortunes, the same calamities, they experienced; Hami was sometimes united to the province of Chenfi, sometimes independent of it, and sometimes even of the whole empire. The situation of these people (separated by vast deserts from China, to which, besides, they had no relation, either in language, manners, or customs) must have greatly contributed to facilitate these revolts. All the tributary states of the empire having revolted in 610, that of Hami followed their example; but it again submitted to the yoke, under Tai-tsong, second emperor of the dynasty of Tang, who had sent one of his generals with an army to reducte it. This great prince paid particular attention to his new conquest. He divided it into three districts, and connected its civil and military government in such a manner to that of the province of Chenfi and other neighboring countries, that tranquillity prevailed there during his reign and several of those that followed. Through Hami all the caravans which went from the west to China, or from China to the west, were obliged to pass. The emperors, predecessors of Tai-tsong, were satisfied with causing wine to be transported from Hami in skins carried by camels; but " Tai-tsong (says the Chinese history) having subdued the kingdom of Hami, or ordered some vines-plant of the species called jujubes, to be brought him, which he caused to be planted in his gardens; he, besides, learned the manner of making wine, the use of which proved both serviceable and hurtful to him." Luxury and effeminacy having weakened the dynasty of Tang, the Mahometans (who had made a rapid progress in all the countries that are situated between Persia, Cobi, and the Caflpian sea) advanced as far as Hami, which they conquered. It appears, that this country afterwards had princes of its own, but dependent on the Tartars, who successively ruled these immense regions. The Yuen or Mogul Tartars again united the country of Hami to the province of Chenfi; and this union subsisted until 1360, at which time the emperor formed it into a kingdom, on condition of its princes doing homage and paying tribute. The king of Hami was honoured with a new title in 1404, and obtained a golden seal. After a contest of several years for the succession to the throne, the kingdom of Hami fell a prey to the king of Tou-cullan-fan. This yoke soon became uneasy to the people of Hami: they revolted from their new masters, and made conquests from them in their turn. The new king which they made choice of, did not long possess the throne: he was conquered and killed in a bloody battle which he fought with the king of Tou-cullan-fan, who also perished some time after. Since this epocha, the country of Hami has been successively expropriated to anarchy, or governed by its own princes. The prince which filled the throne in 1696, acknowledged himself a vassal of the empire, and sent as tribute to Peking, camels, horses, and fabrics. Kanghi received his homage with the usual ceremonies, and published a diploma, which established the rank that the king of Hami should hold among the tributary princes, the time when he should come to render homage, the nature of the presents necessary for his tribute, the number of auxiliaries he was bound to furnish in time of war, and the manner of his appointing a successor. All these regulations have subsisted till this time.

The country of Hami, though surrounded by deserts, is accounted one of the most delightful in the world. The soil produces abundance of grain, fruits, leguminous plants, and paturage of every kind. The rice which grows here is particularly esteemed in China; and pomegranates, oranges, peaches, raisins, and prunes, have a most exquisite taste; even the jujubes are fojucy, and have to delicious a flavour, that the Chinese call them perfumed jujubes. There is no fruit more delicate or more in request than the melons of Hami, which are carried to Peking for the emperor's table. These melons are much more wholesome than those of Europe; and have this singular property, that they may be kept fresh during great part of the winter. But the most useful and most esteemed production of this country is its dried raisins. These are of two kinds: The first, which are much used in the Chinese medicine, seem to have a perfect resemblance to those known in Europe by the name of Corinthian. The second, which are in much greater request for the table, are smaller and more delicate than those of Provence. The Chinese authors perfectly agree with Mellers Lencery and Geoffroy, respecting the virtue and qualities of these dried grapes or raisins; but they attribute
tribute so much more efficacy to those of Hami than to those of China, that they prefer them in smaller doses. They observe, that an infusion of the first is of great service in facilitating an eruption of the small pox about the fourth day, when the patient either is or seems to be too weak; and to promote a gentle perspiration in some kinds of pleurisy or malignant fevers. The dose must be varied according to the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.

Although the country of Hami (the latitude of which is 42° 53' 10") lies farther towards the north than several of the provinces of France, we are assured that its climate is more favourable to the culture of vines, and that it gives a superior degree of quality to the grapes. The temperature at Hami is so moderate; the fogs are scarcely ever seen there; the country is never rains at Hami; even dew and perspiration in the age, habit of body, and strength of the patient; great care must be taken to administer this remedy reasonably and with judgment. The emperor caused plants to be transported from Hami to Peking, which were immediately planted in his gardens. As those plants were cultivated with extraordinary care, under his own eyes, they have perfectly succeeded. The raisins produced by them are exceedingly sweet, and have a most exquisite flavour.
H A M L E T, a prince celebrated in the annals of Denmark; and whose name has been rendered familiar in this country, and his story interesting, by being the subject of one of the noblest tragedies of the immortal Shakespeare.—Adjoining to a royal palace, which stands about half a mile from that of Cronborg in Elsinore, is a garden, which, Mr. Coxe informs us, is called Hamlet's Garden, and is said by tradition to be the very spot where the murder of his father was perpetrated. The house is of modern date, and is situated at the foot of a sandy ridge near the sea. The garden occupies the side of the hill, and is laid out in terraces rising one above another. Elsinore is the scene of Shakespeare's Hamlet; and the original history from which our poet derived the principal incidents of his play is founded upon facts, but so deeply buried in remote antiquity that it is difficult to discriminate truth from fable. Saxo-Grammaticus, who flourished in the 12th century, is the earliest historian of Denmark that relates the adventures of Hamlet. His account is extracted, and much altered, by Bellefourt, a French author; an English translation of whole romance was published under the title of the History of Hamlet: and from this translation Shakespeare formed the groundwork of his play, though with many alterations and additions. The following short sketch of Hamlet's history, as recorded in the Danish annals, will enable the reader to compare the original character with that delineated by Shakespeare.

Long before the introduction of Christianity into Denmark, Horwendillus, preëst or king of Jutland, was married to Geruthra, or Gertrude, daughter of Rurikking of Denmark, by whom he had a son called Amlethus, or Hamlet. Fengo murders his brother Horwendillus; marries Gertrude; and ascends the throne. Hamlet, to avoid his uncle's jealousy, counterfeits folly; and is represented as such an abhorrist of falsehood, that though he constantly frames the most evangelical and even absurd answers, yet artfully contrives never to deviate from truth. Fengo, suspecting the reality of his madness, endeavours by various methods (a) to discover the real state of his mind: amongst others, he departs from Elsinore, executes a meeting between Hamlet and Gertrude, concluding that the former would not conceal his sentiments from his own mother and her husband.

(a) Among other attempts, Fengo orders his companions to leave him in a retired spot, and a young woman is placed in his way, with a view to extort from him a confession that his folly was counterfeited. Hamlet would have fallen into the snare, if a friend had not secretly conveyed to him intelligence of this treachery. He carries the woman to a more secret place, and obtains her promise not to betray him; which he readily contents to, as he had been brought up with him from his infancy. Being asked, upon his return home, if he had indulged his passion, he answers in the affirmative; but renders himself not believed by the most artful subterfuses, which, though true, seemed evidently to mark a disordered understanding, and by the positive denial of the woman. "Upon this woman," as Capell observes, "is grounded Shakespeare's Ophelia: and his deliverance from this snare by a friend suggested his Horatio:"—"the rude outlines," as Mr. Malone remarks, "of those characters. But in this piece there are no traits of the character of Polonius; there is indeed a counsellor, and he places himself in the queen's chamber behind the arras; but this is the whole. The ghost of the old Hamlet is likewise the offspring of our author's creative imagination." See Capell's School of Shakespeare, vol. iii. p. 20: and Malone's Supplement, p. 253.
Hamlet and orders a courier to conceal himself, unknown to
both, for the purpose of overhearing their conversation.

The courier repairs to the queen's apartment, and
hides himself under a heap of straw (s). Hamlet, up-
own entering the cabinet, suspecting the presence of
some spy, imitates, after his usual affectation of folly,
the crow of a cock, and, making his arms like wings,
jumps (c) upon the heap of straw; till, feeling the
courier, he draws his sword, and instantly dispatches
him. He then cuts the body to pieces, boils it, and
then sets fire to the palace; and
which he
his daughter to Hamlet, who gives many
and courtiers, he draws
infamy,
virtue by these admonitions. Fengo returns to
jinnins ignorniniam
neur, sends Hamlet to England under the care of two
Courtiers, he stands, his
being crafty and
should speak severely and wisely
attempts to do it, falls by the hand of
Hamlet. The next morning, when the populace
were assembled to view the ruins of the palace, Hamlet
burns the remaining nobles; and in a matterly speech,
which is too long to insert in this place, lays open the
motives of his own conduct, proves his uncle to have
been the assassin of his father; and concludes in the
following words, "Tread upon the ashes of the monster,
who, polluting the wife of his murdered brother, joined
incest to parricide; and ruled over you with the
most oppressive tyranny. Receive me as the minifier
of a just revenge, as one who felt for the sufferings
of his father and his people. Consider me as the person
who has purged the disgrace of his country; extinguished
the infamy of his mother; freed you from the
depotism of a monster, whose crimes, if he had lived,
would have daily increased, and terminated in your
destruction. Acknowledge my services; and if I have
defereed it, present me with the crown. Behold in me
the author of these advantages: no degenerate person,
no parricide; but the rightful successor to the throne,
and the pious avenger of a father's murder. I have
rescued you from slavery, restored you to liberty,
and re-established your glory: I have destroyed a tyrant,
and triumphed over an assassin. The recompense is in
your hands; you can estimate the value of my services,
and in your virtue I left my hopes of reward." This
speech has the desired effect: the greater part of the
assembly fled tears, and all who are present unanimously
proclaim him king amid repeated acclamations.

VOL. VIII.

(a) The reader will recollect, that straw used formerly to be spread over the floors as an article of great
luxury.

(c) This part stands thus in the English account: "The counsellor entered secretly into the queen's
chamber, and there hid himself behind the arras, and long before the queen and Hamlet came thither:
who being crafty and politic, as soon as he was within the chamber, doubting some treachery, and fearing
if he should speak severely and wisely to his mother touching his secret practices he should be understood,
and by that means intercepted, used his ordinary manner of dilimulation, and began to come (c, crow) like a
cock, bearing with his arms (in such a manner as cocks used to strike with their wings) upon the hangings of
the chamber; whereby feeling something terrorizing him, he cried, Arat! a rat! and presently drawing
his sword, thrust it into the hangings; which done, he pulled the counsellor (half dead) out by the heels,
made an end of killing him; and, being plain, cut his body in pieces, which he caused to be boiled, and then cast
it into an open vault or privy." Malone's Supplement, vol. i. p. 357.

(d) The closet-scene, which is so beautiful in Shakespeare's Hamlet, is thus concisely, but not less finely,
described by the Dandish historian: "Cumque mater magnis ejus salutibus esse praecipit, quale praecipit
esse, scilicet, quod inleriudum formas, in formis, in modis, in neutris, in signis, in similibus, in signis,
in spectis, in spectris, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis, in signis,
Hamlet soon after his elevation fails to England, and orders a shield to be made on which the principal actions of his life are represented. The king receives him with feigned demonstrations of joy, falsely assures him that his daughter is dead, and recommends him to repair to Scotland as his ambassador, and to pay his addresses to the queen Gertrude. He gives this insidious advice with the hopes that Hamlet may perish in the attempt; as the queen, who was remarkable for her churlish and cruelty, had such an aversion to all proposals of marriage, that not one of her suitors had escaped falling a sacrifice to her vengeance. Hamlet, in opposition to all difficulties performed the embassy; and, by the affiance of his shield, which inspires the lady with a favourable opinion of his wisdom and courage, obtains her in marriage, and returns with her to England. Informed by the princes to whom he had been betrothed, that her father meditated his assassination, Hamlet avoids his fate by wearing armour under his robe; puts to death the king of England; and rage, obtains her marriage, and returns with her to Denmark with his two wives, where he is soon failures to England, where he is soon

HARE, a well known tool used by mechanics, consisting of an iron head, fixed crosswise upon a handle of wood. There are several forms of hammers used by blacksmiths; as, 1. The hand-hammer, which is of such weight that it may be wielded or governed with one hand at the anvil. 2. The up-hand fledge, used with both hands, and seldom lifted above the head. 3. The about-fledge, which is the biggest hammer of all, and held by both hands at the farther end of the handle; and being swung at arm's length over the head, is made to fall upon the work with as heavy a blow as possible. There is also another hammer used by smiths, called a dressing hammer; which is the smallest of all, and is seldom used at the forge unless upon small work.

—Carpenters and joiners have likewise hammers accommodated to their several purposes.

HAMMERSMITH, four miles west from London, is a hamlet belonging to Fulham, has two charity-schools, a workhouse, a Presbyterian meeting-house, and a fair May 1. There are a number of handmade seats about it, especially towards the Thames; among which the most remarkable is the late lord Melcombe's, which is a very elegant house, and contains a marble chimney, said to be a very great expense.

HAMMOCK, or Hamac, a kind of hanging bed, suspended between two trees, posts, hooks, or the like, much used throughout the West-Indies, as also on board of ships. The Indians hang their hammocks to trees, and thus secure themselves from wild beasts and insects, which render lying on the ground there very dangerous. According to F. Plumier, who has often made use of the hammock in the Indies, it consists of a large strong coverlet or shift of coarse cotton, about six feet square; on two opposite sides are loops of the same stuff, through which a ring is run, and the rest other loops are formed, all which are tied together with a cord: and thus is the whole fastened to two neighbouring trees in the field, or two hooks in houses. This kind of couch serves at the same time for bed, quilts, sheets, pillow, &c.

The hammock used on board of ships is made of a piece of canvas six feet long and three feet wide, gathered or drawn together at the two ends. There are usually from fourteen to twenty inches in breadth allowed between decks for every hammock in a ship of war; but this space must in some measure depend on the number of the crew, &c. In time of battle the hammocks and bedding are firmly corded and fixed in the nettings on the quarter-deck, or wherever the men are too much exposed to the view or fire of the enemy.

HAMPSON (Henry), D. D. one of the most learned English divines in the 17th century, was born in 1605. He studied at Oxford, and in 1629 entered into holy orders. In 1633 he was inducted into the rectory of Penhurst in Kent. In 1643 he was made archdeacon of Chichester. In the beginning of 1645 he was made one of the canons of Christ-church, Oxford, and chaplain in ordinary to king Charles I., who was then in that city; and he was also chosen public orator of the university. In 1657 he attended the king in his confinement at Woodburn, Cavendish, Hampton-Court, and the Isle of Wight, where he continued till his majesty's attendants were again put from him. He then returned to Oxford, where he was chosen sub-dean; and continued there till the parliament-visitors first ejected him, and then imprisoned him for several weeks in a private house in Oxford. During this confinement he began his Annotations on the New Testament. At the opening of the year 1660, when every thing visibly tended to the restoratation of the royal family, the doctor was designed by the bishops to repair to London to afford assistance to the people in the compolure of the breaches of the church, his station in which was designated to be the bishopric of Worcester; but on the 4th of April he was seized by a fit of the stone, of which he died on the 24th of that month, aged 55. Besides the above work, he wrote many others; all of which have been published together in four volumes folio.

HAMPSON (Anthony, Esq.), an ingenious English poet, descended from a good family of Somersetshire Place in Huntingdonshire, was born in 1668. After a liberal education at St John's college, Cambridge, he was chosen member of parliament, and soon distinguished himself as a fine speaker. He became a commissioner of the royal navy, which place he quitted in 1712. He published A Miscellany of Original Poems by the most eminent hands; in which himself, as appears by the poems marked with his own name, had no inconsiderable share. He wrote the Life of Walter Moyle, Esq; prefixed to his works. He was the intimate friend of that gentleman, and died about the year 1726.

HAMPSON (James), known to the world by the Love-Elegies which, some years after his death, were published.
Hamphire. affinity the earl of Chesterfield, was the son of Anthony Hammond abovementioned, and was preferred to a place about the person of the late prince of Wales, which he held till an unfortunate accident deprived him of his fates. The cause of this calamity was a pull he entertained for a lady, who would not return it: upon which he wrote those love-elegies which have been so much celebrated for their tenderness. The editor observes, that he compos'd them before he was 21 years of age: a period, says he, when fancy and imagination commonly riot at the expense of judgment and correctness. He was sincere in his love as his friendship; and wrote to his mistresses, as he spoke to his friends, nothing but the genuine sentiments of his heart. Tibullus seems to have been the model our author judiciously preferred to Ovid; the former writing directly from the heart to the heart, the latter too often yielding and addressing himself to the imagination. Mr. Hammond died in the year 1743, at Stow, the seat of Lord Cobham, who, as well as the earl of Chesterfield, honoured him with a particular intimacy.

Hampshire, or Haunts, a county of England, bounded on the west by Dorsetshire and Wiltshire, on the north by Berkshire, on the east by Surrey and Sussex, and on the south by the English channel. It extends 57 miles in length from north to south, and 40 in breadth from east to west, and is about 220 miles in circumference. It is divided into 59 hundreds, and contains 9 forests, 29 parks, one city, 20 market- towns, 23 parishes, above 36,000 houses, and by the most modest computation 180,000 inhabitants, who elect 26 members of parliament, two for the county, two for the city of Winchester, and two for each of the following towns, Southampton, Portsmouth, Petersfield, Yarmouth, Newport, Stockbridge, Andover, Whitchurch, Lymington, Christ-church, and Newton. — The air is very pure and pleasant, especially upon the downs, on which vast flocks of sheep are kept and bred. In the champaign part of the county, where it is free of wood, the foil is very fertile, producing all kinds of grain. The country is extremely well wooded and watered; for besides many woods on private estates, in which there are vast quantities of well-grown timber, there is the new forest of great extent, belonging to the crown, well flored with venerable oaks. In these woods and forests, great numbers of hogs run at large, and feed on the acorns; and hence it is that the Hampshire bacon is far excel'd that of most other counties. The rivers are the Avon, Anton, Tefe, Stour, and Itchen; besides several smaller streams, all abounding in fish, especially trout. As its sea-coast is of a considerable extent, it possesses many good ports and harbours, and is well supplied with salt-water fish. Much honey is produced in the country, and a great deal of mead and metheglin made. Here is also plenty of game, and on the downs is most delightful hunting. The manufacture of cloth and kerseys in this county, though not so extensive as that of some others, is yet far from being inconsiderable, and employs great numbers of the poor, as well as contributes to the enriching of the manufacturers by what is sent abroad. The new intended canal in this county, from Basing-stoke to the Wye in Surrey, and from thence to the Thames, cannot but be a great advantage to the county in general, and the parishes it is to pass through in particular; to carry which into Hampshire, an execution above L.86,000 have been raised amongst 150 proprietors in 1789, and it will extend 35 miles when completed.

New Hampshire, a state of North America, in New England. It is bounded on the north by Quebec; northeast by the province of Maine; south-east by the Atlantic Ocean; south by Massachusetts; west and north-west by Connecticut river, which divides it from Vermont. The shape of New Hampshire resembles an open fan; Connecticut river being the curve, the southern line the shortest, and the eastern line the longest side. It is divided into five countries, viz. Rockingham, Stafford, Hillborough, Cheshire, Grafton. In 1776, there were 165 settled townships in this state. Since that time the number has been greatly increased. The chief town is Portsmouth. Exeter, 15 miles south-westwardly from Portsmouth, is a pretty town on the south side of the Exeter river. And Concord, situated on the west side of Merrimack river, is a pleasant flourishing town, which will probably, on account of its central situation, soon be the permanent seat of government. There are two great rivers, the Piscataco and the Merrimack. The former has four branches, Berwick, Cocheche, Exeter, and Durham, which are all navigable for small vessels and boats, some 15 others 20 miles from the sea. These rivers unite about eight miles from the mouth of the harbours, and form one broad, deep, rapid stream, navigable for ships of the largest burden. This river forms the only port of New Hampshire. The Merrimack bears that name from its mouth to the confines of Pemigewasset and Winnisquam rivers; the latter has its source in the lake of the same name. In its course, it receives numberless small streams issuing from ponds and swamps in the valleys. It tumbles over two considerable falls, Ammonoosuc and Pannock great falls. From Haverhill the river runs winding along, through a pleasant rich vale of meadow, and falling between Newbury Port and Salisbury empties itself into the ocean. The land next to the sea is generally low, but as you advance into the country, it rises into hills. Some parts of the state are mountainous. The White mountains are the highest part of a ridge which extends northeast and southwest to a length not yet ascertained. The whole circuit of them is not less than 50 miles. The height of these mountains above an adjacent meadow, is reckoned to be about 3500 feet, and the meadow is 3500 feet above the level of the sea. The snow and ice cover them nine or ten months in the year; during which time they exhibit that bright appearance from which they are denominated the white mountains. From this summit in clear weather is exhibited a noble view, extending 60 or 70 miles in every direction. Although they are more than 70 miles within land, they are seen many leagues off at sea, and appear like an exceeding bright cloud in the horizon. These immense heights, being copiously replenished with water, afford a variety of beautiful cascades. Three of the largest rivers in New England receive a great part of their waters from these mountains. Amonoosuck and Isaac rivers, two principal branches of Connecticut, fall from their western side, Peabody river, a branch of the Amagnetic, falls from the northeast side; and almost the whole of the
Hampshire. Saco descends from the southern side. The highest summit of these mountains is about latitude 44°.

The air in New Hampshire is serene and healthful. The weather is not so subject to change as in more southern climates. This state embracing a number of very high mountains, and lying in the neighborhood of others whose towering summits are covered with snow and ice three quarters of the year, is intensely cold in the winter season. The heat of summer is great, but of short duration. The cold braces the constitution, and renders the labouring people healthful and robust.

On the sea coast, and many places inland, the soil is sandy, but affords good pasturage. The intervals at the foot of the mountains are generally enriched by the freës, which bring down the soil upon them, forming a fine mould, and producing corn, grain, and herbage, in the most luxuriant plenty. The back lands which have been cultivated are generally very fertile, and produce the various kinds of grain, fruits, and vegetables, which are common to the other parts of New England. The uncultivated lands are covered with extensive forests of pine, fir, cedar, oak, walnut, &c. This state affords all the materials necessary for ship building.

By the return of the Census August 19th 1791, the number of inhabitants in this state appeared to be 141,815. There is no material difference between the inhabitants of this state and the other New England states. The ancient inhabitants of New Hampshire were emigrants from England. Their poverty, mixed with emigrants from Massachusetts, fill the lower and middle towns. Emigrants from Connecticut compose the largest part of the inhabitants of the western towns adjoining Connecticut river. Slaves there are none. Negroes, who were never numerous in New Hampshire, are all free by the first article of the bill of rights.

In the township of Hanover, in the western part of this state, is Dartmouth College, situated on a beautiful plain, about half a mile east of Connecticut river, in latitude 43° 33'. It was named after the right honorable William Earl of Dartmouth, who was one of its principal benefactors. It was founded in 1769, for the education and instruction of youth, of the Indian tribes, in reading, writing, and all parts of learning which should appear necessary and expedient for civilizing and christianizing the children of Pagan as well as in all liberal arts and sciences, and all of English youths and others. Its situation, in the frontier country, exposed it during the late war to many inconveniences, which prevented its rapid progress. It flourished, however, amidst all its embarrassments, and is now one of the most growing seminaries in the United States. It has in the four classes about 150 students, under the direction of a president, two professors, and two tutors. It has 12 trustees, who are a body corporate, invested with the powers necessary for such a body. The library is elegant, containing a large collection of the most valuable books. Its apparatus consists of a competent number of useful instruments, for making mathematical and philosophical experiments. There are three buildings for the use of the students. Such is the fertility of the air, that no influence of mortality has happened among the students since the first establishment of the college.

At Exeter there is an academy; at Portsmouth a grammar school; and all the towns are bound by law to support schools. The inhabitants of New Hampshire are chiefly Congregationalists. The other denominations are Presbyterians, Baptists, and Episcopalians.

The first discovery made by the English of any part of New Hampshire was in 1614, by Captain John Smith, who ranged the shore from Penobscot to Cape Cod; and in this route discovered the river Piscataqua. On his return to England, he published a description of the country, with a map of the coast, which he presented to prince Charles, who gave him the name of New-England. The first settlement was made in 1623.

New Hampshire was for many years under the jurisdiction of the governor of Massachusetts, yet they had a separate legislature. They ever bore a proportionable share of the expences and levies in all enterprises, expeditions, and military exertions, whether planned by the colony or the crown. In every stage of the opposition that was made to the encroachments of the British parliament, the people, who ever had a high sense of liberty, cheerfully bore their part.

HAMPSTEAD, a pleasant village of Middlesex, four miles northwest of London, stands in a healthy air, on a fine rise, at the top of which is a heath of about a mile every way, that is adorned with several pretty seats, in a most irregular romantic situation, and has a most extensive prospect over London, into the counties all round it, viz. Bucks and Hertfordshire, and even Northampton, Epping, Kent, Surrey, Berks, &c. with an uninterrupted view of Shooter's Hill, Banfield-Downs, and Windsor Castle. Its church was anciently a chapel of ease to Heendon, till about 1748. This village used to be referred to formerly for its mineral waters, which have lately been neglected; but the wells are still frequented. It is now crowded with good buildings, even on the very steep of the hill, where there is no walking six yards together without meeting a hillock; but in the reign of Henry VIII. it was chiefly inhabited by the laundresses who washed for the Londoners. Its old ruinous church, the lord of the manor's chapel, was lately pulled down, and a new one erected in its room. There is, besides, a handsome chapel near the wells, built by the contribution of the inhabitants, who are chiefly citizens and merchants of London.

HAMPTON, a town of Gloucestershire in England, seated on the Cotswold hills, and had formerly a nunnery. W. Long. 2. 15'. N. Lat. 51. 51.'

Hampstead, a town of Middlesex in England, seated on the river Thames, 12 miles west of London, and two from Richmond and Kingston. It is chiefly famous for the royal palace there, which is the finest in Britain. It was built by cardinal Wolsey, who had 280 silk beds for strangers only, and furnished it richly with gold and silver plate. The buildings, gardens, and the two parks, to which William III. made considerable additions, are about four miles in circumference, and are watered on three sides by the Thames. The inward court, built by king William, forms a piazza, the pillars of which are so low, that it looks more...
more like a cloister than a palace; however, the apartments make ample amends, being extremely magnificent, and more exactly disposed than in any other palace in the world, and adorned with most elegant furniture. Since the accession of his present majesty, however, this palace hath been much neglected, as the king has generally made choice of Windsor for his summer retreat. Those inimitable paintings by Raphael Urbino called the cartous, which were placed there by king William, have been removed to the queen’s palace at Weitzmann. For these pieces Louis XV. is said to have offered 100,000 l.

HAMESOKEN, or HAMSECKEN. See HAMSECKEN.

HANAPER, or HAMPER, an office in the English chancery, under the direction of a master, his deputy and clerks, answering, in some measure, to the scenes among the Romans.

HANAPER, (clerk of the) sometimes styled warden of the hanaper, an officer who receives all money due to the king for seals of charters, patents, commissilous, and writs, and attends the keeper of the seal daily in term time, and at all times of sealing, and takes into his custody all sealed charters, patents, and the like, which he receives in bags, but anciently, it is supposed, in to hanapers, which gave denomination to the office.

There is also an officer, who is comptroller of the hanaper.

HANAU, a town of Germany; and capital of a county of the same name, is pleasantly situated on the river Kenzigh near its confluence with the Mayne. The river divides it into the old and new town, both of which are fortified. The new town, which was built at first by French and Flemish refugees, who had great privileges granted them, is regular and handsome. The caffle, in which the counts used to reside, and which stands in the old town, is fortified, and has a fine flower-garden with commodious apartments, but makes no great appearance. The Jews are tolerated here, and dwell in a particular quarter. The magistracy of the new town, and the disposal of all offices in it, belong to the French and Dutch congregations. Here is a university, with several manufactures, particularly that of roll tobacco, and a very considerable traffic.

E. Long. 9. 0. N. Lat. 49. 58.

HANAU-HANZENBERG, a county of Germany. The greatest part of it is surrounded by the electorate of Mentz, the bishopric of Fulda, the lordships of Reinick, Hamburg, and Solms; as also by the territories of Heffe-Homburg, Banz-Friedburg, and Frankfort. Its length is near 40 miles, but its greatest breadth not above 12. It is exceedingly fertile in corn, wine, and fruit: yielding also salt springs, with some copper, silver, and cobalt. The chief rivers are, the Mayne, the Kenzigh, and the Nida. The prevailing religion is Calvinism, but Lutherans and Catholics are tolerated. The country is populous, and trade and manufactures flourish in it. In 1736, the whole male line of the counts of Hanaa falling in John Reinhard, William VIII. landgrave of the Heffe-Caell, by virtue of a treaty of mutual succession between the families of Hanaa and Heffe-Caell, took possession of the county, satisfaction having been first made to the house of Saxony for their claims; and in the year 1754 transferred it to prince William, eldest son to the then hereditary prince Frederick, afterwards landgrave. The revenues of the last count, arising from this and other territories, are said to have amounted to 500,000 florins. The principal places are Hanaa, Bergen, Steinau, and Glenhauffen.

HAND, a part or member of the body of man, making the extremity of the arm. See Anatomy, n° 53, &c.

The mechanism of the hand is very curious; excellently contrived to fit it for the various uses and occasions we have for it, and the great number of arts and manufactures it is to be employed in. It conflists of a compages of nerves, and little bones joined into each other, which give it a great degree of strength, and in the same time an unusual flexibility, to enable it to handle adjacent bodies, lay hold of them, and grasp them, in order either to draw them toward us or thrust them off. Anaxagoras is represented by ancient authors, as maintaining, that man owes all his wisdom, knowledge, and superiority over other animals, to the use of his hands. Gales represent the matter otherwise; man, according to him, is not the wiselest creature, because he has hands; but he had hands given him because he was the wiselest creature: for it was not our hands that taught us arts, but our reason. The hands are the organs of reason, &c.

In Scripture the word hand was variously applied. To pour water on any one’s hand, signifies to serve, him. To wash the hands was a ceremony made use of to denote innocence from murder or manslaughter. To kiss the hand was an act of adoration. To fill the hand signified taking possession of the priesthood, and performing its functions. To lean upon any one’s hand was a mark of familiarity and security, or make alliance. The right hand was the place of honour and trust. To pour water on anyone’s hand, signifies the conferring of holy orders; a ceremony wherein the hands are laid on the head of another, as a sign of a mission, or of a power given him to exercise the functions of the ministry belonging to the order.

The apostles began to appoint missionaries by the imposition of hands. See Imposition.

HAND, in falconry, is used for the foot of the hawk. To have a clean, strong, tender, glutinous hand, well clawed, are some of the good qualities of a hawk or falcon.

HAND, in the manage, sometimes stands for the fore-feet of a horse. It is also used for a division of the horse into two parts, with respect to the riders hand. The fore-hand includes the head, neck, and fore quarters; the hind-hand is all the rest of the horse.

HAND is likewise used for a measure of four inches, or of a clenched fist, by which the height of a horse is computed.

Hand is also figuratively used in painting, sculpture, &c. for the manner or style of this or that matter.
HA[N][294]D

Hanse are borne in coat-armour, dexter and sinister; that is, right and left, expanded or open; and after other manners. A bloody hand in the centre of the escutcheon is the badge of a baronet of Great Britain.

Hand-Breadth, a measure of three inches.

Handel (George Frederick) a most eminent master and composer of music; was born at Hall, a city of Upper Saxony in Germany. His father was a physician andsurgeon, of that place, and was upwards of 60 years of age when Handel was born. During his infancy young Handel is said to have amused himself with musical instruments, and to have made considerable progress before he was seven years of age, without any instructions. His propensity for music at last became so strong, that his father, who designed him for the study of the civil law, thought proper to forbid him even at this early period of life, to touch a musical instrument, and would suffer none to remain in his house. Notwithstanding this prohibition, however, Handel found means to get a little clavichord privately conveyed to a room in the uppermost story of the house, to which room he constantly stole when the family were asleep; and thus made such advances in his art, as enabled him to play on the harpsichord. He was first taken notice of by the duke of Saxe Weifenfels on the following occasion. His father went to pay a visit to another son by a former wife, who was valant de chambre to the duke, and refused at his court. Young Handel, being then in his seventh year, earnestly desired permission to go along with him; but being refused, he followed the chaise on foot, and overtook it, the carriage being probably retarded by the roughness of the way. His father at first chid him for his disobedience, but at last took him into the chaise along with him. While he was in the duke's court, he still continued to show the same inclination for music; it was impossible to keep him from harpsichords; and he used sometimes to get into the organ-loft at church, and play after service was over. On one of these occasions, the duke happening to go out later than usual, found something so uncommon in Handel's manner of playing, that he inquired of his valet who it was; and receiving for answer that it was his brother, he desired to see him. This nobleman was so much taken with the musical genius shown by young Handel, that he persuaded his father to let him follow the bent of his inclination. He made the boy a present; and told him, if he minded his studies, no encouragement should be wanting.

On his return to Hall, Handel was placed under one Zicklaw, the organist of the cathedral church; and one young musician was even then able to supply his master's place in his absence. At nine years of age he began to compose church-services for voices and instruments, and continued to compose such services every week for three years successively. At the age of 14, he far excelled his master, as he himself owned; and he was sent to Berlin, where he had a relation in some place about the court, on whose care and fidelity his parents could rely. The opera was then in a flourishing condition, being encouraged by the grandmaster of the late king of Prussia, and under the direction of many eminent persons from Italy, among whom were Buononcini and Attilio. Buononcini, being of a haughty disposition, treated Handel with con

rents; but Attilio behaved to him with great kindness, and he profited much by his instructions. His abilities soon recommended him to the king, who frequently made him presents, and at last proposed to send him into Italy under his own patronage, and to take him under his immediate protection as soon as his studies should be completed. But Handel's parents not thinking proper to submit their child to the caprice of the king, declined the offer; upon which it became necessary for him to return to Hall.

Handel having now obtained ideas in music far exceeding everything that could be found in Hall, continued there very unwillingly, and it was resolved to send him into Italy; but as the expense of this journey could not then be spared, he went to Hamburg, where the opera was little inferior to that of Berlin. Soon after his arrival in this city, his father died; and his mother being left in narrow circumstances, her son thought it necessary to procure some scholars, and to accept a place in the orchestra: by which means, instead of being a burden, he became a great relief to her.

At this time, the first harpsichord in Hamburg was played by one Kefer, a man who also excelled in composition; but he, having involved himself in some debts, was obliged to abscond. Upon this vacancy, the person who had been used to play the second harpsichord claimed the first by right of succession: but was opposed by Handel, who founded a claim to the first harpsichord upon his superior abilities. After much dispute in which all who supported or directed the opera engaged with much vehemence, it was decided in favour of Handel, but this good success had almost cost him his life. His antagonist renounced the supposed affront so much, that, as they were coming out of the orchestra together, he made a push at Handel's breast with a sword, which must undoubtedly have killed him, had there not fortunately been a music-book in the bottom of his coat.

Handel, though yet but in his 15th year, became composer to the house; and the successes of Almira, his first opera, was so great, that it ran 30 nights without interruption. Within less than a twelvemonth after this, he set two others, called Florinda and Nerone, which were received with the same applause. During his stay here, which was about four or five years, he also composed a considerable number of sonatas, which are now left. Here his abilities procured him the acquaintance of many persons of note, particularly the prince of Tuscany, brother to John Gallon de Medicis the grand duke. This prince pressed him to go with him to Italy, where he offered him that no convenience should be wanting; but this offer Handel thought proper to decline, being resolved not to give up his independency for any advantage that could be offered him.

In the 15th year of his age, Handel took a journey to Italy on his own bottom; where he was received with the greatest kindness by the prince of Tuscany, and had at all times access to the palace of the grand duke. His Serene Highness was impatient to have something composed by so great a master; and notwithstanding the difference between the style of the Italian music and the German, to which Handel had hitherto been accustomed, he set an opera called Rodea..
Handel was rewarded with 100 sequins and a service of plate. After staying about a year in Florence, he went to Venice, where he is said to have been first discovered at a masquerade. He was playing on a harpsichord in his vistor, when Scarlatti, a famous performer, cried out, that the person who played could be none but the famous Saxon or the devil. But a story similar to this is reported of many eminent persons whose abilities have been discovered in disguise. Here he composed his opera called *Agrippina*, which was performed 27 nights successively, with the most extravagant applause.

From Venice our musician proceeded to Rome, where he became acquainted with cardinal Ottoboni and many other dignitaries of the church, by which means he was frequently attacked on account of his religion; but Handel declared he would live and die in the religion in which he had been educated, whether it was true or false. Here he composed an oratorio called *Resurrezione*, and 150 cantatas, besides some sonatas, and other music. Ottoboni also contrived to have a trial of skill between him and Dominici Scarlatti, who was considered as the greatest master on that instrument in Italy. The event is differently reported. Some say Scarlatti was victorious, and others give the victory to Handel; but when they came to the organ, Scarlatti himself ascribed the superiority to Handel.

From Rome, Handel went to Naples; after which, he paid a second visit to Florence; and at last, having spent six years in Italy, set out for his native country. In his way thither, he was introduced at the court of Hanover with so much advantage by the baron Kilmanseck, that his Electrical Highness offered him a pension of 500 crowns a year as an inducement for him to continue there. This generous offer he declined on account of his having promised to visit the court of the Elector Palatine, and likewise to go over to England in compliance with the repeated invitations of the Duke of Manchester. The elector, however, being made acquainted with this objection, generously ordered him to be told, that his acceptance of the pension should neither restrain him from his promise nor resolution; but that he should be at full liberty to be absent a year or more if he chose it, and to go wherever he thought fit. Soon after the place of master of the chapel was bestowed upon Handel; and our musician having visited his mother, who was now extremely aged and ill, and his old master Zachew, and spent some time at the court of the Elector Palatine, set out for England, where he arrived in 1710.

At that time operas were a new entertainment in England, and were conducted in a very absurd manner; but Handel soon put them on a better footing; and set a drama called *Rinaldo*, which was performed with uncommon success. Having stayed a year in England, he returned to Hanover; but in 1712 he again came over to England; and the peace of Utrecht being concluded a few months afterwards, he composed a grand Te Deum and Jubilate on the occasion. He now found the nobility desirous that he should return the direction of the opera house in the Hay Market; and the queen having added her authority to their solicitations, and conferred on him a pension of L. 200 a year, he forgot his engagements to the Elector of Hanover and remained in Britain till the death of the queen in 1714. On the arrival of king George I., Handel, conscious of his ill behaviour, durst not appear at court; but he was extricated from his dilemma by the baron Kilmanseck. Having engaged several of the English nobility in his behalf, the baron persuaded the king to a party of pleasure on the water. Handel was aproved of the design, and ordered to prepare some music for the occasion. This he executed with the utmost attention, and on the day appointed it was performed and conducted by himself. The king with pleasure and surprize inquired who it was, and how the entertainment came to be provided without his knowledge. The baron then produced the deliquent; and asked leave to present him to his majesty as one too sensible of his fault to attempt an excuse, but sincerely desirous to atone for it. This intercession was accepted. Handel was restored to favour, his water music was honoured with the highest approbation, and the king added a pension of L. 200 a year that formerly bestowed on him by queen Anne; which he soon after increased to L. 400, on his being appointed to teach the young princes muick.

In the year 1715, Handel composed his opera of *Amadigi*; but from that time to the year 1720 he composed only *Tasso* and *Paflags Fato*, Buononcini and Attilio being then composers for the operas. About this time a project was formed by the nobility for erecting a kind of academy at the Hay Market, with a view to secure to themselves a constant supply of operas to be composed by Handel, and performed under his direction. No less than L. 50,000 was subscribed for this scheme, of which the king himself subscribed L. 1000, and it was proposed to continue the undertaking for 14 years. Handel went over to Dresden, in order to engage singers, and returned with Senesino and Durante. Buononcini and Attilio had still a strong party in their favour, but not equal to that of Handel; and therefore in 1720 he obtained leave to perform his opes of *Rudameto*. The house was so crowded, that many fainted through excessive heat; and 40s. were offered by some for a seat in the gallery, after having in vain attempted to get one elsewhere. The contention, however, still ran very high between Handel's party and that of the two Italian masters; and at last it was determined that the rivals should be jointly employed in making an opera, in which each should take a distinct act, and he who by the general suffrage was allowed to have given the best proof of his abilities should be put in possession of the house. This opera was called *Mucio Senevola*, and Handel got the last act. It is said that Handel's superiority was owned even in the overture before it; but when the act came to be performed, there remained no pretence of doubt or dispute. The academy was now therefore firmly established, and Handel conducted it for nine years with great success; but about that time an irreconcileable enmity took place, between Handel himself and Senesino. Senesino accused Handel of tyranny, and Handel accused Senesino of rebellion. The merits of the quarrel are not known: the nobility, however, became mediators for some time; and having failed in that good design, they became parties in the quarrel. Handel was resolved to dismiss Senesino, and the nobility seemed also resolved not to permit him to do so. The haughtiness of Handel's
Handel's temper would not allow him to yield, and the affair ended in the total dissolution of the academy.

Handel now found that his abilities, great as they were, could not support him against the powerful opposition he met with. After the death of Senecke, his audience sensibly dwindled away, and Handel entered into an agreement with Mr. Heidegger to carry on operas in conjunction with him. New singers were engaged from Italy; but the offended nobility raised a subscription against him, to carry on operas in the playhouse in Lincoln's-Inn fields. Handel bore four years against this opposition, three in partnership with Heidegger, and one by himself; but though his musical abilities were superior to those of his antagonists, the astonishing powers of the voice of Farinelli, whom the opposite party had engaged, determined the victory against him. At last Handel, having spent all he was worth in a fruitless opposition, thought proper to desist. His disappointment had such an effect upon him, that for some time he was disordered in his understanding, and at the same time his right arm was rendered useless by a stroke of the palsy. In this deplorable situation, it was thought necessary that he should go to the baths of Aix-la-Chapelle; and from them he received such extraordinary and sudden relief, that his cure was looked upon by the most miraculous.

In 1736, Handel again returned to England; and soon after his return his Alexander's Feast was performed with applause at Covent Garden. The success and splendor of the Hay Market was by this time so much reduced by repeated mismanagements, that Lord Middlesex undertook the direction of it himself, and once more he applied to Handel for composition. He accordingly composed two operas called Farinone and Alessandro Severo, for which in 1737 he received £1000. In 1738 he received £1500 from a single benefit, and nothing seemed wanting to retrieve his affairs, excepting such concessions on his part as his opponents had a right to expect. These concessions, however, he could not be prevailed upon to make; and that he would not longer be under obligations to act as he was directed by others, he refused to enter into any engagements upon subscription. After having tried a few more operas at Covent Garden without success, he introduced another species of music called oratorios, which he thought better suited to the native gravity of an English audience. But as the subjects of these pieces were always taken from sacred history, it was by some thought to be a profanation to fet them to music and perform them at a playhouse. In consequence of this prejudice, the oratorios met with very indifferent success; and in 1741 Mr. Handel found his affairs in such a bad situation, that he was obliged to quit England, and go to Dublin.

He was received in Ireland in a manner suitable to his great merit; and his performing his oratorios called the Messiah for the benefit of the city-prison, brought him into universal favor. In nine months time he had brought his affairs into a better situation; and on his return to England in 1742, he found the public much more favorably disposed. His oratorios were now performed with great applause: His Messiah, which before had been but coldly received, became a favorite performance; and Handel, with a generous humanity, determined to perform it annually for the benefit of the foundling hospital, which at that time was only supported by private benefactions. In 1743, he had a return of his paralytic disorder; and in 1751 came quite blind by a gutta peruna in his eyes. This last misfortune for some time sunk him into the deepest depression; but at last he was obliged to acquiesce in his situation, after having without any relief undergone some very painful operations. Finding it now impossible to manage his oratorios alone, he was assisted by Mr. Smith, who at his request frequently played for him, and conducted them in his stead; and with this assistance they were continued till within eight days of his death. During the latter part of his life, his mind was often disordered; yet at times it appears to have resumed its full vigour, and he composed several songs, choruses, &c. which from their dates may be considered almost as the last sounds of his dying voice.

From about October 1758 his health declined very fast; his appetite, which had been remarkably keen, and which he had gratified to a great degree, left him; and he became sensible of the approach of death. On the 6th of April 1759, his last oratorio was performed, at which he was present, and died on the 14th of the same month. On the 20th he was buried by the right reverend Dr Pearce, bishop of Rochester, in Westminster Abbey, where, by his own order, and at his own expense, a monument was erected to his memory.

With regard to the character of this most eminent musician, he is universally allowed to have been a great epicure: In his temper he was very haughty, but was seldom or never guilty of mean actions. His pride was uniform; he was not by turns a tyrant and a slave. He appears to have had a most extravagant love for liberty and independence; in which, that he would, for the sake of liberty, do things otherwise the most prejudicial to his own interest. He was liberal even when poor, and remembered his former friends when he was rich. His musical powers can perhaps be best expressed by Arbuthnot's reply to Pope, who seriously asked his opinion of him as a musician: 'Conceive (said he) the highest you can do his abilities, and they are much beyond any thing you can conceive.'

Commemoration of Handel: a musical exhibition instituted some years ago, and the grandest of the kind ever attempted in any nation. Of the rife and progress of the design, together with the manner in which the first celebration was executed, an accurate and authentic detail is given, as might be expected, by Dr. Burney in the 4th and last volume of his History of Music, from which the following account is extracted.

"In a conversation between lord viscount Fitzwilliam, Sir Watkin Williams Wynn, and Josiah Bates, Esq. commissioner of the victualling-office, the beginning of last year, 1783, at the house of Lord Pelham, after remarking that the number of eminent musical performers of all kinds, both vocal and instrumental, with which London abounded, was far greater than in any other city of Europe, it was lamented that there was no public periodical occasion for collecting and consolidating them into one band; by which means a performance might be exhibited on so grand and magnificent a scale as no other part of the world could equal. The birth and death of Handel naturally occurred to three
Handel's three such enthusiastic admirers of that great master; and it was immediately recollected, that the next year (1764) would be a proper time for the introduction of such a custom, as it formed a complete century since his birth, and an exact quarter of a century since his decease.

"The plan was soon after communicated to the governors of the Musical Fund, who approved it, and promised their assistance. It was next submitted to the directors of the concert of Ancient Music; who, with an alacrity which does honour to their zeal for the memory of the great sir Handel, voluntarily undertook the trouble of managing and directing the celebrity. At length, the design coming to the knowledge of the king, it was honoured with his majesty's sanction and patronage. Westminster-abbey, where the bones of the great musician were deposited, was thought the properest place for the performance; and application having been made to the bishop of Rochester for the use of it, his lordship, finding that the scheme was honoured with the patronage of his majesty, readily consented; only requiring, as the performance would interfere with the annual benefit for the Westminster Infirmary, that part of the profits might be appropriated to that charity, as an indemnification for the loss it would sustain. To this the projectors of the plan acceded; and it was afterwards settled, that the profits of the first day's performance should be equally divided between the Musial Fund and the Westminster Infirmary; and those of the subsequent days be solely applied to the use of that fund which Handel himself so long helped to sustain, and to which he not only bequeathed a thousand pounds, but which almost every musician in the capital annually contributes his money, his performance, or both, in support. Application was next made to Mr. James Wyatt, the architect, to furnish plans for the necessary decorations of the abbey; drawings of which having been shown to his majesty, were approved. The general idea was to produce the effect of a royal musical chapel, with the orchestra terminating one end, and the accommodation for the royal family, the other. The arrangement of the performance of each day was next settled; and it was at his majesty's instigation that the celebrity was extended to three days instead of two, which he thought would not be sufficient for the display of Handel's powers, or fulfilling the charitable purposes for which it was intended to devote the profits. It was originally intended to have celebrated this festival on the 20th, 22d, and 23d of April; and the 20th being the day of the funeral of Handel, part of the music was, in some measure, selected as to apply to that incident. But, in consequence of the sudden dissolution of parliament, it was thought proper to defer the festival to the 26th, 27th, and 29th of May, which seemed to have been for its advantage: as many persons of tender considerations, who ventured to go to Westminster abbey in warm weather, could not have had the courage to go thither in cold. Impressed with a reverence for the memory of Handel, no sooner was the project known, but most of the practical musicians in the kingdom eagerly manifested their zeal for the enterprise; and many of the most eminent professed, waving all claims to precedence in the band, offered to perform in any subordinate station in which their talents could be most useful.

"In order to render the band as powerful and complete as possible, it was determined to employ every species of instrument that was capable of producing grand effects in a great orchestra and spacious building. Among those the fagbut or double tromper, was sought; but so many years had elapsed since it had been used in this kingdom, that neither the instrument, nor a performer upon it, could easily be found. It was, however, discovered, after much tedious enquiry, not only here, but by letter, on the continent; that in his majesty's military band there were two musician who played the three several species of fagbut, tenor, base, and double base.

"The double bassoon, which was so conspicuous in the orchestra, and powerful in its effect, is likewise a tube of 16 feet. It was made, with the approbation of Mr. Handel, by Stainby, the flute-maker, for the coronation of his late majesty George II. The late ingenious Mr. Lampe, author of the justly admired music of The Dragon of Wantley, was the person intended to perform on it; but, for want of a proper reed, or for some other cause, at present unknown, no one was made of it at that time; nor indeed, tho' it has been often attempted, was it ever introduced into any band in England till now, by the ingenuity and perseverance of Mr. Alhly, of the Guards.

"The double-base kettle-drums were made from models of Mr. Aisbridge, of Drury Lane orchestra, in copper, it being impossible to procure plates of brass large enough. The Tower drums, which, by permission of his grace the duke of Richmond, were brought to the abbey on this occasion, are those which belong to the guards, who played the three species of kettle-drums, which may be called tenor, base, and double-base, were an octave below each other.

"The excellent organ, erected at the west end of the abbey, for the commemorative performances only, is the workmanship of the ingenious Mr. Samuel Green in Ullington. It was fabricated for the cathedral of Canterbury; but before its departure for the place of its destination, it was permitted to be opened in the capital on this memorable occasion. The keys of communication with the harpsichord, at which Mr. Bates the conductor was seated, extended to feet from the body of the organ, and 20 feet 7 inches below the perpendicular of the set of keys by which it is usually played. Similar keys were first contrived in this country for Handel himself at his oratorios; but to convey them to so great a distance from the instrument, without rendering the touch impracticably heavy, required uncommon ingenuity and mechanical resources.

"In celebrating the disposition, discipline, and effects of the most numerous and excellent band, the merit of the admirable architect, who furnished the elegant designs for the orchestra and galleries, must not be forgotten; as, when filled, they constituted one of the grandest and most magnificent specacles which
Handel, imagination can delineate. All the preparations for receiving their majesties, and the first perfonages in the kingdom, at the east end; upwards of 500 musicians at the west; and the public in general, to the number of between 3000 and 4000 persons, in the area and galleries; so wonderfully corresponded with the style of architecture of this venerable and beautiful structure, that there was nothing visible either for use or ornament, which did not harmonize with the principal tone of the building, and which may not metaphorically have been said to have been in perfect tune with it. But, besides the wonderful manner in which this construction exhibited the band to the spectators, the orchestra was so judiciously contrived, that almost every performer, both vocal and instrumental, was in full view of the conductor and leader; which accounts, in some measure, for the uncommon ease with which the performers confefs they executed their parts.

At the east end of the aisle, just before the back of the choir-organ, some of the pipes of which were visible below, a throne was erected in a beautiful Gothic style, corresponding with that of the abbey, and a centre box, richly decorated and furnished with crimson satin, fringed with gold, for the reception of their majesties and the royal family: on the right hand of which was a box for the bishops, and, on the left, one for the dean and chapter of Westminster: immediately below, and two boxes were formed, one on the right for the families and friends of the directors, and the other for those of the pebbonaries of Westminster. Immediately below the king's box was placed one for the directors themselves, who were all distinguished by white wands tipped with gold, and gold medallions, struck on the occasion, appendant from white ribbons. These their majesties likewise condescended to wear at each performance. Behind, and on each side of the throne, there were seats for their majesties' suite, maids of honour, grooms of the bedchamber, pages, &c.—The orchestra was built at the opposite extremity, ascending regularly from the height of seven feet from the floor, upwards of forty from the base of the pillars, and extending from the centre to the top of the side aisle.—The intermediate space below was filled up with level benches, and appropriated to the early subscribers. The side aisles were formed into long galleries ranging with the orchestra, and ascending so as to contain 12 rows on each side: the fronts of which projected beyond the pillars, and were ornamented with festoons of crimson morse.—At the top of the orchestra was placed the occasional organ, in a Gothic frame, mounting to, and mingling with, the faken and martyrs represented in the painted glass on the west window. On each side of the organ, close to the windows, were placed the kettle-drums described above. The choral bands were principally placed in view of Mr Bate, on steps seemingly ascending into the clouds, in each of the side aisles, as their termination was invisible to the audience. The principal singers were ranged in the front of the orchestra, as at oratorios, accompanied by the choirs of St Paul, the abbey, Windsor, and the chapel royal.

Few circumstances will perhaps more astonish veteran musicians, than to be informed, that there was but one general rehearsal for each day's performance: an indubitable proof of the high state of cultivation to which practical music is at present arrived in Britain; for if good performers had not been found ready made, a dozen rehearsals would not have been sufficient to make them so. Indeed, Mr Bates, in examining the list of performers, and inquirmg into their several merits, suggested the idea of what he called a drilling rehearsal, at Tottenham-street Concert Room, a week before the performance; in order to hear such volunteers, particularly chorus singers, as were but little known to himself, or of whose abilities his assistant was unable to speak with certainty. At this rehearsal, though it consisted of 120 performers, not more than two of that number were desired to attend no more.

At the general rehearsal in the abbey, mentioned above, more than 500 performers found means to obtain admission, in spite of every endeavour to shut out all but the performers; for fear of interruptions and perhaps of failure in the first attempts at incorporating and condensing such a numerous band: consisting not only of all the regulars, both native and foreign, which the capital could furnish, but of all the irregulars, that is, different, and provincial musicians of character, who could be mufiered, many of whom had never heard or seen each other before. This intrusion, which was very much to the dissatisfaction of the managers and conductor, suggested the idea of turning the eagerness of the public to some profitable account for the charity, by fixing the price of admission to half a guinea for each person.

But, besides the profits derived from subsequent rehearsals, the consequences of the first were not without their use: for the pleasure and astonishment of the audience, at the small mistakes, and great effects of this first experiment, which many had condemned by anticipation, were soon communicated to the lovers of music throughout the town, to the great increase of subscribers and solicitors for tickets. For though the friends of the directors were early in subscribing, perhaps from personal respect, so much as expectation of a higher musical result than usual; yet the public in general did not manifest great eagerness in securing tickets till after this rehearsal, Friday May 21. which was reported to have astonished even the performers themselves by its correctness and effects. But so interesting did the undertaking become by this favourable rumour, that from the great demand of tickets it was found necessary to close the subscription.

Many families, as well as individuals, were attracted to the capital by this celebrity; and it was never remembered to have been so full, except at the coronation of his present majesty. Many of the performers came unforeseen, from the remotest parts of the kingdom at their own expense: some of them, however, were afterwards reimbursed, and had a small gratuity in consideration of the time they were kept from their families by the two unexpected additional performances.

Foreigners, particularly the French, must be much astonished at so numerous a band moving in such exact measure, without the assistance of a Coryphæus to beat the time, either with a roll of paper, or a noisy baton, or truncheon. Rouleau says, that 'the more time is beaten, the less it is kept; and it is certain, that when the measure is broken, the fury of the musical
HAN

Handel was a remarkable general or director, increasing with the difficulties and confusion of his troops, he becomes more violent, and his strokes and gestures more ridiculous in proportion to their disorder.

"As this commemoration is not only the first instance of a band of such magnitude being assembled together, but of any band at all numerous, performing in a similar situation, without the assistance of a conductor to regulate the measure, the performances in Westminster abbey may be safely pronounced no less remarkable for the multiplicity of voices and instruments employed, than for accuracy and precision. When all the wheels of that huge machine, the orchestra, were in motion, the effect resembled clock-work in every thing but want of feeling and expression. And as the power of gravity and attraction in bodies is proportioned to their masses and density, so it seems as if the magnitude of this band had commanded and impelled adherence and obedience beyond that of any other of inferior force. The pulsations in every limb, and ramifications of veins and arteries in an animal, could not be more reciprocal, isochronous, and under the regulation of the heart, than the members of this body of musicians under that of the conductor and leader. The multitude of sound seemed to proceed from one voice and one instrument; and its powers produced not only new and exquisite sensations in judges and lovers of the art, but were felt by those who never received pleasure from music before. These effects, which will be long remembered by the present public, perhaps to the disadvantage of all other choral performances, run the risk of being doubted by all but those who heard the first performance, the disadvantage of all other choral performances, run the risk of being doubted by all but those who heard.

"It will be remembered, the metropolis of the province of Tsche-kiang in China. See Tse-che-kiang.

- It is, according to the Chinese, the paradise of the earth; and may be considered as one of the richest, best situated, and largest cities of the empire. It is four leagues in circumference, exclusive of its suburbs; and the number its inhabitants amounts to more than a million. It is computed, that there are a thousand workmen within its walls employed in manufacturing silk; which renders this city delightful, is a small lake, called Si-four, which washes the bottom of its walls on the western side; its water is pure and limpid, and its banks are almost everywhere covered with flowers. Halls and open galleries, supported by pillars, and paved with large flag stones, have been erected here on piles, for the convenience of those who are fond of walking; cause-ways, cased with cut stone, traverse the lake in different directions; and the openings which are left in them at intervals, for the passage of boats, are covered by handsome bridges. In the middle of the lake are two islands, to which company generally resort after having amused themselves with rowing, and in which a temple and several pleasure-houses have been built for their reception. The emperor has a small palace in the neighbourhood. The city has a garrison of 2000 Chinese, under the command of the vicerey, and 3000 Tatars, commanded by a general of the same nation. It has under its jurisdiction seven cities of the second and third class.

HANGING, a common name given to the method of inflicting death on criminals by suspending them by the neck.—Physicians are not agreed as to the manner in which death is brought on by hanging. De Haen hanged three dogs, whom he afterwards opened. In one, nothing remarkable appeared in the lungs. In another, from whom half an ounce of blood was taken from the jugular vein, the dura and pia mater were of the natural appearance; but the lungs were much inflamed. In the third, the meninges were found, and there was no effusion of blood in the ventricles of the brain, but the left lobe of the lungs was turgid with blood. Wepfer, Littræus, Alberti, Bruckner, and Boerhaave, affirm that hanged animals die apoplectic. Their arguments for this are chiefly drawn from the lived colour of the face, the disfigurement of the vesels of the brain; the inflammation of the eyes; and from the sparks of fire which those who have survived hanging allege they have seen before their eyes. On the contrary, Bonetus, Petit, Haller, and Lancisi, from observing that death is occasioned by any small body falling into the glottis, have ascribed it to the stoppage of respiration. Others, deeming both these causes ill-founded, have ascribed it to a fixation of the vertebrae of the neck.—De Haen addsuces the authority of many eminent authors to prove the possibility of recovering hanged persons; and observes, in general, that with bleeding in the jugular vein, and anointing the neck with warm oil, the same remedies are to be employed in this case as for the recovery of drowned people. See DROWNING.

HANGINGS, denote any kind of drapery hung up against the walls or wainscoting of a room.

Winds Hangings. See Tapestry.

Hangcliffe, a remarkable point of land on the east coast of the largest of the Florida Keys, is frequently the first land seen by ships in northern voyages. Captain Phipps determined its situation to be in W. Long. 0° 36' 30". N. Lat. 60° 9'.

Hannibal, a famous Carthaginian general, of whose exploits an account is given under the articles Carthage and Rome. After having had the misfortune to lose a sea-fight with the Rhodians, through the cowardice of Apollonius one of the admirals of Antiochus the Great, he was forced to fly into Crete, to avoid falling into the hands of the Romans. On his arrival in this island, he took sanctuary in the temple of Diana, in the presence of the Great; but as he had brought great treasure along with him, and knew the avarice of the Cretans, he thought proper to secure his riches by the following stratagem. He filled several vessels with melted lead, just covering them over with gold and silver. These he deposited in the temple of Diana, in the presence of the Gortynii, with whom he said, he trusted all his treasures: Justin tells us, that he left this with them as a security for his good behaviour, and lived for some time very quietly in these parts. He took care, however, to conceal his riches in hollow flutes of brass; which, according to some, he always carried along with him; or, as others will have it, exposed in a public place as things of little value. At last he retired to the court of Prusias king of Bithynia, where he found means to unite several of the neighbouring states with that prince into a confederacy against Eumenes king of Pergamus, a professed friend to the Romans; and during the ensuing war gave Eumenes several
When a Fabius and a Scipio were sent against him, the first stopped his progress, the other conquered him."

These reasons have been answered by Mr. Hook, who hath taken some pains to vindicate Hannibal's character, by fully and fairly comparing it with that of Scipio Africanus, and other Roman commanders.

"I do not see (says he) why these difficulties should check our author's inclination to declare in favour of the Carthaginian. That Fabius was not beaten by Hannibal, we cannot much wonder, when we remember how steadily the old man kept to his resolution never to fight with him. But from Fabius's taking this method to put a stop to the victories of the enemy, may we not conclude that he knew no other, and thought Hannibal an overmatch for him? And why does our author forget Publius Scipio (Africanus's father), a prudent and able general, whom Hannibal vanquished at the Tichin? Livy relates those victories of Hannibal over the celebrated Marcellus; but neither Marcellus nor any other general ever vanquished Hannibal before the battle of Zama, if we may believe Polybius (lib. xvi. c. 16). Terentius Varro, indeed, is represented as a headstrong rash man; but the battle of Cannae was not by if his imprudence. The order in which he drew up his army is nowhere condemned; and Chevalier Focard thinks it excellent. And as to the conduct of the battle, Scipio, Paulus, a renowned captain, and a disciple of Fabius, had a greater share in it than his colleague. The imprudence with which Varro is taxed, was his venturing, contrary to his colleague's advice, with above 90,000 men to encounter in a plain field an enemy who had only 50,000, but was superior in horse. And does not the very advice of Aemilius, and the charge of temerity on Varro for not following it, imply a censure of Hannibal's superiority in military skill over Aemilius as well as Varro? It ought like wise to be observed, that Hannibal's infantry, bad gained the victory over the Roman infantry, before the latter suffered any thing from the Carthaginian cavalry. It was otherwise when Scipio gained the victory at Zama. His infantry would probably have been vanquished but for his cavalry. Hannibal, with only his third line of foot (his Italian army), maintained a long fight against Scipio's three lines of foot; and seems to have had the advantage over them, when Mamilia and Lælius, with the horse, came to their assistance. Polybius indeed says, that Hannibal's Italian forces were equal in number to all Scipio's infantry; but this is contradicted by Livy, and is not very probable. The authority of Polybius, who was an intimate friend of Scipio Aemilius, is, I imagine, of little weight in matters where the glory of the Scipios is particularly concerned. His partiality and flattery to them are, in many instances, but too visible.

Our author then proceeds to show, that Hannibal was not guilty of any of the faults laid to his charge as a general; and having contrasted the moral characters of the two generals with each other, makes it evident, that as a man, as well as a general, Hannibal had greatly the advantage of his rival. See Hook's Roman History, vol. iv, p. 151 & seq.

Hanno, general of the Carthaginians, was commanded to sail round Africa. He entered the ocean through
Hanover. through the Straits of Gibraltar, and discovered several countries. He would have continued his navigation, had it not been for want of provisions. He wrote an account of his voyage, which was often quoted, but not much credited. Sigismund Gelenius published it in Greek at Baille, by Frobenius, in 1533. He lived, according to Pliny, when the affairs of the Carthaginians were in the most flourishing condition; but this is a very indeterminate expression.

Hanover, an electoral state of Germany, of which the king of Great Britain is elector.—Though the house of Hanover is the last that has been raised to the electoral dignity in the empire, it may vie with any in Germany for the antiquity and nobleness of its family. It is likewise very considerable for the extent of its territories, which at present are the duchy of Calenberg, in which are the cities of Hanover, Calenberg, Hamelen, Neufstadt, Gottingen, &c. the duchy of Grabenhagen, the county of Diepholt, the county of Iloga, in the bishopric of Hildesheim; the bailiwicks of Coldingen, Luther, Badenburg, and Wetterfehoven, with the right of protection of the city of Hildesheim; and the county of Danneberg, ceded by the dukes of Wolfsenbottle to the dukes of Lunenburg, as an equivalent for their pretensions on the city of Bremen.

The elector polishes likewise the county of Delmenhorst, and the duchies of Bremen and Verden, fold by the king of Denmark in 1715: the right of poelling alternately the bishopric of Osnabruck belongs solely to the electoral branch; but if it should happen to fail, the dukes of Wolfsenbottle are to enjoy the same right. This electorate has no navy, but a considerable marine on the great rivers Elbe and Weser.

In consideration of the great services performed by Ernert Augustus, duke of Brunswick-Hanover, in the wars which the emperor Leopold had with Louis XIV. that emperor conferred the dignity of an elector of the holy Roman empire upon him and his heirs male, of which he received the investiture on the 19th of December 1692. This new creation met with great opposition both in the electoral college and the college of princes; at last, by a conclusion of the three colleges on the 30th of January 1708, it was unanimously determined, that the electoral dignity should be confirmed to the duke of Hanover, and his heirs male; but it was added, that if, while that electoral dignity subsisted, the Palatine elector should happen to fall into the hands of a Protestant prince, the first Catholic elector should have a supernumerary vote.

The princes of this house have their seat in the college of princes, immediately after those of the electoral houses; each branch having a vote. The elector, besides his seat in the electoral college, was invested with the office of arch-steward bearer of the empire; but this being disputed with him by the duke of Wurttemberg, the elector Palatine having obtained the office of arch-steward, yielded that of arch-treasurer to the elector of Hanover, who was confirmed in this dignity by a decree of the diet of the 23rd of January 1710.

The sovereign power is administered by the lords of the regency appointed by the elector. Throughout all the provinces they police a considerable share of free-
Han疤, well fortified. It has suffered greatly by the French, who got possession of it in 1757, but were soon after driven out. It is noted for a particular kind of beer, reckoned excellent in these parts. This city was the residence of the elector before he ascended the throne of Great Britain. The palace makes no great show outwardly; but within it is richly furnished. The regency of the country is administered in the same manner as the sovereign was present.

Hanse, or Hans, an ancient name for a society or company of merchants, particularly that of certain cities in Germany, &c. hence called Hanse-towns. See Hanse-Towns.—The word hanse is obsolete High Dutch or Teutonic; and signifies "alliance, confederacy, association," &c. Some derive it from the two German words, am-fec, that is "on the sea;" by reason the first Hanse towns were all situated on the sea-coast: whence the society is said to have been first called am zee flenen, that is, "cities in the sea;" and afterwards by abbreviation, hanse, and hanse.

Hanse-Towns. — The Hanseatic society was a league between several maritime cities of Germany, for the mutual protection of their commerce. Bremen and Amsterdam were the two first who formed it; whose trade received such advantage by their joining out two men of war in each to convoy their ships, that more cities continually entered into the league: even kings and princes made treaties with them, and were often glad of their assistance and protection; by which means they grew so powerful by both sea and land; that they raised armies as well as navies enjoyed countries in sovereignty, and made peace or war, though always in defence of their trade, as if they had been an united state or commonwealth.

At this time also abundance of cities, though they had no great interest in trade, or intercourse with the ocean came into their alliance for the preservation of their liberties; so that in 1020 we find no less than 72 cities in the list of the towns of the Hanse; particularly Bremen, Amsterdam, Antwerp, Rotterdam, Dort, Bruges, Oostend, Dunkirk, Middelburgh, Calais, Rouen, Rochelle, Broudeaux, St-Malo, Bayonne, Bilboa, Lisbon, Seville, Cadiz, Carthage, Barcelona, Marseilleilles, Leghorn, Naples, Melfina, London, Lubeck, Rostock, Stralund, Stein, Wismar, Konigberg, Danzig, Elbing, Marienburg.

The alliance was now so powerful, that their ships of war were often hired by other princes to assist them against their enemies. They not only slew, but often defeated all that opposed their commerce; and particularly in 1358, they took such revenge of the Danish fleet in the Sound for having interrupted their commerce, that Waldemar III. then king of Denmark for the sake of peace, gave them up all Schonen for 16 years; by which they commanded the passage of the Sound in their own right. — In 1428 they made war on Eric king of Denmark with 250 sail, carrying on board 12,000 men. These so ravaged the coast of Jutland, that the king was glad to make peace with them.

Many privileges were bestowed upon the Hanse towns by Louis XI. Charles VIII. Louis XII. and Francis I. kings of France; as well as by the emperor Charles V., who had divers loans of money from them; and by king Henry III. who also incorporated them in a trading body, in acknowledgment for money which they advanced to him, as well as for the good services they did him by their naval forces in 1260.

These towns exercised a jurisdiction among themselves; for which purpose they were divided into four colleges or provinces, distinguished by the names of their four principalities, viz. Lubeck, Cologne, Brunswick, and Dantzig, wherein were held their courts of judicature. They had a common flock or treasury at Lubeck, and power to call an assembly as often as necessary. — They kept magazines or warehouses for the sake of their merchandise in London, Bruges, Antwerp, Bergen in Norway, Ravel in Livonia, Novgorod in Muscovy, which were exported to most parts of Europe, in English, Dutch, and Flemish bottoms. One of their principal magazines was at London, where a society of German merchants was formed called the feelyard company. To this company great privileges were granted by Edward I. but revoked by act of parliament in 1352 in the reign of Edward VI. on a complaint of the English merchants that this company had fo engrossed the cloth trade, that in the preceding year they had exported 30,000 pieces, while all the English together had shipped out 12,000. Queen Mary, who ascended the throne the year following, having resolved to marry Philip the emperor's son, suspended the execution of the act for three years: but after that term, whether by reason of some new statute, or in pursuance of that of King Edward, the privileges of that company were no longer regarded, and all efforts of the Hanse towns to recover this loss were in vain.

Another accident that happened to their mortification was while Queen Elizabeth was at war with the Spaniards. Sir Francis Drake happening to meet 60 ships in the Tagus, laden with corn, belonging to the Hanse towns, took out all the corn as contraband goods which they were forbid to carry by their original patent. The Hanse towns having complained of this to the diet of the empire, the queen sent an ambassador there to declare her reasons. The king of Poland likewise interested himself in the affair, because the city of Dantzig was under his protection. At last though the queen swore hard to preserve the commerce of the English in Germany, the emperor excluded the English company of merchant-adventurers, who had considerable factories at Stade, Embden, Bremen, Hamburg, and Elbing, from all trade in the empire. In short, the Hanse towns, in Germany in particular, were not only so flourishing, but in so formidable a state, from the 14th to the 16th centuries, that they gave umbrage to all the neighbouring princes, who threatened a strong confederacy against them; and, as the first step towards it, commanded all the cities within their dominion or jurisdiction to withdraw from the union or hanse, and be no farther concerned therein. This immediately separated all the cities of England, France, and Italy, from them. The hanse, on the other hand, prudently put themselves under the protection of the empire: and as the cities just now mentioned had withdrawn from them; so they withdrew from several more, and made a decree among themselves, that none should be admitted into their society but such as stood within the limits of the German empire.
HANWAY (Jonas), eminent for his benevolent designs and useful writings, was born at Portsmouth, in Hampshire on the 12th of August 1712. His father Mr Thomas Hanway, was an officer in the naval service, and for some years store-keeper to the dockyard at that place. He was deprived of his life by an accident; and left his widow with four children. Jonas, William, Thomas, and Elizabeth, all of a very tender age. Mrs Hanway, coming to London after the death of her husband, put Jonas to school, where he learned writing and accounts, and made some proficiency in Latin. At the age of 17 he was sent to Lisbon, where he arrived in June 1729, and was bound apprentice to a merchant in that city. His early life, we are informed, was marked with that delicate attention to business, and love of neatness and regularity, which afterwards distinguished his character. At Lisbon his attentions were captivated by a lady, then celebrated for her beauty and mental accomplishments; but the, preferring another for her husband, returned to England, and spent the latter part of her life in London with her family, on terms of friendship with Mr Hanway.—On the expiration of Mr Hanway’s apprenticeship, he entered into business at Lisbon as a merchant or factor; but did not remain there long before he returned to London.

He soon after connected himself as a partner in Mr Dingley’s house in St Peterburg; where he arrived on the 10th of June 1743. The trade of the English nation over the Caspian Sea into Persia at this period had been entrusted to the care of Mr Eton, who not content with the pursuit of commercial affairs, had indiscriminately engaged in the service of Nadir Shah to build ships on the Caspian after the European manner. This had alarmed the merchants in the Russian trade, and a resolution was formed that one of their body should make a journey into Persia. On this occasion Mr Hanway offered his service, and was accepted. He set out on the 9th of September; and after experiencing a variety of hazards in that kingdom during a course of 12 months, returned to St Peterburg January 1, 1745, without being able to establish the intended trade by the Caspian, partly through the jealousy of the Russian court on account of Eton’s connections with the Persians, and partly by the troubles and revolutions of the latter kingdom.

Though Mr Hanway’s conduct during this expedition seems to have been directed by the strictest rules of integrity, yet some difficulties arose in settling his demands on his employers. These, however, in the end were referred to the determination of impartial arbitrators, who at length decided in his favour.

“I obtained (he says) my own; and as to any other personal advantage, it consisted in exercising my mind in patience under trials, and erecting my knowledge of the world.” He now settled at St Peterburg; where he remained five years, with no other variations in his life than such as may be supposed to occur in the dull round of a mercantile employment. During this time he interested himself greatly in the concern of the merchants who had engaged in the Caspian trade; but the independence he had acquired having excited a desire to fec his native country, he, after several disappointments which prevented him from accomplishing his view, left St Peterburg on the 9th of July 1750. On his arrival in his native country, he did not immediately relinquish his mercantile connections, though he seems to have left Russia with that view. He employed himself some time as a merchant; but afterwards, more beneficially to the world, as a private gentleman. In 1753 he published “An Historical Account of the British Trade over the Caspian Sea; with a Journal of Travels from London through Russia into Persia; and back again thro’ Russia, Germany, and Holland. To which are added, the Revolutions of Persia during the present Century, with the particular History of the great Uliferper Nadir Kooli,” 4 vols 4to; a work which was received, as it deferred to be with great attention from the public. In 1754 we find Mr Hanway commending a plan offered for the advantage of Westminister, and fuggeting hints for the further improvement of it, in “A Letter to Mr John Spranger, on his excellent Proposal for Paving, Cleaning, and Lighting the Streets of Westminster, &c.” 8vo. A few years afterwards, when a scheme of the like kind was carried into effect, many of Mr Hanway’s ideas, thrown out in this pamphlet, were adopted. In 1756, he printed “a Journal of Eight Days Journey from Portsmouth to Kington upon Thames, with an Essay on Tea;” which was afterwards reprinted in 2 vols 8vo, 1757.

At this juncture, Great Britain being on the eve of a war with France, the event of which was very important to the nation at large, and required every effort of patriotism, and prudence to ward off the impending danger, Mr Hanway published “Thoughts on the Duty of a good Citizen with Regard to War and Invasion, in a Letter from a Citizen to his Friend,” 8vo. About the same time, several gentlemen formed a plan, which was matured and made perfect by the affiduity of Mr Hanway, for providing the navy with sailors, by furnishing poor children with necessaries to equip them for the service of their country. The success and propriety of this scheme soon became apparent. Mr Hanway wrote and published three pamphlets on this occasion; and the treasurer of the Society, accompanied by Mr Hanway, having waited on the king, the Society received royal from his majesty, 400l. from the Prince of Wales, and 200l. from the Princes Dowager. This excellent institution through life was the favourite object of Mr Hanway’s care, and continued to flourish under his auspices greatly to the advantage of the community. In 1758 he became an advocate for another
In 1759, Mr Hanway wrote "Reasons for an Augmen
tation of at least Twelve Thousand Mariners, to be
employed in the Merchants Service and Coasting Trade
in 33 Letters to Charles Gray, Esq; of Chelsea.
4th." The next year he published several performances:
1. "A candid historical Account of the Hospital for
the Reception of Ekefnet and deferted Young Children;
representing the present Plan of it as productive of
many Evils, and not adapted to the Genius and Happi
ness of this Nation." 8vo.: which being answered by an
anonymous Letter from Halifax in "Candid Remarks,
8vo. 1760," Mr Hanway replied to it, and the Remark
er rejoined. 2. "An Account of the Society for
the encouragement of the Brith Troops in Germany
and North America, &c." 8vo. 3. "Eight Letters
to— Duke of ——, on the Custom of Vails-giving
in England," 8vo. This practice of giving vails
had arrived at a very extravagant pitch, especially
among the servants of the great. It was Mr Han
way who aniered the kind reproach of a friend in
a high station for not coming oftener to dine with
him, by saying "Indeed I cannot afford it." The
nobleman to whom the above letters were addressed
was the Duke of Newcastle. The letters are written
in that humorous style which is most attractive of
general notice, and was best adapted to the subject.
It was Sir Timothy Waldo that first put Mr Hanway on
this plan. Sir Timothy had dined with the duke of N—
and, on leaving the house was contributing to the
support and inocence of a train of servants who aided
the hall; and at last put a crown into the hand of the
cook, who returned it, saying, "Sir, I do not take
silver."—"Don't you indeed?" said the worthy
baronet, putting it in his pocket; then I do not give
gold." Among the ludicrous circumstances in Mr Hanway's letters is one which happened to himself.
He was paying the Servants of a Master of a Dinner
whose master had invited him to one, by one as they appeared; Sir your great-coat; a diffing—
"Your hat;" a defing— "Stick;" a defing—
"Umbrella:" a defing— "Sir, your gloves;"—
"Why, friend, you may keep the gloves they are
not worth a defing." In 1761, Mr Hanway produ
ced "Reflections, Essays, and Meditations on Life and
Religion; with a collection of Proverbs and 28 Let
ters written occasionally on several Subjects," in 2 vols
8vo.

The many useful and public spirited plans which Mr Hanway had promoted for the welfare of the com
munity had now rendered his character most respectably
popular, while his cliques refledd the friendliness of
his intentions, were conspicuous to all. Five citizens
of London, whom the late Mr Hoare the banker
was one, waited on Lord Bute, at that time the
mi
ister; and, in their own names, and the names of
their fellow citizens, requested that some notice might
be taken of a man, who at the expense of his own
private fortune, and unremitting application, had ren
dered to so many and such meritorious services to his
country. In consequence of this request, he was in
July 1762, appointed by a patent one of the com
missioners for victualling, a post which he held above 21 years. The next act of public benefi
cence in which we find him engaged is the collection of
money for the sufferers by the fire which happened
at Montreal, in the province of Quebec, in May 1765,
when a fourth part of the city was consumed. On this
occasion Mr Hanway, in conjunction with two other
gentlemen, collected 8415l—The very next year a
dreadful fire broke out in Bridge Town in Barbadoes,
which consumed buildings and property to the amount
of near 100,000. A subscription was opened, in which
Mr Hanway was a principal actor, and 14,886l. were
collected, and transmitted to a committee appoint
ed at Barbadoes to distribute it to the unfortunate suf
ferers. At subsequent periods he continued to interefthimself in various other plans for relieving the disfref
ses, and promoting the good, of different classes of
the community. His attention was particularly di
rected towards alleviating the miseries of young chim
ney-sweepers. Besides the distresses of these helples
beings, which are open to general observation, such
as a contortion of the limbs, and the prevention of
their growth, they are liable to a disease peculiar to
their occupation, now known by the name of the chim
ney-sweeper's cancer. Four children have been brought
together into a workhouse, all afflicted with this dread
ful and incurable disease. After much inquiry and
confideration, he published in 1773, "The State of the
Chimney-sweepers Young Apprentices; showing the
wretched condition of these distressed Boys; the ill
Conduct of such Masters as do not observe the Ob
ligation of indentures; the Necessity of a strict In
quiry in order to support the civil and religious Rights
of these Apprentices," 12mo. This small pamphlet
has already been productive of some advantage to the
objects intended to be benefited by it. The succeeding
year 1774 he enlarged a former publication, entitled
"Advice from a Farmer to his Daughter, &c." and
republished it under the title of "Virtue in humble Life; containing Reflections on the reciprocal Duties
of the Wealthy and Poor; and the Duty of a Servant," 2 vols 8vo.; a work deserving the particular considera
tion and every magistrate. This edition in a few months being fold, he reprinted it in two quarto volumes, with a dedication to Mrs Montague.

In 1780, finding his health decline, he determined to resign his office at the victualling board, which he
did on the 2d of October that year; and immediately
received a grant of his whole salary by way of a pen
sion, to continue for life. This favour he owed to the esteem which his majesty, to whom he was per
sonally known entertained of him; excided by his various excursions in behalf of his country and mankind.—He
was now released from his most material business, but did not think it wrong to his last line of life: He
engaged again in behalf of the chimney-sweepers boys; and promoted, by every means in his power, the estab
ishment of Sunday-schools, which are now in a fair way to be adopted in every county in England. He likewise promoted a subscription for the relief of the many black poor people who wandered about the metropolis in extreme differe...
Mr Hanway, although never married himself, was yet an advocate for marriage, and recommended it to all young people. He thought it the most effectual restraint on licentiousness, and that an increase of unhappiness was by no means the natural consequence of an increase of domestic cases. A "local habitation," with the society of a sensible woman, the choice of an unbiased affection, he esteemed as the most engagingly persuasive to the love of order and economy; without which he thought life, in whatever station, must be disjointed and perturbed and unhappy. The lady who engaged his first affection was uncommonly handsome; and it is probable he was prevented from marrying only by his failing to obtain her, and the unsettled manner in which the first years of his life were spent; for he loved the society of women; and in the parties which frequently breakfasted at his house the ladies usually made the greater portion of the company.

In his transactions with the world, he was always open, candid, and sincere. Whatever he said might be depended on with implicit confidence. He adhered to the strict truth, even in the manner of his relation; and no brilliancy of thought could induce him to vary from the fact: but although so frank in his own proceedings, he had seen too much of life to be easily deceived by others; and he did not often place a confidence that was betrayed. He did not, however, think the world so degenerate as is commonly imagined;
HAP [306]

HAP

"And if I did (he used to say), I would not let it appear; for nothing can tend to effectually to make a man wicked, or to keep him so, as a marked falpicon. Confidence is the reward of truth and fidelity, and these should never be exerted in vain." In his department of commissioner for vigiluating the navy he was uncommonly affidious and attentive, and kept the contraffors and persons who had dealings with the office at a great distance. He would not even accept a hare or phexiant, nor the smallest present, from any of them; and when any were sent him, he always returned them, not in a morose manner, as if he affected the effects of diffinereftednfs, but with some mild answer; such as, "Mr Hanway returns many thanks to Mr—— for the present he intended him; but he has made it a rule not to accept any thing from any person engaged with the office; a rule which, whilst he acknowledges Mr——'s good intentions, he hopes he will not expect him to break through." With all this goodnefs, Mr Hanway had a certain fignarility of thought and manners, which was perhaps the confequence of his living the greater part of his life in foreign countries, and never having been married. He was not by any means an inattentive observer of the little fformes of politnefs; but as he had fufpended them in various realms, selecting thofe which he approved, his politnefs differed from that of other people; and his converfation had an air of originallity in it that was very pleasing.

Besides the works already mentioned in the course of this article, Mr Hanway was the author of a great number of others; his different publications amounting all together to between fixty and feventy. A complete list of them is given by his biographer Mr Pugh, from whose grateful and well-written performance this article has been chiefly extracted.

HAP, or HAPP, in la\v, signifies to catch or snatch a thing. Thus we meet with, to hap the poiffeion of a deed-poll. Littleton, fol. 8. also, to hap the rent. If partition be made between two parceners, and more land be allowed the one than the other, the that hath most of the land charges it to the other, and hathpeth the rent whereon alizes is brought.

HAPINESS, or FELICITY, absolutely taken, denotes the durable poiffeion of perfect good without any mixture of evil, or the enjoyment of pure poiffeion unalloyed with pain; or a state in which all the wishes are fatisfied: In which fenses, Happinefs is known only by name upon the earth. The word happy, when applied to any fate or condition of human life, will admit of no positive definition, but is merely a relative term: that is, when we call a man happy, we mean that he is happier than fome others with whom we compare him; than the generality of others; or than he himself, was in fome other situation.

This interesting Subjed has been treated by many eminent writers, and in a great variety of ways; but by none does it appear to have been fet in a clearer and more definite point of view than by Archdeacon Paley in the ftifth chapter of his Principles of Phifofopy. "In fubfiftence (says that elegant writer), any condition may be denomnated happy in which the amount or aggregate of poiffeion exceeds that of pain; and the degree of happinefs depends upon the quantity of this excess. And the greatest quantity of it, ordinarily attainable in human life, is that we mean by happinefs, when we inquire or pronounce what human happinefs confines in.

If any positive signification, diftinft from what we mean by poiffeion, can be affixed to the term Happinefs, it may be taken to denote a certain fate of the nervous fystem in that part of the human frame in which we feel joy and grief, passions and affections. Whether this part be the heart, which the turn of most languages would lead us to believe; or the diaphragm, as Buffon, or the upper office of the stomach, as Van Helmont thought; or rather be a kind of fine network, lining the whole region of the præcordia, as others have imagined; it is possible that every painful fenfation may violently shake and disturb the fibres at the time, but that a feries of fuch may at length to derange the very texture of the fystem, as to produce a perpetual irritation, which will flow itself by frefhnefs, refettnefs, and impatience. It is poible alto, on the other hand, that a fuccedence of preparable fenfations may have fuch an effect upon this fable organization, as to cave the fibres to relax, and return into their place and order; and thereby to recover, or if not to preferve, that harmonious conformation which gives to the mind its fenfe of complacency and fatisfaftion. This frate may be denomnated happinefs: And is fo far diftinguifhable from poiffeion, that it does not refer to any particular object of enjoyment, or confilt like poiffeion in the gratification of one or more of the fenfes; but is rather the fecundary effect which fuch objects and gratifications produc upon the nervous fystem, or the fate in which they leave it. The comparative fenfe, however, in which we have explained the term Happinefs, is more popular; and in profecting the fubjed, we may confider, 1. What human happinefs does not confift in; and 2. What it does confilt in.

1. First then happinefs does not confift in the pleasures of fene, in whatever proffufion or variety they be enjoyed. By the pleasures of fene are meant, as well the animal gratifications of eating, drinking, and that by which the species is continued, as the more refined pleasures of music, painting, architecture, gardening, splendid shows, theater exhibitions, and the pleasures, lafly, of active sports, as of hunting, footeing, fishing &c. For, 1. These pleasures continue but for a little while at a time. This is true of them, all, especially of the groffer fort. Laying aside the preparation and the expectation, and computing strictly the actual fenfation, we shall be surprifed to find how inconsiderable a portion of our time they occupy, how few hours in the four and twenty they are able to fill up. 2. By repetition, they lose their releif. It is a property of the machine, for which we know no remedy, that the organs by which we perceive pleasure are blunted and benumbed, by being frequently exercised in the fame way. There is hardly any one who has not found the difference between a gratification when new and when familiar, and any pleasure which does not become indifferent as it grows habitual. 3. The eagerness for high and intense delights takes away the releif from all others; and as fuch delights fall rarely in our way, the greater part of our time becomes from this caufe empty and uneasy. There is hardly any delusion by which men are greater sufferers in their happinefs than by their expecting too much from what
Happiness, what is called pleasure, is, from those intense delights which vulgarly engross the name of pleasure. The very expectation foils them. When they do come, we are often engaged in taking pains to persuade ourselves how much we are pleased, rather than enjoying any pleasure which springs naturally out of the object. And whenever we depend upon being vastly delighted, we always go home secretly grieved at missing our aim. Likewise as hath been observed just now when this humour of being prodigiously delighted has once taken hold of the imagination, it hinders us from providing for or acquiescing in those gently soothing engagements, the due variety and feculation of which are the only things that supply a continued stream of happiness.

The truth seems to be that there is a limit at which these pleasures soon arrive, and from which they ever afterwards decline. They are by necessity of short duration, as the organs cannot hold on their emotions beyond a certain length of time; and if you endeavour to compensate for their imperfection in their nature by the frequency with which you repeat them, you lose more than you gain by the fatigue of the faculties and the diminution of sensibility. We have in this account said nothing of the loss of opportunities or the decay of faculties, which whenever they happen, leave that voluntary definitude and desperation tried by desires that can never be gratified, and the memory of pleasures which must return no more. It will also be allowed by those who have experienced it, and perhaps by those alone, that pleasure which is purchased by the incumbrance of our fortune is purchased too dear: the pleasure never compensating for the perpetual irritation of embarrassed circumstances.

These pleasures, after all, have their value: and as the young are always too eager in their pursuit of them, the old are sometimes too remiss; that is, too stodious of their ease to be at the pains for them which they really deserve.

Secondly, Neither does happiness consist in an exemption from pain, labour, care, business, suspense, melan- tation, and "those evils which are without;" such a state being usually attended not with ease, but with depression of spirits, a taint of sadness in all our ideas, imaginary anxieties and the whole train of hypochondriacal affections. For which reason it is seldom answers the expectations of those who retire from their shops and counting-houses to enjoy the remainder of their days in leisure and tranquility; much less of such as in a fit of chagrin shut themselves up in cloysters and hermitages, or quit the world and their stations in it for solitude and repose.

Where there exists a known external cause of uneasiness, the cause may be removed, and the uneasiness will cease. But those imaginary distresses which men feel for want of real ones (and which are equally tormenting, and to fair equally real), as they depend upon no single or affailable subject of uneasiness, so they admit off-times of no application or relief. Hence a moderate pain, upon which the attention may fall and spend itself, is to many a refreshment; as a fit of the gout will sometimes cure the spleen. And the fame of any moderate agitation of the mind, as a literary controversy, a law-suit, a contested election, and above all gaming; the passion for which, in men of fortune and liberal minds, is only to be accounted for happiness.

Thirdly, Neither does happiness consist in greatness, rank, or elevated station.

Were it true that all superiority afforded pleasure, it would follow, that by how much we were the greater, that is, the more persons we were superior to, in the same proportion, so far as depended upon this cause, we should be the happier; but so it is, that no superiority yields any satisfaction, save that which we possess or obtain over those with whom we immediately compare ourselves. The shepherd perceives no pleasure in his superiority over his dog; the farmer in his superiority over the shepherd; the lord in his superiority over the farmer; nor the king, lastly, in his superiority over the lord. Superiority, where there is no competition, is seldom contemplated; what most men indeed are quite unconscious of. But if the same shepherd can run, fight, or whistle, better than the peasants of his village; if the farmer can show better cattle, if he keeps a better horse, or be supposed to have a longer purse, than any farmer in the hundred; if the lord have more interest in an election, greater favour at court, a better house, or larger estate, than any nobleman in the country; if the king possesses a more extensive territory, a more powerful fleet or army, a more splendid establishment, more loyal subjects, or more weight and authority in adjusting the affairs of nations, than any prince in Europe; in all these cases, the parties feel an actual satisfaction in their superiority. No superiority appears to be of any account but a superiority over a rival. This, it is manifest, may exist wherever rivalships do; and rivalships fall out amongst men of all ranks and degrees. The object of emulation, the dignity or magnitude of this object, makes no difference: as it is not what either possesses that confines the pleasure, but what one possesses more than the other. Philosophy confines at the contempt with which the rich and great speak of the petty trifles and competitions of the poor; not reflecting that these trifles and competitions are just as reasonable as their own, and the pleasure which success affords the same.

It appears evident then, that happiness does not consist in greatness; since what are supposed to be the peculiar advantages of greatness, the pleasures of ambition and superiority, are in reality common to all conditions. But whether the pursuits of ambition be ever wise, whether they contribute more to the happiness or misery of the pursuers, is a different question; and a question concerning which we may be allowed to entertain great doubt. The pleasure of success is exquisite; so also is the anxiety of the pursuit, and the pain of disappointment; and what is the worst part of the account, the pleasure is short lived. We soon cease to look back upon those whom we have left behind; new contests are engaged in, new prospects unfold themselves; a succession of struggles is kept up, whilst there is a rival left within the compass of our views and profession; and when there is none, the pleasure with the pursuit is at an end.

II. We have seen that happiness does not consist in. We are next to consider in what it does consist. In the conduct of life, the great matter is, to know beforehand what will please us, and what pleasures will
Hap [308]

Happiness, hold out. So far as we know this, our choice will be
justified by the event. And this knowledge is more
rare and difficult than at first sight it may seem to be:
For sometimes pleasures, which are wonderfully alluring
and flattering in the prospect, turn out in the posse-
fion extremely inipid; or do not hold out as we ex-
pected: at other times pleasures start up, which never
entered into our calculation, and which we might have
missed of by not forseeing; from whence we have rea-
tion to believe, that we actually do miss of many plea-
tures from the same cause.

By reason of the original diversity of taste, capacity,
and constitution, observable in the human species,
and the still greater variety which habit and fashion have
introduced in these particulars; it is impossible to pro-
pose any plan of happiness which will succeed to all, or
any method of life which is universally eligible or prac-
ticable. All that can be said is, that there remains a
presumption in favour of those conditions of life in
which men generally appear most cheerful and con-
tented. For though the apparent happiness of man-
kind be not always a true measure of their real hap-
iness, it is the best measure we have.

Upon this principle, then, happiness appears to con-
sist in

1. In the exercise of the social affections. Those persons commonly possess good spirits who have about them many objects of affection and endearment; as wife, children, kindred, friends: and to the want of these may be imputed the peculiars of monks, and of such as lead a monastic life. Of the same nature with the indulgence of our domestic affections, and equally refreshing to the spirits, is the pleasure which results from acts of bounty and beneficence, exercised either in giving money, or in imparting to those who want it the assistance of our skill and protection.

2. Another main article of human happiness is, the exercise of our faculties, either of body or mind, in the pursuit of some engaging end. It seems to be true, that no plenitude of present gratifications can make the possessor happy for a continuance, unless he have something in reserve, something to hope for and look forward to. This may he inferred from comparing the alacrity and spirits of men who are engaged in any pursuit which interests them, with the dejection and ennui of almost all who are either born to fo much that they want nothing more, or who have used up their satisfactions too soon, and drained the drosses of them. It is this intolerable vacuity of mind which carries the rich and great to the horfe-cours and the gaming table; and often engages them in contests and pursuits of which the success bears no proportion to the solicitude and expense with which it is sought.

The question now occurs, How are we to provide ourselves with a succession of pleasurable engagements? This requires two things: Judgment in the choice of ends adapted to our opportunities; and a command of imagination, so as to be able, when the judgment has made choice of an end, to transfer a pleasure to the mean; after which the end may be forgotten as soon as we will. Hence those pleasures are most valuable, not which are most exquisite in the fruition, but most productive of engagement and activity in the pursuit.

A man who is earnest in his endeavours after the happiness of a future state, has in this respect an ad-
vantage over all the world. For he has constantly
before his eyes an object of supreme importance, pro-
ductive of perpetual engagement and activity, and of
which the pursuit (which can be paid of no pursuit be-
des) lasts him to his life's end. Yet even he must
have many ends beside the far end; but then they
will conduct to that, he subordinate, and in some way or
other capable of being referred to that, and derive their
satisfaction, or an addition of satisfaction, from that.

Engagement is every thing. The more significant,
however, our engagements are, the better; such as
the planning of laws, institutions, manufactures, char-
ities, improvements, public works, and the endeavour-
ing by our interest, address, solicitation, and activity,
to carry them into effect: Or, upon a smaller scale,
the procuring of a maintenance and fortune for our
families, by a course of industry and application to our
callings, which forms and gives motion to the common
occupations of life; training up a child; protecting
a scheme for his future establishment; making our-
selves masters of a language or a science; improving
or managing an estate; labouring after a piece of prefer-
ment: And, lastly, any engagement which is better
than none; as the writing of a book, the building of a
house, the laying out of a garden, the digging of a fish-pond; even the raiing of a cucumber or a tulip.

Whilf the mind is taken up with the objects or busines before it, we are commonly happy, whatever the object or business be; when the mind is absent, and the thoughts are wandering to something else than what is passing in the place in which we are.

3. The art in which the secret of human happiness
in a great measure consists, is to let the habits in such
a manner, that every change may be a change for the
better. The habits themselves are much the same;
for whatever is made habitual becomes smooth, and
easy, and indifferent. The return to an old habit is
likewise easy, whatever the habit be. Therefore the
advantage is with those habits which allow of indul-
gence in the deviation from them. The luxurious re-
ceive no greater pleasure from their dainties than the
peasant does from his bread and cheese; but the pe-
asant whenever he goes abroad finds a feast, whereas
the epicure must be well entertained to escape diffi-
gult.

Those who spend every day at cards, and those who
go every day to plough, pass their time much alike;
intent upon what they are about, wanting nothing,
regretting nothing, they are both in a state of ease:
But then, whatever impedes the occupation of the card-
player disdresses him; whereas to the labourer, every
interruption is a refreshment: and this appears in the
different effect that the Sabbath produces upon the
two, which proves a day of recreation to the one, but
a lamentable burden to the other. The man who has
learned to live alone, feels his spirits enlivened when-
ever he enters into company, and takes his leave with-
out regret: another, who has long been accustomed to
a crowd or continual succession of company, experi-
cences in company no elevation of spirits, nor any greater
satisfaction than what the man of a retired life finds in
his chimney-corner. So far their conditions are equal;
but let a change of place, change of business, or rate
the companion of his circle, his visitors, his
club,
HAP [309] HAR

Happiness, club, common-room, or coffee-house, and the difference of advantage in the choice and constitution of the two habits will show itself. Solitude comes to the one clothed with melancholy, to the other it brings liberty and quiet. You will see the one freetul and refractory, at a loss how to dispose of his time, till the hour comes round that he can forget himself in bed; the other easy and satisfied, taking up his book or his pipe as soon as he finds himself alone; ready to admit any little amusement that calls up, or to turn his hands and attention to the first business that presents itself; or content without either to sit still, and let his trains of thought glide indolently through his brain, without much use, perhaps, or pleasure, but without hankering after any thing better and without irritation. A reader who has injured himself to books of science and argumentation, if a novel, a well written pamphlet, an article of news, a narrative of a curious voyage, or the journal of a traveller, fall in his way, sits down to the repast with relish, enjoys his entertainment while it lasts, and can return when it is over to his graver reading without diftaste. Another, with whom nothing will go down but works of humour and pleasantry, or whose curiosity must be interested by perpetual novelty, will confine a bookseller's window in half a forenoon: during which time he is rather in search of diversion than diverted; and as books to his taste are few and short and rapidly read over, the flock is soon exhausted, when he is left without resource from this principal supply of innocent amusement.

So far as circumstances of fortune conduce to happiness, it is not the income which any man possest, but the increase of income that affords the pleasure. Two persons, of whom one begins with 100l. and advances his income to 300l. a year; and the other sets off with 100l. and dwindles down to 100l. may, in the course of their time, have the receipt and spending of the same sum of money; yet their satisfaction, so far as fortune is concerned in it, will be very different: the series and sum total of their incomes being the same, it makes a wide difference which end they begin at.

4. Happiness consists in health: understanding by health, not only freedom from bodily distempers, but also that tranquillity, firmness, and serenity of mind, which we call good spirits. For the sake of health, according to this notion of it, no sacrifices can be too great. Whether it require us to relinquish lucrative situations, to abstain from favourite indulgences, to undergo tedious regimens; whatever difficulties it lays us under, a man, who pursues his happiness rationally and resolutely, will be content to submit to. When we are in perfect health and spirits, we feel in ourselves a happiness independent of any particular outward gratification whatever, and of which we can give no account. This is an enjoyment which the Deity has annexed to life; and probably constitutes, in a great measure the happiness of infants and brutes, especially of the lower and sedentary orders of animals, as of oyster, peri-winkle, and the like.

The above account of human happiness will justify these two conclusions, which, although found in most books of morality, have feldom been supported by any sufficient reasons: 1. "That happiness is pretty equally distributed amongst the different orders of civil society;" and, 2. "That vice has no advantage over virtue, even with respect to this world's happiness."

HAQUE, in old writers, a little hand-gun, prohibited to be used for destruction of game, &c. by statute 33 Hen. VIII. cap. 6. and 2 & 3 Ed. VI. cap. 14. There is also the half-haque, or demi-haque, within the said acts.

HARAM. See Seraglio.

Haran, otherwise Charis in Mecopotamia, a city celebrated for having been the place where Abraham first retreated after he left Ur (Gen. xi. 31, 32); and where Terah, Abraham's father, died and was buried. Thither it was likewise that Jacob retired to Laban when he fled from the indignation of his brother Edom (id. xxvii. 45, xxviii.10, &c.) Lastly at Haran or Charis in Mecopotamia, Charis the Roman general was defeated and killed by the Parthians. Haran was situated between the Euphrates and the river Chezar, at a good distance from the place where these two rivers join.

Harangue, a modern French name for a speech or oration made by an orator in public,—Menage derives the word from the Latin aranea, which signifies the same; formed, according to Ferrari, from aringe, "a jurt, or place of justicing." Others derive it from the Latin ara, "altar;" by reason the first harangues were made before altars; whence the verbe de Juvenal

Ant Legumensis victor discurus ad aram.

Harangues were usually made by the generals, previous to an engagement both amongst the Greeks and Romans. An harangue on such occasions was called allocutio. See Allocutio.

The word is also frequently used in an ill sense, viz. for a too pompous, prolix, or unfashionable speech or dissertation.

Harbinger, an officer of a king's household, having four yeomen under him, who ride a day's journey before the court when it travels, to provide lodgings, &c.

HARBOUROUGH, a town of Leicestershire, 84 miles from London. It is a great thoroughfare in the road to Derby, near the source of the river Welland; and was famous in Camden's time, for its market fair, where the belt hores and colts are still sold. Its fairs are April 29 and Oct. 19. The market is on Tuesday, for the use of which the Earl of Harbrough has lately built a neat market-house at his own expense. Here is a good free-school, and a fair chapel of ease to Great-bowden in its parish.

Harbour, a general name given to any sea port or haven, as also to any place convenient for mooring shipping, although at a great distance from the sea.

The qualities requisite in a good harbour are, that the bottom be entirely free from rocks or shallows; that the opening be of sufficient extent to admit the entrance or departure of large ships without difficulty; that it should have good anchoring ground, and be easy of access; that it should be well defended from the violence of the wind and sea; that it should have room and convenience to receive the shipping of different nations, and those which are laden with different merchandizes; that it be furnished with a good light-house, and have a variety of proper rings, posts, moorings,
HAR[310]HAR

Harburger

n in order to remove or secure the vessels contained therein; and, finally, that it have plenty of wood, and other materials for firing, besides hemp, iron, mariners, &c.

HARBURG, a small town in Germany in the circle of Lower Saxony, and dutchy of Lauenburg seated on the river Elbe over against Hamburg. It was surrounded with walls in 1535, and 30 years after, a strong castle, which still remains, was built by the bishop. E. Long. 941. N. 53. 51.

HARDENING, the giving a greater degree of hardness, to bodies than they had before.

There are several ways of hardening iron and steel, as by hammering them; quenching them in cold water, &c. See STEEL.

Case-hardening. See CasH hardened.

HARDERWICH, a town of the United Provinces, in Dutch Guelderland. It is a well-built town, and the chief of the sea-ports of this province. It has several good buildings, particularly the great church, which is much admired. In 1648 the public school here was turned into an university. The French did it a great deal of damage in 1672; since which time it has been on the decline. E. Long. 5. 57. N. Lat. 52° 14.

HARDNESS, in bodies, a property directly opposite to fluidity; by which they refit the impression of any other substance, sometimes in an extreme degree. Hardness has been found to consist in the motion of the particles of a body upon one another in consequence of a certain action of the universal fluid or elementary fire among them; we must conclude that hardness consists in the absence of this action, or a deficiency of what is called latent heat. This is confirmed by observing, that there is in intermediate state between hardness and fluidity, in which bodies will yield to a certain force, though they still make a considerable resistance. This is principally observed in the metals, and is the foundation of their ductility. It appears, indeed, that this last property, as well as fluidity, is entirely dependent on a certain quantity of latent heat absorbed, or otherwise acting within the substance itself; for all the metals are rendered hard by hammering, and loose by being put again into the fire and kept there for some time. The former operation renders them hot as well as hard; probably, as Dr Black observes, because the particles of metal are thus forced nearer one another, and those of fire squeezed out from among them. By keeping them for some time in the fire, that element infinuates itself again among the particles and arranges them in the same manner as before, so that the ductility returns. By a second hammering this property is again destroyed, returning on a repetition of the heating, or annealing as it is called; and so on, as often as we please.

Hardness appears to diminish the cohesion of bodies in some degree, though their fragility does not by any means keep pace with their hardness. Thus, glass is very hard and very brittle; but sinter, though still harder than glass, is much less brittle. Among the metals, however, these two properties seem to be more connected, though even here the connection is by no means complete. Steel, the hardest of all the metals is indeed the most brittle; but lead, the softest, is not the most ductile. Neither is hardness connected with the specific gravity of bodies; for a diamond, the hardness, hardest substance in nature, is little more than half Hardouin, the weight of the lightest metal. As little is it connected with the coldness, electrical properties, or any other quality with which we are acquainted; so that though the principle above laid down may be accepted as a general foundation for our inquiries, a great number of particulars remain yet to be discovered before we can offer any satisfactory explanation.

All bodies become harder by cold: but this is not the only means of their doing so, for some become hard by heat as well as cold. Thus water becomes hard by cold when it is frozen, but it becomes much harder when its steam is passed over red-hot iron, and it enters the substance of the metal, by an union with which it becomes almost as hard as glass.

Mr Quift and others have constructed tables of the hardness of different substance. The method pursued in constructing these tables was by observing the order in which they were able to cut or make any impression upon one another. The following table, extracted from M. Magellan's edition of Croftend's Mineralogy, was taken from Dr Quift, Bergman, and Mr Kirwan.

The first column shows the hardness, and the second the specific gravity.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Hardness</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond from Ormus</td>
<td>20</td>
<td>3.7</td>
</tr>
<tr>
<td>Pink diamond</td>
<td>19</td>
<td>3.4</td>
</tr>
<tr>
<td>Bluish diamond</td>
<td>19</td>
<td>3.3</td>
</tr>
<tr>
<td>Yellowish diamond</td>
<td>19</td>
<td>3.3</td>
</tr>
<tr>
<td>Cubic diamond</td>
<td>18</td>
<td>3.2</td>
</tr>
<tr>
<td>Ruby</td>
<td>17</td>
<td>4.2</td>
</tr>
<tr>
<td>Pale ruby from Brazil</td>
<td>16</td>
<td>3.5</td>
</tr>
<tr>
<td>Ruby spinell</td>
<td>13</td>
<td>3.4</td>
</tr>
<tr>
<td>Deep blue sapphire</td>
<td>16</td>
<td>3.8</td>
</tr>
<tr>
<td>Dita piter</td>
<td>17</td>
<td>3.8</td>
</tr>
<tr>
<td>Topaz</td>
<td>17</td>
<td>4.2</td>
</tr>
<tr>
<td>Whithif ditto</td>
<td>14</td>
<td>3.5</td>
</tr>
<tr>
<td>Bohemian ditto</td>
<td>11</td>
<td>2.8</td>
</tr>
<tr>
<td>Emerald</td>
<td>12</td>
<td>2.8</td>
</tr>
<tr>
<td>Garnet</td>
<td>12</td>
<td>4.4</td>
</tr>
<tr>
<td>Agate</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>Onyx</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>Sardonyx</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>Occid. amethyst</td>
<td>11</td>
<td>2.7</td>
</tr>
<tr>
<td>Cryfhal</td>
<td>11</td>
<td>2.6</td>
</tr>
<tr>
<td>Corneilan</td>
<td>11</td>
<td>2.7</td>
</tr>
<tr>
<td>Green jasper</td>
<td>11</td>
<td>2.7</td>
</tr>
<tr>
<td>Reddish yellow ditto</td>
<td>9</td>
<td>2.6</td>
</tr>
<tr>
<td>Schorl</td>
<td>10</td>
<td>3.6</td>
</tr>
<tr>
<td>Tormaline</td>
<td>10</td>
<td>3.6</td>
</tr>
<tr>
<td>Quartz</td>
<td>10</td>
<td>2.7</td>
</tr>
<tr>
<td>Opal</td>
<td>10</td>
<td>2.6</td>
</tr>
<tr>
<td>Chryfolute</td>
<td>10</td>
<td>3.7</td>
</tr>
<tr>
<td>Zeyolte</td>
<td>8</td>
<td>2.1</td>
</tr>
<tr>
<td>Fluor</td>
<td>7</td>
<td>3.5</td>
</tr>
<tr>
<td>Calcareous spar</td>
<td>6</td>
<td>2.7</td>
</tr>
<tr>
<td>Gyppum</td>
<td>5</td>
<td>2.3</td>
</tr>
<tr>
<td>Chalk</td>
<td>3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

HARDOURIN (John), a learned French Jesuit in the beginning of the 18th century, known by the remarkable paradoxes he advanced in his writings; in particular, that all the works of the ancient profane writers, except Cicero's works, Virgil's Georgics, Horace's satires and epistles, and Pliny's natural
HARE

Hare, in zoology. See LEPRUS.

Hares and rabbits are very mischievous to new planted orchards, by peeling off the barks of the tender young trees for their food. They do also the same sort of mischief to nurseries; for they are cunning in the ways and mazes of the fields, and overhear all that passes. They then seize, and cover with the earth, and where they are buried, the saplings are killed. This is the cause of our eating in terror, and running from them. Some feed on the barks of trees, and despise all other food; others prefer grass and young trees for their food. They do also the same mischief to warrens, pretend to an exclusive right of property in them, and drive off the sportsmen. The farther they are from the habitation of men, the more mischievous they are. They are in the habit of this animal, a member of Eton school, and from that foundation became a member of Eton college, Cambridge; where he had the tuition of the marquis of Blandford, only son of the illustrious duke of Marlborough, who appointed him chaplain-general to the army. He afterwards obtained the deanship of Worcester, and from thence was promoted to the bishopric of Chichester, which he held with the deanship of Haxthorpe, of St. Paul's to his death, which happened in 1740.

Hare (Dr. Francis), an English bishop, of whose birth we have no particulars, was bred at Eton school, and from that foundation became a member of Eton college, Cambridge; where he had the tuition of the marquis of Blandford, only son of the illustrious duke of Marlborough, who appointed him chaplain-general to the army. He afterwards obtained the deanship of Worcester, and from thence was promoted to the

HARLOT

Haro. See York.

Hares are the swiftest of all quadrupeds, and are much dreaded by sportsmen in the chase. They are more nimble than deer, and are much more difficult to catch. They are also the most dangerous to follow; for they are cunning in the ways and mazes of the fields, and know the nearest ways, run up the hills and rocks, to the confusion of the dogs, and the discouragement of the hunters. See the article Hunting.

Hares and rabbits are very mischievous to new planted orchards, by peeling off the barks of the tender and young trees for their food. They do also the same sort of mischief to nurseries; for they are cunning in the ways and mazes of the fields, and overhear all that passes. They then seize, and cover with the earth, and where they are buried, the saplings are killed. This is the cause of our eating in terror, and running from them. Some feed on the barks of trees, and despise all other food; others prefer grass and young trees for their food. They do also the same mischief to warrens, pretend to an exclusive right of property in them, and drive off the sportsmen. The farther they are from the habitation of men, the more mischievous they are. They are in the habit of this animal, a member of Eton school, and from that foundation became a member of Eton college, Cambridge; where he had the tuition of the marquis of Blandford, only son of the illustrious duke of Marlborough, who appointed him chaplain-general to the army. He afterwards obtained the deanship of Worcester, and from thence was promoted to the
collection of useful and curious manuscripts, begun near the end of the last century, by Robert Harley of Brampton Bryan, Esq.; in Herefordshire, afterwards earl of Oxford and lord high-treasurer; and which was conducted upon the plan of the great Sir Robert Cotton. He published his first considerable collection in August 1703; and in less than ten years he got together near 2500 rare and curious MSS. Soon after this, the celebrated Dr George Hoiks, Mr Anthis gaining king at arms, bishop Nicolson, and many other eminent antiquaries, not only offered him their assistance in procuring MSS. but presented him with several that were very valuable. Being thus encouraged to perseverance by his success, he kept many persons employed in purchasing MSS. for him abroad, giving them written instructions for their conduct. By these means the MS. library was in the year 1721, increased to near 6000 books, 14,000 original charters, and 500 rolls.

On the 21st of May 1724 lord Oxford died; but his son Edward, who succeeded to his honours and estate, still further enlarged the collection; so that when he died, June 16th 1745, it contained of 8000 volumes, several of them containing distinct and independent treatises, besides many loose papers which have been since forted and bound up in volumes; and above 40,000 original rolls, charters, letters patent, grants, and other deeds and instruments of great antiquity.

The principal design of making this collection was the establishment of a MS. English historical library, and the rescuing from destruction such national records as had eluded the diligence of preceding collectors; but lord Oxford's plan was more extensive; for his collection abounds also with curious MSS. in every science. This collection is now in the British Museum and an enumeration of its contents may be seen in the Annual Register, vi. 1740, &c.

HARLEM, a town of the United Provinces, in Holland, situated on the river Sparren, in E. Long. 5. 17. N. Lat. 53. 22. It is a large and populous city, and stands near a lake of the same name, with which it has a communication, as well as with Amsterdam and Leyden, by means of several canals. Schemes have been often formed for draining of this lake, but were never put in execution. To the south of the town lies a wood, into delightful walks and villas. The town is famous for the siege which it held out against the Spaniards for ten months in 1573; the townsmen before they capitulated being reduced to eat the vilest animals, and even leather and grubs. The inhabitants corresponded with the prince of Orange for a considerable time by means of carrier-pigeons. Harlem is as well known, claims the invention of printing; and in fact, the first efforts of the art are indisputably to be ascribed to Laurentius, a magistrate of that city. [See Laurentius, and History of printing.] Before the Reformation, Harlem was a bishop's see; and the Papists still greatly outnumber the Protestant. An academy of sciences was founded here in 1752. Vast quantities of linen and thread are bleached here; the waters of the lake having a peculiar quality, which renders them very fit for that purpose. - A fair for the sale of silk is held with regard to flowers, particularly tulips, once prevailed here, in consequence of which the most beautiful sorts were bought and sold at an extravagant price.

HARLEQUIN, in the Italian comedy, a buffoon, Harlequin dressed in party-coloured cloaths; answering much the same purpose as a merry-andrew or jack-pudding in our drolls, on mountebanks stages, &c. We have also introduced the harlequin upon our theatres; and this is one of the flandering characters in the modern grotesque or pantomime entertainments. - The term took its rise from a famous Italian comedian who came to Paris under Henry III., and who frequented the house of M. de Harlay, his companions used to call him Harlequin, q. d. little Harlay; a name which has descended to all those of the same rank and pro

HARLEY (Robert), earl of Oxford and Mortimer, was the eldest son of Sir Edward Harley, and born in 1661. At the Revolution, Sir Edward and his son raised a troop of horse at their own expense; and after the accession of king William and queen Mary, he obtained a seat in parliament. His promotions were rapid: in 1702, he was chosen speaker of the house of commons; in 1704, he was sworn of queen Anne's privy council, and the same year made secretary of state; in 1706, he served as one of the millioners for the treaty of Union; and in 1710, was appointed a commissiioner of the treasury, and chancellor and under-treasurer of the exchequer. A daring attempt was made on his life, March 8. 1711, by the marquis of Guilford a French Papist; who, when under an examination before a committee of the privy council, stabbed him with a penknife. Of this wound, however, he soon recovered; and was the same year created earl of Oxford, and lord high-treasurer, which office he resigned just before the queen's death. He was impeached of high treason in 1715, and committed to the Tower; but was cleared by trial, and died in 1724. His character has been variously represented, but cannot be here discussed. He was not only an encourager of literature, but the greatest collector in his time of curious books and MSS. his collection of which makes a capital part of the British Museum. See HARLEIAN Collection.

HARLING. See HERLING.

HARLINGEN, a sea-port town of the United Netherlands, in West Friesland. It stands on the coast of the Zuyder see, at the mouth of a large canal, in E. Long. 5. 23. N. Lat. 53. 12. It was only a hamlet till about the year 1504, when it was destroyed by the sea; and being afterwards rebuilt, became a considerable town. In 1570, it was considerably enlarged by the care of William prince of Orange. It is now very well fortified, and is naturally strong, as the adjacent country can very easily be laid under water. The city is square; and the streets are handsome, straight, and clean, with canals in the middle of them. It has five gates; four towards land, and one towards the sea; but though the harbour is good, yet vessels of great burden cannot get into it until they are lightened for want of water. The admiralty college of Friesland has its seat here. The manufactures are salt, bricks, and tiles; a considerable trade is also carried on in all sorts of linen cloth; and the adjacent country yields abundance of corn and good pastures.

HARLOCK, or HARLEIGH, a town of Merionethshire, in North Wales, 223 miles from London, on the sea coast, near the north west point of the county. It
HARLOT, a woman given to inconstancy, or that makes a habit or a trade of prostituting her body. — The word is supposed to be tided for the diminutive sarxet, a "little whore." — Others derive it from Arletta, a mifref to Robert duke of Normandy, and mother to William the Conqueror; Camden derives it from one Arlotha, connoting to William the Conqueror: Others from the Italian Arletta, "a proud whore."

Harlots were tolerated among Jews, Greeks, and Romans. Fornication indeed was prohibited among the Jews, under severe penalties; but these are explained as extending only to women of their own nation. The public news were therefore flocked with foreign prostitutes, who seem to have been taken under the protection of government. Hence appears the reason why the word strange woman is often found to signify a harlot. Prostitutes at first wore veils or masks; but by and by their modesty was entirely put to flight, and they went abroad bare-faced. At Athens the prostitutes were generally strangers; and such as debauched an Athenian female were liable to a penalty. To frequent the public news was not held disgraceful! The wife of the Hellen fagges allowed by Solon permitted common "whores" to go publically to the young men who had engaged them, and encouraged the youth of Athens to gratify their lust with these, rather than seduce and debauch the wives and daughters of citizens. Cato the Censor was of the same sentiments; and Cicero challenges all perverts to name atime when men were either reprobate for this practice, or not countenanced in it. Amongst the Jews, the harlots used to ply in the highways and streets of cities; at Athens they frequented the circuses, and the old forum. — In some places they were distinguished by their drees from other women. Corinth was a remarkable nursery of harlots, and gave birth to the noted Lais. Their accomplishments were oftentimes great, in all the polite and elegant parts of female education, viz. philosophy, dancing, singing, rhetoric, &c. Alpasia, the mifref of Pericles, was admired by Socrates for her learning. The more accomplished prostitutes frequently amallled large fortunes; a remarkable instance of which we have in Phryne, who offered to rebuild the walls of Thebes, when destroyed by Alexander, on condition that they would perpetrate her memory and profession by an inscription. Prostitutes at Rome were obliged to fix a bill over their doors, indicating their character and profession. It was also customary for them to change their names, after they had signified to the praxor, their intention of leading such a dissolute life: this they did, because their trade was unbecoming their birth and condition; but they re-assumed their family names when they quitted their infamous mode of living. Women whose grandfather, father, or husband, had been a Roman knight, were forbidden by the laws to make a public profession of lewdness.

HARMATTAN, the name of a remarkable periodical wind which blows from the interior parts of Africa towards the Atlantic ocean. Of this wind we have the following account in the Philosophical Transactions, vol. 71, furnished by Mr Norris, a gentleman who had frequent opportunities of observing its singular properties and effects.

On that part of the coasts of Africa which lies between the Cape Verd and Cape Lopez, an easterly wind prevails during the months of December, January, and February, which by the Fantees, a nation on the Gold coast, is called the Harmattan. Cape Verd is in 15 N. latitude, and Cape Lopez in 1 S. latitude; and the coast between these two Capes runs in an oblique direction, nearly from W. S. W. to E. S. E., forming a range of upwards of 2000 miles. At the isles de Los, which are a little to the northward of Sierra Leone, and to the southward of Cape Verd, it blows from the E. S. E. on the Gold coast from the N. E. and at Cape Lopez, and the river Gabon, from the N. N. E. This wind is by the French and Portuguese, who frequent the Gold coast, called simply the N. E. wind, the quarter from which it blows. The English, who sometimes borrow words and phrases from the Fanteese language, which is less guttural and more harmonious, than that of their neighbours, adopt the Fanteese word Harmattan.

The harmattan comes on indiscriminately at any hour of the day, at any time of the tide, or at any period of the moon, and continues sometimes only a day or two, sometimes five or six days, and it has been known to last fifteen or sixteen days. There are generally three or four returns of it every season. It blows with a moderate force, not quite so strong as the sea-breeze (which every day sets in during the fair season from the W. W. S. W. and S. W.); but somewhat stronger than the land wind at night from the N. and N. N. W.

1. A fog or haze is one of the peculiarities which always accompanies the harmattan. The gloom occasioned by this fog is so great as sometimes to make even near objects obscure. The English stands about the midway between the French and Portuguese forts, and not quite a quarter of a mile from either; yet very often from thence either of the other forts can be discovered. The sun, concealed the greatest part of the day, appears only a few hours about noon, and then of a milcl red, exciting no painful iritation on the eye.

2. Extreme dryness makes another extraordinary property of this wind. No dew falls during the continuance of the harmattan; nor is there the least appearance of moisture in the atmosphere. Vegetables of every kind are very much injured, all tender plants and most of the productions of the garden, are destroyed; the grass withers, and becomes dry like hay; the vigorous ever-greens likewise feel its pernicious influence; the branches of the lemon, orange, and lime trees droop, the leaves become scalded, wither, and if the harmattan continues to blow for 10 or 12 days, are so parched, as to be easily rubbed to dust between the fingers; the fruit of these trees, deprived of its nourishment, and flinted in its growth, only appears to ripen, for it becomes yellow and dry, without acquiring half the usual size. The natives take this opportunity of the extreme dryness of the grass and young trees to set fire to them, especially near

their
HARMATTAN. their roads, not only to keep these roads open to travellers, but to destroy the shelter which long grass, and thickets of young trees, would afford to skulking parties of their enemies. A fire thus lighted flies with such rapidity, as to endanger those who travel in that direction. A common method of escape is, on discovering a fire to windward, to set the grass on fire to leeward, and then follow your own fire. There are other extraordinary effects produced by the extreme dryness of the harmattan.

The parching effects of this wind are likewise evident on the external parts of the body. The eyes, nostrils, lips, and palate, are rendered dry and uneasy, and drink is often required, not so much to quench thirst, as to remove a painful aridity in the faucets. The lips and nose become sore and even cracked; and thirst, though the air be cool, yet there is a troublesome sensation of prickling heat on the skin. If the harmattan continues four or five days, the scarf skin peels off, first from the hands and face, and afterwards from the other parts of the body if it continues a day or two longer. Mr Norris observed, that when sweat was excited by exercise on those parts which were covered by his cloaths from the weather, it was peculiarly acrid, and tasted, on applying his tongue to his arm, something like spirits of hartnthon diluted with water.

3. Salubrity forms a third peculiarity of the harmattan. Though this wind is so very prejudicial to vegetable life, the occasional favorable parching effects on the human species, yet it is highly conducive to health. Those labouring under fluxes and intermitting fevers generally recover in a harmattan. Those weakened by fevers, and sinking under evacuations for the cure of them; particularly bleeding, which is often injudiciously repeated, have their lives saved, and vigour restored, in spite of the doctor. It stops the progress of epidemics; the small-pox, remittent fevers, &c. not only disappear, but those labouring under these diseases when an harmattan comes on, are almost certain of a speedy recovery. Infection appears not then to be easily communicated even by art.

In the year 1779, there were on board the Unity, at Whydah, above 300 slaves; the small-pox broke out among them, and it was determined to inoculate; those who were inoculated before the harmattan came on got very well through the disease. About 70 were inoculated a day or two after the harmattan set in, but no one of them had either sickness or eruption. It was imagined that the infection was effectually dispersed and the flux clear of the disorder; but in a very few weeks it began to appear among these seamen. About 50 of them were inoculated the second time; the others had the disease in a natural way; an harmattan came on, and they all recovered, excepting one girl, who had an ugly ulcer on the inoculated part, and died some time afterwards of a locked jaw."

This account differs remarkably from that given by Dr Lind, who calls the harmattan a malignant and fatal wind; (see his Diaries of Hot Climates.) As to the nature of the soil over which it blows, it appears that excepting a few rivers and some lakes, the country about and beyond Whydah is covered for 400 miles back with verdure, open plains of grass, clumps of trees, and some woods of no considerable extent. The surface is sandy, and below that a rich reddish earth; it rises with a gentle ascent for 150 miles from Harmodius the sea, before there is the appearance of a hill, without affording a stone of the size of a walnut. Beyond these hills there is no account of any great ranges of mountains.

HARMODIUS, a friend of Aristogiton, who delivered his country from the tyranny of the Pilitrates. (See Aristogiton.) The Athenians, to reward that patriotism of these illustrious citizens, made a law that no one should ever after bear the name of Aristogiton and Harmodius.

HARMONIA, in fabulous history, the wife of Cadmus, both of whom were turned into serpents. See Cadmus.

Though many of the ancient authors made Harmonia a princess of divine origin, there is a passage in Athenaeus from Euhemerus, the Nothini of his time, which tells us, that she was by profession a player on the flute, and in the service of the prince of Zidon previous to her departure with Cadmus. This circumstance, however, might encourage the belief, that as Cadmus brought letters into Greece, his wife brought harmonium thither; as the word ἅρμονία, has been said to have no other derivation than from her name: which makes it very difficult to ascertain the feminine in which the Greeks made use of it in their music; for it has no roots by which it can be decomposed, in order to deduce it from their etymology. The common account of the word, however, is given by lexicographers, and generally adopted by the learned, does not confirm this opinion. It is generally derived from ἄρμα, and this from the old verb ἄρω, to fit or join.

HARMONIC. As an adjective, it signifies in general anything belonging to harmony; though in our language the adjective is more properly written harmonical. In this case it may be applied to the harmonical divisions of a monochord; or, in a word, to confonances in general. As a substantive, it imports all the concomitant or accessory sounds which, upon the principles resulting from the experiments made on sonorous bodies, attend any given sound whatever, and render it appreciable. Thus all the aliquot parts of a musical firing produce harmonical sounds, or harmonics.

HARMONICA. This word, when originally appropriated by Dr Franklin to that peculiar form or mode of musical glasses, which he himself, after a number of happy experiments, had constituted, was written Harmonica. In this place, however, we have ventured to restore it to its native plenitude of sound, as we have no antipathy against the moderate use of aspirations. It is derived from the Greek word ἅρμονια. The radical word is ἅρμα, to suit or fit one thing to another. By the word ἅρμονια the Greeks expressed aptitudes of various kinds; and from the use which they made of that expression, we have reason to conclude, that it was intended to import the highest degree of refinement and delicacy in those relations which it was meant to signify. Relations or aptitudes of sound, in particular, were understood by it; and in this view, Dr Franklin could not have selected a name more expressive of its nature and genius, for the instrument which we are now to describe; as, perhaps, no musical tone can possibly be finer, nor consequently susceptible
In an old English book, whole title we cannot at present recollect, and in which a number of various amusements were described, we remember to have seen the elements or first approaches to music by glaftes. That author enjoins his pupil to choose half a dozen of such as are used in drinking; to fill each of them with water in proportion to the gravity or acuteness of the sound which he intended it should produce; and having thus adjusted them one to another, he might entertain the company with a church-tune. These, perhaps, were the rude and barbarous hints which Mr. Puckridge afterward compiled. But, for a farther account of him, of the flate in which he left the instrument, and of the flate to which it has afterwards been carried, we must refer our readers to the following extracts from Dr. Franklin's letters, and from others who have written upon the same subject.

The Doctor, in his letter to Father Beccaria, has given a minute and elegant account of the Harmonica.

Nor does it appear that his successors have either more sufficiently improved, or more accurately delineated that angelic instrument. The detail of his own improvements, therefore, shall be given in his own words.

"Perhaps (says he) it may be agreeable to you, as you live in a musical country, to have an account of the new instrument lately added here to the great number that charming science was posseffed of before. As it is an instrument that seems peculiarly adapted to Italian music, especially that of the soft and plaintive kind, I will endeavour to give you such a description of it, and of the manner of constructing it, that you or any of your friends may be enabled to imitate it, if you go below your required tone there is not a note too sharp. This is done by grinding them round from the neck towards the brim, the breadth of one or two inches as may be required; often trying the glaftes by a well-tuned harpsichord, comparing the note drawn from the glaftes by your finger with the note you want, as founded by that string of the harpsichord. When you come near the matter, be careful to wipe the glaftes clean and dry before each trial, because the tone is something flatter when the glaftes is wet than it will be when dry; and grinding a greater number of the strings, you will thereby tone it to great exactness. The more care is necessary in this, because if you go below your required tone there is no sharpening it again but by grinding somewhat off the brim which will afterwards require polishing, and thus increase the trouble.

"The glaftes being thus tuned, you are to be provided with a cafe for them, and a fpindle on which they are to be fixed. My cafe is about three feet long, eleven inches every way wide within at the biggest end, and five inches at the smallest end; for it tapers all the way to adapt it better to the conical figure of the set of glaftes. This cafe opens in the middle of its heighth, and the upper part turns up by hinges fixed behind. The fpindle is of hard iron, lies horizontally from end to end of the box within, exactly in the middle, and is made to turn on brass gudgeons at each end. It is round, an inch diameter at the thickest end, and tapering to a quarter of an inch at the smallest. A square hand comes from its thickest end through the box, on which shank a wheel is fixed by a fcrew. This wheel serves as a fly to make the motion equal, when the fpindle, with the glaftes, is turned by the foot like a spinning-wheel. My wheel is of mahogany, 18 inches diameter, and pretty thick, so as to conceal near its circumference about 2 lb. of lead. An ivory pin is fixed in the face of this wheel, about four inches from the axis. Over the neck of this pin is put the loop of the string that comes up from the moveable stop to give it motion. The cafe stands on a neat frame with four legs.

To fix the glaftes on the fpindle, a cork is firft to

Harmony.
be fitted in each neck pretty tight, and projecting a little without the neck, that the neck of one may not touch the inside of another when put together, for that would make a jarring. These cords are to be perforated with holes of different diameters, so as to fasten part of the spindle on which they are to be fixed. When a glass is put on, by holding it firmly between both hands, while another turns the spindle, it may be gradually brought to its place. But care must be taken that the hole be not too small, lest in forcing it up, the neck should split; nor too large, lest the glass, not being firmly fixed, should turn or move on the spindle, so as to touch or jar against its neighbouring glasses. The glasses thus placed are one in another; the largest on the biggest end of the spindle, which is to the left hand: the neck of this glass is towards the wheel; and the next goes into it in the same position, only about an inch of its brim, appearing beyond the brim of the first, thus proceeding, &c., and the next goes into it another; the next into it three quarters of an inch, or half an inch as they grow smaller; beyond the brim of the glass that contains it; and it is from these exposed parts of each glass the tone is drawn, by laying a finger on one of them as the spindle and glasses turn round.

My largest glass is G a little below the reach of a common voice, and my highest G, including three complete octaves. To distinguish the glasses more readily to the eye, I have painted the apparent parts of the glasses within-side, every semitone white, and the other notes of the octaves, which differ by seven prismatic colours viz., C, red; D, orange; E, yellow; F, green; G, blue; A, indigo; B, purple; and C, red again; so that the glasses of the same colour (the white excepted) are always octaves to each other.

This instrument is played upon by fitting before the middle of the set of glasses, as before the keys of divide the notes with so much force, unless the tone is drawn, by laying a finger, and the next goes into it another, by which means the alternate plications of two continued sounds, differing from each other only by a note or semitone. But as these pulsations thus managed cannot be distinct, the result is far from being pleasant; nor is there any succluendum for the close stroke, which in the violin is performed by alternately depressing the finger to the finger-board, and lifting it without entirely removing the finger from it; and which by giving the note that tremulous sound produced by the human voice affected with grief, is a grace peculiarly adapted to pathetic and plaintive airs.

We proceed, however, to a further account of the same instrument, extracted from the Annual Register, vol. iv. p. 169.

Besides these tones (says the author of that account) which every clastic fitting produces by a vibration,
Harmonization of all its parts, it is capable of another set of tones, in which only a part of the string is supposed to vibrate. These sounds are produced by the lightest touches, either by air, as in Oswald's lyre, or by rubbing the bow in the finest manner on the string of a fiddle.

"Analogous to these sounds are those produced by bells: in those last, besides those tones produced by their elliptical vibrations, there are a set of tones which may be brought about by gently rubbing their edges, and in which the whole instrument does not appear to vibrate in all its parts as before.

"Take, for instance, a bell finely polished at the edges; or, what will perhaps be more convenient, a drinking-glass: let the edges be as free from any thing oily as possible; then, by moistening the finger in water (I have found alum-water to be best), and rubbing it circularly round the edge of the glass, you will at length bring out the tone referred to.

"This note is composed of infinite frequencies; it has all the excellencies of the tone of a bell without its defects. It is loud, has a sufficient body, is capable of being swelled and continued at pleasure; and, besides, has naturally that vibratory softening which musicians endeavour to imitate by mixing with the note to be played a quarter-tone from below.

"To vary these tones, nothing more is required than to procure several bells or glasses of different tones, tuned as nearly as possible, which may be done by thinning the edges of either; or, for immediate satisfaction, the glasses may be tuned by pouring in water; the more water is poured in, the graver the tone will be.

"Let us suppose then a double octave of those glasses, thus tuned, to be produced. Any common tune may be executed by the fingers rubbing upon each glass successively; and this I have frequently done without the least difficulty, only chosing those tones which are short and easy. Here then are numbers of delicate tones, with which musicians have been till very lately unacquainted; and the only defect is, that they cannot be made to follow each other with that celerity and ease which is requisite for melody. In order to remedy this, I took a large drinking-glass, and by means of a wheel and gear, as in the electrical machine, made it to turn upon its axis with a moderately quick but equalable motion; then moistening the finger as before, nothing more was required than merely to touch the glass at the edge, without any other motion, in order to bring out the tone.

"Instead of one glass only turning in this manner, if the whole number of glasses were so fixed as to keep continually turning by means of a wheel, it follows, that upon every touch of the finger a tone would be expressed; and thus, by touching several glasses at once, an harmony of notes might be produced, as in a harpsichord.

"As I write rather to excite than satisfy the curious, I shall not pretend to direct the various ways this number of glasses may be contrived to turn; it may be sufficient to say, that if the glasses are placed in the segment of a circle, and then a strap, as in a cutter's wheel, be supposed to go round them all, the whole number will by this means be made to turn by means of a wheel.

"Instead of the finger, I have applied moistened Harleather to the edge of the glass, in order to bring out the tone: but, for want of a proper elasticity, this did not succeed. I tried cork, and this answered every purpose of the finger; but made the tone much louder than the finger could do. Instead, therefore, of the finger, if a number of corks were so contrived as to fall with a proper degree of pressure on the edge of the glass, by means of keys like the jacks of an organ, it is evident, that in fact a new and tolerably perfect instrument would be produced; not so loud indeed as some, but infinitely more melodious than any.

"The mouths of the glasses or bells used in this experiment should not resemble the mouth of a trumpet, but should rather come forward with a perpendicular edge. The corks used in this case should be smooth, even free from those blemishes which are usually found in them, and at the same time the more elastic the better."

In the two accounts here given seems to be comprehended every thing valuable which has been said upon the subject. It remains, however, our permanent opinion, that the form and structure designed and constituted by Dr. Franklin is by much the most eligible; nor can we admit, that a cork, however successfully applied, will produce the same mellowness and equality of tone in general with the finger. It appears to us, that, by this kind of voluntary attraction, a note may be fink or swelled with much more art and propriety than by the sublation of any thing else extrinsic to the hand; and when chords are long protracted, that degree of friction, which renders every found in the chord inelastic to the ear, without harshness, must be the most agreeable. For this reason, likewise, we should recommend alum-water in preference to chalk.

From what has already been said, it will easily be perceived, that this instrument requires to be tuned with the nicest degree of delicacy which the laws of temperament will possibly admit. For these laws the reader will naturally have recourse to the article Music in this Dictionary; where, from M. D'Alembert is given a plain and satisfactory account, both of the method proposed by Rameau, and of that established in common practice, without anticipating the experience and taste of the reader, by dictating which of these plans is preferable. To those who have occasion to tune the instrument, it may likewise be useful to peruse the detached article Temperament in this Work. Without recapitulating the different rules of alteration preferred in these accounts, we shall presuppose the reader acquainted with them; and proceed to describe how, under their influence, the Harmonica may be turned. But it is previously expedient to observe, that the same rules which conduct the proceeds of tuning a harpsichord, will be equally effectual in tuning the Harmonica; with this only difference, that greater delicacy in adjusting the chords should, if practicable, be attempted.

There are different notes from whence the procedure of tuning may commence. Labor A, which is the key that pretty nearly divides the harpsichord, is chosen by some; this is in common spinets is 24 natural keys from the bottom, and 13 from the top: and the A above it, or second C upon the G clef, by others. This last we should rather advise, because we imagine these intervals
intervals which we have called /ounds major to be more
just through the whole octave, when the course of tuning
is begun by a natural semitone. The initiate, there¬
fore, may begin by turning the second ut of his
Harmonica, or C above the treble clef, in unison with its
correspondent C upon the harpichord or any other in¬
strument in concert-pitch; then, descending to its octave
below, adjust it with the ut above, till every pul¬
sation if possible be lost, and the sounds rendered
fearcely distinguishable when simultaneously heard. To
the lowest note of this octave he must tune the f or G
immediately above it, by a fifth, till observing the laws
of temperament: To this G, the re, or D immediately
above it, by the same chord: To the re, or D above,
itself below: To this, by a fifth, the la or A imme¬
diately above it: To la, the mi, or E ascending in the
tune proportion: To mi, its octave below: To this, the f or B immediately above it by a fifth: To the
first ut, or C, which was tuned, the fa or F imme¬
diately below by the same chord.

That the practitioner may be still more secure in the
justice and propriety of his procedures, he may try the
thirds of the notes already adjusted, and alter them as
much as is consistent with the fifths and octaves, so that
among these thirds as may seem grating and disagreeable to his
ear. Thus far having accomplished his operation, he
may tune all the other natural notes whether above or
below by octaves. His next concern is with the femi¬
tones. And here it will be suggested by common
sense, that as in all instruments with fixed scales the
sharp of a lower metric like unfur for the flat of a
higher tone, the semitone ought as nearly as possible
to divide the interval. He may begin with la or A
sharp; which la in its natural flute is a third minor be¬
neth the ut or C, from whence he began in the na¬
tural scale. This semitone should correspond with the F
natural immediately above by a fifth. To it may be
tuned the re or D sharp immediately below by a similar
chord: to D sharp, its octave above: To f or B na¬
tural, immediately above the la or A first mentioned,
may be adjusted the F or fa sharp immediately above
it: To this its octave below: To that octave, the C
or ut-sharp above by a fifth: To the C sharp, its octave
below: To this, by a fifth, the G or fa sharp above. Be¬
tween this G sharp and the D sharp immediately above it, the fifth will probably be too sharp; but if the
others are justly tuned, that discord will not be ex¬
tremely offensive; and it is a necessary consequence of
temperament. The rest of the sharps and flats, like their
naturals, whether ascending or descending, may be
ruled by their octaves.
The notes, with their chords, may be expressed by
letters and figures, thus; where, however, it must be
observed, that the higher notes of any chord are marked
with larger capitals. It should likewise be remarked,
that the figures are not expressive of the different ratios
which the notes bear one to another, considered with re¬
spect to their vibrations; but only significant of their
nominal distances, according to the received de¬
nominations of the intervals. C c G c D b D D A
A E E E B C G. The sharps and flats thus, A x F, B x D,
A x D, F F, F F. In running over the sharps and flats as the
naturals, it will likewise be necessary to try the thirds, and to alter such as may offend the ear; which, if cau¬
tiously done, will not sensibly injure the other chords.

—Though this article has been protracted to a length
which we did not originally intend, we have how¬
ever the satisfaction to find, that it comprehends
everything essential: so that any person who under¬
stands the nature of chords, and the practical prin¬
ciples of music as universally taught, may not only be
able to tune his instrument, but to acquire its whole
efficacy, without the least assistance from a master.

On Plate CCXXXI. is represented an instrument of
this kind, made by Mr Dobb of St Paul’s church¬
yard, London.

Though this topic appeared in itself complete in the
former edition of this extensive work, yet having
since received from Dr Edmund Cullen of Dublin the
following observations, and reflecting that men of mu¬
tical talents have not only different tastes, but different
powers of mechanical operation, we have thought
it proper to submit to the choice of our readers, either
Dr Franklin’s form and arrangement of the glases, or
that which has been adopted by Dr Cullen; but in ei¬
er case, we would recommend it to the initiate in
this instrument, to distinguish by colours, according to
Dr Franklin, the notes and semitones.—We like¬
cannot forbear to think, that the complete bas
practicable on the harmonica, is by many degrees
preferable to the chords with which Dr Cullen pro¬
poses to grace every emphatic note, with which, from the
structure and arrangement of his instrument, he is un¬
der a necessity of defeating instead of satisfying the ear, with
the full effect of the regular procedure of the treble and
bass upon the same instrument.

This instrument the Doctor describes as consisting of
35 glases of different sizes, answering to so many distinct
founds, and ranged in the manner hereafter described.
They are exactly of the form of a cocoa nut when the
usual quantity of the top is cut off, or the sugar-bowls
made of cocoa-nut shells, so much in use will give a pre¬
cise idea of their figure. They are blown with plain long
staves which are fitted to wooden feet screwed on a
board at proper distances, in such a manner that the cir¬
cular tops of all may be in the same horizontal plane,
at the distance of about an inch asunder. Of these 35,
only are allotted for half tones; there remain there¬
fore 25 for the diatonic scale. The lowest note corre¬
sponds to G in the bass clef; hence it extends upward
to the octave about C in altitude. For uniformity, take
the glases which are chosen gradually and regularly diminu¬
ing in size as they ascend in tone. This, however,
is not absolutely necessary, as the tone of the glases does
not entirely depend upon its size, but in a great meas¬
ure upon the proportion of its different parts to one
another: hence the glases corresponding to one note may
be smaller than a glase corresponding to a note three or
four tones higher: however, where it is practical, they
should always be chosen gradually diminishing as they as¬
cend, both on account of the elegance of appearance, and
that an equality in point of loudness may be preferred;
far, as every body knows, an instrument may be liable
to great inequality in point of strength, though per¬
fecfly in tune. This must have a very bad effect; and
therefore we find performers on the violin and other in¬
struments of that kind very solicitous about the propor¬
The glases being chosen in the best manner circumstances will permit, we proceed to arrange them. Here let me observe, that in general the diameter of the largest glas at its mouth is about seven inches, and its solid contents about five English pints, while the highest is of about 4 inch, and its contents about 1/2 of a gill: this, however, is arbitrary, and depends upon the pitch of the instrument. In arranging the glases, we shall, to avoid confusion, take the diatonic scale first, and afterwards the half tones will be easily understood. In the wooden feet before mentioned are to be screwed on a strong board of a proper size, and they are disposed at convenient intervals in rows perpendicular to the longest sides of the rectangular board on which they stand. In these feet the glases are disposed in the following manner: Beginning with the lowest note G, we fix that on the foot which stands in the nearest angle of the board on the left hand, A in the next bottom in the fame perpendicular line, B in the third; when we come to C, however, we do not place it in the fame perpendicular line, but in the nearest bottom of the second perpendicular row to the left hand, D in the second of the same row, E in the third; F again in the nearest bottom of the third row, G in the second of the fame row, A in the third; B again in the nearest bottom of the fourth row, C in the second of the fame, and so on. By this contrivance, it is easy to see an immense compass is obtained! so great a one indeed, that if the glases were disposed according to the old method, regularly ascending in a line parallel to the front of the instrument, to take the same length, no less than a length equal to the sum of all the perpendiculars we before spoke of, which in ordinary size of the glases would amount to upwards of 16 feet; the inconvenience of which it is unnecessary to dwell upon. As to the half tones, perhaps a more judicious and convenient arrangement may be thought of for them: but the present mode is far from inconvenient, except in some keys; and it is sufficiently commodious for performing such airs as are best fitted to the nature and design of the instrument. After explaining the arrangement, we shall speak somewhat more exactly of them. B⁴ in the first line of the treble flave stands in the fourth bottom of the first perpendicular row to the left hand; F⁴ in the first space stands in the fourth place of the second row, G⁴ in the second line of the treble flave stands in the fourth of the third row, C⁴ in the third space of the fame flave stands in the same manner in the fourth row, and so on, ascending to F⁴ in the fifth row, G⁴ in the sixth, A⁴ in the seventh, C⁴ in the eighth. In the ninth perpendicular row, that is, the last to the right hand in the diatonic scale, stands C alone; but immediately behind is placed B⁴ of the middle line of the treble flave, and again behind it D⁴ of the fourth line of the treble flave, which finishes the whole. There is something singular, and perhaps whimsical, in the distribution of the half tones; but it is found sufficiently convenient; and if a better is thought of it may easily be adopted. In the mean time I must observe, that two of them, viz. C⁴ and F⁴, standing immediately behind the D and G respectively above them, are singularly well fitted for performing running passages either up or down in the key of G. Ex. gr. let us suppose that we have that very common A, G, F⁴, E semiquavers. Harmoni.

The performer touches A, which is in the first place of the 6th row, with his left hand, G with the fore-finger of his right, F⁴ with the middle, and E again with the left hand; in the fame manner may E, D, C⁴, and B, be played, or upwards by inverting the motion: thus we can with the utmost ease run either up or down two very frequent passages in a key, which might naturally be supposed difficult upon this instrument, and that with any given rapidity. I wish as much could be said of all the other half tones of which, by the bye, some are altogether wanting; it is obvious, however, that they may easily be added, if we can find convenient places; and I apprehend even that very practicable. Be that as it may, notwithstanding the seemingly inconvenient situation of some half tones, and the total want of others, pieces may be performed on this instrument of considerable rapidity. I myself, though very far from being an accomplished player, can with great ease go through all the parts of Fillier's celebrated Rondeau; nor may I have heard the fifth concerto of Vivaldi played upon it with as much difficulty as much difficulty as is often said. The glases are not necessarily chosen perfectly in tune, but are tuned by the help of a quantity of water. Here however two cautions are necessary: 1st. By no means to take a glas which is, when without water, flatter than the note you intend; as in that case you cannot remedy it, the water making the tone softer, rather let it be somewhat sharper, and you may tune it to the utmost nicety by a little water. The second caution is, not to choose a glas which is very much sharper than the note required; as in that case, so large a quantity of water will be required to tune it as will entirely muffle the tone.

This instrument is to be played somewhat in the manner of the harmonica, viz. the fingers are to be well wetted; and by the application of them to the side, assisted by a proper motion the sound is produced. And here I would observe that the proper motion is, to make the fingers follow the thumb, not the thumb follow the fingers in going round the glases; it is necessary also to observe the circular motion very exactly, as the least deviation from it produces the most horrible sound that can be conceived. It is likewise to be observed, that you must touch the smaller glases upon the very top of the rim: and for that purpose the palm of the hand must be nearly parallel to the top of the glas; but in coming to the larger glases, it is absolutely necessary to make the fingers to touch the side, not the top of the glas; and the larger the glas, the more distant from the top must they be touched. Practice alone can determine this matter.

From this disposition of the glases, it is easy to see that the perfect chord of C is always most completely in our power, namely, by using different fingers to the different notes at the same time; and although a full bass cannot be executed upon this instrument, we have always a great number of accompaniments which can easily be introduced; more perhaps than upon any instrument, the organ and others of that species excepted. The thirds or fifths occasionally can be introduced; and when done with taste and judgment, will scarcely yield to a middling bass. If to this be added a thrilling softnes of the tones, inimitable by any other sublimate, it will readily appear to be an instrument more in the true style of
Han. [320] Harmon.

of music, of that music which the heart acknowledges, than any that either chance or ingenuity has hitherto produced. It is indeed incapable of that whimsical subdivision to which the taste of modern composers, that sworn enemy to harmony and real music, leads; which serves no end but to exhibit the wonderful executions of a favourite performer, and to overwhelm his hearers with stupid admiration. This is not music; and upon these occasions, though I acknowledge the difficulty of doing what I see done, I lament that the honest man has taken so much pains to do little purpose. Our instrument is not capable of this (at least not to exquiste a degree as the harpsichord, violin, and a few others) yet if the true and original intent of music is not to astonish but to please, if that instrument which most readily and pleasingly feizes the hearth thro' the ears is the best, I have not a moment's hesitation in setting it down the first of all musical instruments. There is but one which will in any degree bear the comparison, or rather they are the same instrument, I mean Dr. Franklin's harmonica; but I am inclined to think that the instrument we have been speaking of has some superiority over the harmonica. The first striking difference is in the impracticality of executing quick passages on the latter; whereas it is in most cases extremely easy on the other. Again, the very long continued vibration of the glases, inevitably must produce horrible discord, or at least confusion, except the piece played be so slow that the vibration of one glass be nearly over before the other is heard. Now, in our instrument, this may be remedied by laying pieces of sponge lightly between the glasses, as to allow them only the proper extent of vibration. This, however, is an exceptionable method: and it is much better done by the touch of the performer's finger, which instantly stops the vibration; and the use of this may be learned and the effect of the two sounds is produced, as extremely well imitates a fine shake, and the skilful performer will make the beat in a turned shake with a spare finger. This operation requires some dexterity; but this is a charge common to all musical instruments; and I question not that the Highland bagpipe itself requires some sort of skill.

Upon the whole, I am clearly of opinion, that the harmonica, and more especially this instrument which has as yet got no name, is the most exquisite and noble present that the lovers of true harmony have ever yet received; and it is with much astonishment I find this invaluable treasure almost entirely confined to Ireland, a country not very remarkable for musical taste or talents: But I hope soon to see this elegant species of music very generally known and practiced over all Europe.

Harmony. The sense which the Greeks gave to this word in their music is so much less easy to be determined, because the word itself being originally a substantive proper, it has no radical words by which we might analyze it, to discover its etymology. In the ancient treatises which remain to us, harmony appears to be that department whose object is the agreeable succession of sounds, merely considered as high or low; in opposition to the two others called rhythmsica and metrical, which have their principle in time and measure. This leaves our ideas concerning the ultimate of sound vague and undetermined; nor can we fix them without studying for that purpose all the rules of the art; and even after we have done so, it will be very difficult to distinguish harmony from melody, unless we add to the last the ideas of rhythm and measure; without which, in reality, no melody can have a distinguishing character: whereas harmony is characterized by its own nature, independent of all other quantities except the chords or intervals which compose it.

It appears by a passage of Nichomachus, and by others, that they likewise gave the name of Harmony to the chord of an octave, and to concords of voices and instruments, which performed in the distance of an oc-
Harmony, tave one from the other, and which is more commonly called antiphon.

Harmony, according to the moderns, is a succession of chords agreeable to the laws of modulation. For a long time this harmony had an other principle but such rules as were almost arbitrary, or solely founded on the approbation of a practised ear, which decided concerning the agreeable or disagreeable succession of chords, and whole determinations were at last reduced to calculation. But father Mercurine and N. Savour having found that every found, however simple in appearance, was always accompanied with other founds of sensible, which constitute with itself a perfect chord-major; with this experiment M. Rameau set out, and upon it formed the basis of his harmonic system, which he has extended to a great many volumes, and which at last M. D'Alembert has taken the trouble of explaining to the public.

Signior Tartini, taking his route from an experiment which is newer and more delicate, yet not less certain, has reached conclusions similar enough to those of Rameau, by pursuing a path whose direction seems quite opposite. According to M. Rameau, the treble is generated from the bass; Signior Tartini makes the bass result from the treble. One deduces harmony from melody, and the other supposes quite the contrary. To determine from which of the two schools the best performances are likely to proceed, no more is necessary than to investigate the end of the composer, and discover whether the air is made for the accompaniments, or the accompaniments for the air. At the word System in Rondelet's Musical Dictionary, is given a delineation of that published by Signior Tartini. Here he continues to speak of M. Rameau, whom he has followed through the whole work, as the author of the greatest authority in the country where he writes.

He thinks himself obliged, however, to declare, that this system, however ingenious it may be, is far from being founded upon nature, an affirmation which he incessantly repeats: "That it is only established upon analogies and congruities, which a man of invention may overturn to morrow, by substituting others more natural: that, in short, of the experiments from whence he deduces it, one is detected fallacious, and the other will not yield him the confidences which he would extort from it. In reality, when this author took it in his head to dignify with the title of demonstration the reasonings upon which he established his theory, every one turned the arrogant pretence into ridicule. The Academy of Sciences loudly disapproved a title so ill founded, and so gratuitously assumed; and M. Elive of the Royal Society at Montpellier, has shown him, that even to begin with this proposition, that according to the law of nature, founds are represented by their octaves, and that as the octaves may be substituted for them, there was not any one thing demonstrated, or even firmly established in his pretended demonstration." He returns to his system.

"The mechanical principle of reference presents us with nothing but independent and solitary chords; it neither prescribes nor establishes their succession. Yet a regular succession is necessary; a dictionary of selected words is not an oration, nor a collection of legitimate chords a piece of music: there must be a meaning, there must be connections in music as well harmony. As in language: it is necessary that what has preceded should transmit something of its nature to what is subsequent, so that all the parts conjointly may form a whole, and be framed with the genuine character of unity.

"Now, the complex sensation which results from a perfect chord must be resolved into the simple sensation of each particular sound which composes it, and into the sensation of each particular interval which forms it, ascertained by comparison one with another. Beyond this there is nothing sensible in any chord; from whence it follows, that it is only by the relation between sounds, and by the analogy between intervals, that the connection now in question can be established; and this is the genuine, the only source, from whence flow all the laws of harmony and modulation. If then, the whole of harmony were only formed by a succession of perfect chords-major, it would be sufficient to proceed by intervals similar to those which compose such a chord; for then some one or more sounds of the preceding chord being necessarily protracted into that which is subsequent, all the chords would be found sufficiently connected, and the harmony would, at least in this sense, be one.

"But besides that these successions must exclude all melody by excluding the diatonic series which forms its foundation, it would not arrive at the real end of the art; because, as music is a system of meanings like a discourse, it ought, like a discourse, to have its periods, its phrasing, its pauses, its cadences, its punctuation of every kind; and because the uniformity of a harmonic procedure implies nothing of all this, diatonic procedures require that major and minor chords should be intermixed; and the necessity of dissonances has been felt in order to distinguish the phrases, and render the cadences sensible. Now, a connected series of perfect chords-major can not be productive of perfect chords-minor nor of dissonances, nor can feebly mark any musical phrase, and the punctuation must there be found entirely defective.

"M. Rameau being absolutely determined, in his system, to deduce from nature all the harmony practiced among us, had recourse for this effect, to another experiment of his own invention, of which I have formerly spoken, and which by a different arrangement is taken from the first. He pretended, that any simple found whatever afforded in it multiples a perfect minor or flat chord, of which it was the dominant or fifth, as it furnished a perfect chord-major by the vibration of its aliquot parts, of which it is the tephonic or fundamental found. He has affirmed as a certain fact, that a vocal string caused two others lower than itself to vibrate through their whole extent, yet without making them produce any sound, one to its twelfth major and the other to its seventeenth; and from this joined to the former fact, he has very ingeniously deduced not only the application of the minor mode and of dissonances in harmony, but the rules of harmonic phrases and of all modulation, such as they are found at the words Chord, Accompaniment, Fundamental, Bass, Cadence, Dissonance, Modulation.

"But first (continues Rondeau), the experiment is false. It is discovered, that the strings tuned beneath the fundamental found do not entirely vibrate when
Harmony. When this fundamental sound is given; but that they are divided in such a manner as to return its unison alone, which of consequence can have no harmonics below. It is moreover discovered, that the property of strings in dividing themselves, is not peculiar to those which are tuned by a twelfth and seventeenth below the principal sound; but that oscillations are likewise produced in the lower strings by all its multiples. Whence it follows, that the intervals of the twelfth and seventeenth below not being singular phenomena of their kind, nothing can be concluded in favour of the perfect minor chord which they represent.

"Though the truth of this experiment were granted, even this would by no means remove the difficulty. If, as M. Rameau alleges, all harmony is derived from the recurrence of sonorous bodies, it cannot then be derived only from the vibrations of such bodies as do not resound. In reality, it is an extraordinary theory, to deduce from bodies that do not resound the principles of harmony; and it is a principle in natural philosophy no less strange, that a sonorous body should vibrate without resounding, as if found itself were any thing else but the air impelled by these vibrations. Moreover, sonorous bodies do not only produce, besides the principal sound, the other tones which with itself compose a perfect chord; but an infinite number of other sounds, formed by all the aliquot parts of the bodies in vibration; which do not enter into that perfect harmony. Why then should the former sounds produce consonances, and why should the latter not produce them, since all of them equally result from nature?

"Every sound exhibits a chord truly perfect, since it is composed of all its harmonics, and since it is by them that it becomes a sound. Yet these harmonics are not heard, and nothing is distinguished but a simple sound, unless it be exceedingly strong; whence it follows, that the only good harmony is an unison; and that, as soon as the consonances can be distinguished, the natural proportion being altered, the harmony has lost its purity.

"That alteration is in this case produced in two different ways. First, by causing certain harmonics to resound, and not the others, the proportion of force which ought to prevail in all of them is altered, for producing the sensation of a single sound; whence the unity of nature is destroyed. By doubling these harmonics, an effect is exhibited similar to that which would be produced by suppressing all the others; for that case we cannot doubt, but that, along with the generating sound, the tones of the other harmonics which would be permitted to sound would be heard: whereas, in leaving all of them to their natural operations, they destroy one another, and conspire together in forming and strengthening the simple sensation of the principal sound. It is the same effect which the full sound of a flop in the organ produces, when, by successively removing the stop or register, the third and fifth are permitted to sound with the principal; for then that fifth and third, which remained absorbed in the other sounds, are separately and disagreeably distinguished by the ear.

"Moreover, the harmonics which we cause to sound have other harmonics pertaining to themselves, which cannot be such to the fundamental sound. It is by these additional harmonics that the sounds which produce them are distinguished with a more sensible degree of harmony; and these very harmonics which thus render the chord perceptible, do not enter into its harmony. This is the reason why the most perfect chords are naturally pleasing to ears whose relish for harmony is not sufficiently formed; and I have no hesitation in thinking, that even the octave itself might be displeasing, if the mixture of male and female voices did not inure us to that interval from our infancy.

"With dissonance it is still worse; because, not only the harmonics of the sound by which the discord is produced, but even the sound itself, is excluded from the natural harmony of the fundamental: which is the cause why discord is always distinguished amongst all the other sounds in a manner shocking to the sense.

"Every key of an organ, with the stop fully opened, gives a perfect chord with its third major, which are not distinguished from the fundamental sound, if the hearer is not extremely attentive, and if he does not find the whole flop in succession; but these harmonic sounds are never absorbed in the fundamental, but on account of the prodigious noise, and by such a situation of the registers as may cause the pipes which produce the fundamental sound to conceal by their force the other sounds which produce these harmonics. Now, no person observes, nor can observe, this continual proportion in a concert; since, by the manner of inverting the harmony, its greatest force must in every instant be transferred from one part to another, which is not practicable, and would destroy the whole melody.

"When we play upon the organ, every key in the bass causes to resound the perfect chord major; but because that bass is not always fundamental, and because the music is often modulated in a perfect minor chord, this perfect chord-major is rarely struck with the right hand; so that we hear the third minor with the major, the fifth with the triton, the seventh redundant with the octave, and a thousand other cacophonies, which, however, do not much disgust our ears, because habit renders them tractable; but it is not to be imagined that an ear naturally just would prove so patient of discords, when first exposed to the reft of this harmony.

"M. Rameau pretends, that trebles composed with a certain degree of simplicity naturally suggest their own basses; and that any man having a jujt, though unpractised ear, would spontaneously sing that bass. This is the prejudice of a musician, refuted by universal experience. Not only would he, who has never heard either bass or harmony, be of himself incapable of finding either the bass or the harmony of M. Rameau, but they would be displeasing to him if he heard them, and he would greatly prefer the simple unison.

"When we consider, that of all the people upon earth, who have all of them some kind of music and melody, the Europeans are the only people who have a harmony consisting of chords, and who are pleased with this mixture of sounds; when we consider that the world has endured so many ages, whilst, of all the nations which cultivated the fine arts, not one has found out this harmony: that not one animal, not one bird, not one being in nature, produces any other chord but
but the union, nor any other music but melody; that
the eastern languages, so sonorous, so musical; that
the ears of the Greeks, so delicate, so sensible, prac-
ticed and cultivated with so much art, have never con-
ducted this people, luxurious and enamoured of plea-
sure as they were, to the harmony which we
imagined so natural; that without it their music pro-
duced such astonishing effects; that with it ours is
so impotent: that, in short, it was reserved for the
people of the north, whose grofs and callous organs of
sensation are more affected with the noise and clamour
of voices, than with the sweetmeats of accents and the
melody of infections, to make this grand discovery,
and to vend it as the essential principle upon which all
the rules of the art were founded; when, in short, at-
tention is paid to all these observations, it is very dif-
ficult not to suspect that all our harmony is nothing but
a Gothic and barbarous invention, which would never
have entered into our minds, had we been truly sensible
to the genuine beauties of art, and of that which is
unquestionably natural.

"M. Rameau afferts, however, that harmony is the
source of the most powerful charms in music. But
this notion is contradictory both to reason and to mat-
ter of fact. To fact it is contradictory; because,
since the invention of counter-point, all the wonderful
effects of music have ceased, and it has lost its whole
force and energy. To which may be added that such
beauties as purely result from harmony are only percept-
ed by the learned; that they affect none with
transport but such as are deeply conversant in the art;
whereas the real beauties of music, resulting from na-
ture, ought to be and certainly are, equally obvious
to the adept and the novice. To reason it is contradi-
tory; since harmony affords us no principle of imita-
tion by which music, in forming images and expressing
sentiments, can rise above its native excellence till it
becomes in some measure dramatic or imitative which
is the highest pitch of elevation and energy to which
the art can aspire; since all the pleasures which we can
receive from the mere mechanical influence of sounds
are extremely limited, and have very little power over
the human heart."

Thus far we have heard M. Rameau, in his obser-
vations on harmony, with patience; and we readily
grant, that the system of harmony by M. Rameau
is neither demonstrated, nor capable of demonstration.
But it will not follow, that any man of invention can
so easily and so quickly subvert those aptitudes and ana-
logies on which the system is founded. Every hy-
thetical is admitted to possess a degree of probability pro-
portioned to the number of phenomena for which it
offers a satisfactory solution. The first experiment of
M. Rameau is, that every sonorous body, together
with its principal sound and its octave, gives likewise
its twelfth and seventeenth major above; which being
approximated as much as possible, even to the chords
immediately reprented by them, return to the third,
fifth, and octave, or, in other words, produce perfect
harmony. This is what nature when solicited, sponta-
necessarily gives; this is what the human ear, unpre-
pared and uncultivated, imbibes with ineffable avidity
and pleasure. Could any thing which claims a right
to our attention, and acceptance from nature be im-
pressed with more genuine or more legible signatures of
her function than this? We do not contend for the Har-
mony of M. Rameau's second experiment. Nor is it
necessary we should. The first expanded and carried
into all its consequences, resolves the phenomena of
harmony in a manner sufficient to establish its authenti-
city and influence and inculcates on the mind an idea
affords no solution are too few and too trivial either to
merit the regard of an artist, or a philosopher, as M.
D'Alembert in his elements has clearly shown. The
facts with which M. Roufeau confronts this principle,
the armies of multiplied harmonics generated in infinitum,
which he draws up in formidable array against it,
only show the thin partitions which sometimes may di-
vide philosophy from whim. For, as bodies are infini-
dively divisible, according to the philosophy now estab-
lished, or as, according to every philosophy, they
must be indefinitely divisible, each infinitesimal of any
given mass, which are only harmonics to other prin-
cipal sounds, must have fundamental tones and har-
monics peculiar to themselves; so that if the reasoning
of Roufeau has any force against M. Rameau's ex-
periment, the air must be continually disturbed with a
chaos of inapprehensible harmonics, and melody itself
must be lost in the confusion. But the truth of the
matter is, that, by the wise instituion of nature, there
is such a conformity established between our senses
and their proper objects, as must prevent all these disagree-
able effects. Roufeau and his opponent are agreed in
this, that the harmonics conspire to form one predo-
nant sound; and are not to be detected but by the nicest
organs, applied with the deepest attention. It is equa-
It is equal­ly obvious, that, in an artificial harmony, by a proper
management of this wise precaution of nature, dif-
fuences themselves may be either entirely concealed or
considerably softened, so that, since by nature fono-
rous bodies in actual vibration are predisposed to exhi-
bite perfect harmony; and since the human ear is, by
the same wise regulation, fabricated in such a manner
as to perceive it; the harmonical chaos of M. Roufeau
may be left to operate on his own brain, where it will
probably meet with the warmest reception it can ex-
pect to find. Nor does it avail him to pretend, that
before the harmonics can be distinguished, sonorous bod-
ies must be impelled with a force which alters the
chords, and destroys the purity of the harmony; for was writ-
ten.

M. Roufeau was a

R 2

against
The translator of D'Alambert's Elements, as given under the article Music in this Dictionary, has been at particular pains to investigate his earliest recollections upon this subject; and has had such opportunities, both of attending to his original perceptions, and of recognizing the fidelity of his memory, as are not common. He can remember, even from a period of early childhood, to have been pleased with the simplest kinds of artificial harmony; to have distinguished the harmonics of familiar bodies with delight; and to have been struck with horror at the sound of such bodies as, by their structure, or by the cohesion of their parts, exhibited these harmonics false. This is the chief, if not the only cause, of the tremendous and disfiguring sensation which we feel from the sound of the Chineses gong. The same horrible cacophony is frequently, in some degree, produced by a drum unequally braced; from this sound the translator often remembers to have started and screamed, when carried through the streets of the town in which he was born in the arms of his nursemaid; and as he is conscious, that the auditory organs of many are as exquisite as his own, he cannot doubt but they may have had the same sensations, though perhaps they do not recollect the facts. So early and so nicely may the sensations of harmony and discord be distinguished. But after all, it seems that harmony is no more than a modern invention, and even at this late period only known to the Europeans. We should, however, be glad to know, from what oracle our philosopher learned that harmony was not known to antiquity. From what remains of their works, no proof of this position can be derived; and we have at least mentioned one probability against it in our notes to the Preliminary Discourse to the article Music, (see note b.) But the Roufean's mighty objections were granted, that harmony can only be endured by such ears as are habitually formed and cultivated; that the period of its prevalence has been short, and the extent of its empire limited to Europe; still his conclusion, that it is a Gothic and barbarous invention, is not fairly deducible even from these premises. Muft we affirm that epic poetry has no foundation in nature, because, during the long interval which happened from the beginning of the world to the destruction of Troy, no epic poem seems to have appeared? Or because a natural and melifluous verification is left refilled by an unpolished taste, than the uncomely rhymes of a common ballad, shall we infer, that the power of numbers is merely suppositional and arbitrary? On the contrary, we will venture to affirm, that though harmony cannot, as Rameau supposes, be mathematically demonstrated from the nature and vibrations of familiar bodies; yet the idea of its constituent parts, and of their coexistence, is not left established, no less precise and definite, than any mode or property of space or quantity to be investigated by geometrical researches or algebrical calculations. It is certain, that the mimetic or imaginative power of music chiefly confits in melody; but from this truth, however evident, it cannot be fairly deduced, that harmony is absolutely unintelligible or imitative. Perhaps every musical sound, even the most simple, and all modulations of sound, are more or less remotely connected with some sentiment or passion of the human heart. We know that there are instincive expreions of pain or pleasure in their various modes and degrees, which when uttered by any sensitive, and perceived by any conscious being, excite in the mind of the percipient a feeling sympathetic with that by which they are prompted. We likewise know from experience, that all artificial sounds modulated in the same manner, have similar, though not equal, effects. We have seen, that, in order to render harmony compatible with itself the melody of each part must be congenial; and, for that reason, one kindred melody results from the whole. So far, therefore, as any composer has it in his power to render the general melody homogeneous; so far, the imitation may be preferred. And even heightened: for such objects as are majestic and august, or the feelings which they excite are more aptly expressed by a composition of kindred sounds, than by any simple tone whatever. They who suppose the mimetic powers of music to be confinued in the imitation of mere unmeaning sounds or degrees of motion, must entertain limited and unworthy ideas of its province. It is naturally a representative almost of every sentiment or affection of the soul; and, when this end is gained, the art must have reached its highest perfection, and produced its noblest effects. But these effects, however sensible among the ancients, may in us be superceded by other causes which remain yet unexplored. Theatrical performances are likewise, by them laid to have produced the most wonderful effects; yet we do not recognize amongst ourselves, though we have dramatic entertainment perhaps not inferior to theirs.

Roufean proceeds to tell us that among the ancients the enharmonic species of music was sometimes called harmony.

Direct Harmony, is that in which the bass is fundamental, and in which the upper parts preserve among themselves, and with that fundamental bass, the natural and original order which ought to subsist in each of the chords that compose this harmony.

Inverted Harmony, is that in which the fundamental or generating sound is placed in some of the upper parts and when some other sound of the chord is transferred to the bass beneath the others.

Harmony of the Spheres, or Celestial Harmony, a sort of music much talked of by many of the ancient philosophers and fathers, supposed to be produced by the sweetly tuned motions of the stars and planets. This harmony they attributed to the various proportionate impressions of the heavenly globes upon one another, acting at proper intervals. It is impossible, according to them, that such prodigious large bodies, moving with so much rapidity, should be silent: on the contrary, the atmosphere, continually impelled by them, must yield a set of sounds proportionate to the impression it receives; consequently, as they do not run the same circuit nor with one and the same velocity, the different tones arising from the diversity of motions, directed by the hand of the Almighty, must form an admirable symphony or concert.

They therefore supposed that the moon, as being the lowest of the planets, corresponded to Mercury, to $\text{\textit{f}}$; Venus to $\text{\textit{f}}$; the Sun, to $\text{\textit{a}}$; Mars, to $\text{\textit{a}}$.
H AROLD, the name of two English kings. See England, no. 77, 83.

HARP, a musical instrument of the stringed kind, of a triangular figure, and held upright between the legs of the performer.

Papilius, and Du Cange after him, will have the harp to have taken its name from the Arpi, a people of Italy, who were supposed the first that invented it; and from whom, they say, it was borrowed by other nations. Ménage, &c. derive the word from the Latin harpa, and that from the German harp or harp. Others bring it from the Latin corpe, because touched or thrummed with the fingers. Dr. Hickes derives it from harpe or harape, which signifies the same thing; the first in the language of the Cinibri, the second in that of the Anglo-Saxons. The English priest who wrote the Life of St Dunstan, and who lived with him in the tenth century, says, cap. ii. 12. Sumnit secunx mori eharum frum, quam pateratingu earpam vocans; which intimates the word to be Anglo-Saxon.

The harp was the favourite musical instrument of the Britons and other northern nations in the middle ages; as is evident from their laws, and from every passage in their history, in which there is the least allusion to music. By the laws of Wales, a harp was one of the three things that were necessary to constitute a gentleman, i.e. a freeman; and none could pretend to that character who had not one of these favourite instruments, or could not play upon it. By the same laws, to prevent slaves from pretending to be gentlemen, it was expressly forbidden to teach, or to permit them to play upon the harp; and none but the king, the king's musicians, and gentlemen, were allowed to have harps in their possession. A gentleman's harp was not liable to be seized for debt; because the want of it would have degraded him from his rank, and reduced him to a slave. The harp was in no less estimation and universal use among the Saxons and Danes. Those who played upon this instrument were declared gentlemen by law; their persons were esteemed inviolable, and secured from injuries by very severe penalties. They were readily admitted into the highest company, and treated with distinguished marks of respect wherever they appeared.

There is some diversity in the structure of harps. That called the triple harp has 97 strings or chords in three rows, extending from C in the tenor clift to double G in alt, which make five octaves; the middle row is for the femitones, and the two outside rows are perfect unisons. On the bass side, which is played with the right hand, there are 36 strings; on the treble side, 56; and in the middle row, 35 strings. There are two rows of pins or frets on the right side, serving to keep the strings tight in their holes, which are fastened at the other end to three rows of pins on the upper side. The harp, within the last 40 years, has been in some degree improved by the addition of eight strings to the unison, viz. from E to double F in alt. This instrument is struck with the finger and thumb of both hands. Its music is much like that of the fiddle, all its strings going from semitone to semitone; whereas some call it an inverted fiddle. It is capable of a much greater degree of perfection than the lute.

There are among us two sorts of this instrument,
Of the principal titles he claimed to this kingdom in the year 1101, at Clontarf. His son Conyngham having murdered his brother Teige, A.D. 1103, and being deposed by his nephew, retired to Rome, and carried with him the crown, harp, and other regalia of his father, which he presented to the Pope in order to obtain absolution. Adrian IV., therefore, Breakspear, alleged this circumstance as one of the principal titles he claimed to this kingdom in his bull transferring it to Henry II. These regalia were kept in the Vatican till the pope lent the harp to Henry VIII. with the title of Defender of the Faith; but kept the crown, which was of massive gold. Henry gave the harp to the first earl of Clanricard; in whose family it remained till the beginning of this century, when it came by a lady of the De Burgh family into that of Mac Mahon of Clenagh in the county of Clare. After whole death it passed into the possession of commissioneer Mac Namara of Limerick. In 1782 it was presented to the right honourable William Conyngham, who deposited it in Trinity college library. It is 52 inches high, and of extraordinary good workmanship; the sounding-board is of oak, the arms of red sally; the extremity of the uppermost arm in part is cast with silver, extremely well wrought and chiselled. It contains a large crystal set in silver, and under it was another stone now lost. The buttons or ornamental knobs at the sides of this arm are of silver. On the front arm are the arms chased in silver of the O'Brien family, the bloody hand supported by lions. On the sides of the front arm within two circles are two Irish wolf dogs cut in the wood. The holes of the sounding board where the strings entered are neatly ornamented with efcutcheons of bras carved and gilt: the larger sounding-holes have been ornamented, probably with silver, as they have been the object of theft. This harp has 23 keys, and as many string-holes, consequently there were as many strings. The foot-piece or rest is broken off, and the parts round which it was joined are very rotten. The whole bears evidence of an expert artif. King David is usually painted with a harp in his hands; but we have no testimony in all antiquity that the Hebrew harp, which they call chinnor, was any thing like ours. On a Hebrew medal of Simon Mac cabæus we see two sets of musical instruments; but they are both of them very different from our harp, and only consist of three or four strings. All authors agree, that our harp is very different from the lyra, cithara, or barbiton, used among the Romans. Fortunately, lib. vii. carm. 8. witnesses, that it was an instrument of the barbarians:

Romanaeque lyra, plebantis ildi Barberiis harps, Gracis Atheniisque, crotta Britannica canis.

Of ancient harps, two are represented on the same plate. N° 2. is a trigonum or triangular harp. It is taken from an ancient painting in the museum of the king of Naples, in which it is placed on the shoulder of a little dancing girl, who supports the instrument with his left hand and plays upon it with his right. The trigonum is mentioned by Athenæus, lib. iv. and by Julius Ptolemy, lib. iv. cap. 9. According to Athenæus, Sophocles calls it a Phrygian instrument; and one of his diplophists tells us, that a certain musician, named Alexander Alexandrinus, was such an admirable performer upon it, and had given such proofs of his abilities at Rome, that he made the inhabitants muusam, musingly, muchly. N° 3 and 4 are varieties of the same instrument. N° 5 is the Theban harp, according to a drawing made from an ancient painting of one of the sepulchral grotos of the first kings of Thebes, and communicated by Mr Bruce to Dr Burney*. The * Vide performer is clad in a habit made like a shirt, such as Burney* the women fill wear in Abylinia, and the men in Nubia. It reaches down to his ankles; his feet are without sandals, and bare; his neck and arms are also bare; his loose white sleeves are gathered above his elbows; and his head is clove shaven. His left hand feems employed in the upper part of the instrument among the notes in alto, as if in an arpeggio; while, floooing forwards, he seems with his right hand to be beginning with the lowest string, and promising to ascend with the most rapid execution: this action, so obviously rendered by an indifferent artist, shows that it was a common one in his time; or, in other words, that great hands were then frequent, and consequently that music was well understood and diligently followed.

On this instrument Dr Burney makes the following observations: "The number of strings, the size and form of this instrument, and the elegance of its ornaments, awaken reflections, which to indulge would lead us too far from our purpose, and indeed out of our depth. The mind is wholly lost in the immense antiquity of the painting in which it is represented. Indeed the time when it was executed is so remote, as to encourage a belief, that that, after having been brought to a great perfection, were again lost and again invented long after this period.—With respect to the number of strings upon this harp, if conjectures may be allowed concerning the method of tuning them, two might be offered to the reader's choice. The first idea that presented itself at the sight of 12 strings was, that they would furnish all the semitones to be found in modern instruments within the compass of an octave, as from C to c, D to d, or E to e. The second idea is more Grecian, and conformable to antiquity; which is, that if the longest string represented profilambanomenos, or D, the remaining 12 strings would supply all the tones, semitones, and quarter-tones, of the diatonic, chromatic, and enharmonic genera of the ancients, within the compass of an octave: but for my part, I would rather incline to the first arrangement, as it is more natural, and more conformable to the structure of our organs, than the second. For with respect to the genera of the Greeks, though no historic testimony can be produced concerning the invention of the diatonic and chromatic, yet ancient writers are unanimous in ascribing to Olympus the Phrygian the first use of the enharmonic: and though in the beginning, the melody of this genus was so simple and natural as to resemble the wild notes and rude essays of a people not quite emerged from barbarism; yet in after-times it became overcharged with finical foppositees and fanciful beauties, arising from such minute divisions of the scale as had no other merit than the great difficulty of forming them. It seems a matter of great wonder, with such a model before their eyes as the Theban harp, that the form and manner of
Balbus and Xanthus, Achilles's horses. Phercydes relates, that the Boreades expelled them from the Aegean and Sicilian seas, and pursued them as far as the islands which he calls Plata and Home Calla; and which have since been called the Strophades.

Volusi, De Idol. lib. iii. cap. 99. p. 63, thinks, that what the ancients have related of the harpies, agrees to no other birds so well as the bats found in the territories of Darien in South America. These animals kill not only birds, but dogs and cats, and prove very troublesome to men by their peckings. But the ancients, as the same Volusi observes, knew nothing of these birds. By the harpies, therefore, he thinks, they could mean nothing else but the winds; and that it was on this account they were made daughters of Eileôra, the daughter of Oceanus. Such is the opinion of the Choliartts of Apollonius, Heliod, and Euuthathus. Their names, Aelo, Ocypte, Celeno, are supposed to figure a farther argument of this.

Mr Bryant supposes that the harpies were a college of priests in Bibyynthia, who on account of their repeated acts of violence and cruelty, were driven out of the country: their temple was called Arpi, and the environs Arpiai, whence the Grecians formed Arpiai; and he observes farther, that Harpya, Arpiai, was certainly of old the name of a place.

HARPING IRON. See Harpoon.

HARPINGS, the fore parts of the whales which encircle the bow of a ship, and are fastened to the stem, being thicker than the after part of the whales, in order to reinforce the ship in this place, where she sustains the greatest shock of resistance in plunging into the sea, or dividing it, under a great pressure of sail.

HARPOCRATES, in mythology, the son of Isis and Osiris. This is an Egyptian deity, whose distinguishing attribute is, that he is represented with his fingers applied to his mouth, denoting that he is the god of silence. The statue of this idol was fixed in the entrance of most of the Egyptian temples, and he was commonly exhibited under the figure of a young man naked, crowned with an Egyptian mitre, holding in one hand a cornucopia, and in the other a flower of louts, and sometimes bearing a quiver.

HARPOCRATION, (Valerius), a celebrated ancient rhetorician of Alexandria, who has left us an excellent Lexicon upon the ten orators of Greece. Aldus first published this lexicon in the Greek at Venice in 1603. Many learned men have laboured upon it; but the best edition was given by James Gronovius at Leyden in 1666.

HARPOON, or Harping-iron, a spear or javelin used to strike the whales in the Greenland fishery. The harpoon, which is sometimes called the harping-iron, is furnished with a long staff, having at one end a broad and flat triangular head, sharpened at both edges, so as to penetrate the whale with facility; the head of this weapon is fastened a long cord, called the whale line, which lies carefully coiled in the boat, in such a manner as to run out without being interrupted or entangled. See Whale-fishery.

Gun-harpoon, a kind of fire-arm for discharging harpoons at whales, and thereby killing them more easily and expeditiously than formerly when the harpoons,
poons were thrown by the hands. Though this method
was projected a good many years ago, it is but
 lately come into use; and premiums have been annually
offered by the Society for encouraging arts, &c. to the
persons who first struck a fish in this manner. In the
Transactions of that Society for 1786, we have an ac-
count of the first fish struck in this manner in 1734.
The gun was of the blunderbuss construction, loaded
with four common tobacco-pipes full of glazed powder;
the fish was shot at the distance of ten fathoms, the
harpoon going into her back up to the ring; and she
was killed in about an hour. In 1785 three whales were
killed in this manner; four in 1786 and three in
1787. Since that time the gun-harpoon has come
more into use, and will probably soon supercede the
other method entirely. In the Transactions of the
Society for 1789, we have accounts of a number of
whales killed in this manner. The instrument appears
to be extremely useful in calm hill weather, as the
whale, though a timorous creature, will frequently
allow a boat to approach it to the distance of 20, 15,
or even 10 fathoms, all of which distances are within reach
of the gun-harpoon, though not within the reach of
that thrown by the hand. The greatest inconvenience
was in case of rain or snow, by which the lock
was apt to get wet. To remedy this, a cafe of leather was
made to fit over the gun and over the lock, lined
with tin and big enough to fire the gun when it was
on. The fish struck with a harpoon discharged in this
manner is soon killed by reason of its penetrating
their bodies to a great depth, not less than five or
five feet, which no man's strength would be able to
accomplish. In the volume just quoted, we have an ac-
count of one which was shot through the tail. The
harpoon broke in the fish, but five fathoms of line
went through the tail. The fish was killed in eight
hours, which is perhaps the only instance of a fish
struck in that part being caught. In another, the
harpoon carried six feet of line into its body; the
creature died in ten minutes. Others were killed in
15 minutes or half an hour; and one had a rib broken
by the violence of the stroke. In the Transactions
of the Society for 1790, there are other accounts simi-
lar to the foregoing, and all agreeing as to the great
usefulness of the instrument both for striking the fish
at a considerable distance, and for killing them in a
different time.

HARPSICHORD, the most harmonious of all
the musical instruments of the string-kind. It is played
on after the manner of the organ, and is furnished
with a fret, and sometimes with two sets of keys; the
touching or striking of these keys moves a kind of
little jacks, which also move a double row of chords or
strings, of brass or iron, stretched over four bridges
on the table of the instrument.

HARQUEBUSS, a piece of fire-arms, of the
length of a musket, usually cocked with a wheel. It
 carried a ball that weighed one ounce seven-eighths.
There was also a larger sort, called the great har-
quebus, used for the defence of strong places, which
carried a ball of about three ounces and a half; but
they are now but little used, except in some old castles,
and by the French in some of their garrisons.

HARRILB, a kind of hound, endowed with an
admirable gift of smelling, and very bold in the pur-
suit of his game. See CANSIS.

HARRINGTON (St John), an ingenious Eng-
lisb poet, was the son of John Harrington, Esq., who
was committed to the Tower by queen Mary for hold-
ing a correspondence with her sister Elizabeth; who,
when she came to the crown, freed godmother to this
son. Before he was 30, he published a translation of
Ariosto's Orlando Furioso, a work by which he was
principally known; for though he afterwards pub-
lished some epigrams, his talent did not seem to have
lain that way. He was created knight of the bath
by James I.; and presented a MS. to prince Henry,
levelling chiefly at the married bishops. He is sup-
posed to have died about the latter end of James's
reign.

HARRINGTON (James), a most eminent English
writer in the 17th century, bred at Oxford, travelled
into Holland, France, Denmark, and Germany, and
learned the languages of those countries. Upon his
return to England, he was admitted one of the privy-
chamber extraordinary to King Charles I. He served
the king with great fidelity, and made use of his inter-
ret with his friends in parliament to procure matter
able to be accommodated with all parties. The king loved
his company except when the conversation happened
to turn upon commonwealths. He found means to
see the king at St James's; and attended him on the
seaboard, where, or a little before, he received a token
of his majesty's affection. After the death of king
Charles, he wrote his Oceana: a kind of political
romance, in imitation of Plato's Commonwealth, which
he dedicated to Oliver Cromwell. It is said, that
when Oliver perused it, he declared, that "the gentle-
man had wrote very well, but most not think to cheat
him out of his power and authority; for that what
he had won by the sword, he would not suffer himself
to be scribbled out of." This work was attacked by
several writers, against whom he defended it. Befide
his writings to promote republican principles, he in-
stituted likewise a nightly meeting of several ingenious
men in the New Palace-Yard, Westminster; which
cbub was called the Roti, and continued till the fe-
cuded members of parliament were restored by ge-
neral Monk. In 1661, he was committed to the
Tower for treasonable designs against the king and
chancellor Hyde, at a conference with the gentlemen
and commons, charged him with being concerned
in a plot. But a committee of the lords and commons
could make nothing of that plot. He was conve-
yed to St Nicholas's island, and from thence to Ply-
mouth, where he fell into an uncommon disorder of
the imagination. Having obtained his liberty by
means of the earl of Bath, he was carried to London,
and died in 1677. He published, besides the above
works, several others, which were first collected by
Toland, in one volume folio, in 1700; but a more
complete edition was published, in 1737, by the reve-
tend Dr Birch.

HARRIOT (Thomas), a celebrated algebraist,
was born at Oxford in 1560, where he was also edu-
cated. In 1579, he completed his bachelor's degree;
and, being already distinguished for his mathematical
learning, was soon after recommended to Sir Walter
Raleigh,
HARRIS (William), a protestant dissenting minister of eminent abilities and character, resided at Honiton in Devonshire. Sept. 20, 1765, the degree of D.D. was conferred on him by the university of Glasgow, by the unanimous consent of the members of that body. He published an Historical and Critical Account of the Lives of James I, Charles I, and Charles II; Cromwell, in five volumes, after the manner of Mr. Bayle. He was preparing a like account of James II. He also wrote the life of Hugh Peters; forms one continued history of the inhabited islands on the coast of Harris. Some of them produce good crops of grain, and all of them good pasture. Harris and its islands fell from 400 to 400 tons of kelp annually; it abounds on the east side in excellent lochs or bays, and its shores on both sides form one continued fishery. The fish on this coast, and along the whole shores of the Long Island, are more numerous, and of a larger dimensions, than those on the opposite continent; on which account, two royal fishing stations were begun in the reign of Charles I. one in Loch Maddy, and the other in the Sound of Harris.

HARRISON (William), a writer much esteemed and patronized by the literati of his time, was fellow of New-college, Oxford, and had another income than 40l. a year as a tutor to one of the duke of Queensbury's sons. In this employment he fortunately attracted the favour of Dr Swift, whose felicitations with Mr St. John obtained for him the reputable employment of Secretary to lord Ruby, ambassador at the Hague, and afterwards earl of Strafford. A letter of his whist at Utrecht, dated Dec. 16, 1712, is printed in the Dean's works. Mr Harrison who did not long enjoy his rising fortune, was dispatched to London with the Barrier-treaty; and died Feb. 14, 1712-13. See the Journal de Steela, of that and the following day; where Dr Swift laments his loss with the most unaffected sincerity. Mr Tickle has mentioned him with respect.
Then: in delivering his meaning by writing, in which preferv:ed as were given up to the board of Harrifon. which he devoted himfelf. His farher was a carpenter.

clofe of anlection are fome pleafing fpecimens of his poetry; this, though not fent to fea, recommended Mr M. A. of was another perform this

inging of wood, in which he applied the of acquiring knowledge

fupcri-or to the board of Harrifon yet stronger to the patronage of his private friends and of the public. His third machine, which he produced in 1749, was will lefs complicated than the second, and superior in accuracy, as erring only three or four seconds in a week. This he conceived to be the ne plus ultra of his attempts; but in an endeavour to improve pocket-watches, he found the principles he applied to surpaß his expectation too much, as to encourage him to make his fourth time-keeper, which is in the form of a pocket-watch, about six inches diameter. With this time keeper his fon made two voyages, the one to Jamaica, and the other to Barbadoes: in both which experiments it corrected the longitude within the nearest limits required by the act of the 12th of queen Anne; and the Inventor therefore, at different times, though not without infinite trouble, received the proposed reward of 20,000l. These four machines were given up to the board of longitude. The three former were not of any ufe, as all the advantages gained by making them were comprehended in the falt; they were worthy, however, of being carefully preferred as mechanical curiosities, in which might be traced the gradations of ingenuity executed with the moft delicate workmanship; whereas they now lie totally neglected in the royal observatory at Greenwic.h. The fourth machine, emphatically distinguished by the name of The time-keeper, has been copied by the ingenious Mr Kendall; and that duplicate, during a three years circumnavigation of the globe in the southern hemisphere by captain Cook, anfwered as well as the original. The latter part of Mr Harrison’s life was employed in making a fifth improved time-keeper on the fame principles with the preceeding one; which, at the end of a ten weeks trial, in 1772, at the king’s private observatory at Richmond, errd only 45 seconds. Within a few years of his death, his constitution visibly declined; and he had frequent fits of the gout, and scarce ever slept, but attacked him before his 77th year: he died at his home in Red-Lion Square, in 1776, aged 83. The reclufe manner of his life in the unremitted pursuit of his favourite objeçt, was by no means calculated to qualify him as a man of the world; and the many discouragements he encountered in folliciting the legal reward of his labours, still lefs disposed him to accommodate himself to the humours of mankind. In converging on his profefion, he was clear, diftinct, and modest; yet, like many other mere mechanics, found a difficulty in delivering his meaning by writing: in which he adhered to a peculiar and uncouth phraseology. This was but too evident in his Description concerning such mechanism as will affiarm a time or tru:cation of time, &c. 8vo. 1775; which his well-known mechanical talents will induce the public to account for from his unacquaintance with letters, from his advanced age, and attendant mental infirmities;
Harrogate is a village in the West Riding of Yorkshire, in the parish of Knaresborough, remarkable for its medicinal springs. There are three in number, all different in their qualities, notwithstanding their contiguity. 1. The Tewet water or Sweet Spa, a vitriolic spring of a fort of milky taste used in gravelly cases, was discovered by Mr. Singby in 1638. 2. The stinking or sulphur spring, useful in dropsical, scrofulous, and gouty cases, rises in the town, and is received in four basins under four different buildings; at one it is drank, at the others used for hot or cold baths. It is perfectly clear; but tastes and smells like a composition of rotten eggs, sea-water, and sulphur, and extremely faint. Bathing is the most general mode of using it. It is the strongest sulphur water in Great Britain; and from the superior strength of the impregnating sulphur, it does not lose the sulphureous smell even when exposed to a scalding and almost boiling heat; and in distilling it, when three pints had been taken off from a gallon of it, the last was as strong as the first, and funk intolerably. It is diffident and attenuating, and a warm bath of it is of great benefit in pains and aches, strains and lameness; dissolving hard swellings, currying old ulcers and scrophulous complaints and is a powerful cleanser of the stomach and bowels. 3. St. Mango's well, it is said from Kentigern, a Scots saint, much honoured hereabouts, whom his tutor Servannus Bishop of Orkney, out of affection for him, called Mangath, which in the North or Norway language signifies a dear friend—the Harrogate season is from May to Michaelmas; and the company assemble and lodge in five or six large houses or inns on the heath, a mile from the village, each house having a long room and an ordinary: the best company used to lodge at Knaresborough, which is three miles off.

Harrow-on-the-Hill, a town of Middlesex, so called from its situation on the highest hill in the county, is 10 miles north-west of London. This parish is noted for a free school, founded in the reign of Queen Elizabeth. A silver arrow is shot for here once a year, viz. August 4th, by a select number of the scholars, who are drest for the purpose in the habit of archers.

Harrow, in agriculture. See there, § 98.

Hart, a flag, or male deer, in the sixth year. See Cervus.

Hart-beef, or Quaga. See Capra.

Hart's-horns, the horns of the common male-deer.

The tearings or railings of the horn of this animal are medicinal, and used in decoctions, plasters, &c. Harthorn jelly is nutritive and strengthening, and is sometimes given in diarrhoeas; but a decoction of burnt harthorn in water is more frequently used for this purpose, and is called harthorn drink.

The coal of harthorn, by being calcined with a long continued and strong fire, is changed into a very white earth, called hartthorn calcined to whiteness. This earth is employed in medicine as an absorbent, and administered in dysestheies and labour-pains, which are supposed to be caused by acid and ill-digested matters. This earth lustrified is the basis of Sydenham's white decoction, which is commonly prescribed in these diseases.

The leaf of harthorn is a great sudorific, and given in fevers with success; and harthorn also yields, by distillation, a very penetrative volatile spirit.

Hartford, the capital of the county of the same name, signifying, as is commonly thought, the "ford of harts," stands on the river Lea, 21 miles from London; and is of considerable antiquity. Here the East-Saxon kings often kept their court; and here, in 673, was held a synod. King Alfred built a castle here, by which the Danish vessels were destroyed, that came up from the Thames by its river as far as Ware, where the Danes had erected a fort, from which they made frequent forays to plunder and destroy the country. The present castle consists of a gate-house, or lodge of brick, and a range of brick buildings, which seem of the time of James or Charles I. and also of a very ancient wall of rubble-stone, with angular towers, supposedly to have been standing ever since its first foundation. The mayor of the town was all along the king's, of whom both the town and castle were formerly held in capitis. The barons took the latter from King John, but Henry III. recovered it. Edward III. gave the town a charter for markets on Thursdays and Saturdays, and in this grant of it to John of Gaunt, it is called The Honour of Hartford. It feft members to parliament in the reign of Edward I., but after the 17th of Henry V. on the petition of the bailiff and burgesses to be exempted by reason of their poverty, that privilege was discontinued till the 22d of James I. Henry VI. who kept his Easter here in 1429, ordained by his charter, confirming their market, that no other should be kept on the same days, within seven miles, on pain of having the goods seized by the bailiffs of Hartford. This manor being then part of queen Margaret's jointure, the courts were held in her name, and she appointed a horse fair to be kept in what part of the town the bailiff and constables thought fit. The standard of weights and measures was fixed here in the reign of Henry VII.; and Mary I. made this a corporation by the name of bailiffs and burgesses, of whom the latter were 16 by her charter. In the 25th and 27th of Elizabeth, Michaelmas-term was kept here, by reason of the plague at both times in London; and that queen, who sometimes resided in its castle, and declared the borough as parcel of her duchy of Lancaster, granted it a new charter, by the style of a bailiff, 11 capital burgesses and 16 assistants, with a market on Saturday. James I. granted it a new charter, with the style of mayor, burgesses, and commonalty, to have 10 capital burgesses, and 16 assistants, the mayor to be chosen out of the former by both of them; and a fair was then appointed here on May 12. Here was once a monastary, founded by a nephew of William...
Ham the Conqueror; and here were formerly five churches which are now reduced to two. In St Andrew's there is a seat not only for the mayor and aldermen, but another for the governors of Christ-church hospital in London, who have erected a house in this town on account of its healthy air and dry situation, to receive such children as wanted either health or room in that hospital; and the house built a gallery in the church, wherein 200 of their children may be accommodated. The town is now governed by a mayor, high-reward, who is generally a nobleman, a recorder, 9 aldermen, a town-clerk, chamberlain, to capital burgesses, and 16 assimilates, and has 2 ferruges at mace. The chief commodities of its market are wheat, malt, and wool; and it is said to send 3000 quarters of malt to London weekly by the river Lea. Besides the abovementioned, there are two fairs on July 5 and November 8, and 2 others for cattle, viz. the Saturday fortnight before Easter, and its Midsummer fair is chiefly for horses. Here is a handsome free grammar school, besides 3 charity schools; but the splendor of the place is much diminished since the north road from London was turned to the south road by King W. The county goal, however, is still kept in the town, and the gaol-delivery in the castle. It gives the title of Earl to the noble family of Seymour-Conway.

HARTFORDSHIRE, a county of England, deriving its name from Hartford the capital; and that from the harts with which it anciently abounded, being then over-run with woods. It is bounded on the east by Essex, on the west by Bedfordshire, and Buckinghamshire, on the south by Middlesex, and on the north by Cambridgeshire. This county is much indented by those that surround it; the longest part is about 33 miles, and the broadest about 27; and the circumference is 190, containing about 451,000 acres. It is divided into eight hundreds, which contain 19 market towns, 54 vicarages, 120 parishes, and near 950 villages, with about 14,500 houses, and 90,000 inhabitants; and sends 5 members to parliament, two knights for the shire, with two burgesses for St Albans, and as many for Hartford. Before the reign of Queen Elizabeth, one sheriff served both for this shire and Essex; but in the ninth year of her reign, it had one allotted for itself. With regard to ecclesiastical jurisdiction, it belongs partly to the diocese of Lincoln, and partly to that of London.

Though the soil in general, especially in the Chiltern and southern parts, is but very indifferent, and much inferior to that of the neighbouring counties; yet the air is so much superior, that lands in this shire generally fall at three or four years purchase more than in many others on that account. But it must be owned, that the soil of Hartfordshire has been much improved of late, by draining, fowing grass-feeds, and other methods. There are few or no manufactories in the county; but its markets are much frequented, in consequence of its being near London, for malt and all sorts of grain, which, with the many thoroughfares through it, make ample amends.

HARTLAND, a town in Devonshire, near the Bristol channel, with a market on Saturdays, much frequented by the people of Cornwall, who come hither in boats. It gives its name to a point, called Hartland Point, at the entrance of Bristol channel. Hartlepool W. Long. 4. 45. N. Lat. 51. 9.

HARTLEPOOL, a sea-port town in the county of Durham. It is commodiously seated on a promontory, and is almost encompassed by the sea. It was an ancient corporation, governed by a mayor and aldermen, with other subordinate officers. It is at present a pretty large but poor place. It depends chiefly on the fishing trade; and its harbour is much frequented by colliers paffing to and from Newcastle. W. Long. c. 55. N. 54. 49.

HARTLEY, a town of Northumberland, on the coast, situated northwest of Tynemouth, where Lord Delaval has constructed a pretty haven, whence coals are shipped for London. Here are large salt works and copper works, and likewise considerable glass works; and there is here a canal cut through a solid rock to the harbour, 52 feet deep, 30 broad, and 900 long. These works are the sole property of Lord Delaval, and yield a revenue of above 20,000 l. per ann.

Hartley (David), M. A. born at Lingworth, where his father was a curate, received his academical education at Jesus college; and his early education he received at Christ's college, of which he was a fellow. He first began to practice physic at Newnham, in Nottinghamshire; from whence he removed to St Edmund's bury in Suffolk. After this, he settled for some time in London; and lastly went to live at Bath, where he died in 1757, aged 52, leaving two sons and a daughter. He published "A view of the present evidence for and against Mrs Stephens's medicines as a solvent for the stone, contain- ing 155 cases, with some experiments and observa- tions." London, 1739. He is said to have also written a letter against Dr Warren, of St. Edmund's bury, in defence of inoculation; and some letters of his are to be met with in the philosophical transactions. The doctor was certainly a man of learning, and reputed a good physician; but too fond of nostrums. But his most considerable literary production is a work intitled, "Observations on man, his frame, his duty, and his expectations, in two parts;" London, 1749, 2 vols. 8vo. The first part contains observations on the frame of the human body and mind, and on their mutual connections and influences. The second part contains observations on the duty and expectations of mankind.

Hartman (John Adolphus), a learned divine and historian, was born at Mannheim in 1680. After being a Jesuit for several years, he became a Calvinist at Calis, in 1715; and soon after was made professor of philosophy and poetry, and in 1722 professor of history and eloquence at Marburg, where he died in 1744. The most esteemed of his works are 1. The state of the sciences at Hesse, in German. 2. Historia Hassiaca, 3 vols. 3. Precepta eloquentiae rationales, &c.

He ought not to be confounded with George Hartman, a German mathematician, who, in 1540, wrote a book on perspective; nor with Wolfgang Hartman, who, in 1596, compiled the Annals of Augsburg.

Hartogia, in botany: A genus of the pentandria order, belonging to the monoeica class of plants; and in the natural method ranking under the 43th order, Aggregata. The male calyx is pentaphyllous, the
HARVEST-fly, in zoology, a large four-winged fly of the family, very common in Italy, and erroneously supposed to be a grasshopper. See Cicada.

HARVEST-home, denotes the feast often observed at the close of harvest, and also the fong used on that occasion. See December.

HARVEY (Dr. William), an eminent English physician in the 17th century, was incorporated Doctor of physic in Cambridge, afterwards admitted into the college of physicians in London, and was appointed lecturer of anatomy and chirurgery in that college. In these lectures he opened his discovery relating to the circulation of the blood; which, after a variety of experiments, he communicated to the world in his Exercitatio anatomica de motu cordis et sanguinis. He was physician to King James I. and to King Charles I., and adhered to the royal cause. His works have ecliped his memory. In 1651, he published his Exercitatio de generatione animalium, a very curious work; but it would have been more fit had not his papers been destroyed during the civil wars. In 1654, he was chosen President of the college of physicians in his absence; but his age and weaknesses were so great, that he could not discharge the duty of that office; and therefore desired to choose Dr. Pringle. As he had so children he retired his paternal citze upon the college. He had three years before built a combination-room, a library, and a museum; and in 1656, he brought the deeds of his estate, and presented them to the college. He was then present at the first feast, instituted by himself, to be continued annually, together with a commemoration speech in Latin, to be spoken on the 18th of October, in honour of the benefactors to the college; he having appointed a hand- some flippend to the orator, and also for the keeper of the library and museum, which are still called by his name. He died in 1657.

This great physician had the happiness in his lifetime, to find the clamours of ignorance, envy, and prejudice against his doctrine, totally silenced, and to see it universally established. It has, by length of time, been more and more confirmed, and every man now sees and knows it from his own experience. It appears to be of the utmost importance in medicine; as it is perhaps impossible to define health and sickness in fewer words, than that the one is a free, and the other an obstructed, circulation.—Dr. Harvey was not only an excellent physician, but an excellent man; his modesty, candour, and piety, were equal to his knowledge; the farther he penetrated into the wonders of nature the more he was inclined to venerate the Author of it.

HARWICH, a town of Essex, in England, 72 miles from London. It is not large; but is well built and populous, has a good maritime trade, and strong works. It is walled in; and the streets are paved for the most part with clay, which tumbling down from the cliff, where is a peregrifying water between the town and Beacon-Hill, soon grows as hard as stone; and the inhabitants boast the wall is as strong and the streets are as clean as those that are of real stone. The harbour or bay is very large, safe, and deep; and is commanded by a strong fort on the Suffolk side, though not in that county. Here is a dock belonging to the government, with all convenience for building, cleaning, and refiting men of war. A little way from the town, on a high hill called Beacon-hill, is a very fine light-house, which is seen at a great distance, and is very useful on this dangerous coast. At this place the packet-boats which pass between England and Holland are stationed, and the town is much benefited by the passengers. The bay is so spacious, by the influx of the Stour from Manningtree, and the Orwell from Ipswich, and such use was made of it in the Dutch war, that 100 sail of men of war have been seen there at one time, with their tenders, besides 300 or 400 sail of colliers; for it is a perfect harbour within two miles of Ipswich, and able to receive ships of 100 guns all the way. The towns here are very good; but the accommodations dear, by reason of the great concourse of passangers to and from Holland, which was the motive of fitting up the Stour to thither directly from the Thames, when the stage-coaches used to ply two or three times a week between this place and London were laid down. This place was first made a free borough, and had a grant of its market on Tuesdays in the reign of Edward II. Its government was settled by charter of King James I. in a mayor, chosen yearly, November 30, out of eight aldermen, who with 24 capital burgesses, the electors, and the recorder, make the corporation. By this charter it had also a power to elect two burgesses.
Harwood
Harwood

geffes to Parliament, the grant of its Friday market, and its two fairs on May-day and October 18. which are each for three days. The town has also an admiralit. jurisdiction within its liberties, and the return of all writs, fines, &c. Though the entrance into the sea here is between two and three miles wide at high-water, yet the channel where the ships must keep to come to the harbour, which is on the Suffolk side, is only 400 yards wide, so that a ship that came in or go out are commanded by the guns of Landguard-Fort on that side. This town was fortified heretofore on the land side, but in the reign of King Charles I. the fortifications were demolished. It has since been ordered to be refortified. The church here, ever since the reformation, has been a chapel to the mother-church at Dover-Court.

HARWOOD, a small but pretty town in the north riding of Yorkshire, with a lofty stone-bridge of 11 arches over the Wharfe, which runs in a bed of stone, and is as clear as rock-water. Near it are the ruins of an ancient castle, built soon after the conquest, which remained a strong fortification in Canbden's time. Here are a variety of ruins from one of whom, to the reign of King John, obtained a grant for a market and fair here. In the reign of Edward III. it was valued at 400 marks a-year. This castle was ruined in the civil wars. It has eight or nine dependent constabularies, wherein are many antiquities. The remains of the castle which seems to have been the keep, is in a condition to exist long. The castle itself covered near an acre of ground. Near it is now Harwood-House, one of the first houses in the county for elegance and superior embellishments, built on part of the site of Gawthorpe-Hall, now no more. In the church are some ancient monuments, particularly that of lord chief-justice Gafcoigne, who committed the prince of Wales to prison for striking him on the bench.

HASLEMER, a town of Sarry, in England, seated on the edge of the county near Hampshire, 45 miles from London, is an ancient place, and was once destroyed by the Danes. It is a borough by prescription, and has fent members to parliament ever since the reign of Edward IV., who are chosen by a bailiff and burgage-tenants. It is said to have had seven parish-churches formerly, though but one church now, which is a chapel of ease to Chilsington: and that it stood heretofore upon a hill more to the south than the present town.

HASSELQUISTA, in botany: A genus of the digynia order, belonging to the pentandria class of plants; and in the natural method ranking under the 45th order, Umbellatae. The fruits are quite smooth; the seeds of the radius oval, plane, marginated, and convex in the middle; those in the disk hemispherical and urceolated or bladder-flapped.

HASSEL, a handsome town of the United Provinces, in Overfief, seated on the river Wecht, in E. Long. 6. 5. N. Lat. 53. 46.

HASSEL, a town of Germany, in the circle of Welfphalia, and in the territory of Liege, situated on the river Deme, in E. Long. 4. 49. N. Lat. 50. 55.

HASSIDEANS, or ASIDEANS. See ASIDEANS.

HASSOCK, a haf made of rushes, to kneel on or rest the feet upon in churches.

HASP and STAPLE, in Scots law, the symbol com-

monly used in burgage tenements for entering and infenting an heir, by delivering into his hands the haf and staple of the door.

HASSTA, or HASTA FRAPA, among medallists, signifies a kind of spear or javelin, not fixed or headed with iron; or rather an ancient sceptre, some what longer than ordinary, occasionally given to all the gods.

Hast, in some countries, is a measure or quantity of ground amounting to thirty paces: thus called, according to M. Du Cange, from the haft or rod where with it was measured.

HASTATED LEAF. See Botany, p. 442.

HASTING-PEAR, a name given by the gardeners to a species of pear, called also by some the green or 666

pear. This is a moderately large pear, and is longish toward the pedicle; its skin is thin, and of a whith green; the pulp is melting, and of a foggy flavour.

It ripens in July.

HASTINGS, a town of Suffolk in England, 64 miles from London. It is the chief of the cinqueports; and was formerly obliged to find 21 ships, within 40 days after the king's summons, well furnished and armed for service, and to maintain the crews a fortnight at its own charge. This town is supposed to have taken its name from Haftings, the famous Danifh pirate, who used to build fortresses where he went a-shore for his prey, to cover his men, and secure his retreat. In the reign Athelstan's reign here was a mint. This town had charters from Edward the Conflffi ef, William I. and II. Henry II. Richard I. Henry III. Edward I. and Charles II. exempting it from toll, and empowering it to hold courts of judicature on life and death. It is incorporated by the style of mayor, jurats, and commonalty. It has handsome houses, and custom-houses offices; but frequent storms have rendered it an indifferent harbour, though a vast sum of money has been laid out at times to make it a good one. It has sent members to parliament ever since Edward III. London is supplied from hence with abundance of fish that are taken on the coast. The town lies between two high cliffs towards the sea, and as high a hill on the land side, having two streets, and in each a parish-church, divided by a stream of fresh water called the Bourne. About the year 1377, this town was burnt by the French: and after it was rebuilt, it was divided into the two parishes. Here are two charity schools, erected for the teaching of 200 or 300 children. There was a castle on the hill, which overlooked the town, but it is now in ruins. The markets here are on Wednesdays and Saturdays: the fairs are on Tuesday and Wednesday in Whit-sun-week, and July 26, October 23, and 24. Here was formerly a priory. Haftings was a barony in the Huntington family, now in the Rawdon family.

This town is remarkable for a battle fought in its neighbourhood, between Harold king of England and William duke of Normandy, on the 15th of October 1066, in which the former was defeated and killed, and by his death William, furnished the Conqueror, became king of England. (See England, p. 86.)—On the night before the battle, the aspect of things was very different in the two camps. The English spent the time in riot, jollity, and disorder; the Normans in prayer and
Hastings. and other duties of religion. The next day both armies prepared for battle. The duke divided his army into three lines: the first, headed by Montgomery, consisted of archers and light-armed infantry; the second, commanded by Marcel, was composed of his bravest battles, heavy-armed, and ranged in close order; his cavalry at whole head he placed himself, formed the third line; and were so disposed that they stretched beyond the infantry, and flanked each wing of the army. He ordered the signal of battle to sound; and the whole army, moving at once, and tinged the magne, advanced, in order and with alacrity, towards taking them in hymn or song of Roland the famous peer of Charle-vanquished dared ill:ill fed his
Gurth and
ground, and
ing their lords, to
which was very
followed the Normans into the plain. William gave
flanks, he resolved to
seemed adviseable in his desperate
dORe
forces. His presence
ed, with a

The

The
HAT

Plants make a very considerable article in commerce; the finest, and those most valued, are made of pure hair of an amphibious animal, called the caffer or beaver, frequent in Canada and other parts of North America. See BEAVER.

Method of making Hats. Hats are made either of wool, or hair of diverse animals, particularly of the caffer, hare, rabbit, camel, &c. The process is much the same in all; for which reason we shall content ourselves to instance in that of caffers.

The skin of this animal is covered with two kinds of hair; the one long, fluff, glossy, and pretty thin set; this is what renders the skin or fur of so much value; the other is short, thick, and soft, which alone is used in hats.

To tear off one of these kinds of hair, and cut the other, the hatters, or rather the women employed for that purpose, make use of two knives, a large one like a shoemaker's knife for the long hair; and a smaller, not unlike a vina knife, where with they have or scrape off the shorter hair.

When the hair is off, they mix the stuff, to one third of dry caffer, putting two-thirds of old coat, i.e., of hair which has been worn some time by the fawages, and card the whole with cards, like those used in the woollen manufactory, only finer; this done, they weigh it, and take more or less according to the size or thickness of the hat intended. The stuff is now laid on the hurdle, which is a square table, parallel to the horizon, having longitudinal chinks cut through it; on this hurdle, with an instrument called a bow, much like that of a violin, but larger, whose ftring is worked with a little bow flick, and thus made to play on the furs, they fly and mix together, the dust and ftrife, as the same time passing through the chinks; this they reckon one of the most difficult operations in the whole, on account of the juftnefs required in the hand to make the fluff fall precisely together, and that it may be every where of the fame thickness. In lieu of a bow, some hatters make ufe of a fieeve or fcare of hair, through which they pass the stuff.

After this manner they form gores, or two capades, of an oval form, ending in an acute angle at top; and with what stuff remains, they supply and ftrengthen them in places where they happen to be fenderer than ordinary; though it is to be remembered, that they deliberately make them thick, the brim, near the crown, than toward the circumference, or in the crown itself.

The capades thus finished, they go on to harden them into clofer and more convenient flakes by preffing down a hardening skin or leather thereon; this done, they are carried to the bifon, which is a fort of bench with an iron plate fitted therein, and a little fire underneath it; upon which laying one of the hardened capades, sprinkled over with water, and a fort of mould being applied thereon, the heat of the fire, with the water and preffing, imbody the matter into a flight hairy fort of fluff or felt; after which, turning up the edges all round the mould, they lay it by, and thus proceed with the other; this done, the two next are joined together, fo as to meet in an angle at the top, and only form one conical cap, after the manner of a manica Hippocratis, or flannel bag.
Dyeing of Herts. The instructions of Mr Colbert, direct hats to be first strongly caulked, by boiling them a long time in a decoction of galls with a little logwood, that the dye may penetrate the better into their substance: after which a proper quantity of virriol, and decoction of logwood, with a little verdigris, are added, and the hats continued in this mixture also for a considerable time. They are afterwards to be put into a fresh liquor of logwood, galls, virriol, and verdigris; and where the hats are of great price, or of a hair which difficulty takes the dye, the same process is to be repeated a third time. For obtaining the most perfect colour, the hair or wool is to be dyed blue previously to its being formed into hats.—The present practice is more compendious, and affords, as we may daily see, a very good black. According to Dr. Lewis, it does not materially differ from that of the Encyclopedia, which is as follows. An hundred pounds of logwood, 12 pounds of gum, and six pounds of galls, are boiled in a proper quantity of water for some hours; after which, about six pounds of verdigris and ten of green virriol are added, and the liquor kept just simmering, or of a heat a little below boiling. Ten or twelve dozen of hats are immediately put in, each on its block, and kept down by cloths bars for about an hour and an half: they are then taken out and aired, and the same number of others put in their room. The two fists of hats are thus dipped and aired alternately, eight times each; the liquor being refreshed each time, with more of the ingredients, but in less quantity than at first. The process (says Dr Lewis) affords a very good black on woolen and silk stuffs as well as on hats, as we may fee in the small pieces of both kinds which are sometimes dyed by the hatmakers. The workmen lay great stress upon the verdigris, and affirm that they cannot dye a black hat without it; it were to be wished that the use of this ingredient were more common in the other branches of the black dye; for the hatters dye, both on silks and woolens, is reckoned a finer black than what is commonly produced by the woolen and silk dyer. Hats are also made for women's wear, not only of the above stuffs, but of chips, flax, or cane, by plaiting, and fewing the plates together; beginning with the centre of the crown, and working round till the whole is finished. Hats for the same purpose are also wove and made of horse-hair, silk, &c. Hat is also figuratively used for the dignity of a cardinal, or a promotion to that dignity. In this sense they say, “to exped the hat,” to claim, or have pretensions to; the hat,” &c.

Pope Innocent IV. first made the hat the symbol of cognizance of the cardinals, and enjoining them to wear a red hat at the ceremonies and processions, in token of their being ready to spill their blood for Jesus Christ. HATCH, or HATCHWAY, a square or oblong opening in the deck of a ship, of which there are several, forming the poulages from one deck to another, and into the hold or lower apartments. See Plate CLVI., where A represents the main-hatchway of the lower deck; NN the fore-hatchway, and OO the after-hatchway. There are likewise hatchets of a smaller kind, called scottets. See UU in the same figure; as also the article SCUTTLE.—Hatchets is also, though improperly, a name applied to sailors; to the covers or hatchets of the hatchway.

HATCHET, or HATCHET, in the manufacture of flax, hemp, &c. a tool, not unlike a card, for drilling and combing them into fine hairs. They consist of sharp pointed iron pins, or teeth, set orderly in a board.

Of these there are several sorts, some with finer and shorter teeth, others with them coarser and longer.

HATCHES, in mining, a term used in Cornwall, to express any of the openings of the earth either into mines or in search of them. The frightful openings are called off-set-hatches; the real mouths of the veins, true-hatches; and the places where they wind up the buckets of ore, wind-hatches.

Hatches also denote flood gates set in a river, &c. to stop the current of the water, particularly certain dams or mounds made of rubbish, clay, or earth, to prevent the water that issues from the steam-works and tin-walks in Cornwall from running into the fresh rivers.

HATCHET, a small light fort of an axe, with a ball's edge on its left side, and a short handle, as being to be used with one hand.—Hatchets are used by various artificers, and more particularly in hewing of wood.

HATCHING, the maturating of unfertilized eggs, whether by the incubation and warmth of the parent bird, or by artificial heat, so as to produce young chickens alive.

The art of hatching chickens by means of ovens has long been practiced in Egypt; but it is there only known to the inhabitants of a single village named Berme, and to those that live at a small distance from it. Towards the beginning of autumn they scatter themselves all over the country, where each person among them is ready to undertake the management of an oven, each of which is of a different size; but, in general, they are capable of containing from forty to fourscore thousand eggs. The number of these ovens placed up and down the country is about 386, and they usually keep them working for about six months: as, therefore, each brood takes up in an oven, as under a hen, only 21 days, it is easy in every one of them to hatch eight different broods of chickens. Every Bermean is under the obligation of delivering to the person who intrusts him with an oven, only two-thirds of as many chickens as there have been eggs put under his care; and he is a gainer by this bargain, as more than two-thirds of the eggs usually produce chickens. In order to make a calculation of the number of chickens yearly so hatched in Egypt, it has been supposed that only two-thirds of the eggs are hatched, and that each brood consists of at least 50,000 chickens; and thus it would appear, that the ovens of Egypt give life yearly to at least 92,650,000 of these animals.

This useful and advantageous method of hatching eggs has been lately discovered in France by the ingenious Mr Reaumur; who, by a number of experiments, has reduced the art to certain principles. He found by experience, that the heat necessary for this purpose is nearly the same with that marked 32° on his thermometer, or that marked 60° on Fahrenheit's. This degree of heat is nearly that of the skin of the hen, and, what is remarkable, of the skin, of all other domestic
Hatching, fowls, and probably of all other kinds of birds. The degree of heat which brings about the development of the egg,y, the gosling, and the turkey-poult, is the same as that which suits for hatching the canary song-bird, and, in all probability, the diamond doves; but afterwards they require 27 or 28 degrees, by means of pipes to convey heat into a chamber over an oven. If the heat be not kept sufficiently hot, this will remain fixed in a lump; which may be done by melting a lump of butter of the size of a walnut, with half as much tallow, and putting it into a phial. This will serve to indicate the heat with sufficient exactness: for when it is too great, this mixture will become as liquid as oil; and when the heat is too small, it will remain fixed in a lump: but it will flow like a thick syrup, upon inclining the bottle, if the stove be of a right temper.

Great attention should therefore be given to keep the heat always at this degree, by letting in fresh air, if it be too great, or shutting the stove more close if it be too small: and that all the eggs in the stove may equally share the irregularities of the heat, it will be necessary to shift them from the sides to the centre; and thus to imitate the hens, who are frequently seen to make use of their bills, to pull to the outer parts those eggs that were nearest to the middle of their nests, and to bring into the middle such as lay nearest the sides.

Mr. Reaumur has invented a sort of low boxes, without bottoms, and lined with furs. These, which he calls artificial parents, not only shelter the chickens from the injuries of the air, but afford a kindly warmth, so that they profently take the benefit of their shelter as readily as they would have done under the wings of a hen. After hatching, it will be necessary to keep the chickens, for some time, in a room artfully heated and furnished at once, all led about, and defended only by three or four such capons. Nay, cocks may be taught to perform the same office; which they, as well as the capons, will continue to do all their lives after.

Hatching, or Hatching, in designing, &c. the making of lines with a pen, pencil, graver, or the Hatching like; and the interlacing or going across those lines with others drawn a contrary way, is called counter-Hatching. Hattemists, hatting.

Hatching is of singular use in heraldry, to distinguish the several colours of a shield, without being illuminated: thus gules or red is hatched by lines drawn from the top to the bottom; azure, by lines drawn across the shield; and so of other colours.

HATCHMENT, in heraldry, the coat-of-arms of a person dead, usually placed in the front of a house, whereby may be known what rank the deceased person was of when living: the whole distinguished in such a manner as to enable the beholder to know whether he was a bachelor, married man, or widower; with the like distinctions for women.

Bishop Hatfield. Hatfield, a town of Hertfordshire in the great coach-road to the north, 19 miles from London. It was called Bishop’s-Hatfield, because it did belong to the bishops of Ely. Theodore Archbishop of Canterbury held a synod here, anno 681, against the Eutychian heresy. Here was once a royal palace, from whence both Edward VI. and Queen Elizabeth were conducted to the throne. King James I. exchanged the manor with Sir Robert Cecil, afterwards earl of Salisbury, for Theobald’s, in the parish of Chehalt in this county; and the lordship still remains in that noble family, who have a very fine seat here. The rectory, which is in that earl’s gift, is reckoned worth 800 pounds a-year. Here are two charity schools; and there is a market on Thursdays, with two fairs in April and October.

Hatfield and Chace, a town in the west riding of Yorkshire, four miles from Doncaster. The chace is famous for deer-hunting. There are many intrenchments near the town, as if it had been the camp of some great army. It is said that no rats were ever seen in this town.

Hatfield-Broad-Oak, or King’s Hatfield, a town of Essex in England, seated on a branch of the river Lea, 30 miles from London, is so called from the nature of the soil, from its tenure by king William the Conqueror and his successors, and from a broad oak growing in the town. It has a market on Saturdays, and a fair in August.

Hattem, a town of the United Provinces, in the duchy of Guelderland, seated on the river Uffel, in E. Long. 6° 6 minutes 23 seconds, Lat. 53° 30 minutes.

Hattemists, in ecclesiastical history, the name of a modern Dutch sect, so called from Pontiau Van Hattem, a minister in the province of Zeeland, towards the close of the last century, who being addicted to the sentiments of Spinoza, was on that account degraded from his pastoral office. The Verfchorists and Hattemists resemble each other in their religious systems, though they never so entirely agreed as to form one communion. The founders of these sects deduced from the doctrine of absolute decrees a system of fatalism and an unchangeable necessity. They denied the difference between moral good and evil, and the corruption of human nature: from hence they farther concluded, that mankind were under no form of obligation to correct their manners, to improve their minds, or to obey the divine laws; that the whole of religion consisted...
HAVANNA, a sea-port town of America, in the island of Cuba, and on the north-west part of it, opposite to Florida. It is famous for its harbour, which is in every respect one of the best in the West Indies, and perhaps in the world. It is entered by a narrow passage, upwards of half a mile in length, which afterwards expands into a large basin, forming three Cul de Sacs, and is sufficient, in extent and depth, to contain 1000 sail of the largest ships, having almost throughout fix fathom water, and being perfectly covered from every wind. The town was built by Diego de Velazquez, who conquered the island of Cuba. It was but a small place, and named originally the port of Caracas, but afterwards, when the city by its increase of wealth grew considerable, it was called St Christopher of the Havana. In 1536, it was of so considerable a value, that being taken by a French pirate, he ransomed the place for the paltry sum of 700 pieces of eight. Some time after it was taken by the English, and a second time by the French; nor was its value understood, or any care taken to put it in a posture of defence, till the reign of Philip II.; though what was then done proved insufficient. But since the accession of a branch of the House of Bourbon to the Spanish crown, more pains have been taken to render it a place of strength. The Havana stands on the west side of the harbour, in a pleasant plain; and is the residence of the governor and captain-general of Cuba, and of the royal officers, as well as of an aforesaid for the attendance of the governor and captain general of the West Indies. The bishop of St. Jago de Cuba likewise chooses to fix his residence here. The buildings are elegant, built of stone, and some of them most superbly furnished. Here are eleven churches and monasteries, and two handsome hospitals. Near the middle of the town is a spacious square, surrounded with uniform buildings. The churches are rich and magnificent; the lamps, candlesticks, and ornaments for the altars being of gold and silver; some of the lamps are of the most curious workmanship, and weigh near 100 weight. The Recollet church, which stands on the best ground in the city, has 12 beautiful chapels in it, and in the monastery are cells for 50 fathers. The church of St. Clara has seven altars adorned with plate, and the monastery contains 100 women and servants, all dressed in blue. The church belonging to the Augustines has 13 altars; that of St. Juan de Dios, with an hospital for soldiers of 12,000 pieces of eight revenue. It is not a bishop's see, though the bishop of St. Jago resides here, the revenue of which prelate is not less than 50,000 pieces of eight a-year. In 1700 the inhabitants were computed at 26,000, and we may very well imagine them to be increased since. They are a more polite and social people than the inhabitants of any of the Spanish ports on the continent; and of late imitate the French both in their dress and manners. The city is supplied with water by a small river called Laguida, which rises from the hills on the south-west side of the town, and divides itself into three streams, one of which falls into the sea on the east side of the town, but the other two flow through the place, entering the walls near the middle of the city.

As to the fortifications, it was already remarked, that the entrance to the harbour is by a narrow gut near half a mile in length; this passage is defended on the east side by a strong castle called El Morro, situated on a high rock; and on the west side are mounted 40 pieces of cannon. Under the faces of the south-west bastion of the Morro, and more within the entrance of the harbour, is a battery of stone called the Twelve Apostles, almost level with the water, and the guns of which carry each a ball of 36 pounds. A little higher, and opposite to the Point gate, is the La Divina Pastora, or the Shepherd's Battery, of 14 guns, level with the water. On the west side of the entrance, at the point, is a square fort called the Punta, with four bastions well mounted with cannon, about 200 yards distant from the Punta gate of the town. On the bastions of the town, next the harbour, are a number of cannon; and about the middle of the city is another, called El Fuerte, a square fort with four bastions, mounted with 22 pieces of cannon, of no great strength; but in this last the governor resides, and in it the king of Spain's treasures are depoited till the arrival of the galleons. On the land side, from the Punta gate to the dock-yard, there is a rampart with bastions, faced with stone, and earthen parapets with a ditch, which in several places has fallen in, and is almost filled up, particularly behind the Punta and land-gate, near the stone-quoteries, which, if joined to one another, might be of great detriment to the place in case of a siege, as lodgment might be made in them. The ground here rises with an easy ascent to the land-gate; and is either open pasture or garden ground, well stored with the cabbage-tree. Before the land-gate is a ravelin. The hill on a rising ground from this gate (which is the highest part of the town) to the dock-yard, is steeper than on the other side.

Such are the fortifications of the Havana, which are the best the Spaniards have in the West Indies, as indeed the place is of the greatest importance. But though strong, they have many defects, and from the situation of the town and forts, are commanded by many eminenties, of which an enemy could not fail to take advantage. On the east side of the harbour, the Cavañas, on a part of which the Morro is built,
HAVANA.

[340]

commands in a great measure that fort, but absolutely commands the Punta El Fuerte, and the whole north-east part of the city, which is the best fortified. On the west side of the city runs a suburb, called Granada, whose church is situated on an eminence about half a mile from the land-gate, which it is on a level with, and higher than any other part of the fortifications. From the north side of this rising ground, the Punta gate may be flanked; and from the south side the dock-yard is commanded. Also, the north side runs an aqueduct, which falling into the ditch at the land-gate, runs down to the dock-yard, both for watering the ships and turning a saw-mill. About half a mile from the church, is a bridge made over a rivulet that runs into the bay about 100 yards. That road leads to the centre of the island, and extends to Baracoa, above 600 miles distant. From this bridge to the Lazaretto is about two miles, with a rising ground between them. A trench thrown up between these two places would cut off the communication with the town by land. From these observations it will plainly appear, that the Havana, though well fortified, is not impregnable.

The Havana has greatly contributed to the maritime strength of the crown of Spain, many ships having been built here within these few years, from 60 to 80 guns, the island furnishing the finest materials, such as oak, pine, cedar, and mahogany. The only defect of the harbour is the narrowness of its entry; for though free from bars and shoals, yet only one ship at a time can enter it; from which circumstance the galleons have more than once been detained, and some of them taken, at the mouth of the harbour, the forts there not being able to afford them any assistance.

Upon the rupture with Spain in 1762, the British ministry sent a squadron and army against this place under the command of admiral Pocock and lord Abermarle. The Spaniards had in the harbour at the time a fleet of twelve sail of the line, two of them but just launched, two more on the flocks nearly finished, and several merchant ships. The men of war were almost ready for sea; but no account had reached the governor of the intended attack. The place, however, was gallantly defended, and sustained a siege of two months and eight days before it could be reduced; when a capitulation was signed, and along with the city was yielded a district of 150 miles to the westward. This conquest was without doubt in itself the most considerable, and in its consequences the most decisive, of any they had made since the beginning of the war; and in no operation were the courage, steadiness and perseverance of the British troops, and the conduct of their leaders more conspicuous. The acquisition of this place united in itself all the advantages which can be acquired in war. It was a military achievement of the highest class. By its effect on the enemy’s marine it was equal to the greatest naval victory, and in the plunder it equalled the produce of a national subsidy. Nine sail of the enemy’s line-of-battle ships were taken; three of their capital ships had been sunk by themselves at the beginning of the siege; two more were in forwardness upon the flocks, and were afterwards destroyed by the captors. The enemy on this occasion lost a whole fleet of ships of war, besides a number of considerable merchant ships; and in ready money, in tobacco collected at the Havana on account of the king of Spain, and in other valuable merchandizes, the sum left by the Spaniards perhaps did not fall short of three millions sterling.

The city of Havana was restored by the peace of 1763; and is of the greatest importance to Spain, being the rendezvous for all their fleets to return from America to Europe, lying at the mouth of the gulf of Florida, through which they are all obliged to pass. Here the navy of Spain flies into the Atlantic, and here the galleons, the flota, and other merchant ships from other ports both of the continent and islands, meet in September, to take in provisions and water, with great part of their lading, and for the convenience of returning to Spain in a body. A continual fair is held till their departure, which generally happens before the end of the month, when proclamation is made, forbidding any person belonging to the fleet to stay in town on pain of death; and accordingly, on firing the warning gun, they all retire on board.—The commerce carried on in this port, which is very considerable, may be distinguished into the particular commerce of the island of Cuba, and that more general by the galleons and flota. This latter consists of ships usually styled of the Havana, which are excellent, and of great value; sugar, tobacco, admirable in its kind, &c. Though strangers are prohibited to trade, yet a contraband commerce is carried on by brikcers here than at La Vera Cruz. Some little trade is carried on by other ports of Cuba, but it is very insignificant. As to the general commerce, this port is the place of rendezvous (as already mentioned) for all ships, particularly from Carthagena, Puerto Velo, and La Vera Cruz, which return to Spain from the Indies. The Havana is regularly supplied with European goods only by the regular ships from Cadiz and the Canaries. The flota and galleons bring there no more than the refuse of their cargoes, which they had not been able to dispo of at Carthagena, Puerto Velo, or La Vera Cruz. When the fleet is in the harbour, provisions are excessively dear on shore, and money is plenty, that a Spaniard expects half a piece of eight a day from a male slave, and a quarter from a female, out of what they earn for their labour. The fleet generally fails from thence, through the channel of Bahama, in the month of September; and is the richest in the world; since, in silver and merchandise, there is seldom less than thirty millions of pieces of eight on board, or six millions seven hundred and fifty thousand pounds sterling. It is natural to imagine, that a port of so much consequence as the Havana ought to be well fortified. Since it has been restored to Spain, many new works have been added, to prevent if possible a similar disaster befailing it. W. Long. 82. 13. N. Lat. 23. 12.

HAVEL, a river of Brandenburg, which proceeds from a lake in the duchy of Mecklenburg, and running thro’ the middle Marche, and thro’ Brandenburg and other towns, runs north, and falls into the Elbe.

HAVELBERG, a town of Germany, in the circle of Lower Saxony, and in the electorate of Brandenburg, with a bishop’s see, feudalized in favour of the house of Brandenburg. It is seated on the river Havel, in E. Long. 12. 43. N. Lat. 55. 4.

HAVEN, a sea-port or harbour for ships. See Post.
HAVERCAMP (Sigiibert), a celebrated Dutch scholar and critic, professor of history, eloquence, and the Greek tongue, at Leyden. He was particularly skilled in medals; and was the author of some esteemed works in that way, besides giving good and elegant editions of several Greek and Latin authors. He died at Leyden in 1742, aged 38.

HAVERFORD-WEST, a town of Pembrokehire in South Wales, seated in W. Long. 5. N. Lat. 51. 50. It is a neat, well-built, populous place, all the side of a hill, which forms a part of the west bank of the river Dongleye, 256 miles from London. It is an incorporated town and county of itself, governed by a mayor, sheriff, town-clerk, two bailiffs, serjeants at mace, and other officers. The mayor of the town is admiral, coroner, cohester, and clerk of the markets, within his precincts. The houses are well built and well inhabited, and the people enjoy a good trade. Here the affizes are held and the county-jail kept. The town enjoys several privileges, and has its own courts. There are three parish-churches within the town, and one in the suburbs. Here is also a commodious quay for ships of burden, a cotillon-house, and a fine stone bridge over the Dongleye, with a good free-school, a charity-school for boys and girls, and an almhouse. It was formerly fortified with a rampart and castle, now demolished.

HAVERHILL, a town of England, in the county of Suffolk, where there is a considerable manufactury of checks, cottoms, and stuffs. By the ruins of a church and castle still to be seen, it appears to have been formerly a place of much greater consequence than at present. It has now only about 300 poor clay-houses, and one wide street not paved.

HAUL, an expression peculiar to seamen, implying to pull a single rope, without the assistance of blocks or other fish mechanical powers. When a rope is otherwise pulled, as by the application of tackles, or the connection with blocks, &c. the term is changed into haue.

To haul the Wind, is to direct the ship's course nearer to that point of the compass from which the wind arises. Thus, supposing a ship to sail south-west, with the wind northerly, and some particular occasion requires to haul the wind more westward; to perform this operation, it is necessary to arrange the sails more obliquely with her keel; to brace the yards more forward, by slackening the larboard and pulling in the larboard braces, and to haul the lower jib forward, or, in other words, by shifting the wind to west. She may still go two points nearer to the direction of the wind, by disposing her sails according to their greatest obliquity, or, in the phrase, by trimming all sharp; and in this situation she is said to be close hauled, as sailing well-north-west.

HAUM, HAU, or HAVOU, among farmers, denotes the stem or stalk of corn, pease, beans, &c. from the root to the ear.

HAUNCH, or HANCH, the Hip, or that part of the body between the last ribs and the thigh. The haunches of a horse are too long, if when standing in the stable he limps, with his hind-legs farther back than he ought; and when the top or root of his tail is not in a perpendicular line to the top of his hocks, as it always does in horses whose haunches are of a just length. There are some horses which, though they have too long haunches, yet commonly walk well; such are good to climb hills, but are not at all sure upon a descent; for they cannot ply them hams, and never gallop slowly, but always nearly upon a full speed. The art of riding the great horse has not a more necessary lesson than that of putting a horse upon his haunches, which, in other words, is called coupling him well, or putting him well together, or compact. A horse that cannot bend or lower his haunches, throws himself too much upon his shoulder, and lies heavy upon the bridge.

HAUIRE, in geography, a French term signifying the same with haven or harbour.

Havre de Grace, a sea-port town of France, and capital of a district of the same name, is seated in the province of Normandy, on the English Channel, in a large plain at the mouth of the river Seine. It is a small fortified town, nearly of a square figure, divided into two parts by the harbour, surrounded with a wall and other works, and defended by a very strong citadel. It is one of the most important places in France, on account of its foreign trade and convenient harbours; for which reason it was made a district government from the rest of Normandy. It was fortified in 1562 by the Protestants, who delivered it to queen Elizabeth; but it was lost next year. In 1604 it was bombarded by the English, and also in the year 1758. E. Long. o. 11. N. Lat. 49. 29.

HAURANT, in heraldry, a term peculiar to fibbies; and signifies their standing upright, as if they were refreshing themselves by sucking in the air.

HAUTE FEUILLE (John), an ingenious mechanic born at Orleans in 1647. Though he embraced the fate of an ecclesiastic, and enjoyed several benefactions he applied himself to civil mechanical arts, in which he made a great progress. He had a particular taste for clock-work, and made several discoveries in it that were of singular use. It was he who found out the secret of moderating the vibration of the balance by means of a small steel spring, which has since been made use of. This discovery he laid before the members of the Academy of Sciences in 1674; and these watches are, by way of eminence, called pendulum-watches; not that they have real pendulums, but because they nearly approach to the justness of pendulums. M. Huygens perfected this happy invention; but having claimed himself the inventor, and obtained from Louis XIV. a patent for making watches with spiral springs, the Abbé Feuillac opposed the registering of this privilege, and published a piece on the subject against M. Huygens. He wrote a great number of other pieces, most of which are small pamphlets containing of a few pages, but very curious; as, 1. Discourses on perpetual pendulum, quarto. 2. New inventions, quarto. 3. The art of breathing under water, and the means of preserving a flame shut up in a small place. 4. Reflections on machines for raising water.
HAWKS is a term also applied to those who go up and down London streets and country towns, selling newspapers, pamphlets, &c.

D. VKESWORTH (1719), a celebrated English writer, was born about the year 1719, though his epitaph, as we find it in the Gentleman’s Magazine for Aug. 1731, makes him to have been born in 1715. He was brought up to a mechanical profession, that of a watchmaker as is supposed. He was of the Presbyterian persuasion, and a member of the celebrated Tom Bradbury’s meetings, from which he was expelled for some irregularities. He afterwards devoted himself to literature, and became an author of considerable eminence. In the early part of life his circumstances were rather confined. He resided some time at Bromley in Kent, where his wife kept a boarding school. He afterwards became known to a lady who had great property and interest in the East India Company, and through her means was chosen a director of that body. As an author, his Adventurer is his capital work; the merits of which, if we mistake not, procured him the degree of LL.D. from Herring, archbishop of Canterbury. When the design of compiling a narrative of the discoveries in the South Seas was on foot, he was recommended as a proper person to be employed on the occasion: but in truth he was not a proper person, nor did the performance answer expectation. Works of taste and elegance, where imagination and the passions were to be affected, were his province; not works of dry, cold, accurate narrative. However, he executed his task, and is said to have received for it the enormous sum of 6000l. He died in 1773; some say of high living; others, of chagrin from the ill reception of his Narrative: for he was a man of the keenest sensibility, and obnoxious to all the evils of such irritable natures. On a handomme marble monument at Bromley in Kent is the following inscription, the latter part of which is taken from the last number of The Adventurer:

To the memory of

JOHN HAWKESWORTH, LL. D.
Who died the 16th of November
MDCCCLXIII, aged 58 years.
That he lived ornamental and useful
To society in an eminent degree
Was among the boasted felicities
Of the present age;
That he laboured for the benefit of society,
Let his own pathetic admonitions
Record and realize.

"The hour is hastening, in which whatever praise
"or censure I have acquired will be remembered
"with equal indifference. Time, who is impatient
"to date my last paper, will shortly moulder the
"hand which is now writing it in the dust, and still
"the breath that now throbs at the reflection. But
"let not this be read as something that relates
"only to another; for a few years hence you will divide
"the eye that is now reading from the hand that
"has written."

HAWKING, the exercise of taking wild-fowl by means of hawks. The method of reclaiming, manning, and bringing up a hawk to this exercise, is called falconry. See FALCONRY.

There
There are only two countries in the world where we have any evidence that the exercise of hawking was very anciently in vogue. These are, Thrac and Britain. In the former, it was pursued merely as the diversion of a particular district; if we may believe Pliny's, whose account is rendered obscure by the darkness of his own ideas of the matter. The primitive Britons, with a fondness for the exercise of hunting, had also a taste for that of hawking; and every chief among them maintained a considerable number of birds for that sport. It appears also from a curious passage in the poems of Ossian; that the same diversion was fashionable at a very early period in Scotland. The poet tells us, that a peace was endeavoured to be gained by the proffer of 100 managed hawks, 100 foreign captives, and "100 hawks with fluttering wings, that fly across the sky." To the Romans this diversion was scarce known in the days of Vespasian; yet it was introduced immediately afterwards. Most probably they adopted it from the Britons; but we certainly know that they greatly improved it by the introduction of species into the land. In this state it appears among the Roman Britons in the sixth century. Gildas, in a remarkable passage in his first epitite, speaks of Maglocmirus, on his relinquishing the sphere of ambition, and taking refuge in a monastery; and probably compares him to a dove, that has flown away at the noisy approach of the dogs, and with various turnings and windings takes her flight from the talons of the hawk.

In after times, hawking was the principal amusement of the English: a passion of rank scarce stirred out without his hawk on his hand; which, in old paintings, is the criterion of nobility. Harold, afterwards king of England, when he went on a most important embassy into Normandy, is painted embarking with a bird on his fist, and a dog under his arm; and in an ancient picture of the mupials of Henry VI. a nobleman is represented in much the same manner; for in those days, it was thought sufficient for noblemen to winde their horn, and to carry their hawk fair, and leave study and learning to the children of mean people. The former were the accomplishments of the times; Spenser makes his gallant Sir Tristram boast,

Ne is there hawk which manteth her on pearch,
Whether high towering, or assailing low,
But I the measure of her flight doe fetch,
And all her prey, and all her diet know.

In short, this diversion was, among the old English, the pride of the rich, and the privilege of the poor; no rank of men seems to have been excluded the amusement: we learn from the book of St Alban's, that every degree had its peculiar hawk, from the emperor down to the holy water clerk. Vaff was the expense that sometimes attended this sport. In the reign of James I. Sir Thomas Monfon is said to have given 1000l. for a call of hawks: we are not then to wonder at the rigour of the laws that tended to preserve a pleasure that was carried to such an extravagant pitch. In the 34th of Edward III. it was made felony to steal a hawk; to take its eggs, even in a person's own ground, was punishable with imprisonment for a year and a day, besides a fine at the king's pleasure: in queen Elizabeth's reign, the imprisonment was reduced to three months, but the offender was to find security for his good behaviour for seven years, or

Hawking. lie in prison till he did. Such was the enviable fate of the times of old England; during the whole day, the gentry were given to the fowls of the air and the beasts of the field; in the evening, they celebrated their exploits with the most abandoned and brothel festivities; in the same time, the inferior rank of people, by the most unjust and arbitrary laws, were liable to capital punishments, to fines, and loss of liberty, for destroying the most noxious of the feathered tribe.

According to Olearius, the diversion of hawking is more followed by the Tartars and Persians than ever it was in any part of Europe. Il n'y avoit point de hauke (says he) qui n'eussi fouleig ou foufanc.

The falcons or hawks that were in use in these kingdoms, are now found to breed in Wales, and in North Britain and its islands. The Peregrine Falcon inhabits the rocks of Caernarvonshire. The same species, with the gyrfalcon, the gentil, and the gothawk, are found in Scotland, and the Janner in Ireland.

We may here take notice, that the Norwegian breed was, in old times, in high esteem in England; they were thought bibles worthy a king. Jeffrey Fitz-pierre gave two good Norway hawks to king John, to obtain for his friend the liberty of exporting 100 wt. of cheese: and Nicholas the Dane was given to the king a hawk every time he came into England, that he might have free liberty to traffic throughout the king's dominions.

They were also made the tenures that some of the nobility held their estates by, from the crown. Thus Sir John Stanley had a grant of the Isle of Man from Henry IV. to be held of the king, his heirs, and successors, by homage and the service of two falcons, payable on the day of his or their coronation. And Philip de Hextang held his manor of Comberton in Cambridgehire, by the service of keeping the king's falcons.

Hawking, though an exercise now much diffused among us, in comparison of what it anciently was, does yet retain a great variety of significant terms, which still obtain in our language. Thus, the parts of a hawk have their proper names. - The legs, from the thigh to the foot, are called apar; the toes, the petty single; the claws, the pouces. - The wings are called the faits; the long feathers thereof, the beaus: the two longest, the principal feathers; those next thereto, the flag. - The tail is called the trait; the breast-feathers, the mains; those behind the thigh, the pendant feathers. - When the feathers are not yet full grown, the is said to be unbranched; when they are complete, the is said to be branched. The claw, or crop, is called the gorg: - The pipe next the fundament, where the faces are drawn down, is called the pannel. - The silky plustre lying in the pannel, is called the glut: - The upper and crooked part of the bill is called the beak; the nether-part, the clap: the yellow part between the beak and the eyes, the fur or fore; the two small holes therein, the nars.

As to her furniture. - The leather, with bells buttoned on her legs, are called beets. - The feathers thong, whereby the falconer holds the hawk, is called the leafe or leath; the little straps, by which the leafe is fastened to the legs, jesses; and a line or pack thread fastened to the leafe, in disciplining her, a而不ce.
Hawking. A cover for her head, to keep her in the dark, is called a blind; a large white hood, open behind, to be worn at first, is called a veil. To save her from theiring, that the hood may be readily removed to put up the prey, is called unholing the head. — The blinding a hawk just taken, by pulling a thread through her eye-lids, is called raug:—Her unholing-place, when off the falconer's silt, is called the perch. — The place where her meat is laid, is called the back; and that wherein she is set, while her feathers fall and come again, is the mew.

Something given a hawk, to cleanse and purify her gorge, is called casting. — Small feathers given her to make her cast, are called plumage. — Gravel given her to help to bring down her stomach, is called range. — Her throwing up, from the gorge after casting, is called gleaning. — The purging of her greese, &c. is called munging. — A being flushed is called gurgitting. — The inserting a feather in her wing, in lieu of a broken one, is called imping. — The giving her a leg, wing, or pinion of a fowl to put at, is called tiring: — The neck of a bird the hawk preys on, is called the neck. — What the hawk leaves of her prey, is called the pell or pelf.

There are also proper terms for her several actions.

When she flutters with her wings, as if striving to get away, either from perch or silt, she is said to hate.

When standing too near them fight with each other, it is called crahing. — When the young ones quiver, and shake their wing in obedience to the elder, it is called cowering. — When she wipes her beak after feeding, she is said to feak: — When she uses her tongue, or truss the duck, permit her to kill it, and reward her by giving her a reasonable gage. After you have practiced this two or three times, your hawk will leave the stand, and, delighted to be on the wing, will be very obedient.

It is not convenient, for the first or second time, to follow your hawk a large fowl, for it frequently happens, that the escape from the hawk, and her, not recovering them, makes her trouble, and frequently occasions the loss of the hawk. But if she happens to pursue a fowl, and being unable to recover it, gives it over, and comes in again directly, then cast out a sealed duck; and if she flies and truss it across the wings, permit her to take her pleasure, rewarding her also with the heart, brains, tongue, and liver. But if you have not a quick duck, take her down with a dry lure, and let her plume a pullet and feed upon it. By this means a hawk will learn to give over a fowl that rakes out, and on hearing the falconer's lure, will make back, and know the hold in the head.

Some hawks have a difficult coyness, proceeding from their being high fed: such a hawk must not be rewarded though she should kill; but you may give her leave to plume a little; and then taking a sheep's heart cold, or the leg of a pullet, when the hawk is busy in pluming, let either of them be conveyed into the body of the fowl, that it may savour of it; and
HAW

Haw Meadows when the hawk has eaten the heart, brains, and tongue of the fowl, take out what is inclosed, call her to your side, and feed her with it; afterwards give her some of the feathers of the fowl's neck, to fower her, and make her fat.

If your hawk be a flately high-flying one, she ought not to take more than one flight in a morning; and if she be made for the river, let her not fly more than twice: when she is at the highest, take her down with your lure; and when she has plummed and broken the fowl a little, feed her; by which means you will keep her a high-flyer, and fond of the lure.

HAWKWOOD (Sir John), a famous English general, was the son of a tanner at Heddington-Sibil in Essex, where he was born in the reign of Edward III. He was bound apprentice to a tailor in London; but being fortunately prefixed into the army, was sent abroad, where his genius soon expanded itself, and surmounted the narrow prejudices which adhered to his birth and occupation. He signalized himself as a soldier in France and Italy, and particularly at Pisa and Florence.

He was bound apprentice to a tailor in London; but having had a great liking for the army of Galeasia duke of Milan; and was in such high esteem with Barnabas his brother, that he gave him Domitia his natural daughter in marriage, with an ample fortune. He died at Florence, full of years and military fame, in 1394.

HAUSE, or HAUSE, is generally understood to imply the situation of the cables before the ship's stem, when she is moored with two anchors out from forward, viz. one on the forecastle, and the other on the larboard bow. Hence it is usual to say, she has a clear haufe, or a foul haufe. It also denotes any small distance a head of a ship, or between her head and the anchors employed to ride her, as, "He has anchored in our haufe, The brig fell athwart our haufe," &c.

A ship is said to ride with a clear haufe, when the cables are directed to their anchors, without lying athwart the stem, or crossing, or being twisted round each other by the ship's windings about, according to the change of the wind, tide, or current.

A foul haufe, on the contrary, implies that the cables lie across the stem, or bear upon each other, so as to be rubbed and chafed by the motion of the vessel. The haufe accordingly is foul, by having either a crofs, an elbow, or a round turn. If the larboard cable, lying across the stem, points out on the forecastle side, while the forecastle cable at the same time grows out on the larboard side, there is a crofs in the haufe. If, after this, the ship, without returning to her former position, continues to wind about the same way, so as to perform an entire revolution, each of the cables will be twisted round the other, and then directed out from the opposite bow, forming what is called a round turn. An elbow is produced when the ship floops in the middle of that revolution, after having had a crofs; or, in other words, if the ships with her head northward with a clear haufe, and afterwards turns quite round so as to direct her head northward again, she will have an elbow.

HAUSE-Holes, certain cylindrical holes cut through the bows of a ship on each side of the stem, through which the cables pass in order to be drawn into or let out of the vessel as occasion requires. They are fortified on each side by the HAUSE-Pieces, a name given to the foremost timbers of a ship, whose lower ends rest on the knuckle-timber, or the foremost of the cant-timbers. They are generally parallel to the stem, having their upper ends sometimes terminated by the lower part of the beak-head; and otherwise, by the top of the bow, particularly in small ships and merchantmen.

HAWSER, a large rope which holds the middle degree between the cable and tow-lines, in any ship where it belongs, being a size smaller than the former, and as much larger than the latter.

HAY, any kind of gras cut and dried for the food of cattle.

The time of mowing gras for hay must be regulated according to its growth and ripeness; nothing being more prejudicial to the crop than mowing it too soon; because the sap is not then fully come out of the root, and when made into hay, the gras shrinks away to nothing. It must not, however, be let stand too long till it has filled its feeds. When the tops of the gras look brown, and begin to bend down, and the red honeffuckle flower begin to wither, you may conclude it ripe for mowing.

Sain-Foin HAY, is of several sorts, which may be distinguished by the following terms, viz. 1. The virgin. 2. The blossomed. 3. The full-grown. And, 4. The threshed hay. The first of these is beyond comparison the best. It must be cut before the blossoms generally appear; for when it stands till it is fully blown, the most spirituous and nourishing parts of its juice are spent, and the hay is much impoverished, and the sain-foin can never recover that richness it had in its virgin state. But this fine hay cannot well be had of uncultivated sain-foin; because that may not be much above an handful high when it is in a condition to be cut; it would then make a very light crop, and would be a great while before it sprang up again; but the rich will have two or three tuns to an acre, and spring again immediately for a second crop; so that little or none in quantity would be lost by so great an improvement of its quality.

The second sort is that cut in the flower, which, though much inferior to the virgin-hay, far exceeds any other kind as yet commonly propagated in Britain; and if it be a full crop, it may amount to three tuns an acre. This is that sain-foin which is commonly made; and the larger it is, the more nourishing it is for horses.

The next sort of sain-foin is the full grown, cut when the blossoms are gone or going off; this also is good hay, though it falls short by many degrees of the goodness of the other two sorts; but it makes a greater crop than either of them, because it grows to its full bulk, and shrinks little in drying.

The last sort is the threshed hay; which, when not damaged by wet weather, has been found more nourishing to horses than coarse water-meadow hay; and, when it is cut small by an engine, is good for cattle, and much better than the chaff of corn. The best time to cut it is, when the greatest part of the feed is well filled; the first-blown ripe, and the last-blown beginning to be full.

The goodness of the hay depends greatly upon the manner
Hay. [346]

Hay. —manner of ordering it. The best hay in all England is made of fain-foin, without ever spreading it. This method though it be longer before it be finished, cost less labour than the other. If fain-foin be laid up pretty green, it will take no damage, provided it be set in small round ricks, with a large basket drawn up in the middle of each, to have a vent-hole, through which the superfluous moiture of the hay may transpire. As soon as its heating is over, these ricks ought to be thatched; and all fain-foin ricks, that are made when the hay is full dried in the coeks, ought to be thatched immediately after the making them. That which is laid up moist dried, will come out of the rick of a green colour; but that which has been much heated in the rick, will be brown.

The feed affords the owner another opportunity of making a profit of his fain-foin: but this, if the hewing of fain-foin be general would not be vendible in great quantities for planting; because the ordinary cropl of an acre will produce feed enough to drill an hundred acres, which would not want planting for a long time. The other use then of this feed is for provender; and it has been affirmed by some who have made trials of it, that three bushels of good fain-foin seed given horses, will nourish them as much as four bushels of oats; and when well ordered, is so sweet, that most sorts of cattle are greedy of it.

Hay, a town of Brecknockshire, in Wales, seated near the confluence of the rivers Wye and Dulas. It was a town of good note in the time of the Romans; it being then fortified with a castle and a wall, which were ruined in the rebellion of Owen Glendower. It is at present a pretty good town; and the market is large for corn, cattle and provisions. W. Long, p. 56. N. Lat. 52 10.

Hay (William, Esq.), an agreeable English writer, was born at Gleneburn in Suffolk, about 1700, as is conjectured; and educated at Headley-school. In 1730, he published a poem, called Mount Caburn, dedicated to the duchess of Newcastle; in which he describes the beauties of his native country, and celebrates the virtues of his friends. When Lord Hardwick was called up to the house of lords in 1734, he was chosen to succeed him in representing the borough of Scarborough among the commons: and he represented this borough for the remainder of his life. He defended the measures of Sir Robert Walpole, and was the supposod author of a ministerial pamphlet, intitled, A Letter to a Freetholder on the late Reduction of the Land-tax to one Shilling in the Pound; which had been printed in 1732. In 1735, he published remarks on the Laws relative to the Poor, with proposals for their better Relief and Employment; and at the same time brought in a bill for the purpose. He made another attempt of this kind, but without effect. May 1738, he was appointed a commissioner of the Victualling-office. In 1753, appeared Religio Philofophi; or, the Principles of Morality and Christianitv, illustrated from a View of the Universe, and of Man's Situation in it. This was followed, in 1754, by his Essay on Deformed Men, in which he rallies his own imperfection in this respect with much liveliness and good humour. "Bodily deformity (says he), is very rare. Among 558 gentle-
HAZEL, or Hazel, in botany. See Corylus. The kernels of the fruit have a mild farinaceous, oily taste agreeable to most palates. Squirrels and mice are fond of them, as well as some birds, such as jays, nutcrackers, &c. A kind of chocolate has been prepared from them and there are instances of their having been formed into bread. The oil expressed from them is little inferior to the oil of almonds: and is used by painters and by chemists for receiving and retaining odours. The charcoal made of the wood is used by painters in drawing.—Some of the Highlanders, where superstitition is not totally subdued, look upon the tree itself as unlucky; but are glad to get two of the nuts naturally conjoined, which is a good omen. Theye call eno-chomblach, and carry them as an efficacious charm against witchcraft.

Evelyn tells us that no plant is more proper for thickening of copse than the hazel, for which he directs the following expedient method. Take a pole of hazel (which or pole may also be used) of 20 or 25 feet in length, the head a little lopped into the ground, giving it a chop near the ground to make it fucumb; this fastened to the earth with a hook or two, and co-

ved with some fresh mould at a competent depth (as gardeners lay their carnations), will produce a great number of suckers; and thicken and furnish a copse speedily.

HAZLE, or Hazley-Earth, a kind of red loam, which is said to be an excellent mixture with other forts of earth; uniting what's too loofe, cooling what is too hot, and gently retaining the moisiture.

Witch-Hazel. See Hamamalis.

HEAD, the uppermost or foremost part of the body of an animal. See Anatomy, Part I. fect. ii.

Head-ache, a most troublesome sensation in the head, produced by various causes, and attended with different symptoms, according to its different degrees and the place where it is seated. See the Index subjoined to Medicine.

Dragon's Head, in astronomy, is the ascending node of the moon or other planet.

Head of a Ship, an ornamental figure erected on the continuation of a ship's stem, as being expressive of her name and emblematical of war, navigation, commerce, &c.

Head, is also used in a more enlarged sense to signify the whole front or fore-part of the ship, including the bows on each side: the head therefore opens the column of water through which the ship passes when advancing. Hence we say, head-sails, head-sea, headway, &c.

Thus, fig. 1. Plate CCXXVI. represents one side of the fore-part and head of a 74 gunship, together with part of the bow, keel, and gunnel. The names of the several pieces, exhibited therein, are as follows:

A A Fore-part of the keel, with a a the two false keels beneath it.

AC the stem.

a a The cat-head.

b The supporter of the cat head.

cc The knight-head, or bollard-timber, of which there is one on each side, to secure the inner end of the bow-fprit.

dd The haufe-holes.

e e The naval-hoods, i.e. thick pieces of plank laid upon the bow to strengthen the edges of the haufe-holes.

f The davit-clock, by which the davit is firmly wedged while employed to fill the anchor.

g The bulk-head, which terminates the forecastle on the fore-side, being called the break-head bulk-head by shipwrights.

H The gun ports of the lower deck.

b The gun ports of the upper deck and fore-cable.

I, I The channels, with their dead eyes and chains.

i The gripe or fore-foot, which unites the keel with the stem forming a part of either.

k k Thee dotted lines represent the thicknees and deficient of the different decks from the fore-part of the ship towards the middle. The lowest of the three dor-
The difference between the height of the deck in the middle of its breadth and at the ship's side. This is also exhibited more clearly in the Midship-Frame; where the red curve of the beam is delineated. N. B. Their lines must be always parallel to the lines which terminate the gun-ports above and below.

The timbers of the head, and part of the bowsprit.

The rails of the head which lie across the timbers.

Fore-part of the main-wale.

Fore-part of the channel-wale.

The head water-line.

Fig. 3: presents a head view of a ship, with the projection of her principal timbers, and all her planks laid on one side.

It is evident that the fore-part of a ship is called its head, from the affinity of motion and position it bears to a hippopotamus, and in general to the horizontal situation of all animals whilst swimming.

By the head, the state of a ship, which is laden deeper at the fore-end than at the after-end.

The head-bow, or head-borough, signifies the person who is the chief of the frank-pledge, and had anciently the principal direction of those within his own pledge.

He was also called burrow-head, burrow-shoulder, now bordier, third-borow, tything-man, chief-pledge, and burrow elder, according to the diversity of speech in different places. This office is now usually called a high-constable. The head-bow was the chief of ten pledges; the other nine were called bordiers, or ploughman's, &c.

Head-Mould-shot, a disease in children wherein the futures of the skull, generally the coronal, rise; that is, have their edges shot over one another: and are so close locked together, as to compress the internal parts; the meninges, or even the brain itself. This disease usually occasions convulsions, and is supposed to admit of no cure from medicine, unless room could be given by manual operation or division of the futures.

The head-mould-shot is the disorder opposite to the horse-shoe head.

Head Piece, an excision of a certain fur formerly collected by the sheriff of Northumberland from the inhabitants of that county, without any account to be made to the king. This was abolished by the statute 23 Hen. VI., cap. 7.

Head Tin, in metallurgy, is a separation of tin ore towards the fitting it for working into metal. When the ore has been pounded and twice washed, that part of it which lies uppermost, or makes the surface of the mass in the tub, is called the head tin: this is separated from the rest, and after a little more washing becomes fit for the blowing house.

Head Fals, a rope employed to fasten a ship to a wharf, chain, or buoy, or to some other vessel along side.

Head Land, a name frequently given to a cape or promontory.

Head Drafs, amongst the Jewish, Grecian, and Roman ladies, as amongst ourselves, was various, according to the different periods of time, and the fluctuations of fashion. In general, it principally consisted of the hair differently tricked out. It was usually divided before, with a bodkin, into two equal parts; sometimes it was covered with a net, or put into a kind of purse, or tied behind in the form of a knot, or bound back and plaited with ribbons. It was washed with great care; essence and perfumes were applied to it, and gold-dust sometimes made use of as powder. Pearls and jewels made a part of their ornaments; and pendants were worn in the ear. To cover the defects of hair, perukes were made use of by the gentlemen of Rome. And we read that Otho had a covering of false hair, because he had not much of his own. See Hair-Jewels.

Both Grecian and Roman ladies wore têtes. But whether they ever built up their heads so high as the English, or their continental neighbours, will admit of a dispute.

Head-most, the situation of any ship or ships which are the most advanced in a fleet, or line of battle.

Head-Rope, that part of the bolt-ropes which terminates any of the principal fails on the upper edge, which is accordingly fewed thereto. See the article Bolt-ropes.

Head-Sails, a general name for all those sails which are extended on the fore-mast and bowsprit, and employed to command the fore-part of the ship: such are the fore-fail, fore-top-sail, fore-top-gallant-sail, jib, fore-flying-sail, and the sprit-sail with its top-sail. This term is used in opposition to after-sails, viz. all those which are extended on the mizen mast, and on the stays between the mizen and main masts.

Head-to-wind; the situation of a ship or boat, when her head is turned to windward.

Head-Way, the motion of advancing at sea. It is generally used when a ship first begins to advance; or when it is doubtful whether she is in a state of rest or motion. It is in both senses opposed to retreating, or moving with the stern foremost. See the article Stern-way.

Healfang, Healsfang, or Halsfang, in ancient customs, signifies calvarium, or the punishment of the pillory. The word is compounded of two Saxon words; halp, neck, and pangen "to contain:" Puna felicit qua alicae collum flingatur. The healfang, however, cannot signify a pillory in the charter of Canutus, De forfeitis, cap. xiv. Et pro culpa folestat regi duas solidos, quos Dani vocant halsefang.

Healsfang is also taken for a pecuniary punishment or mulef, to commute for standing in the pillory; and is to be paid either to the king or the chief lord. Qui falsum testimoniun detis, reddet regi vel terra dominus healfang.

Healing, in its general sense, includes the whole process of curing or removing a disorder; and recovering health. In this sense medicine is defined the art of healing. In its more restrained sense, as used in surgery, &c. healing denotes the uniting or consolidating the lips of a wound or ulcer. The medicines proper for this intention are called incantations, agglutinations, vulneraries, &c.

Healing, in architecture, denotes the covering the roof of a building. The healing is various; as of lead, tiles, slate, Horshamstone, hingles, or reed and straw.

Health, is a right disposition of the body, and of...
HEALTH

Health, in all its parts; consisting in a due temperature, a right conformation, just connection, and ready and free exercise of the several vital functions.

Health admits of latitude, as not being the same in all subjects, who may yet be said to enjoy health.

That part of medicine which shows the means of preserving health, is termed hygiene. See MEDICINE.

Dittany, applied in the diaphragm, between the two laminae of the mediastinum, wherein the veins all terminate, and from which all the arteries arise; and which, by its alternate contraction and dilatation, is the chief instrument of the circulation of the blood, and the principle of life. See ANATOMY, no. 121, 122.

Several ingenious persons have from time to time attempted to make estimates of the force of the blood in the heart and arteries; who have as widely differed from each other, as they have from the truth, for want of a sufficient number of data to argue upon. This fet the truly ingenious Dr Hales upon making proper experiments, in order to ascertain the force of the blood in the veins and arteries of several animals.

If, according to Dr Kell's estimate, the left ventricle of a man's heart throws out in each systole an ounce or 1.638 cubic inches of blood, and the area of the orifice of the aorta be 0.4187, then dividing the former by this, the quotient 3.9 is the length of the cylinder of blood which is formed in passing thro' the aorta in each systole of the ventricle; and in the 75 pulses of a minute, a cylinder of 292.5 inches in length will pass: this is at the rate of 1462 feet in an hour. But the systole of the heart being performed in one third of this time, the velocity of the blood in that interval will be three as much, viz. at the rate of 4386 feet in an hour, or 73 feet in a minute. And if the ventricle throws out one ounce in a pulse, then in the 75 pulses of a minute, the quantity of blood will be equal to 4.41b. 110z. and, in 34 minutes, a quantity equal to a middle-sized man, viz. 158 lb. will pass through the heart. But if, with Dr Harvey and Dr Lower, we suppose two ounces of blood, that is, 3.236 cubic inches, to be thrown out at each systole of the ventricle, then the velocity of the blood in entering the orifice of the aorta will be double the former, viz. at the rate of 146 feet in a minute, and a quantity of blood equal to the weight of a man's body will pass in half the time, viz. 17 minutes.

If we suppose what is probable, that the blood will rise 74.5 feet high in a tube fixed to the carotid artery of a man, and that the inward area of the left ventricle of his heart is equal to 15 square inches, these multiplied into 74.5 feet, give 1335 cubic inches of blood, which presides on that ventricle, when it first begins to contract, a weight equal to 75.5 pounds.

What the doctor thus calculates, from supposition, with regard to mankind, he actually experimented upon horses, dogs, fowls, does, &c. by fixing tubes in orifices opened in their veins and arteries; by observing the several heights to which the blood rose in these tubes, as they lay on the ground; and by measuring the capacities of the ventricles of the heart and orifices of the arteries. And, that the reader may the more readily compare the said estimates together, he has given a table of them, ranged in the following order.

| Table |
Heart. Heat.

The several animals.

<table>
<thead>
<tr>
<th></th>
<th>Weight of each.</th>
<th>Height of the blood in the t条e from the jugular vein.</th>
<th>Height of the blood in the veins of the heart.</th>
<th>Capacity of the veins of the heart.</th>
<th>Areas of the surface of the aorta.</th>
<th>Velocity of the blood in the aorta.</th>
<th>Quantities of blood equal to the weight of the animal.</th>
<th>How much of the bladder contained by the vesicles.</th>
<th>No. of pulsations in a minute.</th>
<th>Area of the transverse section of the aorta.</th>
<th>Square inches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>160 Pounds.</td>
<td>6.165 inches.</td>
<td>3.18 inches.</td>
<td>0.4187</td>
<td>0.184</td>
<td>0.362</td>
<td>8.685 lbs.</td>
<td>60.87 lbs.</td>
<td>13.75 mins.</td>
<td>113.22 lbs.</td>
<td>0.369</td>
</tr>
<tr>
<td>Horse</td>
<td>1st ft.</td>
<td>7 inches.</td>
<td>8.3 inches.</td>
<td>10.53</td>
<td>18.7</td>
<td>18.51</td>
<td>75.96 lbs.</td>
<td>86.0 lbs.</td>
<td>18.14 mins.</td>
<td>78.1 lbs.</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>2nd ft.</td>
<td>12 inches.</td>
<td>15.5 inches.</td>
<td>26.1</td>
<td>36.7</td>
<td>36.56</td>
<td>95.0 lbs.</td>
<td>114.2 lbs.</td>
<td>18.7 mins.</td>
<td>47.1 lbs.</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>3rd ft.</td>
<td>18 inches.</td>
<td>24.9 inches.</td>
<td>44.1</td>
<td>63.7</td>
<td>63.56</td>
<td>119.0 lbs.</td>
<td>114.2 lbs.</td>
<td>13.75 mins.</td>
<td>51.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td>Ox</td>
<td>1st ft.</td>
<td>5.7 inches.</td>
<td>6.5 inches.</td>
<td>8.5</td>
<td>14.5</td>
<td>14.5</td>
<td>20.0 lbs.</td>
<td>20.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>2nd ft.</td>
<td>5.7 inches.</td>
<td>6.5 inches.</td>
<td>8.5</td>
<td>14.5</td>
<td>14.5</td>
<td>20.0 lbs.</td>
<td>20.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>3rd ft.</td>
<td>5.7 inches.</td>
<td>6.5 inches.</td>
<td>8.5</td>
<td>14.5</td>
<td>14.5</td>
<td>20.0 lbs.</td>
<td>20.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td>Dogs</td>
<td>1st ft.</td>
<td>5.2 inches.</td>
<td>6.6 inches.</td>
<td>12.2</td>
<td>20.0</td>
<td>20.0</td>
<td>30.0 lbs.</td>
<td>30.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>2nd ft.</td>
<td>5.2 inches.</td>
<td>6.6 inches.</td>
<td>12.2</td>
<td>20.0</td>
<td>20.0</td>
<td>30.0 lbs.</td>
<td>30.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>3rd ft.</td>
<td>5.2 inches.</td>
<td>6.6 inches.</td>
<td>12.2</td>
<td>20.0</td>
<td>20.0</td>
<td>30.0 lbs.</td>
<td>30.0 lbs.</td>
<td>7.5 mins.</td>
<td>14.5 lbs.</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Heart-burn, a disease usually called cardialgia by physicians. In fevers, or upon swallowing without due mastication; when meats are eat tough and fat or with farinaceous substances unfermented; or when by any accident the saliva is vitiated, too scanty or not intimately mixed with the food, the fermentation, becomes tumultuous; the stomach swells with air, and this extraordinary commotion being attended with an unusual heat brings on the unpleasantries called the heart-burn; which is remedied by whatever promotes a greater secretion of saliva, or helps to mix it with our aliment. The taffaceous powders, as oyster-shells, crabs-eyes, chalk, &c. are the usual remedies for the heart-burn.

Heart, that part of the pavement of a room on which the fire is immediately placed.

Heart-Money. See Chimney-Money.

Heat, in physiology, has a double meaning; being put either for that peculiar sensation which is felt on the approach of burning bodies, or for the cause of that sensation; in which last sense it is synonymous with Fire. This mode of speaking, however, is inaccurate, and by confounding the effect with the cause, sometimes produces obscurity; it were to be wished therefore that the word heat was used only to denote the effect; and fire, or some other term, to denote the cause of that effect.

The disputes which formerly were so much agitated in the learned world concerning the nature of heat, viz., whether it consisted merely in the motion of the terrestrial particles of bodies, or in that of a subtle fluid, are now mostly ceased, and it is almost universally believed to be the effect of a fluid. Unluckily, however, from the promiscuous use of the words fire and heat, an opinion seems to have gained ground, that there is in nature a fluid essentially hot; and that wherever the opposite sensation prevails, the former fluid is in part absent. Hence have arisen numberless speculations concerning the attraction, absorption, and capacities of bodies for heat; all of which being built on a false principle, have served no other purpose but to involve this part of natural philosophy in obscurity and confusion. Under the articles Chemistry, Combustion, Electricity, &c. it is so fully shown that heat properly so called is not a fluid, but the modification of a fluid, that it is superfluous to say any more on the subject at present. This being admitted, it will evidently follow, that heat can neither be absorbed nor attracted; neither can any body have a greater capacity for it than another, except in proportion to its bulk, which allows a larger quantity of the fluid to enter and to assimilate the particular motion which constitutes heat. From some of Dr Black's experiments indeed it would appear at first view, that heat was absorbed, or attracted in the fiercely fented of the word; but this must be attributed merely to the transferring of the modification of the fluid from one substance to another, without regarding whether it is the identical quantity of fluid which acts as heat in one substance that is transferred to the other, or whether only by some unknown means a similar motion is produced in another portion of the same. At any rate, however, some word must be made use of to express this operation; and absorption or attraction will answer the purpose.
purposes as well as any others: but still we ought to remember, that these are inaccurate; and when we begin to argue from them as if they fully and exactly determined the mode in which the fluid acts, or rather is acted upon (for both these words suppose heat to be passive, and not active), we must certainly err. As to the phrase, *capacity for containing heat, absolute heat,* &c., they are still more inaccurate than the words *absorption and attraction,* and cannot convey any distinct idea; whence the systems founded upon the explanations of these terms, assumed *gratia dictum* without the least proof, have never been able to support themselves, but are liable to endless and insuperable objections.

It is by no means indeed easy, nay we may boldly say that it is absolutely impossible, for human genius to investigate all the phenomena of this subtle and invisible element. All that can be done is, to discover a few general rules according to which the fluid acts in certain cases. From these we can only reason analogically to cases where its action is less obvious. But we are not to expect that by reasoning in this manner we can solve every phenomenon; nor can it be any recommendation to an hypothesis, merely that it solves some phenomena, unless we were able by its means to solve them all; but this no wise man will pretend to do, nay, not even to know them all. It appears exceedingly erroneous therefore to invent solutions of certain phenomena, and then to argue for the truth of the hypothesis from the facility with which the phenomena are explained by it. The true and proper method of proceeding in this case is to lay down certain principles established from the obvious phenomena of nature, and to reason from them fairly as far as we can; but where this ends, our knowledge must stop, and we cannot by any means proceed farther upon a sure foundation.

The only general principles as yet certainly established from obvious phenomena upon this subject are the following: 1. Heat and cold are found to expel one another. Hence we ought to conclude, that heat and cold are both *passive,* for a negative can neither be expelled nor accumulated. 2. Heat is visibly occasioned by the rays of the sun concentrated, and likewise by the fluid of electricity concentrated. If fire, therefore, properly so called, be the cause of heat, than which nothing can be more evident to our senses, we are certainly intitled to conclude, that both the light of the sun and the electric fluid are *elementary fire.* Hence also we conclude their identity; for two different substances cannot by any means produce constantly the same effect when put in the same circumstances, which both light and electricity do in this case, merely by *concentration,* or discharging a great quantity of the fluid upon a small portion of any terrestrial body. 3. Heat expands bodies in every direction: whence we conclude, that the fluid, when producing heat, acts from a centre towards a circumference; and by analogy, that when it produces cold it acts from a circumference towards a centre. 4. It appears from undeniable experiments, that heat, somehow or other, is the cause of fluidity. As the action of the fluid has already been shown, when it produces heat, to be from a centre to a circumference, it follows, that when the expansive action of the fluid is confined within the surface of any body, this may be called its *latent heat,* because it extends not beyond the surface, and therefore cannot affect the thermometer, or be known to us as heat by the sense of feeling. But when this expansive action is transferred from the internal parts of the substance to the surface, it then affects the thermometer and the body is said to be become *hottier* at the same time that it congeals or is said to be *frozen.* This is what some philosophers call the conversion of the latent into sensible heat; others, the alteration of the *capacity:* but whatever term we give to the effect, the cause must remain the same, viz. the opposite actions of the same fluid; the expansive power in some cases counteracting or overcoming the condensing one, and *vice versâ.* 5. Though sometimes the expansive action is sufficiently strong to produce fluidity naturally, and in most cases may be made to proceed artificially as to make bodies fluid, yet in all cases it is not so. A certain degree of expansive power exists in all bodies whatever, and this is called the *specific heat* of the body. 6. Whatever is called the *cooling* of any body is only the diminution of the expansive action upon its surface, or, if we may use the expression, on the surface of its particles. This is accomplished by an opposite power or modification of the fluid, taking place on the outside; but when this becomes sufficiently strong to penetrate the whole substance, it then expels part of the fluid acting in the opposite direction, and then some change takes place in the texture of the body. It is, however, impossible to speak very periphrastically upon this subject, as the visibility and invisibility of the fluid render all reasonings upon it very precarious. 7. It is altogether impossible to calculate the quantity of absolute heat contained in any substance, because this depends upon the proportion between the quantity of fluid acting expansively and that acting in the opposite direction in the same. These two must some way or other counterbalance each other throughout the whole system of nature; and we may fly with certainty, that any substance in which the one exists without the other, is none of those subject to the investigation of our senses, and all speculations concerning it must be vain. 8. When the fluid contained in any substance is vehemently agitated, this naturally produces an expansion in it; and therefore bodies become hot by violent friction, percussion, &c. In these cases, however, we have no right to say that the fluid is *expelled,* but only that its mode of action is altered; for this is constantly sufficient to produce heat, and in this indeed the very essence of heat consists. 9. When the expansive action of elementary fire within any substance becomes greater than is sufficient with the cohesion of that substance, it is disjoined or resolved into vapour. This, however, may be done in such a manner that the heat still acts upon the separated parts of the body without spending any of its force upon external substances. Hence vapour continues to exist in a temperature much below that in which it was originally produced; nay, will sometimes be excessively cold to the touch, when it really contains as much heat, though in a *latent* state, as before. 10. When this latent heat is transferred to external bodies, the vapour then sets to be vapour, or is *condensed,* and in some cases returns to its original state; in others, it is productive of light and vehement sensible heat; whence
whence all the phenomena of Distillation, Evaporation, Flame, Ignition, Combustion, &c.

These are the principal facts which can be looked upon as established with regard to heat considered in a philosophical view. In common discourse it is always spoken of as a certain substance distinct from all others, and may properly enough be reckoned so with regard to the purpose of life. In this manner, he related to certain bodies in a much greater proportion than others. Dr Franklin made the experiment with pieces of cloth of various colours laid upon snow and exposed to the sunshine, and in all cases found that the pieces dyed with the darkest colours sunk deepest in the snow. Mr Cavallo examined the matter more accurately first by observing the height to which a thermometer with a blackened bulb rose in comparison with one of clear glass, and then by comparing the heights of different thermometers whose bulbs were painted of various colours. Having therefore constructed two thermometers whose scales exactly corresponded with each other, he fixed them both upon the face of an inch square, having the bulbs quite detached from the frame; and in this manner exposed them to the light of the sun or of a lamp. When these were exposed to the sun or kept in the shade, with the glasses of both bulbs clear, they showed precisely the same degree; and the difference between the degree shown by the thermometers when exposed to the sun and when kept in the shade, at about the same time of the day, was very trifling.

The ball of one of the thermometers being painted black, and that of the other left clean, they showed different degrees of temperature on being exposed to the sun, the difference sometimes amounting to 10° but was never constant, varying according to the clearness of the sun's light as well as of the air, and likewise according to the different degrees of temperature in the atmosphere.

On keeping the thermometer with the painted ball on the inside of a window, Mr Cavallo observed that strong daylight had an effect in raising the mercury as well as the sun's light. To ascertain this, he cleaned the bulb of the painted thermometer, and blackened that of the other; but the effect was constant, viz. the quicksilver in the tube of the thermometer, whose ball was painted black, was constantly higher than the other whenever they were exposed to the strong daylight. The difference was commonly about one-third of a degree, but sometimes it amounted to one-fourth, or even to a whole degree; and the experiment answered even when the sun was hid by clouds, which seems to indicate that every degree of light is accompanied with a corresponding heat of one.

By this consideration Mr Cavallo was induced to try whether, by directing the concentrated light of the moon upon the blackened bulb of a thermometer, it would be raised higher than a clean one standing in the same. The experiment was several times tried with a large lens, and afterwards with a burning mirror of 18 inches diameter; yet sometimes for want of proper means of observing the height of the mercury in the tubes of the thermometers, sometimes for want of a continued clear light of the moon, or in short from some unfavourable circumstance or other, he was never able to make a fair and decisive trial of this experiment.

Making trial of the heat of a lamp, he found that it also had a considerable effect. The ball of one being blackened, and both set at two inches distance from the flame of a lamp, they both rose from 38 to 65° deg. and the thermometer which was blackened to 67°. Another time the uncoloured thermometer rose to 67°, and the coloured one to 69°. From a number of trials it at first appeared, that the difference at this distance from the lamp amounted generally to about a degree. When the thermometers were removed farther than two inches from the lamp, the difference decreased; and at the distance of about 14 or 15 inches it vanished entirely.

On this occasion Mr Cavallo had an opportunity of making a curious observation concerning the decrease of heat at different distances from the centre. It is mathematically true, that emanations which proceed from a centre, and expand in a sphere, must become more and more rare in proportion to the figures of the distances from the centre. Thus it is said, that the intensity of light proceeding from a luminous body at a distance of double, treble, quadruple, &c. distance from that body, must be respectively four, nine, sixteen, &c. less dense. The same thing may be said of heat; but with respect to the latter, it appeared, that its intensity did not decrease exactly in the duplicate proportion of the distances from the flame of the lamp, but showed a very odd irregularity. It seemed to decrease faster than the duplicate proportion of the distances for the space of two inches and a half or three inches, after which it decreased much slower; but whether this proceeded from some different state of the air's purity at different distances from the flame of the lamp, or from the vapours coming from the flame, I cannot take upon me to determine.

Mr Cavallo next made some experiments upon thermometers, the balls of which were painted of various colours. His view was to examine with precision the degrees of heat imbibed by differently coloured substances, in order to determine whether they kept any proportion to the spaces occupied by the prismatic colours in the prismatic spectrum, or if they followed any other law. In these experiments he met with considerable difficulties, chiefly arising from the different nature of the colours with which the bulbs were painted. By reason of this diversity the bulbs could not be made equally smooth, which occasioned a considerable difference in the effect, as he found by painting two bulbs of thermometers with the same colour, only making the one smooth and the other rough.

To avoid this inconvenience, he attempted to make thermometers with tubes of differently coloured glasses but when a ball was formed with any of these, the glafs of the ball was so thin, that it differed very little from that which was entirely colourless. He then included the thermometers in boxes, where the rays entered through coloured glasses; but here the rays were not only far from being homogeneous, but there was such a difference in the transparency of some of the coloured glasses, that this method, proved also ineffectual. The least ambiguous method therefore was that of painting the bulbs of the thermometers with water-colours, taking care to lay them on as equally and smooth as possible. In this manner the experiments were repeated, using sometimes a dozen of thermometers.
HE A

Heat.

meters at once, whose balls were painted with various colours, and were exposed to the sun; but from a vast number of experiments, and some weeks observation, it could only be deduced, that if the colours with which the balls of the thermometers were painted had any considerable resemblance to those of the prism, those which were nearest to the violet showed a greater degree of heat than the others; but they were all, even that painted with white lead, in some intermediate degree between the blackened thermometer and that which was left quite clear. If the quarts had not the proper density, the effects were different: thus, a thermometer painted with a light blue fluid lower than another painted with good carmine.

In the course of his thermometrical experiments, Mr Cavallo likewise discovered a new method of determining the expansion of mercury by weight, which seemed capable of being carried to a greater degree of exactness than any other hitherto proposed. Having first blown a ball to a capillary tube, such as are commonly used for thermometers, he weighed it, and found the weight when empty to be 79.25 grains; and he observes, that in this experiment it is a precaution absolutely necessary to have the glass as accurately cleaned as possible. Some mercury was then introduced into the stem of the thermometer, taking care that none of it entered the ball; and by adapting a scale of inches to the tube, observed that 4.3 inches of it were filled with the mercury. The thermometer was now weighed again; and from this the weight of the glasses being subtracted, the remainder, viz. 0.24 gr., showed the weight of that quantity of mercury which was left quite clear. If the quarts had filled the 4.3 inches of the tube. Now, the ball of the thermometer, and also part of the tube, were entirely filled with quicksilver; and in order to find out the weight of the mercury contained in it, the thermometer was weighed for the last time; and the weight of the glasses being subtracted from this, the remainder, viz. 3205 grains, showed the weight of the whole quantity of quicksilver contained in the thermometer.

By comparing this instrument with a graduated thermometer of Fahrenheit, and by applying a scale of inches, he found, that 20° on the new thermometer was equal to 1.37 inches. But 0.24 grains was the weight of as much mercury as filled 4.3 inches of the tube. Therefore, by the rule of proportion, it will be found that the weight of as much quicksilver as fills 1.33 inches of the tube, viz. the length of 20°, is equal to 0.0742 of a grain nearly, and that the weight of as much quicksilver as fills a length of the tube equivalent to one degree, is equal to 0.00371 grains. Now it is clear, that the weight of the whole quantity of quicksilver contained in the thermometer is to the weight of as much as fills the length of one degree of the tube, as the bulk of the whole quantity of quicksilver in a given degree of heat to the increase of bulk that the same whole quantity of quicksilver acquires when heated but one degree; viz. 32.05 grains is to 0.00371 grains as 1 to 0.00114. By which experiment it appears, that one degree of Fahrenheit's thermometer increases the bulk of mercury not above eleven hundred thousandth parts. A small deviation from mathematical exactness is indeed produced by the difference of weight between the quicksilver of the tube when first weighed and when it is afterwards heated to one degree; but by an easy calculation it will be found, that this difference is so exceedingly small that it cannot be perceived with our most exact instruments of either weight or measure.

On repeating this experiment with other thermometers, each process varied a little from the other; which irregularity, Mr Cavallo thinks, was certainly owing to the imperfection of his scales: but by taking a mean of various experiments, it appears, that one degree of heat, according to his thermometer, increases the bulk of a quantity of quicksilver in the temperature of 50° by about nine parts in 100,000; that is, if the bulk of any quantity of quicksilver in the temperature of 50° be 100,000, it will be 100,009 in the temperature of 51°.

In making experiments of this kind, it is necessary to have the bores of the tubes absolutely cylindrical; and the scales should be so exact as to turn with the hundredth part of a grain when charged with half an ounce weight.

Heat of Burning Bodies. See ComBustion.

Heat of Chemical Mixtures. This is a phenomenon necessarily resulting from the change of form produced in the different substances which are mixed together; and the manner in which it happens may be easily understood from the example of oil of vitriol and water. If equal quantities of concentrated vitriolic acid and water are mixed together, a very great degree of heat immediately takes place; infomuch that if the vessel which contains the mixture is made of glass it will probably break; and after it is cool, the mixture will be found to have shrunk in its dimensions, or will occupy less space than the bulk of the water and acid taken separately. In this case we know that the water, while in its fluid state, hath as much latent heat as it can contain; i.e. the elementary fire within it expands or separates its parts from each other, as much as is consistent with the constitution of the body. If any more is added, it cannot be absorbed, or direct its force upon the particles of the water without raising them in vapour; of consequence, part of this additional expansive power will be employed in the formation of vapour, and the rest will be discharged upon the neighbouring bodies, i.e. will be converted into sensible heat. The vitriolic acid, in its concentrated state, contains a great quantity of latent heat, which is necessary to preserve its fluidity. But when it is mixed with the fluid water, the latent heat contained in the latter is abundantly sufficient for both: of consequence, the great expansive power in the oil of vitriol itself becomes now totally useless, and therefore exerts its force upon the neighbouring bodies; and when the mixture returns to the original temperature of the oil of vitriol and water, it shows a lot of substance by its diminution in bulk. This may serve to explain all cases in chemistry where heat or cold is produced: and it will generally be found, that where bodies, by being mixed together, produce heat, they shrink in their dimensions; but when they produce cold, they are enlarged.

Methods of Measuring Heat. See Thermometer.

Expansion of Metals by Heat. See Pyrometer.

Degree of Heat which animals are capable of bearing.

—The ancients were of opinion, that all countries lying
lying within the tropics were uninhabitable by reason of their heat: but time has discovered their mistake; and it is now found, that no part of the world is too hot for mankind to live in. The learned professor Boerhaave, in his own country, relates certain experiments made with great accuracy by the celebrated Fahrenheit, and others, at his desire, on this subject, in a sugar-baker's-office; where the heat, at the time of making the experiments, was up to 146 degrees of Fahrenheit's thermometer. A sparrow, subjected to the air thus heated, died after breathing very laboriously, in less than seven minutes. A cat refitted this great heat somewhat above a quarter of an hour; and a dog about 28 minutes, discharging before his death a considerable quantity of a ruddy coloured foam, and exhaled a fench too peculiarly offensive, as to throw one of the attendants into a fainting fit. This disfellation of the humour, or great change from a natural state, the professor attributes not to the heat of the stove alone, which would not have produced any such effect on the flesh of a dead animal; but likewise to the violent motion, by which a still greater degree of heat, he supposes, was produced in the fluids circulating through the lungs, in consequence of which the oils, fats, and spirits of the animal became so highly excited.

Mélears Du Hamel and Tillet having been sent into the province of Angoumois, in the years 1760 and 1761, with a view of endeavouring to destroy an insect which infested the grain of that province, effected the same in the manner related in the Memoirs for 1761, by exposing the affected corn, with the insects included in it, in an oven, where the heat was sufficient to kill them without injuring the grain. This operation was performed at Rochefoucault, in a large public oven, where, for economical views, their first step was to affuage themselves of the heat remaining in it on the day after bread had been baked in it. They did, by conveying in a thermometer on the end of a shovel, which, on its being withdrawn, indicated a degree of heat considerably above that of boiling water; but M. Tillet, convinced that the thermometer had fallen several degrees in drawing to the mouth of the oven, and appearing under some embarrassment on that head, a girl, one of the attendants on the oven, offered to enter, and mark with a pencil the height at which the thermometer stood within the oven. The girl smiled on M. Tillet's appearing to hesitate at this strange proposition; and entering the oven, with a pencil given her for that purpose, marked the thermometer, after staying two or three minutes, standing at 100 degrees of Reaumur's scale, or, to make use of a familiar expression in this country, at near 268 degrees of Fahrenheit's. M. Tillet began to express an anxiety for the welfare of his female assistant, and to press her return. This female salamander, however, amusing him that she felt no inconvenience from her situation, remained there 10 minutes longer: that is, near the time when Boerhaave's cat parted with her nine lives under a much less degree of heat, when the thermometer standing at 288 degrees, or 76 degrees above that of boiling water, came out of the oven, her complexion indeed considerably heightened, but her respiration by no means quick or laborious. After M. Tillet's return to Paris, these experiments were repeated by Monf. Marantini, commissaire de guerre, at Rochefoucault, an intelligent and accurate observer, on a second girl belonging to the oven, who remained in it, without much inconvenience, under the same degree of heat, as long as her predecessor; and even breathed in the air heated to about 325 degrees for the space of five minutes.

M. Tillet endeavoured to clear up the very apparent contrariety between these experiments and those made under the direction of Boerhaave, by subjecting various animals, under different circumstances, to great degrees of heat. From his experiments, in some of which the animals were swaddled with cloths, and were thereby enabled to resist for a much longer time the effects of the extraordinary heat, he infers, that the heat of the air received into the lungs was not, as was supposed by Boerhaave, the only or principal cause of the anxiety, laborious breathing, and death, of the animals on whom his experiments were made; but that the hot air, which had free and immediate access to every part of the surface of their bodies, penetrated the substance on all sides, and brought on a fever, from whence proceeded all the symptoms: on the contrary, the girls at Rochefoucault, having their bodies in great measure protected from this action by their clothes, were enabled to breathe the air, thus violently heated, for a long time without great inconvenience. In fact, we should think too, that the bulk of their bodies, though not thought of much consequence by M. Tillet, appears to have contributed not a little to their security. In common respiration, the blood, in its passage through the lungs, is cooled by being brought into contact with the external inspired air; in the present experiments, on the contrary, the vessels and vessels of the lungs receiving at each inspiration an air heated to 300 degrees, must have been continually cooled and refreshed, as well as the capillary and venous vessels, by the successive arrival of the whole mass of blood contained in the interior parts of the body, whose heat might be supposed at the beginning of the experiment not to exceed 100 degrees. Not to mention, that M. Tillet's two girls may not possibly have been subjected to so great a degree of heat as that indicated by the thermometer; which appears to us to have always remained on the shovel, in contact with the earth.

These experiments soon excited other philosophers to make similar ones, of which some very remarkable ones are those of Dr Dobson at Liverpool, who gives the following account of them in the Philosophical Transactions, vol. lxv.

"I. The sweating-room of our public hospital at Liverpool, which is nearly a cube of nine feet, lighted from the top, was heated till the quicksilver stood at 224° on Fahrenheit's scale, nor would the tube of the thermometer indeed admit the heat to be raised higher. The thermometer was suspended by a string fixed to the wooden frame of the sky-light, and hung down about the centre of the room. Myself and several others were at this time inclosed in the stove, without experiencing any oppressive or painful sensation of heat proportioned to the degree pointed out by the thermometer. Every metallic about us soon became very hot.

"II. My friend Mr Park, an ingenious surgeon of this place, went into the stove heated to 204°. After
HEA [355]

And to determine the increase of the animal-heat, another thermometer was handed to him, in which the quicksilver already stood at 98°; but it rose only to 99°, whether the bulb of the thermometer was included in the palms of the hands or received in the mouth (a). The natural rate of this gentleman's pulse is about 65.

III. Another gentleman went through the same experiment in the same circumstances, and with the same effects.

IV. One of the porters to the hospital, a healthy young man, and the pulse 75, was included in the fove when the quicksilver stood at 210°; and he remained there with little inconvenience for 20 minutes. The pulse, now 164, and the animal-heat, determined by another thermometer as in the former experiments, was 107.

V. A young gentleman of a delicate and irritable habit, whose natural pulse is about 80, remained in the fove ten minutes when heated to 224°. The pulse rose to 145, and the animal-heat to 102°. This gentleman, who had been frequently in the fove during the course of the day, found himself feeble, and disposed to break out into sweats for 24 hours after the experiment.

VI. Two small tin vessels, containing each the white of an egg, were put into the fove heated to 224°. One of them was placed on a wooden seat near the wall, and the other suspended by a string about the middle of the fove. After ten minutes, they began to coagulate, but the coagulation was sensibly quicker and firmer in that which was suspended, than in that which was placed on the wooden seat. The progress of the coagulation was as follows; it was first formed on the sides, and gradually extended itself, the whole of the bottom was next coagulated; and last of all, the middle part of the top.

VII. Part of the shell of an egg was peeled away, leaving only the film which surrounds the white; and part of the white being drawn out, the film fufpended. This fufpended fome of the albumen ovii, which was frequently detached as much as possible from every thing but the contact of the air and of the film which formed the cup. The lower part of the egg froid upon some light tow in a common gaiiopon, and was placed on the wooden seat in the fove. The quicksilver in the thermometer still continued at 224°. After remaining in the fove for an hour, the lower part of the egg which was covered with the shell was firmly coagulated, but that which was in the little cup was fluid and transparent. At the end of another hour it was still fluid, except on the edges where it was thinneft; and here it was still transparent. One fufficient proof that it was dried not coagulated.

VIII. A piece of bees-wax, placed in the fame situation with the albumen ovii of the preceding experiment, and exposed to the fame degree of heat in the fove, began to melt in five minutes: another piece fufpended by a string, and a third piece put into the tin vessel and fufpended, began likewise to liquefy in five minutes.

Even these experiments, though more accurate than the former, do not show the utmost degrees of heat which the human body is capable of enduring. Some others, still more remarkable (as in them the body was exposed to the heat without clothes), by Drs Fordyce and Blagden, are also recorded in the Philosophical Transactions. They were made in rooms heated by flues in the floor, and by pouring upon it boiling water. There was no chimney in them, nor any vent for the air, excepting through crevices at the door. In the firit room were placed three thermometers, one in the hottest part of it, another in the cooler part, and a third on the table, to be used occasionally in the course of the experiment. Of these experiments, the two following may be taken as a specimen.

About three hours after breakfast, Dr Fordyce having taken off all his clothes, except his shirt, and being furnished with wooden shoes tied on with lint, went into one of the rooms, where he layed five minutes in a heat of 90°, and begun to sweat gently. He then entered another room, and froid in a part of it heated to 110°. In about half a minute his shirt became fo wet that he was obliged to throw it aside, and the water poured down in streams over his whole body. Having remained in this heat for ten minutes, he removed to a part of the room heated to 120°; and after laying there 20 minutes, found that the thermometer placed under his tongue, and held in his hand, froid at 100°, and that his urine was of the fame temperature. His pulse had gradually rifen to 145 pulsations in a minute. The external circulation was greatly increased, the veins had become very large, and an universal redness had diffused itself all over the body, attended with a strong feeling of heat; his respiration, however, was little affected. He concluded this experiment by plunging in water heated to 100°; and after being wiped dry, was carried home in a chair; but the circulation did not subside for two hours.

Dr Blagden took off his coat, waistcoat, and shirt, and went into one of the rooms, as soon as the thermometer had indicated a degree of heat above that of boiling water. The first impression of this hot air upon his body was exceedingly disagreeable, but in a few minutes all his uneafinefs was removed by the breaking out of a sweat. At the end of 12 minutes he left the room very much fatigued, but no otherwise disordered. His pulse beat 136 in a minute, and the thermometer had rifen to 220 degrees.

In others of these experiments it was found, that a heat even of 260° of Fahrenheit's thermometer could be submitted to with tolerable ease. But it must be observed, that in these great heats every piece of metal they carried about with them became intolerably hot.

(a) The scale of the thermometer, which was fufpended by the string about the middle of the room, was of metal; this was the only one I could then procure on which the degrees ran to high as to give any scope to the experiment. The scale of the other thermometer, which was employed for ascertaining the variations in the animal-heat, was of ivory.
Heat.

Hot. Small quantities of water placed in metallic vessels quickly boiled; but in a common earthen vessel it required an hour and a half to arrive at a temperature of 140°, nor could it ever be brought near the boiling point. Neither durst the people, who with impunity breathed the air of this very hot room at 264 degrees, bear to put their fingers into the boiling water, which indicated only a heat of 212°. So far from this they could not bear the touch of quicksilver heated only to 120°, and could not but just bear spirit of wine at 130°.

Animal-heat. Of this there are various degrees; some animals preserving a heat of 100° or more in all the different temperatures of the atmosphere; others keep only a few degrees warmer than the medium which surrounds them; and in some of the more imperfect animals, the heat is scarcely one degree above the air or water in which they live.

The phenomenon of animal-heat hath, from the earliest ages, been the subject of philosophical discussion; and, like most other subjects of this nature, its cause is not yet ascertained. The belief that has appeared on the subject is that of Dr. Dugue Le Lille, published in 1778; and Mr. Adair Crawford, in 1779. From the first of these performances, we may infer that the opinions on this subject were extruded.

"The ancients professed not the requisites for minutely investigating the science of nature; and, prone to superstitious, attributed every phenomenon that eluded their investigation, to the influence of a supernatural power. Hippocrates, the father and founder of medicine, accounted animal heat a mystery, and believed in many attributes of the Deity. In treating of this subject, he says in express terms, "what we call heat, appears to me to be something immortal, which underlacks, fees, heats, and knows every thing present and to come."—Aristotle seems to have considered the subject particularly, but nothing is to be met with in his works that can be laid to throw light upon it. Galen tells us that he dispute between the philosophers and physicians of his time was, whether animal-heat depended on the motion of the heart and arteries; or whether, as the motion of the heart and arteries was innate, the heat was or was not innate." Both these opinions, however, he rejects; and attempts a solution of the question on his favourite system, namely, the peripatetic philosophy: but his leading principles being erroneous, his deductions are of course inadmissible.

To enter into a minute detail of all the opinions offered by the moderns on the cause of animal-heat, would far exceed our limits. Most of them, however, may be referred to one or other of the three general causes of heat, viz. mixture, fermentation, and mechanical means, each of which we shall particularly consider.

1. Chemical mixture. When chemical philosophy first came into vogue, and prevailed in the theory as well as practice of medicine, almost every operation in the animal machine was said to be the effect of mixture. From observing, that on the mixing of certain bodies far below the temperature of the human body, a degree of heat sometimes rising to actual inflammation was produced; they, without further investigation, pronounced mixture the sole cause of animal heat. Various, however, were the opinions, not only respecting the place where the mixture happened, but also concerning the nature of the fluids of which it consisted. Van Helmont, Sylvius, and several others, supposed that the mixture took place in the intestinal tube; and ascribed it to an effervescence between the pancreatic juice and the bile. Others discovered acids in one place, and alkalies in another; but the general opinion for near two centuries was, that acid fluids taken in, meeting with others of an alkaline nature already prepared in the body, gave rise to the degree of heat peculiar to animals. But those who are in the least acquainted with the laws of the animal economy, need not be told that these opinions are mere conjectures, founded on facts gratuitously affirmed. No experiments have shown either an acridity or alkaloidea in the bile that is sufficient to unite with the other animal juices, and generate the heat of animals. But though we should admit the supposition in its full extent, still it would be no means be sufficient to account for the stability of animal heat in different climates and seasons; its equality all over the body when in health; its partial increase in topical inflammations; or hardly indeed for any one phenomenon attending its production.

Since, then, it appears that the fluids supposed to be mixed, the place in which the mixture is made, and every other circumstance relating to it, are neither ascertained nor seconded by analogy, none will, we presume, hesitate to reject every hypothesis of the cause of animal heat founded on the effects of mixture.

2. Fermentation. When a more accurate and extensive knowledge of the various operations of nature had convinced physiologists of the absurdity of explaining the vital functions of animals, and the several changes which take place in the living body by the effect of chemical mixture, fermentation was substituted in its stead. All had observed, that fermentation was generally accompanied by heat; and few were ignorant, that that identical process, or one extremely similar to it, was constantly going forward in living animals; and it was not without some appearance of truth, that physiologists attributed animal heat to that cause.

Formerly there were various modifications of this opinion; but of late it has been chiefly confined to one species of fermentation, viz. the putrefactive, which indeed is more concomitant to experience and sound philosophy. For although animal substances are either directly or indirectly produced from vegetables, as all animals live on vegetables; or on animals that have lived on them; and though they may be ultimately resolved into the same principles; yet they are certainly combined in a different manner: for they constitute compounds, the natures of which are essentially different; and the three stages of fermentation, the vinous, aceto, and putrid, the last is the only one to which they show a tendency. Milk indeed tends to the vinous, and to the aceto fermentation; but as it can hardly be considered as perfectly animalized, it ought not to be considered as an exception to the general position. And though it be readily admitted, that animal matter is extremely apt to putrefy, and that even
Heat. in the living body there is a tendency to that process; yet it may be shown, that the degree to which it takes place can have little or no share in generating the heat of animals. In the first place, the effect of any degree of putrefaction in producing heat, is to this day so ill ascertained, that, with many ingenious philosophers, it is altogether problematical, whether or not animal substances, during the putrefactive process, do ever generate heat. Neither M. Beausé, nor Dr. Pearson, who made several accurate experiments with a view to ascertain this point, could, by the assistance of the most sensible thermometers, discover the least difference between the temperature of the putrefying mixtures and the surrounding medium; and were the putrefaction of animal substances readily attended with the generation of heat, we might expect to find it greater in proportion to the bulk of the putrefying mass.

This, however, is not the case; for it has often been found, that the largest masses of animal matter, such as the carcass of a large whale laid out and exposed in the air in such a putrid condition as to affect all the neighbourhood with an intolerable stench, did not to the Perkins handling it feel sensibly hotter than the circumambient air. But what at once overthrows every thing that can be advanced in favour of the generation of animal heat on the principles of putrefaction is, that heat is so far more considerable in a living than in a dead body; and no rational physiologist will deny, that the putrid fermentation is going forward more rapidly in the latter than in the former.

3. The mechanical generation of heat. This opinion first took its rise from an observation, that animal heat generally keeps pace with the state of the circulation: while the action of the heart and arteries continues unimpaired, a high degree of animal heat is produced; but when that action becomes more languid, the heat of the animal is diminished also. This, till very lately, was the favourite opinion of physicians, and was introduced immediately after Harvey had discovered the circulation of the blood, and indeed seems to have been supported by many physiologists looked upon it: as a matter almost capable of mathematical demonstration; yet they could not agree whether the heat of animals is occasioned by the friction of the blood against the vessels which contain it, or by the internal friction and agitation of the particles among one another. Various hypotheses accordingly were framed, and many ingenious arguments brought in support of them: but all suppositions of the mechanical kind are overthrown by some thermometrical observations of De Haen and others, from which it appeared, that the heat of the body was sometimes greater than is usual with healthy people, at the time the person was just expiring, when the action of the vessels was very weak; nay, even after he was dead, when it had entirely ceased. The abovementioned physician relates two very remarkable cases of this kind. In one, he found that the temperature of his patient, which during the course of an inflammatory fever had never exceeded 103 degrees, at the time he expired, and for two minutes after, stood at 106. From the other it appeared, that the heat of a person who was dying of a lingering distemper, rose in the last agony from 100 to 101, and continued there stationary for two hours; and, even at the expiration of 15 hours, had only fallen to 85°, though the surrounding medium did not exceed 60°. The example also of those who are suffocated by fixed air, entirely overturn not only the mechanical system, but almost every other which hath yet appeared on the subject. [See the article Bloom, n° 31.]

One or other of the abovementioned hypotheses Dr. Cullen continued to be adopted by physicians, till Dr. Cullen attempted a solution on a new set of principles; but adhesive to the difficulty with which novel opinions ought to be broached, he delivered his as little more than a mere conjecture. "May it not (says he) be supposed, that there is some circumstance in the vital principle of animals, which is in common to those of the same class, and of like economy; and which determines the effect of motion upon the vital principle to be the same, though the motion acting upon it may be in different circumstances!" — The doctor was led to this supposition from the difficulty he found in explaining how it was possible for many animals of the same size, and temperament, should possess very nearly the same degree of heat; and in which it is impossible to show, that the motion of the blood in all its circumstances is exactly the same; or that in the different animals in which the degree of heat is considerably different, the motion of the circulating mass is in each correspondent to the difference of temperature. But, granting that the degree of heat does not always obtain in an exact ratio with the motion of the blood, and that it is an impossible objection to its mechanical generation; yet there appear no plausible grounds for supposing that the effect of motion may be the same, while the motion acting upon it is in different circumstances. By this Dr. Cullen means, that the different temperature of different animals is owing to a difference of the vital principle, insomuch that the velocity of the blood may be the same in a frog as in a man; and yet, in consequence of the different vital principle, the heat produced may be different. The facts upon which he seems to lay the greatest stress are, "That neither where the surrounding medium considerably surpasses the temperature of the living body, nor where it is far below it, is there any sensible change in the heat of animals. These, and some similar facts, in appearance countenance his hypothesis; yet we have no solid reason for imagining the principle of life to be different in different animals. And how are we to conceive, that the same degree of motion should in one class of animals always produce a certain degree of heat, and in another class as regularly a different one! A proportion of such a nature should, no doubt, require the most obvious facts and conclusive arguments to establish; but, in the present instance, we do not perceive any probable reason, even from analogy. Besides, to say that the principle of life can generate heat or cold, independent of chemical and mechanical means, is contrary to experience, and seems in itself absurd.

In the 66th volume of the Philosophical Transactions, Dr. Hunter, after reciting some experiments concerning animal heat, affirms, that certain animals entirely subject to the influence of chemical and mechanical means, are contrary to experience, and seems in itself absurd.
HEA

...[358]

HEA

an argumentum crucis against those who account the nervous system the seat of animal-heat. If this is really a fact, it must, no doubt, have all the weight he ascribes to it; but it is plain that no items can be laid upon it, unless it was better ascertained, which is evident it can never be. For though we can positively assert that nerves exist where we feel them, yet we cannot affirm with equal certainty that they do not also exist where we are not able to discover them. For all anatomists allow, that there are thousands of nervous filaments so finely interwoven into the composition of the more perfect animals of every size, that they elude not only the knife and naked eye, but even the best optical instruments hitherto invented. Since then we admit the presence of nerves in one tribe of animals, though we can only perceive them in their effects; what solid reason have we to deny them in another, in which we have the very same evidence, viz. certain indications of sense and motion?

"Another theory, and perhaps the best supported which hath yet appeared upon the subject, is that of Dr Black. That excellent chemist having observed, that not only breathing animals are of all others the warmest, but also that there subsists such a close and striking connection between the state of respiration and the degree of heat in animals, that they appear to be in an exact proportion to one another, was led to believe, that animal-heat depends on the state of the air upon the principle of inflammability, in a manner little dissimilar to what he supposed to occur in actual inflammation; and that it is thence diffused by means of the circulation over the rest of the vital system.

"This opinion is supported by many forcible arguments. 1. It is very generally known to naturalists, that a quantity of phlegmaticated air is constantly exhaling from the lungs of living animals. Since, therefore, atmospheric air, by passing through the lungs, acquires the very same properties as passage through burning fuel, or by being exposed to any other process of phlogification, it is obvious, that the change which the common air undergoes in both cases must be attributed to one and the same cause, viz. its combination with phlogiston. 2. It has likewise been urged in favour of the same hypothesis, that the colour with which the principle of inflammability is separated in respiration, is very closely connected with the degree of heat peculiar to each animal. Thus, man, birds, and quadrupeds, vitiate air very fast; serpents, and all the amphibious kind, very slowly; and the latter are of a temperature inferior to the former, and breathe less frequently. 3. The most cogent arguments that have been brought in support of this opinion are, that no heat is generated till the function of respiration is established; and that the fetus in utero derives all its heat from the mother."

Upon this theory our author makes the following observations, which we shall give in his own words.

"These arguments may, perhaps, on a superficial view of the question, appear conclusive; but a found reasoner, who shall calmly and impartially weigh every circumstance, will, I am confident, allow that they only afford a very ambiguous and imperfect evidence of the doctrine they are meant to establish; and the subsequent animadversion on Dr Black’s theory at large, will, it is hoped, suffice to show, that it is not only founded on dubious and controvertible principles, but that it is, in every point of light, clogged with unanswerable difficulties.

"I. Many and various are the proofs which evince the improbability of the lungs being the source or elaboratory of animal-heat; for, though it be granted, that there subsists a very striking connection between the state of respiration and the degree of heat in animals, and that they are even in proportion to one another; yet it by no means ensues, that the former is positively the cause of the latter. For, were that really the case, it is obvious, that those animals which are defitute of the organs of respiration would generate no heat. That, however, is not true in fact; for those fishes which are even destitute of gills, appear from various experiments to be warmer than the ordinary temperature of the element in which they live; an irrefragable proof that the function of respiration is not absolutely necessary to the production of heat in animals.

"II. If the heat of living animals be generated solely in the lungs, two things necessarily follow; the first, That it can only be communicated to the other parts of the body, through the channel of the arterial system; the second, That the heat must decrease as it recedes from its supposed centre. And a clear and satisfactory evidence of both these points will, no doubt, be deemed requisite to render Dr Black’s opinion in any degree probable. So far, however, are we from meeting with these positive and convincing proofs which we had reason to expect, that we are not presented with a single plausible argument in favour of either of the points. On the contrary, it is more conformable to facts, that the venal blood is, if not warmer, at least as warm as the arterial. Dr Stevenson, an ingenious and accurate physiologist, with a view to ascertain this matter, laid bare the jugular vein and carotid artery of a calf, and then tied and cut them off at once, in order to let equal quantities of blood flow, in a given time, into vessels of an equal capacity, in each of which he had placed a well-adjusted thermometer; the result of the experiment was, that the thermometer immersed in the venous blood rose several degrees above that place in the arterial. But though it is probable that there is not such a difference as that experiment seems to make, yet several reasons incline me to think, that the venal blood, instead of being colder, as Dr Black maintains, is in fact, somewhat warmer than the arterial; and what entirely overthrows his opinion is, that no experiment, though many have been made, has ever shown that the temperature of the blood is higher in the left ventricle of the heart than in the right, which must necessarily be the case, were all the heat of the animal body generated in the lungs.

"III. Having thus rendered it improbable that the generation of animal-heat should be entirely confined to the lungs, we shall venture to repel farther, and endeavour to show, that the vital fluid, so far from acquiring all its heat in the pulmonary system, communicates no inconsiderable portion of what it had received in the course of the circulation to the air alternately..."
Various are the arguments which tend to evince this opinion. Were the blood heated in the lungs, we should certainly need less of their function in a warm than in a cold atmosphere; but we are taught by experience, that when the air is extremely hot, and we wish to be cooled, we breathe full and quick, and that when it is intensely cold, our respiration is slow and languid; which, were the blood heated in the lungs by the action of the air upon it, surely should not be the case. It is therefore more consonant with reason and experience, that the air which we inspire, by carrying off a quantity of evolved phlogiston from the lungs, rather contributes to diminish than increase the heat of breathing animals. Respiration, therefore, has been very properly compared, by an ingenious physiologist, Dr Duncan of Edinburgh, to the blowing of bellows on a hot body. In both cases a considerable degree of heat is communicated to the air; but in neither can the air be said to generate any heat; for if it did, the heat of breathing animals should increase in proportion to the quantity of air inhaled, and a piece of inert matter heated to a certain degree should become hotter by ventilation.

IV. The fætus in utero, according to Dr Black's hypothesis, generates no heat. The arguments by which he supports that position, how ingenious soever they may be, seem not sufficiently cogent to produce conviction; and as the question from its nature hardly admits of any direct experiment, our reasoning upon it must necessarily be analogical. Hence arises our embarrassment; for, as the discovering of analogies depends on the quickness and fertility of fancy, and the truth of all analogical ratiocination on the quickness and nicety of judgment, two powers of the soul seldom united in an eminent degree, we cannot wonder that arguments of this kind, which to one man seem unanswerable, should to another appear futile.

"The only plausible objection to the generation of heat in the fætus, is, the supposition that it would in a short time accumulate in such a manner as to become incompatible with life.

"This argument, however, is more specious than solid; for, granting that the circulation which is carried on between the fætus and the mother, tranfports very nearly the temperature of her blood, that by no means entirely supercedes the necessity of heat being generated in it. Various reasons lead to this opinion.—It is an axiom, that heat decreases as it recedes from the source from which it springs. Now, if we admit for a moment Dr Black's opinion, and believe the heat of animals to be generated solely in the lungs, it is not obvious, that before it reaches the uterus, palates through the very minute tubes by which that organ is connected to the placenta, circulates through the umbilical vessels, and pervades the extreme parts of the fætus. It must be too much diminished to support that equilibrium, which obtains in very part of the living system. Besides, as the fætus in utero may properly enough be accounted a part of the mother, the same objections that are brought against the generation of heat in it would hold equally good against the production of heat in any part or organ of her body, except the lungs. But such a multitude of accurate thermonmetrical observations have evinced the partial increase of heat in local inflammations, that no room is left to doubt, that in every individual part of the vital frame heat is generated; and if the fætus be, from any cause whatever, liable to topical inflammation, a thing which no physiologist has ever pretended to deny, what shadow of reason is there for doubting that such affections are accompanied with the same effects before as after birth, and consequently with a partial increase of heat?"

Our author having now, as he supposes, refuted the objections of others, after showing that heat, though generated, cannot accumulate in the fætus, proceeds to lay down his own theory, which depends on the following principles.

1. That the blood does contain phlogiston.

2. That this phlogiston is evolved, extricated, or brought into a state of activity and motion by the action of the blood-vessels to which it is subjected in the course of circulation.

3. That the evolution of phlogiston is a cause which throughout nature produces heat, whether that heat be apparently excited by mixture, fermentation, perspiration, friction, inflammation, ignition, or any similar cause.

4. That this heat, which must be produced in consequence of the evolution of the phlogiston from the blood of different animals, is in all probability equal to the highest degree of heat which those animals in any case feel (a).

The first and second of these propositions will readily be granted; but the third is liable to a very great objection, namely, that from putrefying bodies, phlogiston is evolved in quantity sufficient to reduce to their metallic form the calces of some metals exposed to the vapour, as Dr Dugald has acknowledged; yet he himself affirms, that no sensible heat is produced by putrefying animal substances. To this he is obliged to reply, that phlogiston is extricated more flowly from mixtures undergoing the putrid fermentation, than from such as are undergoing the vinous and acetic ones; and that the volatile alkali produced from putrefying substances likewise renders the action of the phlogiston. But the first part of this answer is not proved, and is what he himself calls only a probable conjecture. Neither does the second appear to be well founded; for putrefying substances, urine excepted, afford but little volatile alkali; and even putrid urine itself, which affords such a large portion, is not colder than other putrid matters.

It is however needless to insist farther on this theory, since its fundamental principle, namely, that the venous blood is warmer than the arterial, hath been shown to be false by Mr Adair Crawford, of whose hypothesis we must now give an account.

This gentleman, who, in his general doctrine of heat, seems to agree with Dr Irvin of Glasgow, begins with

(a) These theories, inferred in the last edition of this work, we thought it proper to retain, as there seems still a possibility of the phlogistic doctrine regaining its ground, though now threatened with being expelled from the system of nature. A particular account of the dispute concerning Phlogiston is given under that article.
HEAT

an explanation of his terms. The words heat and fire, he tells us, are ambiguous. Heat in common language has a double signification. It is used indiscriminately to express a tension of the mind, and an unknown principle, whether it be called a quantity or a sensation, which is the exciting cause of that sensation. The latter, he, with Dr Irwin, calls absolute heat; the former, sensible heat. The following are the general facts upon which his experiments are founded.

1. Heat is contained in great quantities in all bodies when at the common temperature of the atmosphere.

2. Heat has a constant tendency to diffuse itself over all bodies, till they are brought to the same degree of sensible heat.

3. If the parts of the same homogeneous body have the same degree of sensible heat, the quantities of absolute heat will be proportionable to the bulk or quantity of matter. Thus the quantity of absolute heat contained in two pounds of water, must be conceived to be double of that which is contained in one pound, when at the same temperature.

4. The mercurial thermometer is an accurate measure of the comparative quantities of absolute heat which are communicated to the same homogeneous bodies or separated from them, as long as such bodies continue in the same form. If therefore the sensible heat of a body, as measured by the mercurial thermometer, were to be diminished the one half, or the one third, or in any given proportion, the absolute heat would be diminished in the same proportion.

5. The comparative quantities of absolute heat which are communicated to different bodies, or separated from them, cannot be determined in a direct manner by the thermometer. Thus, if the temperature of a pound of mercury be raised one degree, and that of a pound of water one degree, as indicated by the thermometer, it does not by any means follow, that equal quantities of absolute heat have been communicated to the water and the mercury. [See Heat and Thermometer.]

6. If a pint of mercury be raised one degree, and that of a pint of water one degree, as indicated by the thermometer, it does not by any means follow, that equal quantities of absolute heat have been communicated to the water and the mercury. [See Heat and Thermometer.]

7. If a pint of mercury at 100° be mixed with an equal bulk of water at 50°, the change produced in the heat of the mercury will be to that produced in the water as three to two; or, in other words, that the comparative quantities of their absolute heats are reciprocally proportionable to the changes which are produced in their sensible heats, when they are mixed together at different temperatures. This rule, however, does not apply to those mixtures which generate sensible heat or cold by chemical action.

From the above position, says Mr Crawford, it follows, that equal weight of heterogeneous substances, as air and water, having the same temperature, may contain unequal quantities of absolute heat. There must, therefore, be certain essential differences in the nature of bodies, in consequence of which some have the power of collecting and retaining the element of fire in greater quantities than others, and these differences he calls throughout his treatise the capacities of bodies for containing heat.

Having premised these general facts, our author gives an account of a number of experiments made, in order to ascertain the quantity of absolute heat contained in different bodies. These experiments were made by mixing the bodies to be examined, with water, heated to different degrees; and by the temperature of the mixture, he found the proportion of the capacity of the bodies for containing heat, to water, and, of consequence, to one another. Thus he found the capacity of wheat for containing heat to be that of water as 1 to 2.9; and, of consequence, the absolute heats of the two substances to be in the same proportion. The absolute heat of oats to that of water he found as 1 to 24; of barley, as 1 to 2.4; of beans, as 1 to 1.5; of flesh, as 1 to 1.3; of milk, as 1 to 1.1; and of a mixture of venous and arterial blood from a sheep, as 23.4 to 24.4. By other experiments he determined, that the absolute heat of venous blood was to that of water only as 100 to 112, whereas the absolute heat of arterial blood was to that of water as 100 to 97.58.

By experiments made with air of different kinds contained in bladders, and immersed in water, he found that the absolute heat of atmospheric air was exceedingly great, being to that of water as 18.6 to 1; that of dephlogisticated air was still greater, being to the heat of common atmospheric air as 4.6 to 1. The heat of phlogisticated and fixed air was much less; that of the latter, particularly, being to the heat of atmospheric air only as 1 to 67.

From other experiments made on metals, Mr Crawford concludes, that the absolute heat of tin, in its metallic state, is to that of water as 1 to 14.7; but the heat of calcined tin is to that of water as 1 to 20.4. In like manner, the heat of iron was to that of water only as 1 to 8; but that of the calx of iron was to the heat of water as 1 to 3.1, &c. And from these experiments he is of opinion, that the more phlogiston that is added to any body, the less is its capacity for containing heat.

From these experiments our author deduces the following theory of animal heat.—“It has been proved, that the air, which is expired from the lungs of animals, contains less absolute heat than that which is inhaled in inspiration. It has been shown, particularly, that in the process of respiration, atmospheric air is converted into fixed air; and that the absolute heat of the former is to that of the latter as 67 to 1. Since therefore the fixed air which is exhaled by expiration is found to contain only the one sixtieth part of the heat which was contained in the atmospheric air previous to inspiration, it follows, that the latter must necessarily deposit a very great proportion of its absolute heat in the lungs. It has moreover been shown, that the absolute heat of floriad arterial blood is to that of venous as 114; to 10. And hence, as the blood, which is returned by the pulmonary vein to the heart, has the quantity of its absolute heat increased, it is evident that it must have acquired this heat in its passage through the lungs. We may conclude, therefore, that in the process of respiration, a quantity of absolute heat is separated from the air and absorbed by the blood.

That heat is separated from the air in respiration, is farther confirmed by the experiment with phlogisticated air; from which, compared with Dr Priedley's
Heat discoveries, it is manifest, that the power of any species of air in supporting animal life, is nearly in proportion to the quantity of absolute heat which it contains, and is consequently proportional to the quantity which it is capable of depositing in the lungs.

The truth of this conclusion will perhaps appear in a clearer light from the following calculation, by which we may form some idea of the quantity of heat yielded by atmospheric air when it is converted into fixed air, and allow of that which is absorbed during the conversion of venous into arterial blood.

We have seen that the same heat which raises atmospheric air one degree, will raise fixed air nearly 67 degrees, and consequently that the same heat which raises atmospheric air any given number of degrees, will raise fixed air the same number of degrees multiplied by 67. In the Peterburgh experiment of freezing quicksilver, the heat was diminished 800 degrees below the common temperature of the atmosphere. We are therefore certain, that atmospheric air, when at the common temperature of the atmosphere, contains at least 200 degrees of heat. Hence, if a certain quantity of atmospheric air, not in contact with any body that would immediately carry off the heat, should suddenly be converted into fixed air, the heat which was contained in the former would raise the latter 200 degrees multiplied by 67, or 13400 degrees. And the heat of red-hot iron being 1050, it follows that the quantity of heat, which is yielded by atmospheric air when it is converted into fixed air is such (if it were not diffipated) as would raise the air so changed to more than 12 times the heat of red-hot iron.

If therefore the absolute heat which is disengaged from the air in respiration, were not absorbed by the blood, a very great degree of sensible heat would be produced in the lungs.

Again, it has been proved, that the same heat which raises venous blood 115 degrees, will raise arterial only 100 degrees; and consequently, that the same heat which raises venous blood any given number of degrees, will raise arterial a less number in the proportion of 100 to 115, or 20 to 23. But we know that venous blood contains at least 230 degrees of heat. Hence, if a certain quantity of venous blood, not in contact with any body that would immediately supply it with heat, should suddenly be converted into arterial, the heat which was contained in the former would raise the latter only 1/2 or 220 degrees, or 200 degrees; and consequently the sensible heat would suffer a diminution equal to the difference between 230 and 200, or 30 degrees. But the common temperature of blood is 96; when therefore, venous blood is converted into arterial in the lungs, if it were not supplied by the air with a quantity of heat proportionable to the change which it undergoes, its sensible heat would be diminished 30 degrees, or it would fall from 96 to 66.

That a quantity of heat is detached from the air, and communicated to the blood, in respiration, is moreover supported by the experiments with metals and their calces; from which it appears, that when bodies are joined to phlogiston, they lose a portion of their absolute heat; and that, when the phlogiston is again difengaged, they reabsorb an equal portion of heat from the surrounding bodies.

Now it has been demonstrated by Dr Priestley, that in respiration, phlogiston is separated from the blood, and combined with the air. During this process, therefore, a quantity of absolute heat must necessarily be disengaged from the air by the action of the phlogiston; the blood, at the same moment, being left at liberty to unite with that portion of heat which the air had deposited.

And hence animal heat seems to depend upon a process similar to a chemical elective attraction. The air is received into the lungs, containing a great quantity of absolute heat. The blood is returned from the extremities, highly impregnated with phlogiston. The attraction of the air to the phlogiston is greater than that of the blood. The principle will, therefore, leave the blood to combine with the air. By the addition of the phlogiston, the air is obliged to deposit a part of its absolute heat; and as the capacity of the blood is at the same moment increased by the separation of the phlogiston, it will instantly unite with that portion of heat which had been detached from the air.

We learn from Dr Priestley's experiments with respect to respiration, that arterial blood has a strong attraction to phlogiston: it will consequently, during the circulation, imbibe this principle from those parts which retain it with least force, or from the purest central parts of the system; and hence the venous blood, when it returns to the lungs, is found to be highly impregnated with phlogiston. By this impregnation, its capacity for containing heat is diminished. In proportion, therefore, as the blood, which had been dephlogistificated by the process of respiration, becomes again combined with phlogiston in the course of the circulation, it will gradually give out that heat which it had received in the lungs, and diffuse it over the whole system.

Thus it appears, that, in respiration, the blood is continually discharging phlogiston and absorbing heat; and that, in the course of circulation, it is continually imbibing phlogiston and emitting heat.

It may be proper to add, that as the blood, by its impregnation with phlogiston, has its capacity for containing heat diminished; so, on the contrary, those parts of the system from which it receives this principle, will have their capacity for containing heat increased, and will consequently absorb heat.

Now if the changes in the capacities, and the quantities of matter changed in a given time, were such that the whole of the absolute heat separated from the blood were absorbed, it is manifest that no part of the heat which is received in the lungs would become sensible in the course of the circulation.

That this, however, is not the case, will, I think, be evident from the following considerations:

We know that sensible heat is produced by the circulation of the blood; and we have proved by experiment, that a quantity of absolute heat is communicated to that fluid in the lungs, and is again disengaged from it in its progress through the system. If, therefore, the whole of the absolute heat, which is separated from the blood, were absorbed by those parts
Heat.

of the system from which it receives the phlogiston, it would be necessary to have recourse to some other cause, to account for the sensible heat which is produced in the circulation. But by the rules of philosophizing, we are to admit no more causes of natural things such as are both true and sufficient to explain the appearances; for nature delights in simplicity, and affects not the pomp of superfluous causes.

We may, therefore, safely conclude, that the absolute heat which is separated from the air in respiration, and absorbed by the blood, is the true cause of animal heat.

"It must nevertheless be granted, that these parts of the system which communicate phlogiston to the blood, will have their capacity for containing heat increased; and therefore, that a part of the absolute heat which is separated from the blood will be absorbed.

"But from the quantity of heat, which becomes sensible in the course of the circulation, it is manifest that the portion of heat which is thus absorbed is very inconsiderable.

"It appears therefore, that the blood, in its progress through the system, gives out the heat which it had received from the air in the lungs; a small portion of this heat is absorbed by those particles which impart the phlogiston to the blood; the rest becomes redundant, or is converted into moving and sensible heat."

Mr. Crawford's theory, which doth not essentially differ from Dr. Black's, seems to be the best that hath yet appeared. There is however, one difficulty which seems common to them all, and which, even on Mr. Crawford's principles, seems not to admit of solution. If animal heat entirely depends on something peculiar to a living body, why doth it sometimes continue after life hath ceased? If heat depends on the evolution of phlogiston by the action of the blood-vessels, according to Dr. Dugulb, why should it remain when these vessels cease to act, as, according to Dr. Dugulb himself, it sometimes doth? If, according to Mr. Crawford, it is every moment attracted from the fire, why is it not always in proportion to the respiration? Or, if fixed air contains such a small proportion of absolute heat as, by Mr. Crawford's experiments, it seems to do, why doth it impart such a strong and lasting degree of heat to the bodies of those who are killed by it? See Blood, n. 3.

Other objections have been made by Mr. Pearson, which are related in the Medical Journal. They are founded on some appearances found on the digestion of morbid bodies; where it has been found that the pulmonary artery, and even the lungs themselves, have been totally destroyed by disease, and yet the person has survived for some time. In these cases, however, it is probable, that the blood had still an opportunity of absorbing the vital principle from the air, which might make those produce heat also by some mechanism unknown to us. The whole of Dr. Crawford's doctrine of latent heat has also been attacked in a Treatise by Mr. Leopold Vacca Beringhieri. His objections are derived from the calculations of Dr. Crawford himself; but our limits will not admit of our entering into this dispute.

Internal Heat of the Earth. That there is a very considerable degree of heat always felt in digging to great depths in the earth, is agreed upon by all naturalists: but the quantity of this heat hath seldom been measured in any part; much less is it known, whether in digging to an equal depth in different parts of the earth, the heat is found always the same. In digging mines, wells, &c., they find that at a little depth below the surface it feels cold. A little lower it is colder still, as being beyond any immediate influence of the sun's rays; in much that water will freeze almost at any season of the year; but when we go to the depth of 40 or 50 feet, it begins to grow warm, so that no ice can bear it; and then the deeper we go, still the greater the heat, until at last respiration grows difficult, and the candles go out.

This heat of the earth hath been variously explained. Some have recourse to an immense body of fire lodged in the centre of the earth, which they consider as a central sun, and the great principle of the generation, vegetation, nutrition, &c. of all living bodies. But Mr. Boyle, who had been at the bottom of some mines himself, suspects that this degree of heat, at least in some of them, may arise from the peculiar nature of the minerals generated therein. To confirm this, he instances a mineral of a vitriolic kind, dug up in large quantities in many parts of England, which by the bare effusion of common water will grow so hot that it will almost take fire. These hypotheses are liable to the following objections. 1. If there is within the earth a body of actual fire it seems difficult to show why that fire should not consume and moulder away the outer shell of earth, till either the earth was totally destroyed, or the fire extinguished. 2. If the internal heat of the earth is owing to the action of water upon mineral substances, that action through time must have ceased, and the heat has totally vanished; but we have no reason to think that the heat of the earth is any thing less now than it was a thousand years ago. The phenomenon is easily explained by the propositions laid down under the article Heat. If heat is nothing else than a certain mode of action in the ethereal fluid, or the matter of light by which it flows out from a body in all directions as radii drawn from the centre to the circumference of a circle; it will then follow, that if an opaque body absorbs any considerable quantity of light, it must necessarily grow hot. The reason of this is plain. The body can hold no more than a certain quantity of ethereal matter; if more is continually forcing itself in, which has already entered must go out. But it cannot easily get out, because it is hindered by the particles of the body among which it is detained. It makes an effort therefore in all directions to separate the particles from each other; and hence the body expands, and the effort of the fluid to escape is felt when we put our hands on the body, which we then say is hot. Now, as the earth is perpetually absorbing the ethereal matter, which comes from the sun in an immense stream, and which we call his light, it is plain, that every pore of it must have been filled with this matter long ago. The quantity that is lodged in the earth, therefore, must be continually endeavouring to separate its particles from each other, and consequently must make it hot. The atmosphere, which is perpetually receiving that portion of the ethereal matter which
Heat, which issues from the earth, counteracts the force of the Pains and Terrors of Death, Arrangement, &c.

Heat, the internal heat, and cools the external surface of the earth, and for a considerable way down; and hence the earth for 20 or 30 feet down, shows none of that heat which is felt at greater depths. See Heat.

Heat, in medicine. Great heats are not so much the immediate, as the remote, cause of a general sickness, by relaxing the fibres, and disposing the juices to putrefaction; especially among soldiers and persons exposed the whole day to the sun; for the greatest heats are seldom found to produce epidemic diseases, till the perspiration is stopped by wet clothes, fogs, dews, dams, &c. and then some bilious or putrid disease is the certain consequence, as fluxes and ardent intermittant fevers. Nevertheless, it must be allowed, that heats have sometimes been so great as to prove the more immediate cause of particular disorders: as when sentinels have been placed without cover or frequent relief in scorching heats; or when troops march or are exercised in the heat of the day; or when people imprudently lie down and sleep in the sun. All these circumstances are apt to bring on distempers, varying according to the season of the year. In the beginning of summer, these errors produce inflammatory fevers; and in autumn, a remitting fever or dysentery.

To prevent, therefore, the effects of immediate heats, commanders have found it expedient to order the marches that the men come to the ground before the heat of the day; and to give strict orders that none of them sleep out of their tents, which in fixed encampments, may be covered with boughs to shade them from the sun. It is likewise a rule of great importance to have the soldiers exercised before the cool of the morning is over; for by that means not only the sultry heats are avoided, but the blood being cooled, and the fibres braced, the body will be better prepared to bear the heat of the day. Lastly, in very hot weather, it has often been found proper to shorten the sentinels' duty, when obliged to stand in the sun.

Heat, in botany. See Erica.

Berry-bearing Heat. See Empetrum.

HEATH (James), an English historian, was born 1629 at London; where his father, who was the king's cutler, lived. He was educated at Westminster School, and became a student of Christ-church, Oxford, in 1646. In 1648, he was ejected from thence by the parliament visitors for his adherence to the royal cause; lived upon his patrimony till 1675 at London; where his father, who was the king's cutler, lived. He was educated at Westminster School, and became a student of Christ-church, Oxford, in 1646. In 1648, he was ejected from thence by the parliament visitors for his adherence to the royal cause; lived upon his patrimony till 1675 at London; where his father, who was the king's cutler, lived. He was educated at Westminster School, and became a student of Christ-church, Oxford, in 1646. In 1648, he was ejected from thence by the parliament visitors for his adherence to the royal cause; lived upon his patrimony till 1675 at London; where his father, who was the king's cutler, lived.
This is what Moses calls the \textit{femnment}, speaking of it as the work of the second day's creation; at least it is thus the word \textit{ppw} is usually rendered by his interpreters; though somewhat abusively, to countenance their own notions of the heavens, being firm or solid. The word it is certain, properly signifies no more than expansive or extension; a term very well adapted by the prophet to the impression which the heavens make on our senses; whence in other parts of Scripture, the heaven is compared to a curtain or a tent and the firmament to the spleen: the heaven is compared to a curtain or a tent, and the firmament to the spleen, without any vacancy, and cantoned out into many vortices. But others have overturned not only the solidity, but the supposed plurality, of the heavens. Sir Isaac Newton has abundantly shown this heaven void of almost all reftance; and, consequently, of almost all matter; which he proves from the phenomenon of the celestial bodies; from the planets perpetuating in their motions without any sensible diminution of their velocity; and the comets freely pating in all directions towards all parts of the heavens.

Heaven, taken in a general sense, for the whole expanse between our earth and the remotest regions of the fixed stars, may be divided into two very unequal parts, according to the matter found therein; viz. the atmosphere, or aerial heaven posseled by air; and the aerial heaven, posseled by a thin, unresifting medium, called ether.

Heaven is more particularly used, in astronomy, for an orb, or circular region, of the aerial heaven. The ancient astronomers affirmed as many different heavens as they observed different motions therein. These they supposed all to be solid, as thinking they could not otherwise fulfill the bodies fixed in them; and spherical, that being the most proper form for motion. Thus we have seven heavens for the seven planets; viz. the heavens of the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. The eighth was for the fixed stars, which they particularly called the \textit{femnment}. Ptolemy adds a ninth heaven, which he called the \textit{primam mobile}. After him two crystalline heavens were added by king Alphonius, &c. to account for some irregularities in the motions of the other heavens: and lastly an empyrean heaven was drawn over the whole, for the residence of the Deity; which made the number twenty-one. But others admitted many more heavens according as their different views and hypotheses required. Eudoxes supposes 23, Callipus 30, Regiomontanus 33, Arifotle 47, and Ptolemy no less than 70. It must be added, however, that the astronomers did not much concern themselves whether the heavens they thus allow of were real or not; provided they served a purpose in accounting for any of the celestial motions, and agreed with the phenomena.

\textit{Hebdomadary; HEBDOMADARIUS, or HEBDOMADIUS, a member of a chapter or convent, whose week it is to officiate in the choir, to rehearse the anthems and prayers, and to perform the usual functions which the superiors perform at solemn feasts, Hebdomone} and other extraordinary occasions. The word is formed of the Greek \textit{icm}, which signifies the number \textit{seven} of \textit{ivv}, \textit{seven}.

The hebdomadary generally collates to the benefits which become vacant during his week; though it is usually looked upon as an abufe.

In cathedrals, the hebdomadary was a canon or prebendary, who had the peculiar care of the choir, and the inspection of the officers for his week.

In monasteries, the hebdomadary is he who sits at table for a week, or other stated period; directs and affists the cook, &c.

\textit{HEDOMÉ}, a solemnity of the ancient Greeks, in honour of Apollo, in which the Athenians sung hymns to his praise, and carried in their hands branches of laurel. The word signifies the \textit{seventh day}, this solemnity being observed on the seventh day of every lunar month.

\textit{HEBE}, in ancient mythology, a goddess, the idea of whom, among the Romans, seems to have been much the same with that of eternal youth, or an immortality of limbs; agreeably to which, she is represented on a gem, in the great duke's collection at Florence, with a young airy look, and drinking out of a little bowl; or, according to Milton's expression, "Quaffing immortality and joy." She is fabled to have been a daughter of Jupiter and Juno. According to some she was the daughter of Juno only, who conceived her after eating letuces. As she was fair and always in the bloom of youth, she was called the gods' daughter, and made by her mother cup-bearer to all the gods. She was dismissed from her office by Jupiter, because she fell down in an indecent posture as she was pouring nectar to the gods at a grand festival; and Ganymedes, the favourite of Jupiter, succeeded her as cup-bearer. She was employed by her mother to prepare her chariot, and to harness her peacocks whenever requisite. When Hercules was raised to the rank of a god, he was reconciled to Juno by marrying her daughter Hebe, by whom he had two sons, Alexi-ares and Anicetus. As Hebe had the power of restoring gods and men to the vigour of youth, she, at the instance of her husband, performed that kind office to Iobus his friend. Hebe was worshipped at Sicyon, under the name of Dia, and at Rome under that of Juventas.

\textit{HEBENSRTIA}, in botany: A genus of the angiosperma order, belonging to the didynamia class of plants; and in the natural method ranking under the 48th order, \textit{aggregata}. The calyx is emarginated, and divided below; the corolla unilabiata; the lip rising upwards, and quadrid; the capsule diminutive; the stamens inserted into the margin of the limb of the corolla.

\textit{HEBER}, the son of Salah, and father of Peleg, from whom the Hebrews derived their name, according to Josephus, Eusebius, Jerome, Bede, and most of the interpreters of the sacred writings; but Huet bishop of Avranche, in his Evangelical Demonstration, has attempted to prove, that the Hebrews took their name from the word \textit{heber}, which signifies beyond, because they came from beyond the Euphrates. Heber is supposed to have been born 2282 years B.C. and to have lived 464 years.

\textit{HEBRAISM}, an idiom, or manner of speaking, peculiar,
Hebrew.

Hebrew character. There are two kinds of Hebrew characters: the ancient, called also the square; and the modern, or rabbinical characters.

1. The square Hebrew takes its denomination from the figure of its characters, which stand more square, and have their angles more exact and precise than the other. This character is used in the text of the holy scripture, and their other principal and most important writings. When both this and the rabbinical character are used in the same work, the former is for the text, or the fundamental part; and the latter for the accessory part, as the glosses, notes, commentaries, &c.

The best and most beautiful characters of this kind, are those copied from the characters in the Spanish manuscripts; next, those from the Italian manuscripts; then those from the French; and lastly, those of the Germans, whose characters are much the same, with respect to the other genuine square Hebrew characters, that the Gothic or Dutch characters are with respect to the Roman.

Several authors contend, that the square character is not the real ancient Hebrew character, written from the beginning of the language to the time of the Babylonish captivity; but that it is the Assyrian, or Chaldee character, which the Jews assumed, and accustomed themselves to during the captivity, and retained afterwards. They say, that the Jews, during their captivity, had quite diffused their ancient character; so that Ezra found it necessary to have the sacred books transferred into the Chaldee square character. These authors add, that what we call the Samaritan character, is the genuine ancient Hebrew. Of this opinion are Scaliger, Bochart, Cafaubon, Vossius, Grotius, Walton, Capellius, &c. and among the ancients Jerome and Eusebius. On this side it is urged, that the present characters are called Assyrian by the ancient Jewish writers of the Talmud, and therefore must have been brought from Assyria; but to this argument it is replied, that there were two sorts of characters anciently in use, viz. the sacred or present square character, and the profane or civil, which we call Samaritan; and that the sacred is called Assyrian, because it first began in Assyria to come into common use. It is further alleged, that the Chaldee letters, which the Jews now use, were unknown to the ancient Jews before the captivity, from Dan. 1. 4. Moreover, it is inferred from 2 Kings, xvi. 28. whence we learn that a Jewish priest was sent to teach the Samaritans the worship of Jehovah; on which occasion he must have taught them the law; and yet no mention occurs of his teaching them the language or character that the law was then written in, the character which the Samaritans used. But the chief argument is taken from some ancient Jewish shekles, with a legend on one side: "The shekel of Israël," and on the other, "Jerusalem the holy," both in Samaritan characters. These shekles, it is said, must have been coined before the division of the two kingdoms of Judah and Israel, or at least before the Assyrian captivity, because the Samaritans never afterwards reckoned Jerusalem holy.

On the other side, or for the primitive antiquity of the square character, are the two Buxtorfs, Leiden, Camillus, Hottinger, Spanheim, Lightfoot, &c. They urge, from Matthew v. 18, that Jesus really the least of the confessors in the present Hebrew, whereas it is one of the largest characters in the Samaritan alphabet; but Walton replies, that if our Saviour here speaks of the least letter of the alphabet, we can only infer that the Chaldee character was used in our Saviour's time, which is not denied by those who maintain the Samaritan to be the original. They also allege, that the Jews were too obstinate and superstitious to allow their sacred character to be altered; but if this was done under the direction and authority of Ezra, the argument will be much invalidated. Further, they say that Ezra could not alter the ancient character, because it was impossible to make the alterations in all their copies. This argument, however, is contradicted by fact; since the old English black letter is actually changed for the Reformation. They say, likewise, that Ezra was not disposed to preserve the sacred writings with a heathen character; but this supposes that Ezra was so superstitious as to imagine, that there was some peculiar sanctity in the shape of the letters. Moreover, the advocates for this opinion appeal to ancient coins found in Judea, with a legend in the Chaldee or Assyrian character. But the genuineness of these coins is much suspected.

The learned Jefuit Soulet maintains, with great address, that the ancient Hebrew character is that found on the medals of Simon, and others, commonly called Samaritan medals; but which, he affirms, were really Hebrew medals, struck by the Jews, and not the Samaritans.

Buxtorf endeavours to reconcile these two opinions, by producing a variety of passages from the rabbis to prove, that both these characters were anciently used; the present square character being that in which the tables of the law, and the copy deposited in the ark, were written; and the other character being used in the copies of the law which were written for private and common use, and in civil affairs in general; and that after the captivity, Ezra enjoined the former to be used by the Jews on all occasions, leaving the latter to the Samaritans and apostates. But it can hardly be allowed by any who consider the difference between the Chaldee and Samaritan characters, with respect to coincidence and beauty, that they were ever used at the same time. After all, it is of no great moment which of these, or whether either of them, were the original characters; since it appears, that no change of the words has arisen from the manner of writing them, because the Samaritan and Jewish Pentateuch almost always agree after so many ages. It is most probable that the form of these characters has varied in different periods; this appears from the testimony of Montfacon, in his Hexapla Origines, vol. i. p. 22. &c. and is implied in Dr Kennicott's making the character in which manuscripts are written one tenth of their age.

2. The modern, rabbinical, is a good near character, formed of the square Hebrew, by rounding it, and entrenching most of the angles or corners of the letters, to make it the more easy and flowing. The letters used by the Germans are very different from the
HEBREW

rabbinical characters used everywhere else, though all
formed alike from the square character, but the Ger-
man in a more slovenly manner than the rest. — The
rabbits frequently make use of either of their own, or
the square Hebrew character, to write the modern
languages in. There are even books in the vulgar tongues
printed in Hebrew characters; instances whereof are
seen in the French king's library.

HEBREW Language, that spoken by the Hebrews,
and wherein the Old Testament is written.

This appears to be the most ancient of all the lan-
goines in the world, at least we know of none older;
and hence men are of opinion, that this is the
language in which God spoke to Adam in Paradise.

Dr. Sharpe adopts the opinion that the Hebrew
was the original language; not indeed that the Hebrew
is the unwavering language of our first parents, but that
it was the general language of men at the dispersion;
and however it might have been improved and altered
from the first speech of our first parents, it was the
original of all the languages, or almost all the lan-
goines, or rather dialects, that have since arisen in the
world.

The books of the Old Testament are the only pieces
to be found, in all antiquity, written in pure He-
brew; and the language of many of these is extreme-
ly sublime: it appears particularly so in its conjugations.
Indeed, properly to be

HEBREW

This appears to be the most ancient of all the
languages, or more accurately, to be the
language of men in general, in all antiquity, written in pure He-

The primitive words, which are called roots, have
frequently more than three letters or two syllables.

In this language there are 22 letters, only five of
which are usually reckoned vowels, which are the same
with ours, viz. a, e, i, o, u; but then each vowel is
divided into two, a long and a short, the sound of
the former being somewhat grave and long, and that of
the latter short and acute: it must however be remark-
ked, that the two last vowels have sounds that differ in
other respects besides quantity and a greater or less
elevation. To these 10 or 12 vowels may be added
others, called semi-vowels, which serve to connect the
consonants, and to make the easier transitions from one
to another. The number of accents in this language
are indeed prodigious: of these there are near 40,
the use of some of which, notwithstanding all the
inquiries of the learned, are not yet perfectly known.

We know, in general, that they serve to distinguish
the sentences like the points called commas, semicolons,
&c. in our language; to determine the quantity of the
yllables; and to mark the tone with which they are to
be spoken or sung. It is no wonder, then, that there
are more accents in the Hebrew than in the other lan-
goines, since they perform the office of three different
things, which in other languages are called by different
names.

As we have no Hebrew but what is contained in
the Scripture, that language to us wants a great many
words; not only because in those primitive times the
languages were not so copious as at present; but also
on this account, that the inspired writers had no occa-

tion to mention many of the terms that might be in

The Chaldee, Syriac, Ethiopic, &c. languages, are
by some held to be only dialects of the Hebrew; as
the French, Italian, Spanish, &c. are dialects of the
Latin. It has been supposed by many very learned
men, that the Hebrew characters or letters were often
used hieroglyphically, and that each had its differ-
ent sense underfoot as a hieroglyph. Neuman,
who seems to have taken infinite pains to find out this
secret meaning of these letters, gives the following ex-
plation:

HEBREW

Explain your query.
...rial as well as spiritual, all objects in the natural and moral world, must be known as soon as their names are known, and their separate letters considered.

The words **ria** and **am** are thus easily explained and found, perhaps the most appointe and expressive words that ever formed.

Rabbinical, or modern Hebrew, is the language used by the rabbins in the writings they have composed. The basis or body hereof is the Hebrew and Chaldee, with divers alterations in the words of these two languages, the meanings whereof they have considerably enlarged and extended. Abundance of things they have borrowed from the Arabic: the rest is chiefly composed of words and expressions, chiefly from the Greek, some from the Latin; and others from the other modern tongues; particularly that spoken in the place where each rabbins wrote or lived.

The rabbinical Hebrew must be allowed to be a very copious language. M. Simon, in his Hist. Crit. du Vieu Testament, liv. iii. chapi 28, observes, that there's scarce any art or science but the rabbins have treated thereof in it. They have translated most of the ancient philosophers, mathematicians, astronomers, and physicians; and have written themselves on most subjects: they do not want even orators and poets. Add, that this language, notwithstanding it is so crowded with foreign words, has its beauties visible enough in the works of those who have written well in it.

Though St Paul did not prefix his name to this epistle, the concurrent testimony of the best authors ancient and modern, afford such evidence of his being the author of it, that the objections to the contrary are of little or no weight.

The Hebrews to whom this epistle was wrote, were the believing Jews of Palestine; and its design was to convince them, and by their means all the Jewish converts wheresoever dispersed, of the insufficiency and abolishment of the ceremonial and ritual law.

Hebrides, the general name of some islands lying to the northwest of Scotland, of which kingdom they constitute a part. They are situated between the 53d and 59th degrees of latitude, are supposed to be about 300 in number, and to contain 48,000 inhabitants. The names of the largest are Skye, Mull, Islay and Arran. Of these islands Mr Pennant hath given the following history.

All the accounts left us by the Greek and Roman writers are involved in obscurity: at all times brief even in their descriptions of places they had easiest access to, and might have described with the most satisfactory precision; but in remote places, their relations furnish little more than hints; the food for conjecture to the visionary antiquary.

That Pytheas, a traveller mentioned by Strabo, had visited Great Britain, I would wish to make only apocryphal. He afferts that he visited the remoter parts; and that he had also seen Thule, the land of romance amongst the ancients; which all might pretend to have seen; but every voyager, to swell his fame, made the island he saw last the Ultima Thule of his travels. If Pytheas had reached these parts, he might have observed, floating in the seas, multitudes of gelatinous animals, the medusae of Linnaeus, and out of these have formed his fable. He made his Thule a composition of neither earth, sea, nor air, but like a composition of them all: then, catching his simile from what floated before him, compares it to the lungs of the sea, the Aristotelian idea of these bodies; and from him adopted by naturalists,successors to that great philosopher. Strabo very justly explains these absurd tales; yet allows him merit in describing the climate of the places he had seen. As a farther proof of his having visited the Hebrides, he mentions their friendly sky, that prohibits the growth of the finer fruits; and that the natives are obliged to carry their corn under shelter, to bear the grain out, lest it should be spoiled by the defect of sun and violence of the rains. This is the probable part of his narrative; but when the time that the great geographer wrote is considered, at a period when these islands had been neglected for a very long space by the Romans, and when the difficulties of getting among a fierce and unfriendly nation must be almost insuperable, doubts innumerable respecting the veracity of this relation must arise. All that can be admitted in favour of him is, that he was a great traveller; and that he might have either visited Britain from one of the nations commencing with our Isle; or received from them accounts, which he afterwards dressed out, mixed with the ornaments of fable. A traffic must have been carried on with the very northern inhabitants of our islands in the time of Pytheas; for one of the articles of commerce mentioned by Strabo, the ivory bits, were made either of the teeth or the walrus, or a species of whale native of the northern seas.

The geographer Mela who flourished in the reign of Claudius, is the next who takes notice of our lesser islands. He mentions the Orcades consisting of 30: the Æmade of seven. The Romans had then made a conquest of the former, and might have seen the latter; but from the words of the historian, it is probable that the Shetland islands were those intended; for he informs, that the Æmade were carried out over against Germany: the site of the Hebrides will not admit this description, which agrees very well with the others; for the ancients extended their Germany, and its imaginary islands, to the extreme north.

Pliny the elder is the next that mentions these remote places. He lived later than the preceding writers, and of course his information is fuller; by means of intervening discoveries, he has added ten more to the number of the Orcades; is the first writer that mentions the Hebrides, the islands in question; and joins in the same line the Æmade, or, as it is in the best editions more properly written, the Æmade, or extreme point of the Roman expeditions to the north, as the Shetland isles in the highest probability were. Pliny and Mela agree in the number of the Æmade, or Æmades; the former makes that of the Hebrudes 30; an account extremely near the truth, deducting the little isles, or rather rocks, that surround most of the greater, and many of them so indistinct as scarcely to be remarked, except on an actual survey.

Solinus succeeds Pliny. If he, as is supposed, was contemporary with Agricola, he has made very ill use of the light he might have received from the expeditions of that great general: his officers might have fur-
Hebrides furnished the historian with better materials than theo he has communicated. He has reduced the number of the Hebrides to five. He tells us, that "the inhabitants were unacquainted with corn: that they lived only on fish and milk: that they had one king, as the islands were only separated from each other by narrow straits: that their prince was bound by certain rules of government, to do justice; and was prevented by poverty from deviating from the true course, being supported by the public, and allowed stocking that he could call his own, not even a wife; but then he was allowed free choice, by turns one out of every district, of any female that caught his affection; which deprived him of all ambition about a successor.

"By the number of these islands, and by the minute attention given by the historian to the circumstances of their being separated from each other by narrow straits, I should imagine, that which is now called the Long Island, and includes Lewis, North Uist, Benbecula, South Uist, and Barra, to have been the five Hebrides of Solinus; for the other great islands, such as Skye, &c., are too remote from each other to form the preceding very characteristic description of that chain of islands. These might naturally fall under the rule of one petty prince; almost the only probable part of Solinus's narrative.

"After a long interval appears Ptolemy, the Egyptian geographer. He also enumerates five Ebudes; and has given each a name: the Western Ebude, the Eastern, Riseae, Maleos, Epidium. Cambden conjectures them to be the modern Skye, Lewis, Rathry or Racline, Mull, and Ilay; and I will not controvert his opinion.

"The Roman historians give very little light into the geography of these parts. Tacitus, from whom most might have been expected, is quite silent about the names of places; notwithstanding he informs us, that a fleet by the command of Agricola performed the circumnavigation of Britain. All that he takes notice of is the discovery and the conquest of the Orkneys: it should seem, that with the biographers of an ambitious nation, nothing seemed worthy of notice but what they could dignify with the glory of victory.

"It is very difficult to assign a reason for the change of name from Ebude to Hebrides: the last is modern; and seems, as the annotator on Dr Macpherson supposes, to have arisen from the error of a transcriber, who changed the a into ri.

"From all that has been collected from the ancients, it appears that they were acquainted with little more of the Hebrides than the bare names: it is probable that the Romans, either from contempt of such barren spots, from the dangers of the seas, the violence of the tides, and the horrors of the narrow straits, in the inexperienced ages of navigation, never attempted their conquest, or few more of them than what they had in sight during the few circumnavigations of Great Britain, which were expeditions more of ostentation than of utility.

"The inhabitants had probably for some ages their own governors; one little king to each island, or to each group as necessity required. It is reasonable to suppose, that their government was as much divided as that of Great Britain, which, it is well known, was under the direction of numbers of petty princes before it was reduced under the power of the Romans.

"No account is given in history of the time these islands were annexed to the government of Scotland. If we may credit our Saxon historians, they appear to have been early under the dominion of the Picts; for Bede and Adamnanus informs us, that soon after the arrival of St Columba in their country, Brude, a Pictish monarch, made the saint a present of the celebrated island of Iona. But neither the holy men of this island, nor the natives of the rest of the Hebrides, enjoyed a permanent repose after this event. The first invasion of the Danes does not seem to be easily ascertained. It appears that they ravaged Ireland, and the isle of Rathry, as early as the year 735. In the following century, their expeditions became more frequent: Harold Harfager, or the light-haracter, purified, in 875, several petty princes, whom he had expelled out of Norway; who had taken refuge in the Hebrides, and molested his dominions perpetual defects from those islands. He seems to have made a rapid conquest: he gained as many victories as he fought battles; he put to death the chief of the pirates, and made an indiscriminate slaughter of their followers. Soon after his return, the islanders repulsed their ancient feasts; and, in order to repress their inquests, he sent Ketil the flat nostris with a fleet and some forces for that purpose. He soon reduced them to terms, but made his victorics subservient to his own ambition: he made alliances with the regill he had subdued: he formed intermarriages, and confirmed to them their old dominions. This effecte't he sent back the fleet to Harold; openly declared himself independent; made himself prince of the Hebrides; and caused them to acknowledge him as such by the payment of tribute and the badges of vassalage. Ketil remained, during life, master of the islands; and his subjects appear to have been a warlike set of freebooters, ready to join with any adventurers. Thus when Eric, son of Harold Harfager, after being driven out of his own country, made an invasion on England, he put his fleet into the Hebrides, received there the reinforcement of people fired with the hopes of prey, and then proceeded on his plan of rapine. After the death of Ketil, a kingdom was in aftertimes composed out of them, which, from the residence of the little monarch in the isle of Man, was styled that of Man. The islands became tributary to that of Norway for a considerable time, and princes were sent from thence to govern; but at length they again shook off the yoke. Whether the little potentates ruled independent, or whether they put themselves under the protection of the Scottish monarchs, does not clearly appear; but it is reasonable to suppose the last, as Donald-Bane is accused of making the Hebrides the price of the assistance given him by the Norwegians against his own subjects. Notwithstanding they might occasionally seek the protection of Scotland, yet they never were without princes of their own: policy alone directed them to the former. From the chronicles of the kings of Man we learn, that they had a succession of princes.

"In 1589 is an evident proof of the independency of the islanders on Norway; for, on the death of Lag-
from the retreat of the Danes, in 1263, till that of Hebrides.

In the beginning of the next century his successors were so independent, that Henry IV. entered into a formal alliance with his brothers Donald and John. This encouraged them to commit fresh hostilities against their natural prince, Donald, under promise of a claim to the earldom of Ross, invaded and made a conquest of that county; but penetrating as far as the f Wrocław of Aberdeen, after a fierce but undecisive battle with the royal party, thought proper to retire, and in a little time to swear allegiance to his monarch James I. But he was permitted to retain the county of Ross, and assume the title of earl. His successor, Alexander, at the head of 10,000 men, attacked and burnt Inverness; at length, terrified with the preparations made against him, he fell to the royal feet, and obtained pardon as to life, but was committed to strict confinement.

His kinsman and deputy, Donald Balloch, resenting the imprisonment of his chief, excited another rebellion, and destroyed the country with fire and sword; but on his flight was taken and put to death by an Irish chief, with whom he fought protection.

These barbarous inroads were very frequent with a few banditti, who had no other motive in war but the infamous indulgence of plunder.

In the reign of James II. in the year 1461, Donald, another petty tyrant, and earl of Ross, and lord of the isles, renewed the pretence of independency; surprised the castle of Inverness; forced his way as far as Athol; and obliged the earl and countesses, with the principal inhabitants, to seek refuge in the church of St. Bridget, in hopes of finding security from his cruelty by the facility of the place: but the barbarian and his followers set fire to the church, put the inhabitants to the sword, and, with a great booty, carried the earl and countesses prisoners to his castle of Clag, in the isle of Ilay. In a second expedition, immediately following the first, he suffered the penalty of his iniquty: a tempest overtook him, and overwhelmed most of his associates; and he, escaping to Inverness, perished by the hands of an Irish harper: his surviving followers returned to Ilay, conveyed the earl and countesses to Athol to the sanctuary they had violated, and expiated their crime by refraining the plunder, and making large donations to the shrine of the offended saint.

John, successor to the last earl of Ross, entered into alliance with Edward IV. and sent ambassadors to the court of England, where Edward empowered the bishop of Durham and earl of Winchester to conclude a treaty with him, another Donald Balloch, and his son and heir John. They agreed to serve the king with all their power, and to become his subjects: the earl was to have 100 marks sterling for life in time of peace, and 200l. in time of war; and these isles all, in case of the conquest of Scotland, were to have confirmed to them all the possessions bestowed on the Scotch sea; and in case of a truce with the Scotch monarch, they were to be included in it. But about the year 1476, Edward, from a change of politics, courted the alliance of James III. and dropped his new allies. James, determined to subdue this rebel-
Heorider. with the lordship of the earldom, which by misfortune the earl had or licentious race, sent from his country to his unhappy vassals, the former instruments of their ambition."

"The situation of the Hebrides in the great Atlantic Ocean renders the air cold and moist in the greater part of them. In the most northerly islands, the sun, at 4.30, etc., the summer solstice, is not above an hour under the horizon at midnight, and not longer above it at mid-day in the depth of winter. The soil of the Hebrides varies also in different islands, and in different parts of the same island; some are mountainous and barren, producing little else than heath, wild myrtle, fern, and a little grass; while others, being cultivated and manured with sea-weed, yield plentiful crops of oats and barley.

"Lead mines have been discovered in some of these islands, but not worked much advantage; others have been found to contain quarries of marble, limestone, and freestone; nor are they deficient of iron, salt, crystals, and many curious pebbles, some of which emulate the Brazilian topaz.

"With respect to vegetables, over and above the plentiful harvests of corn that the natives earn from agriculture, and the pot-herbs and roots that are planted in gardens for the subsistence of the people, these islands produce spontaneously a variety of plants and simples, used by the islanders in the cure of their diseases; but there is hardly a shrub or tree to be seen, except in a very few spots, where some gentlemen have endeavoured to rear them with much more troublesome success.

"The animals, both of the land and sea, domestic and wild, quadrupeds, fowls, and fishes, found in and about these islands, are of the same species, size, and configuration, with those of the Orkneys.

"The people inhabiting these islands are of the same race with those who live in the Highlands of Scotland; speak the same language, wear the same habit, and observe the same customs. [See the article Highlands.]

"The commodities which may be deemed the staples of this country are black cattle, sheep, and fish, which they fell to their fellow-subjects of Scotland. Part of the wool they work up into knit-flockings, coarse-cloth, and that variegated stuff called tartan. They likewise salt mutton in the hide, and export it in boats or barkings to different parts of the main-land. Cod, ling, mackerel, whiting, haddock, and sole, are here caught in abundance, together with a small red cod, remarkably ventriloquial, of a very delicate flavour: there are likewise two kinds of white fish, which seem to be peculiar to this coast, known by the names of lithe and cec, esteemed good eating. But the greatest treasure the ocean pours forth is the prodigious quantity of herrings,

In the beginning of the last century the islanders were continually harrying Ireland with their plundering invasions, or landing there to support rebellions: at length it was made treason to receive the Hebridian Redshanks as they were styled.
The commerce of these islands may be at present, they are perhaps more capable of improvement in both articles than any part of the British dominions in Europe. The inhabitants are so little skilled in husbandry, that the soil, though generally good in the low grounds, yields nothing but scanty crops of oats and barley; and great tracts of land lie altogether uncultivated. If a very small number of judicious farmers would settle in some of the most considerable islands, they would from raising such harvests as would enrich themselves; employ and maintain all the idle people, a great number of whom are obliged to repair to foreign countries for subsistence; afford sufficient bread for the inhabitants, and even supply the barren parts of the opposite continent. The soil in many places would produce wheat, and almost everywhere would give good pasturage, infomuch that, with proper culture, the people might provide hay and fodder for their cattle, which during the severity of the winter die in great numbers for want of land lie altogether uncultivated.

The commerce of these islands might be extended in such a manner as to render them a staple of trade, and an excellent nursery for seamen. They are fortified with an infinite number of bays, creeks, and harbours, for the convenience of navigation: the inhabitants are numerous, strong, active, and every way qualified for the life of a mariner. The sea affords myriads of fish for exportation: the lands might afford plenty of pasturage for black cattle, horses, and sheep, as well as plentiful harvests of corn and other grain: woollen and linen manufactures might be perfected to great advantage, where labour is cheap and provisions are reasonable. The islands afford good flax and lime; and some parts of the opposite main-land, timber for building. They have plenty of fuel, not only for the ordinary purposes of life, but also for salt-pan

Hebron (anc. geog.), a very ancient city situated in the hilly country of the tribe of Judah to the south. Its more ancient name was Kiriath Arba, or Carith Arba. In antiquity this city vied with the most ancient cities of Egypt, being seven years prior to Zaan, translated Taur by the Seventy. Josephus makes it not only older than Tunis, but even than Memphis. It stood to the west of the lake Affalities, and was for some time the royal residence of David. After the captivity it fell into the hands of the Edomites, as did all the south country of Judea. It is now called Habron, situated seven leagues to the south of Bethlehem. The Arabs call it El-kaili, "the well beloved," which is the epithet they usually apply to Abraham, whose sepulchral groto they still show. Habron is seated at the foot of an eminence, on which are some wretched ruins, the milchpan remains of an ancient castle. The adjacent country is a fort of oblong hollow, five or six

HEB

HEB (371)

Hebridic, which, at one feast of the year, swarm in all the creeks and bays along the western shore of Scotland. These are counted the largest, fattest, and finest herrings caught in any part of the northern seas. This fishery employs a great number of hands, and brings a considerable advantage to the kingdom. The fish are caught, cured, barrelled up, and exported: but whether from want of skill, or a proper wait for picking, the Scotch-cured herrings of this coast, though superior to all others in their natural state, are counted inferior to those which are dried and pickled by the Dutch fishermen.

How mean and contracted ever the commerce and produce of these islands may be at present, they are perhaps more capable of improvement in both articles than any part of the British dominions in Europe. The inhabitants are so little skilled in husbandry, that the soil, though generally good in the low grounds, yields nothing but scanty crops of oats and barley; and great tracts of land lie altogether uncultivated. If a very small number of judicious farmers would settle in some of the most considerable islands, they would from raising such harvests as would enrich themselves; employ and maintain all the idle people, a great number of whom are obliged to repair to foreign countries for subsistence; afford sufficient bread for the inhabitants, and even supply the barren parts of the opposite continent. The soil in many places would produce wheat, and almost everywhere would give good pasturage, infomuch that, with proper culture, the people might provide hay and fodder for their cattle, which during the severity of the winter die in great numbers for want of

The commerce of these islands might be extended in such a manner as to render them a staple of trade, and an excellent nursery for seamen. They are fortified with an infinite number of bays, creeks, and harbours, for the convenience of navigation: the inhabitants are numerous, strong, active, and every way qualified for the life of a mariner. The sea affords myriads of fish for exportation: the lands might afford plenty of pasturage for black cattle, horses, and sheep, as well as plentiful harvests of corn and other grain: woollen and linen manufactures might be perfected to great advantage, where labour is cheap and provisions are reasonable. The islands afford good flax and lime; and some parts of the opposite main-land, timber for building. They have plenty of fuel, not only for the ordinary purposes of life, but also for salt-pan

Hebron (anc. geog.), a very ancient city situated in the hilly country of the tribe of Judah to the south. Its more ancient name was Kiriath Arba, or Carith Arba. In antiquity this city vied with the most ancient cities of Egypt, being seven years prior to Zaan, translated Taur by the Seventy. Josephus makes it not only older than Tunis, but even than Memphis. It stood to the west of the lake Affalities, and was for some time the royal residence of David. After the captivity it fell into the hands of the Edomites, as did all the south country of Judea. It is now called Habron, situated seven leagues to the south of Bethlehem. The Arabs call it El-kaili, "the well beloved," which is the epithet they usually apply to Abraham, whose sepulchral groto they still show. Habron is seated at the foot of an eminence, on which are some wretched ruins, the milchpan remains of an ancient castle. The adjacent country is a fort of oblong hollow, five or six

Z 2 2
HECATE [372]

It is a matter of record that the vineyards of the hills of Greece were in a state of great beauty and fertility. The vines were pruned and tended with care, and the grapes were carefully selected and cured. The wine was fermented in barrels made of oak, which were placed in cellars dug into the earth. The wine was then aged for a period of time before it was ready for consumption. The process of making wine was a laborious one, and required the attention of many people. The wine was stored in large vats, and was often aged for many years before it was sold.

HECATE, in antiquity, a festival held in honour of the goddess of magic and enchantments. It was celebrated in the month of November, and was a time of great rejoicing and revelry. The festival was attended by men and women from all parts of the empire, and was a time of great excitement and activity. The festival was held in the city of Rome, and was a time of great rejoicing and revelry.

HECATE (anc. geog.), the largest river of Thrace, rising from mount Scombrus; running in two channels till it comes to Philippopolis, where it unites. It empties itself at two mouths into the Egean Sea, to the north of Samothrace. It was supposed to roll its waters upon golden fands. The head of Orpheus was thrown into it after it had been cut off by the Bedouins, for which reason the Bedouins called it the river of Orpheus.

HECATE, a daughter of Pericles and Aspasia, the name of Proserpine or Diana. She was called Luna in heaven, Diana on earth, and Hecate or Proserpine in hell; whence her name of Dina triformis, tergesa, trices, etc. She was supposed to preside over magic and enchantments. She was generally represented like a woman, with the head of a horse, a dog, or a boar; and sometimes she appeared with three different bodies, and three different faces, with one neck. Dogs, lambs, and honey, were generally offered to her, especially in ways and crofs roads; whence she obtained the name of Triosa. Her power was extended over heaven, the earth, sea, and hell; and to her kings and nations suppofed themselves indebted for their prosperity.

HECATE, a yearly festival observed by the Sтратoniscians in honour of Hecate. The Athenians paid also particular worship to this goddess, who was deemed the patroness of families and of children. From this circumstance the statues of the goddess are erected before the doors of the houses, and upon every new moon a public supper was always provided at the expense of the richest people, and fet in the streets, where the poorest of the citizens were permitted to retire and feast upon it, while they reported that Hecate had devoured it. There were also expiatory offerings, to propitiate the gods, to remove whatever evils might impend on the head of the public, etc.

HECATE (anc. geog.), a surname of the island of Crete, from its 100 cities. The territory of Laconia also had anciently this name for the same reason; and the custom of these 100 cities was to sacrifice a hecatomb annually.

HECATE (anc. geog.), the metropolis of Parthia, and royal residence of Artaxerxes, situated at the springs of the Araxes. Thebes in Egypt had also the same name from its 100 gates.

HECK, an engine to take fish. A salmon hook is a grate for catching that sort of fish.

HECKLE, among hemp-driers. See HATCH.

HECLA, a volcano of Iceland, and one of the most furious in the world, situated on the southern part of the island. See ICELAND.

It was visited in the year 1772 by Dr Von Troll, a Swedish
Hecla.

Swedish gentleman along with Mr (now Sir Joseph) Banks, Dr Solander, and Dr James Lind of Edinburgh. On their first landing they found a tract of land 60 or 70 miles in extent entirely buried by lava, which appeared to have been in the highest state of liquefaction. Having undertaken a journey to the top of the mountain, they travelled 300 or 360 miles over an uninterrupted tract of lava; and had at length the pleasure of being the first who had arrived at the summit of the mountain.

Hecla, according to the account of these gentlemen, is situated in the southern part of the island, about one mile from the sea-coast, and is divided into three parts at the top, the middle point being the highest; and, according to an exact observation with Ramfelen's barometer, is 5000 feet above the level of the sea. They were obliged to quit their horses at the first opening from which the fire had burst. They describe this as a place with lofty glazed walls and high glazed cliffs, unlike any thing which they had ever seen before.

They describe this place with lofty glazed walls and high glazed cliffs, unlike any thing which they had ever seen before.

A little higher up they found a large quantity of grit and stones; and still farther on another opening, which, though not deep, descended lower than that of the highest point. Here they imagined they plainly discerned the effects of boiling water; and not far from hence the mountain began to be covered with snow, excepting some spots which were bare. The reason of this difference they soon perceived to be the hot vapour ascending from the mountain. As they ascended higher they found these spots become larger; and about 200 yards below the summit, a hole about a yard and an half in diameter was observed, from whence issued a hot fountain of water, which could not measure the degree of heat with the thermometer. The cold now began to be very intense; Fahrenheit's thermometer, which, at the foot of the mountain was at 52, now fell to 24; the wind also became so violent, that they were sometimes obliged to lie down for fear of being blown down the most dreadful precipices. On the very summit they experienced at the same time a high degree of heat and cold, for, in the air, Fahrenheit's thermometer stood constantly at 24, but when set on the ground, rote to 153; the barometer stood at 22.44. Though they were very much inclined to remain here for some time, it could by no means be done with safety; for which reason they were obliged to descend very quickly.

The mountain seems to be made up, not of lava, but of sand, grit, and ashes; which are thrown up with the stones partly discoloured, and partly melted with fire. Several forts of pumice stones were found on it, among which was one with some sulphur. Sometimes the pumice was so much burnt, that it was as light as tow. Its form and colour was sometimes very fine, but at the same time so soft, that it was difficult to remove it from one place to another. The common lava was found both in large pieces and small bits; as likewise a quantity of black Jasper burned at the extremities, and resembling trees and branches. Some flate of a strong red colour was observed among the stones thrown out by the volcano. In one place the lava had taken the form of chimney-flacks half broken down. As they descended the mountain they observed three openings. In one, every thing looked as red as brick; from another, the lava had flowed in a stream about 50 yards broad, and after proceeding for some way, had divided into three large branches. Further on they perceived an opening at the bottom of which was a mountain in form of a sugar-loaf, in throwing up of which the fire appeared to have exhausted itself.

We have already observed, that our travellers were the first who ascended to the top of this mountain. The reason that no one before them had ever done so was partly founded in superstition, and partly the steepness and difficulty of the ascent, which was greatly facilitated by an eruption in 1766. Most kinds of lava found in other volcanic countries are to be met with about Hecla, or other Iceland volcanoes; as the grey, dark perforated kind, similar to the Derbyshire leadstone; the Iceland agate, pumex vitreus both the niger and viridis. Some have conjectured this to be the lapis obfideanus of the ancients, which they formed into statues.

The lava is seldom found near the openings whence the eruptions proceed, but rather loose grit and ashes; and indeed the greater part of the Icelandic mountains consist of this matter; which, when it is grown cold, generally takes an arched form. The upper crust frequently grows hard and solid, while the melted matter beneath it continues liquid. This forms great cavities, whose walls, floor, and roof, are of lava, and where great quantities of flatulate lava are found. There are a vast number of these caves in the island, some of which are very large, and are made use of by the inhabitants for sheltering their cattle. The largest in the island is 5034 feet long, and from 50 to 54 in breadth, and between 34 and 36 in height. There are some prodigious cleats left by the eruptions, the largest of which is called Almenagga, near the water of Tingalla, in the south-westerly part of the island. It is 105 feet broad and very long. The direction of the chimney itself is from north to south. Its western wall, from which the other has been perpendicularly divided, is 107 feet six inches in height, and consists of many strata, of about 10 inches each in height, of lava grown cold at different times. The eastern wall is only 45 feet four inches in height, and that part of it which is directly opposite to the highest part of the other side is no more than 30 feet 5 inches high.

HECTOR, the son of Priam and Hecuba, and the father of Alcyone, is celebrated for the valour with which he defended the city of Troy against the Greeks. He was killed by Achilles, who dragged his body, fastened to his chariot, thrice round the walls of Troy, and afterwards restored it to Priam for a large ransom. See Troy.

HEDERA, ivy, in botany: A genus of the monogynous order, belonging to the pentandria class of plants; and in the natural method giving name to the 46th order, Hederaeae. There are five olong petals; the berry is pentagonal, girt by the calyx.

Species. 1. The helix, or common ivy, grows naturally in many parts of Britain; and wherever it meets with any support, will rise to a great height, sending out roots on every side, which strike into the joints of walls or the bark of trees. If there is no support, they trail on the ground, and take root in all their length, so that they closely cover the surface, and are difficult to eradicate.
HEDGES. In agriculture, are either planted to make fences round inclosures, or to divide the several parts of a garden. When they are designed as outside fences, they are planted either with hawthorn, crabs, or black-thorn; but those hedges which are planted in gardens, either to surround wilderness-quarters, or to fence the other parts of a garden from light, are planted according to the fancy of the owner; some preferring ever-greens, in which cafe the holly is best; next the yew, then the laurel, laureliana, phyllryae, &c. Others prefer the beech, the hornbeam, and the elm.

Before planting, it is proper to consider the nature of the land, and what sort of plants will thrive best in it; and also, what is the soil from whence the plants are to be taken. As for the size, the fets ought to be about the thicknefs of one's little finger, and cut within about four or five inches of the ground; they ought to be fresh taken up, straight, smooth, and well rooted. Those plants that are raised in the nursery are to be preferred.

In planting outside hedges, the turf is to be laid, with the grave-side downwards, on that side of the ditch the bank is designed to be made; and some of the beft mould should be laid upon it to bed the quick, which is to be set upon it a foot afunder. When the firft row of quick is let, it must be covered with mould; and when the bank is a foot high, you may lay another row of fets against the faces of the former, and cover them as you did the others: the bank is then to be topped with the bottom of the ditch, and a dry or dead-hedge laid, to thade and defend the under-plantation. Stakes fhould then be driven into the loofe earth, so low as to reach the firm ground: these are to be placed at about two feet and a half distance: and in order to render the hedge yet stronger, you may edder it, that is, bind the top of the fakes with small long poles, and when the edicing is finished, drive the fakes anew.

The quick must be kept constantly weeded, and fed of manuring from being cropped by cattle; and in February it will be proper to cut it within an inch of the ground, which will caufe it strike root afresh, and help it much in the growth.

The crab is frequently planted for hedges; and if Of the crab the plants are raised from the kernels of the small wild crabs, they are much to be preferred to those raised from the kernels of all forts of apples without dilution; because the plants of the true small crab never shoot fo strongly as those of the apples, and may therefore be better kept within the proper compafs of an hedge.

The black-thorn, or floe, is frequently planted for hedges: and the best method of doing it, is to raise the plants from the steme of the fruit, which should be fown about the middle of January, if the weather will permit, in the place where the hedge is intended; but when they are kept longer out of the ground, it will be proper to mix them with sand, and keep them in a cool place. The fame fence will do for it when fown, as when it is planted.

The holly is sometimes planted for hedges; but where it is exposed, there will be great difficulty in preventing its being deftroyed: otherwife, it is by far the most beautiful plant; and, being an ever-green, will afford much better shelter for cattle in winter than any other fort of hedge. The best method of raising these hedges, is to sow the fiones in the place where the hedge...
Of garden hedges.

Hedges for ornament in gardens are sometimes planted with ever-greens, in which case the holly is preferable to any other: next to this, most people prefer the yew; but the dead colour of its leaves renders those hedges less agreeable. The laurel is one of the most useful evergreens, but if allowed to luxuriate, it is difficult to keep it in any tolerable shape; and as the leaves are large, to prevent the disagreeable appearance given them by their being cut through with the hoes, it will be the best way to prune them with a knife, cutting the shoots just down to a leaf. The laurustinus is a very fine plant for this purpose; but the same objection may be made to this as to the laurel: this, therefore, ought only to be pruned with a knife in April, when the flowers are going off, but the new shoots of the same spring must by no means be shortened. The small-leaved and rough-leaved laurustinus are the best plants for this purpose. The true phillyrea is the next best plant for hedges, which may be held up to the height of to or 12 feet; and if they are kept narrow at the top, that there may be not too much width for the snow to lodge upon them, they will be close and thick, and make a fine appearance. The ilex, or ever-green oak, is also planted for hedges, and is a fit plant for those designed to grow very tall. — The deciduous plants usually planted to form hedges in gardens are, The hornbeam, which may be kept neat with less trouble than most other plants. The beech, which has the same good qualities as the hornbeam; but the gradual falling of its leaves in winter causes a continual litter. The small-leaved English elm is a proper tree for tall hedges, but these should not be planted closer than eight or ten feet. The lime-tree has also been recommended for the same purpose; but after they have stood some years, they grow very thin at bottom, and their leaves frequently turn of a black disagreeable colour.

Many of the flowering shrubs have also been planted in hedges, such as roes, honeysuckles, sweet-briar, &c. &c. but these are difficult to train: and if they are cut to bring them within compass, their flowers, which are their greatest beauty, will be entirely destroyed. A correspondent of the society for improving agriculture in Scotland, however, informs us, that he tried with success, the eglantine, sweet-briar, or dog-rose, when all the methods of making hedges practised in Essex and Hampshire had been tried in vain. His method was to gather the hips of this plant, and to lay them in a tub till March; the seeds were then easily rubbed out, after which they were sowed in a piece of ground prepared for garden peas. Next year they came up; and the year after they were planted in the following manner. After marking out the ditch, the plants were laid about 18 inches asunder upon the side grafts, and their roots covered with the first turfs that were taken off from the surface of the intended ditch. The earth of these turfs was placed next to the roots, and other earth laid upon the turfs which had been taken out of the ditch. In four or five years these plants made a fence which neither序s nor cattle of any kind could pass. Even in two or three years none of the larger cattle will attempt a fence of this kind. Sheep indeed will sometimes do so, but they are always entangled to such a degree, that they would remain there till they died unless relieved. Old briars dug up and planted soon make an excellent fence; and, where thin, it may be easily thickened by laying down branches, which in one year will make shoots of six or seven feet. They bear clipping very well.

Dr. Anderson, who has written the easily out of hedges, very particularly, is of opinion, that some other plants besides those above-mentioned might be usefully employed in the construction of hedges. Among these he reckons the common willow. This, he says, by no means requires the wetness of soil which is commonly supposed. "It is generally imagined (says he), that the willow can be made to thrive nowhere except in wet or boggy ground; but this is one of those vulgar errors, founded upon inaccurate observation, too often to be met with in subje&s relating to rural affairs; for experience has sufficiently convinced us, that this plant will not only grow, but thrive, in any rich well-cultivated soil (unles< in particular circumstances that need not here be mentioned), even although it be of a very dry nature. It could not, however, in general be made to thrive, if planted in the same manner as thorns; nor would it in any respect, be proper to train it up for a fence in the same way as that plant. The willow, as a fence, could seldom be successfully employed, but for dividing into separate inclosures any low extensive field of rich ground: and, as it is always necessary to put the soil into as good order as possible before a hedge of this kind is planted in it, the easiest method of putting it into the necessary high till, will be to mark off the boundaries of your several fields in the winter, or early in the spring, with a design to give a complete fallow to a narrow ridge, six or eight feet broad, in the middle of which the hedge is intended to be planted the ensuing winter. This ridge ought to be frequently ploughed during the summer.
Hedges: and in autumn to be well manured with dung or lime, or both (for it cannot be made too rich), and be neatly fenced in before winter.

"Having prepared the ground in this manner, it will be in readiness to receive the hedge, which ought to be planted as early in winter as can be got conveniently done; as the willow is much hurt by being planted late in the spring. But before you begin to make a fence of this kind, it will be necessary to provide a sufficient number of plants: which will be done by previously rearing them in a nursery of your own, as near the field to be inclosed as you can conveniently have it; for as they are very bulky, the carriage of them would be troublesome if they were brought from any considerable distance. The best kinds of willow for this use, are such as make the longest and strongest shoots, and are not of a brittle nature. All the large kinds of hoop willows may be employed for this use; but there is another kind with stronger and more taper shoots, covered with a dark green bark when young, which, upon the older shoots, becomes of an ash-gray, of a firm texture, and a little rough to the touch. The leaves are not so long, and a great deal broader than those of the common hoop-willow, pretty thick, and of a dark-green colour. What name this species is usually known by, I cannot tell; but as it becomes very quickly of a large size at the root, and is strong and firm, it ought to be made choice of for this purpose in preference to all other kinds that I have seen. The shoots ought to be of two or three years growth before they can be properly used, and should never be less than eight or nine feet in length. These ought to be cut over close by the ground immediately before planting, and carried to the field at their whole length. The planter having stretched a line along the middle of the ridge which was prepared for their reception, begins at one end thereof, thrufing a row of these plants firmly into the ground, close by the side of the line, at the distance of 18 or 20 inches from one another; making them all plant a little to one side in a direction parallel to the line. This being finished, let him begin at the opposite end of the line, and plant another row in the intervals between the plants of the former row; making these incline as much as the others, but in a direction exactly contrary; and then, planting these basket-ways, work them into lozenges like a net, fastening the tops by planting the small twigs with one another, which with very little trouble may be made to bind together very firmly. The whole, when finished affumes a very beautiful net-like appearance, and is even at first a tolerable good defence: and, as these plants immediately take root and quickly increase in size, it becomes, after a few years, a very strong fence which nothing can penetrate. This kind of hedge I myself have employed; and find that a man may plant and twift properly about a hundred yards in a day, if the plants be laid down to his hand: and, in a situation such as I have described, I know no kind of fence which could be reared at such a small expense, so quickly become a defence, and continue so long in good order. But it will be greatly improved by putting a plant of eglantine between each two plants of willow, which will quickly climb up and be supported by them; and, by its numerous prickles would efficaciously prevent the defenceless willow from being browsed upon by cattle.

As it will be necessary to keep the narrow ridge, upon which the hedge is planted, in culture for one year at least, that the plants of eglantine may not be choked by weeds, and that the roots of the willow may be allowed to spread with the greater ease in the tender mold produced by this means, it will be proper to flite the earth once or twice by a gentle horse-hoe in the beginning of summer; and, in the month of June, it may be fowed with turnips or planted with cole-worts, which will abundantly repay the expense of the follow.

The same author also gives the following useful directions for planting, in exposed situations, and recovering them when on the point of decaying. "Those who live in an open uncultivated country, have many difficulties to encounter, which others who inhabit more warm and sheltered regions never experience; and, among these difficulties, cutties, may be reckoned that of hardly getting hedges to grow with facility. For, where a young hedge is in, 16, &c, much exposed to violent and continued gales of wind, no art will ever make it rise with so much freedom, or grow with such luxuriance, as it would do in a more sheltered situation and favourable exposure.

"But although it is impossible to rear hedges in this situation to so much perfection as in the others, yet they may be reared even there, with a little attention and pains, so as to become very fine fences.

"It is advisable in all cases, to plant the hedges upon the face of a bank; but it becomes absolutely necessary in such an exposed situation as that I have now described: for the bank, by breaking the force of the wind, screens the young hedge from the violence of the blast, and allows it to advance, for some time at first, with much greater luxuriance than it otherwise could have done.

"But as it may be expected soon to grow as high as the bank, it behoves the provident husbandman to prepare for that event, and guard, with a wise forecast against the inconvenience that may be expected to arise from that circumstance.

"With this view, it will be proper for him, instead of making a single ditch, and planting one hedge, to raise a pretty high bank, with a ditch on each side of it, and a hedge on each face of the bank; in which situation, the bank will equally shelter each of the two hedges while they are lower than it; and, when they at length become as high as the bank, the one hedge will in a manner afford shelter to the other, so as to enable them to advance with much greater luxuriance than either of them would have done singly.

"To effectuate this still more perfectly, let a row of service-trees be planted along the top of the bank, at the distance of 18 inches from each other, with a plant of eglantine between each two services. This plant will advance, in some degree, even in this exposed situation; and by its numerous shoots, covered with large leaves, will effectually fence the hedge on each side of it, which, in its turn, will receive some support and shelter from them; so that they will be enabled to advance all together, and form, in time, a close, strong, and beautiful fence.

The service is a tree but little known in Scotland; although
although it is one of those that ought perhaps to be
often cultivated there in preference to any other tree
wherever, as it is more hardy, and, in an exposed
situation, affords more shelter to other plants than almost
any other tree I know: for it sends out a great many
strong branches from the under part of the stem,
which, in time, assume an upright direction and con-
tinue to advance with vigour, and carry many leaves to
the very bottom, almost as long as the tree exists: so
that if it is not pruned, it riles a large close bush, till
it attains the height of a forest tree.

"It is of the same genus with the rawn-tree—and
has a great resemblance to it both in flower and fruit;
its branches are more waving and plant—its leaves un-
divided, broad and round, somewhat resembling the
elm, but white and mealy on the upper side. It de-
serves to be better known that it is at present.

"But if, from the poorness of the soil in which
your hedge is planted, or from any other cause, it
should to happen, that, after a few years, the hedge
becomes sickly, and the plants turn poor and flinted
in appearance, themselves and only effectual remedy
for that disease, is to cut the stems of the plants clean
over, at the height of an inch or two above the ground; af-
ter which they will send forth much stronger shoots
than they ever would have done without this operation.
And if the hedge be kept free of weeds, and trained
afterwards in the manner above described, it will, in
almoft every case, be recovered, and rendered fresh
and vigorous.

"This amputation ought to be performed in au-
tumn, or the beginning of winter; and in the spring
when the young buds begin to show themselves, the
Rumper ought to be examined with care, and all the
buds be rubbed off, excepting one or two of the strong
est and best placed, which should be left for a stem.
For if the numerous buds that spring forth, round the
stem are allowed to spring up undisturbed, they will
become in a few years as weak and flinted as before;
and the hedge will never afterwards be able to attain
any considerable height, strength, or healthiness.

I have seen many hedges, that have been repeatedly
cut over totally ruined by this circumstance not having
been attended to in proper time.

"If the ground for 15 or 20 feet on each side of
the hedge be followed at the time that this operation
is performed, and get a thorough dressing with rich
manures, and be kept in high order for some years
afterwards by good culture and meliorating crops, the
hedge will prosper much better than if this had been
omitted, especially if it has been planted on the level
ground, or on the bank of a shallow ditch."

Mr. Miller greatly recommends the black elder as
superior to any other that can be employed in most
soils. It may either be propagated by layers or trunc-
cheons about three feet long. The best time for plant-
ing these last is in February or the month of March.
They ought to be harpooned at their largest end, and
the ground well loosened before they are thrust into
it, lest the bark should be torn off, which might occa-
sion their miscarriage. They should be set at least
two feet deep, to prevent their being blown out of
the ground by violent winds after they have made
strong roots; and they should be kept clear of tall
weeds until they have got good heads, after which
they will require no farther care. When raised by
laying down the branches, it ought to be done in the
month of October; and by that time twelvemonth
they will have roots sufficient for transplanting, which
must be done by digging a hole and loosen the
earth in the place where the plant is to stand. The
young stems must be planted at least a foot and a half
depth; and their top should be cut off to within about
nine inches of the ground; by which means they will
shoot out many branches. This tree may be trained
into very thick and close hedges, to the height of
20 feet and upwards. It will thrive exceedingly on
the sides of banks; for it grows best when part of
its roots are in water; and may, if planted there, be
as usual for willows, be cut for poles every fifth or
sixth year. Its wood makes excellent pipes and flaves;
for it will last a great while under ground or in water:
and it is likewise in great estimation among plough-
wrights, turners, &c. as well as for making several of
the utensils necessary for agriculture. Its bark also
of a good black.

The birch is another tree recommended by Mr. Mil-
er of the propertie of hedges; and in places where the young
plants can be easily procured, he says that the plan-
tation of an acre will cost 40 shillings: the after
expense will not exceed 20 shillings; so that the whole
will not come to above three pounds. Ash-trees ought
never to be permitted in hedges, both because they
injure the corn and grass by their wide extended roots,
and likewise on account of the property their leaves
have of giving a rank taste to butter made from the
milk of such cattle as feed upon the leaves. No ash-
trees are permitted to grow in the good dairy-coun-
ties.

Where there are plenty of rough flat stones, the hedge-
fences which bound an estate or farm are frequently raised on
mide with them. In Devonshire and Cornwall it is
common to build as it were two walls with these stones
laid upon one another; first two and then one be-
tween: so the walls rise till they fill the intermediate space
with earth, and beat the stones in flat to the sides, which
makes them lie very firm, and so proceed till the whole
is raised to the intended height. Quick hedges, and
even large timber trees, are planted upon these
walls, and thrive extremely well. Such inclosures are
reckoned the best defence that can be had for the
ground and cattle; though it can scarce be supposed
but they must be disagreeable to the eye, and stand in
need of frequent repairs by the stones being forced
out of the way by cattle. The birth wall to prevent
this is to build such walls in the bottom of a ditch
made wide enough on purpose, and lopped down
on each side. Thus the deformity will be hid; and as
the cattle cannot stand to face the wall so as to attempt
to leap over it, the stones of which it is composed will
be less liable to be beaten down. The earth taken out
of the ditch may be spread on the adjacent ground,
and its sides planted with such trees or underwood as
will best suit the soil. By leaving a space of several
feet on the inside for timber, a supply of that valuable commodity may be had without doing any injury to
the more valuable pastures.

The following is an excellent method of making a
durable and beautiful fence in rocky places. Dig a
piece of turf four or five inches thick, the breadth of
cents. In.
Hedges, the fkode, and about a foot in length. Lay these turf s even by a line on one side, with the grafts outward, at the distance of ten or twelve inches within the mark at which the ditch afterwards to be dug in the solid ground is to begin. Then lay, in the same manner, but with their grafts fitted to each other, in the ground; another row of turf, at such a distance as to make a breadth of foundation proportioned to the intended height of the bank. This, even though the ground should prove defective, the bank would be prevented from giving way. A ditch may then be dug of what depth and breadth you please; or the ground may be lowered with a slope on each side; and in this case there will be no loss of pasture by the fence; because it may be fowed with hay-seeds, and will bear grass on both sides. Part of the earth taken out of the ditches or slopes will fill the chasm between the rows of turf, and the rest may be scattered over the adjacent ground. Three, four, or more layers of turf, may be thus placed upon one another, and the interval between them filled up as before till the bank is brought to its desired height; only observing to give each side of it a gentle slope for greater strength. The top of this bank, should be about two feet and a half wide, and the whole of it filled up with earth except a small hollow in the middle to retain some rain. Quicksets should then be planted along this top, and they will soon form an admirable hedge. By this means a bank four feet high, and a slope only two feet deep, will make, beside the hedge, a fence fix feet high, through which no cattle will be able to force their way: for the roots of the grass will bind the turf so together, that in one year's time it will become entirely solid; and it will yet be much stronger when the roots of the quick shall have shot out among it. The only precautions necessary to be observed in making this bank are, 1. Not to make it when the ground is too dry; because, if a great deal of wet should suddenly follow, it will swell the earth so much as perhaps to endanger the falling of some of the outside: which, however, is easily remedied if it should happen. 2. If the slope be such as steep can climb up, secure the young quicks, at the time of planting them, by a dead hedge, either on or near the top, or both sides. If any of the quicks should die, which they will hardly be more apt to do in this than in any other situation, unless perhaps in extremely dry situations, they may be renewed by some of the methods already mentioned. Such fences will answer even for a park; especially if we place posts and rails about two feet high, a little sloping over the side of the bank, or near its top: no deer can creep through this, nor even be able to jump over it. It is likewise one of the best fences for securing cattle; and if the quicks on the bank be kept clipped, it will form a kind of green wall pleasing to the eye.

In the first volume of the Bath Papers we find elms recommended for fences; and the following method of raising them for this purpose is said to be the best. When elm timber is felled in the spring, saw the chips made in trimming or hewing them green, on a piece of ground newly ploughed; as you would corn, and harrow them in. Every chip which has an eye, or bud-knot, or some bark on it, will immediately shoot like other cuttings of potatoes; and the plants thus raised having no tap-roots, but shooting their fibres horizontally in the richest part of the soil, will be more vigorous, and may be more safely and easily transplanted, than when raised from seeds, or in any other method. The plants thus raised for elm fences have greatly the advantage of others; as fast, fix, and sometimes more, items will arise from the same chip; and such plants, if cut down within three inches of the ground, will multiply their side shoots in proportion, and make a hedge thicker, without running to naked wood, than by any other method yet practiced. If kept clipped for three or four years, they will be almost impenetrable.

In the second volume of the same work, we meet with several observations on quick-hedges by a gentle man near Bridgewater. He prefers the white and black quick thorns to all other plants for this purpose; but is of opinion, that planting timber-trees in them at proper intervals is a very eligible and proper method. He raised some of his plants from haws in a nursery; others he drew up in the woods, or wherever they could be found. His banks were flat, and three feet wide at the top, with a sloping side next the ditches, which left were dug only two feet below the surface, and one foot wide at bottom. The turf were regularly laid, with the grasses downwards, on that side of the ditch on which the hedge was to be raised, and the beft of the mould laid at top. The fets were straight, long, smooth, and even growing ones, planted as soon as possible after taking up. They were planted at a foot distance; and about every 40 feet young fruit-trees or thofe of other kinds, as sith, oak, elm, beech, as the foil fuitcd them. A second row of quickfets were then laid on another bed of fresh earth at the fame time, and covered with good moulder; after which the bank was finished and secured properly from injuries by a dead hedge well wrought together, and fenned by stakes of oak-trees on the top of the bank at three feet distance. Wherever any of the quickfets had failed or were of a dwindling appearance, he had them replaced with fresh ones from the nursery: as well as fuch of the young trees as had been planted on the top of the bank, to cover them from weeds. Thofe most deftructive to young hedges are the white and black bryony, bindweed, and the traveller's joy. The root of white bryony is as big as a man's leg, and runs very deep: that of black bryony often grows to 30 feet long, and with a kind of tendrils takes hold of the root of the young quick, and choke it. This root muft be dug very deep in order to destroy it. The third is still more deftructive to young quicks than the other two, overshadowing the hedge like an arbour. Its root is smaller than that of the two former, but muft be dug out very clean, as the least piece left will fend up fresh shoots. It is very deftructive to hedges to allow cattle to browse upon them, which they are very apt to do; but where cattle of some kind must be allowed access to them, hedges will do by far the leaft mischief.
HED [379] HED

Hedges. — The profit arising from them only would abundantly repay the cost of the whole without any loss of ground. It may possibly be objected by some, that the hedges would often be hurt by the boys climbing up to get the fruit; but those who make it should remember, or be told, that the best kinds of cider-fruit are so hard and auster to the time of their being gathered, that nobody can eat them, and even hogs will hardly touch them. But the greatest benefit, where no fruit trees are planted, arises from the thorns and wood which quick hedges yield for the fire and other purposes.

The author of the Effays on Husbandry recommends the hornbeam plant as one of the best yet known for making fences, according to the method practised in Germany, where such fences are common. "When the German husbandman (says he) erects a fence of this nature, he throws up a parapet of earth, with a ditch on each side, and plants his hornbeam sets in such a manner, that every two plants may be brought to intersect each other in the form of St Andrew's cross. In that part where the two plants cross each other, he gently forces off the bark, and binds them with straw thwart-wise. Here the two plants confolidate in a kind of indissoluble knot, and push from thence horizontal straggling shoots; which form a sort of living palisado or Chevaux de frise; so that such a protection may be called a rural fortification. The hedges being pruned annually, and with discretion, will in a few years render the fence impenetrable in every part.

It sometimes happens (says Dr Anderson) that a hedge may have been long neglected, and be in general in a healthy state, but full of gaps and openings, or so thin that it is difficult to form but a very imperfect fort of fence. On these occasions, it is vain to hope to fill up the gaps by planting young quicks; for these would always be outgrown, choked, and starved, by the old plants: nor could it be recovered by cutting clear over by the roots, as the gaps would still continue where they formerly were. The only methods that I know of rendering this a fence are, either to mend up the gaps with dead wood, or to plash the hedge; which last operation is always the most eligible where the gaps are not too large to admit of being cured by this means.

The operation I here call plashing, may be defined, a wattling made of living wood. To form this, some items are first selected, to be left as stakes at proper distances, the tops of which are all cut over at the height of four feet from the root. The straggling side-branches of the other part of the hedge are also lopped away. Several of the remaining plants are then cut over close by the ground, at convenient distances; and the remaining plants are cut perhaps half through, so as to permit them to be bent to one side. They are then bent down almost to a horizontal position, and interwoven with the upright stakes, so as to retain them in that position. Care ought to be taken, that these be laid very low at those places where there were formerly gaps; which ought to be farther strengthened by some dead stakes or truncheons of willows, which will frequently take root in this case, and continue to live. And sometimes a plant of eglantine will be able to overcome the difficulties it there meets with, strike root, and grow up so as to strengthen the hedge in a most effectual manner.

The operator begins at one end of the field, and proceeds regularly forward, bending all the items in one direction, so that the points rise above the roots of the others, till the whole wattling is completed to the same height as the uprights.

An expert operator will perform this work with much greater expedition than one who has not seen it done could easily imagine. And as all the diagonal wattlings continue to live and send out shoots from many parts of their items, and as the upright shoots that rise from the stems of these plants have then cut over quickly rush up through the whole hedge, these serve to unite the whole into one entire mass, that forms a strong, durable, and beautiful fence.

This is the best method of recovering an old neglected hedge that hath as yet come to my knowledge.

In some cases it happens that the young shoots of a hedge are killed every winter; in which case it soon becomes dead and unightly, and can never rise to any considerable height. A remedy for this disease may therefore be wished for.

Young hedges are observed to be chiefly affected with this disorder; and it is almost always occasioned by an injudicious management of the hedge, by means of which it has been forced to send out too great a number of shoots in summer, that are thus rendered so small and weakly as to be unable to resist the severe weather in winter.

It often happens that the owner of a young hedge, with a view to render it very thick and close, cuts it over with the few inches of these shoots that spring up in the first winter after planting; in consequence of which, many small shoots spring out from each of the stems that has been cut over: — Each of which, being afterwards cut over in the same manner, sends forth a still greater number of shoots, which are smaller and smaller in proportion to their number.

If the soil in which the hedge has been planted is poor, in consequence of this management, the branches, after a few years, become so numerous, that the hedge is unable to send out any shoots at all, and the utmost exertion of the vegetative powers enables it only to put forth leaves. These leaves are renewed in a sickly state for some years, and at last cease to grow at all—the branches become covered with fog, and the hedge perishes entirely.

But if the soil be very rich, notwithstanding this great multiplication of the items, the roots will still have sufficient vigour to force out a great many small shoots, which advance to a great length, but never attain a proportional thickness. And as the vigour of the hedge makes them continue to vegetate even to late in autumn, the frosts come on before the tops of these dangling shoots have attained any degree of woody firmness, so that they are killed almost entirely by it: the whole hedge becomes covered with these long dead shoots, which are always disagreeable to look at, and usually indicate the approaching end of the hedge.

The causes of the disorder being thus explained, it will readily occur, that the only radical cure is amputation; which, by giving an opportunity to begin

3 A 2 with
...Thus "How common (says his Lordship) it is to find nurseries in hollow sheltered places, surrounded with walls and high plantations, more fit for pine-apples than..."
Hedges

Hedging.

Hedges. The plants thrust out long roots, but are
feebly and tender: when exposed in a cold situation, they
decay, and sometimes die. But there is a reason for every thing: the nurseries' man's view is to make
profit by saving ground, and by impeding on the pur-
chaser tall plants, for which he pretends to demand
double price. It is difficult to purchase whole plants
and well rooted plants, that every gentleman farmer
ought to raise plants for himself.

As thorns will grow pleasantly from roots, I have
long practised a frugal and expedient method of raising
them from the wounded roots that must be cut off when thorns are to be set in a hedge. These thorns cut into small pieces, and put in a bed of fresh earth, will produce plants the next spring no less vigorous than what are produced from seed; and thus a perpetual succession of plants may be obtained without any
more need. It ought to be a rule, never to admit into
a hedge plants under five years old; they dessicate all
the additional fun that can be demanded for them.
The grafts in the same plants in a hedge cover the
wounded roots, and, besides the loss of time, the paling necessary to secure them from cattle must be renewed more than once before they become a fence. A thorn hedge
may be planted in every month of winter and spring
unless it be frost. But I have always observed that thorns planted in October are more healthy, put more vigorously, and fewer decay, than at any other time. In preparing the thorns for planting, the roots ought to
be left as entire as possible, and nothing cut away
but the ragged parts.

As a thorn hedge suffers greatly by weeds, the
ground where they are planted ought to be made per-
fecfly clean. The common method of planting is to
leave eight or nine inches along side of the intended
ditch, termed a scarfement; and behind the scarfement
to lay the surface soil of the intended ditch, cut into
square lots two, or three inches deep, its grassy surface
under. Upon that sod, whether clean or dirty, the
thorns are laid, and the earth of the ditch above them.
The earth in the scarfement, with what weeds are in
the moved earth, soon grow up, and require double
diligence to prevent the young thorns from being cho-
ked. The method, however, destroys all the additional
trouble it requires. Leaving a scarfement as above of
10 inches, and also a border for the thorns, broad
or narrow according to their size; 1-y behind the border the surface of the intended ditch, champh
small with the spade, and upon it lay the mouldy
carth that fell from the spade in cutting the said sur-
face. Cover the scarfement and border with the under
earth, three inches thick at least; leaving a little more
on the border to raise it higher than the scarfement,
in order to give room for weeding. After the thorns are
prepared by smoothing their rugged roots with a
knife, and lopping off their heads to make them grow
bushy, they are laid fronting the ditch, with their roots
on the border, the head a little higher than the root.
Care must be taken to spread the roots among the sur-
face-earth taken out of the ditch, and to cover them
with the mouldy earth that lay immediately below.

This article is of importance, because the mouldy
carth is the finest of all. Cover the stems of the thorns
with the next stratnum, of the ditch, leaving always an
inch at the top free. It is no matter how poor this
stratum be, as the plants draw no nourishment from Hedges.

It go on to finish the ditch, precise down careful-
ly every row of earth thrown up behind the
hedge, which makes a good solid mound impervious
to rain. It is a safeguard to the young hedge to
raise this mound as perpendicular as possible; and
for that reason, it may be proper, in loose soil, when
the mound is raised a foot or so, to bind it with a row of
the tough fdi, which will support the earth above till
it become solid by lying. In poor soil more care is
necessary. Behind the line of the ditch the ground inten-
died for the scarfement and border should be fur-
ned and manured, and cleared of all grass roots;
and this culture will make up for the inferiority of the
coil. In very poor soil, it is vain to think of planting
a thorn hedge. In such ground there is a necessity
for a stone fence.

The only reason that can be given for laying
thorns as above described, is to give the roots space
to push in all directions; even upward into the mound
of earth. There may be some advantage at the side of
in my apprehension, the disadvantage is much greater
of having so much earth upon the roots as to exclude
not only the sun, but the rain which runs down the
flopping bank, and has no access to the roots.

Instead of laying the thorns fronting the ditch, would it
not do better to lay them parallel to it; covering the
roots with three or four inches of the soil earth, which
would make a hollow between the plants and the flo-
oping bank? The hollow would intercept every drop
of rain that falls on the bank, to line gradually among the
roots. Why at any rate should a thorn be put in
to the ground? Flopping? This is not the practice with
regard to any other tree: and I have heard of no experiment
performed by me that a thorn thrives better flopping
than erect. There occurs, indeed, one objection against
plating thorns erect, that the roots have no room to
extend themselves on that side where the ditch is. But
does it not hold, that when, in their progress, roots meet with a ditch, they do not push outward; but,
changing their direction, push downward at the side of
the ditch? If so, these downward roots will support
the ditch, and prevent it from being mounded down by
frost. One thing is evident without experiment, that thorns planted erect may sooner be made a com-
plete fence than when laid flopping as usual. In the
latter case, the operator is confined to thorns that do
not exceed a foot or 25 inches; but thorns five or six
feet high may be planted erect; and a hedge of such
thorns, well cultivated in the nursery, will in three
years arrive to greater perfection that a hedge manu-
factured by the same in the ordinary way will do in
twice that time.

After the hedge is finished, it is absolutely necessary
secure it for some time from the depredations of
cattle; and this is by no means an easy matter. "The
ordinary method of a paling (says his lordship) is
no sufficient defence against cattle: the most gentle
make it a rubbing post, and the vicious wantonly break it
down with their horns. The only effectual remedy is
expensive; six, two ditches and two hedges, with a
mound of earth between them. If this remedy, how
ever, be not palatable, the paling ought at least to be
of the strongest kind. I recommend the following as
the best I am acquainted with: Drive into the ground
strong stakes three feet and an half long, with intervals
from
HEDGES. From eight to twelve inches, according to the size of the hedge, that are necessary; and all precisely of the same height. Prepare plates of wood sawed out of logs, every plate three inches broad and half an inch thick. Fix them on the head of the flakes with a nail driven down into each. The flakes will be united so firmly, that one cannot be moved without the whole; and will be proof accordingly against the rubbing of cattle. But, after all, it is no fence against vicious cattle. The only proper place for it is the side of a high road, or to fence a plantation of trees. It will indeed be a sufficient fence against sheep, and endure till the hedge itself becomes a fence. A fence thus completely, including thorns, ditching, wood, nails, &c., will not much exceed two shillings every year.

His lordship discommends the ordinary method of training hedges by cutting off the top and shortening the lateral branches in order to make it thick and bushy. This, as well as the method of cutting off the stems two or three inches above the ground, indeed produces a great number of shoots, and makes them thick leaves of wood, but which becomes so weak when bare of leaves, that cattle break through it in every part. To determine the best method of proceeding in this case, his lordship made an experiment on three hedges, which were twelve years old at the time he wrote. The first was annually pruned at the top and sides; the sides of the second were pruned but not the top; and the third was allowed to grow without any pruning. The first, at the time of writing, was about four feet broad, and thick from top to bottom; but weak in the stems, and unable to resist any horned beast: the second was strong in its stems, and close from top to bottom: the third was also strong in its stems, but bare of branches for two feet from the ground; the lower ones having been deprived of air and rain by the thick shade of those above them. Hence he directs that hedges should be allowed to grow till the stems be five or six inches in circumference, which will be ten or twelve years; at which time the hedge will be fifteen feet or more in height. The lateral branches next the ground must be pruned within two feet of the stem; those above must be made shorter and shorter in proportion to their distance from the ground, and at five feet high they must be cut close to the stem, leaving all above full freedom of growth. By this drizzling the hedge takes on the appearance of a very steep roof, and it ought to be kept in that form by pruning. This form gives free access to rain, sun, and air: every twig has its share, and the whole is preferred in vigour. When the stems have arrived at their proper bulk, cut them over at five feet from the ground where the lateral branches end. This answers two excellent purposes: the first is to strengthen the hedge, in proportion to their distance from the ground; and the second, that at a tall hedge signifies the air, and poisons both corn and grass near it. A hedge trained in this manner is impenetrable even by a bull.

With regard to the practice of plashing an old hedge on mentioned, that "it makes a good interim fence, but at the long-run is destructive to the plants; and accordingly there is scarcely to be met with a complete good hedge where plashing has been long practised. A thorn is a tree of long life. If, instead of being massacred by plashing, it were raised and dressed in the way here described, it would continue a firm hedge perhaps 500 years."

"A hedge ought never to be planted on the top of the mound of earth thrown up from the ditch. It ought to have the same advantage of a bad situation; but, being planted in bad soil, and defecrate of moisture, it cannot thrive: it is at best dwarfish, and frequently decays and dies. To plant trees in the line of the hedges, or within a few feet of it, ought to be absolutely prohibited as a pernicious practice. It is amazing that people should fall into this error, when they ought to know that there never was a good thorn-hedge with trees in it. And how should it be otherwise? An oak, a beech, an elm, grows faster than a thorn. When suffered to grow in the midst of a thorn-hedge, it spreads its roots everywhere, and robs the thorns of their nourishment. Nor is this all: the tree, overshadowing the thorns, keeps the fun and air from them. At the same time, no tree takes worse with being overshadowed than a thorn.

"It is scarce necessary to mention gaps in a hedge. Of filling because they will seldom happen where a hedge is up gaps, trained as above recommended. But in the ordinary method of training, gaps are frequent, partly by the failure of plants, and partly by the trespassing of cattle. The ordinary method of filling up gaps is to plant sweet briar where the gap is small, and a crab where it is large. This method I cannot approve for an obvious reason: a hedge ought never to be composed of plants which grow unequally. Those that grow fast, overtop and hurt the low growers; and with respect, in particular, to a crab and sweet briar, neither of them thrive under the shade. It is a better method to remove all the withered earth in the gap, and to substitute fresh fappy mould mixed with some lime or dung. Plant upon it a vigorous thorn of equal height with the hedge, which in its growth will equal the thorns it is mixed with. In that view there should be a nursery of thorns of all sizes, even to five feet high, ready to fill up gaps. The best reason for this operation is the month of October. A gap filled with sweet briar, or a crab low down in a hedge; invites the cattle to break through and trample the young plants under foot; to prevent which, a pailing raised on both sides is not sufficient, unless it be raised as high as the hedge.

"Where a field is too poor to admit of a thorn. In what a hedge, if there be no quantity of stones easily procured, wains, are the only resource. These are commonly placed on the top of a dry earth-dyke, in which situation they seldom thrive well. The following seems preferable. Two parallel ditches three feet wide and two deep, border a space of twelve feet. Within this space raise a bank at the side of each ditch with the earth that comes out of it, leaving no interval between the two banks. Saw the banks with wheel, and plant a row of trees in the interval. When the wains are pretty well grown, the hedge on one of the banks may be cut down, then the other as soon as it becomes a fence, and so alternately. While the wains are young, they will not be disturbed by cattle, if paling be left to go out and in. These pales may
Hedges may be closed up when the hedge is sufficiently strong to be a fence. A whin-hedge, thus managed, will last many years, even in strong frost, unless very fevered. There are many whin-hedges in the shire of Kincardine not to skillfully managed, and yet the thistles appear not to be afraid of frost. Such fences ought to be extremely welcome in the sandy grounds of the shire of Moray, where there is a fear of frost being found. The few earth-fences that are there raised, composed mostly of sand, very soon crumble down.

In the fourth volume of Mr Young’s Northern Tour, the author recommends the transplanting of old hedges, which his correspondent Mr Beverly says he has tried with prodigious success.

Mr Bakewell, we are told, is very curious in his fences, and plants his quicks in a different manner from what is common in various parts of the kingdom. He plants one row at a foot from feet to feet, and making his ditch, lays the earth which comes out of it to form a bank on the side opposite to the quick. In the common method the bank is made on the quick side above it. Reasons are not wanting to induce a preference of this method. The plants grow only in the surface of the earth uncovered from the atmosphere, which must necessarily be a great advantage; whereas, in the usual way of planting, the earth, which is always the beet, is loaded by a thick covering obliquely of the earth out of the ditch. If the roots shoot in the beet foil, they will be out of the reach of the influences of the air; the consequence of which is, that they cannot have so large a space of that earth as if set on the flat. The way to have a tree or a quick thrive in the beet manner possible, is to set it on the surface, without any ditch or trench, that cuts off half its pasture. But if a ditch is necessary, the next beet must of course be filled to keep it on the flat surface; and the worst way to cover up that surface, by loading it with the dead earth out of a trench. To say that there are good hedges in the common method is not a conclusive argument, unless both were tried on the same foil and exposure.

In the 7th volume of the same work, a correspondent, who signs himself M. M. observes, that notwithstanding all the improvements that have been made in the construction of hedges and fences, there are many foils in England, which, from their sandy and gravelly natures, are little adapted to any of the plants in common use, and are therefore subject to all the inconveniences of dead hedges and gaps. Of this, kind are all the sandy and gravelly inclosures, which constitute so large a part of many districts in the island. For these our author recommends a triple row of furze; though notwithstanding its advantages, he says it is liable to be destroyed by severe winters, contrary to the assertion of lord Kames above mentioned.

It is liable (says he) to be so completely cut off by a severe winter, that I have seen tracks of many hundred acres open in the space of a few weeks, and reduced to as defenceless a state as the surrounding waste. On such foils therefore he recommends the holly; the only disadvantage of which, he says, is its slow growth. On most of these foils also the black thorn will rise spontaneously; and even the quick, though slowly, will advance to a sufficient degree of perfection. The birch, however, he particularly recommends, as growing equally on the drift and on the wettest foils, propagating itself in such numbers, that were they not destroyed, all the sandy wastes of this kingdom would be quickly covered with them. He recommends particularly the keeping of a nursery for such plants as are commonly used for hedges. “I generally (says he) pick out a bit of barren land, and after ploughing it three or four times to bury and destroy the earth, I find it answer extremely well for a nursery. Into this spot I transplant quick, hollies, and every tree which I used for fences or plantations. By establishing such a nursery, a gentleman will always be able to command a sufficiency of strong and hardy plants which will not deceive his expectations. I look upon thorns of five or six years old, which have been twice transplanted from the feed-bed, to be the best of all; but as it may be necessary to fill up casual gaps in hedges that have been planted several years, a provision should be made of such, every ten years, to 12 or 14 years old. All plants which are intended to be moved, should be transplanted every two or at most three years; without this attention, they attach themselves so firmly to the foil as renders a subsequent operation dangerous. All who transplant quicks or hollies ought to begin their labours as early as convenient in the autumn; for I have found by repeated experience that neither of these plants succeed so well in the spring.”

Where the fences of a track of ground are in a very repairous condition, it is absolutely necessary to following ruins.

Hedges, the ditches, throw up the banks, and secure the whole immediately by the firmness of the dead fences we can procure. If there is a total want of living plants, the cultivator can do nothing but plant new hedges; but if, as is generally the case, the banks are furnished with a multitude of old stems, though totally unconnected as a fence, the time and labour requisite for the intended improvement will be considerably abridged. All the fraggling branches which add no solidity to the fence are to be cut off; after which the rest of the stems must be shortened to the height of three or four feet. The method of cutting down everything to the ground, which is now so general, our author highly condemns. “Such a fence (says he) has within it no principle of strength and cohesion; it is equally exposed in every part to degradations of cattle and footmen; and even should it escape these, the first fall of snow will nearly demolish it. On the contrary, wherever these vegetable palliades can be left, they are impenetrable either for man or horse, and form so many points of union which support the rest.”

Another method of strengthening defensive fences, is to bend down some of the lateral shoots in a horizontal direction, and to spread them along the line of the farm like espalier trees in a garden. A single stem, when it rises perpendicularly, will not secure a space of more than two or three feet, but when bent longitudinally, they will form a barrier at least sufficient to repel all cattle but hogs for 12 or 14 feet on each side. By bending down, our author does not mean

Placing at the common planting method, which is very injurious to the plants; but the spreading two or three of the most convenient branches along the hedge, and fastening them down either by pegs or tying, without injury.
Hedges. Jury to the stem, until they habitually take the proposed direction. Those who make the experiment for the first time will be astonished how small a number of plants may be made to fill a bank, with only trifling intervals. The birch is particularly useful for this purpose; being so flexible a nature, that shoots of 10 or 12 feet in length may be easily forced into a horizontal direction; and if the other shoots are pruned away, all the juices of the plant will be applied to nourish the selected few; by which means they will in a few years acquire all the advantages of posts and rails, with this material difference, that instead of decaying, they become annually better. It is besides the property of all inclined branches to feed up a multitude of perpendicular shoots; so that by this horizontal inclination, if judiciously made, you may acquire almost all the advantages of the thickest fence; but when the stems are too old and brittle to bear this operation, it will be advisable to cut off all the useless ones close to the ground, and next spring they will be succeeded by a number of young and vigorous ones. Select the best of these to be trained in the manner already directed, and extirpate all the rest, to increase their vigour. The shoots of such old stems as have been just now described will attain a greater size in three or four years than any young ones that can be planted will do in twelve.

Another method which our author has practised with the greatest success is the following. The tender shoots of moat trees, if bended downwards and covered with earth, will put forth roots, and being divided from the parent stem at a proper time become fresh plants; an operation well known to gardeners, under the name of laying. This may be as advantageous to the farmer, if he will take the very moderate trouble of laying down the young and flexible branches in his fences. Most species of trees, probably all, will be propagated by this method; but particularly the withe, the birch, the holly, the white horn, and the crab, will also take root in this method, though more slowly; the latter being an excellent plant for fences, and not at all nice in the foil on which it grows. The advantage of laying down branches in this manner over the planting of young ones is, that when you endeavour to fill up a gap by the latter method, they advance very slowly, and are in danger of being stifled by the shade of the large trees; whereas, if you fortify a gap by spreading the branches along it in the manner just mentioned, and at the same time infilt some of the most thriving shoots in the ground, they will advance with all the vigour of the parent plant, and you may allow them to grow until they are so fully rooted as to be free from danger of suffocation.

It frequently happens, that the fences of an estate have been neglected for many years, and exhibit nothing but ragged and deformed stems at great intervals. In this case it will be proper to cut them all off level with the ground; the consequence of this is, that next year they will put forth a great number of shoots, which may be laid down in every direction, and trained for the improvement of the fence. When this operation is performed, however, it ought always to be done with an ax, and not with a saw; it being found that the latter instrument generally prevents the vegetative force of the plant. All the shoots laid down in this manner should be allowed to remain for several years, that they may be firmly rooted. Thus they will make prodigious advances; and it is to be observed, that the more the parent plant is distanced of all superfluous branches, the greater will be the nourishment transmitted to the fencis.

Our author, however, is inclined to suspect that the most perfect form of an hedge, at least in all but those composed of thorns and prickly plants, is to train up as many stems as will nearly touch each other. The force of every fence depends chiefly on the upright stems; where there are sufficiently near and strong, the hedge resists all opposition, and will equally repel the violence of the bull, and the infurious attacks of the hogs. It is absolutely proper that all hedges should be inspected once a year; when not only the ditch ought to be thrown out, and the bank fapperted, but the straggling shoots of all the live plants ought to be pruned. By these means all such as project over the ditch beyond the line of the hedge, and which add nothing to its strength, though they deprive the useful stems of part of their nourishment, where an hedge is composed of plants of inferior value, it will be proper to train those in the manner just now recommended, and to plant the bank with quick or holly. When these last have attained a sufficient size, the others may be extinguished; which is best done by cutting down all the shoots repeatedly in the summer, and leaving the roots to rot in the hedge.

In the 35th volume of the Annals, W. Erskine, Esq.; Mr Erskine gives an account of a method of fencing very much re-Indian's method for making hedges. He gives a method of making hedges, confirniing, or reinforcing them, which is called, are more advantageous than hedges. "That hedges (says he) are more ornamental, cannot be denied; and they are generally allowed to afford more shelter: but the length of time, the constant attention, and continual expense of defending them until they bear even the resemblance of a fence, induces many people in those places where the materials are easily procured, to prefer the dry stone walls; for tho' the first cost is considerable, yet as the farmer reaps the immediate benefit of the hedges which are undoubtedly the most secure one; they are thought on the whole to be the least expensive: besides, the cattle in exposed situations, and especially in these northern parts, are so impatient of confinement at the commencement of the long, cold, wet nights, that no hedges I have ever yet seen, in any part of this island, are sufficient to keep them in."

From considerations of this kind, the late Sir George Suttie of Earl of Lothian was induced to think of a fence which might join the strength of the wall to the ornament of the hedge. His thorns were planted in the usual manner on the side of the ditch; but instead of putting behind them a pole and rail or paling on the top of the bank, he erected a wall two feet and a half high; and being well fitted for procuring lime, he used it in the construction of these walls which Mr Erskine greatly recommends; "as the satisfaction they afford, by requiring no repairs, and the duration of them, more than repay the expense: but where the wise
HED [385]

Price of lime is high; they may be built without any cement, and answer the purpose very well if the work is properly executed."

In making a new fence of this kind, the surface of the ground should be pared off the breadth of the ditch, and likewise for two feet more, in order to prevent as much as possible the thorns from being injured by the growth of grass and weeds. The ditch should be five feet broad, two and a half in depth, and one foot broad at the bottom. Leave one foot for an edging or fencement, then dig the earth one spit of a spade for about one foot, and put about three inches of good earth or below the thorn, which should be laid nearly horizontal, but the point rather inclining upwards, in order to let the rain drip to the roots; then add a foot of good earth above it; leave three or four inches of a fencement before another thorn planted; it must not be directly over the lower one, but about nine inches or a foot to one side of it: then throw a foot of good earth on the thorn, and trample it well down, and level the top of the bank for about three feet and an half for the base of the wall to rest on. This base should be about nine or ten inches, but must not exceed one foot from the thorn. The wall ought to be about two feet thick at the bottom and one foot at the top; the cope to be a single stone laid flat; then covered with two fods of turf, the graps of the undermoot to be next the wall, and the other sod must have the graps side uppermost: the sods should be of some thickness, in order to retain moister; so that they may adhere together, and not be easily displaced by the wind: the height of the wall to be two feet and an half, exclusive of the fods; which together should be from four to fix inches, by which means the wall would be near to three feet altogether. The expense of the fences cannot so easily be counted, on account of the difference of the prices of labour in different parts.

Mr. Erskine had them done with lime, every thing included, from 10d. to 15d. per elt (which is equal to 37 inches 2 parts), according to the use or difficulty of working the quarry, and the distance of it from the place where the fence is erected. The lime costs about 6d. per boll of about 4,087,267 bushels; and from 15 to 16 bolls of lime are used to the rood of 36 square ells Scots measure; and there are upwards of 43 Scotch ells, or 44 English yards. When the common round or flat turnips are made use of, as they require more lime, it is necessary to use 30 or 35 bolls of lime to the rood. The thorns are sold from five to ten millings per thousand, according to their age, reckoning 6c. per hundred. Making the ditch, laying the thorns, and preparing the top of the wall, generally cost from 7d. to 8d. every fix ells. About 50 cott of ells, each cott carrying from 7 to 9 cwt. will build a rood; the carriage ad 2d. per cott for half a mile's distance.

Warmth is undoubtedly as beneficial to hedges as to crops; and the walls give an effectual shelter, which in exposed situations is absolutely necessary for rearing young hedges; and they likewise preserve a proper degree of moister about the roots. If the hedges have been planted for fix or seven years before the wall is built, cut them over to two or three inches above the ground with a sharp tool, either in October or November, or early in the spring; and erect the wall as quickly in that season as possible (the spring in this country can scarcely be said to begin till the end of March). It is almost impossible to imagine the rapidity with which hedges grow in favourable situations. Mr. Erskine had one cut over in the spring, and by the end of the year it was almost as high as the wall. In three years he supposes, that not even the Highland sheep, who easily overlap a wall of four feet and an half in height, would have been able to break through it.

Notwithstanding the reasons that have been given already against the planting of timber trees in hedges, the practice is carried on by some authors as oak trees in one of the best situations for raising ship-timber. The reasons are, that the roots have free range in the adjoining inclosures, and the top is exposed to the exer- cise of the winds; by which means the trees are at once enabled to throw out strong arms, and have a large spreading head at the same time; so that we thus at once obtain quickness of growth, with strength and crookedness of timber. Well trained timber trees it is alleged are not prejudicial to hedges, though pollards and low spreading trees are defruitive to the hedge-wood which grows under them; neither are high trees prejudicial to corn-fields like high hedges and pollards, which prevent a proper circulation of air; and in Norfolk, where the cultivation of grain is carried on in great perfection, such lands are said to be wood-bound. But when an hedge is trimmed down to four or five feet high, with oaks interspersed, a circulation of air is rather promoted than retarded by it; and a trimmed hedge will thrive quite well under tall stemmed trees, particularly oaks. For arable inclosures, there, hedges are recommended of four or five feet high, with oak-timbers from 15 to 25 feet stem. Higher hedges are more eligible for grass lands: the grasses affect warmth, by which their growth is promoted, and consequently their quantity is increased, though perhaps their quality may suffer some injury. A tall fence likewise affords shelter to cattle, provided it be thick and close at the bottom; but otherwise, by admitting the air in currents, it does rather harm than good. The shade of trees is equally friendly to cattle in summer; for which reason it is recommended in grass inclosures to allow the hedge to make its natural height, and at the same time to have oak-trees planted in it at proper intervals. Upon bleak hills, and in exposed situations, it will be proper to have two or even three rows of hedge-wood, about four feet distant from each other; the middle row being permitted to reach, and always to remain at its natural height; whilst the side rows are cut down alternately to give perpetual security to the bottom, and afford a constant supply of materials for dead hedges and other purposes of underwood.

Much has been said of the excellency of the holly as a material for hedges; and indeed the beauty of the holly of the plant, with its extreme cloakens, and continueing green throughout the winter evidently gives it the preference to all others; and could it be raised with equal ease, there is no doubt that it would come into universal practice. Besides the above properties, the holly will thrive almost upon any soil; but thin-soiled stony heights seem to be its natural situation; and it may properly enough be said, that holly will grow
HEDYSARUM, in botany: A genus of the decandria order, belonging to the diadelphia class of plants; and in the natural method ranking under the 32d order, Papilionaceae. The carina of the corolla is transversely oblate; the seed-velvet a legumen with monocious joints. There are 59 species of this plant, of which the most remarkable are, 1. The gynenes, or sensitive hedysarum, a native of the East Indies, where it is called burrum chundalli. It arrives at the height of four feet, and in autumn produces bunches of yellow flowers. The root is annual or biennial. It is a trifolious plant, and the lateral leaves are smaller than those at the end, and all day long they are in constant motion without any external impulse. They move up and down and circularly. This last motion is performed by the twining of the footstalks; and while the one leaf is rising, its associate is generally descending. The motion downwards is quicker and more irregular than the motion upwards, which is steady and uniform. The life motions are observables for the space of 24 hours in the leaves of a branch which is lopped off from the shrub if it is kept in water. If from any obstacle the motion is retarded, upon the removal of that obstacle it is resumed with a greater degree of velocity. 2. The coronarium, or common biennial French honey-fuckle, hath large deeply strikling biennial roots; upright, hollow, smooth, very branchy stalks, three or four feet high, garnished with pinnated leaves; and from between the leaves proceed long spikes of beautiful red flowers, succeeded by jointed seed-pods.

Culture. The first species being a native of hot climates, requires, the common culture of tender exotics; the second is easily raised from seed in any of the common borders, and is very ornamental.

HEEL, in anatomy, the hind part of the foot. See ANATOMY, no. 66.

Heel of a Horse, the lower hinder part of the foot comprehended between the quarters and opposite to the toe. The heel of a horse should be high and large, and one side of it should not rise higher than the other upon the pattern. To recover the heels of a horse that is hoof-bound, you should take out his sole and keep his heels very wide, by which they will be reflored in a month.

Heel of a Horseman. This being the part that is armed with the spur, the word is used for the spur itself; "This horse understands the heel well." To ride a horse from one heel to another, is to make him go side-ways, sometimes to one heel and sometimes to another.

Heel, in the sea-language. If a ship leans on one side, whether she be aground or afloat, then it is said the heels a-starboard, or a-port; or that the heels off-wards, or to the shore; that is, inclines more to one side than to another.

Heeler, or Bloody Heel Cock, a fighting cock, that strikes or wounds much with his spurs. The makers know such a cock, even while a chicken, by the striking of his two heels together in his play.

Heem (John David), an able painter, born at Utrecht in 1604. He excelled in painting flowers, fruit,
He died at Antwerp in 1674. He was also a good painter, though inferior to his father.

HEEMS KIRK. See HeemsKirk.

HEGIRA, in chronology, a celebrated epoch among the Mahometans. The word Arabic, formed of

hagirah, flight; of 77, to f2, quit one's country, family, friends, &c.

The event which gave occasion to this epoch, was Mahomet's flight from Mecca. The magistrates of Mecca, being then the residence of the Mahometans, and enemies of the faith: coram allah, his son, was also a good painter, though inferior to his father.

The event which gave occasion to this epoch, was Mahomet's flight from Mecca. The magistrates of Mecca, being then the residence of the Mahometans, and enemies of the faith: coram allah, his son, was also a good painter, though inferior to his father.

The Mahometans affected to use the word Hegira in a peculiar sense for an act of religion, whereby a man forsakes his country, and gives way to the violence of persecutors and enemies of the faith: they add, that the Corahites, being then the strongest party in the city, obliged their prophet to fly, as not being able to endure his abolishing of idolatry. This flight was not the first of Mahomet's, but it was the most famous. It happened in the 14th year of his apostleship, according to the Greek computation, among house in the Haymarket. He then set about improving the entertainments of the royal theatre, soon established his character as a good critic. Appeals were made to his judgment; and some very magnificent and elegant decorations introduced upon the stage in consequence of his advice, gave such satisfaction to George II. who was fond of operas, that, upon being informed to whose genius he was indebted for these improvements, his Majesty was pleased to raise him to the chief management of the opera-house in the Haymarket. He then set about improving another species of diversion, not less agreeable to the king, which was the masquerades, and over these he always presided at the king's theatre. He was likewise appointed master of the revels. The nobility now courted him so much, and paid such an opinion of his taste, that all splendid and elegant entertainments given by them upon particular occasions, and all private assemblages by subscription, were submitted to his direction. From the emoluments of these several employments, he gained a regular considerable income, amounting, it is said, in some years, to 5000l. which he spent with much liberality; particularly in the maintenance of a somewhat luxurious table; so that it may be said he raised an income, but never a fortune. At the same time his charities ought not to pass unnoticed, which were frequent and ample.

After a successful masquerade, he has been known to give away several hundred pounds at a time. "You know poor objects of diffibers better than I do," he would frequently say to a particular acquaintance; "be so kind as to give away this money for me." This well known liberality, perhaps contributed much to his carrying on that diversion with so little opposition as he met with. He died in 1749, at the advanced age of 90 years.

As this person was long the Arbiter Elegiarius of England, and is alluded to in many publications of his time, some account of him was thought to be here expected: but to add all the anecdotes that have appeared concerning him, would enlarge this article beyond the limits to which it is entitled. One
or two of the most remarkable, however, are sub-
joined in a note (A), as they may afford entertain-
ment to many of our readers.

HEIDENHEIM, a town of Germany, in Swabia,
and in the territory of Bremen, with a handsome
palace or castle, belonging to the house of Wirtem-

HEIDELBERG, a considerable and populous
town of Germany, capital of the Lower Palatinate,
with celebrated universities. It is noted for its great
tower, which holds 800 hogheads, generally kept full
of good Rhenish wine. It stands in a pleasant rich
country, and was a famous seat of learning; but it has
undergone so many calamities, that it is nothing now
to what it was formerly. It was first reduced to a
heap of ruins in 1622 by the Spaniards; and the rich
library was transported partly to Vienna, and partly
to the Vatican at Rome. After this it enjoyed the
benefit of peace, till the Protestant electoral houses
came into existence, and a bloody war ensued, in which
not only the castle was raised, but the towns and
bodies of the Palatinate were destroyed.

This happened in 1693; and the people of the
Palatinate were obliged to leave their dwellings, and to
go for refuge into foreign countries. To add to their
misfortunes the elector resided at Mannheim, and car-
rried most of the people of distinction along with him,
so that it is uncertain whether Heidelberg will ever re-
cover itself or not, though they have begun to rebuild
some of the fortifications. The great tower was broke
to pieces by a storm in 1695, and at great ex-
 pense in 1729 was repaired. The town stands on the
river Neckar, over which there is a handsome bridge.
E. Long. 8. 48. N. Lat. 49. 35.

HEIGHT, in general, signifies the difference be-
tween the ground and the top of any object measured
perpendicularly.

Methods of measuring Heights. See GEOMETRY,
TRIGONOMETRY, BAROMETER, MOUNTAIN, &c.

HEILA, a town of Royal Prussia, in Pomerania,
seated at the mouth of the river Vistula, on the Baltic
Sea, and subject to Poland, 12 miles north of Danzic.
E. Long. 19. 25. N. Lat. 54. 53.

HEILEGEN-HAVE, a sea-port town of Germany,
in Lower Saxony, and in Wangerland, seated on the
Baltic Sea, over against the island of Termeren. E. Long.
11. 15. N. Lat. 57. 30.

HEINEC IUS (John Gottlieb), one of the great-
est civilians of the 18th century, was born at Eilen-
berg, in the principality of Altenburg, in 1681.

(A) Heidegger's countenance was particularly unpleasant, from an unusual harshness of features. There is a mezzotinto of him from a painting by Vanloo, a striking likeness; and his face is introduced in more than one of Hischart's prints.—Heidegger was, however, the first to joke upon his own ugliness; and he once laid a wager with a near of Chesterfield, that within a certain given time his lordship would not be able to produce a handsome face in all London. After a short search, a woman was found, whose features were at first thought stronger than Heidegger's; but when applauded her head-dress upon himself, he was universally allowed to have won the wager. Jolly, a well-known tailor, carrying his bill to a noble duke; his grace, for evasions, said "Damn your ugly face, I never will pay you till you bring me an uglier fellow than yourself!" Jolly bowed and retired, wrote a letter, and sent it by a servant to Heidegger, saying, "His grace wished to see him the next morning on particular business." Heidegger attended, and Jolly was there to connive; and in conse-
quently as soon as Heidegger's visit was over, Jolly received the cash.

The late furious duke of Montagu (the memorable author of the Folly Conjector at the theatre in the Haymarket) gave an entertainment at the Devil-cavern, Temple-bar, to several of the nobility and gentry, feasting the most convivial, and a few hard-drinkers who were all in the plot. Heidegger was invited, and in a few hours after dinner was made to do dead drunk that he was carried out of the room, and laid insensible upon a bed. A profound sleep ensued, when the late Mrs Salmon's daughter was introduced, who took a mould from his face in platter of Paris. From this a mask was made, and a few days after the next masquerade (at which the king promised to be present, with the courtiers of Versailles) the duke made application to Heidegger to be a valet de-chambre, to know what sort of clothes he was likely to wear; and then procuring a similar dress, and a person of the same stature, he gave him his instruc-
tions. On the evening of the masquerade, as soon as his majesty was seated (who was always known by the conductor of the enter-
tainment, and at the officers of the court, though concealed by his dress from the company), Heidegger, as usual, ordered the music to play "God save the king!" but his back was so foon
turned, than the false Heidegger ordered them to strike up "Charly o'er the water." The whole company were infinitely amused, and all the courtiers not in the plot were thrown into a
stupid confusion. Heidegger flew to the music-gal-
lery, swore, stamped, and raved, accusing the musicians of drunk-
eness, or of being let on by some secret enemy to ruin him.

The king and the courtiers laughed immediately, that they
hazarded a discovery. While Heidegger laid in the gallery,
"God save the king!" was the tune; but when, after setting
matters to rights, he retired to one of the dancing-rooms, to ob-
serve if the clowns were kept by the company, the valet de-
chambre stepping forward, and placing himself upon the floor
of the theatre, just in front of the music-galler, called out in a mod-
al audible voice, imitating Heidegger, demands them for block-
heads, had he not just told them to play "Charly o'er the
water!" A pause ensued; the musicians, who knew his char-
acter, in their turn thought him either drunk or mad; but as
he continued his vociferation, "Charly!" was played again. At
this repetition of the supposed affront, some of the officers of the
guards, who always attended upon these occasions, were for
sounding the gallery and robbing the musicians out; but the
late duke of Cumberland, who could hardly contain himself,
interposed. The company were thrown into great confusion
"Shame! Shame!" exclaimed from all parts, and Heidegger
once more flew in a violent rage at the part of the gallery
facing the gallery. Here the duke of Montagu, artfully ad-
ressing himself to him, told him, "The king was in a violent
passion; that his best way was to go instantly and make an
apology, for certainly the musicians were mad, and afterwards
to discharge them." Almost at the same instant, he ordered the
false Heidegger to do the same. The scene now became truly
comic in the circle before the king. Heidegger had no sooner
made a genteel apology for the insolence of his musicians, but
the false Heidegger advanced, and, in a plaintiff tone, cried out,
"Indeed, Sir, it was not my fault, but that devil's in
my likeness." Poor Heidegger turned round, stared, flagged,
grew pale, and could not utter a word. The duke then hu-
manly whispered in his ear the fum of his plot, and the coun-
terfeit was ordered to take off his mask. Here ended the
frolic; but Heidegger swore he would not attempt any public
amusement, if that with the wax-work woman did not break
the mould, and melt down the mask before his face.

Being once at supper with a large company, when a question
was debated, which nation in former times had the greatest in-
feriority to the suprise of all present, he claimed that charac-
ter for the Swiss, and appealed to himself for the truth of it,
"I was born a Swiss (said he), and came to England without a
farting, where I have found means to gain 3000l. a-year, and
to spend it. Now the most idle Englishman to go to
Switzerland, and either to gain that income or to spend it
there."—Heidegger is said to have had so remarkable a memory,
that he once walked from Charing-cross to Temple-bar, and
back again; and when he came home, wrote down every sig-
na on each side of the street.
Heinken, ter having studied at Goder and Leipzick, he was de-
Hendius,
minated for the ministry, and began to preach; but dif-
liking that profession, he laid it aside, and applied
himself entirely to the study of philosophy and the civil
law. In 1710, he became professor of philosophy
at Hall; and in 1721, he was made professor of civil
law, with the title of conseller of the court. His great
reputation made the fiates of Friesland invite him to
Frenacker in 1724; but three years after, the king of
Anstrust prevailed on him to accept of a professorship
of law at Frankfort on the Oder, where he distinguished
himself till the year 1733. Becoming again professor at
Hall, he remained there till his death, which happened
in 1741, notwithstanding his being invited to Marburg,
Denmark, and three academies in Holland. He wrote
many works, all of them most eftimable. The prin-
cipal are, 1. Antiquation Romanarum jurisprudentium ili-
ustratum syntagma. It was this excellent abridgment
that gave rife to his reputation in foreign countries.
2. Elementa juris civilis fecondum ordinem institutionum
et pandectarum. 3. Fundamenta juris civilis Romani et Germanici.
HEINETKEN (Christian), an extraordinary child,
the prodigy of the North, was born at Lubeck in
1721. He spoke his mother tongue fluently at 10
months. At one year old, he knew the principal events
of the pentateuch; in two months more he was mas-
ter of the entire history of the Old and New Testa-
maments: at two years an half, he outvied the prin-
cipal questions in geography and in ancient and mo-
dern history; and he spoke Latin and French with great
facility before the commencement of his fourth year.
His constitution was so delicate, that he was not
weaned till a few months before his death. M. Mar-
tini of Lubeck published a pamphlet in 1730, in which
he endeavoured to give natural reasons for the extra-
ordinary capacity of this infant, who died in his fifth
year.
HEINSIUS (Daniel), professor of politics and his-
story at Leyden, and Librarian to the university there,
was born at Gand in Flanders in 1580. He became a
scholar to Jofph Scalliger at Leyden, and was indebted
to the encouragement and care of that great man
for the perfection to which he attained in literature,
and which at the beginning of his life there was little
reason to hope from him. He distinguished himself as
a critic by his labours on many classical authors; and
was highly honoured as well abroad as at home: Gu-
flavus Adolphus king of Sweden gave him a place
among his counsellors of state; the republic of Venice
made him a knight of the order of St Mark; and pope
Urban VIII. made him great offers, if he would come,
as he expressed it, 'to rescue Rome from barbarism.'
He died in 1666, leaving several works of his own,
both in poetry and prose.
HEINSIUS (Nicholas), the son of Daniel Heinsius,
was born at Leyden; and became as great a Latin
poet, and a greater critic, than his father. His poems
have been several times printed, but the best edition
is that of Amsterdam in 1666. He gave editions of fe-
veral of the classics, with notes; his Claudian is dedi-
cated in a Latin poem to queen Christilna of Sweden,
and his Ovid to Thanus. At his death, which hap-
pened in 1681, he disclaimed all his works, and ex-
pressed the utmost regret at having left behind him so
many 'monuments of his vanity,' as he called them.
He was as much distinguished by his great employ-
ments in the flate, as by his talents, learning, and
good qualities.
HEIR, in law, signifies the person who succeeds
another by descent to lands, tenements, and heredi-
taments, being an estate of inheritance, or an estate in
fee; because nothing passes by right of inheritance but
fee. See the articles Consanguinity, Descent,
Feesuccession; and Law, N° lxvi. & cxxxi. fig.
HEIR-Apparent, is a person so called in the lifetime
of his ancestor, at whose death he is heir at law.
HEIR-Predecessor, is one who, if the ancestor should
die immediately, would, in the present circumstances
of things, be his heir; but who is not heir by inheritance,
may be defeated by the contingency of some nearer
heir being born.
HEIR-Looms, (formed of heir and the Saxon loos, de-
noting timb or members in our law-books, signifies such
goods and personal chattels as are not inventoried after
the owner's decease, but necessarily come to the heir
along with the house.
Heir-loom comprehends divers implements ; as ta-
bles, preffes, cupboards, bedsteads, furnaces, wainscot,
such like; which in some countries have belonged
to a house for certain deneants, and are never inventor-
ied after the decease of the owner as chattles are, but
accrued by cultum, not by common law, to the heir, as
with the house itself. The ancient jewels of the crown
are held to be heir-looms, and are not devisable by
will, but descend to the next successor.
HEIRESS, a female heir to one who has an estate
in lands, &c. See HEIR.
Stealing an HEIRESS. See FORCIBLE Marriage.
HEIRSHIP moveables, in Scots law, the left of
certain kinds of moveables, which the heir of line is inti-
ted to take, besides the heritable estate. See:
Law, N° cxv. & cxxvii.
HEISTERIA, in botany: A genus of the mono-
gynia order, belonging to the decandria class of plants;
and in the natural method ranking under the truth or-
der, Holocarces. The calyx is quincunxif, the petals
five; the fruit is a plum on a very large coloured
calyx.
HELENA, or St. HELENA, an island in the At-
lanic Ocean, belonging to the English East India
company, and situated in W. Long 6. 30. S. Lat. 16.
The greatest length of the island is about eight miles,
and its circumference about 20. It hath some high
mountains, particularly one called Diana's peak,
which is covered with woods to the very top. Other
hills there are which bear evident marks of a volcanic
origin; and some have huge rocks of lava, and a kind
of half-vitrified flags. The country, according to Mr
Forster, has a fine appearance; the soil is in many
places a rich mould, from six to ten inches deep, and
a variety of plants thrive in it luxuriantly. He found
many plants here which he had not observed in other
parts of the world. Among these were some called
by the natives cabbage-trees, gum-trees, and red wood.
The former thrive in mollipates; but the latter are al-
The cabbage-tree has rather ways found on the ridges of hills, where the soil is dry. The cabbage-tree has rather large leaves; but after many inquiries Mr Forster could not find that it was used for any other purpose than that of fuel, and no reason could be assigned why it had obtained that name. It must not be confounded with the cabbage-tree of America, India, and the South Seas, which is a species of palm.
The island is laid out entirely in gardens and pastures. Peaches are the only European fruits that thrive here. Cabbages and other greens, which thrive of the polygama superflua order, belonging to the syngenesia class of plants; and in the natural method ranking under the 49th order, Composite. The receptacle is naked in the middle; under the radius palaceous; the pappus consists of five short awns; the calyx is simple and multipartite; the florets of the radius semitrid.

Species. 1. The autunnale, with spear-shaped narrow leaves. 2. The latifolium, with pointed, spear-shaped, sawed leaves. - Both these are natives of North America, where they grow wild in great plenty. They rise to the height of seven or eight feet in good ground. The roots, when large, fend up a great number of stalks, which branch toward the top; the upper part of the stalk sustains one yellow flower, shaped like the sun-flower, but much smaller, having long rays, which are jagged pretty deep into four or five segments.

Culture. These plants may be propagated by seeds, or by parting their roots; the latter is generally practiced in this country. The best season to transplant and part the old roots is in October when their leaves are past, or in the beginning of March just before they begin to shoot. They delight in a soil rather moist than dry, provided it is not too strong, or does not hold the wet in winter.

HELENUS (fab. hist.), a celebrated footsayer, son of Priam and Hecuba. He was greatly respected by all the Trojans. When Deiphobus was given in marriage to Helen in preference to himself, he resolved to leave his country, and retired to mount Ida, where Ulysses took him prisoner by the advice of Calchas. As he was well acquainted with futurity, the Greeks made use of prayers, threats, and promises, to induce him to reveal the secrets of the Trojans; and either the fear of death, or gratification of revenge, seduced him to disclose to the enemies of his country, that Troy could not be taken whilst it was in possession of the Palladium, nor before Polydeuces came from his retreat at Lemnos and ascended to support the siege. After the ruin of his country, he fell to the share of Pyrrhus the son of Achilles, and saved his life by warning him to avoid a dangerous tempest, which in reality proved fatal to all those who let fall. This endeared him to Pyrrhus; and he received from his hand Andromache the widow of his brother Hector, by whom he had a son called Cepirrus. This marriage, according to fome, was consummated after the death of Pyrrhus, who lived with Andromache as with a wife. Helenus was the only one of Priam's sons who survived the ruin of his country. After the death of Pyrrhus he reigned over part of Epirus, which he called Chaonia in memory of his brother Chaton, whom he had inadvertently killed. Helenus received æneas as he rendered perfectly secure against all regular approaches or sudden attacks.

HELEN, (in fab. hist.) the daughter of Tyndarus and Leda, was married to Menelaus king of Sparta, but was stolen from him by the Eneas, 1235 B. C. She was restored soon after; but carried off again by Paris, the Trojan prince; which occasioned the famous Trojan war. See Troy.

St. HELEN. See HELENA.

HELENUS, BASTARD SUN-FLOWER: A genus of the polygama superflua order, belonging to the syngenesia class of plants; and in the natural method ranking under the 49th order, Composite. The receptacle is naked in the middle; under the radius palaceous; the pappus consists of five short awns; the calyx is simple and multipartite; the florets of the radius semitrid.
Helios he voyaged towards Italy, and foretold him some of the calamities which attended his fleet. The manner in which he received the gift of prophecy is doubtful.

HELLEPOLIS, in the ancient art of war, a machine for battering down the walls of a place beleaguered, the invention of which is ascribed to Demetrius Poliorcetes.—Diodorus Siculus says, that each side of the Hellepolis was 405 cubits in breadth, and 90 in height; that it had nine stages, and was carried on four strong solid wheels eight cubits in diameter; that it was armed with large battering rams, and had two roofs capable of supporting them; that in the lower stages there were different sorts of engines for cutting stones; and in the middle they had large catapultas for discharging arrows, and smaller ones in those above, with a number of expert men for working all these machines.

Heliades, in mythology, the daughters of the Sun and Clymenes, according to the poets. They were so afflicted, as they say, with the death of their brother Phaeton, that the gods, moved with compassion, transformed them into poplars on the banks of the river Eridanus.

HELLEA, in Grecian antiquity, was the greatest and most frequented court in Athens for the trial of civil affairs. See Heliaste.

Heliacal, in astronomy, a term applied to the rising and setting of the stars; or more freely speaking, to their emersion out of and immersion into the rays and superior splendor of the sun.—A star is said to rise heliacally, when, after having been in conjunction with the sun, and on that account invisible, it comes to be at such a distance from him as to be seen in the morning before sun-rising; the sun, by his apparent motion, receding from the star towards the east. On the contrary, the heliacal setting is when the sun approaches so near a star as to hide it with his beams, which prevents the fainter light of the star from being perceived; so that the terms apparition and occultation would be more proper than rising and setting.

Helianthus, the great sunflower: A genus of the family Astereae, order belonging to the syngenesia class of plants; and in the natural method ranking under the 49th order, Composite. The receptacle is pæceuus and plane; the pappus diphylous; the calyx imbricated; the scales standing a little out at the tops. There are 12 species, most of which are now very common in Britain, though all of them are natives of America. They are all very hardy, and will prosper in almost any soil or situation. They may be propagated either by seeds or by parting their roots.

Heliaste, in antiquity, the judges of the court Heliaste. They were so called, according to some authors, from a Greek word which signifies to assemble in a great number; and, according to others, from another word which signifies the sun, because they held their assemblies in an open place. They composed not only the most numerous, but likewise the most important of the Athenian tribunals; for their province was either to explain the obscure laws, or to give new vigour and authority to those which had been violated. The Thesmophoriae sometimes summoned those of each tribe who had last quitted the public offices which they had exercised in another court.

However that may be, it appears that the assemblies of the Heliaste were not frequent, as they would have interrupted the jurisdiction of the stated tribunals and the common course of affairs.

The Thesmophoriae paid to each member of this assembly, for his attendance, three oboli: which are equal to two Roman sesterces, or to half a drachma. Hence Aristophanes, terms them the brothers of the tribes. They were likewise condemned to pay a fine if they came too late; and if they did not present themselves till after the orators had begun to speak, they were not admitted. Their attendance was required out of the public treasury, and their pay was called misbath heliastea.

The assembly met, at first, according to Aristophanes, at the rising of the sun. If the judges were obliged to meet under cover on account of frost and snow, they had a fire; but there is not a passage in any ancient author which informs us of the place where these assemblies were held either in the rigorous or in the mild seasons. We only learn, that there was a double enclosure around the assembly, that it might not be disturbed. The first was a kind of arbour-work, from space to space, separated by doors, over which were painted in red the ten or twelve first letters of the Greek alphabet, which directed the entrance of the officers who composed the tribunal, each of them entering under the letter which distinguished his tribe. The beaules of the court, to whom they showed the wands which had been sent them by the Thesmophoriae as a summons to meet, examined its mark, to see if it was authentic, and then introduced them. The second inclosure, which was at the distance of 20 feet from the former, was a rope or cord; that the people who stood round the first inclosure, and were defirous to see what passed within the second, might not be prevented from gratifying their curiosity at a proper distance. Thus the attention of the judges was not interrupted by the concourse of the multitude, many of whom were heated by views of interest or of party.

To each of the members of the assembly were distributed two pieces of copper; one of which was perforated, not certainly that it might be distinguished from the other by feeling, for these assemblies met at the rising and were dissolved at the setting of the sun. Those pieces of copper had been subdivided for little sea-shells, which were at first in use. The king was present at the assembly, at whose command it had been summoned. The Thesmophoriae read the names of those who were to compose it, and each man took his place as he was called. The Thesmophoriae were then four for, whose function it was to observe prodigies and to superintend the sacrifices; and if they gave their function, the deliberations were begun. It is well known, that the officers called Exegeta were often corrupted by those who were interested in the debates of the assembly; and that they excited such tumults as were railed by the Roman tribunal in the popular assemblies convoked by the confuls.

Of all the monuments which remain relating to the Heliaste, the most curious is the oath which those judges
Heliadæ, judges took before the Themistocle: Demosthenes hast pre- ferred it in his oration against Timocrates, who having been bribed by those who had been instrusted with the effects taken on board a vessel of Naucrat, and refused to give an account of them, got a law passed, by which an enlargement was granted to prisoners for public debts on giving bail. Demosthenes, in making his oration against that law, ordered the oath of the Heliastæ to be read aloud, as a perpetual auxiliary to his arguments, and happily calculated to inflame the multitude and inflame their passions. This oath we shall quote, that our readers may know how respectable a tribunal that of the Heliastæ was, and the importance of their decisions.

"I will judge according to the laws and decrees of the people of Athens, and of the senate of 500. I will never give my vote for the establishment of a tyrant, nor of an oligarch. Nor will I ever give my approbation to an opinion prejudicial to the liberty or to the union of the people of Athens. I will not secede from those persons who may propose a reduction of private debts, or a distribution of the lands or houses of the Athenians. I will not recall exiles, nor endeavour to procure a pardon for those who shall be condemned to die. Nor will I force those to retire whom the laws and the suffrages of the people shall permit to remain in their country. I will not give my vote to any candidate for a public function who gives not an account of his conduct in the office which he has previously filled; nor will I presume to solicit any trust from the commonwealth without subjecting myself to this condition, which I mean as obligatory to the nine archons, to the chief of religious matters, to those who are banished on the same day with the nine archons, to the herald, the ambassador, and the other officers of their court. I will not suffer the same man to hold the same office twice, or to hold two offices in the same year. I will not accept any present, either myself or by another, either directly or indirectly, as a member of the Heliastæ assembly. I solemnly declare that I am 50 years old. I will be equally attentive and impartial to the accuser and the accused; I will give my sentence rigorously according to evidence. Thus I swear, by Jupiter, by Neptune, and by Ceres, to a. And if I violate any of my engagements, I implore from these deities ruin on myself and my family; and I request them to grant me every kind of prosperity, if I am faithful to my oath."

The reader should peruse what follows this oath to see what eloquence Demosthenes avails himself of it, and how he applies its principles to the cause which he defends.

Here we have one of the motives of the meeting of this assembly. Aristotle informs us of another, which was by the public authority deputies to demand a magistracy in the island of one dead. It is surprising, that Pantæus, who enters so often into details, gives us no particular account of this assembly. All that he says of it is, that the most numerous of the Athenian assemblies was called Heliastæ.

We are told by Diogenes Laërtius, in his life of Solon, that it was before one of these Heliastæ assemblies that Pisistratus presented himself, covered with wounds and contusions (for thus he had treated himself and the mules which drew his car), to excite the indignation of the people against his pretended enemies, who, jealous, as he alleged, of the popularity he had acquired by altering the rights of his poorer fellow citizens, in opposition to the men in power, had attacked him while he was hunting, and had wounded him in that barbarous manner. His design succeeded: a guard was appointed him; by the assistance of which he acquired the sovereignty or tyranny of Athens, and kept it 33 years. The power of the assembly appeared remarkable on that occasion; for Solon, who was present, opposed it with all his efforts, but did not succeed.

As to the manner in which the judges gave their suffrages, there was a sort of vessel covered with an outer mat, in which were placed two urns; the one of copper, the other of wood. In the lid of these urns there was an oblong hole, which was large at the top, and grew narrower downwards, as we see in some old boxes of churches. The suffrages which condemned the accused persons were thrown into the wooden urn, which was termed \(\text{arys.} \) That of copper, named \(\text{akyrin,} \) received those which absolved him.

Aristotle observes, that Solon, whose aim was to make his people happy, and who found an aristocracy established by the election of the nine archons (annual officers, whose power was almost absolute), tempered their sovereignty, by instituting the privilege of appealing from them to the people, who were to be assembled by lot to give their suffrage; after having taken the oath of the Heliastæ, in a place near the Panathenæum, where Helleus had, in former days, calmed a sedition of the people, and bound them to unanimity by an oath. It has likewise been remarked that the god Apollo was not invoked in the oath of the Heliastæ, as in the oaths of the other judges. We have observed, that he who took the oath of the Heliastæ, engaged that he would not be corrupted by solicitation or money. Those who violated this part of their oath were condemned to pay a severe fine. The decemvirs at Rome made such corruption a capital crime. But Ancius remarks, that the punishment denounced against them was mitigated in later times, and that they were expelled the senate, or banished for a certain time, according to the degree of their guilt.

Helicon, in ancient geography, the name of a mountain in the neighbourhood of Parnassus and Cytheron, sacred to Apollo and the muses, who are thence called Heliocides. It is situated in Livadia, and now called Zagura or Zaugua.—Helicon was one of the most fertile and woody mountains in Greece. On it the fruit of the arbous, a species of the arbus or of the strawbery-tree, was unusually sweet; and the inhabitants affirmed, that the plants and roots were all friendly to man, and that even the serpents had their poison weakened by the innoxious qualities of their food. It approached Parnassus on the north, and it touched on Phocis; and resembled that mountain in loziness, extent, and magnitude. Here was the shady grove of the muses and their images; with statues of Apollo and Bacchus, of Linus and Orpheus, and the Illustrious poets who had recited their verses to the harp. Among the tripod, in the second century, was that consecrated by Hefiod. On the left-hand going to the grove was the fountain Aiguppe; and about twenty stadia, or two miles and a half higher up, the violet-
HELIUM

HELICELAS, violet-coloured Hippocrene. Round the grove were houses. A festival was celebrated there by the Thespian games called Maen. The valleys of Helicon are described by Hesiod as green and flowery in the spring; and enlivened by pleasant cascades and streams, and by fountains and wells of clear water. The Boeotian cities in general, two or three excepted, were reduced to inconsiderable villages in the time of Strabo. The grove of the muse was plundered under the auspices of Constantine the Great. The Heliconian goddesses were afterwards confumed in a fire at Constanitople, to which city they had been removed. Their ancient seat on the mountain, Aganippe and Hippocrene, are unascertained.

HELICONIA, in botany: a genus of the monogyne order, belonging to the pentandria class of plants. The spath is universal and partial; there is no calyx; the corolla has three petals, and the flowers feed by a syrinx, because he would the virtue, whence the name. This genus is a digynia order, belonging to the gyrocarpus class of plants; and in the natural method ranking under the 37th order, Columnifera. The calyx is monophyllous and oblique; there are five petals, and the flowers feed by a syrinx, because he would the virtue, whence the name. The corolla has three petals, and the flowers feed by a syrinx, because he would the virtue, whence the name. The order, Heliconia, is commonly called Helicon, and in Britain must be kept in a stove during the winter.

HELIOPARUS, in botany: a genus of the digynia order, belonging to the gyrocarpus class of plants; and in the natural method ranking under the 37th order, Columnifera. The calyx is tetraphyllous; the petals four; the syrinx simple; the capsule bilocular, comprisefied, and radiated lengthwise on each side.

HELIOPHILUS, a name given to the white negroes or albino, from their aversion to the light of the sun. See Albino.

HELIOPOLIS (anc. Geopolis), so called by Herodotus and Diodorus Siculus, by Mofes Osir, and in Jeremiah Bethsamen; a city of Egypt, to the south-east of the Delta, and east of Memphis; of a very old standing.
HELIOSCOPE, in optics, a fort of telescope, peculiarly fitted for viewing the sun without hurting the eyes. See Telescope.

As the sun may be viewed through coloured glasses without hurt to the eyes, if the object and eye glasses of a telescope be made of coloured glass, as red or green, such a telescope will become an heliroscope.

But Mr Huygens only used a plain glass, blackened at the flame of a candle on one side, and placed between the eye-glasses and the eye; which answers the design of an heliroscope very well.

HELIOSTATA, in optics, an instrument invented by the late learned Dr S. Gravéfand; who gave it this name from its fixing, as it were, the rays of the sun in an horizontal direction across the dark chamber all the while it is in use. See Optics (Index.)

HELIOTROPE, (heliotropium), among the ancients, an instrument or machine for showing when the sun arrived at the tropics and the equinoctial line. This name was also used for a sun-dial in general.

Heliotrope is also a precious stone, of a green colour, flecked with red veins. Pliny says it is thus called, because, when cast into a vessel of water, the sun's rays falling thereon seem to be of a blood colour; and that, when out of the water, it gives a faint reflection of the figure of the sun; and is as proper to observe eclipses of the sun as a helioscope. The heliotrope is also called oriental Jasper, on account of its ruddy spots. It is found in the East Indies, as also in Ethiopia, Germany, Bohemia, &c. Some have ascribed to it the faculty of rendering people invisible, like Gyges's ring.

HELIOTROPIUM, Turnsole: A genus of the polygynia order, belonging to the pentandria class of plants; and in the natural method ranking under the 4th order, Appendicea. The corolla is funnel-shaped and quinquefid, with yellow dents intermixed alternately; the throat closed up by small arches formed in the corolla itself. There are a number of species, all of them natives of warm countries. Only one, called the triococcus, grows in Europe; and is a native of France, Spain, Bohemia, &c. Some have ascribed to it the faculty of rendering people invisible, like Gyges's ring.

HELIX, in geometry, a spiral line. See Spiral.

The word is Greek, ἐλεξ, and literally signifies "a wreath or winding," εἴλεξ ἐκφέρει, το ἐκφύειν. In architecture, some authors make a difference between the helix and the spiral. A "stair-case," according to David, is in a helix, or is helical, when the stairs or steps wind round a cylindrical newel; whereas the spiral winds round a cone, and is continually approaching nearer its axis.

Helix is also applied, in architecture, to the caulicules or little volutes under the flowers of the Corinthian capital; called also uriel or urilae.

Helix, in anatomy, is the whole cirtic or extent of the auricle or border of the ear outwards. In opposition to which, the inner protuberance surrounded thereby, and answering thereto, is called anthelix. See Anatomy, p. 141.

Helix, the Snail, in zoology, a genus belonging to the order of vermices testacea. The shell consists of one spiral, btritle, and almost diaphanous valve; and the aperture is narrow. There are 60 species, principally distinguished by the figure of their shells. They are of various sizes, from that of a small apple to less than half a pea. Some of them live on land, frequenting woods and gardens, or inhabiting crevices of rocks and dry sand-banks. Others of them are aquatic, inhabiting ponds, deep rivers, and the ocean. The principal species are,

1. The jacintha, with a violet-coloured shell, is remarkable for the extreme thinness of its texture, which breaks with the least pressure, and seems therefore entirely calculated to keep the open sea, or at least to hunt rocky shores. It inhabits the seas of Europe, especially the Mediterranean; those of Asia and Africa, and also the ocean. The living animal, when touched, exudes a juice which stains the hands of a violet colour.

Dr Hawkesworth in his account of Cooke's voyage, mistakes this shell for that which yielded the purpura of the ancients. But whoever looks into Pliny, can never have the least idea that the thin shell aforementioned could be the same with it. They had several shells which yielded the purple dye; but these were all rock shells, and very different both in figure and hardness from the little helix jacintha; which is not found and calculated for the neighbourhood of rocks, as already mentioned. Vide Plin. lib. v. cap. 1. and lib. ix. cap. 60, 61. See also Don Alt. Ulloa's Voyage to South America, book iv. ch. 8.

2. The pomatia, or exotic snail, with five spires, most remarkably ventricose, and fastened with a lighter and a deeper brown, is a native of France, where it inhabits the woods; but has been naturalized in England, where it inhabits the woods of the southern counties. It was introduced, as it is said, by Sir Kenelm Digby; whether for medical purposes, or as a curiosity, is uncertain: tradition says, that to cure his beloved wife of a decay was the object. They are quite confined to the southern counties. An attempt was made to bring them into Northamptonshire, but they would not live there.—These are used as a food in several parts of Europe during Lent; and are preserved as an exculorative, or a large boiled round in, with a floor covered half a foot deep with herbs, in which the snails Neil and fatten. They were also a favourite dish with the Romans, who had their cocbeitaria, a nursery Trav. 372, similar to the above. Fulvius Hirlinus was the first; Pliny, l. n. inventor of this luxury, a little before the civil wars. Between Caesar and Pompey. The snails were fed with bean and sodden wine. If we could credit Varro; L. iii. they grew so large, that the shells of some would hold 14-15 quarts! People need not admire the temperance of the supper of the young Pliny §, which consisted of only a lettuce, a piece of anchovies, two eggs, a barley-cake, sweet wine and fowle.—in cafe his snails bore any proportion in size to those of Hirlinus.—Its name is derived not from any thing relating to an orchard, but from vacca, an aperculum, it having a very strong one. This seems to be the species described by Pliny.
Pliny, lib. viii. c. 39, which he says was scarce; that it covered itself with the opercle, and lodged under gravel; and that they were at first found only about the maritime Alps, and more lately near Velitis. [See Plate CCXXXIV. the figure half the natural size.]

3. The hortensis, or garden-snail, is in form like the left, but lefts, and not umbilicated and clouded, or mottled with browns. It abounds with a viscid limy juice, which it readily gives out by boiling in milk or water, so as to render them thick and glutinous. The decoctions in milk are apparently very nutritious and demulcent, and have been recommended in a thin water, so as to render them thick and glutinous. The decoctions in milk are apparently very nutritious and demulcent, and have been recommended in a thin

Snails are great destroyers of fruit in our gardens, especially the better sorts of wall-fruit. Lime and ashes sprinkled on the ground where they most often feed will drive them away, and destroy the young brood of them; it is a common practice to pull off the fruit they have bitten; but this should never be done, for they will eat no other till they have wholly eaten up this if it is left for them.

HELL, the place of divine punishment after death. As all religions have supposed a future state of existence after this life, so all have their hell or place of torment in which the wicked are supposed to be punished. The hell of the ancient heathens was divided into two mansions; the one called Elysium, on the right hand, pleasant and delightful, appointed for the souls of good men; the other called Tartarus, on the left, a region of misery and torment appointed for the wicked. The latter only was hell, in the present restrained sense of the word. See Elysium.

The philosophers of the ancient world held that each land and nation, that the infernal regions were at an equal distance from all the parts of the earth; nevertheless it was the opinion of some, that there were certain passages which led thither, as the river Lethe near the Syrtes, and the Achaeusian cave in Epirus. At Hermoine it was thought, that there was a very short way to hell; for which reason the people of that country never put the fare into the mouths of the dead to pay their passage.

The Jews placed hell in the centre of the earth, and believed it to be situated under waters and mountains. According to them, there are three passages leading to it: the first is in the wilderness, and by that Korah, Dathan, and Abiram, descended into hell; the second is in the sea, because Jonah, who was thrown into the sea, cried out to God out of the belly of hell; the third is in Jerusalem, because it is said the fire of the Lord is in Zion, and his furnace is in Jerusalem. They likewise acknowledged seven degrees of pain in hell, because they find this place called by seven different names in scripture. Though they believed that infidels, and persons eminently wicked, will continue for ever in hell; yet they maintained, that every Jew who is not infected with some hereby, and has not acted contrary to the points mentioned by the rabbins, will not be punished therein for any other crimes above a year at most.

The Mahometans believe the eternity of rewards and punishments in another life. In the Koran it is said, that hell has seven gates, the first for the Musulmans, the second for the Christians, the third for the Jews, the fourth for the Sabians, the fifth for the Magians, the
HELL [396]

HELL

Hell

Hel,
inveterate obstructions of the remoter glands. It often
proves a powerful emmenagogue in pellitory habits,
where the cat is ineffectual or improper. In some parts
of Germany, a species of black hellebore has been
made use of, which frequently produced violent, and
sometimes deleterious, effects. It appears to be the
kind of Linnæus, called in English figwort, fet
wort, or hoffard hellebore. The roots of this may be
distinguished from thoso of the true kind, by their be
ning lt's black.

HELLEN, the son of Deucalion, is said to have
given the name of Hellenists to the people before called
Greeks, 1521 B.C. See GREECE.

Hellenism, in matters of language, a phrase
in the idiom, genius, or construction of the Greek
tongue. This word is only used when speaking of the
authors who, writing in a different language, express
themselves in a phraseology peculiar to the Greek.

Hellenistic Language, that used by the
Grecian Jews who lived in Egypt and other parts where
the Greek tongue prevailed. In this language it is
said the Septuagint was written, and also the books
of the New Testament; and that it was thus denomina
ted to show that it was Greek filled with Hebraisms and
Syriacisms.

Hellenists (Hellenific?), a term occurring in
the Greek text of the New Testament, and which in
the English version is rendered Grecians.

Hellenists are divided as to the significanece of the
word. Oecumenus, in his Scholia on Acts vii. 1. ob
erves, that it is not to be understood as signifying thoso
of the religion of the Greeks, but those who spoke
Greek, ἤλληνες ἡξῆσαν. The authors of the Vul
gate version, indeed, render it like ours, Greci; but
Meilleurs Du Port Royal more accurately, Ἰουταί
Greci, or Grecian Jews; it being the Jews who spoke
Greek that are here treated of, and who are hereby
distinguished from the Jews called Hebrew, that is,
who spoke the Hebrew tongue of that time.

The Hellenists, or Grecian Jews, were those who
lived in Egypt and other parts where the Greek tongue
prevailed. It is to them we owe the Greek version
of the Old Testament commonly called the Septuagint, or
that of the seventy.

Salmanias and Vossius are of a different sentim
ent with regard to the Hellenists. The latter will only have
to be those who adhered to the Grecian interests.

Scaliger is represented, in the Scaligerana, as affor
ting the Hellenists to be the Jews who lived in Greece
and other places, and who read the Greek Bible in
their synagogue, and used the Greek language in
Scripture; and thus they were opposed to the Hebrew Jews
who performed their public worship in the Hebrew
tongue; and, in this sense St Paul speaks of himself
as a Hebrew of the Hebrews, Phil. iii. 5. i.e. a He
brew both by nation and language. The Hellenists
are thus properly distinguished from the Hellenes or
Greeks, mentioned John xii. 20. who were Greeks
by birth and nation, and yet profylcts to the Jewish
religion.

Hellenodice, ἡλληνοδίκη, in antiquity, the
directors of the Olympic games. At first there
was only one, afterwards the number increased to two and
to three, and at length to nine. They assembled in a
place called ἡλληνοδίκη in the Elean forum, where
they were obliged to reside ten months before the ce
lebration of the games, to take care that such as offered
themselves to contend, performed their ἐταίραμαν
νεως, or preparatory exercises, and to be instructed in all
the laws of games by certain men called ἐπιστημονείας. e.
kees of the law. And the latter to prevent all un
suitable practices, they were further obliged to take an
oath, that they would act impartially, would take no
bribes, nor discover the reason for which they disliked
or approved of any of the contestants. At the solemn
ity they sat naked, having before them the victorial
crowns that the exercises were finishe, and then it was
presented to whomsoever they adjudged it. Neverthe
less, there lay an appeal from the hellenodice to the
Olympian senate.

Helleespont, a narrow strait between Asia and
Europe, near the Propontis, which received its name
from Helen, who was drowned there, in her voyage to
Chalcis. It is celebrated for the love and death of
Leander, and for the bridge of boats which Xerxes
built over it when he invaded Greece. The folly of this
great prince is well known in beating and fettering
the waves of the sea, whose impetuosity featxered his hips,
and rendered all his labours ineffectual. It is now
called the Lardellettes. It is about 33 miles long, and
in the broadest part of the Asiatic coast is about one mile
and a half distance from the European, and only half
a mile in the narrowest, according to modern investiga
tion, and the cocks are heard crowing from the op
posite shores.

Hellen's (St) a town of the Isle of Wight in
East-Medina, has a bay which runs a considerable way
within land, and in a war with France is often the
station and place of rendezvous for the English navy. At
the mouth of the bay is that cluster of rocks called the
Mers. It had an old church situated at the extrem
ity of the coast, which was endangered to be washed
away, as was a great part of the church-yard, which
occurred a new church to be built there in 1719.

The priory to which the old church belonged is now
converted into a gentleman's seat; is in a remarkably
pleasant situation, and commands a fine prospect of
Portsmouth and the Road at Spithead. St Helen's
appears to have been of more consideration in former
times than at present.

Helm, a long and flat piece of timber, or an affen
blage of several pieces suspended along the hinder-part
of a ship's stern-post, where it turns upon hinges to the
right or left, serving to direct the course of the vessel,
as the tail of a fill guides the body.

The helm is usually composed of three parts, viz.
the rudder, the tiller, and the wheel, except in small
vessels, where the wheel is unnecessary.

As to the form of the rudder, it becomes gradually
broader in proportion to its distance from the top, or
to its depth under the water. The back, or inner part
of it, which joins to the stern-post, is diminished into
the form of a wedge throughout its whole length, so
as that the rudder may be more easily turned from one
side to the other, where it makes an obtuse angle with
the keel. It is supported upon hinges of which those
that are bolted round the stern-post to the after-ex
trimity of the ship, are called goings, and are fur
nished with a large hole on the after part of the stern
post. The other parts of the hinges, which are bolted
In order to facilitate the management of the helm, the tiller-rope, in all large vessels, is wound about a wheel, which acts upon it with the power of a crane or windlass. The rope employed in this service being conveyed from the fore-end of the tiller to a single stock, on each side of the ship, is farther communicated to the wheel, by means of two blocks suspended near the mizen-mast, and two holes immediately above, leading up to the wheel, which is fixed upon an axis on the quarter-deck, almost perpendicularly over the fore-end of the tiller. Five turns of the tiller-rope are usually wound about the barrel of the wheel; and, when the helm is amidships, the middle turn is nailed to the top of the barrel, with a mark by which the helmman readily discovers the situation of the helm; as the wheel turns it from the starboard to the larboard side. The spokes of the wheel generally reach about eight inches beyond the rim or circumference, serving as handles to the person who steereth the vessel. As the effect of a lever increases in proportion to the length of its arm, it is evident that the power of the helmman to turn the wheel will be increased according to the length of the spokes beyond the circumference of the barrel.

When the helm, instead of lying in a right line with the keel, is turned to one side or the other, as in BD, fig. 1, it receives an immediate shock from the water, which glides along the ship's bottom in running aft from A to B; and this fluid pushes it towards the opposite side, whilst it is retained in this position: so that the stern, to which the rudder is confined, receives the same impression, and accordingly turns from B to b about some point c, whisth the head of the ship paffes from A to a. It must be observed, that the current of water falls upon the rudder obliquely, and only strikes it with that part of its motion which acts according to the line of incidence, pushing it in the direction NP, with a force which not only depends on the velocity of the ship's course, by which this current of water is produced, but also upon the extent of the line of incidence. This force is by consequence composed of the square of the velocity with which the ship advances, and the square of the line of incidence, which will necessarily be greater or smaller according to circumstances; so that if the vessel runs three or four times more swiftly, the absolute shock of the water upon the rudder will be nine or 16 times stronger under the same incidence: and, if the incidence is increased, it will yet be augmented in a greater proportion, because the square of the line of incidence is more enlarged. This impression, or what is the same thing, the power of the helm, is always very feeble when compared with the weight of the vessel; but as it operates with the force of a long lever, its efforts to turn the ship are extremely advantageous. For the helm being applied for a great distance from the centre of gravity G, or from the point about which the vessel turns horizontally, if the direction PN of the impression of the water upon the rudder be prolonged, it is evident that it will pass perpendicularly to R, widely distant from the centre of gravity G; thus the absolute effort of the water is very powerful. It is not therefore surprising that this machine imprefles the ship with a considerable circular movement, by pulling the stern from C to d, and the head from A to e; and even much farther whilst the falls with rapidity, because the effect of the helm always keeps pace with the velocity with which the vessel advances.

Amongst the several angles that the rudder makes with the keel, there is always one position more favourable than any of the others, as it more readily produces the desired effect of turning the ship, in order to change her course. To ascertain this, it must be considered, that if the obliquity of the rudder with the keel is greater than the obtuse angle ABD, so as to diminish that angle, the action of the water upon the rudder will increase, and at the same time oppose the course of the ship in a greater degree, because the angle of incidence will be more open, so as to present a greater surface to the shock of the water, by opposing its passage more perpendicularly. But at that time the direction NP of the effort of the helm upon the ship will pass with a smaller distance from the centre of gravity G towards R, and less approach the perpendicular NL, according to which it is absolutely necessary that the power applied should act with a greater effect to turn the vessel. Thus it is evident, that if the obtuse angle ABD is too much inclined, the greatest impulfs of the water will not counterbalance the least furnished by the distance of the direction NP, directly NL, or by the great obliquity which is given to the same direction NP of the absolute effort of the helm with the keel AB. If, on the contrary, the angle ABD is too much opened, the direction NP of the force of the action of the helm will become more advantageous to turn the vessel, because it will approach nearer the perpendicular NL; so that the line prolonged from NP will incise the line GR, by removing R to a greater distance from the centre of gravity G: but then the helm will receive the impression of the water too obliquely, for the angle of incidence will be more acute; so that it will only present a small portion of its breadth to the shock of the water, and by consequence will only receive a feeble effort. By this principle it is easy to conceive that the greatest distance GR from the centre of gravity G, is not sufficient to repair the diminution of force occasioned by the too great obliquity of the shock of the water. Hence we may conclude, that when the water either strikes the helm too directly, or too obliquely, it loses a great deal of the effect it ought to produce. Between the two extremes there is therefore
Helm. for a mean position, which is the most favourable to its operations.

The diagonal NP of the rectangle IL represents the absolute direction of the effort of the water upon the helm. NI expresses the portion of this effort which is opposed to the ship's head-way, or which pushes her a stern, in a direction parallel to the keel. It is easily perceived, that this part NI of the whole power of the helm contributes but little to turn the vessel; for, if IN is prolonged, it appears that its direction approaches to a very small distance GV from the centre of gravity G; and that the arm of the lever BN = GV, to which the force is applied, is not in the whole more than equal to half the breadth of the rudder: but the relative force NL, which acts perpendicular to the keel, is extremely different. If the first NI is almost useless, and even pernicious, by retarding the velocity; the second NL is capable of a very great effect, because it operates at a considerable distance from the centre of gravity G of the ship, and acts upon the arm of a lever GE, which is very long. Thus it appears, that between the effects NL, and NI which result from the absolute effort NP, there is one which always opposes the ship's contrary, and contributes little to her motion of turning; whilst the other produces only this movement of rotation, without operating to retard her velocity.

Geometricalians have determined the most advantageous angle made by the helm with the line prolonged from the keel, and fixed it at 45° 44', presuming that the ship is as narrow at her floating-line, or at the line described by the surface of the water round her bottom, as at the keel. But as this supposition is absolutely false, inasmuch as all vessels augment their breadth from the keel upward to the extreme breadth where the floating-line or the highest water-line is terminated; it follows, that this angle is too large by a certain number of degrees. For the rudder is impelled by the water, at the height of the floating-line more directly than at the keel, because the fluid exactly follows the horizontal outlines of the bottom; so that a particular position of the helm might be supposed necessary for each different incidence which it encounters from the keel upwards. But as a middle position may be taken between all these points, it will be sufficient to consider the angle formed by the sides of the ship, and her axis, or the middle line of her length, at the surface of the water, in order to determine afterwards the mean point, and the mean angle of incidence.

It is evident that the angle 54° 44' is too open, and very unfavourable to the ship's head-way, because the water acts upon the rudder there with too great a force of incidence, as being equal to that of the angle which it makes with the line prolonged from the keel below: but above, the shock of the water is almost perpendicular to the rudder, because of the breadth of the bottom, as we have already remarked. If then the rudder is only opposed to the fluid by making an angle of 45° with the line prolonged from the keel, the impulsion, by becoming weaker, will be left opposed to the ship's head-way, and the direction NP of the absolute effort of the water upon the helm drawing nearer to the lateral perpendicular, will be placed more advantageously, for the reasons above mentioned. On the other hand, experience daily testifies, that a ship feers well when the rudder makes the angle DBE equal to 35° only.

It has been already remarked, that the effect of moving the wheel to govern the helm increases in proportion to the length of the spokes; and so great is the power of the wheel, that if the helmman employs a force upon its spokes equivalent to 30 pounds, it will produce an effect of 90 or 120 pounds upon the rudder. On the contrary, the action of the water is collected into the middle of the breadth of the rudder, which is very narrow in comparison with the length of the tiller; so the effort of the water is very little removed from the fulcrum B upon which it turns; whereas the tiller forms the arm of a lever 10 or 50 times longer, which also increases the power of the helmman in the same proportion that the tiller bears to the lever upon which the impulse of the water is directed. This force then is by consequence 10 or 15 times stronger; and the effort of 20 pounds, which at first gave the helmman a power equal to 90 or 120 pounds, becomes accumulated to one of 900 or 1800 pounds upon the rudder. This advantage then arises from the shortness of the lever upon which the action of the water is impressed, and the great comparative length of the tiller, or lever, by which the rudder is governed; together with the additional power of the wheel that directs the movements of the tiller, and still further accumulates the power of the helmman over it. Such a demonstration ought to remove the surprise with which the prodigious effect of the helm is sometimes considered, from an inattention to its mechanism: for we need only to observe the pressure of the water, which acts at a great distance from the centre of gravity G, about which the ship is supposed to turn, and we shall easily perceive the difference there is between the effort of the water against the helmman, and the effect of the same impulse against the wheel. With regard to the person who steers, the water acts only with the arm of a very short lever NB, of which B is the fulcrum; on the contrary, with regard to the ship, the force of the water is impressed in the direction NP, which passes to a great distance from G, and acts upon a very long lever EG, which renders the action of the rudder extremely powerful in turning the vessel; so that, in a large ship, the rudder receives a shock from the water of 2700 or 2500 pounds, which is frequently the case, when the falls at the rate of three or four leagues by the hour; and this force being applied in E, perhaps 160 or 170 feet distant from the centre of gravity G, will operate upon the ship, to turn her about, with 170,000 or 308,000 pounds; whilst, in the latter case, the helmman acts with an effort which exceeds not 30 pounds upon the spokes of the wheel.

After what has been said of the helm, it is easy to judge, that the more a ship increases her velocity with regard to the sea, the more powerful will be the effect of the rudder; because it acts against the water with a force, which increases as the square of the velocity of the fluid, whether the ship advances or retreats; or, in other words, whether she has head-way or stern-way; with this distinction, that in these two circumstances the effects will be contrary. For if the vessel retreats, or moves astern, the helm will be impelled from I to N; and instead of being pushed according to NP, it will
HELMET, an ancient defensive armour worn by horsemen both in war and tournaments. It covered both the head and face, only leaving an aperture in the front secured by bars, which was called the visor.

In achievements, it is placed above the escutcheon for the principal ornament, and is the true mark of chivalry and nobility. Helments vary according to the different degrees of those who bear them. They are also used as a bearing in coats of arms. See HERALDY.

HELMINTHOLITHUS, in natural history, a name given by Linnaeus to petrified bodies resembling worms.

Of these he reckons four genera. 1. Petrified lithophyta, found in the mountains of Sweden. 2. Petrified shells. 3. Petrified zoophytes. 4. Petrified reptiles.

HELMONT (John Baptif Van), a celebrated Flemifh gentleman, was born at Brueffles in 1577. He acquired such skill in natural philosophy, phyfic, and chemistry, that he was accounted a magician, and thrown into the inquisition; but having with difficulty justified himself, as soon as he was released he retired to Holland; where he died in 1644. He published De magnetica corporum curratione. 2. De magnesiis in herba. 3. Ortes medicinae. 5. Paradoxus de aquis foetidis; and other works, printed together in one volume folio.

HELMONT, a small town in the Netherlands, in Dutch Brabant, and capital of the Diocif of Peeland, with a good caflle. It is seated on the river Aa, in E long. 5° 37'. N. Lat. 51° 31'.

HELMSTADT, a town of Germany, in the duchy of Brunswick, built by Charlemagne, in E. Long. 11°. N. Lat. 52° 29'.

HELMSTADT, a strong maritime town of Sweden, and capital of the province of Holland, seated near the Baltic Sea; in E. Long. 21° 5'. N. Lat. 56° 44'.

HELONIAS, in botany: A genus of the trigynia order, belonging to the hexandria class of plants; and in the natural method ranking under the 10th order, Coranorine. The corolla is hexepalous; there is no calyx; and the capsule is trilocular.

HELOISE, famous for her unfortunate affection for her tutor Abelard, and for her Latin letters to him after they had retired from the world. She died abbes of Paraclet in 1162. See ABElard.

HELOS, (anc. geog.), a maritime town of Lasonia, situated between Trinacris and Acris, in Paenias's time in ruins. The district was called Helici, and the people Heliots, Helots, Helus, and Helint., by Stephanus; and Heliots., by Livy. Being subdued by the Lacedemonians, they were all reduced to a state of public slavery, or made the slaves of the public, on these conditions, viz. that they neither could recover their liberty, nor be sold out of the territory of Sparta. Hence the term helotism, in Harpocrates, for being in a state of slavery; and hence also the Lacedemonians called the slaves of all nations whatever helots. Helots are the epithet.

HELOTS, in Grecian antiquity, the slaves of the Spartans. See HELS. The freemen of Sparta were forbidden the exercise of any mean or mechanical employment, and therefore the whole care of supplying the city with necessaries developed upon the Helots.

HELSBURG. See ELSBURG.

HELSINGIA, a province of Sweden, bounded on the north by Jemteland and Medelpadia, on the east by the Botanic gulf, and on the south and west by Dalcarlia and Gotlandia. It is full of mountains and forests, and the inhabitants are almost constantly employed in hunting and fishing. It has no cities: the principal towns are, Hudickvall, Alka, and Dilfo.

HELSINGIC CHARACTER, a peculiar kind of character found inscribed on stones in the province of Heltingia. The Runic and Helsingic characters may be easily transformed into each other.

HELSON, a town of Cornwall in England, seated on the river Cober, near its influx into the sea. It is one of those appointed for the coinage of tin and the place of assembly for the west division of the shire. By a grant of Edward III. it has a market on Saturday, and fairs on March 13th, July 20th, September 9th, November 8th, the second Saturday before St. Thomas's day, and the Saturday before Midsummer-Sunday, Pead-Sunday, and Whit-Monday. It had formerly a priory and a castle, and sent two members to parliament in the reign of Edward I. but was not incorporated till the 27th of Queen Elizabeth, who appointed a mayor, to be chosen on September 20th, and four aldermen, who are to be of the common-councilmen, and to choose 24 alderfants; it was re-incorporated August 16th, 1774.

Here is a large market-house and a guild-hall, and four fireets that lie in the form of crosses, with a little channel of water running through each. The steeple of the church, with its spire, is 90 feet high, and a seafark. A little below the town there is a tolerable good harbour, where severall of the tin-ships take in their lading. King John exempted this place from paying toll any where but in the city of London; and from being impaled any where but in their own borough. It contains about 400 houses, is well inhabited, and sends two members to parliament.

HELVELIA, in botany; a genus of the natural order of fungi, belonging to the Cryptogamia class of plants. The fungus is of the shape of a top.

HELVETIC, something that has a relation to the Swiss, or inhabitants of the Swiss cantons, who were ancienly called Helvetii. — The Helvetian body comprehends the republic of Switzerland, consisting of 13 cantons, which make so many particular commonwealths. By the laws and customs of the Helvetian body, all differences between the several states and republics are to be decided within themselves, without the intervention of
of any foreign power. The government of this body is chiefly democratic, with some mixture of the aristocratic.

HELVETH, a people of Belgica, in the neighbourhood of the Allobroges and the Provincia Romana; famed for bravery and a turn for war. Called also Helvetia, and divided into four Pagii or Cantons: situated to the south and west of the Rhine, by which they were divided from the Germans; and extending towards Gaul, from which they were separated by mount Jura on the west, and by the Rhodanus and Lacus Lemans on the south, and therefore called a Gallic nation (Tacitus, Caesar, Strabo, Ptolemy, Pliny.) Formerly a part of Celtic Gaul, but by Augullus assigned to Belgica.

HELVETIUS (Adrian), an eminent physician, born in Holland. After having studied physic at Leyden, he went to Paris, where he acquired great reputation in his profession. He introduced in France the use of Ipecacuanha in the cure of dysenteries; a remedy which he at first kept secret, but was ordered to make it public, and on that account received a gratification from the king of 1000 louis d'ors. He was made inspector-general of the hospitals in Flanders, physician to the duke of Orleans, regent of France, &c., and died at Paris, 1727, aged 65. He wrote a treatise on the most common diseases, and the remedies proper for their cure (the first edition of which is that of 1724, in two volumes éxavo); and other works.

HELVITIU (John Claude), son of the above, was born in 1685, and died in 1715. He was first physician to the queen, and greatly encouraged by the town as well as court. He was, like his father, inspector-general of the military hospitals. He was of the Academy of Sciences at Paris, of the Royal Society in London, and of the Academies of Prufia, Florence, and Bologne. He is the author of the second edition of the Éléments de l'économie animale, 1722, 8vo. 2. Principia Physico-Medico, 1729, 2 vols. 4to.

We may just mention also, that he is the father of the Mons. HELVITUS, who wrote the celebrated book De l'Esprit, and whom Voltaire calls "a true philosopher," but whose book wasigmatized by the authors of the Journal de Trevoux, and suppressed by the government.

HELVICUS (Christopher), professor of divinity, Greek, and the Oriental tongues, in the university of Giessen, died in the flower of his age in 1617; after having published several books, and projected more. The Hebrew language was so familiar to him, that he spoke it as fluently as his mother tongue. He was not only a good grammarian, but also an able chronicler. His chronological tables have been greatly esteemed, though they are not free from errors.

HELVIDIAN, a sect of ancient heretics, denominated from their leader Helvidius, a disciple of Arians (Arian, whose distinguishing principle was, that Mary, the mother of Jesus, did not continue a virgin, but had other children by Joseph.

HELVETIUS and HELVETIUS, a sea-port town of the United Netherlands, seated on the island of Voorn, in the province of Holland, and where the English packet-boat always goes. It is but a small place, consisting only of a handsome quay, and two or three little streets. But it is very well fortified, and esteemed the safest harbour in the country. The largest men of war may come up to the middle of the town; and yet it has but very little trade, because the merchants choose to live higher up the country.

HEMATH, or Hamath, the name of a city (whose king was David's friend, 2 Sam. xi.) to the south of Lebanon; from which a territory was called Hemath, on the north of Caanaan and south of Syria, as appears by the spies, Numb. xiii. 1 Kings vii. Ezek. xlvii. Whether one or more cities and districts of this name lay in this tract, neither interpreters nor geographers are agreed. The eastern part was called Hemath-saba, 2 Chron. viii. unless we suppose that there was a city in Zoba of this name fortified by Solomon. In defining the boundary of Palestine, it is often said, from the entering of Hemath; as a province to be entered into through a strait or defile. And if there was such, the next question is, From what metropolis it was called Hemath? Antioch, capital of Syria, is supposed to be called Hemath or Amathus, (Jonathan, Targum, &c.) and again, Epiphanius, (Josephus.) Both were to the north of Lebanon; consequently not the Hemath of Scripture, the immediate boundary of Palestine to the north, and lying to the south of Lebanon.

HEMATITES. See HEMATITES.

HEMELAR (John), an eminent antiquarian, and canon of Antwerp, in the 17th century, was born at the Hague; and wrote a work, entitled Expositio Numismatum imperatorum Romanorum aJulio Cæsare ad Heraclium; which is very scarce, though it has had several editions.

HEMEROBAPTISTS, a sect among the ancient Jews, thus called from their washing and bathing every day, in all leasons; and performing this rump with the greatest solemnity, as a religious rite necessary to salvation.

Epiphanius, who mentions this as the fourth heresy among the Jews, observes, that in other points these heretics had much the same opinions as the Scribes and Pharisees: only that they denied the resurrection of the dead, in common with the Sadducees, and retained a few other of the improprieties of that sect.

The facts who pass in the Exit under the denomination of Sabians, calling themselves Nebdat Iblit, or the disciples of John, and whom the Europeans entitle the Christians of St John, because they yet retain some knowledge of the gospel, are probably of Jewish origin, and seem to have been derived from the ancient Hemerobaptists; at least it is certain, that that John, whom they consider as the founder of their sect, bears no sort of similitude to John the Baptist, but rather resembles the person of that name whom the ancient writers reprefent as the chief of the Jewish Hemerobaptists. These ambiguous Christians dwell in Persia and Arabia, and principally at Basfora; and their religion consists in bodily washings, performed frequently, and with great solemnity, and attended with certain ceremonies which the priests mingle with this superfluous service.

HEMEROBIUS, in zoology: A genus of insects of the neuroptera order; the characters of which are: D thefe,
HEM (402) HEM

HEMEROCALLIS, DAY-LILY, or Lily aphodoe: A genus of the monogynia order, belonging to the hexandria class of plants; and in the natural method ranking under the 10th order, Coronaria. The corolla is campanulated, with the tube cylindrical; the stamens declining downwards.

Species. 1. The flava, or yellow day-lily, hath strong fibrous roots, sending up large hollow keel-shaped leaves, two feet long, upright, leafless stalks, two feet high; dividing at top into several footstalks, each terminated by one large liliaceous yellow flower of an agreeable odour. Of this there is a variety called the hemerocallis minor, or small yellow day-lily. 2. The fulva, reddish, or copper-coloured day-lily, hath roots composed of strong fleshy fibres and large oblong tubes; radical, keel-shaped, hollow, pointed leaves, a yard long, reflected at top; with leafless stalks three or four feet high, and large copper coloured liliaceous flowers. These have large stamens, charged with a kind of brown-coloured farina; which on being touched or pinelled to, is discharged in great plenty all over the hands and face.

Culture. Both these species are hardy, and will thrive any where. They may be easily propagated by parting their roots in autumn, or almost any time after flowering, or before they begin to flower.

HEMEROGRAMI, (composed of hymn a day, and day at, coarse, &c.) among the ancients, were sentinels or guards, appointed for the security and preservation of cities and other places. They went out of the city every morning as soon as the gates were opened, and kept all day patrolling round the place; sometimes also making excursions farther into the country, to see that there were no enemies lying in wait to surpise them.

HEMEROGRAMI were also a sort of couriers among the ancients, who only travelled one day, and then delivered their packets or dispatches to a fresh man, who ran his day, and so on to the end of the journey. The Greeks had these sort of couriers, which they derived from the Persians, who were the inventors thereof, as appears from Herodotus. Augustus had the fame; at least he established couriers, who, if they did not relieve each other from day to day, yet did it from space to space, and that space was not very great.

HEMEROGLIPS, in antiquity, a measure of capacity, the same with the chenix. It was so called from its holding one day's food. The word is composed of hymn a day, and eat food.

HEMI, a word used in the composition of divers terms. It signifies the same with hemi or demi, viz. "half," being an abbreviation of symus hemify, which signifies the same. The Greeks retrenched the last syllable of the word symeu, in the composition of words; and after their example, we have done too in most of the compounds borrowed from them.

HEMICRANIA, in medicine, a species of cephalalgia, or head-ache; wherein only one side of the head is affected; and owing to a congestion of blood in the vessels of that half.

HEMICYCLE, HEMICYCLUM, composed of symus half, and susto circle, a semicircle.

HEMICYCLE is particularly applied in architecture, to vaults in the cradle form; and arches or sweeps of vaults, constituting a perfect semicircle. To construct an arch of hewn stone, they divide the hemicycle into so many voussoirs; taking care to make them an uneven number, that there be no joint in the middle, where the key stone should be. See KEY and BRIDGE.

HEMICYCLUM was also a part of the orchestra in the ancient theatre. Scaliger, however, observes, it was no standing part of the orchestra; being only used in dramatic pieces, where some persons were supposed to be arrived from sea, as in Plautus's Rudens.

The ancients had also a sort of fun-dial, called hemicyclem. It was a concave semicircle, the upper end or cup whereof looked to the north. There was a flyle, or gnomon, rising from the middle of the hemicycle, whereof the point corresponding to the centre of the hemicycle represented the centre of the earth; and its shadow projected on the concavity of the hemicycle, which represented the space between one tropic and another, the sun's declination, the day of the month, hour of the day, &c.

HEMIMERIS, in botany; a genus of the angiospermae order, belonging to the didynamia class of plants. The capsule is biocular, with one of the cells more gibbous than the other; the corolla is wheel-shaped; with one division greater, and inverse heart-shaped; the interface of the divisions nectar-bearing.

HEMINA, in Roman antiquity, a liquid measure, which, according to Arbuthnot, was equal to half a wine pint English measure; its contents being 2.818 solid inches.

HEMI-
HEMIONITIS, in botany: A genus of the natural order of siliceous plants, belonging to the cryptogamia, class of plants. The fructifications are in lines decussating or crossing each other.

Hemiplegia, or Hemiplexia, among physicians, a palsy of one half of the body. See (the Index subjoined to) Medicine.

Hemiptera, derived from semi, half, and pter, wing, the Linnaean, second order of insects, comprehending twelve genera, viz. the blatta, mantis, grillus, fulgora, cicada, matronella, nepa, cimex, aphid, cerambyx, cucus, and tritch, and a great number of species. See Entomology, Insects, and Zoology.

Hemisphere, (Hemisphærium, compounded of semi, half, and sphæra, sphere) in geometry, is one half of a globe or sphere, when divided into two by a plane passing through its centre.

Hemisphere, in astronomy, is particularly used for one half of the mundane sphere.

The equator divides the earth into two equal parts, called the northern and southern hemispheres. The horizon also divides the sphere into two parts, called the upper and the lower hemispheres.

Hemisphere is also used for a map, or projection, of half the terrestrial globe, or half the celestial sphere, on a plane. Hemispheres are frequently called planisphere.

Hemistiche, in poetry, denotes half a verse, or a verse not completed.

Of this there are frequent examples in Virgil's Aeneis, but whether they were left unfinished by design or not, is disputed among the learned: Such are, Ferro accipiar vocat, Æn. II. v. 614. And, Italian non sponte fuguro, Æn. IV. v. 361.

In reading common English verses, a short pause is required at the end of each hemistich or half verse.

Hemitone, in the ancient muse, was what we now call a half note or femitone.

Hemitræus, in medicine, a kind of fever, denoting the same as semi-tertian, returning twice every day. The word is in Greek, and compounded of semi, "half," and τραίνων, "third or tertian."

Hemlock, in botany. See Cicutæ and Coium.

Hemiptoton. See Oratory, no 77.

Hemp. See Cannabis.—It does not appear that the ancients were acquainted with the use of hemp, in respect of the thread it affords. Pliny, who speaks of the plant in his natural history, lib, xx. cap. 23. fays not a word of this, contenting himself with extolling the virtues of its stem, leaves, and root. In effect, what some writers of the Roman antiquities remark, viz. that the hemp necessary for the use of war was all flored up in two cities of the western empire, viz. at Ravenna and Vienne, under the direction of two procurators, called procuratores liniflori, must be understood of linen or flax.

The use of hemp is so extensive and important, that vast quantities of it are annually imported into several kingdoms from those countries where it grows in greatest plenty, of which Russia is one. In the year 1763; the quantity imported into England alone amounted to 11,000 tons. Sir John Sinclair informs us, that in the year 1783, the quantity exported from Peterburgh in British ships was as follows:

Clean hemp - - - 1,038,791
Outshot - - - 37,382
Half-clean - - - 18,374
Hemp-cordill - - - 19,351

Now, allowing 63 pounds to a ton, the quantity just mentioned will amount to 1,765,555 tons; and supposing it to take five acres to produce a ton of hemp, the whole quantity of ground requisite for this purpose would amount to 8,827,775 acres.

By other accounts, the annual exports of hemp to Annals of Agriculture, vol. xliii. p. 503.

Now, allowing 63 pounds to a ton, the quantity just mentioned will amount to 1,765,555 tons; and supposing it to take five acres to produce a ton of hemp, the whole quantity of ground requisite for this purpose would amount to 8,827,775 acres.

By other accounts, the annual exports of hemp to Annals of Agriculture, vol. xliii. p. 503.

Now, allowing 63 pounds to a ton, the quantity just mentioned will amount to 1,765,555 tons; and supposing it to take five acres to produce a ton of hemp, the whole quantity of ground requisite for this purpose would amount to 8,827,775 acres.

By other accounts, the annual exports of hemp to Annals of Agriculture, vol. xliii. p. 503.

Now, allowing 63 pounds to a ton, the quantity just mentioned will amount to 1,765,555 tons; and supposing it to take five acres to produce a ton of hemp, the whole quantity of ground requisite for this purpose would amount to 8,827,775 acres.

By other accounts, the annual exports of hemp to Annals of Agriculture, vol. xliii. p. 503.

Now, allowing 63 pounds to a ton, the quantity just mentioned will amount to 1,765,555 tons; and supposing it to take five acres to produce a ton of hemp, the whole quantity of ground requisite for this purpose would amount to 8,827,775 acres.

By other accounts, the annual exports of hemp to Annals of Agriculture, vol. xliii. p. 503.
Britih hemp in a British ship pays 21. 4s. 4d. per cwt. import duty; in a foreign one 21. 6s. 6d.; and in both cases a drawback of 1s. 19s. is allowed. Undressed hemp in a British ship pays 21. 8s. 4d.; and in a foreign one 21. 4d. The export of Britih hemp is free.

The usual height of the plant when growing is from five to six feet, but this varies very considerably according to circumstances. That which is cultivated near Bischwiller in Alsace is sometimes more than 12 feet high, and upwards of three inches in circumference, the stalks being so deeply rooted that a very strong man can scarcely pull them up. Mr. Arthur Young, in a tour through Catalonia in Spain, says, that where the country is well watered, the crops of hemp are extraordinary; and that the plants generally rise to the height of seven feet. In Italy hemp is generally cultivated, though the Bolognese only pretend to any superiority in the management of it. It is there sown upon their fields, which are rich strong loams; and on which they are at all possible pains to procure a fine friable surface. For manure they use dung, pieces of rotten cloth, feathers, and horns brought from Dalmatia. The plant, however, may be cultivated upon ground of every kind; the poorer land producing that which is finer in quality though in smaller quantity; whereas strong and rich land produces a great quantity, but coarser. It does not exhaust the land on which it grows like flax, whence it is probable, that if properly managed, and care taken in the cultivation, it might be found to supercede flax entirely. A Suffex manufacturer, who writes on this subject in the Annals of Agriculture, informs us, that it may be raised for many years successively on the same ground, provided it be well manured. An acre requires from nine to twelve pecks, according to the nature of the soil, the latter being the most useful, though a variation in the quality of the soil makes an alteration both in the quantity and quality of the hemp. An acre produces on an average 56 or 58 flons. The abbe Brulle, in a treatise upon the Culture and Management of Hemp, printed by order of the lords and committee of council for trade and foreign plantations, informs us, that the seed for sowing it extends from the 25th of March to the 15th of June. The seed ought always to be sown thin, not exceeding two bushels to an acre; and if you have the advantage of a drill plough, fill less will answer. As there are two kinds of hemp, the male and female, of which the former only produces seed, some regard must be had to this circumstance. In Suffex the male and female are pulled together about 13 weeks after the sowing, but in the flons they are frequently separated. This last method is recommended by the abbe Brulle, who, for the more easy accomplishment of it, directs that little paths should be made lengthwise through the field at about seven feet distance from each other, to allow a passage for the person who pulls up the female hemp from among the other; the latter requiring to stand more than a month after for the purpose of ripening the seeds. The female hemp is known to be ripe by the fading of the flowers, the falling of the farina feecandens, and some of the flaks turning yellow. After the whole of this kind is pulled, it must be manufactured according to the directions to be afterwards given, and ought to be worked if possible while green; the hemp thus produced being much finer than that which is previously dried. The reason of this is, that the plant contains a great quantity of glutinous matter; which being once dried, agglutinates the fibres in such a manner that they can never be afterwards perfectly separated. The female hemp, however, is always in smaller quantity than the male; and therefore where the crop is large it will be impossible to work the whole as fast as it is pulled or cut. It is known to be ripe by the stems becoming pale; but it must be remembered, that hemp of any kind will be much less injured by pulling the plants before they are ripe than by letting them stand too long.

The male hemp being stripped of its leaves, &c. as afterwards directed, will soon be dry for burning by the heat of the atmosphere, though sometimes it may be necessary to use artificial means; but where these are used, the utmost care must be taken, hemp when dry being exceedingly inflammable. The flored or dried hemp must be steeped and treated in every respect as though it had been green; whence it is evident that this operation ought never to be used but in cases of necessity. It is likewise impossible to make hemp which has been dried previous to its being steeped and dried, from which it has been worked green.

With regard to the perfection of hemp-feed for a Milk; Hale subfrequent reason, it would seem proper to set apart a sandy, piece of ground for this purpose; for M. Aime, from vol. v. 40 plants raised in the common way, had only a pound and a half of feed, though the plants from which it was taken might be deemed fine; whereas, from a single plant which grew by itself, he had seven pounds and an half. Some are of opinion, that by putting the clutters which contain the hemp-feed to heat and sweat, the quality is improved; as many of those feeds which would otherwise wither and die, may thus arrive at perfection. This, however, seems to be very problematical; as there are no experiments which show that feeds, when separated from the vegetable producing them have any power of meliorating themselves.

After the hemp is pulled, it must be taken in large handfuls, cutting off the roots (though this is not absolutely necessary), the leaves, seeds, and lateral branches, being dressed off with a wooden sword or ripple. It is then to be made up into bundles of twelve handfuls each, in order to be steeped, like flax, in water. This, or something similar, is absolutely necessary, in order to separate the bark, which is properly the hemp, from the reed or woody part. In Suffolk, this operation is called water retting; but sometimes a mere exposure to the air is sufficient in its place, turning the hemp frequently during the time it is exposed. This is called dew retting; but the former method is universally deemed preferable. Such hemp as is designed for feed is seldom water-retted, though in the opinion of the manufacturer already quoted, it would be better if it were so. Dew-retted hemp is generally flacked and covered during the winter; in January and February it is spread upon meadow land, and whitens with the frost and snow; though it is always much inferior to the other; and proper for coarser yarns only.

The length of time required for steeping hemp is various.
Hemp.

Hemp.

Hemp.

various, and a complete knowledge of it can only be attained by practice. In Suffolk it is usual to continue the immersion four, five, or six days; standing water is preferred, and the same water will steep hemp three times during the season, but the first has always the best colour. The able Brulle prefers clear and running water, especially if overhung with trees. The bundles are to be laid prejudice upon each other; taking particular notice of the manner in which they lie when put in, that they may be taken out without difficulty. His time of steeping is from six to 11 days; and here we must observe, that it is much better to let it remain too long in the water than too short a time. The flenderest hemp requires the most soaking. The operation is known to be finished by the reed separating easily from the bark.

After the hemp is thoroughly steeped, the next operation is to separate the bark from the reed or woody part; and this may be done in two ways, viz., either pulling out the reed from every stalk with the hand, or drying and breaking it like flax. The abbe Brulle is very particular in his directions for this last operation, which he calls reeding, and which may be performed either in a trough under water or upon a table. The whole, however, may be reduced to the following, viz., pressing down the bundles either in the trough or on a table by proper weights, to keep the hempsteady on the middle and top end. Then beginning at the upper part of the bundle, pull out the reeds one by one. As you proceed, the end which remains will press closely upon the remaining unreeded hemp, and keep it more steady; so that you may take two, four, or even six stalks, at a time. The weight is then to be removed from the top, and all the pieces of reed which remain there having broken off in the former operation, are to be taken out. Lastly, the middle weight is to be taken off, and any small pieces which remain there taken out. If the reeding is performed on a table, the bundle must be leaved frequently, though lightly; a continual dropping of water would perhaps be the best method.

After the hemp is reeded, it must next be freed from the mucilaginous matter with which it still abounds. This is done by pouring water through it, squeezing out the liquid after every affusion, but taking care not to let the threads twist or entangle each other, which they will be very apt to do. The abbe is of opinion, that soft soap should be dissolved in the last water, in the proportion of an ounce to three pounds of dry hemp; which though not absolutely necessary, contributes much to the softening and rendering the hemp easy and pleasant to dress.

Hemp is broken by machinery, after being steeped, in a manner similar to flax; but the instruments used for this purpose in Suffolk are all worked by the hand. That which breaks in the operation is called sprouts, and is about half the value of the long hemp. The best water-retted hemp falls for about 8 s. 6d. per fome; the other kind from one to two shillings lower.

Beating of hemp is the next operation, which formerly was performed entirely by hand, but now in most places by a water-mill, which raises three heavy beaters that fall upon it alternately; the hemp being turned all the while by a boy in order to receive the strokes equally. The finer it is required to make the tow, the more beating is necessary. It is then dried or combed by drawing it through heckles formed like the combs of wool-manufacturers, only fixed. Sometimes it is divided into two or three sorts of tow, and sometimes the whole is worked together into one sort; the prices varying from 6 d. to 5. d. per pound.

The hemp thus manufactured is sold to spinners, who reel their yarn as follows:

2 Yards make - - 1 thread.
40 Threads - - 1 lea.
20 Leas - - 1 skain.
3 Skains - - 1 clue of 4,800 yards.

It is next delivered to the bleachers, who return it bleached on receiving 20 or 21 clues for every 120 bleached. The prices of the hemp-yarn are as follow:

1 Clue from a pound - 10I. or 64d.
12 from do. - 85d. or 8d.
2 from do. - 9d. or 9d.
2 from do. - 10d. or rod.
3 from do. - 12d.

Chinese Hemp, a newly discovered species of cannabis, of which an account is given in the 72d volume of the Philosophical Transactions, p. 46. In that paper Mr. Fitz-Gerald, vice-president of the society for encouraging arts, mentions his having received the seeds from the late Mr. Elliot, which being sown, according to his directions, produced plants 14 feet high, and nearly seven inches in circumference. These being pulled up in November, and steeped for a fortnight in water, were placed against a southern wall to dry. After this the hemp was found to separate easily from the woody part; and so great was the produce, that 32 plants yielded three pounds and a quarter.

In consequence of these successes, Mr. Fitz-Gerald applied to the directors of the India company to procure some of the seeds from China; which being complied with, the society were furnished, in 1785, with some more of the seeds, which were distributed to several of the members; but, notwithstanding their endeavours, few of the plants appear to have ripened, their seeds in that country. Two of the species of hemp, tried by the duke of Northumberland, to the height of 14 feet seven inches, and would have been much larger, had they not been hurt by an high wind, another kind arose only to that of three feet and an half, the stem about the size of a common wheat straw; but though it flowered well, did not produce any seed. These kinds were sown in a hot-bed where the heat was very strong, on the 14th of April. They appeared above ground in four days, and were transplanted into pots on the 25th. They were then put under a hot-bed frame where the heat had been gone off, to harden them for the natural ground, in which they were planted on the 30th, by turning them whole out of the pots; letting them, three together, be planted at two feet distance every way, covering them at times for about ten days, until they were supposed to be rooted. Only a few seeds were preferred from plants which had been kept constantly in a hove.

Other trials were attended with little better success; but, in 1786, the Rev. Dr. Hinton of Northwold near Brandon, made a successful experiment with some seeds he received from the secretary of the society. They were sown on the 17th of May, and appeared
Hem

Hem

Hem

Hemp

Hem

Hem

Hemp

Hem

Hem

He designed and drew correctly, and his pictures have a strong effect from his accurate management of the chiaro oscuro. Some of his pictures have suffered from unskilful cleaners, and many things are fold as his which disfigure him; but his genuine works, well preferred, have a clearness and force equal to any of the Flemish artists.

Hemskerck (Egbert), called the Young, was the disciple of Peter Grebber, but imitated the manner of Brouwer and of the elder Hemskerck. He was born at Haerlem in 1645, but settled at London, where for a long time his works were exceedingly esteemed, though they are now much sunk in their value. He had a whimsical imagination, and delighted in composing uncommon and fanciful subjects; such as the temptation of St Anthony, nocturnal intercourses of witches and spectres, enchantments, &c. which he executed with a free pencil and a spirited touch. It was customary with him to introduce his own portrait among the conversations he designed; and for that purpose he had a small looking-glass placed near his cafe. He died in 1704.

Hen, in ornithology. See Phasianus.

Guinea-Hen. See Numida.

Henn-Bane. See Hyoscyamus.

Hen-Briggs. See Falco.

Hen-Neudcl-foil. in agriculture, a term used by the handboldmen in Northamptonshire, in England, and other counties, to express a black, hollow, spongy, and mouldering earth, usually found at the bottom of hills. It is an earth much fitter for grazing than for corn, because it will never fettle close enough to the grain to keep it sufficiently steady while it is growing up, without which the farmers observe, it either does not grow well; or, if it seems to thrive, as it will in some years, the growth is rank, and yields much straw, but little ear. It is too moity, and so is principally to be attributed this rankness of the crop in some years; and the occasion of its retaining so much moisture is, that it usually has a bed of stiff clay, which will not let the water run off into the under strata.

In some places they also give this name to a black, rich, and dense earth, with throwes of a whithil mould in many parts. This sort of hen-mould is usually found very rich and fertile.

Henault (Charles John Francis), was son of John Remi Henault lord of Moufly, and born at Paris in 1885. He early discovered a spiritedly benevolent disposition, and his penetration and aptness soon distinguished it by the success of his studies. Claude de Lille, father of the celebrated geographer, gave him the name lesson in geography and history which he had before given to the duke of Orleans afterwards regent, which have been printed in seven volumes; under the title of "Abridgment of Universal History.

On quitting college, Henault entered the Oratory, where he soon attacked himself to the study of eloquence: and, on the death of the abbe Rene, reformer of La Trappe, he undertook to pronounce his panegyric; which not meeting the approbation of father Malilon, he quit the Oratory after two years, and his father bought him, of Marechal Villeroi, the "lieutenancedes chaifies," and the government of Corbeil. At the marshal's he formed connections, and even intimate friendships, with many of the nobility,
and passed the early part of his life in agreeable amusements, and in the lively company, without having his religious sentiments tainted. He associated with the wits till the dispute between Rousseau and de la Motte soon gave him a dignity for these trifling societies. In 1707, he gained the prize of eloquence at the French Academy; and another next year at the Academy des Jeux Floraux. About this time M. Reaumur, who was his relation, came to Paris, and took lessons in geometry under the same master, Guinée. Henault introduced him to the Abbé Bignon, and this was the first step of his illustrious career. In 1713 he brought a tragedy on the stage, under the disguised name of Folletier. As he was known to the public only by some lighter pieces, "Cornelia the Vestal" met with no better success. He therefore locked it up without printing. In his old age his passion for these subjects revived, and Mr Horace Walpole being at Paris in 1768, and having formed a friendship with him as one of the most amiable men of his nation, obtained this piece, and had it printed at a press which he had at his country seat, from whence a beautiful edition of Lucan had before issued. In 1751 M. Henault, under a borrowed name, brought out a work of dates, but a knowledge of the laws and fiction, intended, "Marquis," which was well received and printed. He had been an admiral counsellor in parliament in 1706, with a dispassion on account of age; and in 1710 president of the first chamber of inquests. These important places, which he determined to fill in a becoming manner, engaged him in the most solid studies. The excellent work of M. Domat charmed him, and made him eager to go back to the fountain head. He spent several years in making himself master of the Romans, the ordinances of the French kings, the customs, and public laws. M. de Morville, procureur-general of the great council, being appointed ambassador to the Hague in 1718, engaged M. Henault to accompany him. His personal merit soon introduced him to the acquaintance of the most eminent personages at that time there. The grand pensions, Heinicus, who, under the exterior of Lacedemonian simplicity, kept up all the haughtiness of that people, charmed him so much that he undertook the embellishment of it, and situated him in the negotiations of the treaty of Utrecht. The agitation which all France felt by Law's history, the reign of Francis II. which, though happy only by being short, appeared to him one of the most important by its consequences, and most easy to be confined within the stage bounds. His friend the chancellor highly approved the plan, and wished it to be printed. It accordingly went through five editions; the harmony of dates and facts is exactly observed in it, and the passions interested without offence to history and truth.

In 1755, he was chosen an honorary member of the academy of Belles Lettres, being then a member of the academies of Nanci, Berlin, and Stockholm. The queen appointed him superintendent of her house. His natural sprightliness relieved her from the serious attendance on his private morning lectures. The company of persons most distinguished by their wit and birth, a table more celebrated for the choice of the guests than its delicacies, the little comedies suggested by wit, and executed by reflections, united at his house all the pleasures of an agreeable and innocent life. All the members of this ingenious society contributed to render it agreeable, and the president was not behind any. He composed three comedies: La Petite Maison, La Jalousie de Soi même, and Le Reveil d'Epinardo. The subject of the last was the Cretan philosopher, who is pretended to have slept 27 years. He is introduced fancying that he had slept but one night, and administered at the change in the age of all around him: he mistakes his mistress for his mother; but discovering his mistake, offers to marry her, which she refuses, though he still continues to love her. The queen was particularly pleased with this piece. She ordered the president to restore the philosopher's mistresses to her former youth: he introduced Hebe, and this epistle produced an agreeable entertainment. He was now in such favour with her majesty, that on the place of superintendent becoming vacant by the death of M. Bernard de Conbert master of requsets, and the sum he had paid for it being lost to the family, Henault solicited it in favour of several persons, till at last the queen
H E N

[408]

HENLEY (John), better known by the appellation of Orator Henley, a very singular character, was born in Melton-Mowbray, Leicestershire, in 1691. His father, the Rev. Simon Henley, and his grandfather by his mother’s side (John Dowel, M.A.), were both vicars of that parish. Having passed his exercises at Cambridge, and his examination for the degree of B.A. with the particular approbation of Mr. Field, Mr. Smales, and the masters of the college, he returned to his native place, where he was first desired by the trustees of the school in Melton to affit in, and then to take the direction of that school, which he increased and raised from a declining to a flourishing condition. He established here a practice of improving elocution by the public speaking of passages in the classics, morning and afternoon, as well as orations, &c. Here he was invited by a letter from the Rev. Mr. Newton to be a candidate for a fellowship in St John’s, but as he had long been absent, and therefore leftened his personal interest, he declined appearing for it. Here likewise he began his “Universal Grammar,” and finished ten languages, with diversions prefixed, as the most ready introduction to any tongue whatever. In the beginning of this interval he wrote his poem on “Ethic,” which was approved by the town, and well received. He was ordained deacon by Dr. Wake, then bishop of Lincoln; and after having taken his degree of M.A. was admitted to priest’s orders by Dr. Gibbon, his successor in that see. He formed an early resolution to improve himself in all the advantages of books and conversation the most effectually, on the first opportunity, at London. But he laid the basis of future proficiency in affiting at thecuracy of his native town; where he preached many occasional sermons, particularly one at the altars at Leicester: he then gave a voluntary warning for the choice of a new mater and curate, and came to town recommended by above 50 letters from the most considerable men in the country, both of the clergy and laity; but against the inclination of his neighbours and his school, which was now, as from his first entrance upon it, still advancing; and his method being established and approved, one of his own scholars was appointed to succeed him.

In town he published several pieces, as a translation of Pliny’s Epistles, of several works of Abbe Verot, of Montfaucon’s Italian Travels in Follo, and many other lucrations. His most generous patron was the earl of Macclesfield, who gave him a benefice in the country, the value of which to a resident would have been above £10 a year; he had likewise a lecture in the city; and preached more charity sermons about town, was more numerously followed, and raised more for the poor children, than any other preacher, however dignified or distinguished. But when he professed his desire and promise from a great man of being fixed in town, it palled in the negative. He took the people (it seems) too much from their parish-churches; and as he was not so proper for a London divine, he was very welcome, notwithstanding all difficulties, to be a rural pastor. But it was not for a second rufcification, as he informs us, that he left the fields and the swains of Arcadia to visit the great city: and as he knew it was as lawful to take a licence from the king and parliament at Hicks’s-hall as at Doctors Commons (since the ministerial powers of this kingdom are and ought to be parliamentary only), he freely, without compulsion, or being desired or capable of being compelled to reside in the country, gave up his benefice and lectures, certainties for an uncertainty; believing the public would be a more hospitable protector of learning and science, than some of the upper world in his own order.

Mr. Henley, in answer to a cavil (that he borrowed from books), proposed, “that if any person would single out any celebrated discourse of an approved writer, dead or living, and point out what he thought excellent in it, and the reasons; he would submit it to the world, whether the most famed composition might not be surpassed in their own excellency, either on that or any different subject.”

Henley preached on Sundays upon theological matters, and on Wednesdays upon all other sciences. He declared
declaimed some years against the greatest persons, and occasionilly, says Warburton, did Pope that honour.

The poet in return thus blazon's him to infamy:

"But, where each science lifts its modern type,
History by pot, Divinity his pipe,
Wit proud Philosophy repines to show,
Dishonest fight! his breeches rent below;
Imbrownd with native bronze, lo Henley flands,
Tuning his voice, and balancing his bands.
Ho! how few noble trickles from his tongue!
How few the currents, neither aid nor fong!
Still break the benches, Henley! with thy Stratun,
While Kmet, Hart, and Gibson preach in vain.
O great refolver of the good old fages,
Preacher at once and Zany of thy age!
O worthy thou of Egypt's wife abodes,
A decent priest where munkies were the gods!
But Fate with Butchery placed thy pircly flall.
Meeke modern faith to murder, hack, and maule;
And bade thee live to crown Britannia's praise,
In Toland's, Tindal's, and in Woolfmon's days."

This extraordinary perfon (who died October 14. 1736) struck medals, which he dispirled as tickets to his infcriptions: a star riling to the meridian, with this motto, Ad fenuma; and below, Henley, Henley, Henley, as tickets; and next Saturday the following parody of his text appeared as a motto to Henley's advertisement:

Away with the wicked before the king;
And away with the wicked behind him;
His throne will blefe;
With righteousfes;
And we shall know where to find him."

His text was generally composed of the lowest ranks; and it is well known that he even collected an infinite number of shoe-makers, by announcing that he could teach them a speedy mode of operation in their busines, which proved only to be, the making of shoes by cutting off the tops of ready-made boots.

HENNA, or ALHENNA. See Lawsonia.

HENNEBERG, a county of Germany, in the circle of Franconia. It is bounded on the north by Thuringia, on the west by Heffe, on the south by the bishopric of Wurzburg, and on the east by that of Bamberg. It abounds in mountains and woods; and it is populous, and pretty fertile. Mainingen is the capital town.

HENNEBERG, a town of Germany, in the circle of Franconia, which gives title to a county of the same name with a castle. E. Long. 9. 17. N. Lat. 50. 40.

HENNEBON, a town of France in Bretagne, in the diocese of Vannes. It is inhabited by rich merchants and is seated on the river Blavet, in W. Long. 2. 15. N. Lat. 47. 48.

HENRY IV., or HENRY, king of France (in 1589) and Navarre, justly styled the Great, was the son of Anthony de Bourbon, chief of the Branch of Bourbon (so called from a fictitious name which fell to them by marriage with the heirs of the cité). His mother was...
Henry the daughter of Henry d'Albert, king of Navarre, a woman of a masculine genius; intrepid, simple, and rugged in her manners, but deeply versed in politics, and a zealous Protestant. Foreseeing that her party would want such a protector (for her husband was a weak indolent prince), she undertook the care of the education of the young hero: his diet was coarse; his clothes mean, but plain; he always went bare-headed; he sent him to school with the other children of the same age, and accustomed him to climb the rocks and neighbouring mountains, according to the custom of the country. He was born in 1533; and in 1569, the 16th year of his age he was declared the Defender and Chief of the Protestant party. The peace of St Germain, concluded in 1570, recalled the lords in the Protestant interest to court; and in 1572, Henry was married to Marguer de Valois, sister to Charles IX king of France. It was in the midst of the rejoicing for these nuptials that the horrid massacre of Paris took place. Henry was reduced, by this infernal stroke of false policy, to the alternative of changing his religion or being put to death: he chose the former; and was detained prisoner of state three years. In 1587 he made his escape; put himself at the head of the Huguenot party; expounding himself to all the risks and fatigues of a religious war, often in want of the necessaries of life, and enduring all the hardships of the common soldier: but he gained a victory this year at Courtras, which established his reputation in arms, and endeared him to the Protestants. On the death of Henry III. religion was urged as a pretext for one half of the officers of the French army to reject him, and for the leaguers not to acknowledge him. A phantom, the cardinal de Bourbon, was set up against his formidable rival was the duke de Mayenne; however, Henry, with few friends, fewer important places, no money, and a very small army, supplied every want by his activity and valor. He gained several victories over the duke: particularly that of Ivry in 1590 memorable for his heroic adoration to his soldiers: "If you love your enigmas, rally by my white plume, you will always find it in the road to honour and glory." Paris held out against him, notwithstanding his successes; he took all the suburbs in one day; and before he had reduced the cité by famine, if he had not humanely suffered his own army to relieve the besieged; yet the bigoted friars and priests in Paris all turned soldiers, except four of the Mendicant orders; and made daily military reviews and processions, the sword in one hand and the crucifix in the other, on which they made the citizens swear rather to die with famine than to admit Henry. The scarcity of provisions in Paris at last degenerated to an universal famine: bread had been sold, whilst any remained, for a crown the pound; and at last it was made from the bones of the charnel-house of St Innocents; human flesh became the food of the obstinate Parisians, and mothers ate the dead bodies of their children. In fine the duke of Mayenne, seeing that neither Spain nor the league would ever grant him the crown, determined to a vite in giving it to the lawful heir. He engaged the states to hold a conference with the chiefs of both parties; which ended in Henry's abjuration of the Protestant religion at St Dennis, and his consecration at Chartres in 1593. The following year Paris opened its gates to him; in 1596, the duke of Mayenne was pardoned; and in 1598, peace was concluded with Spain. Henry now showed himself doubly worthy of the throne, by his encouragement of commerce, the fine arts, and manufactures, and by his patronage of men of ingenuity and found learning of every country: but though the fermentations of Romish bigotry were calmed, the leaven was not destroyed; scarce a year passed without some attempt being made on this real father of his people; and at last the monster Ravaillac stabbed him to the heart in his coach, in the streets of Paris, on the 14th of May 1610, in the 37th year of his age and 22d of his reign.

Henry VIII. king of England, was the second son of Henry VII. by Elizabeth the eldest daughter of Edward IV. He was born at Greenwich, on the 28th of June 1491. On the death of his brother Arthur, in 1502, he was created prince of Wales; and the following year betrothed to Catharine of Aragon, prince Arthur's widow, the Pope having granted a dispensation for that purpose. Henry VIII. acceded to the throne, on the death of his father, the 22d of April 1509, and his marriage with Catharine was solemnized about two months after. In the beginning of his reign he left the government of his kingdom entirely to his ministers; and spent his time chiefly in tournaments, balls, concerts, and other expensive amusements. We are told that he was so extravagant in his pleasures, that, in a very short time, he entirely dissipated 1,800,000l. which his father had hoarded. This will seem less wonderful, when the reader is informed, that gaming was one of his favourite diversions. Nevertheless he was not so totally absorbed in pleasure, but he found leisure to found the reformation of the people two of his father's ministers, Empson and Dudley. A house in London, which had belonged to the former of these, was in 1510 given to Thomas Wolsey, who was now the king's almoner, and who from this period began to inculcate himself into Henry's favour. In 1513, he became prime minister, and from that moment governed the king and kingdom with absolute power. In this year Henry declared war against France, gained the battle of Spurs, and took the towns of Tournay and Calais; but he did not have time to campaign his troops; he beheaded the earl of Suffolk, who had been long confined in the tower. In 1521, he sacrificed the duke of Buckingham to the resentment of his prime minister Wolsey, and the same year obtained from the Pope the title of Defender of the Faith.

Henry, having been 18 years married, grew tired of his wife, and in the year 1527 resolved to obtain a divorce; but after many fruitless solicitations, finding it impossible to perjure the Pope to annul his marriage with Catharine, he espoused Ann Bullein in the year 1531. During this interval his favourite Wolsey was disgraced, and died; Henry threw off the Papal yoke, and burnt three Protestants for heresy. In 1533, he put to death Sir Thomas Moore, Fisher, and others, for denying his supremacy, and suppressing all the lesser monasteries. His most sacred majesty, having now possessed his second queen about five years, fell violently in love with lady Jane Seymour. Ann Bullein was accused of adultery with her own brother, and with three other persons; she was beheaded the 19th of May 1536.
Henry. 1536. He married Jane Seymour the day following. In 1537, he put to death five of the noble family of Kildare, as a terror to the Irksh, of whose diliwyty he had some apprehensions; and in the year following he executed the marquis of Exeter, with four other persons of distinction, for the sole crime of conring against with cardinal Pole. In 1538 and 1539, he suppressed all the monasteries in England, and seized their revenues for his own use. The queen having died in childbirth, he this year married the princess Anna of Cleves; but dishonoring her person, immediately determined to be divorced; and his obstensive parliament and convocation unanimously pronounced the marriage void, for reasons too ridiculous to be recited: but this was not all: Henry was so incensed with his minister and quondam favourite, Cromwell, to negotiating this match, that he revenged himself by the hand of the executioner. Yet this was not the only public murder of the year 1540. A few days after Cromwell's death, several persons were burnt for denying the king's supremacy, and other articles of heresy. His majesty being once more at liberty to indulge himself with another wife, fixed upon Catherine Howard, niece to the duke of Norfolk. She was declared queen in August 1540; but they had been privately married some time before. Henry, it seems, was to entirely satisfied with this lady, that he daily blessed God for his present felicity; but that felicity was of short duration: he had not been married above a year, before the queen was accused of frequent prostitution, both before and since her marriage; she confessed her guilt, and was beheaded in February 1542. In July 1543, he married his sixth wife, the lady Catharine Parr, the widow of John Neville lord Latimer, and lived to the year 1547 without committing any more flagrant enormities: but finding himself now approach to dissolution, he made his will; and, that the last scene of his life might resemble the rest, he determined to end the tragedy with the murder of two of his best friends and most faithful subjects, the duke of Norfolk and his son the earl of Surrey. The earl was beheaded on the 16th of January; and the duke was ordered for execution on the 29th, but fortunately escaped by the king's death on the 29th. They were condemned without the shadow of a crime; but Henry's political reason for putting them to death, was his apprehension, that if they were sufferred to survive him, they would counteract some of his regulations in religion, and might be troublesome to his son. Henry died on the 28th of January, 1547, in the 56th year of his age, and was buried at Windsor.

As to his character, it is pretty obvious from the facts above related. Lord Herbert palliates his crimes, and exaggerates what he calls his virtues. Bishop Burnet says, 'he was rather to be reckoned among the great than the good princes.' He afterwards acknowledges, that 'he is to be numbered among the ill princes;' but adds, 'I cannot rank him with the worth.' Sir Walter Raleigh, with infinitely more justice, says, 'if all the pictures and patterns of a merciful prince were lost to the world, they might again be painted to the life out of the history of this king.' He was indeed a merciful tyrant, a furious politician, a foolish bigot, a terrible affliction. See England, ii. 253-292.

Henry of Huntington, an English historian, of the 12th century, was canon of Lincoln, and afterwards archdeacon of Huntingdon. He wrote, 1. A history of England, which ends with the year 1154. 2. A continuation of that of Bede. 3. Chronological tables of the kings of England. 4. A small Treatise on the contempt of the world. 5. Several books of epigrams and love verses. 6. A poem on herbs; all which are written in Latin.—His invocation of Apollo and the goddesses of Tempe, in the exordium of his poem on herbs, may not be unacceptable as a specimen of his poetry.
The book which Henry thus appeals to as his principal authority is now lost, so that we have no opportunity of comparing it with what he has written. The character given by Dempster of Henry, however, is more favourable than that by Major. He tells us, that "he was blind from his birth; a man of a singularly happy genius; he was indeed another Homer. He did great honour to his native country, and raised it above what was common to it in his age. He wrote, in the vernacular verse, an elaborate and grand work, in ten books, of the deeds of William Wallace." In this account there is a mistake; for the poem contains eleven or twelve books: but Dempster, who wrote in a foreign country, and had not a printed copy of Henry's work by him when he wrote his eulogium, is excusable in a mistake of this kind.

With regard to his poetical merit, it must undoubtedly rank very far below that of Homer; whom indeed he fearfully resembles in any other respect than that he went about as Homer is said to have done, reciting the exploits of the heroes of his country, and that he was blind. In this last circumstance, however, he was still worse than Homer; for Henry was born blind, but Homer became blind after he had been advanced in years. Hence Henry, even supposing his genius to have been equal to that of Homer, must have lain under great disadvantages; and these are very evident in his works. The descriptive parts are evidently deficient, and the allusions taken principally from the way in which nature affects those fancies of which he was possessed. Thus, speaking of the month of March, he calls it the month of right digestion, from the supposed fermentation then begun in the earth. Of April he says that the earth is then able, or has obtained a power of producing its different vegetables; and that of this productive power he appears to have been more sensible than of the effects which commonly strike us most sensibly. "By the working of nature (says he, the fields are again clothed, and the woods acquire their worthy weed of green. May brings along with it great celestial gladness; the heavy fumes appear upon the tender green." In another place he describes the deity of some river, whom he calls Nympheus, "building his bower with oil and balm, fulfilled of sweet odour." By reason of these disadvantages, he seldom makes use of similes with which Homer abounds so much; and few miraculous interpositions are to be found in his poem, though the prophecies of Thomas Lermont, commonly called The Rhymers, and a prophetic dream of Wallace himself, are introduced, as well as the ghost of Fawdon, a traitor who had joined Wallace, and whom the latter in a fit of passion had killed. In other respects, the same inextinguishable thirst of blood which Homer ascribes to his hero Achilles is ascribed to Wallace, though in all probability the mind of Wallace was too much enlightened to admit of such sentiments. A vast degree of courage and personal strength are ascribed to him, by means of which the exploits of the whole army are in effect transferred to a single person. As long as he is involved with the command, the Scots are victorious and irresistible; when deprived of it, they are enslaved and undone. After struggling for some time against an inveterate and
and powerful faction disdaining to feign submission, he is taken by treachery, and dies a martyr to the freedom of his country. The poem, on the whole, is valuable, on account of our being able to trace, by its means, the progres which the English language had made at that time in Scotland; the manners of the Scots, in that age; and the state of the Scots in that age; as the state of the inhabitants of Scotland, &c. With regard to the authenticity of his relations, it is impossible to suppose any other thing than that they are partly true and partly false. The general thread of the story may undoubtedly be looked upon to be genuine, though embellished with poetical fictions and exaggerations; and his constant appeals to the book already mentioned, though it is now lost, must be looked upon as a strong testimony in his favour: for we cannot suppose that at the time he lived, when we may say that the transations which he relates were recent, he would have had the confidence to appeal to a book which had not been generally known to have an existence; and its being now lost can never be any argument against it, when we consider the difficulty there was of procuring books before the invention of printing; the confusions in which Scotland was frequently involved; and that the exploits of Wallace, who must be supposed to have been a kind of rival to the great Bruce, could not be so agreeable to the court as those of the more successful hero; and therefore the history of them might be suffered to fall into oblivion, though written in elegant Latin, while a most ridiculous poem in that language on the battle of Bannockburn has been preserved to this day.

Henry Prince of Wales, eldest son of King James VI. of Scotland by his queen Anne, sister of the king of Denmark, and one of the most accomplished princes of the age in which he lived, was born on the 19th of February 1594. The birth of the prince was announced by embassadors to many foreign powers, with invitations to be present at the ceremony of his baptism, which was thus delayed for a considerable time. Mr Peter Young, who, along with the celebrated George Buchanan, had been preceptor to his majesty, was sent to the courts of Denmark, Brunswick, and Mecklenburg, the duke of Mecklenburg being great-grandfather to the prince by the mother's side; the lord of East Weems to France and England; and Sir Robert Keith and Captain Murray provost of St Andrew's, to the States General, who at that time were struggling against the Spanish tyranny, and not yet declared a free state. All these embassadors were cordially received, and others invited in return except by the courts of France and England. Henry IV. at that time king of France, though the Scots embassador had formerly been one of his own servants, neither made any present, nor appointed an embassador. Queen Elizabeth had designed to act in the same manner till the death of the behaviour of Henry; after which she honoured James by appointing an embassador of very high rank, Robert Earl of Suffolk. This embassador, however, was so long of making his appearance, that the queen imagined the ceremony would be over before his arrival, for which reason she sent a message to the earl, commanding him in that case not to enter Scotland nor deliver her present. But James had been more obdincuous, and not only delayed the ceremony till the English embassador arrived, but distinguished him from the rest by having a canopy carried over his head at the procession, supported by the lards of Cetford, Buckleidge, Duddopo, and Traquair. The ceremony was performed with great magnificence; after which the embassadors presented their gifts. That consisted of two gold cups worth 12,000 crowns, with a box of the same metal, weighing in all about 400 ounces, containing besides the grant of a pension of 5000 florins annually to the prince for life. The English embassador gave a cupboard of plate curiously wrought, and valued at 5001. sterling; and the Dan­ish embassador two gold chains, one for the queen and another for the prince. The baptism was celebrated on the 6th of September 1594, and the child named Frederick-Henry and Henry-Frederick.

The young prince was now committed to the care of the Earl of Mar, who was ailisted in this important charge by Annabella countess Dowager of Mar, daughter of William Murray of Tullibardine, and patent ancestor of the present duke of Arlso. This lady was remarkable for the severity of her temper, so that the prince met with little indulgence while under her tuition; notwithstanding which he showed great affection for his governess all the time she had the care of him. Next year, however (1595), the queen engaged the chancellor, Lord Thirlestone, in a scheme to get the prince into her own power; but the king having found means to diffuse her majesty from the attempt, showed afterwards such marks of displeasure to the chancellor, that the latter fell into a languishing disorder and died of grief.

In his sixth year prince Henry was committed to the care of Mr Adam Newton a Scotchman, eminently skilled in most branches of literature, but particularly distinguished for his knowledge of the Latin language. Under his tuition he soon made great progress in that language, as well as in other branches of knowledge; insomuch that before he had completed his sixth year his father wrote for his ufe the treatis intituled Basilikon Doron, thought to be the best of all his works.

In his seventh year, prince Henry began his correspondence with foreign powers. His first letter was to the States of Holland; in which he expressed his regard and gratitude for the good opinion they had conceived of him, and of which he had been informed by several persons who had visited that country; concluding with a request that they would make use of his interests with his father in whatever he could serve them, promising also his service in every other respect in which he could be useful, until he should be able to give farther instances of his good-will and affection.

At this early period the prince began to add to his literary accomplishments some of the more martial kind, such as riding, the exercis of the bow, pike, &c. as well as the use of fire-arms; and indeed such was the attachment he showed throughout his whole lifetime to military exercis, that had he attained the years of maturity, there can scarce be a doubt that he would have distinguished himself in a most eminent manner. In all his exercis he made surprising progress; and not only in those of the military kind, but in singing, dancing, &c. On his ninth birthday he sent a letter in Latin to the king, informing him that he had read...
In the tenth year of his age, Henry began to show a wonderful desire of becoming master of all those accomplishments which are necessary to constitute a great prince. Without deftressing from his attention to polite literature, he applied himself in the most assiduous manner to the knowledge of naval and military affairs. To give him the first rudiments of the former, a small vessel was constructed 28 feet long and 12 broad, curiously painted and carved; on board of which he embarked with several of the principal nobility, and sailed as far as Paul's Wharf, where, with the usual ceremonies, he baptized it by the name of the Dijjsaln. Mr. Pett the builder of this ship was recommended to the prince by the high admiral in such strong terms, that his highness took him immediately into his service, and continued his favour to him as long as he lived.

Prince Henry now began to show himself equally a patron of military men and of learning. His martial disposition induced him to take notice of Colonel Edmunds, a brave Scots officer in the Dutch service, who had raised himself solely by his merit. To him he applied for a suit of armour to be sent over from Holland; but though the Colonel executed his commission, he reaped no benefit from his highness's favour, dying in a short time after the armour was purchased, before he had any opportunity of finding it over. In matters of literature the prince appears to have been a very good judge. He patronized divines, and appears to have been naturally of a religious turn of mind. His attachment to the Protestant religion appears to have been excessive; as it never was in the power of the queen, who favoured the Catholic party, to make the least impression upon him. Her machinations for this purpose were discovered by the French ambassador; who, in a letter dated June 7th, 1604, informed his master of them, and that the Spaniards were in hopes of being able by her means to alter the religion in England, as well as to prejudice the prince against France, which the queen said she hoped that her son would one day be able to conquer like another Henry V. By another letter, of date 22d October the same year, the ambassador, after taking notice of the queen's immoderate ambition, adds, that she used all her efforts to corrupt the mind of the prince, by flattering his passions, diverting him from his studies, and representing to him, out of contempt to his father, that learning was inconsistent with the character of a great general and conqueror; proposing at the same time a marriage with the infanta of Spain. Notwithstanding these remonstrances, however, the prince continued to behave as usual, and to patronize the learning no less than before. He presented John Johnston, one of the king's professors at St. Andrew's, with a diamond, for having dedicated to him an Historical description of the kings of Scotland from the foundation of the monarchy to that time; after which the professor added a carmen encomiasticum, which was transmitted to his highness in November 1605. Many other authors also fought and obtained his countenance. In 1606 Mr. John Bond ushered his edition of Horace into the world.
of Denmark, who had come to England on a visit to his dependents, would be agreeable to him; while James was porum, learned Thomas Lydyat to read to him, and made him his pliments on the great performances to his highness; and another treatise against the fame Becanus was also printed this year, and dedicated to the prince.

Many other authors, whom our limits will not allow us to take notice of, were fond of dedicating their performances to his highness; nor was his correspondence less extensive than his condition. We have already taken notice of his having written his first public letter to the states of Holland. He was congratulated by the elector palatine, afterwards married to the princes Elizabeth, on the discovery of—the gun-powder plot. On the same occasion also Lord Spencer wrote him a letter, accompanying it with the present of a sword and a pair of pistols and a sword of the same kind; also two horses, one of them a barb.—This year also the prince waited on his uncle the king of Denmark, who had come to England on a visit to King James; and this monarch was so much pleased with his company, that he presented him at parting with his vice-admiral and best fighting ship, valued at no less than 2500 l. also with a rapier and hanger, valued at 2000 marks. The states of Holland were equally ready to show their attachment. On the 25th of August this year they sent a letter to the prince in French, accompanied with the news of a letter dated 1605; it contained the reasons which they thought, as being the produce of their own country, would be agreeable to him; and they requested his love and favour towards their state: in return for which they promised to be always ready to show their regard for him, and to do him all possible service; as the ambassador himself was ordered particularly to declare. About this time the prince himself wrote a letter to Henry IV. acknowledging the kindness which his majesty had shown him for several years, and confirmed of late by the latter offering him under his own royal hand his friendship and that of the dauphin.

While James was this year employed in hunting, the French ambassador, who had been obliged to quit London on account of the plague, took frequent opportunities of waiting upon his highness, as did also the Spanish ambassador, whose oft frequent reason was to inform him about some horses which were to be sent him from Spain. The prince's partiality towards France, however, was so evident, that the French ambassador, in a letter dated 1606, mentions that "as far as he could discover, his highness's inclination was entirely towards France, and that it would be wrong to neglect a prince who promised such great things. None of his pleasures (continued he) favour the least of a child. He is a particular lover of horses, and whatever belongs to them: but is not fond of hunting; and when he goes to it, it is rather for the pleasure of galloping than that which the dogs give him. He plays willingly enough at tennis, and another Scottish diversion very like mall; but this always with persons elder than himself, as if he despised those of his own age. He studies two hours a-day, and employs the rest of his time in toing the pike, or leaping, or shooting with the bow, or throwing the bar, or vaulting, or some other exercice of the kind, and he is never idle. He shows himself likewise very good-natured to his dependents, supports their interest against any persons whatever, and puzzles whatever he undertakes for them or others with such zeal as gives success to it. For, besides his exerting his whole strength to compass what he desires, he is already feared by those who have the management of affairs, and especially by the earl of Salisbury, who appears to be greatly apprehensive of the prince's ascendant: as the prince, on the other hand, shows little esteem for his lordship." In this letter the ambassador further goes on to remark, that some of the prince's attendants had formerly been made to expect pensions from France; and
HE N

Henry.

he was of opinion that they ought to be gratified on account of the interest they had with the prince. He adds, that the queen had left affection for Prince Henry than for his brother the duke of York, afterwards Charles I., which the prince seemed to have discovered, and sometimes used expressions to that purpose; that the king also seemed to be jealous of his son’s accomplishments, and to be displeased with the quick progress he made.

In 1607 the prince received the arms and armour which Henry IV. sent him as a present; and these being accompanied with a letter, the prince returned an answer by a Mr Douglas; who was introduced to the king of France by the ambassador Sir George Carew. His majesty, contrary to custom, opened the prince’s letter immediately; and so much surprised at the beauty of the character, that he could not be satisfied that it was the prince’s hand until he compared the signature with the rest of the writing. In his letter to the British court on this occasion, the ambassador sets forth in strong terms the affection expressed by the French monarch for the prince; “accounting of him as of his own son, as he hoped that his good brother of Great Britain would do the like of the dauphin.” The French ambassador also gave a character of his highness similar to that already mentioned; remarking, that the prince had great accomplishments and courage; would soon make himself talked of, and possibly give jealousy to his father, and apprehensions to those who had the greatest ascendant at court.” With regard to the petitions to his attendants, he was at first of opinion that they ought to be granted; but afterwards altered his mind, perceiving that there was little probability of the prince being influenced by any of his attendants, as he was much more inclined to be guided by his own judgment than by the suggestions of others.

In the month of July this year the Dutch ambassadors came recommended to Prince Henry by the States, who wrote to him that they had ordered their ambassadors to kiss his highness’s hands on their part, and desired him to continue his friendship to their republic, and to allow their ambassadors a favourable audience, and the same credit as to themselves.

All this attention paid him by foreign powers, all his attention to his own improvements in learning and the military art, and all the temptations which we cannot but suppose a youth in his exalted station to have been exposèd to, seem never to have shaken the mind of this magnanimous prince in the least, or to have at any time made him deviate from the strict line of propriety. We have already mentioned his attachment to the protestant religion; and this appears not to have been grounded upon any prejudice or opinion inculcated upon his infant mind by those who had the care of him, but from a thorough conviction of the truth of the principles which he professed. On the discovery of the gunpowder-plot, he was so impressed with gratitude towards the Supreme Being, that he never afterwards omitted being present at the sermon preached on the occasion. In his 14th year the prince showed himself capable of distinguishing the merit of religious discourses, and paid particular regard to such divines as were most remarkable for their learning and abilities. Among others, he honoured with his attention the learned and eloquent Mr Joseph Hall, then rector of Hallhead in Suffolk, afterwards dean of Worcester, and successively bishop of Exeter and Norwich. His highness was so much pleased with a book of Meditations published by that divine, that he prefixed him to preach before him; and having heard two of his sermons, he engaged him as one of his chaplains; inviting him afterwards to stay conjunctly at his court, while the other chaplains waited only in their turns; promising, moreover, to obtain from the king such preferments as should fully satisfy him. Mr Hall, however, from a reluctance to leave his new patron Lord Denny afterwards earl of Norwich, did not accept of these honourable and advantageous proposals.

In his family the prince took the utmost care to preserve decency and regularity. He ordered boxes to be kept at his three houses of St James’s, Richmond, and Nonfuch, for the money required of those who were heard to swear: the fines levied on such offenders being given to the poor. He had, indeed, a particular aversion to the vice of swearing and profanation of the name of God. When at play he never was heard to do so; and on being asked why he did not swear at play as well as others? he answered, that he knew no game worthy of an oath. The same answer he is said to have given at a hunting-match. The flag, almost quite spent, crossed a road where a butcher was pulling with his dog. The flag was instantly killed by the dog, at which the huntsmen were greatly offended, and endeavoured to irritate the prince against the butcher; but his highness answered coolly, “What if the butcher’s dog killed the flag, what could the butcher help it? They replied, that if his father had been so fierce, he would have sworn so that no man could have endured. “Away,” cried the prince, “all the pleasure in the world is not worth an oath.”

The regard, which Prince Henry had for religion was manifest from his attachment to those who behaved themselves in a religious and virtuous manner. Among these was Sir John Harrington, whose father had been knighted by queen Elizabeth, and created by King James a baron of England in 1603 by the title of Lord Harrington of Exton in Rutland. He was entrusted with the care of the Prince’s Elizabeth after her marriage with the elector palatine, whom he attended to Heydelberg in 1613, and died at Worms on the 24th of August following. His son, who in the year 1604 had been created knight of the Bath, was as soon as he came to the years of discretion remarkable for his piety; insomuch that he is said to have kept an exact diary of his life, and to have examined himself every week as to the progress he had made in piety and virtue, and what faults he had committed during that time. He was affable and courteous to all, and remarkable for his humanity to those in distress; all which good qualities so endeared him to the prince, that he entered into as a friend with him as the disproportion between their stations would allow. There are still several letters extract which passed between them, chiefly upon classical subjects. This worthy and accomplished nobleman died in February 1614.

In his friendship Prince Henry appears to have been very sincere, and inviolably attached to those whom he once patronized. He had a great regard for the unfortunate Lady Arabella Stewart, sister of Henry Lord Darnley,
H E N [417]

Bearyl Durnler, the king's father; and there is still extant a letter from this lady to the prince in return for some kindness he had bestowed on a kinsman or heirs at her recommendation. He expressed much compassion for her misfortunes; she having excited the king's jealousy on account of her marriage with Mr William Seymour, afterwards earl and marquis of Hertford, and resided in 1660 to the dukedom of Somerset.

But on her attempting to escape from the house in Highgate where she was confined, and to go abroad with her husband, his highness expressed some resentment against her; though in all probability his apprehensions as well as those of the king, were ill-founded.

As early as the year 1605, the prince, though then only in his 12th year, manifested his gratitude and attachment to those who had served him, in the instance of his tutor Mr. Newton already mentioned. That gentleman had been promised by his majesty the deanery of Durham upon the demise of the archbishop of York. On this promise Mr. Newton had relied for two years; and as soon as the prelate died, his highness took care to put the king in mind of his promise; in consequence of which, Mr. Newton was installed in his office on the 27th of September 1606.

Mr. Pett, the gentleman who first instructed the prince in naval affairs, having been involved with many others in an inquiry concerning their conduct in their respective employments in the royal navy, the prince showed a laudable desire of protecting their innocence.

The inquiry was set on foot by the earl of Northampton, lord privy seal and warden of the cinque ports, it is true, but almost ruined the prince, though then the prince reached the poop; on which and afterwards from his infancy. In 1611 his highness made a private visit to Chatham, where he first went on board the Prince Royal, and afterwards from ship to ship informing himself particularly of every thing of moment relating to the state of all the different ships, and even pinnaces lying there at that time. Next day he went by water up to Strond; where, contrary to all the remonstrances of his attendants, he caused the ordnance to be shot over his barge. From Strond he went to Gravesend, where the magistrates received him with a discharge of all their small-arms and the ordnance of the block-houses.

About the middle of January 1612, Prince Henry ordered all his majesty's master-shipwrights and builders to attend him to consider of a proposition concerning the building of ships in Ireland made by Mr Burrel. Some of his propositions were, that he should build any ship from 100 to 600 tons, with two decks and an half, at the rate of five pounds per ton; that he would build any ship from 600 to 1000 tons
with three whole decks, at the rate of seven pounds per ton; that he should build a ship of 600 ton with.

In one instance, the extreme desire which Prince Henry had in being intrusted in military affairs, carried him beyond those bounds which European nations have prescribed to one another. In 1607 the prince de Joinville, brother to the Duke of Guise, came to England, having been obliged to leave France in consequence of his having made love to the countess de Moret the king's mistress. After having been for a few weeks magnificently entertained at court, he departed for France in the beginning of June. The prince took an opportunity of sending to Calais in the train of the prince an engineer in his own service, who took the opportunity of examining all the fortifications of the town, particularly those of the Rix-bane. This was discovered by the French ambassador, who immediately gave notice of it to the court, but excused the prince, as supposing that what he had done was more out of curiosity than any thing else; and the court seemed to be of the same opinion, as no notice was ever taken of the affair, nor was the friendship between the prince and the prince in the smallest degree interrupted. The martial disposition of his highness was greatly encouraged by some people in the military line, who put into his hands a paper entitled "Propositions for War and Peace." Notwithstanding this title, however, the aim of the author was evidently to promote war rather than peace; and for this the following arguments were used. 1. Necessity; for the preservation of our own peace, the venting of faction spirits, and instructing the people in arms. 2. The benefits to be derived from the spoils of the enemy, an augmentation of revenue from the conquered countries, &c. This was answered by Sir Robert Cotton in the following manner. 1. That our wise princes had always been inclined to peace. 2. That foreign expeditions were the causes of wars, and not wars the causes of foreign expeditions. 3. That without the assistance of foreign allies, as the resolute and brave conduct of the English in the West Indies, no French people could withstand any attacks made upon them. 4. That the king of Sweden set no bounds which European nations have prescribed to one another. In 1607 the prince de Joinville, brother to the Duke of Guise, came to England, having been obliged to leave France in consequence of his having made love to the countess de Moret the king's mistress. After having been for a few weeks magnificently entertained at court, he departed for France in the beginning of June. The prince took an opportunity of sending to Calais in the train of the prince an engineer in his own service, who took the opportunity of examining all the fortifications of the town, particularly those of the Rix-bane. This was discovered by the French ambassador, who immediately gave notice of it to the court, but excused the prince, as supposing that what he had done was more out of curiosity than any thing else; and the court seemed to be of the same opinion, as no notice was ever taken of the affair, nor was the friendship between the prince and the prince in the smallest degree interrupted. The martial disposition of his highness was greatly encouraged by some people in the military line, who put into his hands a paper entitled "Propositions for War and Peace." Notwithstanding this title, however, the aim of the author was evidently to promote war rather than peace; and for this the following arguments were used. 1. Necessity; for the preservation of our own peace, the venting of faction spirits, and instructing the people in arms. 2. The benefits to be derived from the spoils of the enemy, an augmentation of revenue from the conquered countries, &c. This was answered by Sir Robert Cotton in the following manner. 1. That our wise princes had always been inclined to peace. 2. That foreign expeditions were the causes of wars, and not wars the causes of foreign expeditions. 3. That without the assistance of foreign allies, as the resolute and brave conduct of the English in the West Indies, no French people could withstand any attacks made upon them. 4. That the king of Sweden set no
HEN[419]HEN
travagance. As early as the year 1605 he began to
show an attention to his interest as duke of Cornwall,
and to take proper measures for securing his revenues
there. In 1610 he settled and appointed the officers
of his household, making his choice with the greatest
prudence, and giving orders for the management and
regulation of his affairs with all the wisdom and gra-
vity of an old counsellor. Some lands were now all-
otted to him for his revenues; and instead of dimin-
nishing his income during the short time he was in pos-
fession of them, they were found at his death to be
some thousands of pounds better than when he obtained
them. At this time he showed much reluctance to
gratify any of his servants except by promises, as not
thinking himself yet authorized to give any thing away;
but a short time before his death, he conferred pensions
on some of them; and there is no reason to doubt,
that had his life been prolonged he would have re-
warded them all according to their merit.

Though Prince Henry never interfered much in
public business, yet in a few transactions he had of
this kind, he always displayed great firmness and res-
olution, as well as absolute propriety of conduct. In
a letter from Sir Alexander Seton, earl of Dunfermling,
he is commended for the firmness and resolution with
which he repelled the calumnies of some who * had
railed, and with the highest intemperance of tongue,
endeavoured to wound the Scottish nation.” By this
he alluded to some very gross and scurrilous invecti-
ves thrown out against the whole body of the Scots
by Sir Christopher Pigot, in a debate in the house of
commons on an union between the two kingdoms.
This gentleman declared his astonishment at the pro-
posal of uniting a good and fertile country to one poor,
barren, and in a manner disgraced by nature; and for
associating rich, frank, and honest men, with such as
were beggars, proud, and generally traitors and rebels
to their kings; with many other shameful expressions
of the same kind. His majesty was highly offended
with the whole council; and Sir Christopher, after
being obliged in parliament to retract his words, was
expelled the house and imprisoned; in consequence of
which, the king was addressed by the states of Scot-
land, who thanked him for the zeal he had manifested
for the honour of the country. In another instance,
where the prince wished Mr Fullerton, a Scotman,
to supercede Sir Robert Car, one of the attendants
of his brother the duke of York, contrary to the inclina-
tion of the king and earl of Salisbury, his highness
carried his point by persuading Sir Robert of himself
to give up the place in question.

Under this year, 1611, the elegant Latin historian
of Great Britain from 1572 to 1628, Robert Johnston,
places a story, which, though unsupported by any au-
thority but his own, and improbable in itself, must
not be omitted here. The prince, according to this
writer, requested the king that he might be appointed
to preside in the council. This demand was fecunded
by the king’s favourite Car, Vifcount Rochester, who
urged his majesty to lay his son’s petition before the
council. But the earl of Salisbury, jealous of the
growing power of Rochester, and a thorough master
of artifice and dissimulation, used all his efforts to de-
fend whatever measures were proposed by his rival; and
being asked soon after his opinion upon this point,
whether it was for the public interest that the prince
should preside in the council? answered, that he thought
it dangerous to divide the government, and to invest
the son with the authority of the father. Many others
of the privy council having delivered their opinions on
the same question, that of the earl of Salisbury was
adopted by the majority. But his lordship soon took
an opportunity, in a secret conference with the prince,
to lament his own situation, and to persuade his high-
ness that Lord Rochester had the only influence in the
palace, and privately counteracted all his designs. The
prince, on his part, refented the denial of his request,
and his exclusion from public business. It was not
long before Lord Rochester discovered the earl of Sal-
isbury’s practice against him with the prince; to whom
he therefore went to clear himself. But his high-
ness turned from him with great indignation, and
would not hear his justification. The queen likewise,
highly displeased with the viscount, refused to see him,
and sought all means of lessening his power. This
forwardness imputed to the prince by the historian, in
endeavouring to intrude himself into the management
of public affairs, is not (as Dr. Birch remarks) at all
suitable to the character of his highness, or to any
other accounts which we have of him; nor ought it
to be believed upon the credit of a writer who cites
no authority for it, nor indeed for scarce any other
assertions in his history, how extraordinary forever they
appear to be, and who frequently ventures to enlarge
upon subjects which it was impossible for him to have
known. However, it is not much to be doubted, that
the prince had no great effect for Lord Rochester,
whose rife to the power of a favourite and a minister
he so much disliked, if we may believe a familiar writ-
er of Memoirs?, that he was reported either to have
struck his lordship on the back with a racket, or very
hardly forborne it. And another historian, not much
less familiar, Arthur Wilson†, mentions the bicker-
ings betwixt the prince and the viscount; and that Sir
James Elphinstone observing his highness one day to be
 discontented with the viscount, offered to kill him,
for which the prince reproved him, and said that if
there were cause he would do it himself. But to wave
such very suspicious authorities, it will be sufficient,
in order to judge of his highness’s opinion of the vis-
count, and his administration at the very height of it,
to hear what himself says in a letter to Sir Thomas
Edmondes of the 10th of September 1612: “As mat-
ters go now here, I will deal in no business of im-
portance for some respects.”

It is not to be supposed but that the marriage of a
prince so accomplished and so much admired would en-
grage the attention of the public. This was indeed
the case. The queen, who favoured the interest of Spain,
proposed a match with the infanta, and the king of
Spain himself seemed to be inclined to the match. In
1611 a proposal was made for a double marriage be-
twixt the prince of Wales and the eldest daughter of
the house of Savoy, and between the prince of Savoy
and the Lady Elizabeth; but these overtures were
very coolly received, being generally disagreeable to
the nation. Sir Walter Raleigh, at that time prisoner
in the Tower, wrote two excellent treaties against
these matches; in one of which he styles the prince
The most excellent and hopeful, as he does also in the

Francis
Oborne’s
Traditions
Memoirs
King James
36
Life at
Reign
of

Sir
Robert
Johnson.

James
Henry. introduction to his Observations on the royal navy and
sea-service. About the year 1612, his marriage became an object of general attention. In this affair the king seems to have inclined to match his son with the princess who promised to bring the largest dowry; the nation at large to have been influenced by motives of religion; and the prince himself to have remained entirely passive, and to have been willing to bow to his person with the most perfect indifference on whatever princess should be chosen for him. This appears from a letter to the king dated 5th October 1612, in which he considers the match with the second princess of France as in a manner concluded. Proposals had indeed been made of sending her over to England for her education, the being only nine years of age at that time; but Villeroj the French minister was of opinion, that this ought to be delayed for a year longer. The reasons assigned by the prince for wishing her coming to England at that time were merely political: 1. Because the French court, by having the princess in their power, might alter her mind as they pleased; 2. That there would thence be a greater likelihood of converting her to the protestant religion; and, 3. That his majesty's credit would be better preferred when both daughters (the eldest being promised to the prince of Spain) should be delivered at the same time, though the conclusion of the one marriage might be much later than of the other. With regard to the exercise of her religion, the prince expressed himself rather in severe terms, wishing her majesty only to allow her to use it in her most private and secret chamber. He then argues with the most philosophic indifference of the propriety of a match with the French princess rather than with one of the house of Savoy: concluding at last in the following words: "If I have incurred in the same error that I did last by the indifference of my opinion, I humbly crave pardon of your majesty, holding it fitter for your majesty to receive what course is most convenient to be taken by the rules of the state, than for me who am so little acquainted with subjects of that nature: and besides, your majesty may think, that my part to play, which is to be so love with any of them, is not yet at hand." On the whole, it appeared, that there never was any real design in the king or prince to bring this matter to a conclusion; and that the proposal had been made only with a view to break off the match of the eldest daughter with the prince of Spain, which could not now be done.

Prince Henry, notwithstanding his indifference in matrimonial matters, applied himself with the utmost affidency to his former employments and exercises, the continual fatigue of which was thought to impair his health. In the 19th year of his age his constitution seemed to undergo a remarkable change: he began to appear pale and thin, and to be more retired and serious than usual. He complained now and then of a giddiness and heavy pain in his forehead, which obliged him to stroke up his brow before he put on his hat; he frequently bled at the nose, which gave great relief, though the discharge dropped some time before his death. These forebodings of a dangerous malady were totally neglected both by himself and his attendants, even after he began to be seized at intervals with fainting fits. Notwithstanding these alarming symptoms, he continued his usual employments. On the arrival of Count de Nassau in England, he waited upon him as though nothing had been the matter; and when the subject of the princess Elizabeth's marriage came to be canvassed, he interested himself deeply in the affair, and never desisted till the match with the elector palatine was concluded. In the beginning of June 1612, the prince went to Richmond, where he continued till the progress; and notwithstanding the complaints aforesaid, he now took the opportunity of the neighbourhood of the Thames to learn to swim. This practice in an evening, and after supper, was discommended by several of his attendants; and was supposed to have stopped the bleeding at the nose, from which he had experienced such salutary effects. He could not, however, be prevailed upon to discontinue the practice; and took likewise great pleasure in walking by the river-side in moon-light to hear the sound and echo of the trumpets, by which he was undoubtedly too much exposed to the evening dews. Through impatience to meet the king his father, he rode 60 miles in one day; and having refledted himself during the night, he rode the next day 36 miles to Belvoir Castle, where he met the king at the time appointed. During the heat of the feast also he made several other fatiguing journeys, which most undoubtedly have contributed to impair his health. At the conclusion of the progress, he gave a grand entertainment to the court from Wednesday till Sunday evening, when the king and queen with the principal nobility attended at supper. Next day he hastened to his house at Richmond, where he expected the elector palatine, and began to give orders for his reception, also to take measures for rewarding his servants. To some of those he gave pensions, and promised to gratify the rest as soon as possible. From this time, however, his health daily declined. His countenance became more pale, and his body more emaciated: he complained now and then of drawing sneez, which frequently made him ask his attendants concerning the nature and cure of his malady, probably of the purit kind, which at that time prevailed in England, and was supposed to have been brought thither from Hungary. He now began frequently to sigh, as is usual for persons afflicted with disorders of that kind. The malady increased in the beginning of October, though he used his utmost endeavours to conceal it, and occupied himself as usual; only that now, instead of rising early in the morning as before, he would commonly keep his bed till nine. On the 20th of that month he had two slight fits of an ague, which obliged him to keep his chamber; and on the 13th his distemper seemed to be augmented by a violent diarrhoea, which, however, gave so much relief the next day, that he insisted upon being removed from Richmond to St James's, in order to receive the elector palatine. On his arrival there, some of his attendants began to be alarmed by the signs of sickness which appeared upon him, though he himself made no comp sion, and even allowed his physician to go to his own house. The elector arrived on the 16th, and the prince waited upon him at Whitehall; but his disease had now gained so much ground, that his temper underwent a very considerable alteration, and he became peevish and discontented with almost every thing:
Prince Henry was of a comely stature, about five feet eight inches; of a strong, straight, well-made body, with somewhat broad shoulders and a small waist; of an amiable and majestic countenance: his hair of an auburn colour: he was long-faced, and had a broad forehead, a piercing eye, a most gracious smile, with a terrible frown. He was courteous, loving, and affable; naturally modest, and even shame-faced; most patient, which he showed both in life and death; slow to anger, so that even when he was offended, he would govern and restrain himself to silence. He was most merciful to offenders, after a little punishment to make them sensible of their faults. His sentiments of piety strong and habitual; and his zeal for the interests of religion was such, that he would, if he had lived, have used his endeavours for reconciling the divisions among its professors. He usually retired three or four days for his private devotions, and was scarce once a month absent from the public prayers, where his behaviour was highly decent and exemplary, and his attention to the preacher the most fixed imaginable. He had the greatest esteem for all divine characters and conduct corresponded with their profession; but could not conceal his indignation against such as acted inconsistently with it, and he above all things abhorred flattery and vain-glory in them. He had a thorough detestation for popery, though he treated those of that religion with great courtesy; showing, that his hatred was not levelled at their persons, but at their opinions. And he was so immovable in his attachment to the protestant religion, that not long before his death, as Sir Charles Cornwallis above affirms, he made a solemn protestation that he would never join in marriage with one of a different faith.

The prince was so exact in all the duties of filial piety, and bore so true a reverence and respect for the king his father, that though sometimes, out of his own inclination, or by the excitation of others, he moved his majesty in some things relating to the public, or his own particular interests, or those of others; yet upon the least word, look, or sign given him of his majesty's disapprobation, he would instantly desire from pursuwing the point, and return either with satisfaction upon finding it disagreeable to the king, or with such a resolved patience that he neither in word or action gave so much as any appearance of being displeased or discontented. He adhered strictly to justice on all occasions; and never suffered himself to determine rashly, or till after a due examination of both parties. This love of justice showed itself very early by favouring and rewarding those among his pages, and other young gentlemen placed about him, who, by men of great judgment, were thought to be of the best behaviour and most merit.

And when he was but a little above five years of age, and a son of the earl of Mar, somewhat younger than himself, falling out with one of his higheem's pages, did him some wrong, the prince reproved him for it, saying, 'I love you, because you are my lord's son, and my confian: but if you be not better conditioned, I will love such a one better:' naming the child who had complained of him. He was of singular
Besides his knowledge of the learned languages, he spoke the Italian and French; and had made a
considerable progress in philosophy, history, fortification,
mathematics, and cosmography; in the two last of
which he was instructed by that excellent mathematician
Mr. Edward Wright. He loved and endeavoured
to do somewhat of every thing, and to be excel-
larly in the most excellent. He greatly delighted in all
rare inventions and arts, and military engines both at
land and sea; in shooting and levelling great pieces of
ordnance; in the ordering and marshalling of armics;
in building and gardening; in music, sculpture, and
painting, in which last art he brought over several
works of great masters from all countries.

He had a just opinion of the great abilities of Sir
Walter Raleigh; and it is reported to have said, that

"no king but his father would keep such a bird in a
cage." And it is affirmed, that his highness, but a
few months before his death, obtained the lands and
castle of Sherburn in Dorsetshire, the confiscated estate
of Sir Walter, with an intention of returning it to
him. That eminent writer, soldier, and statesman,
had a reciprocal regard for the prince, to whom he
had designed to address a discourse "Of the Art of
War by Sea," which his highness's death prevented
the author from finishing. He had likewise written
to the prince another "Discourse of a Maritimal
Voyage, with the passages and incidents therein;" But this
has never yet appeared in print. He had also intended and,
as he expresses it, "hewn out a second and third volume
of his General History, which were to have been direct-
ly to his highness: "but it has pleased God (says he)
to take that glorious prince out of this world, to whom
they were directed; whose unapproachable and never-

enough lamented los hath taught me to say with Job,

"Veritatis in ludum cithara mea, & organis meum in
voce bensium."

In the government of his household and management
of his revenues, though he was so very young, his
example deferred to be imitated by all other princes.
He not only gave orders, but few almost every thing
done himself; so that there were scarce any of his do-
mestics whom he did not know by name. And among
there was not one even suspected papil; his di-
rections being very peremptory for setting down the
names of all communicants, that he might know if
there were any of his family who did absent themselves
from the communion. His family was large, consist-
ing of a few at least than 500, many of them young gentle-
men born to great fortunes, in the prime of their
years, when their passions and appetites were strong,
their reason weak, and their experience little. But
his judgment, the gravity of his princely aspect,
and his own example, were sufficient restraints upon
them; his very eye served instead of a command;
and his looks alone had more effect than the sharpest
reprehensions of other princes. If any disputes or con-
tests arose among his servants, he would put a stop
to them at the beginning, by referring them to some of
his principal officers, whom he thought most intelli-
gent in points of that nature, and to understand best
what compensation was due to the injured, and what
reproach to the offender; so that it was numerably a fa-
mily there was not so much as a blow given, nor any
quarrel carried to the least height. Though
Though he loved plenty and magnificence in his house, he restrained them within the rules of frugality and moderation, as he had already noticed. By this economy he avoided the necessity of being rigid to his tenants, either by raising their rents or fines, or seeking or taking advantage of forfeitures. Nor was he tempted to make the profit which both law and right afforded him, of such who had in the time of former princes purchased lands belonging to his duchy of Cornwall, which could not by law be alienated from it; for he gave them, upon resuming the possession or reasonable satisfaction. Neither did his economy restrain him from being liberal where merit or distress called for it; at the same time he immediately called for it; at the same time he was so solicitous to prevent any person from being prejudiced or annoyed by himself or any of his train, that whenever he went out to hawk before harvest was the surest sign of any man living. His speech was short and attended with some sparks of grace which even then compelled his followers to respect him, who first taught and taught him to himself, who first taught and taught himself, rather a firmness about the corn; and, to set them an example, would by servants, how to love and esteem most such anciently descended, and to the public apprehension of the power of Lord Rochester, and grounded more hope upon him than the uncertain and hopeless love of his highness, he soon flighted her. The learned and pious antiquary, Sir Simons D'Ewes, in a manuscript life of himself written with his own hand, and brought down to the year 1627, is positive, that "notwithstanding the unfruitful Prince Henry's martial desires and imitation into the ways of godliness, the courtiers, being fet on by the earl of Northampton her father's uncle, first caught his eye and heart, and afterwards prostituted herself to him, who first reaped the fruits of her virginity. But those sparks of grace which even then began to show their influence in him, with those more heroic innate qualities derived from virtue, which gave the law to his more adviced actions, soon raised him out of the number of that dissenter, and taught him to reject her following temptations with indignation and superscriptions." But these authorities, Dr. Birch observes, ought to have little weight to the prejudice of the prince's character, against the direct testimony in his favour from so well-informed a writer as Sir Charles Cornwallis.

The immature death of the prince concurring with the public apprehensions of the power of the papists, and the ill opinion which the nation then had of the court, gave immediate rise to suspicions that he was being hardened by poison. And these suspicions were heightened by the very little concern shown by some persons in great stations. "To tell you (says Richard earl of Dorset in a letter to Sir Thomas Edmonds, of the 23rd of November 1612) that our rising sun is set ere fearfully he had shone, and that with him all our glory lies buried, you know and do lament as well as we, and better than some do, and more truly; or else you are not a man, and sensible of this kingdom's loss." And it is certain, that this loss did not impede the king and his favourite, that the lord viscount Rochester on the 9th of November, three days after it, wrote to Sir Thomas Edmonds to begin a negociation for a marriage between Prince Charles and the second daughter of France. But the ambassador, who had more sense of decency, thought it improper to enter upon such an affair so soon after the late prince's death. Mr. Beaulieu, secretary to Sir Thomas Edmonds, in a letter of the 12th of November 1612, to Mr. Trumbull, then resident at Brussels, after styling the prince "the flower of his house, the glory of his country, and the admiration of all strangers, which in all places had implanted a great hope on the minds of..."
the well affected, as it had already stricken terror into
the hearts of his enemies," adds, "who perhaps (for
of this lamentable accident we have yet no particular
relation) fearing the growing virtues of that young
prince, have used the traitorous venom of their abo-
minable practices to cut him off in his youth. And this
I do not apprehend without cause, considering the fe-
veral advertisements which I saw a month ago coming
out of England, Holland, and Calais, of strange ru-
mours which were in these parts, of some great and
imminent practice in hand, for the success whereof it
was written, that in some places our adversaries had
made solemn prayers: and out of Calais it was especi-
ally advertised, that in your parts they were in expect-
ation of the death of some great prince. But alas! we
did little apprehend, that such ominous prognostica-
cions would have lighted upon the person of that vi-
gorous young prince, whose extraordinary great parts
and virtues made many men hope and believe, that God
had reserved and defined him, as a chosen instrumen-
to be the standard-bearer of his quarrel in these mife-
table times, to work the restitution of his church, and
the destruction of the Romish idolatry."

With the above notion his royal highness's mother
the queen was peculiarly imprienced, according to Dr
Welwood; who, in his Notes on Arthur Wilson's
Life of King James I. in the Complete History of
England, p. 714. informs us, though without giving
any authority, that when the prince fell into his last
illness, the queen sent to Sir Walter Raleigh for some
of his cordials, which the herself had taken some time
before in a fever with remarkable success. Raleigh
sent it, together with a letter to the queen, wherein
he expressed a tender concern for the prince; and,
boasting of his medicine, itumbled unluckily upon an
expression to this purpose, "that it would certainly
cure him or any other of a fever, except in cases of
t
gito." As the prince took this medicine, and died
withoutstanding its virtues, the queen, in the agony
of her grief, showed Raleigh's letter; and laid so much
weight on the expression about poison, that as long as
she lived she could never be persuaded but that the
prince's death was due to some poison. And Dr
Welwood suggests that the prince was poisoned. The fame
notice is countenanced by Wilson in his History; and
was adopted by Dr Welwood, as already mentioned.

First, he, in another work, his Memoirs, after
styling the prince "the darling of mankind, and a
youth of vast hopes and wonderful virtues," remarks,
that it was the general rumour at the time of his death,
that his highness was poisoned; and that there is in
print a sermon preached at St James's upon the diffo-
lution of his family, that boldly intimated some such
thing. By this sermon Dr Welwood must mean that
of Mr Hall cited above; in which, however, at least as
it is reprinted in the London edition of his works in
1617 in folio, there is not to be found any expres-
sion that carries the least intimation of that kind. The
writer of the memoirs adds, that Sir Francis Bacon, in
his speech at the trial of the earl of Somerfet, had
some reflections upon the intimacy of that Lord with
Sir Thomas Overbury, which seemed to point that
way; there being several expressions left out of the
printed copy that were in the speech. Bishop Burnet
likewise tells us, that he was assured by Colonel Titus,
that he had heard king Charles I. declare, that the
prince his brother was poisoned by the means of the
Viscount Rochester, afterwards earl of Somerfet. But
it will be perhaps sufficient to oppose to all such sug-
gestions the unanimous opinion of physicians who at-
tended the prince during his sickness, and opened his
body after his death: from which, as Dr Welwood
himself observes, there can be no inference drawn
that he was poisoned. To which may be added the au-
thority of Sir Charles Cornwallis, who was well in
formed, and above all he forebeared in this point, and who
pronounces the rumour spread of his highness's having
been poisoned vain; and was fully convinced that his
death was natural, and occasioned by a violent fever.

Henry (Philip), a pious and learned non-conformist
minister, was the son of Mr John Henry, page of the
back-stairs to James duke of York, and was born at
Whitehall in 1621. He was admitted into Westminster-school at about 12 years of age; became the fa-
favoured of Dr Bathby, and was employed by him, with
some others in collecting materials for the Greek
grammar he afterwards published. From thence he
removed to Christ-church, Oxford; where, having ob-
tained the degree of master of arts, he was taken into
the family of Judge Pule斯顿, at Emerald in Flintshire,
as tutor to his sons, and to preach at Worthingbury.
He soon after married the only daughter and heir of
Mr Daniel Matthews of Broad-oak, near
England, p. 714. informs us, though without giving
of Mr Daniel Matthews of Broad-oak, near
of Mr Daniel Matthews of Broad-oak, near
England, p. 714. informs us, though without giving
England, p. 714. informs us, though without giving
England, p. 714. informs us, though without giving

Henry, Lord Monteagle, for sume
years, greatly

The and great

the proxy of his

the part of

the

the

the

the

the

had

had

had

the

the
Henry. unanimous invitation from a congregation at Hackney.

He wrote, 1. Expositions of the Bible, in 5 vols. folio. 2. The life of Mr Philip Henry. 3. Directions for daily communion with God. 4. A method for prayer. 5. Four discourses against vice and immorality. 6. The communicant's companion. 7. Family hymns. 8. A juridical catechism. And, 9. A discourse concerning the nature of schism. He died of an apoplexy at Nantwich, when upon a journey, in 1714; and was interred at Trinity-church in Chester.

Henry (Dr Robert), author of the "History of Great-Britain, written on a new plan," was the son of James Henry farmer at Muirtown in the parish of St Ninian's, North Britain, and of Jean Galloway daughter of Galloway of Burrowmeadow in Stirlingshire. He was born on the 18th of February 1715; and having early resolved to devote himself to a literary profession, was educated first under Mr John Nicolson at the parish school of St Ninian's, and for some time at the grammar-school of Stirling. He completed his course of academical study at the university of Edinburgh, and afterwards became master of the grammar-school of Annan. He was licensed to preach on the 27th of March 1746, and was the first licentiate of the presbytery of Annan after its erection into a separate presbytery. Soon after, he received a call from a congregation of Presbyterian dissenters at Carlisle, where he was ordained in November 1748.

In this station he remained 12 years, and on the 13th of August 1760 became pastor of a dissenting congregation in Berwick upon Tweed. Here he married, in 1753, Ann Balderston daughter of Thomas Balderston surgeon in Berwick; by whom he had no children, but with whom he enjoyed to the end of his life a large share of domestic happiness. He was removed from Berwick to be one of the ministers of Edinburgh in November 1768; was minister of the church of the New Grey Friars from that time till November 1776; and then became colleague-minister in the old church, and remained in that station till his death. The degree of Doctor in Divinity was conferred on him by the university of Edinburgh in 1770; and in 1774 he was unanimously chosen moderator of the general assembly of the church of Scotland, and is the only person on record who obtained that distinction the first time he was a member of assembly.

From these facts, which contain the outlines of Dr Henry's life, few events can be expected to suit the purpose of the biographer. Though he must have been always distinguished among his private friends, till he was translated to Edinburgh he had few opportunities of being known to the public. The composition of sermons must have occupied a chief part of his time during his residence at Carlisle, as his industry in that station is known to have rendered his labours in this department easy to him during the rest of his life. But even there he found leisure for other studies; and the knowledge of classical literature, in which he eminently excelled, soon enabled him to acquire an extent of information which qualified him for something more important than he had hitherto in his view.

Soon after his removal to Berwick, he published a scheme for raising a fund for the benefit of the widows and orphans of Protestant dissenting ministers in the north of England. This idea was probably suggested by the prosperity of the fund which had almost 30 years before been established for a provision to ministers' widows, &c. in Scotland. But the situations of the clergy of Great-Britain were very different from the circumstances of dissenting ministers in England. Annuities and provisions were to be secured to the families of dissenters, without subjecting the individuals (as in Scotland) to a proportional annual contribution, and without such means of creating a fund as could be the subject of an act of parliament to secure the annual payments. The acuteness and activity of Dr Henry surmounted these difficulties; and, chiefly by his exertions, this useful and benevolent institution commenced about the year 1764. The management was entrusted to him for several years; and its success has exceeded the most sanguine expectations which were formed of it. The plan itself, now sufficiently known, it is unnecessary to explain minutely. But it is mentioned here, because Dr Henry was accustomed in the last years of his life to speak of this institution with peculiar affection, and to reflect on its progress and utility with that kind of satisfaction which a good man can only receive from "the labour of love and good works."

It was probably about the year 1763 that he first conceived the idea of his History of Great Britain: a work already established in the public opinion; and which will certainly be regarded by posterity, not only as a book which has greatly enlarged the sphere of history, and gratifies our curiosity on a variety of subjects which fall not within the limits preferred by preceding historians, but as one of the most accurate and authentic repositories of historical information which Britain has produced. The plan adopted by Dr Henry, which is indisputably his own, and its peculiar advantages, are sufficiently explained in his general preface. In every period, it arranges, under separate heads or chapters, the civil and military history of Great Britain; the history of religion; the history of the constitution, government, laws, and courts of justice; the history of learning, of learned men, and of the chief seminaries of learning; the history of arts; the history of commerce, of shipping, of money or coin, and of the price of commodities; and the history of manners, virtues, vices, customs, language, dress, diet, and amusements. Under these seven heads, which extend the province of an historian greatly beyond its usual limits, every thing curious or interesting in the history of any country may be comprehended. But it certainly required more than a common share of literary courage to attempt on so large a scale a subject so intricate and extensive as the history of Britain from the invasion of Julius Caesar. That Dr Henry neither over-rated his powers nor his industry, could only have been proved by the success and reputation of his works.

But he soon found that his residence at Berwick was an insuperable obstacle to the minute researches which the execution of his plan required. His situation there excluded him from the means of consulting the original authorities; and though he attempted to find access to them by means of his literary friends, and with their assistance made some progress in his work, his information was notwithstanding incomplete, that he found it impossible to prosecute his plan...
HEN

Henry, to his own satisfaction, and was at last compelled to relinquish it.

By the friendship of Gilbert Laurie, Esq; late lord provost of Edinburgh; and one of his majesty’s commissioners of excise in Scotland, who had married the sister of Mrs Henry, he was removed to Edinburgh in 1768; and it is to this event that the public are indebted for his prosecution of the History of Great Britain. His access to the public libraries, and the means of supplying the materials which these did not afford him, were from that time used with so much diligence and perseverance, that the first volume of his History in quarto was published in 1771, the second in 1774, the third in 1777, the fourth in 1781, and the fifth (which brings down the History to the accession of Henry VII.) in 1785. The subject of these volumes comprehends the most intricate and obscure periods of British history; and when we consider the scanty and scattered materials which Dr Henry has digested, and the accurate and minute information which he has given us under every chapter of his work, we must have a high opinion both of the learning and industry of the author, and of the vigour and activity of his mind: especially when it is added, that he employed no amanuensis, but completed the manuscript with his own hand; and that, excepting the first volume, the whole book, such as it is, was printed from the original copy. Whatever corrections were made on it, were inserted by interlineations, in revising the proof-sheets. He found it necessary, indeed, to confine himself to a first copy, from an unfortunate tremor in his hand, which made writing extremely inconvenient, which obliged him to write with his paper on a book placed on his knee instead of a table, and which unhappily increased to such a degree that in the last years of his life he was often unable to take his viueals without assistance. An attempt which he made after the publication of the fifth volume to employ an amanuensis did not succeed. Never having been accustomed to dictate his compositions, he found it impossible to acquire a new habit; and though he persevered but a few days in the attempt, it had a sensible effect on his health, which he never afterwards recovered. An author has no right to claim indulgence, and is still less entitled to credit, from the public for any thing which can be ascribed to negligence in committing his manuscripts to the press; but considering the difficulties which Dr Henry surmounted, and the accurate research and information which distinguished his history, the circumstances which have been mentioned are far from being uninteresting, and must add considerably to the opinion formed of his merit among men who are judges of what he has done. He did not profess to study the ornamens of language; but his arrangement is uniformly regular and natural, and his style simple and perspicuous. More than this he has not attempted, and this cannot be denied him. He believed that the time which might be spent in polishing or rounding a sentence was more usefully employed in investigating and ascertaining a fact; and as a book of facts and solid information, supported by authentic documents, his history will stand a comparison with any other history of the same period.

But Dr Henry had other difficulties to surmount than those which related to the composition of his work. Not having been able to transact with the bookellers to his satisfaction, the five volumes were originally published at the risk of the author. When the first volume appeared, it was censured with an unexampled acrimony and perseverance. Magazines, reviews, and even newspapers, were filled with abusive remarks and invectives, in which both the author and the work were treated with contempt and scurrility. When an author has once submitted his works to the public, he has no right to complain of the just severity of criticism. But Dr Henry had to contend with the inveterate scorn of malignity. In compliance with the usual custom, he had permitted a sermon to be published which he had preached before the society in Scotland for propagating Christian knowledge in 1773; a composition containing plain good sense on a common subject, from which he expected no reputation. This was eagerly seized on by the adversaries of his History, and torn to pieces with a virulence and aperity which no want of merit in the sermon could justify or explain. An anonymous letter had appeared in a newspaper to vindicate the History from some of the unjust cenures which had been published, and assuring from the real merit and accuracy of the book the author’s title to the approbation of the public. An answer appeared in the course of the following week, charging him, in terms equally confident and indecent, with having written this letter in his own praise. The efforts of malignity seldom fail to defeat their purpose, and to recur on those who direct them. Dr Henry had many friends, and till lately had not discovered that he had any enemies. But the author of the anonymous vindication was unknown to him, till he learned and respectable Dr Macqueen, from the indignation excited by the confident petulance of the writer, informed him that the letter had been written by him. These anecdotes are still remembered. The abuse of the History, which began in Scotland, was renewed in some of the periodical publications in South Britain; though it is justice to add (without meaning to refer to the candid observations of English critics), that in both kingdoms the aperity originated in the same quarter, and that paragraphs and criticisms written at Edinburgh were printed in London. The same spirit appeared in Strictures published on the second and third volumes; but by this time it had in a great measure loft the attention of the public. The malignity was sufficiently understood, and had long before become fatal to the circulation of the periodical paper from which it originally proceeded. The book, though printed for the author, had fold beyond his most fanguine expectations; and had received both praise and patronage from men of the first literary characters in the kingdom; and though, from the alarm which had been raised, the bookellers did not venture to purchase the property till after the publication of the fifth volume, the work was established in the opinion of the public, and at last rewarded the author with a high degree of celebrity, which he happily lived to enjoy.

In an article relating to Dr Henry’s life, not to have mentioned the opposition which his History encountered, would have been both affrontation and injustice. The facts are sufficiently remembered, and are unfortunately too recent to be more minutely explained.
That they contributed as first to retard the sale of the work is undeniable, and may be told without regret now that its reputation is established. The book has raised itself to eminence as a History of Great Britain by its own merits; and the means employed to obstruct its progress have only served to embelish its success.

Dr Henry was no doubt encouraged from the first by the decided approbation of some of his literary friends, who were allowed to be the most competent judges of his subject; and in particular by one of the most eminent historians of the present age, whose history of the same periods justly possesses the highest reputation. The following character of the first and second volumes was drawn up by that gentleman, and is well intitled to be inserted in a narrative of Dr Henry's life. "Those who profess a high esteem for the first volume of Dr Henry's history, I may venture to say, are almost as numerous as those who have perused it, provided they be competent judges of a work of that nature, and are acquainted with the difficulties whichattend such an undertaking. Many of those who had been so well pleased with the first were impatient to see the second volume, which advances into a field more delightful and interesting; but the Doctor hath shown the maturity of his judgment, as in all the rest, so particularly in giving no performance to the public that might appear crude or halting, or composed before he had fully collected and digested the materials. I venture with great sincerity to recommend this volume to the perusal of every curious reader who desires to know the fate of Great Britain in a period which has hitherto been regarded as very obscure, ill supplied with writers, and not possessed of a single one that deserves the appellation of a good one. It is wonderful what an instructive, and even entertaining, book the Doctor has been able to compose from such unpromising materials; Tantum serioius et soliusque opusculum. When we see those barbarous ages delineated by fo able a pen, what a contrast is there to the present age; and with what delight might we read these strange personages who the ancients and the ages that succeeded them seemed to have introduced into a new world; but we are still more surprised, as well as intertained, when we reflect that those strange personages were the ancestors of the present inhabitants of this island. The object of an antiquary hath been commonly distingushed from that of an historian; for though the latter should enter into the province of the former, it is thought that it should only be quanto brevis, that is, so far as is necessary, without comprehending all the minute disquisitions which give such supreme pleasure to the mere antiquary. Our learned author hath fully reconciled these two characters. His historical narrative is as full as those remote times seem to demand, and at the same time his inquiries of the antiquarian kind omit nothing which can be an object of doubt or curiosity. The one as well as the other is delivered with great perspicuity, and no less propriety, which are the true ornaments of this kind of writing. All copious and instructive embellishments are avoided; and the reader will hardly find in our language any performance that unites together so perfectly the two great points of entertainment and instruction."—The gentleman who wrote this character died before the publication of the third volume.—The progress of his work introduced Dr Henry to more extensive patronage, and in particular to the notice and esteem of the earl of Mansfield. That venerable nobleman, who is so well intimtiated to the gratitude and admiration of his country, thought the merit of Dr Henry's history so considerable, that, without any solicitation, after the publication of the fourth volume he applied personally to his majesty to bestow on the author some mark of his royal favour. In consequence of this Dr Henry was informed by a letter from Lord Stormont, then secretary of state, of his Majesty's intention to confer on him an annual pension for life of 100l. "Considering his distinguished talents and great literary merit, and the importance of the very useful and laborious work in which he was so successfully engaged, as titles to his royal countenance and favour." The warrant was issued on the 28th of May 1781; and his right to the pension commenced from the 5th of April preceding. This pension he enjoyed till his death, and always considered it as inferring a new obligation to persevere steadily in the prosecution of his work. From the earl of Mansfield he received many other testimonies of esteem both as a man and as an author, which he was often heard to mention with the most affectionate gratitude. The octavo edition of his history, published in 1788, was inscribed to his lordship. The quarto edition had been dedicated to the king.

The property of the work had hitherto remained with himself. But in April 1786, when an octavo edition was intended, he conveyed the property to Messrs Cadell and Strachan; referring to himself what still remained unfold of the quarto edition, which did not then exceed eighty-one complete sets. A few copies were afterwards printed of the volumes of which the first impression was exhausted, to make up additional sets; and before the end of 1786, he sold the whole to Messrs Cadell and Strachan. By the first transaction he was to receive 1000l. and by the second between 300l. and 400l.; about 1400l. in all. These sums may not be absolutely exact, as they are set down from memory; but there cannot be a mistake of any consequence on the one side or the other. —Dr Henry had kept very accurate accounts of the sales from the time of the original publication; and after his last transaction with Messrs Cadell and Strachan, he found that his real profits had amounted in whole to about 3200 pounds: a striking proof of the intrinsic merit of a work which had forced its way to the public esteem unprotected by the interest of the book-sellers, and in spite of the malignant opposition with which the first volumes had to struggle.

The prosecution of his history had been Dr Henry's favourite object for almost 20 years of his life. He had naturally a found constitution, and a more equal and larger portion of animal spirits than is commonly possessed by literary men. But from the year 1785 his bodily strength was sensibly impaired. Notwithstanding this, he perilled steadily in preparing his sixth volume, which brings down the history to the accession of Edward VI, and has left it in the hands of his executors almost completed. Scarcey anything remains unfinished but the two short chapters on arts and manners; and even for these he has left materials and authorities so distinctly collected, that there can be no great difficulty in supplying what is wanting. It is hoped that this volume may be ready for publication some time in the
the winter or spring 1792; and that it will be found inti-
titted to the same favourable reception from the public
which has been given to the former volumes. It was
written under the disadvantages of bad health and great
weakness of body. The tremulous motion of his hand
had interested so as to render writing much more diffi-
cult to him than it had ever been: but the vigour of
his mind and his ardour were unimpaired; and inde-
pendent of the general character of his works, the post-
humous volume will be a lasting monument of the
strength of his faculties, and of that literary industry
and perseverance which ended only with his life.

Dr. Henry's original plan extended from the invasion
of Britain by the Romans to the present times. And
men of literary curiosity must regret that he has not
lived to complete his design; but he has certainly fi-
nished the most difficult parts of his subject. The pe-
riods after the accession of Henry VI. afford materials
more ample, better digested, and much more within
the reach of common readers.

Till the summer of 1790 he was able to pursue his
studies, though not without some interruptions. But
at that time he lost his health entirely; and, with a
constellation quite worn-out, died on the 24th of No-
very l
bember of that year, in the 72d year of his age.—He
was buried in the church-yard of Bolton, where it
is proposed to erect a monument to his memory.

HENTINGS, in agriculture, a term used by the
farmers for a particular method of fowing before the
plough, the corn being cast in a straight line just
where the plough is to come, is by this means present-
ly ploughed in. By this way of sowing they think they
fave a great deal of feed and other charge, a dexterous
boy being capable of fowing this way out of his hat
as the most skilful feedman. Hentings is also a term
used by the ploughmen, and others, to dignify the two
furrows that are turned in front of ploughing the ridges.
These marks of the ridges they call weertings.

HEPAR SULPHURIS, or Liver of Sulphur, a com-
bination of alkaline salt and sulphur. See CHEM-
ISTRY, No. 1021—1025.

By means of the flame arising on the decomposition
of hepar sulphuris by an acid, Mr. Bergman hath found
a method of imitating the hot or sulphureous mineral
waters, to as great perfection as the cold ones are now
imitated by fixed air. The process consists simply in
adding the vitriolic acid to hepar sulphuris, and im-
pregnating water with the peculiar species of air that
arises from this mixture; in the manner as when water
is impregnated with the fixed air arising from the
mixture of that or any other acid with chalk. This
hepatic air, as the author calls it, is very readily
absorbed by water; to which it gives the smell, taste,
and all the other sensible qualities of the sulphureous
waters. A Swedish cantharus of distilled water, con-
taining 12° Swedish cubic inches, will absorb about
60 cubic inches of this hepatic air; and on dropping
into it the nitrous acid, it will appear, that a real sul-
phur is contained, in a state of perfect solution, in this
water, to the quantity of eight grains. It does not
appear that any other acid, except what the author
calls the depheglogificated mariae acid, will produce this
effect.—When any particular sulphureous water is to
be imitated, we fear not to observe, that the saline,
or other contents peculiar to it, are to be added to
the artificial hepatic water. Instead of the liver of
sulphur, the operator may use a mixture of three-parts
of filings of iron and two parts of sulphur melted to-
gether.

It may, perhaps, be thought, that water thus pre-
pared, does not differ from that in which a portion of
the hepar sulphuris has been dissolved; but it ap-
ppears evidently to differ from it in this material cir-
sumstance—that in the solution of hepar sulphuris,
the sulphur is held in solution by the water, through
the means of the alkali combined with it: whereas, in
Mr. Bergman's process, it does not appear probable
that the hepar sulphuris rifes substantially in the form
of air; for, in that case, its presence in the hepatic
water might be detected by means of the weakest of
the acids (even the mephitic), which would precipi-
tate the sulphur from it. Nor can it be supposed that
any portion or constituent part of the alkali itself (ex-
cept a part of its remaining fixed air) can come over.

The water, therefore, must owe its impregnation to
the sulphur; raised, in some peculiar manner, into the
state of an elastic vapour; permanent, when the expe-
riment is made in quick-silver; but condensable in wa-
ter, and rendered soluble in that fluid through the
means of some unknown principle combined with it, and
which the author supposes to be the matter of heat,
combined with it through the medium of phlogiston.

HEPATIC, in medicine and anatomy, any thing
belonging to the liver.

Hepatic Air, a permanently elastic fluid, of a very
disagreeable odour somewhat like that of rotten eggs,
obtained in plenty from combinations of sulphur with
earths, alkalies, metals, &c. and sometimes from com-
binations of alkalies with substances which do not ap-
pear to contain any sulphur.

The nature of this fluid has been particularly ex-
amined by Mr Kirwan, of whose experiments we have
an account in the 76th volume of the Philosophical
Transactions, and of which the results are as follow.

1. By weighing it in a glass bottle exhausted in the
best perfect manner by an air-pump, its specific gra-
ity is found to be to that of common air as 10,000 to
9038.

2. Though inflammable, it never detonates with
common air; nor can it be fired in a narrow-mouthed
vessel, unless mixed with a considerable proportion of
this air. Mr Scheele found that it would take fire
when mixed with two-thirds of common air; but M.
Sennelier informs us, that it cannot be fired by the
electric spark even when mixed with any quantity of
respirable air. Mr Kirwan found one part of the hepatic
air, and one and a half of common air, to burn blue
without flaming or detonating; and that, during the
combustion, sulphur is constantly deposited, and a smell
of vitriolic acid perceived. Mixed with an equal part
of nitrous air, it burns with a bluish, green, and yellow
lambent flame: it deposits sulphur also; and in propor-
tion as the latter is deposited, a candle dipped in
the air burns more weakly, and is at last extinguished.

Two parts of nitrous and one of hepatic air burn par-
tially
Hepatic Air.

429

Hepatic Air.

8. All hepatic air suffers some diminution by standing over mercury, and blackens the surface of the metal; particularly that made from charcoal.

9. Mixtures of hepatic air with common, dephlogisticated, and vitriolic airs, continued for a long time either totally undiminished or very little so, as did those also with inflammable marine air and fixed air; only blacking the surface of the mercury.

10. Two measures of hepatic air being introduced to two of vitriolic air, a whitish yellow deposition immediately covered the top and sides of the jar, and both airs were without any agitation reduced to little more than one measure. As the glass, however, was burnt by a whitish scum over its whole inside, it was found necessary to repeat the experiment. One cubic inch of hepatic air was then added to five of vitriolic air; and, in less than a minute, without any agitation, the sides of the glass were covered with a whitish form apparently moist, and a diminution of more than one ounce measure took place. In four hours after a second measure of hepatic air was introduced; which was followed by a second deposition of whitish matter and diminution of the air. Next day three other measures were added at the interval of four hours between each; when, finding still a farther diminution, another measure was added next day. The whole quantity of 11 ounces measures was thus reduced at last to three, which seemed to be little else than phlogisticated air. The water in which the sulphur precipitated from the hepatic air was washed, and appeared to contain some vitriolic acid and fixed air.

11. A mixture of two measures of nitrous, and as much hepatic air, was little altered at first even by agitation; but, on standing 36 hours, both were reduced by something more than one third of the whole. The mercury was not blackened, but particles of yellow sulphur were deposited both upon the sides of the glass and the surface of the metal. The air which remained had still an hepatic smell, and was somewhat more diminished by water; a candle burned naturally in the unabsober part. The water had all the properties of that which had absorbed hepatic air. On adding nine cubic inches of nitrous air to eight of hepatic, a yellowish cloud instantly appeared, a slight white scum was deposited on the sides of the jar; and the whole seemed to be diminished about two cubic inches, the temperature of the room being then 72°. In 48 hours the whole was reduced to six cubic inches, and the top and sides of the jar covered with a cake of white sulphur; the heat of the room being constantly between 60 and 70°. The residuum was examined in 24 hours after, and had a pretty strong smell of alkali air. A candle burned in it naturally; and it did not affect tincture of lima, lime-water, or acetic barytes. It was not affected by any kind of air except the dephlogisticated kind, and this produced only a slight redness and diminution; it produced also a slight white precipitate in solution of silver. Hence it appeared that this was dephlogisticated nitrous air, or, as our author thinks, it ought rather to be called dead-diffused nitrous air.

12. Mr Kirwan supposing that an uncombined acid in the nitrous air was the cause of precipitation, he deprived some nitrous air of this acid as perfectly as possible before mixing it with hepatic air; which was...
done by admitting alkaline air to it, and then washing out the ammonious compound in distilled water. By being deprived of its acid it lost about one-sixth of its bulk; and it was diminished by common air in the same manner that nitrous air usually is. Seven cubic inches of hepatic air were then admitted all at once to eight of the purified nitrous air. No cloud or other mark of any precipitation appeared; but in six hours the whole was reduced to five cubic inches, the temperature of the room being 75°; but the diminution went no further in 18 hours after. A much whiter sulphur was deposited than in the former experiment; went no sulphur was precipitated in this and the former, that part which was intercepted by the rising of the mercury between the metal and the side of the jar was of a yellowish greenish colour, and not black, as that deposited in mercury usually is. The residuum flashed with such violence as to extinguish a candle dipped into it, the flame being exceedingly white and vivid; though it did not detonate in the least, but rather appeared like deep-blotched acidified air. The jar of which it had been transferred to a first alkaline smell. It was not in the least diminished by nitrous air, even when heated to 150 degrees.

Water poured into the jar in which the sulphur was deposited, produced a bluish white cloud in solution of silver, though incautious to the taste; whence it appears, that whatever this air may be, it had been decomposed by hepatic acid until more perfectly than that in which a candle burns naturally, but was by no means dephtoglificated.

13. Perfectly pure alkaline and hepatic airs mixed together would probably destroy each other; but Mr Kirwan never had it in his power to do this entirely. Six measures of hepatic air from liver of sulphur, and six of alkaline air, immediately threw up a white cloud, leaving a whitish foam on the side of the jar, and are reduced to about one ounce measure. Upon adding water this is reduced to about one-half; and a candle burns naturally in it. This residuum, however, was afterwards found to be only the common air of the vessels.

14. One measure of oil of vitriol, of the specific gravity of 1.863, absorbed two measures of hepatic air all to one-tenth; the acid being whitened by a copious deposit of sulphur.

15. A measure of red nitrous acid, of the specific gravity of 1.430, was introduced to an equal measure of hepatic air; red vapours instantaneously arose; and only one-tenth or one-twelfth of a measure remained in an aerial form; but as the acid acted on the mercury, it was necessary to use water, by which the whole was absorbed. No sulphur was precipitated on this occasion. The experiment was repeated in another manner, but with little success; so that Mr Kirwan, finding it so difficult to use the concentrated nitrous acid, determined to try its effects upon hepatic air by diluting the acid to such a degree that it could not act upon mercury without the assistance of heat. In this case the acid was whitened, eighth-tenths of the air absorbed, and the residuum detonated. A still greater quantity was absorbed when the experiment was made with hepatic air made from liver of sulphur; but the residuum, instead of detonating, burned up with a blue and greenish flame, depositing sulphur upon the sides of the jar. This dilute acid, absorbed about three times its bulk of hepatic air; but on expelling the flame from it again by heat, the sixth part only was obtained, and in this a candle burned naturally.

16. Two measures of alkaline hepatic air were absorbed by one of strong marine acid to one-fifth of a measure, after a slight agitation. On adding a third measure of hepatic air, the whole was absorbed to half a measure. The sulphur precipitated in this experiment was attracted by the mercury, and blackened it; which did not happen in the former cases, by reason of the stronger attraction of the acid for the sulphur. The residuum burned as pure hepatic air.

17. Distilled vinegar absorbs nearly its own bulk of hepatic air, and becomes slightly whitened; but by agitation it may be made to take up about twice its bulk, and then becomes very turbid.

18. One measure of caustic vegetable alkali, of the specific gravity of which was 1.043, absorbed nearly four measures of alkaline hepatic air, which rendered it brown at first, but after some time it grew clear and deposited sulphur, blackening the surface of the mercury.

19. One measure of caustic volatile alkali, of the specific gravity of 0.9387, absorbed 18 of hepatic air. A greater quantity of alkali would absorb more hepatic air, six measures of the alkaline air uniting to seven of the hepatic; and thus the strength of alkaline liquors, and their real contents, may, according to our author, be determined better than by any other method. The smelling liquor of Boyle (a strong volatile tincture of sulphur) may be easily prepared by putting volatile alkali in the middle vessel of Dr Nooth's apparatus, and decomposing liver of sulphur, or artificial pyrites in the lowest one by means of marine acid.

20. Olive oil absorbs nearly its own bulk of hepatic air; and gets a greenish tinge from it.

21. Oil of turpentine absorbs more than its own bulk of this air, but then becomes turbid. A white cloud appears when water is put to the mixture.

22. Spirit of wine, of the specific gravity of 0.825, absorbed nearly three times its bulk of hepatic air, and became brown. Thus sulphur may be combined with the spirit of wine more easily than by the method used by Count Lauragais, the only one hitherto known. Water partly precipitates the sulphur.

23. New milk scarcely absorbs one-tenth of its bulk of this air, and is not in the least coagulated.

24. With an equal bulk of vitriolic ether the bulk of the air is at first increased; but afterwards one-half is absorbed, and a slight precipitation appears. The smell is compounded of that of ether and hepatic air; but on adding water it becomes very offensive, resembling that of putrefying animal substances.

25. On adding a measure and a half of nitrous solution of silver to one of hepatic air, the latter was absorbed immediately, and without any agitation, the solution at the same time becoming black. The remaining air admitted a candle to burn naturally in it. Hepatic air was likewise absorbed, but with more difficulty, and in smaller quantity, by the vitriols of iron and silver; the latter was blackened; the former became white at first, but darker by agitation; the residuum burned blue, as hepatic air usually does.
26. Sulphurated spirit of wine precipitates lime-water, which highly rectified spirit of wine will also do by itself. It also precipitates and gives a brown colour to aceto-sulphur, which is likewise done by spirit of wine; the solution of silver is turned black or brown by it. Sulphur is precipitated from it by concentrated vitriolic acid, which cannot be done either by the nitrous or muriatic acids.

27. Water saturated with hepatic air turns the tincture of litmus red; does not affect lime-water; forms a cloud in the solution of aceto-sulphur, though not in that of the marine: it does not alter the solutions of other earths. It produces a white precipitate in the solution of vitriol of iron, or solution of that metal in spirit of salt; in nitrous solution of copper it throws down a brown precipitate, and the colour of the liquid is changed from blue to green; the precipitate being redissolved by agitation. In solution of vitriol of copper it forms a black precipitate. It throws down a yellowish white precipitate in solution of tin in aqua-regia; a black one from solution of gold; a red and yellow one from that of arsenic; one of red mixed with white from solution of platina. Black precipitates are formed with nitrous solutions of lead and silver; but if these are not perfectly saturated with metal, the solutions will be brown, or reddish brown, and may be redissolved by agitation. Nitrous solution of mercury is precipitated of a yellowish mixed with black, which becomes white by agitation. Nitrous solution of bismuth becomes reddish brown, and even assumes a metallic appearance. Solution of cobalt becomes dark; that of arsenic in nitrous acid becomes yellow mixed with white and red; forming resin and orpiment. On dropping into hepatic water, oil of vitriol of the specific gravity of 1.863, the mixture becomes slightly turbid; but on dropping into it the volatile vitriolic acid, a bluish white and much denser cloud is formed. A copious white precipitation is occasioned by the strong nitrous acid, whether phlogisticated or not; but dilute nitrous acid produces no change. Green nitrous acid, the specific gravity 1.128, infantly produces sulphur. A light cloud is produced by strong marine acid; but neither distilled vinegar nor acid of sugar has any such effect. According to Mr Bergman, hepatic water, in a well closed vessel, will dissolve iron in a few days; but the experiment did not succeed with Mr Kirwan, neither could be dissolved any other metal in this water, though sulphur united with many of them into an insoluble mass; whence our author concludes, that metallic substances cannot be found in hepatic waters.

28. Colourless alkaline liquors acquire a brownish tinge from hepatic air; the reductum they leave being of the same nature with what they absorb. A caustic fixed alkaline liquor, saturated with this air, precipitates barytes from the aceto acid of a yellowish white colour; decomposing likewise other earthy solutions, and the precipitate varying according to their purity; a test which our author supposes may be improved to such a degree as to supply the place of the Prussian alkali. It precipitates also solution of vitriol of iron as well as marine salt of iron, of a black colour; but the latter generally whiten by agitation. Solutions of silver and lead are also precipitated black with some mixture of white; that of gold is also blackened; and solution of platina becomes brown. Solutions of copper let fall a reddish black or brown precipitate. Sublimate yields a precipitate partly white and black, and partly orange and greenish. A nitrous solution of arsenic forms a yellow and orange precipitate: and that of regulus of antimony in aqua regia, an orange precipitate mixed with black. Nitrous solution of zinc yields a dirty white precipitate; that of bismuth a brown mixed with white; and that of cobalt a brown and black precipitate. Prussian alkali yields a purple precipitate, which is easily redissolved. Tincture of radishes, our author's test for alkalies, was turned green.

29. On adding a few grains of iron, copper, lead, tin, zinc, bismuth, regulus of antimony, and arsenic, to a solution of liver of sulphur, all the metals were found to attract sulphur from the fixed alkali, excepting zinc and tin. Iron, arsenic, regulus of antimony, and lead, were most altered; copper next, and bismuth the least. No part of the metals appeared to be dissolved.

30. Water saturated with the condensed residuum of alkaline and hepatic air, is capable of precipitating a solution of iron, but of liver of sulphur, does not precipitate marine sulphurite. Though it forms a slight brown and white cloud in that of marine baro-sulphurite. It throws down a black precipitate in solution of vitriol of iron, and a black and white one in that of marine salt of iron; but by agitation this became entirely white. Vitriol of copper, and nitrous salt of the same metal, are both precipitated of a brown and red colour. Tin dissolved in aqua-regia yields a yellowish precipitate; gold, a dilute yellow and reddish brown; platina, a flesh-coloured precipitate; and regulus of antimony, a yellowish red. Silver is precipitated black, as well as lead, from the nitrous and aceto acids. Corroscopic sulphate became red for a moment; but in a little time its precipitate appeared partly black and partly white. A similar precipitate is afforded also by the nitrous solution of bismuth; but partly mixed with a reddish-brown colour, and has something like a metallic appearance; the precipitate of cobalt is black, or deep brown. Solutions of arsenic yield precipitates of a yellow colour, and more or less red; those of zinc of a dirty white. All these colours, however, vary, as the liquors are more or less saturated previously and after their mixture, and the time they have stood together. From these experiments Mr Kirwan concludes, that hepatic air confines merely of sulphur rarefied by elementary fire, or the matter of heat. Some have supposed that it consists of liver of sulphur itself volatilised; but this our author denies, for the following reasons: 1. It is evidently the weakly acid, reddening litmus, precipitating aceto-sulphur, though none of the other solutions of earths. 2. It may be extracted from materials which either contain no alkali at all, or next none; as iron, sugar, oil, charcoal, &c. 3. It is not decomposed by marine or fixed air; by which nevertheless its liver of sulphur may be decomposed.

Our author informs us, that he was formerly of opinion that sulphur was held in solution in hepatic air, either by means of vitriol or marine air: but neither of these is essential to the constitution of hepatic air as such, since it is producible from materials that contain neither of these acids; and from whatever substance it
it is obtained, it always affords the same character, viz. that of the vitriolic acid exceedingly weakened, such an acid as we may suppose sulphur itself to be. This substance indeed, even in its concrete state, manifests the properties of an acid, by uniting with alkalis, calcareous and ponderous earths, as well as with most metals, which a very weak acid might be supposed to do.

As phosphorus bears a considerable resemblance in its constitution to sulphur, Mr. Kirwan determined to make some experiments upon it in similar circumstances. He therefore gently heated 10 or 12 grains of phosphorus, mixed with about half an ounce of caustic fixed alkaline solution, in a very small vial furnished with a bent tube, and received the air over mercury. Two small explosions took place on the first application of heat, attended with a yellow flame and white smoke, which penetrated through the mercury into the receiver. This was followed by an equable production of air; but at last the phosphorus began to swell and froth up, burst with a loud explosion, and a violent flame immediately issued from it. Only about eight cubic inches of air were obtained. These were but very slightly diminished by agitation in water; after which a cloudiness took place, but the air soon recovered its transparency. Water impregnated with it slightly reddened, but did not affect Prussian alkali. It had no effect upon the vitriolic solutions of copper, lead, zinc, or cobalt; nor on those of iron or tin in marine acid and aqua-regia; nor on the vitriolic solutions of iron, copper, tin, lead, zinc, regulus of arsenic, or manganeese; nor on the marine solutions of iron, copper, lead, zinc, cobalt, arsenic, or manganeese. The nitrous solution of silver was precipitated of a black colour, and the vitriolic of a brown: nitrous solution of mercury, made without heat, precipitated a brown, the latter being resolved by agitation, and the precipitate being redissolved by agitation, and the liquors then assuming a green colour. Corrosive sublimate let fall a yellow precipitate mixed with black. Iron was precipitated white both from the vitriolic and marine acids; but a pale yellow solution of it in the nitrous acid was not affected, and a red solution in the same acid was only clotted. Regulus of antimony was precipitated of a white colour from aqua-regia, cobalt of a slight reddish from the nitrous acid, and bismuth of a brown colour from the same. Neither the nitrous solutions of lead or zinc were affected; nor those of tin in the marine acid or in aqua-regia. Fixed air, mixed with an equal proportion of phosphoric air, produced a white smoke, some diminution, and a yellow precipitate. On agitating the mixture in water the fixed air was taken up all to one-tenth; the residuum smocked, but did not take fire. Some precipitate per acidum being introduced to a small portion of phosphoric air, the former soon grew black, and a white smoke appeared. In two days the precipitate became solid, acquiring a pale white colour, shining like flint. The air lost its inflammability; though Mr. Kirwan supposes that this might be owing to some other cause: for two days after this air was made, a yellow scum was observed on the sides of the jar in which a quantity of it had rested all night over water, and the spontaneous inflammability was lost next morning. The temperature of the air was then 53°; and when it inflamed before 68°.

From these experiments our author concludes, that phosphoric air is nothing else but phosphorus itself in an aerial state; differing from sulphureous or hepatic air, in this, that it requires much less latent heat to throw it into an aerial state, and therefore may be distinguished from fixed alkalies without any acid.

Hepatic air may be obtained in a great number of different ways, and in which it has been procured, by decomposing the hepatic sulphur or combination of sulphur and fixed alkaline salt by means of an acid. Mr. Kirwan has examined the circumstances attending the formation of liver of sulphur; making the first experiment
Hepatic Air. [433]

Hepatic air is best produced by marine acid: the concentrated nitrous acid produces nitrous air; but if diluted with 20 times its bulk of water, it produces the hepatic kind by the assistance of heat. Concentrated vitriolic acid poured upon liver of sulphur affords but little hepatic air without the assistance of heat; though it constantly decomposes the hepar: and (adds our author) it is partly for this reason that the proportion of air is so small; for it is during the gradual decomposition of sulphureous compounds that hepatic air is produced. Hepatic air, but not in a pure state, is extricated by distilled vinegar; its smell being mixed with that of the vegetable acid. Some quantity of this air is produced by the faccharine acid in the temperature of 59°, and by sedative salt in that of boiling water or nearly so; but neither the arlencul nor aerial acids produce any.

Having prepared some hepatic sulphur with an over proportion of sulphur, an hepatic air was procured by means of concentrated vitriolic acid; but fo loaded with sulphur, that it deposited some in the tube through which it was transmitted, and on the upper part of the glasses receiver. On transferring it to another receiver, though then perfectly clear and transparent, in quantity about six cubic inches, yet next morning it was reduced to one inch, the inside of the glass being covered with a thick coat of sulphur; the small quantity of elastic fluid which remained being changed from hepatic to vitriolic air. Hence (says Mr. Kirwan) it appears, first, that a species of elastic fluid may exist in a state intermediate between the aerial and vaporous, which is not permanently elastic like air, nor immediately condensed by cold like vapour; but which, by the gradual loss of its specific heat, may be reduced to a concrete form. 2. That so large a quantity of sulphur may be combined with vitriolic acid, as to enable it to exhibit the properties of hepatic air for some time at least. A mixture of three parts of pultrated vitriolic acid, and one of sulphur, heated to white-ness in a covered crucible, the crust of liver became of a rusty hardness; and, being treated with marine acid, afforded hepatic air. On heating a piece of this stone in pure water, it became bluish; and hence the origin of blue maries generally found near hot sulphurated waters. A calcareous hepar may also be formed in the moist way."

Magnesia deprived of its fixed air, and heated in the same manner with sulphur, afforded no hepatic air. It was procured, however, from a mixture of three parts of iron-fillings and one of sulphur melted together, and treated with marine acid. This sulphurated iron dissolved in marine acid affords almost entirely hepatic air, and very little of the inflammable kind. Equal parts of iron filings and sulphur mixed together, and made into a paste with water, after heating and becoming black, afforded hepatic air when an acid was poured on it; but this was mixed with inflammable air, probably proceeding from uncombined iron. After a few days this mixture lost its power of producing hepatic air. Mr. Bergman has also remarked, that combinations of sulphur with some other metals yield hepatic air.
Hepatic Air.

...in a vial with a bent tube. It was likewise obtained in a great plenty from equal parts of sulphur and powdered charcoal, out of which the air had previously been expelled as much as possible: "yet (says our author) it is hardly possible to free charcoal wholly from foreign air, for it soon reattracts it when exposed to the atmosphere."

Several of the pyrophoros mixed with alum and sugar effervesced with marine acid, and afforded two cubic inches and an half of hepatic air. This pyrophorus had been made six years before, and was kept in a tube hermetically sealed, and for several summers exposed to the light of the sun. It was so combustible, that some grains of it took fire while it was introduced into the vial out of which the hepatic air had been expelled.

A mixture of two parts of white sugar (previously melted in order to free it of water) with one part of sulphur, when heated to about 600 or 700 degrees, gave out hepatic air very rapidly. This air had a smell very much resembling that of onions, but rather that of sulphureous fumarine; its taste was very much resembling that of onions, but rather that of sulphureous fumarine, and it was very much resembling that of onions, but rather that of sulphureous fumarine.

The air thus obtained was all absorbed by lime-water. It was likewise obtained by adding a little vitriolic acid to this mixture, an effervescence took place with the matter which had acquired a brown colour, and the colour of the mixture was changed to a deep brown. The fætid smell was now rendered much fainter, and was entirely destroyed by an addition of concentrated nitrous acid, or by dephlogisticated spirit of salt; either of which substances would also have destroyed the smell of hepatic air.

On adding the vitriolic acid to common pure water, no effervescence was produced, nor was the colour of the liquor changed, neither did any sensible precipitation take place for several hours. On repeating the experiment, however, with matter obtained from a venereal bubo, the liquor became slightly turbid on the addition of nitrate of silver, and at the end of two hours it had acquired a brownish cast. The same effects took place with the matter which issued from a cancerous bone; but in both cases the precipitation was much less than with the cancerous matter.

To procure some quantity of the air in its separate state, a quantity of reddish cancerous matter was mixed with about three weight of distilled water. On adding a little vitriolic acid to this mixture, an effervescence ensued, and the air was received in a vial over mercury. When one-half of the mercury was expelled from the vial, the latter was inverted over distilled water; and the port of the mercury that remained in it being suffered to descend, and the water to rise into its place, the vial was closely corked. The air and water were then briskly agitated together; and the water being a second time warmed over distilled water, the cork was removed. It now appeared, by the height to which the water rose, that part of the air had been absorbed; and on dropping in a little nitrate...
Hepatic Air.

Hepatic Air was first scarcely perceptible, but became very distinct in a few minutes. The quantity of aerial fluid, however, which can thus be extracted by the addition of acid without heat is not very considerable; if heat be applied, a larger quantity of elastic fluid will be produced, having the smell of cancerous matter; but in that case it will be mixed with vitriolic acid air.

To obtain this air in as pure a state as possible, a portion of the cancerous virus, properly diluted with distilled water, was introduced into a small vial, a little vitriolic acid added, the vellum filled with distilled water, and a crooked tube also filled with water fitted to its neck. The extremity of the tube being then introduced into the neck of a bottle inverted in water, and the flame of a candle applied to the bottom of the vial, air began to rise in white bubbles, having a very feitid smell similar to that of cancerous matter; and the water impregnated with it occasioned a dark brown precipitate in a solution of nitrous silver. On separating the crooked tube from the vial, a very offensive white vapour, resembling in smell the air produced in the foregoing experiment, arose from the mixture, and continued to ascend for near half an hour. A portion of the liquor filtered, and mixed with a little concentrated nitrous acid, had its smell entirely destroyed; a slight effervescence being produced, and a flaky substance separated from the liquor and floating through it.

On examining the alkaline matter which had been separated from the cancerous virus, it was found, as had indeed been concluded a priori, to be the volatile alkali. It seemed probable that this alkali was united to the fixed air with which the cancerous matter was impregnated, because the peculiar smell of the matter was greatly augmented by the addition of the vitriolic acid; and this was confirmed by the following experiments.

1. A portion of cancerous matter was distilled through distilled water, and distilled in a small retort with a graduated heat until the bottom of the vellum became red hot. The common air, which first came over, was greatly impregnated with the smell of the cancerous matter; however, its qualities were not greatly impaired by the test of nitrous air; two measures of it, with one of nitrous air, occupying the space of little less than two measures. When the water began to boil, a large quantity of aqueous vapour arose; which, as soon as it came into contact with the air, produced a white smoke. The smell was now perceived to be similar to that of boiled animal substances; but no permanently elastic fluid was mixed with the aqueous vapour. When the greater part of the water was evaporated the jar containing the first portion of air was removed, and the neck of the retort introduced beneath an inverted vellum filled with mercury. A considerable quantity of air smeling like burnt bones was now extracted, which was mixed with a yellow empyreumatic oil. On agitating some of it with water, part of the air was imbibed. Nitrated silver, dropped into the water thus impregnated, produced a reddish precipitate.

2. One measure of the air obtained in the foregoing experiment was mixed with an equal quantity of alkali air. In three hours the whole occupied only the bulk of one measure and two-tenths, and an oily scum was now left upon the inner surface of the tube; and in eight days the interior surface of the tube was covered with slender films of a yellowish colour spread irregularly upon it. The upper surface of the mercury within the tube was corroded; in some places having a reddish blemished appearance, in others it was changed into an ash-coloured powder intermixed with brown spots. On removing the tube from the mercury, the air that remained in it had a strong fetid smell, resembling that of burnt bones.

3. To discover whether other animal substances yield an aerial fluid similar to that produced from the cancerous virus, a portion of the flesh of the neck of a chicken was distilled in a small coated glass retort till it became red hot. A thin phlegm of a yellowish colour first came over; this was succeeded by a yellow empyreumatic oil; and at the same time a permanently elastic fluid, smelling like burnt feathers, began to be diffused. A film of paper tinged with litmus, and reddened by acetic acid, being held over this fluid, presently became blue. The remainder of the air was very fetid, and highly inflammable. By agitation in water, one-half of it was absorbed; the remainder was inflammable, and burned with a flame, explosion, and afterwards with a blue lambent flame. On dropping a nitrous solution of silver into the water impregnated with this air, the mixture deposited a brown precipitate.

4. On treating putrid veal by distillation with a graduated heat, the products were found to be nearly similar to those already mentioned. The air obtained was highly inflammable, about one-half of it being absorbed by water; and the liquid thus impregnated let fall a brown precipitate on the addition of nitrous solution of silver. On adding some depolyglutinated marine acid to another portion of this liquor, a brine effervescence took place and a whitish gelatinous matter was separated; and this substance being evaporated to dryness, became black on the addition of the concentrated vitriolic acid. On agitation with water, part of the air was absorbed as in the former experiment, and the remainder burned with a lambent flame. This air, however, extracted from putrid veal, had left on an empyreumatic smell than that which was diffused from fresh animal substances being rather like that of putrefying animal matters.

From these experiments our author concludes that the air extracted from animal substances consists of two distinct fluids, the one solible and the other insoluble in water. The insoluble part burns with a lambent flame, and has all the characters of heavy inflammable air; but the soluble part resembles that which is produced from cancerous matter by the vitriolic acid; having a fetid odour decomposing nitrated silver, combining with caustic volatile alkali, and possessing many of the properties of common hepatic air. In many particulars, however, the animal hepatic air differs from the common. The smell is considerably different, and in the decomposition of animal hepatic air no sulphur is separated; but a kind of flaky matter which is evidently an animal substance, as turning black by the vitriolic acid. The following experiment is decisive proof
proof that no sulphur is contained in animal hepatic air. "Equal parts of pure air, and of air extracted from fresh beef by distillation, were fired by the electric shock in a strong glass tube, over mercury. A little distilled water was then introduced through the mercury into the tube, and was agitated with the air which it contained. A portion of this water being filtered, and a small quantity of muriated barytes being dropped into it, the mixture remained perfectly transparent. Hence it appears, that the air extracted by distillation from fresh beef does not contain sulphur, as that substance would have been changed by burning into the vitriolic acid, and the muriated barytes would have been decomposed. The same experiment was frequently repeated with air extracted by distillation from the putrid as well as from the fresh muscular fibres of animals; but in no instance could the least vestige of vitriolic acid be discovered.

5. To analyse in a more perfect manner these kinds of animal airs, and to determine their products when combined with pure air, about an ounce of the lean of fresh mutton was exposed to a red heat in a small coated glass retort. Very near one half of the air produced towards the end was absorbed by water, and two-thirds of that which came over about the middle. A separate portion of the air, diffused towards the end of the distillation, being allowed to remain over mercury for seven hours, it was found, gradually to diminish in bulk; and a fluid, having the colour and smell of a thin empyreumatic oil, was collected at the bottom of the jar. This appearance, however, is not constant: the air, when placed over mercury, sometimes diminishes, and at other times retains its original bulk. Only one eighth part of this air was absorbed by water. "Hence (says the Doctor) it appears, that a portion of the air extracted from animal substances by heat, resembles a species of hepatic air which was first discovered by Mr. Kirwan, and which exists in an intermediate state between the aerial and the vaporous; this fluid not being permanently elastic, like air, or immediately condensed by cold like vapour, but gradually allowing the nonelastic form, in consequence probably of the tendency of its several parts to unite with one another."

6. To determine the proportion of fixed air contained in that produced from the lean of animal substances, a quantity of air extracted from mutton was received over mercury in a large vial with a narrow neck. When the vial was little more than half filled, the remaining portion of the mercury was displaced by introducing water that had been previously boiled. The vial being then closely corked, the air and water were briskly agitated together; and the liquid, thus impregnated with the soluble part of the animal air, was put into a vial, to the bottom of which heat was applied. Thus a part of the air was again diffigated, and collected in a tube inverted over mercury; the process continued till the liquor no longer rendered lime-water turbid. On agitating the air a second time with water and comparing the bulk after agitation with that before it, it appeared that the quantity absorbed was about one-fourth part. From this experiment also it appeared, that animal hepatic air, when once absorbed by water, is not capable of being again diffused by a boiling heat; for after the fixed air had all been expelled, the liquor was made to boil nearly for half an hour, but no permanently elastic fluid could be diffused, but only a portion of the liquor which remained had a faint yellow colour and smelt strongly of animal hepatic air, depositing also a brown precipitate upon the addition of nitrated silver. "It appears therefore (says the Doctor), that the soluble part of the air diffused from animal substances by heat, consists of three distinct fluids; of alkaline air, fixed, and animal hepatic air. It seemed extremely probable, that these three aerial fluids, slowly combining together, formed the oily empyreumatic substance which was collected at the bottom of the jar, while the air was undergoing the diminution described above. In this conclusion I was confirmed by trials that were made with the empyreumatic oil that came over in the latter part of the distillation; for when it was examined by chemical tests soon after it was obtained, it was found to contain fixed air, volatile alkali, and animal hepatic air."

7. To determine the products resulting from the combustion of pure air with the animal hepatic air, one portion of the air extracted from the lean of mutton was agitated with water, the other was not. One measure of the former was introduced over mercury into a strong glass tube, and then mixed with one measure of pure air. A small shock being made to pass through it, a violent explosion took place; and the space occupied by the air in the tube was reduced from an inch and two tenths to nine tenths of an inch. On agitating the residuum with water, six tenths were absorbed, and the portion absorbed appeared to be fixed air by its precipitating lime water. Five parts of nitrous air being mixed with an equal quantity of the insoluble residuum, a diminution of three parts took place; whence it appears that one fifth of the insoluble residuum was pure air. Hence it appears that fixed air was produced by the inflammation of dephlogisticated and animal hepatic air.

8. One measure of that portion of animal air which had not been agitated with water was mixed with a measure and a half of pure air, and fired by the electric shock. Previous to the deflagration, the two airs occupied the space of 3.15 inches; but after it was reduced to 1.1. On agitation with water about one third was absorbed; a portion of the insoluble residuum burned with a faint blue flame.

9. As it appeared from these experiments, that a measure and an half of dephlogisticated air was not sufficient to saturate one of the animal air that had not been agitated with water, the experiment was repeated in the following manner. Two parts of pure air, with one of the animal kind, occupied the space of eight tenths of an inch; and when fired by the electric shock, the residuum stood at a little less than half an inch; and this residuum was almost wholly absorbed on agitation with lime water. In a subsequent trial it was found, that nearly one half of the animal air, when in this experiment was solubile in water. When equal parts of pure and animal air were burned together, a considerable increase of bulk almost invariably took place; and when the animal was to the pure air as 21 to 15, the bulk of the mixture was increased one half. The residuum of the air was inflammable.

10. To investigate the cause of this augmentation of
HEPATIC AIR.

of bulk, three measures of animal were mixed with two of pure air; and several strong electric shocks were made to pass through the mixture, but without being able to set it on fire. On adding half a measure more of pure air, it took fire; and the bulk was augmented from .9 to 1.3 inches. Three measures of the residuum were then mixed with three of pure air, and the mixture fired by the electric shock; the bulk of the mixture being reduced from one inch to .56. On agitation with live-water, two-thirds were absorbed, and the remainder solidified almost entirely of pure air.

II. Having accidentally taken two or three small shocks through some alkaline air, and not observing any sensible increase of bulk, the Doctor mixed it with an equal quantity of pure air, not apprehending that any decomposition had taken place. Contrary to expectation, however, the two fluids entered rapidly into combination with each other the moment that the electric shock was made to pass through them. The jar, which he held loosely in his hand, as it was inverted over the jar, was carried obliquely upward with great violence; the stand of the prime conductor was broken, and the cylinder shivered into a thousand pieces. The experiment, however, was afterwards safely repeated with a very strong apparatus; the jar being pressed down with a plate of iron for the purpose of retaining it in its place.

"It appeared (says the Doctor), that when the alkaline and pure air were immediately mixed together, and a small shock was made to pass through them, they would not take fire; but when three or four shocks were previously taken through the alkaline air, and the latter was afterwards mixed with an equal quantity of pure air, they exploded with great violence. One-sixth of the residuum was alkaline, the remainder phlogificated air."

Several other experiments are related by the Doctor in this paper, which tend to show that animal hepatic air is extricated in large quantity by the process of putrefaction. By distilling a green cabbage leaf, he also obtained an aerial fluid, in most of its properties resembling animal hepatic air. The fetid smell of this gas is destroyed by suffering it to remain in contact with pure air for several weeks; and so effectually by the vapour of phlogificated marine acid, that he was induced to try the efficacy of this fluid as an application to cancers. In some cases it appeared to be of service, though some ulcerated cancers were found so irritable, that they could bear no application whatever. The liquid itself appears to be unsafe when taken inwardly. Dr Crawford having taken 20 drops of it largely diluted with water, found himself affected with an acute pain and sense of constriction in his stomach and bowels, which resisted the use of emetics and laxatives, but yieldeded to sulphureous water. He found afterwards, that the manganese which had been used in the distillation of the acid, contained a small quantity of lead. He relates also, on the authority of Dr Ingenhousz, that a Dutchman of his acquaintance some time ago drank a considerable quantity of the phlogificated marine acid; the effects it produced were so violent, that he narrowly escaped with his life. These deleterious qualities of this materia affirnis to lead; though it can by no means be proved that manganese is more innocent; and it is also exceedingly probable that from this semimetallic in the preparation of what is called the dephlogificated or oxygenated marine acid.

HEPATIC Aloe, the infusorial juice of a species of Aloe.

HEPATIC STONE. See LIVER STONE.

HEPATIC WATER. See HEPAR Sulphuris.

HEPATICA, in botany, a species of AMBROSE.

HEPATITIS, in medicine, an inflammation of the liver. See MEDICINE INDEX.

HEPATOSCOPY (formed of χέπα, liver, and σκόπεω I consider), in antiquity, a species of divination, wherein predictions were made by inspecting the livers of animals.

HEPATOSCOPY is also used as a general name for divination by inwards.

HEPHÆSTÆSIA, in Grecian antiquity, an Athenian festival in honour of Vulcan, the chief ceremony of which was a race with torches. It was performed in this manner: The antagonists were three young men, one of whom, by lot, took a lighted torch in his hand, and began his course; if the torch was extinguished before he finished the race, he delivered it to the second; and if he in like manner to the third: the victory was his who first carried the torch lighted to the end of the race; and to this successive delivering of the torch we many allusions in ancient writers.

HEPTHIMEMERIS (composed of ετοι seven, ουνος half, and μετα part), in the Greek and Latin poetry, a sort of verse consisting of three feet and a syllable; that is, of seven half feet.

Such a metrum is one of the verses in Anacreon:

οδοι / μοιραι / ιπτα
οδοι / δεκατ / μετα
οδοι / μοιραι / κληρον

They are also called trimetri catalecticis.

HEPTHIMEMERIS, or Hephtheimemires, is also a cura after the third foot; that is, on the seventh half foot. It is a rule, that this syllable, though it be short in itself, must be made long on account of the caesura, or to make it an heptimemeres. As in that verse of Virgil:

Εἰς τὰς αἰρετὰς ἄμορφος, καὶ συνίχις viribus,

It may be added that the caesura is not to be on the fifth foot, as it is in the verse which Dr Harris gives us for an example:

(Ille lateri munitus multi fullo Hymenio)

This is not a heptemimeris caesura, but a hepanemimeris, i.e. nine half feet.

HEPTACHORD, in the ancient poetry, signified verses that were sung or played on seven chords, that is, on seven different notes. In this sense it was applied to the lyre when it had just seven strings. One of the intervals is also called an heptachord, as containing the same number of degrees between the extremes.

HEPTAGON, in geometry, a figure consisting of seven sides, and as many angles. In notation, a place is termed an heptagon that has seven balsions for its defence.

HEPTAGONAL, number, in arithmetic, a sort of polygonal numbers, wherein the difference of the terms of the corresponding arithmetical progression is
One of the properties of these numbers is, that if they be multiplied by 40, and 9 be added to the product, the sum will be a square number.

HEPTANDRIA, in botany (from 7 ν Π τεμ. and 40 δια τον), the seventh class in Linnaeus's sexual method, consisting of plants with hermaphrodite flowers, which have seven stamens or male-organs. The orders are four, derived from the number of styles or female-organs.

HEPTANGULAR, in geometry, an appellation given to figures which have seven angles.

HEPTARCHY (compounded of the Greek τεταρχεία, seven, and τυγχάνω, impenetrate, government), a government composed of seven persons, or divided into seven kingdoms.

The heptarchy included all England, which was cantoned out into seven petty independent kingdoms, peoples, and governed by different clans and colonies; viz. those of Kent, the South Saxons, Weft Saxons, Northumberland, the East Saxons, and Mercia. The heptarchy was formed by degrees from the year 455, when first the kingdom of Kent was erected, and Henghist assumed the title of king of Kent immediately after the battle of Eglesford; and it terminated in 827 or 828, when Egbert reunited them into one, made the heptarchy into a monarchy, and affirmed the title of king of England. It remained for some time after Egbert became monarch of England, he was not perfectly absolute. The kingdom which he actually poifoncd consisted of the seven kingdoms of Wexfex, Suffix, Kent, and Essex, that had been peopled by Saxons and Jutes.

The government of the heptarchy, reckoning from the founding of the kingdom of Mercia; the latter of the seven Angle-Saxon kingdoms, lasted 243 years; but if the time spent by the Saxons in their conquests from the arrival of Henghist in 449 be added, the heptarchy will be found to have lasted 378 years from its commencement to its dissolution. The causes of the dissolution of the heptarchy were the great inequality among the seven kingdoms, three of which greatly surpassed the others in extent and power; the default of male heirs in the royal families of all the kingdoms, that of Wexfex excepted; and the concurrence of various circumstances which combined in the time of Egbert.

HERACLEA, an ancient city of Turkey in Europe and in Romania, with the see of an archbishop of the Grecian Church, and a sea-port. It was a very famous place in former times, and there are still some remains of its ancient splendor. Theodore Laftaris took it from David Comnenus, emperor of Trebizond; when it fell into the hands of the Genoese, but Mahomet II. took it from them; since which time it has been in the possession of the Turks. It is near the sea. E. Long. 27. 48. N. Lat. 40. 27.

HERACLEONITES, a sect of Chriftians, the followers of Heracleon, who refined upon the Gnostic divinity, and maintained that the world was not the immediate production of the Son of God, but that he was only the occasional cause of its being created by the demiurgus. The Heracleonites denied the author-}

HERACLEUM, Madison: A genus of the digynia order, belonging to the pentandria class of plants; and in the natural method ranking under the 45th order, Umbellate. The root is elliptical, emarginated, compressed, and striated, with a thin border. The corolla is diaphragm, inflected, and emarginated; the involucre dropping off. There are five species, of which the most remarkable is the (pampodium, or cowshank. This is common in many parts of Britain, and other northern parts of Europe and Asia. — Gmelin, in his Flora Siberica, p. 214. tells us, that the inhabitants of Kamchatka, about the beginning of July, collect the foot-stalks of the radical leaves of this plant, and after peeling off the rhind, dry them separately in the sun, and then, tying them in bundles, dry them carefully in the shade: in a short time afterwards, these dried stalks are covered over with a yellow sandy charne of effeolence, tainting like liquorice: and in this state they are eaten as a great delicacy. — The Russians not only eat the stalks thus prepared, but procure them a very intoxicating spirit. They first ferment them in water with the greater bilberries (ulucinum nigrosfum), and then distil the liquor to the degree of strength they please; which Gmelin says is more agreeable to the taste than spirits made from corn. This may therefore prove a good succedaneum for whisky, and prevent the consumption of much barley, which ought to be applied to better purposes. — Swine and rabbits are very fond of this plant. In the county of Norfolk it is called hogweed.

HERACLIDEA, the descendants of Hercules, greatly celebrated in ancient history. Hercules at his death left to his son Hyllus all the rights and demands which he had upon the Peloponnesus, and permitted him to marry Iole as soon as he came of age. The posterity of Hercules were not more kindly treated by the Euriftheus than their father had been, and they were obliged to retire for protection to the court of Ceyx, king of Trachinia. Euriftheus pursued them therewith; and Ceyx, afraid of his resentment, begged the Heraclides to depart from his dominions. From Trachinia they came to Athens, where theseus the king of the country, who had accompanied their father in some of his expeditions, received them with great humanity, and assisted them against their common enemy Euriftheus. Euriftheus was killed by the hand of Hyllus himself, and his children perished with him, and all the cities of the Peloponnesus became the undisputed property of the Heraclides. Their triumph, however, was short; their numbers were lessened by a pestilence; and the oracle informed them, that they had taken possession of the Peloponnesus before the gods permitted their return. Upon this they abandoned Peloponnesus, and came to settle in the territories of the Athenians, where Hyllus, obedient to his father's commands, married Iole the daughter of Eurytus. Soon after he consulted the oracle, anxious to recover the Peloponnesus, and the ambiguity of the answer determined him to make a second attempt. He challenged to single combat Atreus, the father of Euriftheus on the throne of Mycenae;
Heraclides, c. 350 B.C.; and it was mutually agreed that the undisputed possession of the Peloponnesus should be ceded to whoever defeated his adversary. Echephon accepted the challenge of Atreus, and Hylus was killed, and the Heraclides a second time departed from Peloponnesus. Cleomenes the son of Hylus made a third attempt, and was equally unsuccessful; and his son Arifatmacus some time after met with the same favourable reception, and perished in the field of battle. Aristeides, Temenos, and Chrysaphes, the three sons of Arifatmacus, encouraged by the more expeditious word of an oracle, and desirous to revenge the death of their progenitors, assembled a numerous force, and with a fleet invaded all Peloponnesus. Their expedition was attended with much success; and after some decisive battles, they became masters of all the peninsula. The recovery of the Peloponnesus by the defenders of Hercules forms an interesting epoch in ancient history, which is universally believed to have happened 80 years after the Trojan war, or 1190 years before the Christian era. This conquest was totally achieved about 120 years after the first attempt of Hylus, who was killed about 20 years before the Trojan war. As it occasioned a world of changes and revolutions in the affairs of Greece, it seemed that a change of the state of things had been made; and the return of the Heraclides is the epoch of the beginning of profane history: all the time that preceded it is supposed to have been fabulous. Accordingly, Ephorus, Cumaenus, Callithenes, and Theopompus, only begin their histories from hence.

Heraclides of Pontus, a Greek philosopher, the disciple of Speulipus, and afterwards of Aristotle, flourished about 325 B.C. His vanity prompted him to define one of his friends to put a serpent into his bed just before he went to sleep, in order to raise belief that he was ascended to the heavens among the gods; but the cheat was discovered. All his works are lost.

Heraclitus, a famous Ephesian philosopher, who flourished about the 60th Olympiad, in the time of Darius Hystaspes. He is said to have continually bewailed the wicked lives of men, and, as often as he came among them, to have fallen aweeping; contrary to Democritus, who made the follies of mankind a subject of laughter. He retired to the temple of Diana, and played at dice with the boys there; saying to the Ephesians who gathered round him, 'World of men, what do ye wonder at? Is it not better to do thus than to govern you?' Darius wrote to this philosopher to come and live with him; but he refused the offer: at last, out of hatred to mankind, he retired to the mountains, where he contracted a dropsy by living on herbs, which destroyed him at 60 years of age. His writings gained him great reputation, that his followers were called Heraclitians. Laertius speaks of a treatise upon nature, divided into three books, one concerning the universe, the second political, the third theological. This book he deposited in the temple of Diana; and it is said, that he affected to write obscurely, lest it should be read by the vulgar, and become contemptible. The fundamental doctrine of his philosophy was, that fire is the principle of all things; and the ancient philosophers have collected and preserved admirable apophthegms of this philosopher.

Heraclitus, emperor of the east, a renowned warrior, died A.D. 641. He carried on long and bloody wars with the Saracens, by whom he was almost always defeated. See Arabia, p. 67-93.

Herald, says Verigean, is derived from the Saxon word Hersbaut, and by abbreviation Hercus, which in that language signifies the champion of an army; and growing to be a name of office, it was given to him who, in the army, had the special charge to denounce war, to challenge to battle and combat, to proclaim peace, and to execute martial messages. But the duties of heralds in Britain is as follows, viz. To marshal, order, and conduct all royal cavalcades, ceremonies at coronations, royal marriages, installations, creations of dukes, earls, marquises, barons, baronets, and dubbing of knights; embassies, funeral processions, declarations of war, proclamations of peace, &c. To record and blazon the arms of the nobility and gentry; and to regulate any abuses therein through the English dominions, under the authority of the Earl Marshal, to whom they are subervient. The office of Windsor, Chester, Richmond, Somerset, York, and Lancaster-heralds, is to be assistants to the kings at arms, in the different branches of their office; and they are inferior to each other, according to creation, in the above order.

Heralds were formerly held in much greater esteem than they are at present; and were created and christened by the king, who pouring a gold-cup of wine on their head, gave them the herald-name: but this is now done by the earl-marshall. They could not arrive at the dignity of herald without having been seven years pursuivant; nor could they quit the office of herald, but to be made king at arms.

Richard III. was the first who formed them, in England, into a college; and afterwards great privileges were granted them by Edward VI. and Philip and Mary.

The origin of heralds is very ancient. Stenon is represented by Homer as herald of the Greeks, who had a voice louder than 50 men together. The Greeks called them ἀρχιάρχης, and ἀρχιπρεσβύτερος; and the Romans, 首者. The Romans had a college of heralds, appointed to decide whether a war were just or unjust; and to prevent its coming to open hostilities, till all means had been attempted for deciding the difference in a pacific way.

Heraldry,

A science which teaches how to blazon or explain in proper terms, all that belongs to coats-of-arms; and how to marshal, or dispose regularly, divers arms on a field. It also teaches whatever relates to the marshallings of solemn cavalcades, processions, and other public ceremonies at coronations, installations, creations of peers, patents, christening of princes, funerals, &c.
Arms, or coats of arms, are hereditary marks of honour, made up of fixed and determined colours and figures, granted to sovereign princes, as a reward for military valour, a shining virtue, or a signal public service; and which serve to denote the descent and military valour, and which were a sort of livery made up of several fides, filets, or narrow pieces of stuff of divers colours, from whence came the fefs, the bend, the pale, &c., which were the original charges of family-arms; for they who never had been at tournaments, had not such marks of distinction. They who inflinched themselves in the Croisades, took upon them several figures hitherto unknown in the armorial ensigns; such as aleurons, bezants, esclab-flots, martlets, &c. But more particularly croffes, of different colours for distinction's sake. From this it may be concluded, that heraldry, like most human inventions, was ingeniously introduced and established; and that, after having been rude and unfertified for many ages, it was at last made perfect, fixed, and formed, by the Croisades and tournaments.

These marks of colour are called arms, from their being principally and first worn by military men at war and tournaments, who had them engraved, embossed, or depicted on shields, targets, banners, or other martial instruments. They are also called coats-of-arms, from the custom of the ancients, embroiding them on the coats they wore over their arms, as heralds do to this day.

Arms are distinguished by different names, to denote the causes of their bearing; such as,

<table>
<thead>
<tr>
<th>Arms</th>
<th>Of Dominion</th>
<th>Of Pretension</th>
<th>Of Concession</th>
<th>Of Community</th>
<th>Of Succession</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Of Patronage,</td>
<td>Of Family,</td>
<td>Of Alliance,</td>
<td>Of Succession</td>
<td></td>
</tr>
</tbody>
</table>

Arms of dominion or sovereignty are those which emperors, kings, and sovereign states, do constantly bear; being, as it were, annexed to the territories, kingdoms, and provinces, they pollefs. Thus the three lions are the arms of England, the fleurs-de-lis of France, &c.

Arms of pretension are those of such kingdoms, provinces, or territories, to which a prince or lord has some claim, and which he adds to his own, although the said kingdoms or territories be pollefsed by a foreign prince or other lord. Thus the kings of England have quartered the arms of France with their own, ever since Edward III. laid claim to the kingdom of France, which happened in the year 1330, on account of his being son to Isabella, sister to Charles the Handfome, who died without issue.

Arms of concession or augmentation of honour, are either entire arms, or else one or more figures, given by princes as a reward for some extraordinary service. We read in history, that Robert Bruce king of Scotland, allowed the earl of Winchoum's ancelor to bear, in his coat-armour, a crown supported by a fword, to show that he, and the clan Seaton, of which he was the head, supported his tottering crown. The late Queen Anne granted to Sir Cloudesly Shovel, rear-admiral of Great Britain, a cheveroh between two fleurs-de-lis in chief, and a crescent in base, to denote three
three great victories he had gained; two over the French, and one over the Turks.

Arms of community, are those of bishoprics, cities, universities, academies, societies, companies, and other bodies corporate.

Arms of patronage, are such as governors of provinces, lords of manors, patrons of benefices, &c. add to their family-arms, as a token of their superiority, rights, and jurisdiction. These arms have introduced into heraldry, cyphers, gates, gates, wheels, ploughs, rakes, harrows, &c.

Arms of family, or paternal arms, are those that belong to one particular family, that distinguish it from others, and which no perfon is suffered to assume without committing a crime, which sovereigns have a right to restrain and punish.

Arms of alliance, are those which families, or private persons, take up and join to their own; to denote the alliances they have contracted by marriage. This fort of arms is either impaled, or borne in an escutcheon of pretence, by those who have married heiresses.

Arms of descent, are such as are taken up by them who inherit certain estates, manors, &c. either by will, entail, or donation, and which they either impale or quarter with their own arms; which multiplies the titles of some families out of necessity, and not through ostentation, as many imagine.

These are the eight classes under which the divers sorts of arms are generally ranged; but there is a sort which blazoners call assumptive arms, being such as are taken up by the caprice or fancy of personers, fralldards, fides of different families out of patronage, or donation, and which they either impale or

The escutcheon is the field or ground whereon are represented the figures that make up a coat of arms; for these marks of distinction were put on bucklers or shields before they were placed on banns, standards, flags, and coat-armour; and wherever they may be fixed, they are still on a plane or superficies whose form resembles a shield.

Shield, in heraldry called escutcheons or scutcheons, from the Latin word sum, have been, and still are, of different forms, according to different times and nations. Amongst ancient shields, some were almost like a horse-shoe, such as is represented by n. 1 in the figure of Escutcheons; others triangular, somewhat rounded at the bottom, as n. 2. The people who inhabited Melopomela, now called Diarbeck, made use of this sort of shield, which it is thought they had of the Trojans. Sometimes the shield was heptagonal, that is, had seven sides, as n. 3. The first of this shape is said to have been used by the famous triumvir M. Antony. That of knights-banneret was square, like a banner, as n. 4. As to modern escutcheons, those of the Italians, particularly of ecclesiastics, are generally oval, as n. 5. The English, French, Germans, and other nations; have their escutcheons formed different ways, according to the carver's or painter's fancy; see the various examples contained from n. 6—16 of the figure. But the escutcheons of maids, widows, and of such as are born ladies, and are married to private gentlemen, is of the form in a lozenge; see n. 17—20.

Sir George Mackenzie mentions one Muriel, countess of Strathern, who carried her arms in a lozenge, n. 1284, which shows how long we have been versant in heraldry.

Armorialists distinguish several parts or points in escutcheons, in order to determine exactly the position of the bearings they are charged with; they are here denoted by the first nine letters of the alphabet, ranged in the following manner:

A——the dexter chief.
B——the precise middle chief.
C——the sinister chief.
D——the honour point.
E——the fess point.
F——the needle point.
G——the dexter base.
H——the precise middle base.
I——the sinister base.

The knowledge of these points is of great importance, and ought to be observed, for they are frequently occupied with several things of different kinds.

It is necessary to observe, that the dexter side of the escutcheon is opposite to the left hand, and the sinister side to the right hand of the person that looks on it.

CHAP. II.

OF TINCTURES, PURSES, LINES, AND DIFFERENCES.

SECTION I. OF TINCTURES.

By tinctures is meant, that variable hue of arms which is common both to shields and their bearings. According to the French heralds, there are but seven tinctures in armory; of which two are metals, the other five are colours.

The Metals are,

- Gold.
- Silver.

The Colours are,

- Blue.
- Red.
- Green.
- Purple.
- Black.

The Colours are,

- Azure.
- Gules.
- Vert.
- Purpure.
- Sable.

When natural bodies, such as animals, plants, ecclesiastical bodies, &c. are introduced into coats of arms, they frequently retain their natural colours, which is expressed in this science by the word proper.

Besides the five colours abovementioned, the English writers on heraldry admit two others, viz.

Orange.

Blood-colour,

When these two are rarely to be found in British bearings.

These tinctures are represented in engravings and drawings.
HERALDRY.

The Tinctures. The invention of the ingenious Silvester Pettra Sancta, an Italian author of the last century, by drawings (the invention of the ingenious Silvester Pettra Sancta, an Italian author of the last century) by dots and lines, as in fig. ii. n° 1—9.

Argent needs no mark, and is therefore plain.

Azure, by horizontal lines.

Gules, by perpendicular lines.

Vert, by diagonal lines from the dexter chief to the sinister base points.

Purpure, by diagonal lines from the sinister chief to the dexter base points.

Sable, by perpendicular and horizontal lines crossing each other.

Tenny, by diagonal lines from the sinister chief to the dexter base points, traversed by horizontal lines.

Sanguine, by lines crossing each other diagonally from dexter to sinister, and from sinister to dexter.

Sir George M'Kenzie observes, that "some fantastic heralds have blazoned not only by the ordinary colours and metals; but by flowers, days of the week, parts of a man's body, &c. and have been condemned for it by the heralds of all nations. Yet the English have so far owned this fancy," (the most judicious of them, as Mr Cartwright and others, reproduce it as absurd), "that they give it for a rule, that the coats of sovereigns should be blazoned by the planets, those of noblemen by precious stones; and have fated them in the manner here set down:

Or:

Topaz Sol.

Argent Pearl Luna.

Sable Diamond Saturn.

Gules Ruby Mars.

Azure Sapphire Jupiter.

Vert Emerald Venus.

Purpure Amethyst Mercury.

Tenny Jacinth Dragon's-head.

Sanguine Sardonix Dragon's-tail.

"But I crave leave to say, that these are but mere fancies; and are likewise unfit for the art, for these reasons: 1st, The French (from whom the English derive their heraldry, not only in principles, but in words of the French language) do not only not use these different ways of blazoning, but treat them en ridicule. 2dly, The Italian, Spanish, and Latin heralds use no such different forms, but blazon by the ordinary metals and colours. 3dly, Art should imitate nature; and as it would be an unnatural thing in common discourse not to call red red because a prince wears it, so it is unnatural to use these terms in heraldry. And it may fall out to be very ridiculous in some arms: for instance, if a prince had for his arms an aé couchant under his burden gules, how ridiculous would it be to say he had an aé couchant Mars?—A hundred other examples might be given; but it is enough to say, that this is to confound colours with charges, and the things that are borne with colours. 4thly, It makes the art unpleasant, and deters gentlemen from studying it, and strangers from understanding what our heraldry is; nor could the arms of our princes and nobility be translated in this disguite into Latin or any other language. But that which convinces most that this is an error is, because it makes that great rule unnecessary, whereby colour cannot be put upon colour, nor metal upon metal: but this can not hold but where metals and colours are expressed."

The English heralds give different names to the roundlet (n° 10), according to its colour. Thus, if it is

Or, Argent, Azure, Gules, Vert, Purpure, Sable, Tenny, Sanguine, the names are

Bezant, Plate, Hart, Tortou, Penny, Pole, Pellet, Orange, Guze.

The French, and all other nations, do not admit such a multiplicity of names to this figure, but call them Bezants, after an ancient coin struck at Constantinople, once Byzantium, if they are Or and Tortoises; if of any other tincture, expressing the fame.

SECT. II. Of Furs.

Furs represent the hairy skin of certain beasts, prepared for the doublings or linings of robes and garments of state; and as shields were anciently covered with forred skins, they are therefore used in heraldry not only for the linings of the mantles, and other ornaments of the shields, but also in the coats of arms themselves.

There are three different kinds in general use, viz.

1. Ermine; which is a field argent, powdered with black spots, their tails terminating in three hairs. (Fig. ii. n° 11.)

2. Counter-ermine, where the field is sable, and the powdering white. (n° 12.)

3. Vair (n° 15.), which is expressed by blue and white skins, cut into the forms of little bells, ranged in rows opposite to each other, the base of the white ones being always next to that of the blue ones. Vair is usually of six rows; if there be more or fewer, the number ought to be expressed; and if the colours are different from those abovementioned, they must likewise be expressed.

The English multiply the furs, as well as the names of the tinctures, though no other nation has adopted such varieties. Thus they give us,

1. White, which is the natural colour of the ermine; but it is used on no other occasion but in the descriptions of mantles.

2. Ermines, which is the same with contra-ermine.

3. Ermini: the field is Or, the powdering Sable, (n° 13.) For the use of this fur Guillim cites Bara, p. 14. but no such fur is to be found in Bara.

4. Peon; the field is Sable, the powdering Or, (n° 14.) The French use no such term: but they call all furs or doublings des paumes, or peones; which term has possibly given rise to this mistake, and many others, in those who do not understand the French language.

5. Erminites; the same as Ermine, with the addition of a red hair on each side of the black. Sir Geo. M'Kenzie calls these distinctions "but fancies, for erminites signifies properly little ermines."

6. Counter-vair; when the bells of the same tincture are
HERALDRY.

Plate CCXXVIII.

Fig. 3. BORDURES.

Fig. 3. CHIEFS &c.

Fig. 4. TABLE of HOUSES.

Fig. 6. RALES &c.
Chap. II. HERALDRY.

Of Lines.

7. Potent-counter potent, anciently called Fairy-cuppy, as when one field is filled with crutches or potents counter-placed, (no. 17.)

It may not be improper to observe, that the use of the tiwurers took its rise from the several colours used by warriors whilst they were in the army, which S. de Petra Sancta proves by many citations. And because it was the custom to embroider gold and silver on silk, or silk on cloth of gold and silver, the heralds did therefore appoint, that in imitation of the clothes so embroidered, colour should never be used upon colour, nor metal upon metal.

Sec. III. Of the Lines used in the partition of Fields.

Escutcheons are either of one tincture, and one only; or, when some metal, colour, or fur, is spread all over the surface or field, such a tincture is said to be predominant; but in such as have on them more than one, as most have, the field is divided by lines; which, according to their divers forms, receive various names.

Lines may be either straight or crooked. Straight lines are carried evenly through the escutcheon: and of four different kinds; viz. a perpendicular line; a horizontal; a diagonal dexter; a diagonal sinister.

Crooked lines are those which are carried unevenly through the escutcheon with rising and falling. French armorists reckon ten different sorts of them; Guillim admits of seven only; but there are fourteen kinds, the figures and names of which are as in fig. 1. (a), no. 1-14. viz.

The principal reason why lines are thus used in heraldry, is to distinguish bearing which would be otherwise the wife the same; for an escutcheon charged with a chief engrailed, differs from one charged with a chief wavy, as much as if the one borne a cross and the other a saltire.

As the aforementioned lines serve to divide the field, it must be observed, that if the division consists of two equal parts made by the perpendicular line, it is called parted per pale; by the horizontal line, parted per fess; by the diagonal dexter, parted per bend sinister; operated per bend sinister; examples of which will be given in the sequel of this treatise.

If a field is divided into four equal parts by any of these lines, it is said to be quartered; which may be done two ways, viz.

Quartered or parted per crof; which is made by a perpendicular and horizontal line, which, crossing each other at the centre of the field, divide it into four equal parts called quarters. See Plate Ccxxvii. under fig. 1. (a).

Quartered or parted per saltier: which is made by two diagonal lines, dexter and sinister, that cross one another in the centre of the field, and likewise divide it into four equal parts.

The escutcheon is sometimes divided into a greater number of parts, in order to place in it the arms of the several families to which one is allied; and in this case it is called a genealogical achievement. These divisions may consist of 6, 8, 12, and 16, quarters [as under fig. 1. (a)], and even sometimes of 20, 32, 64, and upwards; there being examples of such divisions frequently exhibited at pompous funerals. An extraordinary instance of this kind was lately exhibited at the pompous funeral of the late worthy viscount Townend, whose corpse was brought from Dublin castle in Ireland to Rainham-hall in Norfolk, one of the principal tenants on horseback carrying before the hearse a genealogical banner, containing the quarterings of his lordship's and her ladyship's family, to the amount of upwards of 160 coats. Sir George Booth, rector of the valuable living of Ashton under Lines, bears six distinct coats of arms in his shield; viz. those for Booth, Barton, Venable, Mountfort, Ashton, Egerton; and has besides a right to 37 other coats: but Sir William Dugdale very justly objects to so many arms being2 divided together in one shield or banner, on account of the difficulty of discerning and knowing at a glance one coat of arms from another.

Sec. IV. Of the Differences of Coats of Arms.

Armorists have invented divers differences or characteristic marks, whereby bearers of the same coat of arms are distinguished each from others, and their nearests to the principal bearer demonstrated. According to J. Guillim, these differences are to be considered either as ancient or modern.

Art. I. Of Ancient Differences.

Those he calls ancient differences consist in bordures (a); which is a bearing that goes all round, and parallel to the boundary of the escutcheon, is called in the vulgar, a border, and always contains a fifth part of the field in breadth. Bordures were used in ancient times for the distinguishing not only of one nation or tribe from another, but also to note a diversity between particular persons descended of one family and from the same parents. This distinction, however, was not expressly signified by invariable marks; nor were bordures always appropriated to denote the different degrees of consanguinity; for, as Sir Henry Spelman observes in his Apologiae, p. 140, ancient heralds, being fond of particular differences, often inverted the paternal tincture, or sometimes inverted another charge in the escutcheon, such as bends, crockets, cantons, or the like; which irregularity has, I suppose, induced modern armorists to invent and make use of others.

There are bordures of different forms and tinctures, as in the examples, fig. iii.

(a) Bordures are still introduced in English coats of arms, but for particular reasons, which heralds can best explain. They are by the French frequently taken for a principal figure, and numbered among the rest of the ordinaries.
Heraldry.

Chap. II.

Ancient Differences.

1. "Sable, a Bordure Argent," borne by the right hon. Sackville Tufton, earl of Thanet. — When a bordure is plain, you are not to mention it, as it is always understood so in heraldry, though it be not expressed; but if it has any other form, you are to signify it.

2. "Gules, a Bordure engrailed Argent," borne by the right hon. Charles Gray, lord Gray. — This is called eng-ailé, from the French word engrelé, which signifies a thing the hail has fallen upon and broken off the edges, leaving it with little semicircles struck out of it.

3. "Gules, a Bordure engrailed Or," borne by the right hon. George Talbot, earl of Shrewsbury. You must observe, that, in a bordure or ordinary formed of these lines, the points are represented on all sides towards the field, and the semicircles turned towards the bordure or ordinary.

4. "Argent, a Bordure inverted Azure." — This is quite contrary to the last; for as the other turns its points from the bordure into the field, so contrarywise this does, by the inversion of the points from the field into the bordure. Such a charge or any other formed of these lines is seldom to be met with in English coats of arms.

5. "Gules, a Bordure indented Argent." — The word indented requires very little explanation, the significance being obvious to all persons, from its figure, which is composed of tracks resembling teeth, called in Latin dentis.

6. "Azure, a Bordure Ermine." — The bordure is borne with eight Beasts; borne by his grace Henry Somerset, duke of Beaufort, &c.

7. "Vert, a Bordure Vair." — This is fo termed from its being composed of small and equal pieces.

8. "Ermine, a Bordure company, or gobony, Or and Sable." — This is also termed from its being composed of small and equal pieces.

10. "Azure, a Bordure counter-company Argent and Gules." — Observe, that the counter-company does always consist of two tracks and no more.

11. "Or, a Bordure checky Argent and Sable." — This has a great resemblance with the last bordure, having only one track more; therefore you must take care before you blazon, to number them, or else you may easily err in taking the one for the other.

12. "Gules, a Bordure Argent charged with eight Trefoils slipped proper, that is, Vert." — All nations use these terms in blazoning bordures; but English armigers, in order possibly to raise the dignity of this science, have perplexed it, and rendered it unintelligible to all foreigners, by introducing into it several mystical names, among which may be reckoned the following ones, viz. They call a bordure, if charged with eight plants, fruits, flowers, or leaves, verdict of such vegetables; or enalurion of such birds; emunry of beas; perfew of furs; and enture of inanimate things of what kind ever.

13. "Gules on a Bordure Azure, eight Stars Or." — The bordure is borne by his grace Charles Lenox, duke of Richmond, &c.

14. "Argent, a bordure company of the laft and Gules, the last charged with Roses of the second, barbed and seeded proper." — This bordure is borne by the name Charles Lenox, duke of Richmond, &c.

15. "Ermine, within a Bordure engrailed Gules," the coat of arms of the right hon. Henry Benedict Barnewall, vice-count Kingland, &c. of Ireland. — This ancient and noble family is of French extraction, and allied to the dukes of Little Bretagne, where the name continues still in great repute.

16. "Argent, a Bordure engrailed Sable charged with eight Beasts;" borne by the right hon. Cole, lord Ranelagh, of Ireland.

17. "Party per pale Argent and Gules, a Bordure charged with eight Escalops, counterchanged;" the coat of arms of the right hon. William Manly, earl of Panmure, &c. of Ireland. This very ancient family is originally French, and derives its surname from the town and lordship of Maule in Normandy, where the same arms are still to be seen in the parih-church.

18. "Azure, a Bordure quarterly, the first and fourth Ermine, the second and third counter-company Argent and Azure." — We shall conclude this head with observing, that a bordure is never of metal upon metal, and seldom of colour upon colour, but rather of the tinture which the principal bearing or charge is of. Thus Sir — Dalziel of Glenae, whose predecessor was a younger brother of the noble family of Carnwath, has, within a Bordure Argent, the paternal coat of the ancient name of Dalziel, viz. "Sable, a hanged man with his arms extended, Argent;" formerly they carried him hanging on a gallows. This bearing, though so singular for a coat of arms, was given as a reward to one of the ancestors of the late Robert Dalziel, earl of Carnwath, to perpetuate the memory of a brave and hazardous exploit performed in taking down from a gallows the body of a favourite and near relation of king Kenneth II. hung up by the Piits; which story is thus related by Alexander Niblet: "The king being exceedingly grieved that the body of his minion and kinman should be so disgracefully treated, he offered a great reward to any of his subjects who would adventure to rescue his corpse from the disgrace his cruel enemies had unjustly put upon it: but when none would undertake this hazardous enterprise, at last a valorous gentleman came and said to the king, Dalziel, which signifies, "I dare," and he did actually perform that noble exploit to the king's satisfaction and his own immortal honour, and in memory of it got the aforesaid remarkable bearing; and afterwards his posterity took the word Dalziel for their surname, and the interpretation of it, I dare, continues even to this day to be the motto of that noble family." We can have no better proof of the truth of this tradition than this, that the heads of this ancient family have for many ages carefully retained this bearing without any alteration or addition.

Art. 2. Of Modern Differences.

The modern differences which the English have adopted not only for the distinguishing of sons issued out...
...modern differences, as they are called, for marks of cadency to distinguish the different branches of a family: for it is impossible to distinguish the uncle or grand-uncle from the nephew or grand-nephew, if each of them are second, third, or fourth sons; and in the course of succession these differences would multiply to such a number, that it would be impossible to delineate them distinctly in most cases. But as they are given by most of the English writers on heraldry, though no foreign nation uses them, it was thought proper to insert them here.

Sisters, except of the blood-royal, have no other mark of difference in their coats of arms, but the form of the escutcheon (as observed before); therefore they are permitted to bear the arms of their father, even as the eldest son does after his father's decease. The reason of which is by Guillim said to be, that when they are married, they lose their surname, and receive that of their husbands.

Next to these diminutions, G. Leigh, J. Guillim, and after them Dr Harris in his Lexicon Technicum, set forth at large diverse figures, which they pretend were formerly added to the coats of such as were to be punished and branded for cowardice, fornication, flander, adultery, treason, or murder, for which they give them the name of abettments of honour, but as they produce but one instance of such whimsical bearings, we have not inserted them here. Besides arms being marks of honour, they cannot admit of any note of infamy; nor would any body now-days bear them if they were so branded. It is true, a man may be degraded for divers crimes, particularly high treason; but in such cases the escutcheon is reversed, tinctured, and turned in pieces, to denote a total extinction and suppression of the honour and dignity of the person to whom it belonged.

CHAP. III.

Of the Charges.

Armorialists call a charge whatsoever is contained in the field, whether it occupy the whole or only a part thereof. All charges are distinguished by the name, of honourable ordinaries, sub-ordinaries, and common charges.

Honourable ordinaries, the principal charges in heraldry, are made of lines only, which, according to their disposition and form, receive different names.

Sub-ordinaries are ancient heraldic figures, frequently used in coats of arms, and which are distinguished by terms appropriated to each of them.

Common charges are composed of natural, artificial, and even chimerical things; such as plants, creatures, vegetables, instruments, &c.

Sect. I. Of Honourable Ordinaries.

The most judicious armorists admit only of nine honourable ordinaries, viz.

...
HERALDRY. Chap. III.

by the right hon. George Braddock, Vifcount Middle-Honour-
ton, &c. of the kingdom of Ireland. This family is able Ordi-
lineally descended from George de Brodrick, who

13. "Or, on a Chief Sable, three Escalops of the
field," for the name of Graham; and borne quartered in
the arms of his Grace William Graham, duke, mar-
quis, and earl of Montrose, &c. with Argent three
Roses Gules. According to the Scots writers, this
great and noble family is descended from the renown-
ed Grome or Grame, who, in the 404, was general
of king Fergus II's, army, and, in 420, forced his way
through the wall built by the Romans between the
rivers Forth and Clyde to keep out the Scots from mo-
leffing them in their pofticiencies, and the faid breach
has ever since been called Grame's-dike.

14. "Argent, on a Chief indented Gules, three
Croizes patee of the Field;" borne by the right hon.
John Perceval, earl of Egmont, &c. This very ancient
and noble family is fuppofed, from circumstances little
short of positive proof, to have fprung from a younger
branch of the sovereign dukes of Bretagne in France,
of the fame name. They were transplanted into Nor-
mardy before the conquest, poiffessed of great effa-
and power, and inveffed with the office of chieffbutler.
Upon the Norman invasion, two of this family came
over into England with the Conqueror, from one of
which the defcent of the prefent earl of Egmont is de-
duced by the cleareft and moft infufpicious proofs of
hiilarians and records.

15. "Azure, on a Chief indented Or, three Spur-
revels Gules;" borne by the right hon. Charles Moore,
earl of Drogheda, &c. of the kingdom of Ireland.
This noble family, which is of French extraction, came
into England soon after the conquest, and made their
first residence in the manor of Moore-court, in the
county of Kent.

16. "Ermine, on a Chief indented Azure, three
ducal coronets Or;" borne by the name of Lipton.

17. "Azure, on a Chief Or; three martlets Gules,
for the name of Wray; and borne by Sir Cecil Wray,
Barft of Lincolnshire.

18. "Ermine, on a Chief Gules; five Lozenges of
the fift," borne by the name of Dixin.

19. "Argent, pretty Gules, on a Chief of the
second, Three Leopard's Faces Or;" borne by the right
hon. Henry Liddell, lord Ravenworth. This noble
lord is defcended from the ancient lords of Liddle-
caffe, in the county of Durham, where they have been
proprietors of great coal-mines time out of mind.

20. "Ermine, a Chief party per pale Azure and
Or; on the dexter the Sun in its splendor, on the fini-
ler a Crois patee Gules." The arms of the biphopic
of Raphoe, in the kingdom of Ireland.

ART. II. Of the PALE.

The Pale is an ordinary, consisting of two perpen-
dicular lines drawn from the top to the bafe of the E-
cutcheon, and contains the third middle part of the
field. Its diminutives are, the pallet, which is the half
of the pale; and the endorf, which is the fourth part
of a pale. This ordinary and the pallet may receive
any charge, but the endorf should not be charged.

The endorf, besides, is never used, according to J.
Heraldry

The Bend is an ordinary formed by two diagonal lines, drawn from the Dexter-chief to the sinister-base; and contains the fifth part of the field in breadth, if uncharged: but if charged, then the third. Its diminutives are, the bendlet, which is the half of a bend; the cot or cotice, when two of them accompany a bend, which is the fourth part of a bend; and the riband, the moiety of a coat, or the right part of the field.

There is also the bend sinister, which is of the same breadth as the bend, but drawn the contrary way: this is subdivided into a fess, which is the half of the bend, and into a baton, which is the fourth part of the bend, but does not extend itself to the extremities of the field, there being part of it feen at both ends. See the examples, fig. vii.

1. "Argent, a Bend wavy Sable," borne by the right hon. John Wallop, Earl of Portsmouth, &c. This noble earl is descended from the Wallops of Hampshire, a Saxon family, who were possessed of lands to a considerable value in the county at the time of the conquest.

2. "Checky Or and Azure, a bend of Ermine," borne by the right hon. John Ward, Viscount Dudley and Ward, &c. The ancestors of this noble lord wereanciently of the county of Norfolk, of which was Simon Ward, who had large possessions in the reign of Edward III, and was in France and Scotland in the reigns of Edward II and III. The family of Fortescue was ancient and of extraordinary strength and courage, who accompanied William Duke of Normandy in his invasion of England, and bearing a strong shield before the duke, at the battle of Hastings, he was killed under him, and from that signal event the name and motto of the family were assumed: for the Latin word *fautum*, or the old French word *esfaut* "a shield" being added to forte "strong," compose their name; and the motto is, *Forte suautum faciebat dum.*

4. "Sable, a Bend Argent between two Cotises Or;" borne by the name of *French*.

5. "Paly of six Or and Sable, a Bend counterchanged;" borne by the right hon. Frederick Calvert, Baron Baltimore. The original of this family is from an ancient and noble house of that surname in the earldom of Flanders, whereof Sir George Calvert, knight, among other honourable employments, was secretary of state to King James I, by whom he was created a Baron, Feb. 20. 1624, and from whom he had a grant to him, and his heirs, of the province of Maryland and Avalon in America.

6. "Party per Bend crenellee Argent and Gules;" borne by the right hon. Edmund Boyle, Earl of Cork and Orrery, &c. in the kingdom of Ireland. This noble lord is said to be descended from Sir Philip Boyd,
Boyle, a knight of Arragon, who, in the reign of
king Henry VI. tilted at a tournament with Sir Jo­
seph Astley, knight of the Garter.
7. "Argent, three Bendlets enchauned Gules!" as
the English expreis it, but the phrase enchauned
is used by no other nation. The proper blazon
of this arm is, Parted per bend, f[r]b bendy of six gules,
and argent; 2d of the latter. Borne by the right hon.
William Byron, lord Byron. From Doomfday-book
it appears, that this family was posiefled of numerous
mansions and lands in the reign of the Conqueror;
and that Sir John Byron, one of his lordship's ancestors,
attended king Edward III. in his wars in France.
8. "Ermine, a Bend voided Gules;" borne by the
name of Irton.
9. "Argent three Bendlets wavy Azure;" borne
by the name of Wilbraham.
10. "Bendy of six pieces of Argent and Azure."
Obferve, that when the shield is filled with an equal
number of bendlets of metal and colour, it is called
bendy; but if the number of them is unequal, they
are to be blazoned by the name bendlets, and their
number specified.
11. "Party per Bend Azure and Argent, two
Bendlets engrailed counterchanged;" borne by the
name of Fenes.
12. "Quarterly, Or and Gules, a Bend over all
Vair;" borne by his grace Lionel Cranfield Sackville,
duke of Dorset and earl of Middlefex, &c. The
anceffors of this family were lords of the town and
feignory of Sackville in Normandy, and came over with
the Conqueror when he invaded England in 1066.
13. "Gules on a Bend Argent, three Trefoils
flipped proper;" borne by the right hon. George Wil­
liam Hervey, earl of Briftol, &c. This noble lord
derives his pedigree from Robert Fitz-Hervey, a
younger fon of Hervey-duke of Orleans, who came
over from France with William the Conqueror.
14. "Argent, on a bend Gules cotifed Sable,
three pairs of Wings conjoined of the first;" borne
by the right hon. Richard Wingfield, viccount Pow­
court, in the kingdom of Ireland. This noble lord
is denominated from the manor of Wingfield in Sus­
folk, where they had a feaft before the Norman con­
cuelt, called Wingfield-cott.
15. "Gules on a Bend centre Ermine cotifed Or,
three Boars Heads couped Argent;" borne by the
right hon. George Edgecumbe, lord Edgecumbe, &c.
The ancefors of this noble lord received their name
from the manor of Edgecumbe in Devonshire. One
of this lord's ancefors was Sir Richard Edgecumbe,
who came over to England with the earl of Rich­
mond, having a great share in the victory he obtained
over king Richard III. at Bosworth, by which the
earl made his way to the throne of England.
this bearing corresponds well with its form, being
both long and narrow, which is the shape of a rib­
band.
19. "Azure, a Scrape Or."—This bearing, as
Guillim oberves, is that kind of ornament called
how-a-days a Searf, which is used by officers on duty,
and usually worn after the same manner.
20. This contains three Batons. The first is com­
pany ermine and azure; set over the royal arms, for
his grace William Fitzroy duke of Cleveland. The
second is company argent and azure; set over the royal
arms, for his grace Augustus Henry Fitzroy, duke of
Grafton. The third is gules, charged with three
rofes argent, seeded and barbed proper; set over the
royal arms, for his grace George Beauforck, duke of
St Albans. Thegrandfathers of these noble dukes
being natural fons of king Charles II. is what entitles
them to the royal arms.

ART. IV. Of the Fess and Bar.
The Fess is an ordinary which is produced by two
parallel lines drawn horizontally across the centre of
the field and contains in breadth the third part there­
of. Some English writers say it has no diminutive,
for the bar is a distinct ordinary of itself.
The Bar, according to their definition, is formed of
two lines, and contains but the fifth part of the field:
which is not the only thing wherein it differs from
the fess; for there may be more than one in a fçnt­
cheon, placed in different parts thereof, whereas the
fess is limited to the centre-point; but in this the
French differ from them. The bar has two diminutives;
the barlet, which contains the half of the bar; and
the closer, which is the half of the barlet. When
the shield contains a number of bars of metal and co­
lor alternate, of even number, that is called barry of
so many pieces, expressing their number. See the
cases.

N° 1. is "Argent, a Fess indented Sable;" borne
by the right hon. John Weft, earl Delawarr, &c. This
noble family is descended from the Wefs, a great
family in the west of England; but in the reign of
Edward II. they appear to have been feized of ma­
nors and lands in the county of Warwick. Sir Tho­
mas de Weft, knight, one of his lordship's ancefors,
being at the battle of Creffy, and there taking John
the French king prisoner, had granted him for that
remarkable action, an augmentation to his achieve­
ment, viz. a crampette or, distinguished by the chape
of a fword in the middle; the chape being given him
by the fad king, as an acknowledgment of his be­
coming his prisoner: his augmentation was a fef set over the royal
bar, argent, and gules; which two badges are
ftill borne in the achievement of the prent lord De­
lawarr.
2. "Argent, a Fess wreathed Azure and Gules;" borne
by the right hon. John Carmichael, earl of
Hyndford. Of this ancient family, which is faid to
fume their surname from the lands of Carmichael,
in the county of Lanark, in Scotland, where they
ftill have their chief feat, was Sir John Carmichael,
who accompanied Archibald, earl of Douglas, to the
affiance of Charles VI. of France, against the Eng­
lih; and signalizing his valour at the battle of Baug­
hay in April 1421, and breaking his fpear when the
French and Scots got the victory, had thereupon ad­
ded to his paternal coat, a dexter arm holding a
broken fpear, which is now the crest of the family.
3. "Party per Fess Or and Argent, a Fess nebule
Gules;" borne by the name of Antifled.
4. "Party per Fess indented Or and Azure;" borne
by the name of Saunders.
5. "Checky
The Fcfs

Bar.:

5. “Checkly Or and Azur on a Feaf Gules, a
Crescent argent for difference;” borne by the right hon. Hugh Clifford, lord Clifford, of Chucley. This noble lord is descended from Walter de Clifford, of Clifford Castle, in the county of Hereford, who came over into England with the Conqueror; of which famity was fair Rosamond, millifress to king Henry II.

6. “Argent on a Feaf Azure, three Lozenges Or;” borne by the right hon. Esai Fielding, earl of Derby and Defmond, &c. This noble earl is descended from the earls of Hapburg, in Germany. Geoffrey, earl of Hapburg, being oppressed by Rodolph emperor of Germany, came over into England, and one of his sons served king Henry III. in his wars, whose ancestors lay claim to the territories of Luffenburg and Rhin-Filding, in Germany, he took the name of Fielding.

7. “Or, on a Feaf Gules, three Fleur-de-lis of the first; borne by the name of Lennard. This is the first and fourth quarter of the right hon. Thomas Barret Lennard lord Daure’s arms.

8. “Ermine, on a Feaf Gules, a Lion passant Or;” borne by the right hon. John Proby, baron Carysfort, &c. In the kingdom of Ireland.

9. “Sable, a Feaf Ermine, between three Crescents Or;” borne by the right hon. George-William Conventry, earl of Coventry, &c. This noble earl is descended from John Conventry, a native of the city of Coventry, and afterwards merce and lord-mayor of London, in the reign of Henry V.; from whom was descended Thomas Conventry, one of the Justices of the court of Common Pleas, in the reign of queen Elizabeth, whose son Thomas was recorder of London, and afterwards lord keeper of the great seal in the reign of king Charles I.

10. “Sable, a Feaf chequy, Or and Azure, between three Baffons;” borne by the right hon. Ridgeway Pitt, earl and baron of Londonderry, &c. Of this noble family, which were anciently of Bandon, in the county of Cork, was Thomas Pitt, Esq. who, in the reign of queen Anne, was made governor of fort St George in the East Indies, where he resided many years, and purchased a diamond, which he sold to the king of France for £125,000. Sterling, weighing 136 carats, and commonly known at this day by the name of Pitt’s diamond.

11. “Or, on a Feaf Sable, between three Muscovy Ducks proper, a Rose of the field;” borne by the right hon. John Bateman, esquire Bateman, &c. Of this noble family, which was anciently seated at Halefrook, near St Omer in Flanders, was Giles Bateman, Esq. whose son was a merchant of London, and was father to Sir James Bateman, knight, who, in 1712, was chosen member of parliament for Chichester in the county of Sussex, and re-elected in 1713.

12. “Sable, on a Feaf Argent, between three Leopards passant guardant Or, three Eglelops Gules;” borne by the right hon. Wills Hill, earl of Hilliborough, &c. Of this family, which in the reign of queen Elizabeth, were of office in the county of Downe, was Sir Moore Vill, who, during O’Neill’s rebellion, was one of those gentlemen who associated under the earl of Fife to support it; and afterwards served under Arthur lord Chichester, lord deputy, and by king James I. was appointed provost-marshal of the whole province of Ulster in Ireland.

13. “Gules, two Bars Or;” borne by the right hon. Simon Harcourt, earl of Harcourt, &c. This noble earl is descended from the Harcours of Normandy, who took their name from a place called Harcourt, in that province, where the family usually resided. Gervaise, count de Harcourt, with his two sons Jeffrey and Arnold, came over with the conqueror, when he invaded England in 1066.

15. “Argent, two Bars indented Sable;” borne by the right hon. Godart Ginkel, earl of Athlone. Godart, who was the first earl, was descended of a very ancient family in the United Provinces of Holland, where he was baron de Reede and Ginkel, &c. In 1601, he was a lieutenant-general of king William’s forces in Ireland; where in June the same year, he took Ballymore for the English; and, in July following, the Irish town of Athlone, which last exploit is one of the greatest record in history.

16. “Argent, three bars gemels Gules;” borne by the right hon. Richard Barry, earl of Barrymore, &c. This noble family, who have been renowned for their loyalty and valour, are said to derive their surname from the island of Barry, in the county of Glamorgan, in Wales; and from their riches and estates have been called by the people Barrymore or the Great Barry.

17. “Or a Feaf couped Gules, between two Lions passant Sable;” borne by the right hon. Samuel Mafham, lord Mafham, &c. This noble lord is descended from sir John Mafham, who flourished in the reign of king Henry VI. and was buried at Thornham, in the county of Suffolk, in 1455.

18. “Argent, a Lion rampant guardant Gules, debuffed by a Feaf Azure, between three Etoiles issuing out of as many Crescents of the second;” borne by the right hon. Robert Dillon, earl of Roscomon, &c. In the kingdom of Ireland. This noble family is derived from Logan, surnamed D’Lion or Dellen, which signifies brave and valiant, to whom the duke of Aquitaine gave his daughter in marriage, in whose right, after her father’s death, he became prince and sovereign of Aquitaine, which continued in his posterity till Henry II. married Affonora, daughter and heir to William V. duke of Aquitaine, and about 1172 obtained that principality by superior force; and, to prevent any disturbance, bought sir Henry Dillion or Dillon, and his brother Thomas, then infants to England, their father being dead.

19. “Or, two Bars Azure, a chief quarterly of the secon and Gules, the 1st and 4th charged each with two Fleur-de-lis of France; the 2d and 3d with a Lion of England; borne by his grace John Manners, duke of Rutland, marquis of Granby, &c. This chief was anciently Gules; and the charge thereon is an honorary augmentation, showing his grace’s descent from the blood-royal of King Edward IV.

20. “Barry of ten pieces Argent and Azure, over all six Fleur-de-lis;” borne by a Lion rampant of the first, armed, and langued Gules, a Crescent for difference;” borne by the right hon. James Cecil, earl of Salisbury, &c. This noble earl is descended from the famous William Cecil, lord Burleigh, statesman in the reign of Edward VI. and
and Elizabeth. This great man left two sons, Thomas and Robert, who were both made earls in one day, May 1605. IV. exile, a name of the younger son, was created Earl of Salisbury in the morning; and Thomas, the eldest, Earl of Exeter in the afternoon.

Art. V. Of the Cheveron.

The Cheveron, which represents two rafters of a house well jointed together, or a pair of compasses half open, takes up the fifth part of the field with the English, but the French give it the third. Its diminutives are, the cheveronel, which contains the half of a cheveron; and the couple-cloie, which is the half of a cheveronel, that is, its breadth is but the fourth part of a cheveron. Leigh observes, that this last diminutive is never borne but in pairs, or with a cheveron between two of them. The French have but one diminution of this ordinary called Étage containing the third part of its breadth.

Examples of Cheverons are given in fig. ix. viz.

1. "Argent, a Cheveron Gules between three Tortoises," borne by the right hon. Bennet Sherrard, Earl of Harborough, &c. This noble earl is lineally descended from Scherard, who was poisseler of manors and lands to a great value in the counties of Cheshire and Lancashire in the reign of William the Conqueror. Geoffroy, another of this earl's ancestors, was three times sheriff of Rutlandshire, in the reigns of King Stephen, and of his successor, King Richard III.

2. "Sable, a Cheveron between three Etalles Argent," borne by the right hon. Marmaduke Langdale, Lord Langdale. This noble lord is descended from the Langdales of Yorkshire, who resided at the town of Langdale, from whence they took their name, in the reign of King John; but his ancestor, who makes the greatest figure in history, is Sir Marmaduke Langdale who raised forces in the north of England in defence of King Charles I. was victorious in numberless battles and sieges; and when his majesty, by the united forces of England and Scotland, was at length overpowered, he attended King Charles with his forces, and returned to England with his majesty at the restoration.

3. "Sable, a Cheveron between three Leopards Heads Or," borne by the right hon. William Wentworth, Earl of Strafford, &c. All genealogists agree, that the name of Wentworth is of Saxon original, and taken from the manor of Wentworth in Yorkshire, where, in the reign of William the Conqueror, lived Reginald de Wenteworde, as it is spelt in doomsday-book.

4. "Argent, a Cheveron between three Griffons passant Sable, a Crecent for difference," borne by the right hon. Henage Finch, Earl of Ailesford, &c. This family is descended from Herbert Fitz-Herbert, Earl of Pembroke, and chamberlain to King Henry I. They took the name of Finch in the reign of King Edward I. One of the ancestors of the present earl was the right hon. Henage Finch, Earl of Nottingham, who was constituted lord high-chancellor of England in 1675; and lord high-steward on the trials of Philip earl of Pembroke, and William Viscount Stafford, in 1680.

5. "Azure, a Cheveron Ermine, between three Escalops Argent," borne by the right hon. George of the Townshend, Viscount Townshend, &c. This family is of Norman extraction, and came into England about the time of the conquest. Charles, lord viscount Townshend, grandfather of the present viscount, was appointed principal secretary of state in the reign of King George I. in 1720, and continued to the end of his majesty's reign; when, upon resigning the seals, they were returned to him again by his late majesty King George II. who continued him in that honourable office to the year 1730.

6. "Azure, a Cheveron between three Mullers Or," borne by the right hon. John Chetwind, Viscount Chetwind, &c. of the kingdom of Ireland. Of this family, which has been of great antiquity in the county of Salop, taking their surname from Chetwynd in that county, was Adam de Chetwynd, who married Agnes daughter of John lord Lovel, Baron of Dockinges, and lord of Münster Lovel in Oxfordshire; and by her had issue Sir John de Chetwynd, who, in the 37th of Henry III. had a charter of free-warren, through all his demesne in the counties of Salop, Stafford, and Warwick.

7. "Argent, a Cheveron Gules, between three square Buckles Sable;" borne by the right hon. Matthew Ducie-Morton, Lord Ducie, &c. This noble lord is descended from the Ducies in Normandy. After they came into England, King Edward I. conferred on them the lordship of Morton in Staffordshire, and several other lordships and manors, which they long enjoyed for many years. Sir Robert Ducie, one of his lordship's ancestors, was lord-mayor of London in the reign of King Charles I. and though he lent his majesty L.80,000, which was lost by the king's being driven out of London, he died, however, worth L.400,000.

8. "Argent, a Cheveron Checky Gules, and of the Field, between three Bugle-horns strung Sable, garnished of the second;" borne by the right hon. Lord Hugh Semple, lord Semple. The principal family of this name was Semple of Elliston in Renfrew, where they had large possessions and offices, as wardors and bailiffs under the family of Stewart, proprietors of that county before they came to the crown. The first lord Semple was Sir Robert, who, being much in favour with King James IV. was by him created lord Semple in 1489.

9. "Argent, a Cheveron engrailed between three Lions passant Sable;" borne by the right hon. and the reverend Philip Smithe, Viscount Strangford. One of this lord's ancestors was John Smithe, Esq; who acquired a considerable estate whilst he was farmer of the customs in the reign of Henry VIII. He left two sons, John and Sir Thomas; which last was sent ambassador by king James I. to the empress of Russia.

10. "Quarterly Argent and Azure, a Cheveron engrailed counter-changed;" borne by the name of Chamber.

11. "Party per Cheveron engrailed Gules and Argent, three Talbots Heads erased counter-changed;" borne by the right hon. Anthony Duncombe, Lord Feversham, &c. His lordship is descended from the Duncombes of Barley-end in Buckinghamshire. Sir Charles Duncombe, uncle to the present lord, was lord-mayor of London in 1709; and this nobleman was created
Chap. III.

HERALDRY.

Of the Cross.

12. "Paly of six, Argent and Gules, on a Cheveron Azure, three Cross-crolets Or;" borne by the name of Carpenter, baron Carpenter, of Killaghy in Ireland. This ancient and noble family are of great antiquity in the county of Hereford, and have been lords of the Manor of the Home in the parish of Delwy, near the Wobly, for above 300 years. George, the first lord Carpenter, was so created May 4. 1719.

13. "Azure, on a chevron Or, between three Beaufants, a Bay Leaf Proper;" borne by the right hon. James Hope, earl of Hopeston, &c. This noble family is descended from Henry Hope, a native of Holland, who, about two centuries ago, came over and settled in Scotland. Charles Hope, Esq.; grandfather of the present earl, was created an earl by queen Anne, April 15. 1703.

14. "Vert, on a Cheveron between three Unicorns Heads erased Argent, horned and manned Or, three Mullets Sable;" borne by the name of Ker, being the first and fourth quarters in the arms of his grace John Ker, duke of Roxburg, &c. This ancient family is said to come from Normandy. John Ker, marquis of Beaumont and Cesford, the first duke of Roxburgh, was so created April 27. 1707.

15. "Azure, on a chevron Or, between three Bears heads couped Argent, muzzled and armed Or, three Mullets Sable;" borne by the right hon. Donald Mackay, lord Reay. This family is said to derive their descent from Alexander, a younger son of Ochonacker, who, about the end of the twelfth century, came from Ireland; and the fourth in descent from him was Donald of Strathnoven, whose son was named T Mor; and from him began the surname of Mac Y, Mackie, or Mackay. Donald, the first lord of this family, was created baronet in 1625, and on June 20. 1628, was created baron Reay of the county of Caithness, by Charles I.

16. "Ermine, on a Chevron Azure, three Foxes Heads erased Or, and in a Canton of the second a Fleur-de-lis of the third;" borne by the right hon. Stephen Fox, earl of Ichelester, &c. Of the family of Fox there have been many persons of note living in the counties of Dorset, Somerset, Wilts, and Hants, particularly Richard Fox, bishop of Winchester. His lordship was created lord Ichelester and baron Strange-ways, May 11. 1741, 14 Geo. II. and earl of Ichelester in June 1756.

17. "Or, two Cheverons Gules;" borne by the right hon. John Monson, lord Monson. This noble family is descended from John Monson, who flourished in the reign of king Edward III. from whom descended another John, who attended king Henry VI. In his wars in France. Sir John Monson, bart. father of the present lord, was created lord Monson, May 28. 1728.

18. "Or, on a Fess, between two Cheverons Sable, three Crois-crolets of the first;" borne by the right hon. George Walpole, earl of Orford, &c. This family took their name from Walpole in Norfolk, where they resided before the conquest. Sir Robert Walpole was, in king George II.'s reign, elected knight of the garter in 1726, and created earl of Orford, February 9. 1741-2.

19. "Azure, three Cheverons interlaced Or, and a Chief of the last;" borne by the name of Fitz-Hugh.

20. "Argent, three Cheverons Gules, in Chief a Label Azure;" borne by the right hon. William Wildman Barrington, viscount Barrington, &c. This family is of Norman extraction; in which duchy, whilst it continued annexed to the English crown, there were to be seen the remains of a castle bearing the name of Chute or Shute, and formerly in the family, with other monuments in several towns of that duchy. John Shute, the late viscount Barrington, was in 1708 made a commissioner of the customs, and succeeded to the estates of Francis Barrington, Esq.; and of John Wildman of the country of Berks, who made them heir, and, in pursuance of the will of the former, he took the name and arms of Barrington. On June 11. 1720, he was created viscount Barrington.

ART. VI. Of the Cross.

The Cross is an ordinary formed by the meeting of two perpendiculars or two horizontal lines in the fess-point, where they make four right-angles; the lines are not drawn throughout, but discontinued the breadth of the ordinary, which takes up only the fifth part of the field when not charged; but if charged, then the third. It is borne as well engaile, indented, &c. as plain.

There is so great a variety of crosses used in heraldry, that it would be a very difficult task to treat of them all. Guilm has mentioned 39 different sorts; Dela Columbus, 72; Leigh, 46; and Upton declares he dars not ascertain all the various crosses borne in arms, for that they are almost innumerable; therefore, as all their forms cannot be expected here, we will only take notice of such as are most commonly seen at present in coats-of-arms. See Fig. x.

The first is "Quarterly, Ermine and Azure, a Crois Or;" borne by his grace Thomas Osborne duke of Leeds, &c. This noble duke is descended from the honourable family of the Osborne's of Ashford, in the county of Kent; Sir Thomas Osborne, the grandfather to the present duke, was advanced to the peerage by King Charles II.

2. "Gules, a Cross engrailed Argent, a Lozenge in the dexter-chief of the second;" borne by the right hon. Edward Leigh, lord Leigh. This family took their surname from the town of High-Leigh in Cheshire, where they resided before the Norman conquest. Sir Thomas Leigh, the first lord of this family, was created baron Leigh of Stonely, by King Charles I. on July 1. 1643.

3. "Gules, a Cross Argent fretty Azure;" borne by the right hon. Nicholas Taske, viscount Taaffe, of Corran, &c. in Ireland. Of this noble and ancient family was Richard Taaffe, who lived in 1223; as in 1306 did John Taaffe, who was archbishop of Armagh; and, in 1479, the order of the Garter being established in Ireland, Sir Nicholas Taaffe was one of the first members; and John, his son and heir, was created a baron and viscount by Charles I. August 1. 1628.
in his youth was page of honour to William prince of Orange, afterwards William III. king of Great Britain, and, on the accession of William and his consort, was made groom of the bedchamber, privy-counsellor to his majesty, lieutenant-general of his majesty's army, &c. and also created baron of Coventry, viscount Woodstock, and earl of Portland, April 19.

14. “Argent, a Cross patonce Sable;” borne by the name of Rice.

15. “Sable, a Cross passant Argent;” borne by the name of Mapesfield.

16. “Azure, a Cross fleury Or;” borne by the name of Chester.—This is said to have been also the arms of Edwin, the first Christian king of Northumberland.

17. “Argent, six Crosses fleury fitchy 3, 2, 1, Sable, on a Chief Azure, two Mullets pierced Or;” borne by his grace Henry Clinton, duke of Newcastle, &c. This noble family is descended from Jeffrey de Clinton, lord chamberlain and treasurer to king Henry I. grandson to William de Tankerville, chamberlain of Normandy; from whom descended William de Clinton, earl of Chester, governor of Dover castle, lord Warden of the king's fowels south of Trent. Edward lord Clinton, another of this noble earl's ancestors, was constable lord high-admiral of England for life, in the reign of queen Elizabeth, who created him earl of Lincoln, May 4.

18. “Gules, a Chevron between ten Crosses patece, fix above and four below, Argent;” borne by the right hon. Frederick-Augustus Berkeley, earl of Berkeley, &c. This noble family is descended from Robert Fitz-Harding, who obtained a grant of Berkeley-castle in Gloucestershire, which the family still inherits, and from whence they obtained the surname of Berkeley, from Henry duke of Normandy, afterwards king of England; the said Robert Fitz-Harding was descended from the royal line of the kings of Denmark.

19. “Azure, three Mullets Or, accompanied with seven Crosses-croissants fitchy Argent, three in chief, one in fess, two in flank, and the last in fesse;” borne by the right hon. James Somerville, lord Somerville. The first of this name on record is Sir Walter de Somerville, lord of Wichnore, in the county of Stafford, who came to England with William the Conqueror.

20. “Gules, three Crosses recercedée, voided Or, a Chief Azure ermine and conté ermine;” borne by the right hon. John Peyto Verney, baron Willoughby de Broke. This noble lord is descended from William de Vernay, who flourished in the reign of king Henry I. 1149.

ART. VII. Of the Saltier.

The Saltier, which is formed by the bend and bendletier crossing each other in right angles, as the intersecting of the pale and fess forms the croix, contains the fifth part of the field; but if charged, then the third. In Scotland, this ordinary is frequently called a St Andrew's cross. It may like the others, be borne ensigned, wavy, &c. as also between charges or charged with any thing. See examples fig. X.
Chap. III.

H E R A L D R Y.

No. 1. is Argent, a Saltier Gules; borne by his grace James Fitz-Gerald, duke of Leicesteer, &c. This noble lord is descended from Otho, or Othar, a rich and powerful lord in the time of king Alfred, descended from the dukes of Tuscany; who, falling from Florence into Normandy, and thence into England, there the family flourished, until Richard Brungbore, earl of Pembroke, their kinsman, engaged them to partake in his expedition to Ireland, in which Maurice Fitz-Gerald embarked, and was one of the principal conquerors of that kingdom, for which he was rewarded with a great estate in lands in the province of Leinster, and particularly the barony of Othary, and the castle of Wicklow; and died, covered with honours, in the year 1177, 24 Henry II.

2. "Gules, a Saltier Argent, between twelve Crofs counter-Argent;" borne by the right hon. Other-Lewis Windsor Fieckman, earl of Plymouth, &c. This noble earl is descended from Robert Fitz-Fieckman, lord of the manor of Bloxham, Oxonshire, in the 36 Hen. III 1272; and he is maternally descended from the noble family of the Windors, who were barons of the realm at the time of the conquest.

3. "Vert, a Saltier wavy Ermine;" borne by the name of Wakenout of Hickford, in Gloucestershire.

4. "Ermine, a Saltier counter-compy Or and Gules;" borne by the name of Unifone.

5. "Argent, a Saltier Azure with a Beazant in the centre;" borne by the right hon. Philip Yorke, earl of Hardwicke, &c. He was in October 1733 constituted lord chief-justice of the king's bench, and November 23. in the same year, created baron Hardwicke of Hardwicke.

6. "Argent on a Saltier Gules an Ecalop Or;" the arms of the bishopric of Rochester.—This diocese, the leaf in England, comprehends only a small part of Kent, in which there are 150 churches and chapels; and the two parishes in Ickham in Cambridgeshire, and Prekenham in Suffolk. It has only one see, that of Rochester. Many years it was in the immediate patronage of the archbishop of Canterbury.

7. "Party per Saltier, Azure and Argent, on a Saltier Gules, a Crescent of the second for difference;" quartered by the right hon. William Hall Gage, viscount Gage, of Castle-Island in Ireland. This noble family is of Norman extraction, and derives descent from de Gage or Gage, who attended William I. in his expedition to England, and, after the conquest thereof, was rewarded with large grants of lands in the forest of Dean, and county of Gloucester, near which forest he fixed his residence, by building a seat at Clereuwell, in the same place where the house of Gage now stands: he also built a great house in the town of Cirencester, at which place he died, and was buried in the abbey there. Sir Thomas Gage, the eighth baronet, was created baron of Castle-Bar, and viscount Gage, 1721.

8. "Gules, on a Saltier Argent, a Rope of the first barbed and seeded proper;" borne by the right hon. George Neville, lord Abergavenny, premier baron of England.

9. "Or, on a Saltier Azure, nine Lozenges of the first," the paternal arms of the right hon. John Dalrymple, earl of Stair, &c. Of this family, which took their surname from the barony of Dalrymple, ly-
Ordinaries.

Sub-Ordinaries.

Ordinaries, had a principal hand in the reduction of Ireland to the subjection of Henry II. and Dermot Mac-Carty, king of Cork, fought his aid against his son Cormac O'Lehanagh, which he undertook, and delivered the king from his rebellious son; for which that prince rewarded him with a large tract of land in the county of Kerry, where he settled his son Maurice, who gave his name to the county, which he called Clan Maurice, and is enjoyed by the present earl of Kerry, who is viscount Clan Maurice. Thomas the first earl, and father of the last, was the 21st lord Kerry, who was created earl, January 17. 1722.

19. "Sable, a Saltier Argent, on a Chief Azure, three Fleurs-de-lis Or;" borne by the right hon. John Fitz-Patrick, earl of Upper Oliory, and baron of Gowran in Ireland. This most ancient and princely family is descended from Heremon, the first monarch of the Milesian race in Ireland; and after they had assumed the surname of Fitz-Patrick, they were for many ages kings of Oliory, in the province of Leinster. John, the first earl of this family, succeeded his father Richard, as lord Gowran, June 9. 1727, was created earl October 5. 1751, and died 1758.

20. "Party per Pale Argent and Gules, three Saltiers counter-changed;" borne by the name of Lane. These arms are also borne, without the leaf alteration, by the name of Kingman; for which similitude we can no otherwise account, than by supposing there has been some mistake made through many transcriptions.

Sect. II. Of Sub-Ordinaries.

Besides the honourable ordinaries and the diminutions already mentioned, there are other heraldic figures called sub-ordinaries, or ordinaries only, which, by renson of their ancient use in arms, are of worthy bearing, viz. The Gyron, Franc-quarter, Canton, Pailie, Fret, Pile, Orle, Inscutcheon, Trefoil, Annulet, Flanches, Flasques, Voiders, Billet, Lozenge, Gutt, Fפיל, Ruuffle, Malele, Papillon, and Diaper. See Plate CCXXVII. fig. 1. (A.)

The Gyron is a triangular figure formed by two lines, one drawn diagonally from one of the four angles to the centre of the shield, and the other is drawn either horizontal or perpendicular, from one of the sides of the shield, meeting the other line at the centre of the field.

Gyronny is said, when the field is covered with fix, eight, ten, or twelve gyrons in a coat-of-arms: but a French author would have the true gyronny to consist of eight pieces only, as in the fig., which represents the coat-of-arms of Flora Campbell countess of Loudon, &c. whose ancestor was created Baron of Loudon in 1604 by James VI. and earl of the same place, May 12. 1613, the 9th of Charles I.

The Franc-quarter is a square figure, which occupies the upper dexter quarter of the shield. It is but rarely carried as a charge. Silvestra Petra Sancta has given us a few instances of its use.

The Canton is a square part of the escutcheon, somewhat less than the quarter, but without any fixed proportion. It represents the banner that was given to ancient knights-bannerets, and generally speaking, possesses the dexter-chief-point of the shield, as in the

Heraldry.

Chap. III.

fig.: but should it possefs the sinister corner, which is but seldom, it must be blazoned a canton-sinister.

James Coat reckons it as one of the nine honourable ordinaries, contrary to most heralds opinion. It is added to coats-of-arms of military men as an augmentation of honour: thus John Churchill, baron of Eyemouth in Scotland, and one of the ancestors of the present duke of Marlborough, being lieutenant general to king James II. received from him a canton argent, charged with the red cross of England, added to his paternal coat, "which is Sable, a lion rampant Argent."

The Fret is a figure formed by the conjunction of the upper half of the saltier with the under half of the pale.

The pailie is a figure representing two little flicks, in saltier, with a malele in the centre interlaced. J. Gibbon terms it the heralds true-lovers knot; but many dissent from his opinion. Pretty is said, when the field or bearings are covered with a fret of fix, eight, or more pieces, as in the fig. The word pretty may be used without addition, when it is of eight pieces; but if there be less than that number, they must be specified.

The pile, which consists of two lines, terminating in a point, is formed like a wedge, and is borne en-guillined, wavv, &c. as in the fig. It illusres in general from the chief, and extends towards the base; yet there are some piles borne in bend, and filling from other parts of the field, as may be seen in Plate CCXX, fig. xii. n° 12. &c.

The Orle is an ordinary composed of two lines going round the field, the same as the bords of the latter, and at some distance from the brim of the shield, as in the fig.

The Inscutcheon is a little escutcheon borne within the shield; which, according to Guillim's opinion, is only to be called when it is borne single in the fess-point or centre; see the fig. on Plate CCXXVII. but modern heralds, with more propriety give the name of inescutcheon to such as are contained in Plate CCXXX. fig. xii. n° 2. and call that which is fixed on the fess-point inescutcheon of pretence, which is to contain the arms of a wife that is an heir, as mentioned above.

The Trefoil is an ordinary commonly supposed to be the half of the breadth of an orle, and is generally borne flyowery and counter-flyowery, as it is also often double, and sometimes treble. See the fig. (Plate CCXXXVII.). This double trefoil makes part of the arms of Scotland, as marshallled in the royal achievement, Plate CCXXXII. fig. xxi. n° 7. and was granted to the Scots kings by Charlemagne, being then emperor and king of France, when he entered into a league with Achaus king of Scotland, to show that the French lilies should defend and guard the Scottish lion.

The Annulet, or ring, is a well-known figure, and is frequently to be found in arms through every king's dominion in Europe.

The Flanches are formed by two curved lines, or semicircles, being always borne double. See the fig. C. Leigh observes, that on two such Flanches two fundry coats may be borne.
The Flafques resemble the flanches, except that the circular lines do not go so near the centre of the field; (see the figure.) J. Gibbon would have these two ordi­naries to be both one, and wrote flauk: alleging, that the two other names are but a corruption of this last; but as G. Leigh and J. Guillim make them two distinct and subordinative ordi­naries, we have inferred them here as such.

The Voileys are by Guillem considered as a subordin­ate ordinary, and are not unlike the flasques (see the figure,) but they occupy less of the field.

The Billet is an oblong square figure, twice as long as broad. Some heralds imagine that they represent bricks for building; others more properly consider them as representing folded paper or letters.

The Lozenge is ordinary of four and equal par­allel sides, but not rectangular; two of its opposite angles being acute, and the other two obtuse. Its figure is the same with those of our window-glases, before the square came so much in fashion. See the figure.

Guttae or drops, are round at bottom, waved on the sides, and terminate at the top in points. Heralds have given them different names according to their different tinctures: thus, if they are.

\begin{tabular}{|c|c|}
\hline
Yellow & d' Or \\
White & d' Eau \\
Red & de Sang \\
Blue & de Larmes \\
Green & de Vert \\
Black & de poix \\
\hline
\end{tabular}

The Ffuiil is longer than the lozenge, having its upper and lower part more acute and sharp than the other two collateral middle parts, which acuteness is occasioned by the short distance of the space between the two collateral angles; which space, if the ffruit is rightly made, is always shorter than any of the four equal geometrical lines whereof it is composed. See the fig. ibid.

The Ffuiil is a lozenge pierced round in the middle (see the figure). They are called by the Germans rutten. Mencfrier gives an example of them in the arms of Lebaret in France, argent three rufnes azure.

The Mafces is pretty much like a lozenge, but voided or perforated through its whole extent, showing a narrow border, as in the figure. Authors are divided about its resemblance: some taking it for the mesh of a net, and others for the spokes of certain flints found about Rohan; and as no writer has given a clearer account in support of this last opinion than Colombier author of La Science Heralidique, we shall transfer it for the satisfaction of the curious.

"Rohan (says he) bears Gules, nine Mafces Or.

3. 3. Opinions have varied very much about the original of the mases or maitres as being somewhat like the mesh of nets: but for my own part, having often observed that those things which are remarkable and angular in some countries, have sometimes oc­casioned the lords thereof to represent them in their e­mblems, and to take them for their arms, I am of opinion, that the lords of Rohan, who I believe, are the first that bore these figures in their arms, tho' defcended from the ancient kings and princes of Bre­tagne, took them, because in the most ancient viscounty of Rohan, afterwards erected into a duchy, there are abundance of strong flints, which being cut in two, this figure appears on the little of them; as also the carp, which are in the fish-ponds of that duchy, have the same mark upon their scales: which being very extraordinary and peculiar to that country, the an­cient lords of the same had good reason, upon obser­v[553]ving that wonder, to take those figures for their arms, and to transmit them to their posterity, giving them the name of maitres, from the Latin word maitre, fig­nifying a spot; whence some of that house have taken for their motto, Sine maitre maitre, that is, A maitre without a spot."

Papillons is an expression used for a field or charge that is covered with figures like the scales of a fish. Mon. Baron gives as an example of it the arms of Monti Gueules Papelone d'Argent. The proper term for it in English would be scallop-work.

Drapery is said of a field or charge shadowed with flourishes or foliage with a colour a little darker than that on which it is wrought. The Germans frequently use it; but it does not enter into the blazoning or description of an arms, it only serves to embellish the coat.

If the fore mentioned ordinaries have any attributes, that is, if they are engrafted, indented, wavy, &c. they must be distinctly specified, after the same manner as the honourable ordinaries.

See examples of subordinaries, &c. fig. xii.

Gules, an Orle Ermine;" borne by the name of "Hunbrunville.

2. "Argent, three Ineuncheons Gules;" borne by the name of Hay, and the 2d and 3d quarters in the coat-of-arms of the right hon. Thomas Hay, earl of Kinnoull, &c. — The first of the name of Hay that bore these arms, got them, as Mr Niblet observs, because he and his two sons, after having defeated a party of the Danes at the battle of Loncarty, anno 942, were brought to the king with their shields all rained with blood.

3. "Argent, a Fret Sable;" borne by the right hon. Lionel Talbooth, earl of Dysart, &c. This family was advanced to the peerage by King Charles I. in 1646.

4. "Or, pretty of Gules, a canton Ermine," borne by the right hon. Henry Noel, earl of Gainsborough, &c. This nobleman is descended from — Noel who came into England with William the Conqueror, and in consideration of his services, obtained a grant of severall manors and lands of very great value. Sir Edward, who was knighted by King James on his accesi­on to the throne, and created a baronet June 29, 1611, was the first advanced to the honour of baron Noel, March 23, 1669.

5. "Girony of Eight Pieces or and Sable," the 1st and 4th quarters of the coat-of-arms of the right hon. John Campbell, earl of Breadalbane, &c. This ancient and noble family is descended, in a regular succession, from Duncan the first Lord Campbell, an­cestor of the family of Argyle. John, the first earl, in con­sideration of his personal merit, was, from a baron­net, created lord Campbell, vicount Glenorchie, and earl of Breadalbane, Jan. 28. 1677, by Charles II.

6. "Lozengy, Argent and Gules;" borne by the right hon. George Fitz-William, earl Fitz-William, &c. This noble earl is descended from Sir William Fitz-
Heraldry.

Chap. III.

Natural

Figures.

Hence it is that the sun, moon, stars, comets, meteors, &c. have been introduced to denote glory, grandeur, power, &c. Lions, leopards, tigers, serpents, flags, &c. have been employed to signify courage, strength, prudence, swiftness, &c.

The application to certain exercises, such as war, hunting, martial, &c. has furnished lances, swords, pikes, arms, lilies, &c. Architecture, columns, cheverons, &c.; and the other arts several things that relate to them.

Human bodies, or distinct parts of them, also clothes and ornaments, have for some particular intention, found place in armorial; trees, plants, fruits, and flowers, have likewise been admitted to denote the respective, advantages, and singularities, of different countries.

The relation of some creatures, figures, &c. to particular names, has been likewise a very fruitful source of variety in arms. Thus the family of Connington bears three cedars; of Arundel, six swallows; of Upton a bear of Lucis, three pikes, in Latin tres pinos pikes; of Starkey, a flock of Castlemain, a calf, triple-towered; of Shuttleworth, three weaver's shuttles, &c.

Besides these natural and artificial figures, there are chimerical or imaginary ones used in heraldry, the result of fancy and caprice; such as centaurs, hydras, phænixes, griffins, dragons, &c. Which great variety of figures shows the impossibility of comprehending all common charges in a work of this nature; therefore such only shall be treated of as are most frequently borne in coats-of-arms.

ART. I. OF NATURAL FIGURES borne in COATS-OF-ARM.

Among the multitude of natural things which are used in coats-of-arms, those most usually borne are, for the sake of brevity as well as perplicity, distributed into the following classes, viz.

Celestial figures; as the sun, moon, stars, &c. and their parts.

Beasts; as, lions, flags, foxes, bears, &c. and their parts.

Birds; as, eagles, swans, storks, pelicans, &c. and their parts.

Fishes; as, dolphins, whales, sturgeons, trouts, &c. and their parts.

Reptiles and Insects; as, tortoises, serpents, grasshoppers, &c. and their parts.

Vegetables; as, trees, plants, flowers, herbs, &c. and their parts.

Stones; as, diamonds, rubies, pebbles, rocks, &c. These charges have, as well as ordinaries, divers attributes or epithets, which express their qualities, positions and dispositions. Thus the sun is said to be in his glory, eclipsed, &c. The moon, in her complement, increasent, &c. Animals are said to be rampant, passant, &c. Birds have also their denominations, such as clegs, displayed, &c. Fillets are described to be bourrants, naissant, &c.

I. Examples of Celestial Figures.

1. "Azure, a sun in his glory;" borne by the name of St. Cierc; and is found in the first and fourth quarters.
Heraldry.

Hopetoun's coat-of-arms, which is inserted in Fig. IX, Effigies of Men, 13. The whole of it is a globe split on the top, and above it is the rain-bow, &c.

18. "Party per Fess crenele Gules and Azure, three Suns proper;" borne by the name of Pierson.

19. "Gules, a Mullet between three Crescent Argent;" borne by the name of Oliver.

20. "Gules, a Chief Argent, on the lower part thereof a Cloud, the Sun's repandent rays issuing throughout proper;" borne by the name of Leffon.

II. Examples of Effigies of Men, &c., and their parts.

1. "Azure, the Virgin Mary crowned, with her fig. 14: Babe in her right arm, and a sceptre in her left, all Or;" the coat of arms of the bishopric of Salisbury.

2. "Azure, a Prelater sitting on a Tomb-stone, with a Crown on his head and Glory Or, his right hand extended, and holding in his left an open Book Argent, with a Sword crossed his mouth Gules;" the coat of arms of the bishopric of Chichester.

3. "Azure, a Bishop habited in his pontificals, sitting on a chair of state, and leaning on the sinister side thereof, holding in his left hand a Crozier, his right being extended towards the dexter chief of the escutcheon, all Or, and resting his feet on a cushion, Gules, taffetaed of the second;" the coat of arms of the bishopric of Clogher in Ireland.

4. "Azure, a Bishop habited in his pontificals, holding before him, in a Pale, a Crucifix proper;" the coats of arms of the bishopric of Waterford in Ireland.

5. "Or, a Man's Leg couped at the midst of the thigh Azure;" borne by the name of Haddon.

6. "Azure, three sinister Hands couped at the wrist, and erected Argent;" borne by the ancient family of Malmains.

7. "Argent, three sinister Hands couped at the wrist, and erected Gules;" borne by the name of Maynard.—By these two last examples it appears, that different coats of arms may be easily made from the same figure or figures, by varying the colours only, without the addition of any other charge, counter-changes, pendants, &c.

8. "Argent, a Man's Leg erased at the midst of the thigh Sable;" borne by the name of Prime.

9. "Gules, three Legs armed proper, conjoined in the Fess-point at the upper part of the thighs, flexed in triangle, garnished and spurreted, Or." This is the coat of arms of the Isle of Man, and is quartered by the Most Noble John Murray, duke of Athol, titular lord or king of that isle.

10. "Gules, three dexter Arms vembraced feisinways in Pale proper;" borne by the name of Armstrong. This coat is very well adapted to the bearer's name, and serves to denote a man of excellent conduct and valour.

11. "Or, three Legs couped above the knee Sable;" borne by the name of Hof.

12. "Vert, three dexter Arms conjoined at the shoulders in the Fess-point, and flexed in triangle Or, with five clenched Argent;" borne by the name of Tremaine.

13. "Argent, a Man's Heart Gules, within two equilateral triangles interlaced Sable;" borne by the name of Villages, a family of distinction in Provence.

14. "Azure, a sinister Arm, issuing out of the 3 L dexter-
Observe, that if a lion, a dexter Hand couched at the wrist and crested, within a bordure engrailed Sable; borne by the name of Manley.

16. "Argent, a Man's Heart Gules, ensigned with a Crown Or, and on a Chief Azure, three Mulets of the first." The paternal coat of the name of Douglas, and quartered in the arms of the dukedoms of Hamilton and Queenberry; as also in those of the earls of Morton and March, and the lord Mordington.

17. "Gules, a Saracen's Head affrontée erased at the neck Argent, environed about the temples with a wreath of the second and Sable," borne by the name of Murray.

18. "Argent, three Blackamoors Heads couped proper, banded about the head Argent and Gules;" borne by the name of Tanner.

19. "Gules, three Befants, each charged with a man's face affronté proper;" borne by the name of Uttox.

Observe, that when half of the face, or little more, of human figures, is seen in a field, it is then said to be in profile; and when the head of a man, woman, or other animal, is represented with a full face, then it is termed affrontée.

III. Examples of the different Positions of Lions, &c. in Coats-of-Arms.

1. "Or, a Lion rampant Gules;" quartered by Percy, duke of Northumberland, &c.

2. "Azure, a Lion rampant-guardant Or;" borne by the name of Fitz-Hammond.

3. "Gules, a Lion rampant-guardant Or;" quartered by Cadogan, lord Cadogan, &c.

4. "Argent, a Lion rampant Gules;" borne by the name of Jervis.

5. "Azur, a Lion rampant-guardant Or;" borne by the name of Bronfield.

6. "Or, a Lion rampant Gules; borne by the name of Gains.

7. "Argent, a Lion rampant-guardant Gules, crowned Or;" quartered by the right lion. James Ogilvy, earl of Finkel, &c.

8. "Gules, a Lion lejant Argent.

9. "Or, a Lion rampant double-headed Azure;" borne by the name of Mafon.

10. "Sable, two Lions rampant-combatant Or, armed and langued Gules;" borne by the name of Carter.

11. "Azure, two Lions rampant-accedé Or;" This coat of arms is said to have been borne by Achilles at the siege of Troy.

12. "Sable, two Lions counter-passer Argent, the uppermost towards the sinister side of the escutcheon, both collared Gules;" borne by the name of Glegg.—It is the natural disposition of the Lion not to bear a rival in the field: therefore two lions cannot be borne in one coat of arms, but must be supposed to be lion's whelps called lioncels; except when they are parted by an ordinary, as in fig. viii. n° 17. or if disposed as that they seem to be distinctly separated from each other, as in fig. xv. 8° 20. In the two foregoing examples they are called lioncels, because in the 10th they seem to be striving for the sovereignty of the field which they would not do unless they were of full growth; and in the 11th they are supposed to represent two valiant men, whose dispute being accommodated by the prince, are leaving the field, their pride not suffering them to go both one way.

13. "Argent, a Semi-Lion rampant Sable;" borne by the name of Mere.

14. "Gules, a Lion couchant between six Croix de Bavièrokes, three in Chief, and as many in Base, Argent;" for the name of Tynte; and is the first and fourth quarter of the arms of Sir Charles-Kenys Tynte, bart.

15. "Azur, a Lion dormant Or;" "Or, out of the middle of a Fess Sable, a Lion rampant-naiant Gules;" borne by the name of Emwes. This form of blazon is peculiar to all living things that shall be found issuing out of the midst of four ordinary or other charge.

16. "Argent, three Lioncels rampant Or;" borne by Fienes, vicount and baron Saye and Sele.

18. "Gules, a tricorporated Lion issuing from three parts of the escutcheon, all meeting under one Head in the Fess point Or, langued and armed Azure;" borne by the name of Crouchback. This coat appertained to Edmund Crouchback earl of Lancaster, in the reign of his brother king Edward I.

19. "Gules, a beaufemant between three Demi-lions rampant Argent;" borne by Bennett, earl of Tankerville, &c. This noble earl is descended from the family of the Bennets in Berkshire, who flourished in the reign of King Edward III. Charles, lord Osulfon, grandfather of the present earl, was created earl of Tankerville on November 19. 1714, by George I.

20. "Party per Pale Azure and Gules, three Lions rampant Argent;" borne by Herbert earl of Pembroke, &c. This noble family is descended from Henry Fitz-Roy, natural son to Henry I. Sir William Herbert, one of the ancestors of the present earl, was master of the horse to king. Henry VII. lord president of the marches of Wales, and knight of the garter. He was also, by that king, advanced to the dignity of baron Herbert of Caeriff, Oct. 10, 1551, and the very next day created earl of Pembroke.—Observe, that if a lion, or any other beast, is represented with its limbs and body separated, so that they remain upon the field at a small distance from their natural places, it is then termed dehachy or couped in all its parts; of which very remarkable bearing there is an instance in armor, which is, "Or, a Lion rampant Gules, dehaché, or couped in all its parts, within a double Tre­fure flowery and counterflowery of the second;" borne by the name of Maitland.

IV. Examples of other Quadrupeds, and their Parts, borne in Coats-of-Arms.

1. "Sable, a Camel statant Argent;" borne by the fig. 16 name of Camel.

2. "Gules, an Elephant statant Argent, tusked Or;" borne by the name of Trewhethen.

3. "Argent, a Boar statant Gules, armed Or;" borne by the name of Trewhethen.

4. "Sable, a Bull passant Or;" borne by the name of Fitz-Geoffrey.

5. "Sable, three Nags Heads erased Argent;" borne
Chap. III.

HERALDRY.

borne by Blayney, baron Blayney of Monaghan, in Ireland. This noble family is descended in a direct line from Cadwallader, a younger son of the prince of Wales; and the first peer was Sir Edward Blayney, knight, who was created a baron by king James I. July 29, 1621.

7. "Azure, three Boars Heads erased Or," quartered by his grace Alexander Gordon duke of Gordon, &c. Of this great and noble family which took their surname from the barony of Gordon in the county of Berwick, there have been, besides those in North Britain, several of great distinction in Muscovy; and in the time of king Malcolm IV. 1160, this family was very numerous, and flourished in the county aforesaid.

8. "Argent, three Bulls Heads erased, Sable, armed Or;" borne by Skeffington, earl of Mallowrene, &c. of Ireland. This ancient and noble family derives its name from the village of Skeffington, in the county of Leicestershire, of which place Simon Skeffington was lord in the reign of Edward I. and from him descended Sir William Skeffington, knt. made fob by king Henry VII.

9. "Argent, two foxes counter-fauntant, the dexter surmounted of the sinister Gules; for the name of Cadrod-Harcl, an ancient British family, from which is descended Sir Wynne, bart. who bears this quartered, second and third, in his coat of arms.

10. "Argent, three Bulls palfant Sable, armed and unguled Or," for Ashley, and quartered by the right hon. Anthony-Ashley Cooper, earl of Shaftesbury, &c. This noble earl is descended from Richard Cooper, who flourished in the reign of king Henry VIII. and purchased the manor of Paulet in the county of Somerset, of which the family are still proprietors. But his ancestor who makes the greatest figure in history is Sir Anthony-Ashley Cooper, who was created baron Ashley of Wincourne April 20, 1666, and afterwards earl of Shaftesbury April 23, 1672.

12. "Gules, two Greahounds rampant Or, repelling each other;" borne by the name of Doggett.

13. "Or, an Ace's Head erased Sable;" borne by the name of Hackwell.

14. "Gules, three Lions gambes ered Argent;" for the name of Nevill.

15. "Argent, three Lions Tails ered and erased Gules;" borne by the name of Cork.

16. "Azure, a Buck's Head cabossed Argent," borne by Legge, earl of Dartmouth, &c. This noble family is descended from Signior de Lega, an Italian nobleman, who flourished in Italy in the year 1267. What time the family came into England is uncertain; but it appears they were settled at Legge-place near Tunbridge in Kent, for many generations; and Thomas, one of their ancestors, was twice lord-mayor of London, viz. in 1346 and 1357.

17. "Argent, two Squirrels leuant adorée Gules," for the name of Somers.

18. "Gules, a Goat palfant Argent;" borne by the name of Baker.

19. "Sable, a Stag standing at gaze Argent;" borne by the name of Jones, of Monmouthshire.

20. "Azure, three Holy Lambs Or;" borne by the name of Row.

V. Examples of Birds, Fishes, Reptiles, &c.

1. "Ermine, an Eagle displayed Sable;" borne by Fig. 17, the name of Bedingfield.

2. "Gules, a Swan clofe proper;" borne by the name of Leigheam.

3. "Argent, a Stork Sable, membered Gules;" borne by the name of Starkey.

4. "Gules, a Pelican in her nest with wings elevated, feeding her young ones Or;"" for the name of Carne.

5. "Argent three Peacocks in their pride proper;" borne by the name of Wem.

6. "Sable, a Goshawk Argent, perching upon a flock in the base-point of the Escutcheon of the second armed, jeffed, and belled Or;" borne by the name of Weels.

7. "Or, a Raven proper;" borne by the name of Corbet.

8. "Argent three Cocks Gules, ereated and jowched Sable, a Crested furmounted of a Crested for difference;" borne by Cockayne, viscount Cullen, of Donegal in Ireland, of this ancient family was Andreas Cockayne of Altrborne in the county of Derby, who lived in the 20th year of Edward I. Charles, for Sir William Cockayne lord-mayor of London, 1619, was the first who was advanced to the peerage, by Charles I. August 7, 1642.

9. "Sable, a Dolphin vallant embossed Or;" borne by the name of Symonds. This animal is borne by the eldest son of the French king, and next heir to the crown, no other subject in that kingdom being permitted to bear it. In England, where that rule cannot take place, there are several families that have dolphins in their coats-of-arms.

10. "Argent, three Whales Heads erased and erased Sable;" borne by the name of Whalley.

11. "Gules, three Escallops Argent;" borne by Keppel, earl of Albemarle, &c. This family is descended from Arnold Joost van Keppel, a nobleman of the province of Gelderland in Holland, who came over into England with the Prince of Orange in 1688, to whom he was then a page of honour, and afterwards master of herobes, and was by him created a peer of England, by the title of earl of Albemarle, in the duchy of Normandy in France, February 10, 1696.

12. "Azure, three Trousers fretted in Triangle Argent;" borne by the name of Troutbeck.

13. "Vert, a Grasshopper palfant Or;" borne by the name of Nalthlil.

14. "Azure, three Bees two and one volant in pale Argent;" borne by the name of Bye.

15. "Vert, a Tortoise palfant Argent;" borne by the name of Gaudy.

16. "Gules, an Adder noxed Or;" borne by the name of Naithlil. Adders, snakes, and serpents are said to represent many things, which being according to the fancy of the ancients, and a few modern authors who have adopted their opinions, it is needless to enlarge upon. It is certain they often occur in armour; but the noblest is that of the duchy of Milan, viz. "Argent, a Serpent gliding in Pale Azure, crowned Or, vorant an Infant inflating Gules." The occasion of this bearing was this: Odo, first viscount of Milan, going
going to the Holy Land with Godfrey of Bouillon, defeated and slew in single combat the great giant Volus, a man of extraordinary stature and strength, who had challenged the bravest of the Christian army. The vinceount having killed him, took his armour, and among it was his helmet, the crest whereof was a serpent swallowing an infant, worn by him to strike terror into those who should be so bold as to engage him.

17. "Ermine, a Rose Gules barred and seeded proper;" borne by Boscawen-vicount Falmouth, &c. This noble lord is descended from Richard Boscawen, of the town of Boscawen, in the county of Cornwall, who flourished in the reign of King Edward VI. Hugh, the first peer of this ancient family, was created baron of Boscawen-Rose, and vicount Falmouth, on the 13th of June 1720, 6th of George I.

18. "Azure, three Laurel-leaves slipped Or;" borne by the name of Lennox, and quartered by the right hon. Granville-Lecferv Gower, earl of Gower, &c. "Azure, three Garbs Or;" borne by the name of Lawing. These are fleaves of the same kind, but though they were barley, rye, or any other corn whatsoever, it is sufficient, in blazoning, to call them Garbs, telling the tincture of the same.

20. "Gules, three Cinquefoils Argent;" borne by Lambart, baron of Cavan, &c. in Ireland. Of this ancient family, which is of French extraction, was Sir Oliver, who, in the reign of queen Elizabeth, attending the earl of Effex to Spain, was there knighted by him, and afterwards returning with that earl into Ireland, was, for his singular service in the north against O'Neal earl of Tyrone, made camp-maiter general, and president of Connaught; and February 17, 1617, was created lord Lambart and baron of Cavan by King James I.

It must be observed, that trees and plants are sometimes said to be truncked, eradicated, fructuated, or raguled, according to the same or regimented in arms.

ART. 2. OF ARTIFICIAL FIGURES borne in Coats of Arms.

After the various productions of nature, artificial figures, the objects of arts and mechanics, claim the next rank. They may be distributed into the following classes, viz.: -

Warlike Insignias; as swords, arrows, battering-rams, gauntlets, helmets, spears, pole-axes, &c.

Ornaments used in royal and religious ceremonies; as crowns, coronets, miteres, wreaths, crowns, &c.

Architecture; as towers, castles, arches, columns, plenums, battlements, churches porticoes, &c.

Navigation; as ships, anchors, rudders, pendants, sails, oars, masts, flags, galleys, lighters, &c.

All these bearings have different epithets, serving either to express their position, disposition, or make: six, swords are said to be erect, pommelled, hilted, &c.; arrows, armed, feathered, &c.; towers covered, embattled, &c.; and so on of all others, as will appear by the following examples.

1. "Sable, three Swords, their points meeting in the Base Argent, pommelled and hilted Or, a Crocodile in chief of the second for difference;" borne by Powlet, duke of Bolton, &c. This noble duke is descended from Hercules lord of Tournon in Picardy, who came over to England with Jeffrey Plantagenet earl of Anjou, third son of king Henry II. and among other lands had the lordship of Paulet in Somersettshire conferred on him. William Powlet, the first peer of this illustrious and loyal family, was treasurer of the household to king Henry VIII. and by him created baron St John of Basing, in the county of Southampton, March 9. 1538.

2. "Argent, three Battering-rams barways in Pale, headed Azure and hooped Or, an Annulet for difference;" borne by Bertie, earl of Abington, &c. The title of the family of Bertie that bore the title of earl of Abington was James Bertie lord Norris of Ryeote, being created earl, November 30. 1682, by Charles II.

3. "Azure, three left-hand Gauntlets with their backs forward Or;" borne by Fane, earl of Wemfordland, &c. This noble earl is descended from the Fanes, an ancient family which resided at Badal in Kent, from which descended Francis Fane, son and heir of Sir Thomas Fane, knight, by Mary his wife, sole daughter and heiras to Henry Neill lord Abergeveny, afterwards created baronets DePepemer. The said Francis was a knight of the Bath; and in the reign of king James I., was created baron Burghersh and earl of Wemfordland December 29. 1626.

4. "Azure, three Arrows points in base Or;" borne by Archer, lord Archer, &c. This noble lord is descended from John de Archer, who came over from Normandy with William the Conqueror; and this family is one of the most ancient in Warwickshire, being settled at Umberlade in that county ever since the reign of Henry II. His lordship is the first peer; and was created lord Archer and baron of Umberlade by king George II. July 14. 1747.

5. "Gules, two Helms in chief proper, garnished Or, in a Base of a Garb of the third;" borne by Cholmondeley, earl of Cholmondeley, &c. This noble earl is descended from the ancient family of Egerton in Cheshire, which flourished in the time of the conquest, from whom also the duke of Bridgewater is descended. The first English peer of this branch was Hugh vicount Cholmondeley of Kells, in Ireland, who, joining with those who opposed the arbitrary measures of king James II. was on the accession of King William and Queen Mary created lord Cholmondeley of Nannup-wich, in the county of Chester.

6. "Argent, A Ship with its Sails furled up Sable;" quartered by Hamilton, earl of Abercorn, &c. The descent of this noble family is from that of the duke of Hamilton, for James, the fourth lord Hamilton and second earl of Arran, marrying lady Margaret Douglas daughter of James the third earl of Morton, by her had four sons, James, John, Claud, and David; whereof of Claud was progenitor of the lord we are now speaking of; and in consideration of his merit and loyalty to Mary queen of Scots, James VI. created him lord Palley in 1591, as also earl of Abercorn, baron of Hamilton, &c. July 10. 1606.

7. "Or, an Anchor in pale Gules;" quartered by the most noble George Johnston, marquis of Annadale, &c. The Johnstons are an ancient and warlike family, and derive their surname from the barony of Johnston in Annadale.

8. "Sable, three Spears heads erect Argent, imbrued Gules, on a chief Or, as many Pole-axes Azure;" borne by King, lord King, &c. Peter King, Esq; the first lord of this ancient family, was chosen recorder of the city of London, July 27. 1708, and on the 14th of September
Chap. III.

HERALDRY.

September following, had the honour of knighthood conferred on him. He was constituted lord-chieft-justice of the common pleas in the first year of king George I. 1714; on the 9th of April following was sworn of his majesty’s most hon. privy council; and on May 19, 1723, was created a peer of Great Britain by the title of lord King, baron of Ockham.

9. "Gules, three Clarions Or;" quartered by Carteret, earl of Granville, &c. this ancient and worthy family derives its pedigree from Offrey de Carteret, who attended William the conqueror in his defeat upon England, and contributed to the victory he obtained over king Harold, at Hastings in Sulix, 1066; he had manors and lands in England conferred on him by that prince, as a reward for his eminent services George the first earl was, in consideration of his own merit and the services of his ancestors, created a peer of Great Britain, October 19, 1681.

10. "Argent, a Maunch Sable;" borne by Haslingdon, earl of Huntingdon, &c. The present noble earl is descended from Hugh de Haslingdon, a younger son of the ancient and noble family of the Haslings, earl of Pembroke, of which family was William de Haslings,eward of the household to king Henry I. —William, the first lord Haslington, was created a baron on July 6, 1461, by king Edward IV.

11. "Azure, a circular Wreath Argent and Sable, with four Hawk’s Bells joined thereto in quadrature Or;" borne by Jocelyn, vicount Jocelyn, &c. This noble family is of great antiquity; for, after the Romans had been masters of Britain 300 years, wearied with the wars, they took their final farewell of it, and carried away with them a great many of their brave old British soldiers, who had served them at their wars both at home and abroad, to whom they gave America in France, for their former services, which country was afterwards called Little Britain. It is supposed that there were some of this family amongst them; and that they gave the name of Jocelyn to a town in this country, which still prefers that name: and it is thought probable that they returned with William the Conqueror; for we find, in 1666, mention made of Sir Gilbert Jocelyn. This present nobleman the first lord of the family, was created baron Newport, of Newport in Ireland, on November 29, 1743, and viscount in November 1751.

12. "Gules, three Towers Argent;" quartered by Fowler, vicount Ashbrook, &c. William Fowler, Esq., was advanced in the peerage by king George II. and created baron of Castle-Durrow, in the county of Kilkenny, October 27, 1733; and his son was created viscount Ashbrook, of Ashbrook in Ireland, on Sept. 30, 1751, now extinct.

14. "Gules, two Swords in Sable Argent, pome­meled and hilted Or;" the arms of the bishopric of London.

15. "Sable, a Key in Bend, surmounted by a Crozier in Bend sinister, both Or;" the arms of the bishopric of St. Asaph.

16. "Gules, two Keys adobe in Bend, the uppermost Argent, the other Or, a Sword interposed between them in bend sinister of the second, pome­meled and hilted of the third;" the arms of the bishopric of Winchester.

17. "Gules, three Mitres with their pendant Or;" the arms of the bishopric of Chester.

18. "Sable, three Ducal Coronets paleways Or;" the arms of the bishopric of Bridport.

19. "Gules, a Sword ered in a pale Argent, pome­meled and hilted Or, surmounted by two Keys in Saltier of the last;" the arms of the bishopric of Exeter.

20. "Gules, three Ducal Coronets, Or;" the arms of the bishopric of Ely.

ART. III. OF CHIMERICAL FIGURES.

The last and the oddest kind of bearings in coats of arms, is comprehended under the name of chimerical figures; that is to say, such as have no real existence, but are mere fabulous and fantastical inventions. These charges, griffins, martlets, and unicorns excepted, are so uncommon in British coats, that in order to make up the same number of examples hitherto contained in each collection, several foreign bearings are introduced here; which, however, as they are conform to the laws of heraldry, will also contribute both to entertain and instruct the reader. Thefe motiff in use are the following, viz.

Angels, Cerubims, Tritons, Centaurs, Martlets, Griffins, Unicornis, Dragons, Mermaids, Satyrs, Willows, Harpies, Cockatrices, Phenixes.

These, like the foregoing charges, are subject to various positions and dispositions, which, from the principles already laid down, will be plainly understood. See the examples, fig. xix.

No. 1. is "Gules, an Angel standing affrontee, with his hands conjoined and elevated upon his breast, habited in a long robe close girt Argent, his Wings displayed Or;" borne by the name of Brangor de Caraffa, a foreign prelate, who assisted at the council of Constance, 1412. This example is quoted by Guillim, Sect. III. Chap. i.

2. "Sable, a Cheveron between three Cerubins Or;" borne by the name of Chaloner, of Yorkshire and Cheshire.

3."Azure, a Fess indented between three Cerubins Argent." These arms were granted to John Ayde, Esq., of Dodington in Kent, by Sir William Segar, garter.

4. "Gules, a Cerub having three pair of Wings, the uppermost and lowest counter-crofled Saltier­ways, and the middlemost displayed Argent;" borne by the name of Busowafes, a foreign prelate. This example is copied from Menevrier's Methode de Blason, p. 120, No viii.

5. "Azure, a Griffin segre­gent Or, armed and langued Gules, between three Crescents Argent;" quartered by Bligh, lord Clifton, &c. The ancestor of this noble family, who lived in London, going over to Ireland in the time of Oliver Cromwell, as an agent to the adventurers there, acquired a good estate, and laid the foundation for the grandeur of this family.

6. "Gules, three Marlets Or;" borne by the name of Magill. Guillim observes, that this bird, which is represented without feet, is given for a difference to younger brothers, to put them in mind, that, in order to
Of the External Ornament of Escutcheons.

The ornaments that accompany or surround escutcheons were introduced to denote the birth, dignity, or office, of the persons to whom the coat-of-arms appertained; which is practiced both among the laity and clergy. Those most in use are of ten sorts, viz., Crowns, Coronets, Mitres, Helmets, Mantlings, Chap-peaux, Wristh, Crests, Scrolls, Supporters.

Chap. IV.

Of the External Ornament of Escutcheons.

The ornaments that accompany or surround escutcheons were introduced to denote the birth, dignity,
Crown.

The crown of the kings in France is a circle enameled, adorned with precious stones, and heightened up with eight arched diadems, rising from as many fleurs-de-lis, that conjoin at the top under double fleur-de-lis, all of gold.

The crowns of Spain, Portugal, and Poland, are all three of the same form, and are, amongst others, thus described by colonel Parson's in his Genealogical Tables of Europe, viz. A ducal coronet, heightened up with eight are scrofes-pattee, that support a mound enameled with a plain crofs. Those of Denmark and Sweden are both of the same form, and conjoin of eight arched diadems, rising from a marquis's coronet, which conjoin at the top under a mound enameled with a cross-bottomy.

The crowns of most other kings are circles of gold, adorned with precious stones, and heightened up with large trefoils, and closed by four, six, or eight diadems, supporting a mound, surmounted of a cross.

The Great Turk (4) bears over his arms a turban, enriched with pearls and diamonds, under two coronets, the first of which is made of pyramidal points heightened up with large pearls, and the uppermost is surmounted with crescents.

The Pope, or bishop of Rome, appropriates to himself a Tiara (n° 5.), or long cap of golden cloth, from which hang two pendants embroidered and fringed at the ends, enrois of croissles of gold. The cap is inclosed by three marquis's coronets; and has on its top a mound of gold, whereon is a cross of the same form, and bordered with ermine, set round with large pearls, and the surmounted by pearls and supported on pyramidical points or rays, on a gold circle.

The particular and distinguishing form of such coronets as are appropriated to princes of the blood-royal, is described and settled in a grant of Charles II. the 13th of his reign.

The coronet of the prince-presces of Great Britain is a circle of gold, bordered with ermine, heightened up with four fleurs-de-lis and as many croissles-pattee-alternate, (see n° 8). - The particular and distinguishing form of such coronets as are appropriated to princes of the blood-royal, is described and settled in a grant of Charles II. the 13th of his reign.

The coronet of all the immediate sons and brothers of the kings of Great Britain, is a circle of gold, bordered with ermine, heightened up with four fleurs-de-lis and as many croissles-pattee-alternate, (see n° 8). - The particular and distinguishing form of such coronets as are appropriated to princes of the blood-royal, is described and settled in a grant of Charles II. the 13th of his reign.

An earl's coronet is a circle of gold bordered with ermine enriched with precious stones and pearls, and heightened up with eight large strawberwy or partly leaves; (n° 10).

A marquis's coronet is a circle of gold, bordered with ermine, set round with four strawbery leaves and as many pearls on pyramidal points of equal height, alternate; (n° 11).

An earl's coronet is a circle of gold bordered with ermine, heightened up with eight pyramidal points, or rays, on the top of which are as many large pearls, and are placed alternately with as many strawbery leaves, but the pearls much higher than the leaves; (n° 12).

A viscount's coronet differs from the preceding ones as being only a circle of gold bordered with ermine, with large pearls set close together on the rim, without any limited number, which is his prerogative above the baron, who is limited; (see n° 13).

A baron's coronet, (n° 14), which was granted by king Charles II. is formed with six pearls set at equal distance on a gold circle bordered with ermine, four of which only are seen on engravings, paintings, &c. to show he is inferior to the viscount.

The eldest sons of peers, above the degree of a baron, bear their father's arms and supporters with a label, and use the coronet appertaining to their father's second title; and all the younger sons bear their arms with proper differences, but use no coronets.

As the crown of the king of Great Britain is not quite like that of other potentates, so do most of the coronets of foreign noblemen differ a little from those of the British nobility: as for example, the coronet of a French earl is a circle of gold with 18 pearls set on the brim of it; a French viscount's coronet is a circle of gold only enameled, charged with four large pearls; and a French baronet's coronet is a circle of gold enameled and bound about with a double bracelet of pearls; and these coronets are only used on French noblemen's coats-of-arms, and not worn on their heads, as the British noblemen and their ladies do at the king's coronation.

The archbishops and bishops of England and Ireland...
HERALDRY.

Chap. IV.

The Helmet was formerly worn as a defensive weapon, to cover the bearer's head; and is now placed over a coat-of-arms as its chief ornament, and the true mark of gentility. There are several forms distinguished, 1st, by the matter they are made of; 2dly, by their form; and, 3dly, by their position.

1st. As to the matter they are, or rather were, made of; The helmets of sovereigns were of burnished gold damasked; those of princes and lords, of silver figured with gold; those of knights, of steel adorned with silver; and those of private gentlemen, of polished steel.

2dly, As to their form: Those of the king and the royal family, and noblemen of Great Britain, are open-faced and grated, and the number of bars serves to distinguish the bearer's quality; that is, the helmet appropriated to the dukes and marquises is different from the king's, by having a bar exactly in the middle, and two on each side, making but five bars in all, (see fig. 21. n° 1), whereas the king's helmet has six bars, viz., three on each side. (ibid, n° 7.) The other grated helmet with four bars is common to all degrees of peerage under a marquis. The open-faced helmet without bars denotes baronets and knights. The close helmet is for all esquires and gentlemen.

3dly. Their position is also looked upon as a mark of distinction. The grated helmet in front belongs to sovereign princes. The grated helmet in profile is common to all degrees of peerage. The helmet flatted directly without bars, and the beaver a little open, denotes baronets and knights. Lastly, the side-standing helmet, with the beaver close, is the way of wearing it amongst esquires and gentlemen. See n° 1, 2, 3, 4, and 7, invested in fig. 21. Ornaments.

Sect. V. Of Mantlings.

Mantlings are pieces of cloth jagged or cut into flowers and leaves, which now-a-days serve as ornament for escutcheons. They were the ancient coverings of helmets to preserve them, or the bearer from the injuries of the weather, as also to prevent the ill consequences of their too much dazzling the eye in action. But Guillain very judiciously observes, that their shape must have undergone a great alteration since they have been out of use, and therefore might be more properly termed flourishes than mantlings. See the examples annexed to the helmets represented in fig. 21.

The French heralds assure us, that these mantlings were originally no other than short coverings which commanders wore over their helmets, and that, going into battles with them, they often, on their coming away, brought them back in a ragged manner, occasioned by the many cuts they had received on their heads; and therefore the more hacked they were, the more honourable they were accounted; as our colours in time of war are the more esteemed for having been shot through in many places.

Sometimes skins of beasts, as lions, bears, &c. were thus borne to make the bearer look more terrible, and that gave occasion to the doubling of mantlings with fur.

Sect. VI. Of Chapeaux.

A Chapeau is an ancient hat, or rather cap, of dignity worn by dukes, generally scarlet-coloured velvet on the outside, lined and turned up with fur; of late frequently to be met with above an helmet, instead of a wreath, under gentlemen and noblemen crests. Heretofore they were seldom to be found, as of right appertaining to private families; but by the grants of Robert Cooke, Clarendon, and other succeeding heralds, these, together with ducal coronets, are now frequently to be met with in families who yet claim not above the degree of gentleman. See the representation of the chapeau, n° 5. fig. 21.

Sect. VII. Of Wreaths.

The Wreath is a kind of roll made of two skins of silk of different colours twisted together, which ancient knights wore as a head-dress when equipped for tournaments. The colours of the silk are always taken from the principal metal and colour contained in the coat-of-arms of the bearer. They are still accounted as one of the lesser ornaments of escutcheons, and are placed between the helmet and the crest. (see fig. 21. n° 6). In the time of Henry I. and long after, no man, who was under the degree of a knight, had his crest let on a wreath; but this, like other prerogatives, has been eroshamen for far, that everybody now-a-days wears a wreath.

Sect. VIII. Of Crests.

The Crest is the highest part of the ornaments of a coat-of-arms. It is called crest, from the Latin word crepia, which signifies comb or tuft, such as many birds have upon their heads, as the peacock, pheasant, &c. in allusion to the place on which it is fixed.

Crests were formerly great marks of honour, because they were only worn by heroes of great valour, or by such as were advanced to some superior military command, in order that they might be the better distinguished in an engagement, and thereby rally their men if dispersed: but they are at present considered as a mere ornament. The crest is frequently a part either of the supporters, or of the charge borne in the escutcheon. Thus the crest of the royal achievement of Great Britain is a " Lion guardant crowned," as may be seen in fig. 21. n° 7. The crest of France is a double Fleur-de-luce." Out of the many crests borrowed from supporters, are the following, viz. The duke of Montaga's, " A Griffin's head coup'd Or, back'd and wing'd Sable;" the marquis of Rockingham's, " A Griffin's head argent, gorg'd with a ducal coronet;" the earl of Wilmot's; " A Bull's head Argent, py'd Sable, armed Or;" and lord Archer's
Of the Scroll, &c.

Chap. IV.

HERALDRY.

of the Scroll.

The Scroll is the ornament placed above the crest containing a motto, or short sentence, alluding thereto, or to the bearing's; or the bearer's name, as in the two following instances. The motto of the noble earl of Cholmondeley is, Caflis tatifima virtus; i.e. "Virtue is the fairest helmet;" on account of the helmet in the coat of arms. The motto of the right hon. lord Fortescue is, Forte scutum falus ducum; i.e. "A strong shield is the safety of the commandants;" alluding to the name of that ancient family. Sometimes it has reference to neither, but expresses something divine or heroic; as that of the earl of Scarborough, which is, Marcus aureus consistente fème; i.e. "A good conscience is a well of brass." Others are arithmetical, as that of the royal achievement, which is Dieu et mon droit, i.e. "God and my right," introduced by Edward III. in 1340, when he assumed the arms and title of king of France, and began to prosecute his claim, which occasioned long and bloody wars, fatal, by turns, to both kingdoms; or that of the prince of Wales, which is, Ich Dien; "I serve," the origin of which has been already mentioned. Mottoes, though hereditary in the families that first took them up, have been changed on some particular occasions, and others appropriated in their stead, instances of which are sometimes met with in the history of families.

Sect. IX. Of the Scroll.

The Scroll is the ornament placed above the crest containing a motto, or short sentence, alluding thereto, or to the bearing's; or the bearer's name, as in the two following instances. The motto of the noble earl of Cholmondeley is, Caflis tatifima virtus; i.e. "Virtue is the fairest helmet;" on account of the helmet in the coat of arms. The motto of the right hon. lord Fortescue is, Forte scutum salus ducum; i.e. "A strong shield is the safety of the commandants;" alluding to the name of that ancient family. Sometimes it has reference to neither, but expresses something divine or heroic; as that of the earl of Scarborough, which is, Marcus aureus consistente fème; i.e. "A good conscience is a well of brass." Others are arithmetical, as that of the royal achievement, which is Dieu et mon droit, i.e. "God and my right," introduced by Edward III. in 1340, when he assumed the arms and title of king of France, and began to prosecute his claim, which occasioned long and bloody wars, fatal, by turns, to both kingdoms; or that of the prince of Wales, which is, Ich Dien; "I serve," the origin of which has been already mentioned. Mottoes, though hereditary in the families that first took them up, have been changed on some particular occasions, and others appropriated in their stead, instances of which are sometimes met with in the history of families.

Sect. X. Of Supporters.

Supporters are figures standing on the scroll, and placed at the side of the escutcheon; they are so called, because they seem to support or hold up the shield. The rife of supporters is, by F. Mencsierr, traced up to ancient ornaments, wherein the knights caufed their shields to be carried by servants or pages under the diffiguft of lions, bears, griffons, blackamoores, &c. who also held and guarded the escutcheons, which the knights were obliged to expofe to public view for some time before the lits were opened. Sir George Mackenzie, who difenfants from this opinion, fays, in his Tractif on the science of heraldry, chap xxxi. p. 93. "That the firft origin and ufe of them was from the cufom which ever was, and is, of leading fuch as are invefied with any great honour to the prince who confers it; thus, when any man is created a duke, marquis, or knight of the garter, or any other order, he is supported by, and led to the prince betwixt two of the quality, and so receives from him the symbols of that honour; and in remembrance of that folemnity, his arms are afterwards supported by any two creatures he chooses." Supporters have formerly been taken from fuch animals or birds as are borne in the shields, and sometimes they have been chosen as bearing fome allusion to the names of those whom they are made to support. The supporters of the arms of Great-Britain, fince king James the firft's accedion to the throne, are a Lion rampant guardiant crowned Or, on the dexter fide, and an Unicorn Argent, crowned, armed, unguled, maned, and gorged with an an-

rifice Crown, to which a chain is affixed, all Or, on the sinister; as it appears by fig. xxii. n° 7.

This laft figure represents the coat of arms of the king of Great-Britain, or the royal achievement, as it has been marrifhled since the accedion of king George I. in 1714, and is blazoned as follows, viz.:

ARMS. Quarterly, in the firft grand quarter Gules, three Lions rampant guardant in pale Or, the imperial ensigns of England; impaled with Or, a Lion rampant, within a double trefoire semeury and counter-semeury Gules, the royal arms of Scotland. The second is Azure, three Fleur-de-lis Or, the arms of France. The third is Azure, a Harp Or, fringed Azure, the ensign of Ireland. The fourth grand quarter is Gules, two Lions paffant guardant in pale Or, for Brunswick; impaled with Or, foanes of Hearts proper, a Lion rampant Azure, for Luttenburgh; with graffed in base Gules, a Harp current Argent, for ancient Saxony; and in a field furceau Gules, the Crown of Charlemagne Or, as arch-trafier of the empire; the Haram within a Garter, inlifered with this motto, HONI SOIT QUI MAL PENSE, as sovereign of that noble order, given by the founder king Edward III.

CREST. On a Helmet full-faced, grated and jowled, mounted a Crown, a Lion guardant crowned Or; the martlings of the lafb, and lining Ermine.

SUPPORTERS. On the Dexter fide a Lion rampant guardant Or, crowned as the Crest. On the Sinister fide an Unicorn Argent, crowned, armed, maned, and unguled Or, gorged with an antique Crown; a Chain affixed thereto, refting over the back, and paffing over the hind legs of the laft, both standing on a Scroll, the laft being affixed with this motto, Dieu et mon droit, from which iffue the two Royal Badges of his Majesty's chief Dominions, viz. on the Dexter fide a Rose proper by pale Argent and Gules, fleaided and leaved proper for England; and on the Sinister fide a Thiffle proper, for Scotland, being fo adorned by king James I. upon his fucceding to the Crown of England. As king of Scotland, he bore two unicorns, as above, for his supporters; but upon the union of that kingdom with England, 1603, he introduced one of the above supporters on the sinister fide of the royal achievement, and which continues to this day.

It is to be observed, that bearing coats-of-arms supported, is, according to the heraldical rules of England, the prerogative, viz. Of those called nobles maiores, viz. dukes, marquifes, earls, viscounts, and barons; 2d. Of all knights of the garter, though they should be under the degree of barons; 3d. Of knights of the Bath, who both receive on their creation a grant of supporters. And, laftly, of fuch knights as the king choofes to beftow this honour upon; as in the in-
H E R A L D Y.

CHAP. V.

Rules of

Heraldry.

Of the Rules or Laws of Heraldry.

The several escutcheons, tinctures, charges, and ornaments of coats-of-arms, and their various properties being now explained; it may not be improper to submit such rules for blazoning the same, as the ancient usage and laws of heraldry have established amongst us.

I. The first and most general rule is, to express one's self in proper terms, so as not to omit any thing that ought to be specified, and at the same time to be clear and concise without tautology; as in Ex. xiv. p. 446, and also in Ex. ix. p. 452, wherein these expressions of the Field, or of the Point, prevent the repetition of the forementioned tincture.

II. One must begin with the tincture of the field, and then proceed to the principal charges which possess the most honourable place in the shield, such as Fess, Chevron, Cross, &c. always naming that charge first which lies next and immediately upon the field; as in Ex. xvi. p. 451.

III. After naming the tincture of the field, the honourable ordinaries, or other principal figures, you must specify their attributes, and afterwards their metal or colour, as in Ex. xvi. p. 458.

IV. When an honourable ordinary, or some one figure, is placed upon another, whether it be a Fess, Chevron, Cross, &c. it is always to be named after the ordinary or figure over which it is placed, with one of these expressions, surmount, or over all, as in Example xx. p. 449.

V. In the blazoning of such ordinaries as are plain, the bare mention of them is sufficient; but if an ordinary should be made of any of the crooked lines mentioned above, its form must be specified; that is, whether it be Engrailed, Wavy, &c. as in Ex. i. ii. iii. &c. p. 446.

VI. When a principal figure possesses the centre of the field, its position is not to be expressed; or (which amounts to the same thing) when a bearing is named, without specifying the point where it is placed, then it is understood to possess the middle of the shield; as in Ex. xvi. p. 459.

VII. The number of the points of mullets or stars must be specified when more than five; and also if a mullet or any other charge be pierced, it must be mentioned as such, to distinguish it from what is plain; as in Ex. xii. and xiv. p. 457.

VIII. When a ray of the sun, or any other single figure, is borne in any other part of the escutcheon than the centre, the point it issues from must be named; as in Ex. iii. p. 457. col. 1.

IX. The natural colour of trees, plants, fruits, birds, &c. is no otherwise to be expressed in blazoning but by the word proper, as in Exam. ii. vii. p. 459: but if discoloured, that is, if they differ from their natural colour, it must be particularized; as in Ex. i. ii. &c. p. 458.

X. When three figures are in a field, and their position is not mentioned in the blazoning, they are always understood to be placed two above, and one below; as fig. xxii. n° 3.

XI. When there are many figures of the same species borne in a coat-of-arms, their number must be observed as they stand, and distinctly expressed; as in Ex. i. p. 460.

But for the better understanding of this last rule, we have inserted examples of the different dispositions of figures, wherein they are properly represented, viz.

1. Two may be ranged in Pale, in Fess, &c. See fig. xxiii. n° 1 and 2.

2. Three, may be 2 and 1, also in bend, &c. See n° 3 and 4.

3. Four, are placed 2 and 2, or cantoned, as in n° 5.

4. Five, 1, 3, 1, in Cross; or 2, 1, 2, in Saltier. See n° 6 and 7.

5. Six, 3, 2, 1, in Pile; or 2, 2, 2, Paleways. See n° 8 and 9.

6. Eight, in Orle, or on a Bordure. Sec n° 10.

7. Nine, 3, 3, 3, Barways; or 3, 2, 1, in Pile. See n° 11 and 12.

8. Ten, 4, 3, 2, 1, in Pile; or else 4, 2, 4, Barways. See n° 13 and 14.

9. Twelve, are placed 4, 4, 4, Barways. See n° 15.

There are other positions called irregular; as for example, when three figures which are naturally placed 2 and 1, are disposed 1 and 2, &c. It must also be observed, that when the field is shewed with the same figures, this is expressed by the word fémée: but, according to a French armorist's opinion, if the figures shewed on the field are whole ones, it must be denoted by the words fémée d'argent; whereas, if part of them is cut off at the extremities of the escutcheon, the word fémée or fémé is then to be used.

CHAP. VI.

Of Marshalling Coats-of-arms.

By marshalling coats-of-arms, is to be understood the art of disposing of divers of them in one escutcheon, and of distributing their contingent ornaments in proper places.

Various causes may occasion arms to be thus conjoined, which J. Guillim comprehends under two heads, viz. manifest and obscure.

What this learned and judicious herald means by manifest cause in the marshalling of coats-of-arms, are such as betoken marriages, or a sovereign's gift, granted either through the special favour of the prince, or for some eminent services. Concerning marriages it is to be observed,

1. When the coats-of-arms of a married couple, descended of distinct families, are to be put together in one escutcheon, the field of their respective arms is conjoined Paleways, and blazoned parted per Pale, Baron and Femme, two coats; first, &c. In which case the baron's arms are always to be placed on the dexter-side, and the Femme's arms on the sinister side, as in n° 1 CCXXXIII and 2. fig. xxiii. Of arms marshalled, which are,

If a widower marry again, his late and present wife's
Plate 43

Chap. VI.

HERALDRY.

Plate 44

Chap. VII.

Of Funeral Escutcheons.

After having treated of the essential parts of the coats-of-arms, of the various charges and ornaments usually borne therewith, of their attributes and dispositions, and of the rules for blazoning and marshallng them, we shall next describe the several funeral escutcheons, usually called hatchments; whereby may be known, after any person's decease, which rank either he or she held when living; and if it be a gentleman's hatchment, whether he was a bachelor, married man, or widower, with the like distinctions for gentlewomen.

The hatchment, No. 1, represents such as are affixed to the fronts of houses, when any of the nobility and gentry dies; the arms therein being those of a private gentleman and his wife parted per pale; the dexter side, which is Gules, three Bars Or, for the
The same rules are observed with respect to the escutcheons placed on the hearse and horses used in pompous funerals, except that they are not surmounted with any crest, as in the foregoing examples of hatchments, but are always plain. It is necessary, however, to ensign those of peers with coronets, and that of a maiden lady with a knot of ribbons.

In Scotland, a funeral escutcheon not only shows forth the arms and condition of the deceased, but is also a proof of the gentility of his descent; and such persons for whom this species of escutcheon can be made out, are legally intituled to the character of a gentleman of blood, which is the highest species of gentility. The English hatchment above described exhibits no more than a right to a coat-of-arms which may be acquired by purchase, and is only the first step towards establishing gentility in a family.

The funeral escutcheon, as exhibited in Scotland, France, and Germany, is in form of a lozenge, above fix feet square, of black cloth; in the centre of which is painted, in proper colours, the complete achievement of the deceased, with all its exterior ornaments and additional marks or badges of honour; and round the sides are placed the sixteen arms of the families from which he derives his descent, as far back as the grandfather's grandfather, as the proofs of his gentility: they exhibit the armorial bearings of his father and mother, his two grandmothers, his four great-grandmothers, and his eight great-grandmothers; if all these families have acquired a legal right to bear arms, then the gentility of the person whose proof it is must be accounted complete, but not otherwise. On the four corners are placed mort-heads, and the initials of his name and titles or designation; and the black interfaces are femece or powdered with tears, as in the figure, n° 8, which is the escutcheon of the right hon. James 5th earl of Balcarres, chief of the ancient family of Lindsay.

On the morning of the interment, one of these is placed on the front of the house where the deceased lies; and another on the church in which he is to be buried, which after the burial is fixed above the grave. The pall, too, is generally adorned with these proofs of gentility, and the horses of the hearse with the deceased's arms.

Heraldus:however, was printed in 1649. He died in June 1649. Guy Pain says, "that he was looked upon as a very learned man, both in the civil law and in polite literature, and wrote with great facility on any subject he pitched on." Daille, speaking of such Protestant writers as condemned the executing of Charles I. king of England, quotes the Pacifique Royal en dudit, by Herald. This author, fon to our Deidericus Heraldus, was a minister in Normandy, when he was called to the service of the Walloon church of London under Cha. I. and he was so zealous a royalist, that he was forced to fly to France, to escape the fury of the commonwealth's men. He returned to England after the reformation, and resumed his ancient employment in the Walloon-church.
HERB, in botany, a name by which Linnaeus denominates that portion of every vegetable which arises from the root, and is terminated by the fruitification. It comprehends, 1. The trunk, falk, or item. 2. The leaves. 3. Those minute external parts called by the same author the fitora or supports of plants. 4. The buds, or, as he also terms them, the winter-quarters of the future vegetable.

Hem-Chriftopher. See Actra.

Herb-Robert, (a species of Geranium); a plant in great reputation with some farmers on account of its prevailing virtues against staling the blood and the bloody-flux in cattle, in which cases it is said to be the best among a great variety of means commonly used on these-occasions.

Herbaeous Plants, are those which have succulent falks or stalks that lie down to the ground every year. Of herbaceous plants, thofe are annual which periish flem and root and all every year; biennial, which fubfiift by the roots two years; perennial which are perpetuated by their roots for a feries of years, a new flem being produced every spring.

Herbage, in law, signifies the pature provided by nature for the food of cattle; alfo the liberty to feed cattle in the forest, or in another perfon's ground.

Herbal, signifies a book that treats of the claffes, genera, species, and virtues of plants. **Herbal** is fometimes also used for what is more ufually called *hortus feticus.* See *Hortus.*

Herbelot (Bartholomew d'), a French writer, eminent for his original learning, was born at Paris in 1625. He travelled feveral times into Italy, where he obtained the eilecm of fome of the moft learned men of the age. Ferdinand II. grand duke of Tufcany, gave him many marks of his favour; a library being expelled to fale at Florence, the duke defired him to examine the manuscripts in the original languages, to felect the beft of them, and to mark the price; which being done, the generous prince purchased them, and made him a preffent of them. M. Colbert being at length informed of Herbelot's merit, recalled him to Paris, and obtained a pension for him of 1500 livres; he afterwards became secretary and interpreter of the oriental languages, and royal profes- sor of the Syriac tongue. He died at Paris in 1695. His principal works are intitled *Bibliotheque Orientale,* which he first wrote in Arabic, and afterwards translated into French. It is greatly esteemed. M. Herbelot's modesty was equal to his erudition; and his uncommon abilities were accompanied with the utmost probity, piety, and charity, which he practifed thro' the whole course of his life.

Herbert (Mary), countess of Pembroke, was fifter to the famous Philip Sidney, and wife of Hen-ry earl of Pembroke. She was not only a lover of the muses, but a great encourager of polite literature; a character not very common among ladies. Her brother dedicated his incomparable romance *Arcadia* to her, from which circumfance it hath been called *The Countefs of Pembroke's Arcadia.* She translated a dramatic piece from the French, intitled *Antionius,* a tragedy; though it is said she was adrifted by her lord's chaplain, Dr Babington, afterwards bishop of Exeter. She turned the psalms of David into English metre; but it is doubtful whether these works were ever printed. She died in 1621; and an exalted character of her is to be found in Francis Osborne's memoirs of king James I.

Herbert (Edward), lord Herbert of Cherbury in Shropshire, an eminent English writer, was born in 1581, and educated at Oxford; after which he travelled, and at his return was made knight of the Bath. James I. sent him ambassador to Louis XIII. in behalf of the Protestants who were beleagred in feveral cities of France; and continued in this faction till he was recalled, on account of a difpute between him and the conful de Luynes. In 1625 he was advanced to the dignity of a baron in the kingdom of Ireland, by the title of lord Herbert of Castle Island; and in 1631 to that of lord Herbert of Cherbury in Shropshire. After the breaking out of the civil wars, he adhered to the parliament; and in 1644 obtained a pension, on account of his having been plundered by the king's forces. He wrote a History of the Life and Reign of Henry VIII. which was greatly admired; a treafure De narratio; and feveral other works. He died at London in 1648.

"Lord Herbert (fays Mr Granger) stands in the first rank of the public minifters, historians, and philo- SOPHERS of his age. It is hard to fay whether his per- son, his understanding, or his courage, was the moft extraordinary; as the fair, the learned, and the brave, held him in equal admiration. But the fame man was wife and capricious; redrefled wrongs and quarrelled for punctilios; hated bigotry in religion, and was him­ self a bigot to philosophy. He exposed himself to fuch dangers as other men of courage would have care­ fully declined; and called in question the fundamen­ tals of a religion which none had the hardinefs to dif­ pute besides himself."

Herbert (George), an English poet and divine, was brother of the preceding. He was born in 1593, and was educated at Cambridge. In 1619 he was chosen public orator of that university, and afterwards ob­ tained a fince in the crown. In 1626 he was col­ listed to the prebend of Layton Ecclefia, in the diocefe of Lincoln; and in 1630 was inducted into the re­ cory of Bamerton, near Sarum. The great lord Ba­ con had fuch an opinion of his judgment, that he would not fuffer his works to be printed before they had passed his examination. He wrote a volume of de­ vot poems, called *The Temple,* and another entitled *The Priest of the Temple.* This pious divine died about the year 1635.

Herbert (William), earl of Pembroke, was born at Wilton in Wiltshire, 1580; admitted of New­ college in Oxford in 1592, where he continued about two years. In 1601, he fucceeded to his father's ho­ nors and effate; was made K. G. in 1604; and go­ vernor of Portsmouth five years after. In 1626, he was elected chancellor of the university of Oxford; and about the fame time made lord feward of the king's household. He died suddenly at his house called Baynard's castle, in London, April 16, 1630; accord­ ing to the calculation of his naturallife, fays Wood, he had lived many years before Mr Thomas Allen of Gloucester­ hall. Clareond relates concerning this calculation,
that some considerable persons connected with lord Pembroke being met at Maidenhead, one of them at supper drank a health to the lord deward: upon which another said, that he believed this lordship was at that time very merry; but he had now outlived the day, which had been prognosticated upon his nativity he would not outlive; for he had outlived it now, for that was his birth-day, which had completed his age to 50 years. The next morning, however, they received the news of his death. Whether the noble historian really believed this and other accounts relating to astrology, apparitions, providential interpositions, &c. which he has inferred in his history, we do not presume to say: he delivers them, however, as if he did not actually disbelieve them. Lord Pembroke was not only a great lover of learned and ingenious men, but was himself learned, and endued with a considerable share of poetic genius. All that are extant of his productions in this way were published with this title: "Poems written by William Earl of Pembroke, &c. many of which are answered by way of repartee by Sir Benjamin Rudyard, with other Poems written by them occasionally and apart, 1660, 8vo.

Herbert (Sir Thomas), an eminent gentleman of the Pembroke family, was born at York, where his father was an alderman. William earl of Pembroke sent him to travel at his expense in 1626, and he spent four years in visiting Asia and Africa: his expectations of preferment ending with the death of the earl, he went abroad again, and travelled over several parts of Europe. In 1633, he published, in folio, a Relation of some years Travel into Africa and the Great Asia, especially the Territories of the Persian Monarchy, and some parts of the Oriental Indies and Isles adjacent. On the breaking out of the civil war he adhered to the parliament; and at Oldenby, on the removal of the king's servants, by defeat of the commissioners from the parliament, he and James Harrington were retained as grooms of his bed-chamber, and attended him even to the block. At the restoration he was created a baronet by Charles II. for his faithful services during the two last years. In 1678 he wrote Threnodia Carolina, containing an account of the two last years of the life of Charles I. and he affiicted Sir William Dugdale in compiling the third volume of his Monasticon Anglicanum. He died at York in 1682, leaving several MSS to the public library at Oxford, and others to that of the cathedral at York.

Herculeanum. — Is the name of an ancient city of Campania in Italy, which was destroyed by an eruption of Vetricia in the first year of the emperor Titus, or the 79th of the Christian era, and lately rendered famous on account of the curious monuments of antiquity discovered in its ruins; an account of which has been published by order of the king of Naples, in a work of six volumes folio. — The epocha of the foundation of Herculeanum is unknown. Dionysius Halicarnassensis conjectures that it may be referred to 60 years before the war of Troy, or about 1342 years before Christ; and therefore that it lasted about 1400 years.

The thickness of the heap of lava and ashes by which the city was overwhelmed, has been much increased by fiery streams vomited since that catastrophe; and now forms a mass 24 feet deep of dark grey stone, which is easily broken to pieces. By its non-adhesion to foreign bodies, marbles and bronzes are preserved in it as in a case made to fit them, and exact moulds of the faces and limbs of statues are frequently found in this substance. The precise situation of this subterraneous city was not known till the year 1713, when it was accidentally discovered by some labourers who, in digging a well, struck upon a stone on the benches of the theatre. Many others were afterwards dug out and sent to France by the prince of Elbeuf. But little progress was made in the excavations till Charles infant of Spain ascended the Neapolitan throne; by whose unwearied efforts and liberality a very considerable part of Herculeanum has been explored, and such treasures of antiquity drawn out as form the most curious museum in the world. It being too arduous a task to attempt removing the covering, the king contented himself with cutting galleries to the principal buildings, and causing the extent of one or two of them to be cleared. Of these the theatre is the most considerable. On a balustrade which divided the orchestra from the stage was found a row of statues, and, on each side of the pulpitum, the equestrian figure of a person of the Nobis family. They are now placed under porticoes of the palace; and from the great rarity of equestrian statues in marble would be very valuable objects, were their workmanship even less excellent than it is: one of them in particular is a very fine piece of sculpture. Since the king of Spain left Naples, the digging has been continued, but with less spirit and expenditure: indeed the collection of curiosities brought out of Herculeanum and Pompeii is already so considerable, that a relaxation of zeal and activity becomes excusable. They are now arranged in a wing of the palace; and consist not only of statues, busts, altars, inscriptions, and other ornamental appendages of opulence and luxury; but also comprehend an entire adornment of the domestic, musical, and criminal, and every other kind of apparatus used by the ancients; tripod of elegant form and exquisite execution, lamps and candles of endless variety, vases and basins of noble dimensions, chapels, altars, cisterns of the most beautiful shapes, pateras, and other appendencies of sacrifice, looking-glasses of polished metal, coloured glass of hard, clear, and well stained, to appear like emeralds, sapphires, and other precious stones; a kitchen completely fitted up with copper-pans lined with silver, kettles, cisterns for heating water, and every utensil necessary for culinary purposes; specimens of various sorts of combustibles, retaining their form though burnt to a cinder; corn, bread, fish, oil, wine, and flower: a lady's toilet, fully furnished with combs, thimbles, rings, paint, earrings, &c. Among the statues, which are numerous, sculpteurs allow the greatest share of merit to a Mercury and a sleeping satyr: the baths fill several rooms; but very few of the originals whom they were meant to imitate are known. The floors are paved with ancient Mosaics. Few rare medals have been found in these ruins; the most curious is a gold medallion of Augustus struck in Skilly in the 15th year of his reign. The fresco paintings, which for the sake of preservation have been torn off the walls and framed and glazed, are to be seen in another part of the palace.
The elegance of the attitudes, and the infinite variety of the subjects (Mr. Swinburne observes), stamp them as performances worthy of the attention of artists and antiquarians; but no pictures yet found are matter enough to prove that the Greeks carried the art of painting to so great a height of perfection as they did that of statuary. Yet can we suppose those authors incapable of appreciating the merits of an Apelles or Zeuxis, who with so much critical discernment have pointed out the beauties of the works of a Phidas or a Praxiteles, beauties that we have still an opportunity of contemplating? Would they have bestowed equal praises upon both kinds of performances if either of them had been much inferior to the other? I think it is not probable; and we must presume that the capital productions of the ancient painters, being of more perishable materials than buff and statues, have been destroyed in the fatal disasters that have so often afflicted both Greece and Italy. Hercules and Pompeii were but towns of the second order, and not likely to possess the master-pieces of the great artists, which were usually destined to adorn the more celebrated temples, or the palaces of kings and emperors. A more valuable acquisition than bronzes and pictures was thought to be made, when a large parcel of manuscripts was found among the ruins. Hopes were entertained that many works of the classicks, which time has deprived us of, were now going to be restored to light, and that a new mine of science was on the point of being opened. But the difficulty of unrolling the burnt parchment, of pasting the fragments on a flat surface, and of deciphering the obscure letters, have proved such obstacles, that very little progress has been made in the work. A priest invented the method of proceeding; but it would require the joint labours of many learned men to carry on so nice and tedious an operation with any success. The plan is dropped; and the manuscripts now lie in daily heaps, as useless to the learned world as they had been for the preceding seventeen centuries.

Hercules, in fabulous history, a most renowned Grecian Hero, who after death was ranked among the gods, and received divine honours. According to the ancients, there were many persons of the same name. Diodorus mentions three; Cicero six, and some authors extend the number to no less than forty-three. Of all these, one generally called the Theban Hercules, is the most celebrated; and to him, as may easily be imagined, the actions of the others have been attributed. He is reported to have been the son of Jupiter by Alcmena (wife to Amphitryon king of Argos), whom Jupiter enjoyed in the shape of her husband while he was absent; and in order to add the greater strength to the child, made that amorous night as long as three. Amphitryon having soon after accidentally killed his uncle and father-in-law Electryon, was obliged to fly to Thebes, where Hercules was born. The jealousy of Juno, on account of her husband’s amour with Alcmena, prompted her to destroy the infant. For this purpose she sent two serpents to kill him in the cradle, but young Hercules strangled them both. He was early instructed in the liberal arts, and Caius, the son of Tyndarus taught him how to fight. Eurysthus how to shoot with a bow and arrows, Autolicus to drive a chariot, Linus to play on the lyre, and Eumolpus to sing. He, like the rest of his illustrious contemporaries, was soon after became the pupil of the centaur Chiron, and under him he perfected and rendered himself the most valiant and accomplished of the age. In the 18th year of his age he resolved to deliver the neighbourhood of mount Cithæron from a huge lion which preyed on the flocks of Amphitryon his father, and which laid waste the adjacent country. He went to the court of Theseus king of Thespis, who shared in the general calamity; and he received here a tender treatment, and was entertained during 50 days. The 50 daughters of the king became mothers by Hercules during his stay at Thespis, and some say that it was effected in one night. After he had destroyed the lion of mount Cithæron, he delivered his country from the annual tribute of 100 oxen which it paid to Erginus. Such public services became universally known; and Creon, who then sat on the throne of Thebes, rewarded the patriotic deeds of Hercules by giving him his daughter in marriage, and entrusting him with the government of his kingdom.

Eurytheus, the son of Amphitryon, having succeeded his father, soon became jealous of Hercules; and fearing lest he might by him be deprived of his crown, left no means untried to get rid of him. Of this Hercules was not infensible, because he was perpetually engaged in some desperate expeditions, and therefore went to consult the oracle. But being answered that it was the pleasure of the gods that he should serve Eurystheus 12 years, he fell into a deep melancholy, which at last ended in a furious madness; during which, among other desperate actions, he put away his wife Megara, and murdered all the children she had by her. As an expiation of this crime, the king imposed upon him twelve labours surpassing the power of all other mortals to accomplish, which nevertheless our hero performed with great ease. The favours of the gods had indeed completely armed him when he undertook his labours. He had received a coat of armour and a helmet from Minerva, a sword from Mercury, a bow and arrows from Apollo, and from Vulcan a golden cuirass and brazen buckler, with a celebrated club of brass according to the opinion of some writers. The first labour imposed upon him was the killing of a lion in Nemea, a wood of Achaia; whose hide became the proof against any weapon, so that he was forced to seize him by the throat and strangle him. He carried the dead beast on his shoulders to Mycenae, and ever after clothed himself with the skin. Eurytheus was so astonished at the sight of the beast, and at the courage of Hercules, that he ordered him never to enter the gates of the city when he returned from his expeditions, but to wait for his orders without the walls. He even made himself a brazen vessel into which he retired whenever Hercules returned—The second labour was to destroy the Lernaean Hydra, which had seven heads according to Apollodorus, 50 according to Simonides, and 100 according to Diodorus. This celebrated monster he first attacked with his arrows; but soon after he came to a close engagement, and by means of his heavy club he destroyed the heads of his enemy. This, however, was productive of no advantage; for as soon as one head was beaten to pieces by the club, immediately two sprang up; and the labour of
Hercules would have remained unfinished, had not he commanded his friend Iolas to burn with a horron the root of the head which he had crushed to pieces. This succeeded; and Hercules became victorious, opened the belly of the monster, and dipped his arrows in the gall to render the wounds which he gave fatal and incurable. He was ordered in his third labour to bring alive and unharmed into the presence of Eurytheus a flag, famous for its incredible swiftness, its golden horns and brazen feet. This celebrated animal frequented the neighbourhood of Eone, and Hercules was employed for a whole year in continually pursuing it; at last he caught it in a trap, or when tired, or, according to others, by slightly wounding it and deflecting its swiftness. The fourth labour was to bring alive to Eurytheus a wild boar which ravaged the country near the lake Smythias in Arcadia. In his seventh labour he carried alive into Peloponnesus a prodigious wild bull which laid the maidens of Argus, where 3000 oxen had been confined for many years. For his sixth labour he was ordered to kill the carnivorous birds which ravaged the country near the lake Smythias in Arcadia. In his seventh labour he brought to Eurytheus a wild bull which he killed Diomedes, and gave him to be eaten by his mares, which he brought to Eurytheus. They were sent to mount Olympos by the king of Mycenae, where they were devoured by the wild beasts; or, according to others, they were consecrated to Jupiter, and their breed still existed in the age of Alexander the Great. For his ninth labour he was commanded to obtain the girdle of the queen of the Amazons. In his tenth labour he killed the monster Geryon king of Gades, and brought to Argos his numerous flocks which fed upon human flesh. This was in Iberia or Spain; in the fortieth part of which he erected his two pillars, as the most lofty of the then known world. These ten labours he achieved, as the fable says, in about eight years. In this last expedition he is likewise affirmed to have killed Antaeus, a famous giant of a monstrous size, who, when weary with wrestling or labour, was immediately refreshed by touching the earth. Hercules overcame him in wrestling, and flew him; and after him the tyrant Bibras, in his way through Egypt. This bloody man used to sacrifice all his guests and strangers upon his altars; and designing to have done the same by Hercules, was slain by him, together with all his attendants. His eleventh labour was the carrying away the Hyperborean golden apples kept by a dragon. (See Hesperides.) The twelfth and last, and most dangerous of his labours, was to bring upon the earth the three-headed dog Cerberus. Defending into Hell by a cave on mount Taurus, he was permitted by Pluto to carry away his friends Theseus and Pirithous, who were condemned to punishment in hell, and Cerberus also was granted to his prayers, provided he made use of no arms but only force to drag him away. Hercules, as some report, carried him back to hell after he had brought him before Eurytheus.

Many other exploits are said to have been performed by Hercules; in particular, he accompanied the Argonauts to Colchis before he delivered himself up to the king of Mycenae. He assailed the gods in their wars against the giants, and it was through him alone that Jupiter obtained a victory. He conquered Lacedaemon, and pillaged Troy. When Iole, the daughter of Eurytus king of Echalia, of whom he was deeply enamoured, was refused to his suitors, he became the prey of a second fit of insanity, and he murdered Iphitus, the only one of the sons of Eurytus who favoured his addresses to Iole. He was some time after purified of the murder, and his insanity ceased; but the gods persecuted him, and he was visited by a disorder which obliged him to apply to the oracle of Delphi for relief. The coldness with which the Pythia received him irritated him, and he resolved to plunder Apollo's temple and carry away the sacred tripod. Apollo oppugned him, and a severe conflict was begun, which nothing but the interference of Jupiter with his thunderbolts could have prevented. He was upon this told by the oracle that he must be told as a slave, and remain three years in the most abject servitude to recover from his disorder. He complied; and Mercury, by order of Jupiter, conducted him to Omphale, queen of Lydia, to whom he was sold as a slave. Here he cleared all the country from robbers; and Omphale, who was astonished at the greatness of his exploits, married him. Hercules had Agelaus and Lamon by Omphale, from whom Creusus king of Lydia was descended. He became also enamoured of one of Omphale's female servants, by whom he had Alceus. After he had completed the years of his slavery, he returned to Peloponnesus, where he re-established on the throne of Sparta Tyndarus, who had been expelled by Hippocoon. He became one of Dejanira's suitors, and married her after he had overcome all his rivals. He was obliged to leave Calydon his father-in-law's kingdom, because he had inadvertently killed a man with a blow of his fist; and it was on account of this calumny that he was not present at the hunting of the Calydonian boar. From Calydon he retired to the court of Ceyx king of Trachinia. The king received him and his wife with great marks of friendship, and purified him of the murder which he had committed at Calydon. Hercules was still mindful that he had once been refused the hand of Iole; he therefore made war against her father Eurytus, and killed him with three of his sons. Iole fell into the hands of her father's murderer, and found that she was loved by Hercules as much as before. She accompanied him on mount Oera, where he was going to raise an altar and offer a solemn sacrifice to Jupiter. As he had not then the shirt and tunic in which he arrayed himself to offer a sacrifice, he sent Lichas to Trachin to his wife Dejanira, in order to provide himself a proper dress. Dejanira had some time before been attempted by the Centaur Nessus, as he was ferrying her over the river Euenus; and Hercules beholding it from the shore, had given him a mortal wound with an arrow. The monster finding himself dying, advised her to mix some oil with the blood which flowed from his wound, and
Hercules, and to anoint her husband's shirt with it, pretending that it would infallibly secure him from loving any other woman; and the too well apprized of his inconstancy, had actually prepared the poisoned ointment accordingly. — Icyas coming to her for the garments, unfortunately acquainted her with his having brought away Iole; upon which she, in a fit of jealousy, anointed his shirt with the fatal mixture. This had no sooner touched his body, that he felt the poison diffuse itself through all his veins; the violent pains of which caused him to disband his army, and to return to Thracian. His torment still increasing, he sent to consult the oracle for a cure, and was answered, that he should cause himself to be conveyed to mount Oeta, and there rear up a great pile of wood, and leave the rest to Jupiter. By the time he had obeyed the oracle, his pains being become intolerable, he drest himself in his martial habit, flung himself upon the pile, and directed the bystanders to set fire to it. Others say that he left the charge of it to his son Philoctetes, who having performed his father's command, had his bow and arrows given him as a reward for his obedience. At the same time Jupiter, to be as good as his word, sent a flash of lightning, which consumed both the pile and the hero; insomuch that Iolaus, coming to take up his bones, found nothing but ashes from which they concluded, that he was passed from earth to heaven, and joined to the gods. His friends showed their gratitude to his memory by raising an altar where the burning pile had stood. Menæclus the son of Ador offered him a sacrifice of a bull, a wild boar, and a goat, and enjoined the people of Opus yearly to observe the same religious ceremonies. His worship soon became as universal as his fame; and Juno, who had once perjured him with such fury, forgot her resentment, and gave him her daughter Hebe in marriage.

Hercules has received many names and epithets, either from the place where his worship was established, or from the labours which he achieved. His temples were numerous and magnificent, and his divinity revered. No dogs or fies ever entered his temple at Rome; and that of Gades, according to Strabo, was always forbidden to women and pigs. The Phænicians offered quails on his altars; and as it was supposed that he presided over dreams, the sick and infirm were fent to sleep in his temples, that they might receive in their dreams the agreeable prelages of their approaching recovery. The white poplar was particularly dedicated to his service.

It is observed that there are none even of the twelve great gods of antiquity that have so many ancient monuments relating to them as Hercules. The famous statue of Hercules in the Farnese palace at Rome, is well known to the connoisseurs: this represents him refting after the last of his twelve labours above recited, leaning on his club, and holding the apples of the Hesperides in his hand. In this statue, as in all the other figures of him, he is formed, by the breadth of his shoulders, the spaciousness of his chest, the largeness of his size, and the firmness of his muscles, to express strength and a capacity of enduring great fatigue, which constituted the chief ide of virtue among the ancient heathens. His other attributes are his lion's skin, his club, and his bow. — Hercules is represented by the ancients as an exemplar of virtue: however, the Hercules biax, or drunken Hercules, is no uncommon figure; and his amours are described both by the poets and artists. Thus, the Cupids are made to take away his club, and he is exhibited in the posture of bending under a little boy: by which actions we perceive that he who conquered all difficulties was a slave to love. His children are as numerous as the labours and difficulties which he underwent; and indeed they became so powerful soon after his death, that they alone had the courage to invade all Peloponnesus. See Hercule.

The apotheosis of Hercules, or the establishment of his altars in the principal cities of Greece, is fixed by Thalysbulus 20 years before the taking of Troy.

Hercules has been particularly honoured by the Greeks under the name of Myogetes, "the conductor of the Muses;" and at Rome under that of Hercules Mularan. He is represented on medals with a lyre in his hand; and the reverse is marked with the figure of the nine muses, with their proper symbols.

Hercules, in astronomy, one of the constellations of the northern hemisphere. — The stars in the constellation Hercules in Ptolemy's catalogue are 29; in Tycho's 28; in the Britannic catalogue, 113.

Hercules' Pillars, in antiquity, a name given to two lofty mountains, situated one on the most southern extremity of Spain, and the other on the opposite part of Africa. They were called by the ancients Abyla and Calpe. They are reckoned the boundaries of the labours of Hercules; and according to ancient tradition, they were joined together till they were severed by the arm of the hero, and a communication opened between the Mediterranean and Atlantic seas.

Hercynia Silva (anc. geog.), the largest of forests. Its breadth was a journey of nine days to the belt traveller. Taking its rise at the limits of the Helvetii, Nemeteas, and Raureii, it ran along the Daunie to the borders of the Daci and Anartes, a length of 60 days journey, according to Caesar, who appears to have been well acquainted with its true breadth, seeing it occupied all Lower Germany. It may therefore be considered as covering the whole of Germany; and most of the other forests may be considered as parts of it, though distinguished by particular names: consequently the Hartz, in the duchy of Brunswick, which gave name to the whole, may be considered as one of its parts. The name Hartz denotes "pine-trees;" or "pine-trees." By the Greeks it is called Oreynus, as a name common to all the forests in Germany; in the same manner as Hercynius was the name given by the Romans; and both from the German Hertz.

Herd, among hunters, an assemblage of black or fallow beasts in contradistinction to flocks. See Flock. — In the hunting language there are various terms used for companies of the divers kinds of game. We say a herd of harts or bucks, a bevy of roes, a rout of wolves, a richefs of martins, &c.

Hereditaments, whatever moveable things a person may have to himself and his heirs by way of inheritance; and which, if not otherwise bequeathed, descend to him who is next heir, and not to the executor as chattels do.

Hereditary, an appellation given to whatever belongs to a family by right of succession from heir to heir.
Hereditary qualities in such a family; and that in Italy the hatred of families is hereditary. And indeed the gout, king's evil, madness, &c. may really be hereditary.

HEREDITARY Right, in the British constitution. The grand fundamental maxim upon which the jus corone, or right of succession to the throne of Britain depends, Sir William Blackstone takes to be this: That the crown is, by common law and constitutional custom, hereditary; and this in a manner peculiar to itself: but that the right of inheritance may from time to time be changed or limited by act of parliament; under which limitations the crown still continues hereditary.

1. The crown is in general hereditary, or descendible to the next heir, on the death or demise of the last proprietor. All regal governments must be either hereditary or elective; and as there is no instance where in the crown of England has ever been asserted to be elective, except by the regicides at the infamous and unparalleled trial of King Charles I. it must of consequence be hereditary. Yet in thus asserting, an hereditary right, a jure divino right to the throne is by no means intended. Such a title may be allowed to have subsisted under the theological establishments of the children of Israel in Palestine; but it never yet subsisted in any other country; save only so far as kingdoms, like other human fabrics, are subject to the general and ordinary dispensations of Providence. Nor indeed have a jure divino and an hereditary right any necessary connection with each other; as some have very weakly imagined. The titles of David and Jehu were equally jure divino as those of either Solomon or Ahab; and yet David slew the sons of his predecessor, and Jehu his predecessor himself. And when our kings have the same warrant as they had, whether it be to fit upon the throne of their fathers, or to destroy the house of the preceding sovereign, they will then and not before possess the crown of England by a right like theirs, immediately derived from heaven. The hereditary right, which the laws of England acknowledge, owes its origin to the founders of our constitution, and to them only. It has no relation to, nor depends upon, the civil laws of the Jews, the Greeks, the Romans, or any other nation upon earth; the municipal laws of one society having no connection with, or influence upon, the fundamental policy of another. The founders of the English monarchy might perhaps, if they had thought proper, have made it an elective monarchy; but they rather chose, and upon good reason to establish originally a succession by inheritance. This has been acquiesced in by general consent, and ripened by degrees into common law: the very same title that every private man has to his own estate. Laws are not naturally defendable, any more than thrones: but the law has thought proper, for the benefit and peace of the public, to establish hereditary succession in the one as well as the other.

It must be owned, an elective monarchy seems to be the most obvious, and best suited of any to the rational principles of government, and the freedom of human nature; and accordingly we find from history, that, in the infancy and first rudiments of almost every state, the leader, chief magistrate, or prince, hath usually been elective. And, if the individuals who compose that there could always continue true to first principles, uninfluenced by passion or prejudice, unfailed by corruption, and unawed by violence, elective succession were as much to be desired in a kingdom as in other inferior communities. The best, the wisest, and the bravest man, would then be sure of receiving that crown which his endowments have merited; and the feme of an unbiased majority would be dutifully acquiesced in by the few who were of different opinions. But history and observation will inform us, that elections of every kind (in the present state of human nature) are too frequently brought about by influence, partiality and artifice; and, even where the cause is otherwise, these practices will be often suspected, and consequently charged upon the successful, by a sullen, disappointed minority. This is an evil to which all societies are liable; as well those of a private and domestic kind, as the great community of the public, which regulates and includes the rest. But in the former there is this advantage, That such suspicions, if false, proceed no farther than jealousies and murmurs, which time will effectually suppress; and, if true, the injustice may be remedied by legal means, by an appeal to those tribunals to which every member of society has (by becoming such) voluntarily engaged to submit. Whereas, in the great and independent society, which every nation composes, there is no superior to refer to but the law of nature; no method to redress the infringements of that law, but the actual exertion of private force. And therefore between two nations, complaining of mutual injuries, the quarrel can only be decided by the law of arms; so in one and the same nation, when the fundamental principles of their common union are supposed to be invaded, and more especially when the appointment of their chief magistrate is alleged to be unduly made; the only tribunal to which the complainants can appeal is that of the God of battles, the only process by which the appeal can be carried on is that of a civilized and instinctive war. An hereditary succession to the crown is therefore now establihed in Britain, and most other countries, in order to prevent that periodical bloodshed and misery, which the history of ancient imperial Rome, and the more modern experience of England and Germany, may show us are the consequences of elective kingdoms.

2. But, secondly, as to the particular mode of inheritance, it in general conforms with the feudal path of descent, chalked out by the common law in the succession to landed estates; yet with one or two material exceptions. Like them, the crown will descend linearly to the issue of the reigning monarch; as it did from King John to Richard II. through a regular pedigree of six lineal generations: As in them the preference of males to females, and the right of primogeniture among the males, are strictly adhered to. Thus Edward V. succeeded to the crown, in preference to Richard his younger brother; and Elizabeth his eldest sister. Like them, on failure of the male line, it descends to the issue female; according to the ancient British custom remarked by Tacitus, "Sexta feminum duxit bellum, et sexuus imperium non deformare."

Thus Mary I. succeeded to Edward VI. and the line of Margaret queen of Scots, the daughter of Henry VII,
HEREDITAS JACENS, in Scots law. An estate is said to be in hereditate jaceente, after the proprietor's death till the heir's entry.

HEREFORD, which in Saxon signifies the ford of the army, the capital of Herefordshire in England, situated in W. Long 2° 35'. N. Lat. 52° 6'. It is supposed to have risen out of the ruins of Kenchester, in its neighbourhood, which Caedmon believes to have been the Arconium of Antoninus. It is very pleasantly situated among meadows and corn-fields, and is almost encompassed with rivers. It seems to have owed its rise, or at least its increase, to the building and dedicating a church there to Ethelbert king of the East-Angles, who was murdered in the neighbourhood, and afterwards taken into the catalogue of martyrs; soon after it became a bishop's see, and in consequence of that a considerable place. In 1055 it was sacked, the cathedral destroyed, and its bishop Leogar carried away captive by Griffin prince of South Wales, and Algar, an Englishman, who had rebelled against Edward the Confessor. Harold fortified it with a broad and high rampart; and it appears by
HERFORD, Herefordshire. — The cathedral city of Hereford is situated on the banks of the Wye, and is a flourishing market-town, much noted for its jurisdiction, which extends over the counties of Hereford, Worcestershire, Gloucester, and Monmouth. It is well supplied with water, and possesses several factories, including tanneries and paper-mills. The town is surrounded by a wall, and contains many ancient buildings, including the cathedral, which was erected in the time of Henry I., and modified in the thirteenth century. It is a large and magnificent structure, with a spire and a tower, and contains many fine monuments and tombs. The principal highways lead to London, Exeter, and Worcester. The town is noted for its wool, cloth, and leather manufactures. The surrounding country is well wooded, and contains rich pasturage and arable land. The population is about 20,000.
He, hereby, is to be burnt with fire who were convicted of hereby by the ecclesiastical judge. The same emperor, in another constitution, ordained, that if any temporal lord, when admonished by the church, should neglect to clear his territories of heretics within a year, it should be lawful for good catholics to seize and occupy the lands, and utterly to exterminate the heretical popes. And upon this foundation was built that arbitrary power, so long claimed and so finally executed by the Pope, of dispensing even of the kingdoms of refractory princes to more dutiful sons of the church. The immediate event of this constitution was something singular, and may serve to illustrate at once the gravity of the holy see, and the just punishment of the royal bigot; for, upon the authority of this very constitution, the pope afterwards expelled this very emperor Frederic from his kingdom of Sicily, and gave it to Charles of Anjou.

Christianity being thus deformed by the daemon of persecution upon the continent, we cannot expect that our own island should be entirely free from the same furance. And therefore we find among us ancient precedents of a writ de hereticis comburendis, which is thought by some to be as ancient as the common law itself. However, it appears from thence, that the conviction of hereby by the common law was not in any petty ecclesiastical court, but before the archbishop himself in a provincial synod; and that the delinquent was delivered over to the king to do as he should please with him: so that the crown had a control over the spiritual power, and might pardon the convict by issuing no process against him; the writ de hereticis comburendis being not a writ of course, but issuing only by the special direction of the king in council.

But in the reign of Henry IV. when the eyes of the Christian world began to open, and the seeds of the Protestant religion (though under the opprobrious name of lollardy) took root in this kingdom; the clergy, taking advantage from the king's dubious title to demand an increase of their own power, obtained an act of parliament, which sharpened the edge of persecution to its utmost keenness. For, by that statute, the diocesan alone, without the intervention of a synod, might convict of heretical tenets; and unless the convict abjured his opinions, or if after abjuration he relapsed, the sheriff was bound ex officio, if required by the bishop, to commit the unhappy victim to the flames, without waiting for the consent of the crown. By the statute 2 Hen. V. c. 7. lollardy was also made a temporal offence, and indelible in the king's courts; which did not thereby gain an exclusive, but only a concurrent, jurisdiction with the bishop's consistory.

Afterwards, when the final reformation of religion began to advance, the power of the ecclesiastics was somewhat moderated; for though what hereby was not then precisely defined, yet we are told in some points what it is not: the statute 25 Hen. VIII. c. 14. declaring, that offences against the see of Rome are not hereby; and the ordinary being thereby restrained from proceeding in any case upon mere suspicion; that is, unless the party be accused by two credible witnesses, or an indictment of hereby be first previously found in the king's courts of common law. And yet the spirit of persecution was not yet abated, but only diverted into a lay channel. For in six years afterwards, by statute 31 Hen. VIII. c. 14. the bloody law of the six articles was made, which established the six most contested points of popery, transubstantiation, communion in one kind, the celibacy of the clergy, monastic vows, the sacrifice of the mass, and auricular confession; which points were "determined and resolved by the most godly medley, pain, and travail of his majesty; for which his most humble and obedient subjects, the lords spiritual and temporal and the commons, in parliament assembled, did not only render and give unto his highness their most high and hearty thanks;" but did also enact and declare all oppressors of the first to be heretics, and to be burnt with fire; and of the five last to be felons, and to suffer death. The same statute established a new and mixed jurisdiction of clergy and laity for the trial and conviction of heretics; the reigning prince being then equally intent on destroying the supremacy of the bishops of Rome, and establishing all other their corruptions of the Christian religion.

Without perplexing this detail with the various repeals and revivals of these singular laws in the two succeeding reigns, let us proceed to the reign of queen Elizabeth; when the reformation was finally established with temper and decency, unfilled with party-rancour, or personal caprice and resentment. By statute 1 Eliz. c. 1. all former statutes relating to hereby are repealed, which leaves the jurisdiction of hereby as it stood at common law; viz. as to the intibulation of common causes, in the ecclesiastical courts; and in case of burning the heretic, in the provincial synod only. Sir Matthew Hale is indeed of a different opinion, and holds that such power resides in the diocesan also; tho' he agrees, that in either case the writ de hereticis comburendis was not demandable of common right, but grantable or otherwise merely at the king's discretion. But the principal point now gained was, that by this statute a boundary is for the first time set to what shall be accounted hereby; nothing for the future being to be so determined, but only such tenets, which have been heretofore so declared. 1. By the words of the canonical scriptures; 2. By the first four general councils, or such others as have only used the words of the holy Scriptures; or, 3. Which shall hereafter be so declared by the parliament, with the assent of the clergy in convocation. Thus was hereby reduced to a greater certainty than before; though it might not have been the worse to have defined it in terms still more precise and particular; as a man continued still liable to be burnt, for what perhaps he did not understand to be hereby, till the ecclesiastical judge so interpreted the words of the canonical scriptures.

For the writ de hereticis comburendis remained still in force; and we have instances of its being put in execution upon two Anabaptists in the seventeenth of Elizabeth, and two Arians in the ninth of James I. But it was totally abolished, and hereby again subjected only to ecclesiastical correction, pro falso animo, by virtue of the statute 29 Car. II. c. 9; for, in one and the same reign, our lands were delivered from the flavery of military tenure; our bodies from arbitrary imprisonment by the habeas corpus act; and our minds from the tyranny of superstitious bigotry, by demolishing this last badge of persecution in the English law.

Everything is now as it should be, with respect to the spiritual cognizance, and spiritual punishment of hereby:
H E R

[478]

H E R

Heretical

H eriot.

Hereby: unless perhaps that the crime ought to be more strictly defined, and no prosecution permitted, even in the ecclesiastical courts, till the tenants in question are by proper authority previously declared to be heretical. Under these restrictions, it has been deemed necessary for the support of the national religion, that the officers of the church should have power to enlure heretics; yet not to harass them with temporal penalties, much less to exterminate the legislature in England hath indeed thought it proper, that the civil magistrate should again interpose, with regard to one species of hereby, very prevalent in modern times; for by statute 9 & 10 W. III. c. 32. if any person educated in the Christian religion, or professing the same, shall by writing, printing, teaching, or advising speaking, deny any one of the pernons in the holy Trinity to be God, or maintain that there are more gods than one, he shall undergo the same penalties and incapacities which were just now mentioned to be inflicted on apostasy by the same statute.

HERETIC, a general name for all such persons under any religion, but especially the Christian, as profess to teach religious opinions contrary to the established faith, or to what is made the standard of orthodoxy. See Heresy.

HERETOCHS, among the ancient Saxons signified the same with dukes or duces, denoting the commanders or leaders of their armies. It appears, from Edward the Confessor's laws, that the military force of the kingdom was in the hands of the dukes or heretoche, who were constituted through every province and county in the kingdom, being elected out of the principal nobility, and such as were most remarkable for being sapientes, sibiiles, & animosi. Their duty was to lead and regulate the English armies, with a very unlimited power; and because of their great power, they were elected by the people in their full assembly, or folkmeet, in the same manner as sheriffs are elected.

HERFORDEN, or HERWARDEN, a free and imperial town of Germany, in the circle of Westphalia, He was born at Hall in Saxony. He wrote several mathematical works. He afterwards went to Leyden, and a work intitled Flore Lugduno-Batavorum, he was a great traveller, and for six years was professor of mathematics at Padua. He afterwards went to Munich, being invited thither by the Czar in 1724. At his return to his native country, he was made professor of morality and natural law at Basle; and died there in 1733. He wrote several mathematical works.

H E R M A, in antiquity, ancient Greek festivals in honour of the god Hermes or Mercury. One of these was celebrated by the Pheneae at Arcadia; a second by the Cynelians in Elis; and a third by the Tanagreans, where Mercury was represented with a ram upon his shoulder, because he was said to have walked thro' the city in that posture in time of a plague, and to have cured the sick; in memory of which, it was customary at this festival for one of the most beautiful youths in the city to walk round the walls with a ram upon his shoulder. A fourth festival of the same name was observed in Crete, when it was usual for the servants to sit down at the table while their masters waited; a custom which was also observed at the Roman Saturnalia.

HERMAN (Paul), a famous botanist in the 17th century, was born at Hall in Saxony. He published phytie in the life of Ceylon, and was afterwards made professor of botany at Leyden, where he died in 1695. He wrote a catalogue of the plants in the public garden at Leyden, and a work intitled Fiore Lugduno-Batavorum.

HE R MANN (James) a learned mathematician of the academy at Berlin, and a member of the academy of sciences at Paris, was born at Basle in 1678. He was a great traveller, and for six years was professor of mathematics at Padua. He afterwards went to Munich, being invited thither by the Czar in 1724. At his return to his native country, he was made professor of morality and natural law at Basle; and died there in 1733. He wrote several mathematical works.

HE R M A N N I A, in botany: a genus of the pentandria order, belonging to the monoeclisia class of plants; and in the natural method ranking under the 37th order, Cucumiferae. The capule is quinquilocular; the petals at the base are emarginated and oblique.

Species. 1. The lavendulifolia, hath a shrubby falk, and slender branches, very bushy, about a foot and an half high, small, spear-shaped, obtuse and hairy leaves, with clusters of small yellow flowers along the fides of the branches, continuing from June to Autumn. 2. The althaeifolia hath a shrubby falk, and soft woody branches, growing two feet high; with numerous yellow flowers in loose spikes growing at the end of the branches,
HERMANSTADT, a handsome, populous, and strong town of Hungary, capital of Transylvania, with a bishop's see. It is the residence of the governor of the province; and seated on the river Ceben, in E. Long. 23. 40. N. Lat. 46. 25.

HERMANT (Godfrey), a learned doctor of the Sorbonne, born at Beauvais in 1617. He wrote many excellent works; the principal of which are, 1. The lives of St Athanasius, St Basil, St Gregory Nazianzen, St Crysfolkom, and St Ambrose. 2. Four pieces in defence of the rights of the university of Paris against the Jefuits. 3. A French translation of St Gregory Nazianzen's Treatie of Providence, and St Baif's Aêcentes. 4. Extracts from the councils; published after his death, under the title of Clavis disciplinae ecclesiastice. He died suddenly at Paris in 1690.

HERMAPHRODITE, is generally underfoot to signify a human creature possessed of both sexes, or who has the parts of generation both of male and female. The term however is applied also to other animals, and even to plants. The word is formed from the Greek eρμαφροδίτης, a compound of Ερμή Ηermē, Mercury, and φροδίτη, φρούδη, ηpheraphrodit, and φρούδη, Venus, i.e. of male and female. For it is to be observed, Hermaphroditus was originally a proper name; applied by the heathen mythologists to a fabulous deity, whom some represent as a son of Hermes, Mercury, and Aphrodite, Venus; and who, being desperately in love with the nymph Salmis, obtained of the gods to have his body and hers united into one. Others say, that the god Hermaphroditus was conceived as a composition of Mercury and Venus; to exhibit the union between eloquence or rather commerce, whereof Mercury was god, with pleasure, whereof Venus was the proper deity. Lastly, others think this junction intended to show that Venus (pleasure) was of both sexes; as in effect, the poet Calvus calls Venus a god.

Pellensonge Deus Venusem. As also Virgil, Æneid. lib. ii.

Difjunct, ac decunto Des flammas inter a bules. Exegeto—

M. Spon observes, Helychius calls Venus Aphroditos: and Theophrastus affirms, that Aphroditos or Venus, is Hermaphroditos; and that in the island of Cyprus she has a statue, which represents her with a beard like a man. The Greeks also call hermaphroditus adeγερνωμαν. See the article ANDROGYNES.

In a treatise by Mr Hunter, in the 60th volume of the Philosophical Transactions, hermaphrodites are divided into natural and unnatural or monstrous. The first belongs to the more simple orders of animals, of which there are a much greater number than of the more perfect. The unnatural takes place in every tribe of animals having distinct sexes, but is more common in some than in others. The human species, our author imagines, has the fewest; never having seen them in that species, nor in dogs; but in horse, sheep, and black cattle, they are very frequent.

From Mr Hunter's account, however, it does not appear that such a creature as a perfect hermaphrodite has ever existed. All the hermaphrodites which he had the opportunity of seeing had the appearance of females, and were generally loved as such. In the horse they are very frequent; and in the most perfect of this kind he ever saw, the teaticles had come down out of the abdomen into the place where the udder should have been, and appeared like an udder, not so pendulous as the scrotum in the male of such animals. There were also two nipples, of which horses have no perfect form; being blended in them with the sheath or prepuce, of which there was none here. The external female parts were exactly similar to those of a perfect female; but instead of a common-sized clitoris, there was one about five or six inches long; which, when erect, stood almost directly backwards. A foal as similar to the above was killed, and the following appearances were observed on dissection. The teaticles were not come down as in the former, possibly because the creature was too young. It had also two nipples; but there was no penis passing round the tubes to the belly, as in the perfect male foal. The external female parts were similar to those of the sheaf. Within the entrance of the vagina was placed the clitoris; but much longer than that of a true female, being about five inches long. The vagina was open a little further than the opening of the urethra into it, and then became obliterated from thence, up to the fundus of the uterus, there was no canal; but at the fundus of the common uterus it was hollow, or had a cavity in it, and then divided into two, viz. a right and a left, called the horns of the uterus, which were also pervious. Beyond the termination of the two horns were placed the ovaria, as in the true female; but the Fallopian tubes could not be found. From the broad ligaments, to the edges of which the horns of the uterus and ovaria were attached, there passed towards each groin a part similar to the round ligaments in the female, which were continued into the rings of the abdominal muscles; but with this difference, that there were continued with them a process or theca of the peritoneum, similar to the tunics vaginalis communis in the male; and in these there were found the teaticles, but no vasa deferentia could be observed passing from them.

In most species of animals, the production of hermaphrodites appears to be the effect of chance; but in the black cattle it seems to be an established principle of their propagation. It is a well-known fact, and, as far as hath yet been discovered, appears.
Among the reptile tribe, indeed, such as worms, snails, leeches, &c. hermaphrodites are very frequent. In the memoirs of the French academy, we have an account of this very extraordinary kind of hermaphrodites, which not only have both sexes, but do the office of both at the same time. Such are earth-worms, round-tailed worms found in the intcrstices of men and horses, land-snails, and those of fresh waters, and all the forts of leeches. And, as all these are reptiles, and without bones, M. Poospart concludes it probable, that all other insects which have these two characters are also hermaphrodites.

The method of coupling practised in this class of hermaphrodites, may be illustrated in the instance of earth-worms. These little creatures creep, two by two, out of the holes proper to receive them, where they diplofe their bodies in such a manner, that the head of the one is turned to the tail of the other. Being thus stretched lengthwise, a little conncd button or papilla is thrust forth by each, and received into an aperture of the other. These animals, being male in one part of the body, and female in another, and the body flexible withal, M. Homberg does not think it impossible that an earth-worm may couple with itself, and be both father and mother of its young; an observation which, to some, appears highly extravagant.

Among the insects of the soft or boneless kind, there are great numbers indeed, which are so far from being hermaphrodites, that they are of no sex at all. Of this kind are all the caterpillars, maggots, and worms, produced of the eggs of flies of all kinds: but the reason of this is plain; these are not animals in a perfect state, but disfigures under which animals lurk. They have no business with the propagating of their species; but are to be transformed into animals of another kind, by the putting off their several coverings, and then only they are in their perfect state, and therefore then only show the differences of sex, which are always in the distinct animals, each being only male or female. These copulate, and their eggs produce these creatures, which flow no sex till they arrive at the perfect state again.

Hermaphrodite Flowers, in botany. These are so called by the sexualists on account of their containing both the antheræ and stigma, the supposed organs of generation, within the same calyx and petals. Of this kind are the flowers of all the claffes in Linnaeus's sexual method, except all the classes monoeica and dioecia, in the former of which, male and female flowers are produced on the same root; in the latter, in distinct plants from the same feed. In the class of *polygama*, there are always hermaphrodite flowers mixed with male or female, or both, either on the same or distinct roots. In the plain-tree the flowers are all hermaphrodite; in some, however, the antheræ or male organ, in others the stigma or female organ, proves abortive. The flowers in the former class are styled *female hermaphrodite*; in the latter, *male hermaphrodites*.

Hermaphrodites are thus as frequent in the vegetable kingdom as they are rare and scarce in the animal one.
HERMAS, an ecclesiastical author of the first century; and, according to Origens, Eusebius, and Jerome, the name whom St Paul salutes in the end of his epistle to the Romans. He wrote a book in Greek some time before Domitian's persecution, which happened in the year 95. This work is intitled The Pastor, from his representing an angel speaking to him in it under the form of a shepherd. The Greek text is lost, but a very ancient Latin version of it is still extant. Some of the fathers have considered this book as canonical.

The best edition of it is that of 1698; where it is to be found among the other apocryphal fathers, illustrated with the notes and corrections of Cotelerius and Le Clerc. With them it was translated into English by Archbishop Wake, the best edition of which is that of 1710.

HERMAS, in botany; A genus of the monoea order, belonging to the polygama class of plants. The umbel in the hermaphrodite is terminal; there is an universal involucrum and partial ones. The rays of the small umbels are lobed; the central one flower-bearing; there are five petals, and as many barren stammas; the seeds are two-fold and of helicoidal form. In the male the lateral umbels have universal and partial involucres; the small umbels are many-flowered; there are five petals, and five fertile stammas.

HERMES, or HERMA, among antiquaries, a sort of square or cubical figure of the god Mercury, usually made of marble, though sometimes of brass or other materials, without arms or legs, and planted by the Greeks and Romans in their cross-ways.

Servius gives us the origin thereof, in his comment on the eighth book of the Aeneid. Some hermae, says he, having one day caught Mercury, called by the Greeks Hermes, asleep on a mountain cut off his hands; from which he, as well as the mountain where the action was done, became denominated Cyllenus, from quies mainax; and thence, adds Servius, it is that certain statues without arms are denominated Hermes or Hermes. But this etymology of the epithet of Cyllenus contradicts most of the other ancient authors; who derive it hence, that Mercury was born at Cyllene, a city of Illyria, or even on the mountain Cyllene itself, which had been thus called before him.

Suidas gives a moral explication of this custom of making statues of Mercury without arms. The Hermes, says he, were statues of stone placed at the vestibules or porches of the doors and temples at Athens; for this reason, that as Mercury was held the god of speech and of truth, square and cubical statues were peculiarly proper; having this in common with truth, that on what side ever they are viewed, they always appear the same.

It must be observed, that Athens abounded more than any other place in Hermes; there were abundance of very signal ones in divers parts of the city, and they were indeed one of the principal ornaments of the place. They were also placed in the high-roads and cross-ways, because Mercury, who was the courier of the gods, preceded over the highways; whence he had his surname of Trivius, from trivium; and that of Viaeus, via.

From Suidas's account, above cited, it appears, that the term tarmemini, used among us in the door-cases, balconies, &c. of our buildings, take their origin from

These Athenian Hermes; and that it was more proper to call them hermetes than termini, because, though the Roman termini were square stones, whereon a head was frequently placed, yet they were rather used as landmarks and mere stones than as ornaments of building. See the articles MERCURY and THOTH.

HERMETIC, or HERMETICAL-ART, a name given to chemistry, on a supposition that Hermes Trismegistus was the inventor thereof, or that he excelled therein. See THOTH.

HERMETICAL Philosophy is that which undertakes to solve and explain all the phenomena of nature, from the three chemical principles, salt, sulphur, and mercury.

HERMETICAL Physic, or Medicine, is that system or hypothesis in the art of healing, which explains the cures of diseases, and the operations of medicine; on the principles of the hermetical philosophy, particularly on the system of alkali and acid.

HERMETICAL Seal, a manner of flooring or closing glass vessels, for chemical operations, very accurately, that nothing can exhalate or escape, not even the most volatile spirits. It is performed by heating the neck of the vessel in the flame of a lamp till it be ready to melt, and then with a pair of pincers twisting it close together. This they call putting on Hermes's seal. There are also other ways of sealing vessels hermetically; viz. by flowing them with a plug or stopple of glass, well luted into the neck of the vessel; or, by turning another ovum philosophicum upon that wherein the matter is contained.

HERMIPHRADOCATES, or HERMIPHROPATROM, in antiquity, a deity, or figure of a deity, composed of Mercury, and Harpocrates the god of Silence.

M. Spone gives us a hermiphradocates in his Rec. Cur. de l'Antiquité, p. 98. fig. 15, having wings on his feet like Mercury, and laying his finger on his mouth like Harpocrates. It is probable they might mean, by this combination, that silence is sometimes eloquent.

HERMIANI, or HERMIATITAE, a sect of heretics in the second century, thus called from their leader Hermias. They were also denominated Seleucians.

One of their distinguishing tenets was, that God is corporeal. Another, that Jesus Christ did not ascend into Heaven with his body, but left it in the fun.

HERMIONE (anc. geog.) a considerable city of Argolis. It was in ruins (except a few temples) in the time of Paustianus; who says that the new city was at the distance of four stadia from the promontory on which the temple of Neptune stood. It gave name to the Sinus Hermionicus, a part of the Sinus Argolicus.

HERMIT, or EREMIT, Eremita, a devout person retired into solitude, to be more at leisure for prayer and contemplation, and to difencumber himself of the affairs of this world. The word is formed from the Greek, eremaios, desert or wilderness; and, according to the etymology, should rather be wrote Eremit.

Paul in his Epistle to the Romans, is intitled the first hermit; though St Jerome at the beginning of the life of that saint says, it is not known who was the first. Some go back to John the Baptist, others to Elias: others make St Anthony the founder of the eremetical life; but others think that he only rekind-
Hermes, a French officer of Amiens in Picardy, who quitted the military profession, and commenced hermit and pilgrim. Unfortunately he travelled to the Holy Land about the year 1093; and making a melancholy recital of the deplorable situation of a few Christians in that country to Pope Urban II. and at the same time enthusiastically lamenting that Infidels should be in possession of the famous city where the Author of Christianity first promulgated his sacred doctrines, Urban gave him a fatal commission to excite all Christian princes to a general war against the Turks and Saracens the possessors of the Holy Land. See Crusades.

Hermitage properly signifies a little hut or habitation, in some desert place, where a hermit dwells.

Hermitage is also popularly attributed to any religious cell, built and endowed in a private and secluded place, and thus annexed to some large abbey, of which the superior was called hermit.

Hermocallis, in the materia medica, a root brought from Turkey. It is of the shape of a heart flattened, of a white colour, compact, yet easy to cut or powder; of a viscous sweetish taste, with a light degree of acrimony. Hermocallis were of great repute among the ancients as a cathartic; but those we now flats, of acrimony: toward~ there the Author where he published his system of rhetoric, and at 20 his philosophic ideas; but at 25 he forgot every thing he had known. It is said, that his body being opened after his death, his heart was found of an extraordinary size, and all over hairy. He died about 1666.

Hermogenes-Tarsensis, a rhetorician and orator, and who was in every respect a prodigy. At 17 years of age he published his system of rhetoric, and at 20 his philosophic ideas; but at 25 he forgot every thing he had known. It is said, that his body being opened after his death, his heart was found of an extraordinary size, and all over hairy. He died about 1666.

Hermogenians, a sect of ancient heretics, denominated from their leader Hermogenes, who lived towards the close of the second century. Hermogenes established matter as his first principle; and regarding matter as the fountain of all evil, he maintained that the world, and every thing contained in it, as also, the souls of men and other spirits, were formed by the Deity from an uncreated and eternal mass of corrupt matter. The opinions of Hermogenes, with regard to the origin of the world and the nature of the soul, were warmly opposed by Tertullian.

Hermogenians were divided into several branches under their respective chiefse, viz. Hermiane, Seleucian, Materiaria, &c.

Hermes, or Mermon (anc. geog.); a mountain of the Amorites, called Santor by the Phoenicians, and Sanir or Seur by the Amorites, on the east of Jordan. It is also called Sion, (Moses); but must not be confounded with the Sion of Jerusalem. By the Sidonians it was called Scirien, (Moses); but the vallate, it is called Sarion. Joshua informs us, that it was the dominion of Og king of Bashan; which must be understood of its fourth side. It is never particularly mentioned by profane writers; being comprized under the appellation Libanus; or AntiLibanus, with which mountain it is joined to the east. It is also called Mermon in plural, Psalm. xliii. 6. because it was extensive, and contained several mountains.

Hermus, (anc. geog.), a river of Ionia; which rising near Dorylaeum, a town of Phrygia, in a mountain facred to Dindymene or Cybele, touched Maea, and ran through the Regio Combusta; then through the plains of Smyrna down to the sea, carrying along with it the Pactolus, Hyllus, and other large rivers. Its waters were said to roll down gold, by Virgil and other poets.

Hernandria, jack-in-a-box tree: A genus of the triandria order, belonging to the monocela clas of plants; and in the natural method ranking under the 38th order, Tricocca. The male calyx is tripartite; the corolla tripetalous; the female calyx is truncated, quite entire; the corolla hexapetalous; the plum hollow, and open at the mouth or upper part, with a loose kernel.

Species. 1. The sonora, or common jack-in-a-box, is a native of both the Indies. It grows 20 or 30 feet high; and is garnished with broad peltated leaves, and monocious flowers, succeeded by a large swollen hollow fruit formed of the calyx; having a hole or open at the end, and a hard nut within. The wind blowing into the cavity of this fruit makes a very whistling and rattling noise, whence comes the name.

2. The ovigerous grows many feet high, garnished with large oval leaves not peltated; and monocious flowers, succeeded by a swollen fruit at the end, and a nut within.

Uses. The sonora, in Java, affords a sure antidote against poison, if you either put its small roots on the wounds or eat them; as it was discoverd to Rumphiis by a captive woman in the war between the people of Macar and the Dutch in the year 1667. The soldiers of the former always carry this root about them, as a remedy against wounds with poisonous arrows.

Culture. Both these plants being tender exotics, must be planted in pots of rich earth, and a warm, kept in a hot-house; in which notwithstanding all the care that can be taken, they seldom flower, and never grow beyond the height of common shrubs, tho' in the places where they are natives they arrive at the height of trees. They are propagated by seeds procured from the West-Indies.

Herne, a town of Kent, 6 miles from Canterbury, 12 from Margate, and 14 from Feverham. It formerly
HERNIA, in medicine and surgery, a defect of the intestines or omentum out of their natural place, or rather, the tumour formed by that defect, popularly called a rupture. The word is Latin, hernia, and originally signifies the name with tumor fores, called also ranus. Priscian observes, that the ancient Mari gave the appellation hernia to rocks; whence some will have hernias thus called to account of their hardness. Scaliger chooses rather to derive the word from the Greek spera, ranos, branch. See (Index to) Surgery.

HERNIARIA, rupture-wort: A genus of the digynia order, belonging to the pentandria class of plants; and in the natural method ranking under the 11th order, Sarmentacea. The ealy x is quinquepartitum; there is no corolla; there are five barren flaminis, and a monopetalous capsule. Species. There are four species, of which the only remarkable one is the glabra, or smooth rupture-wort, a native of many parts of England. It is a low trailing plant, with leaves like the smaller chickweed; the flowers come out in clusters from the side of the flanks at the joints, and are of a yellowish colour. Ufes, &c. This plant is a little salutiferous and astringent. The juice takes away specks in the eye. Cows, sheep, and horses, eat the plant; goats and swine refuse it.

HERO, in Pagan mythology, a great and illustrious person, of a mortal nature, though suppos’d by the populace to partake of immortality, and after his death to be placed among the number of the gods. The word is formed of the Latin heros, and that of the Greek spera, sem-deus, "sacred."—The Greeks erected columns and other monuments over the tombs of their heroes, and established a kind of worship in honour of the names both of their heroes and heroines. The Romans also raised statues in honour of their heroes; but there were six of their heroes of a superior order, and who were suppos’d to be admitted into the community of the twelve great gods: these were Hercules, Bacchus, Ecbulenus, Romulus, Castor, and Pollux. Writers have distinguished between the worship which the ancients paid to their heroes and that offered to their gods. The latter, it is said, consisted of sacrifices and libations; the former was only a kind of funeral honour, in which they celebrated their exploits, concluding the rehearsal with feasts.

Hero is also used in a more extensive sense, for a great, illustrious, and extraordinary personage; particularly in respect of valor, courage, intrepidity, and other military virtues.

F. Bouhours makes this distinction between a great man and a hero, that the latter is more daring, fierce, and enterprising; and the former more prudent, thoughtful, and reverend. In this sense we properly say, Alexander was a hero, Julius Cæsar a great man,

HERO, of a poem or romance, is the principal personage, or he who has the chief part in it. Thus the hero of the Iliad is Achilles; of the Odyssey, Ulysses; of the Aeneid, Aeneas; of Tasso’s Jerusalem, Godfrey of Boulogne; of Milton’s Paradise Lost, Adam; though Mr Dryden will have the devil to be Milton’s hero, because he gets the better of Adam, and drives him out of Paradise.

Hero, in fabulous history, a famous priestess of Venus, lived at Abidos, in a tower situated on the banks of the Hellepont. She being beloved by Leander, who lived at Sestos on the other side of the strait, he every night swam over to visit her, being directed by a light fixed on a tower. But the light being put out in a stormy night, the youth missed his way, and was drowned; on which Hero threw herself into the sea, and perished.

Hero, the name of two celebrated Greek mathematicians; the one called the old, and the other the young, Hero. The younger was a disciple of Ctesibius. They are known by two works translated into Latin by Barochius: Spiratulum liber, by Hero senior; and Veneris, artis et machinarum libri, by Hero junior. They flourished about 170 and 200 B.C.

HEROD, falsely styled the Great, king and execrable tyrant of Judea; who, on the strength of a misinterpreted prophecy, caused all the male children of Bethlehem and its neighbourhood to be massacred by his soldiers at the time of the birth of Christ, in the vain hope of destroying the Saviour of mankind. He died, eaten with worms, two or three years after the birth of our Saviour, at the age of 71, after a reign of 40 years. He had ordered that all the persons of quality, whom he kept in prison, should be massacred the moment the breath was out of his body, in order that every considerable family in the kingdom might shed tears at his death; but that inhuman order was not executed.

HERODIAN, an eminent Greek historian, who spent the greatest part of his life at Rome, flourished in the third century, in the reigns of Severus, Caracalla, Heliogabalus, Alexander, and Maximin. His history begins from the death of Marcus Aurelius the philosopher; and ends with the death of Balbinus and Maximin, and the beginning of the reign of Gordian. It is written in very elegant Greek; and there is an excellent translation of it into Latin, by Angelus Politianus. Herodian has been published by Henry Stephens in 1491; by Boecler, at Stradburg, in 1662, 8vo; and by Hudson, at Oxford, in 1699, 8vo.

HERODIANS, a sect among the Jews at the time of our Saviour; mentioned Math. xxii. 16. Mark iii. 6.

The critics and commentators are very much divided with regard to the Herodians. St Jerom, in his Dialogue against the Lucifarians, takes the name to have been given to such as owned Herod for the Messiah; and Tertullian and Epiphanius are of the same opinion. But the same Jerom, in his Commentary on St Matthew, treats this opinion as ridiculous; and maintains, that the Pharisees gave this appellation by way of ridicule to Herod’s soldiers who paid tribute to the Romans; agreeable to which the Syrian interpreters render the word by the domestici of Herod, i.e., of his courtiers.
HERODOTUS, an ancient Greek historian of Halicarnassus in Caria, son of Lycus and Dryo, was born in the first year of the 7th Olympiad, that is, about 484 B.C. The city of Halicarnassus being at that time under the tyranny of Lygdamis, grandson of Artemisia, queen of Caria, Herodotus quitted his country and retired to Samos; from whence he travelled over Egypt, Greece, Italy, &c., and in his travels acquired the knowledge of the history and origin of many nations. He then began to digest the materials he had collected into order, and composed that history which has preferred his name among men ever since. He wrote it in the Isle of Samos, according to the general opinion.—Lucian forms us, that when Herodotus left Caria to go into Greece, he began to consider with himself, what he should do to be for ever known, and make the age to come his own, in the most expeditions way, and with as little trouble as possible. His history, he prefixed, would easily procure him fame, and raise his name among the Greeks in whose favour it was written; but then he foresaw that it would be very tedious to go through the several cities of Greece, and recite it to each respective city; to the Athenians, Corinthians, Argives, Lucanians, &c. He thought it most proper therefore to take the opportunity of their assembling all together; and accordingly recited his work at the Olympic games, which rendered him more famous than even those who had obtained the prizes. None were ignorant of his name, nor was there a single person in Greece who had not seen him at the Olympic games, or heard those speak of him who had seen him there.

His work is divided into nine books; which, according to the computation of Dionysius Halicarnassensis, contain the most remarkable occurrences within a period of 240 years; from the reign of Cyrus the first king of Persia, to that of Xerxes when the historian was living. These nine books are called after the names of the nine muses, each book being distinguished by the name of a muse, and thus has given birth to two disquisitions among the learned: 1. Whether they were so called by Herodotus himself; and, 2. For what reason they were so called. As to the first, it is generally agreed that Herodotus did not impose these names himself; but it is not agreed why they were imposed by others. Lucian tells us, that these names were given them by the Grecians at the Olympic games, where they were first recited, as the best compliment that could be paid the man who had taken pains to do them so much service.

There is ascribed also to Herodotus, but falsely, a Life of Homer, which is usually printed at the end of his work.—He wrote in the Ionic dialect, and his style and manner have ever been admired by all people of taste. There have been several editions of the works of this historian; two by Henry Stephens, one in 1570, and the other in 1592; one by Gale at London in 1679; and one by Gronovius at Leyden in 1715, which is the last and best, though not the best printed.

Heroic, something belonging to a hero, or heroism. Thus we say, heroic actions, heroic virtue, heroic style, heroic verse, heroic poet, heroic age, &c.

Heroic Age, is that age or period of the world wherein the heroes, or those called by the poets the children of the gods, are supposed to have lived. The heroic age coincides with the fabulous age.

Heroic Poem is that which undertakes to describe some extraordinary action, or enterprise. Homer, Virgil, Statius, Lucan, Tasso, Camoens, Milton, and Voltaire, have composed heroic poems. In this sense, heroic poem coincides with epic poem.

Heroic Verse, is that wherein heroic poems are usually composed; or, it is that proper for such poems. In the Greek and Latin, hexameter verses are peculiarly denominated heroic verses, as being alone used by Homer, Virgil, &c. Alexandrine verses, of 12 syllables, were formerly called heroic verses, as being supposed the only verse proper for heroic poetry; but later writers use verses of ten syllables.

HEROINE, HEROINA, or Hero, a woman that has the qualities and virtues of a hero, or that has done some heroic action.

HERON, in ornithology. See Ardea.

This bird is a very great devourer of fish, and will do more mischief to a pond than an otter. Some say that an heron will destroy more fish in a week than an otter will in three months, but that seems carrying the matter too far. People who have kept herons, have had the curiosity to number out the fish they fed them with into a tub of water; and counting them again afterwards, it has been found that a heron will eat so moderate-sized dace and roaches in a day. It has been found that in carp-ponds visited by this bird, one heron will eat up 1000 more carp in a year, and will hunt them so close that very few can escape. The readiest method of destroying this mischievous bird is by fishing for him in the manner of pike, with a baited hook. The bait consisting of small roach or dace, and the hook fastened to one end of a strong line, made of silk and wire twisted together. To the other end of the line is fastened a stone of a pound weight; and several of these baited lines being sunk by means of the stone in different parts of the pond, in a night or two the heron will not fail of being taken by one or other of them.

HERPSIS, in medicine, a bilious phlegm, which breaking out in different manners upon the skin, accordingly receives different denominations. See (Index subjoined to) Medicine.

HERRERA (Anthony), a Spanish historian, was secretary to Velpayan Gonzara vice-...
HE

HERRERA, Ferdinand de, an eminent Spanish poet, of the 16th century, was born at Seville, and principally succeeded in the lyric kind. Besides his poems, he wrote notes on Garcilaso de la Vega, and an account of the war of Cyprus; and the battle of Lepeato, &c.

HERRING, in ichthyology, a species of Clupea.

The name herring is derived from the German beer, an army, which expresses their number, when they migrate into our seas. Herrings are found in great plenty from the highest northern latitudes as low as the northern coasts of France. They are also met with in warm seas on the coast of America, as low as Carolina: they are found also in the sea of Kamtchatka, and possibly reach Japan; but the winter rendezvous is within the arctic circle, whether they retire after spawning, and where they are provided with plenty of insect food. For an account of the remarkable migration of herrings, and the history of the fishery, &c. see Clupea and Herring-Fishery.

They are in full roe at the end of June, and continue in perfection till the beginning of winter, when they begin to deposit their spawn. There are different names given to preferred herrings, according to the different manners wherein they are ordered: as, 1. Sea-flicks; which are such as are caught all the fishing season, and are but once packed. A barrel of these holds six or eight hundred; eight barrels go to the run by law; a hundred of herrings is to be a hundred and twenty; a half is ten thousand, and they commonly reckon fourteen barrels to the load.

2. There are others, repacked on shore, called re-packed herrings: seventeen barrels of sea-flicks commonly make from twelve to fourteen of repacked herrings. The manner of repacking them is, to take out the herrings, wash them out in their own pickle, and lay them orderly in a fresh barrel: these have no salt put to them, but are clofe packed, and headed up by a sworn cooper, with pickle, when the barrel is half full. The pickle is brine; so strong that the herring will swim in it.

3. Summer, are such as the Dutch chafers or divers catch from June to the 15th of July. These are sold away in sea-flicks, to be eaten prettily, in regard of their fatness; because they will not endure repacking. They go one with another, full and fitten; but the repacked herrings are forded, the full herrings by themselves.

4. The flotten and sick herrings by themselves; the barrel whereof is to be marked distinctly.

5. Crux herrings: which are such as are caught after the 14th of September. These are cured with that kind of salt called salt upon salt, and are carefully forded out, all full herrings, and used in the repacking.

6. Cured herrings. These serve to make red herrings, being such as are taken in the Yarmouth seas, from the end of August to the middle of October; provided they can be carried ahoore within a week, more or less, after they are taken. These are never gipped, but rowed in salt, for the better preserving of them, till they can be brought on shore; and such as are kept to make red herrings are washed in great vats in fresh water before they are hung up in the herring-houses or red-herring houses.

As for the manner of herringing. The nets being haled on board, the fishers are taken out, and put into the warbacks, which stand on one side of the vessel. When all the nets are thus unloaded, one fills the gippers baskets. The gippers cut their throats, take out their guts, and fling out the full herrings into one basket, and the fish is filled into another. One man takes the full basket when they are gipped, and carries them to the tower back, wherein there is salt. One boy rows and firs them about in the salt, and another takes them, thus rowed, and carries them in baskets to the packers. Four men pack the herrings into one barrel, and lay them one by one, straight and even; and another man, when the barrel is full, takes from the packers. It is left to stand a day, or more, open to settle, that the salt may melt and dissolve to pickle; after which it is filled up, and the barrel headed. The pickle is to be strong enough to sustain a herring; otherwise the fish decay in it. See Herring-Fishery.

HERRING (Thomas), archbishop of Canterbury, was the son of the rev. Mr John Herring, rector of Walfoken in Norfolk, where he was born in 1693. He was educated at Jesus college, Cambridge; was afterwards chosen fellow of Corpus Christi college, and continued a tutor there upwards of seven years. Having entered into priest's orders in 1719, he was successively minister of Great Shelford, Stow Cam, Wix, and Trinity in Cambridge; chaplain to Dr Fleetwood, bishop of Ely; rector of Rettingdon in Essex, and of Barly in Hertfordshire; preacher to the Society of Lincoln's Inn, chaplain in ordinary to his late majesty, rector of Bleechingly in Surrey, and dean of Rochester. In 1737 he was consecrated bishop of Bangor, and in 1743 translated to the archiepiscopal see of York. On the death of Dr Potter in 1747, he was translated to the see of Canterbury; but in 1753 he was seized with a violent fever, which brought him to the brink of the grave; and after languishing about four years, he died on the 15th of March 1757. He expended upwards of six thousand pounds in repairing and adorning the palaces of Croydon and Lambeth. This worthy prelate, in a most eminent degree, possessed the virtues of public life; his mind was filled with unaffected piety and benevolence, he was an excellent preacher, and a true friend to civil and religious liberty. After his death was published a volume of his sermons on public occasions.

HERRNHUT, or HERNHUTH, the first and most considerable settlement of the United Brethren, commonly called Moravians, situated in Upper Lusatia, upon an estate belonging to the family of Nicholas Lewis, count Zinzendorf, about 50 miles east of Dresden. See the article United Brethren.

The building of this place was begun in 1727, by some emigrants from Moravia, who forsook their possessions on account of the persecution they suffered, as Protestants, from the Roman Catholics; and being well received by count Zinzendorf, cleared a spot of ground allotted to them by him upon the rise of an hill called
Herrnhut, called the Hubberg, or Watch-hill, from which they took occasion to call the new settlement Herrnhut, or the Watch of the Lord.—More emigrants taking refuge with them, and many other persons joining their congregations, the buildings increased considerably; and at present Herrnhut is a regular and well-built village, containing about 1,300 inhabitants, all members of the Church of the United Brethren.—Besides the minister and his assistants, a warden is appointed, who precedes in the vestry, and superintends the temporary concerns of the settlement. The Brethren distinguish themselves by a plain and uniform dress, the women having retained the drapery of the countries from which the first emigrants proceeded, not from any superstitious attachment to old forms, but from a desire to preclude vanity and useless expense. As most of the settlements of this community resemble each other, both in the disposition of their buildings, and in their internal regulations, we will give a short sketch of Herrnhut, as the pattern from which the rest were copied, though there are others in which the buildings are more regularly planned. The chapel, which is situated in a large square, is a spacious and neat building, furnished with a good organ, and movable forms, but no pews. The men sit on one side, and the women on the other, entering at separate doors. Besides the usual Sunday's service, the congregation meets here every evening, and the children every morning. The dwellings of the minister and warden of the congregation form one, and a school-house the other, wing to the chapel. From the chapel, an avenue of trees leads to the burying-ground, which is a large square field on the declivity of the Hubberg, and at some distance from the village. Several walks, bordered by trees, and furnished with seats, surround and intersect it. The grave-stones and graves are all of equal size, and placed in regular rows; only the vault of Count Zinzendorf, as lord of the manor, is larger than the rest. Burials are performed with great solemnity, but no mourning dresses used. On one side of the square, in which the chapel stands, is a large building, inhabited by the single men, with work-shops, out-houses, and gardens, exclusive of the dwelling rooms. The main building contains a neat chapel, in which a short morning and evening service is performed for the inhabitants; a dining-hall; and a dormitory, in which each has a separate bed. The latter is a lofty room, furnished with large windows and ventilators, so as to admit and preserve a pure air. For the sick apartments are allotted, and sick waiters appointed. The number of inhabitants in one room is proportioned to its size, but there are many who have rooms to themselves. No one lives here by compulsion, each inhabitant pays for rent and board a moderate sum, fixed by a committee of overseers in which the warden of the house presides; whose business it is to maintain good order, attend to the external welfare of the house and its inhabitants, and by his advice and activity, to prevent every evil arising from external sources. Besides the warden an unmarried clergyman resides in the house, appointed to attend to the moral conduct and spiritual concerns of all the single men belonging to the congregation. He hears their complaints, affixes them with good advice, and uses all his influence for their benefit, and for the prevention of any evil that would undermine their spiritual happiness. On the other side of the square is another large building, inhabited by single women; with a chapel, dining-hall, dormitory, and a large garden. The internal regulations are exactly the same with those of the house of the single men. There are likewise houses for widowers and widows, who find in them an agreeable retreat, with board and lodging. The poor are cared for and maintained; for which purpose, several charitable institutions exist in the congregation. The men's house, the house of count Reuss, the shop and linen warehouse, are the most considerable buildings in Herrnhut; the family houses are built in regular streets opening into the square. Both the streets and houses are kept clean; and besides a watchman at night, an officer is appointed to attend to good order in the day. All strangers are treated with civility; but neither drunken nor disorderly visitors, nor beggars, are suffered to infest the streets. The latter receive a caution, and are then desired to proceed. The principal trade carried on at Herrnhut is in linen; besides which, the work done there by tailors, givers, shoemakers, cabinet-makers, silversmiths, and other artificers, is well known for its good quality. They have their first prices, and never make any abatement. Every workman receives his wages, no community of goods existing among the brethren, as is falsely supposed; and the contributions towards the support of the establishment at large, the millions, and other charitable institutions are voluntary. The building and increase of this settlement occasioned no small surprise in the adjacent country, and both in 1732, 1736, and 1737, commissioners were appointed to examine into the doings and proceedings of the brethren at Herrnhut. The commissioners made a favourable report; and ever since both Herrnhut, and other settlements of the United Brethren in Saxony have been protected, and several immunities offered them by the court, but not accepted. Herrnhut was visited in 1766 by the late emperor, Joseph II. after his return from Dresden, by the present king of Prussia, and by several royal personages, who expressed their satisfaction in examining its peculiar regulations. The United Brethren have settlements in Saxony, Silesia, and other parts of Germany, in Holland, Denmark, England, Ireland, and America. In England, their principal settlements are at Fulneck near Leeds, and Fairfield near Manchester. In Greenland, North and South America, the West Indies, and Prussia, they have millions for the propagation of Christianity among the Heathen, and in many parts have had considerable success. See Bulching's account of the rise and progress of the Church of the Brethren, Halle 1731. Grantz's History of the Brethren, London 1780.
HERNHEUT, and industrious than the heathen, not only con-
nenced but encouraged their endeavours. These were
also greatly facilitated by the protection of the king of
Denmark, Christian VI. The settlement consists of
a spacious negro church, a dwelling-house for the
millionaires, negro huts, out-houses, and gardens.
From this place the island of St. Croix and St. Jan, were
first supplied with millionaires; and the Brethren
have now two settlements in each. The negro con-
verts belonging to their church amount in these
three islands to near 8000 souls.

HERNHEUT (New), is also the name of the oldest
million settlement of the United Brethren in Green-
land. It is situated on Ball’s river, a few miles from
the sea, near Davis’s Straights, on the western coast
of Greenland, not far from the Danish colony God-
haab. The two first millionaires were sent from Hern-
hut in the year 1733, and their laudable intentions
favoured by Christian VI. king of Denmark.
They had to struggle in this uncultivated, frozen, and
avage country with inconceivable hardships, and found
at first great difficulty in acquiring the language of the
natives. However, after six years labour and perfe-
verance, they had the satisfaction to baptize four per-
sonts, all of one family; and from that time the
mission began to prosper, so that in the succeeding years two
other settlements were begun, called Lichtenfels and
Lichtenau: all of them continue in prosperity. About
1800 of the natives have been christianized since
the beginning of this million. See Cramer’s History of

HERSE, in fortification, a lattice, or portcullis, in
form of a harrow, befit with iron spikes. The word
herse is French, and literally signifies “harrow,” be-
ing formed of the Latin herse or irpex, which de-
notes the same.

It is usually hung by a rope fastened to a moulittle,
to be cut, in case of surprise, or when the first gate
is broken with a petard, that the herse may fall and
stop up the passage of the gate or other entrance of a fortress.

The herse is otherwise called a farfass, or cataract;
and when it consists of straight stakes, without any
cros pieces, it is called arguse.

HERSE, is also a harrow, which the besieged, for
want of chevaux de frise, lay in the way, or in breaches,
with the points up, to impede the march as well
of the horse as of the infantry.

HERSILLON, in the military art, a sort of plank
or beam, ten or twelve feet long, whose two sides are
drove full of spikes or nails, to incommode the march
of the infantry or cavalry. The word is a diminutive of
herse; the herisson doing the office of a little herse.
See HERSE.

HERTFORD. See HARTFORD.

HERTHA, or HERTHUS, in mythology, a deity
worshipped by the ancient Germans. This is men-
tioned by Tacitus, in his book De Mortibus Germani-
rum, cap. 40. Voelius conjectures, that this goddes
was Cybele, but she was more probably Terra or the
Earth; because the Germans still use the word hert
for the earth, whence also the English earth. Some have
supposed that Stonechenge was a temple consecrated to
the goddes Hertha.

HERTZBERG, a considerable town of Germany,
in the electorate of Saxony, and on the confines of
Lusatia. E. Long. 13° 37’. N. Lat. 51° 42’.

HERVEY (James), a late divine of exemplarity,
was born in 1714, and succeeded his father in
the living of Wotton Flavell and Collington in North-
amptonshire. These being within five miles of each
other, he attended alternately with his curate; till be-
ing confined by his ill health, he resided constantly at
Wotton; where he diligently pursued the labours of
the ministry and his study under the disadvantage of a
weak constitution. He was remarkably charitable;
and desired to die just even with the world, and to be,
as he termed it, his own executor. This excellent di-
vine died on Christmas-day 1758, leaving the little he
poffted to buy warm clothing for the poor in that
severe season. — No work is more generally or defer-
vedly known than his Meditations and Contemplations:
containing Meditations among the Tombs, Reflections
on a Flower-garden, a Defcant on Creation, Contempla-
tions on the Night and harry Heavens, and a Winer-
piece. The sublime sentiments in these pieces have
the peculiar advantage of being conveyed in a flowing
elegant language, and they have accordingly gone thro’
many editions. He published besides, Remarks on Lord
Bolingbroke’s Letters on History; Theron and Alpha,
or a Series of Dialogues and Letters on the most impor-
tant Subjects; some sermons, and other tracts.

HERZBERG, a considerable town of Germany,
in the electorate of Saxony, and on the confines of
Lusatia. E. Long. 13° 37’. N. Lat. 51° 42’.

HERVEY (James), a late divine of exemplary
piety, was born in 1714, and succeeded his father in
the living of Wotton Flavell and Collington in North-
amptonshire. These being within five miles of each
other, he attended alternately with his curate; till be-
ing confined by his ill health, he resided constantly at
Wotton; where he diligently pursued the labours of
the ministry and his study under the disadvantage of a
weak constitution. He was remarkably charitable;
and desired to die just even with the world, and to be,
as he termed it, his own executor. This excellent di-
vine died on Christmas-day 1758, leaving the little he
polstered to buy warm clothing for the poor in that
severe season. — No work is more generally or defer-
vedly known than his Meditations and Contemplations:
containing Meditations among the Tombs, Reflections
on a Flower-garden, a Defcant on Creation, Contempla-
tions on the Night and harry Heavens, and a Winter-
piece. The sublime sentiments in these pieces have
the peculiar advantage of being conveyed in a flowing
elegant language, and they have accordingly gone thro’
many editions. He published besides, Remarks on Lord
Bolingbroke’s Letters on History; Theron and Alpha,
or a Series of Dialogues and Letters on the most impor-
tant Subjects; some sermons, and other tracts.

HERZBERG, a considerable town of Germany,
in the electorate of Saxony, and on the confines of
Lusatia. E. Long. 13° 37’. N. Lat. 51° 42’.

HERVEY (James), a late divine of exemplary
piety, was born in 1714, and succeeded his father in
the living of Wotton Flavell and Collington in North-
amptonshire. These being within five miles of each
other, he attended alternately with his curate; till be-
ing confined by his ill health, he resided constantly at
Wotton; where he diligently pursued the labours of
the ministry and his study under the disadvantage of a
weak constitution. He was remarkably charitable;
and desired to die just even with the world, and to be,
as he termed it, his own executor. This excellent di-
vine died on Christmas-day 1758, leaving the little he
polstered to buy warm clothing for the poor in that
severe season. — No work is more generally or defer-
vedly known than his Meditations and Contemplations:
containing Meditations among the Tombs, Reflections
on a Flower-garden, a Defcant on Creation, Contempla-
tions on the Night and harry Heavens, and a Winter-
piece. The sublime sentiments in these pieces have
the peculiar advantage of being conveyed in a flowing
elegant language, and they have accordingly gone thro’
many editions. He published besides, Remarks on Lord
Bolingbroke’s Letters on History; Theron and Alpha,
or a Series of Dialogues and Letters on the most impor-
tant Subjects; some sermons, and other tracts.
HESPERIDES

On the death of the father, an estate was left, which ought to have been equally divided between the two brothers Hesper and Perseus; but Perseus defrauded him in the division, by corrupting the judges. Hesiod was so far from resenting this injustice, that he expresses a concern for those mistaken mortals who place their happiness in riches only, even at the expense of their virtue. He lets us know, that he was not only above want, but capable of afflicting his brother in time of need; which he often did though he had been so ill used by him. The last circumstance he mentions relating to himself is his conquest in a poetical contention. Archidamus, king of Euboea had instigated funeral games in honour of his own memory, which his sons afterwards took care to have performed. Here Hesiod was a competitor for the prize in poetry; and won a tripod, which he consecrated to the muse. Hesiod having entered himself in the service of the muses, left off the pastoral life, and applied himself to the study of arts and learning. When he was grown old, for it is agreed by all that he lived to a very great age, he removed to Locris, a town about the fame distance from mount Parnassus as Acras was from Helicon. His death was tragic. The man with whom he lived at Locris, a Mileban born, ravished a maid in the same house; and though Hesiod was entirely ignorant of the fact, yet being maliciously accused to her brothers as an accomplice, he was injuriously slain with the ravisher, and thrown into the fex. The Theogony, and Works and Days, are the only undoubted pieces of this poet now extant: though it is supposed that these poems have not been defecled perfect and finished to the present time. A good edition of Hesiod’s works was published by Mr Le Clerc at Amsterdam in 1701.

Hesper, Hesperus, in astronomy, the evening star; an appellation given to Venus when he follows or fets after the sun. The word is formed of the Greek έφεσς, and is supposed to have been originally the proper name of a man, brother of Atlas, and father of the Hesperides.

But Hesiod, l. i., relates, that Hesperus having ascended to the top of mount Atlas, the better to observe and contemplate the stars, never returned more; and that hence he was said to have been changed into this star.

Hesperia, an ancient name of Italy; so called by the Greeks from its western situation. Hesperia was also an appellation of Spain; but with the epithet ultima (Horace), to distinguish it from Italy, which is called Hesperia magna (Virgil), from its extent of empire.

Hesperia cornu, called the Great Bay by the author of Hanno’s Periplo; but most interpreters, following Mela, understand a promontory; some Cape Verd, others Palma Cape: Vossius takes it to be the former, since Hanno did not proceed so far as the latter cape.

Hesperideæ, in botany, (from the Hesperides) golden or precious fruit: the name of the 19th order in Linnaeus’s Fragments of a Natural Method. See Botany, p. 461.

Hesperides, in the ancient mythology, were the daughters of Hesper or Hesperus, the brother of Atlas. According to Diodorus, Hesperas and Atlas two brothers, who possessed great riches in the western Hesperides parts of Africa. Hesperus had a daughter called Hesperia, who married her uncle Atlas, and from this marriage proceeded seven daughters, called Hesperides from the name of their mother, and Atlantides from that of their father. According to the poets, the Hesperides were three in number, Ægle, Arcthula, and Hesperthula. Hesiod, in his Theogony, makes them the daughters of Nox, Night, and feants them in the same place with the Gorgons; viz. at the extremities of the west, near mount Atlas; it is on that account he makes them the daughters of Night, because the sun sets there. The Hesperides are represented by the ancients as having the keeping of certain golden apples, on the other side the ocean. And the poets give them a dragon to watch the garden where the fruit grows: this dragon they tell us Hercules flew, and carried off the apples.—Pliny and Solinus will have the dragon to be no other than an arm of the sea, wherewith the garden was encompassed, and which defended the entrance thereof. And Varro supposes, that the golden apples were nothing but sheep. Others, with more probability, say they were oranges.

The gardens of the Hesperides are placed by some authors at Larich, a city of Fez; by others, at Bernich, a city of Barca, which falls better with the table. Others take the province of Sufa in Morocco for the island wherein the garden was seated. And, lastly, Rudbecks places the Fortunate Islands, and the gardens of the Hesperides, in his own country, Sweden.

Hesperidum insula (anc. geog.), islands near the Hesperi Cornu; but the accounts of them are so much involved in fable, that nothing certain can be affirmed of them.

Hesperis, rocket, Dame’s violet, or queen’s-gillyflower: A genus of the lilicoa order, belonging to the tetradynamia class of plants; and in the natural method ranking under the 39th order, Siliquosae. The petals are turned obliquely; there is a glandule with the shorter flamina; the stigmas almost upright; the stigmas forked at the base, convolute, or closing at the top: the calyx close.

Species 1. The matronalis, or common sweet-scented garden-rocket, hath fibrous roots, crowned with a tuft of long, spear shaped, rough leaves; upright, single, hairy stalks two feet high; garnished with oval, lanceolate, slightly indented, close-fitting leaves; and the stalk and branches terminated by large and long spikes of sweet-scented flowers of different colours and properties in the varieties, of which there are a great number. All the varieties of this species are so remarkable for imparting a fragrant colour, that the ladies were fond of having them in their apartments. Hence they derived the name of dame’s violet; and, bearing some resemblance to a flock-gillyflower, were sometimes also called queen’s-gillyflower; but are now most commonly called rocket. 2. The inodoræ, or scentlefs rocket, hath a fibrous root; upright, round, firm stalks, two feet high, garnished with spear-shaped, acute-pointed, sharpindented, close-fitting, leaves; and all the branches terminated by large spikes of scentlefs flowers, with obtuse petals, of different colours and properties in the varieties. This species makes
The prince of Hesse-Cassel has 40 or 50,000 men in his dominions fit to bear arms; and the troops that he hires out have often brought him in large sums, especially from Great Britain. He keeps a standing army of 15,000 men. This family is allied to most of the Protestant princes in Europe. The branches of Cassel, Homburgh, and Philippinae, are Calvinists; that of Darmstadt, Lutherans; and that of Rinfields, Roman Catholics. The present prince of Hesse-Cassel, indeed, in the year 1749, embraced the Roman Catholic religion; but in 1754 drew up, and confirmed by oath, an instrument, of which all the Protestant princes are guarantors, declaring that the established religion of his dominions should continue in every respect as before, and that his children should be brought up and instructed therein. Here, as in the other Protestant Lutheran countries of Germany, are condillories, superintendents, and inspectors of the church. In the whole language are three universities, besides Latin schools and gymnasia, for the education of youth. The manufactures of Hesse are linen cloth, hats, stockings, gloves, paper, goldsmiths wares; and at Cassel a beautiful porcelain is made. They have also the finest wool in Germany; but are reproached with want of industry, in exporting instead of manufacturing it themselves.—This is supposed to have been the country of the ancient Cattii, mentioned by Tacitus, &c. who, in after-ages, were called Chatti, Chafii, Hafl, and Hefti. The two chief branches of Cassel and Darmstadt have many rights and privileges in common, which we have not room to specify. Both of them have a seat and vote in the college of princes at the diet of the empire, and those of this circle. Each of these princes, besides their guards and militia, maintains a considerable body both of horse and foot.

HESIANFLY, a very mischievous insect which lately made its appearance in N. America; whose depredations have materially injured the crops of wheat. It is, in its perfect state, a small winged insect; but the mischief it does is while in the form of a caterpillar; and the difficulty of destroying it is increased by its being as yet unknown where it deposits its eggs, to be hatched before the first appearance of the caterpillars. These mischievous insects begin their depredations in autumn, as soon as the wheat begins to shoot up through the ground. They devour the tender leaf and stem with great voracity, and continue to do so till flopped by the frost; but no sooner is this obstacle removed by the warmth of the spring, but the fly appears again, laying its eggs now, as has been supposed, upon the stems of the wheat just beginning to spire. The caterpillars, hatched from these eggs, perforate the stems of the remaining plants at the joints, and lodge themselves in the hollow within the corn, which shows no sign of difficulty till the ear begins to turn heavy. The stems then break; and being no longer able to perform their office in supporting and supplying the ears with nourishment, the grain perishes about the time that it goes into a milky state. These insects attack also rye, barley and timothy-grass, though they seem to prefer wheat. The destruction occasioned by them is described in the American Museum for February 1787, is in the following words: "It is well known that all the crops of wheat in all the land over which it has extended,
HESSIAN FLY.

have fallen before it, and that the farmers beyond it dread its approach; the prospect is, that unless means are discovered to prevent its progress, the whole continent will be over-run—a calamity more to be dreaded than the ravages of war.”

This insect appeared first in Long Island during the American war, and was supposed to have been brought from Germany by the Hessian, whence it had the name of the Hessian fly. From thence it has proceeded inland at the rate of about 15 or 20 miles annually; and by the year 1789 had reached 200 miles from the place where it was first observed. At that time it continued to proceed with unabating increase; being apparently flopped neither by rivers nor mountains. In the fly state it is likewise exceedingly troublesome; by getting into houses in swarms, falling into vials and drink; filling the windows, and dying perpetually into the candles. It still continued to infest Long Island as much as ever; and in many places the culture of wheat was entirely abandoned.

The American States are likewise infested with another mischievous insect, named the Virginia-wheat-fly. This, however, has not yet passed the river Delaware; though there is danger of its being gradually inured to colder climates so as to extend its depredations to the northern States also. But it is by no means the same with the Hessian fly. The wheat-fly is the same with that whole ravages in the Anangou in France are recorded by M. du Hamel; it eats the grain, and is a moth in its perfect state. On the other hand, the Hessian fly has been hitherto unknown to naturalists; it eats only the leaf and stalk; and, in its perfect state, is probably a tentedo, like the black negro-fly of the turnip.

As of late years great quantities of wheat were exported from America into Britain, it became an object worthy of the attention of government to consider how far it was proper to allow of such importation, lest this destructive insect might be brought along with the grain. The matter, therefore, was fully canvassed before the privy council; and the following is the substance of the information relative to it; and in consequence of this, the importation of American wheat was forbidden by proclamation.

1. By a letter, dated 22d April 1788, Mr Bond, consul at Philadelphia, informed the marquis of Caernarthen, that there was a design to export wheat from thence to England; that the fly had made great depredations; and that there might be danger of its thus being conveyed across the Atlantic. He added, that it was not known where the eggs of the insect were deposited, though it was supposed to be in the grain. Steeping the feed in elder juice he recommended as an effectual remedy and preservative of the crop.

2. In consequence of this information his Lordship wrote to Sir Joseph Banks, president of the royal society, desiring him to enquire as much as possible concerning the insect, both with regard to its natural history, and the method of preventing its ravages. In this research, however, that learned gentleman met with the insect called the flying weevil for the Hessian fly.

Of this insect he gives a description; but in a little time, being sensible of his mistake, he observed to the council, that his report to the marquis of Caernarthen applied not to the Hessian fly, but to a different insect, viz. the flying weevil; that the danger of importing this insect was much greater than that of the Hessian fly. The corn already brought from America, he was of opinion, might easily be examined and a discovery made whether the fly had been there. Among other methods which might be used for this purpose, that of putting the corn among water was one, when the infected grains would rise to the top, and might then be opened and examined. Some slight trials of that kind had already been made; and found manifest signs of the fly in some grains which he had opened.

3. A farther account of the insect was given by Dr. Mitchell, in consequence of the abovementioned letter from the marquis of Caernarthen. According to him it was first discovered in the year 1775, on Staten Island, and the west end of Long Island; since that time it proceeded regularly through the southern district of the State of New York, part of Connecticut; and at the time of giving this account, July 1788, had got into New Jersey. As it appeared about the time that the Hessian troops arrived, an opinion had gone abroad that they brought it along with them; but the doctor was of opinion that it is a native animal, nourished by some indigenous plant, but which then, for the first time, came among the wheat, and found it proper food. He had seen the caterpillar, chrysalis, and fly, but never could find the egg, or discover where it is deposited. The caterpillar appears, as has already been said, in autumn, and, after having devoured the tender stalk, soon becomes a chrysalis, coloured like a flax feed; which, being fixed between the leaf and the stalk, injures the plant by its mechanical pressure: from this proceeds the fly, which is either able of itself to injure the intense winter frosts, or lays eggs capable of doing it. Early in the spring the caterpillar appears again, even when the heat is scarce sufficient to make the wheat grow; its ravages, therefore, are at this period particularly destructive; and it passes through its metamorphoses with such speed, as to produce a third generation while the wheat is yet tender and juicy; however, as the corn has by this time grown considerably, the third generation is not so destructive as the second. It hatches chiefly by rendering the straw weak, and liable to break down when loaded afterwards by the weight of a full ear; “and sometimes (says the doctor) it will be infected by the fourth swarm before harvest.”

4. In another communication of Sir Joseph Banks, dated July 24, 1778, he makes some general observations on the nature of those caterpillars from which flying insects proceed; and to which clas both the flying weevil and Hessian fly belong. Nature, he observes, has provided against the kinds of danger these tender insects are most likely to meet with. Thus, in climates where the winters are severer, the eggs of the most tender insects relit the force of the usual frost; in seafoms of remarkable severity, indeed, some are destroyed; but a sufficient number always escape for propagating the species. The young caterpillar, if hatched before its proper food is ready, will starve even weeks before it perishes for want of nourishment; and in some few instances where it is hatched in the autumn, it is directed by instinct to spin a web, in which it remains torpid and without food during the whole winter.
winter. The chrysalis, though deprived of loco-motion, is capable of resulting various dangers arising from cold, heat, wet, &c. and the length of time which the animal remains in that state is capable of very considerable extension. The complete animal, tender as it appears, and intended to exist no longer than is necessary to fulfill the business of propagation, which, in some species is gone through in a few days, nevertheless is capable, in some instances, of enduring the utmost variation of climate; and if, by accidental circumstances, the sexes are prevented from meeting, its short life is extended to many times the amount of its usual duration.

The observations on the fly made by Sir Joseph in this paper, are not different from those already related; only he differs from the opinion of Mr Bond, that the eggs are laid on the grain; thinking it more probable, from analogy, that they are deposited on the straw; and being shaken off from thence by the strokes of the flail in threshing, are mixed with the corn; from whence it must be very difficult to separate them. Hence he concluded, that there was an apparent and very great risk of importing the eggs along with the corn; and there was no doubt, that when once they had got a footing, they would establish themselves in Britain as well as in America. It must be observed, however, that none of the grain which was examined showed any signs of this fly, its eggs, or caterpillars; such insects as were found in some deceased specimens being only the weevils common in England as well as in other countries; though some which were inspected in the month of August this year contained the chrysalis of some insects, which Sir Joseph Banks was of opinion might be the flying weevil; and as he did not know whether these would revive or not, he gave it as his opinion, that the cargo in which they were found ought not to be suffered to come into the kingdom.

5. In order to procure all the intelligence that could be had concerning these insects, the Duke of Dorset addressed a letter to the royal society of agriculture in France, to know whether any of them existed in that country. The report of the society was accompanied with a drawing of two insects; one of which was supposed to be the caterpillar of the Hessian fly, from its attacking the wheat only when in the herb; beginning its ravages in autumn, reappearing in the spring, and undergoing the metamorphosis already mentioned. "That insect (say the society) whole havoc has been well known in America only since 1776, does not appear to differ from it, as well as we can judge from a very short description of those which have been observed in the north, and of which the history is contained in the different volumes of the academy of sciences of Stockholm. We know that there exist in France caterpillars whose manner of living resembles that of those insects; but the mischief which they do to corn having never been considerable enough to attract the attention of government, and not having been ourselves engaged in following in its detail the history of that species of caterpillar, we regret not being able to say anything particular upon that subject." The rest of the report contains an account of the flying weevil.

6. Further recourse was now had to America for information. The marquis of Caernarthen wrote to Sir John Temple at New York, the British consul general; and this gentleman applied to colonel Morgan, who had been more curious with respect to this insect than any other person with whom he was acquainted. This account was, that the Hessian fly was first introduced into America by means of some straw made use of in packages, or otherwise landed on Long Island at an early period of the late war; and its first appearance was in the neighbourhood of Sir William Howe's disembarkation, and at Flat Bush. From thence it spread in every direction, but at first very slowly; and it was not till the year 1786 that they reached Mr Morgan's farm, situated not quite 50 miles from New York. No damage was done the first leaf, and very little the second; but in 1788 they were materially damaged, and in some places totally destroyed all round. "The name of Hessian fly (says Mr Morgan) was given to this insect by myself and a friend early after its first appearance on Long Island." In a letter to General Washington, dated July 21st 1788, Mr Morgan treats particularly of the insect itself, and mentions several experiments made by himself to oppose its depredations. The result of these was that good culture of strong soil, or well manured lands, may sometimes produce a crop of wheat or barley, when that sowed on poor or middling soil, without the other advantages, will be totally destroyed. "But (says he) as the insect lives in its aurelia state in straw and later through the winter, I find that unmixed barn-manure spread on the land in the spring multiplies the fly to an astonishing degree; hence the farmer will fee the necessity of mixing his yard with earth and marle in heaps; adding, where he can do it, a quantity of lime, and changing the heaps, after they have undergone the necessary fermentation, that their parts may be well incorporated, and a new digestion brought on, which will effectively destroy the insect. Rolling of wheat just before the first frost, in autumn, and soon after the last in spring, or before the wheat begins to pipe or spindle, has also a good effect. In the first place, it is a part of good culture; and, secondly, the roller crushes and destroys a great proportion of the insect. Top-dressings of lime, or of live ashes, are useful as manures, and may (when applied about the times I have mentioned as proper for rolling) be offensive to the insect; but if used in sufficient quantity to destroy them, would, I believe, destroy the wheat also. In the year 1782, a particular species of wheat was introduced on Long Island, which is found to refuse the fly, and to yield a crop when all other wheats in the same neighbourhood are destroyed by it. But as this wheat has been incasually dowed in the hands of some farmers, it has generally become so mixed by the farmers, as to suffer in its character in proportion to this mixture; inasmuch, that some farmers, from inattention to this circumstance, have condemned it altogether. Fortunately, however, some crops have been preserved from this degeneration; and I was so lucky as to procure the whole of my last year's seed of the purest kinds; the consequence of which has been a good crop, whilst my neighbours fields, sowed with other kinds of wheat, have been either totally destroyed or materially injured. I have satisfied myself that this species of wheat was brought to New York in 1782; that it was then sent to Meffrs Underhill's mill to be manufactured into flour; and that, from seed saved out of
of this parcel, the yellow-bearded wheat was propagated. It is generally received opinion, that the capacity of the yellow-bearded wheat to repel the attacks of the fly is owing to the hardness or solidity of the straw; but when we reflect that other wheats— are sometimes wholly cut off in the fall of the year, and sometimes early in the spring, before the leas of its running to straw, we shall be induced to allign some other cause. I cannot point out more than two distinctions of this from other wheats. The first is in the ear, at the time of the harvest. The obvious difference then, is in the colour of the chaff. The second can only be observed by the miller, who says, "this grain requires to be more aired and dried than any other wheat before grinding or it will not yield its flour so kindly, as it is of a more oily nature; but when thus aired and dried the quality and quantity of its flour is equal to that of the best white wheat."

7. In a letter from Mr Wadsworth, dated 22d August 1788, we are informed, that the experiments made with elder juice, recommended as a preventative of this evil by Mr Bond, were tachialous, and had failed in every instance in 1786; but the efficacy of the yellow-bearded wheat in repelling the attacks of the fly is confirmed. The progress of the fly northward is likewise confirmed; but we are told that it has disappeared in many places near New York, where it formerly abounded.

8. In consequence of the correspondence between the marquis of Caernarthen and Mr Bond, the latter made very particular inquiry concerning this mischievous insect, and has given a better account of it than any of the above. "The Hessian fly (says he) is a small dark fly, with thin, long, black legs; clear transparent wings, extending far beyond the body of the trunk; with small, though perceptible, horns or feelers projecting from the frout. These I have seen appear in lice and shape like a little fly which attacks cheese in the west of England, and with which the keepers of dairies here, as productive of the warm skippers which destroy cheese; and it is remarkable that the worm produced, from the egg of the Hessian fly, though rather thinner and longer, bears a strong resemblance to the worm in cheese. The horns which evidently appear on the Hessian fly may be provided by nature as feelers to enable them to perforate hard grain, as well as grain in a softer state, tho' I have not yet seen any person who has perceived the egg, worm, or fly in the grain of the wheat, or who has found any nits, mucor, or even dust in the dry straw in ricks or barns, to induce a belief that the egg is there deposited after the harvest. One publication signed a Landholder, goes so far as to favour the idea that the fly even perforates the seed, and deposits its eggs therein. His ideas have been condemned, as tending to mislead others; but by no means confuted either by reason or experiment. An observation I made myself, gave me some cause to apprehend that the idea mentioned in the paper signed a Landholder was founded in fact: Upon examining a barn, in a country wherein the fly had not been known to injure the harvest (though it has certainly made its appearance there within a few weeks), I observed in the flaws and apertures where the wood was decayed, over which cobwebs were woven, several of these flies entangled in the webs, many of them dead, but some alive, and struggling to disengage themselves; from hence I concluded that there was a propensity in the fly to get into the mow; but whether with a purpose of mere shelter and nurture, or with a view to deposit its eggs, I am at a loss to decide."

9. Mr Bond now refers to some observations by a Mr Potts and a Mr Cleaver, which, with several other papers on the subject, he had inclosed in his letter to the marquis. The former was a farmer in the county of Chester, who tacked his wheat in autumn 1789, at a time when the fly had not been seen in, or near that county. About six or seven weeks after the harvest he had occasion to thresh some of his wheat; and with a view to prevent its scattering and wasting, he threw the sheaves from the rick upon a large sheet. On taking up the sheaves to carry them to the threshing-floor, he perceived a great number of flies, anfwering precisely the description of the Hessian fly, lying upon the sheet, some dead and others in a torpid state; from whence he concluded that the fly had got a footing in his rick; but from any examination either of the straw or grain, no trace of the eggs being deposited was discovered. Mr Cleaver, a farmer in the same county, apprehending that the fly might approach his neighbourhood, fowed some wheat in his garden, which grew so as to appear above ground in less than a fortnight, when a violent gust of wind came on; and immediately after he perceived small clouds of flies over and about the wheat he had sown. He examined the grain in a few days; and found that numbers of the flies had deposited their eggs in the heart of the main stalk, and many of them lay dead on the ground where the wheat was sown, and near it. Many of the eggs were found in the stalk; and some small white worms produced from other eggs were lately discovered in the stalk very near the root of the wheat. Wherever these worms were found, the whole of the individual stalk was perceptibly changing in point of colour, tending to a yellowish cast; the top hanging down quite shrunk and withered. In some of the wheat which was carefully examined, the eggs were found within the stalk of a very minute size and whitish colour, with something of a yellowish tinge. In those where the worm was formed, it was carefully wrapped up surrounded by different coats of the foot in which it lay, as if it had been skilfully and tenderly rolled up for its preservation; around it the stalk was plainly eaten away sometimes nearly through. The worm strongly resembles the skipper in cheese, somewhat thinner, and rather longer, of a whitish cast. The ground on which this wheat was sown was rich garden ground, high and dry; the natural soil a strong red clay; few of the floors, of which there were many in one cluster in proportion to their number, were hurt by the fly. This was imputed to the strength of the soil, which producing a robust powerful growth, resisted, in a great degree, the attack of the fly, though the weak floors suffered generally.

10. A similar account of the Hessian fly is given by Mr Jacobs, an experienced farmer in the county of Montgomery. From his observations the egg is usually deposited in the funnel or sheath a little above the first joint. When the eggs are laid in the autumn or spring,
H E S [493]

H E S

spring, they are utterly destructive of the growth of the wheat; but when they are destroyed shortly before the harvest, the grain even the stalk is scarcely affected, especially in rich ground. The egg, he says, is at first very minute; it grows rapidly, becomes full and large, and turns to a brown hue, in size and colour very like a flax feed. A material difference was also perceived between rich and poor ground with respect to the ravages of the fly; but none between moist and dry soils. He is also of opinion that the yellow-bearded wheat will resist the attacks of the fly; and that rolling and feeding the wheat will be of great service.

11. A farmer in Jersey, who dates his letter from Hunterdon, Jan. 30, 1757, observes that though the fly is supposed to advance to about 15 miles annually, and neither waters nor mountains obstruct its passage; yet when disturbed, he never saw them take a flight of above five or six feet; nevertheless they are so active, that it is very difficult to catch them. They first appear towards the end of September; and soon after their eggs appear hatched, in colour and size like a flax feed; they are very low, at the same time even in the ground; and here they harbour all winter. On the first appearance in any district, their numbers being small they seldom cut off the crop in this state, which is often the case the second or third year. In the spring, after warm weather they again appear as a small worm, and destroy the crop. The remedies proposed by this farmer are, sowing upon rich ground elder, and rolling. A gentleman whose account was dated on the first of November 1786, says, that their eggs resemble what is commonly called the fly blow on meat, being very small, and only in one place. Soon after the other blades of wheat preceding from the same kernel inclose the first, the egg is covered, and agreeable to the usual progress of insects arrives at the state of a worm, and descends towards the root, where it consumes the tender blade, sometimes destroying the whole crop in the fall; but if by reason of the fertility of the soil, and other concurrent circumstances, the vegetation is so rapid as to baffle their efforts, some of the latter-laid eggs, when at the worm state, entrench themselves in the ground to the depth of an inch or more, where he had found them after severe frosts changed from a white to a greenish colour and almost transparent; from this they proceed to the auricle state, and thus continue probably in the ground till the spring, when the fly is again produced, which again lays its eggs, and finishes the work begun in the fall to the total destruction of the crop. Another piece of intelligence he gives, but not from his own observation, that by feeding the wheat very close in the winter and spring if the land is rich, it will again spring up, and the worms do not much injure the second growth. By another correspondent we are informed, that maritime places are less liable to be infested with the fly than the interior parts of the country; and therefore recommends as an experiment, that fine salt should be sprinkled on the wheat just before, or very soon after, the appearance of the fly. By others elder has been much recommended, as well as rolling, though the bearded wheat already mentioned seems to be the only effectual remedy.

12. By another communication from Mr. Morgan to the Philadelphia Society for promoting agriculture, he informs us, that he had made himself acquainted with the fly by breeding a number of them from the chrysalis into the perfect state. The fly is at first of a white body with long black legs and whisters, so small and motionless as not to be easily perceived by the naked eye, though very discernible with a microscope; but they soon become black and very nimble, both on the wing and feet, being about the size of a small ant. During the height of the brood in June, where 50 or 100 of the nits have been deposited on one stalk of wheat, he has sometimes discovered, even with the naked eye, some of them to twist and move on being disturbed; this is while they are white; but they do not then travel from one stalk to another, nor to different parts of the same stalk. The usual time of their spring hatching from the chrysalis is in May. "Those (says he) who are doubtful whether the fly is in their neighbourhood, or cannot find their eggs or nits in the wheat may satisfy themselves by opening their windows at night and burning a candle in the room. The fly will enter in proportion to their numbers abroad. The first night after the commencement of wheat harvest, this season, they filled my dining-room in such numbers as to be exceedingly troublesome in the eating and drinking vessels. Without exaggeration I may say, that a glass tumbler from which beer had been just drank at dinner, had 500 flies in it in a few minutes. The windows are filled with them when they desire to make their escape. They are very distinguishable from every other by their horns or whisters. With regard to the cure, it seems to be confirmed that the shocking of that called the yellow bearded wheat can only be depended upon. The fly indeed will reside in fields of this wheat, and lay its eggs upon the stalks, but no injury was ever known to happen except in one single instance, where it was found in a field along with the common sort, and that in a very small proportion to it. By another account, however, we are told that this yellow-bearded wheat is equally liable to be destroyed in the autumn with the common kind; so that the only method of securing the crop is by fowling it late in the season, when the fly is molly over.

13. The utmost pains were taken by the British government to find out whether this destructive insect exists in Germany or any of the northern countries of Europe; but from the accounts received, it appears that it has not hitherto been observed, or at least if it exists the damage done by it is too inconsiderable to attract notice.

14. From the whole correspondence on this subject, which from the abridgment just now given of it is evidently somewhat discordant, Sir Joseph Banks drew up a report for the privy council dated March 12, 1759, in which he states the following particulars: 1. The appearance of the fly in Long Island was observed in 1779. We must suppose this to be meant that its destructive effects became then first perceptible; for it seems undoubtedly to have been known in the year 1776. 2. The opinion of colonel Morgan, that it was imported by the Hiffians, seems to be erroneous as no such insect can be found to exist in Germany or any other part of Europe. 3. Since its first
first appearance in Long Island it has advanced at
the rate of 15 or 20 miles a year, and neither waters nor
mountains have impeded its progress. It was seen
crossing the Delaware like a cloud from the Fall’s
Township to Maysfield; had reached Saratoga, 200
miles from its first appearance, infecting the counties
of Middlesex, Somerfet, Huntingdon, Morris, Sufle
the neighbourhood of Philadelphia, all the wheat coun-
ties of Connecticut, &c. committing the most dread-
ful ravages; attacking wheat, rye, barley, and timothy
grafs. 4. The Americans who have suffered by this
infect, speak of it in terms of the greatest horror. In
colonel Morgan’s letter to sir John Temple, he uses
the following expressions. “Were it to reach Great
Britain, it would be the greatest scourge that island
ever experienced; as it multiplies from heat and mois-
ture, and the most intense frosts have no effect on the
egg or aurelia. Were a single straw, containing the
infect, egg, or aurelia, to be carried and safely depo-
sited in the centre of Norfolk in England, it would
multiply in a few years, so as to destroy all the wheat
and barley crops of the whole kingdom. There can-
not exist such an atrocious villain as to commit such
an act intentionally. 5. No satisfactory account of
the mode in which this infect is propagated has hither-
to been obtained. Those who say that the eggs are
deposited on the fock from fix to eight to 50, and by
their growth comprefs and hinder the flour from grow-
ing, are evidently erroneous, and the authors of them
have plainly mistaken the animal infect for its eggs. It
is sufficient to remember, that eggs do not grow or
increase in bulk, to prove that what they observed
was not eggs. 6. The landholders opinion, that the
eggs are deposited on the ripe grains of wheat, though
contradicted by colonel Morgan, is not disproved, as
the colonel advances no argument against it. 7. A
letter dated New York, September 1, 1786, says that
the eggs are deposited on the young blade resembling
what we call a fly blow in meat; very small, and but
one in a place; but this though the only natural mode
of accounting for the appearance of the infect, had it
been true, must undoubtedly have been confirmed by
numbers of observations. 8. Even though this should
be found hereafter to be the case, it is main a danger of the aurelias being beaten off by the
flail from the straw in threshing the wheat, and im-
ported into Britain along with it; the presence of thes
flies in barns having been fully proved by the observa-
tions of Mehrs Potts and Bond. 9. None of the re-
medies proposed against this destructive infect have
been in any degree effectual, excepting that of fowing
the yellow bearded wheat the straw of which is suf-
iciently strong to resist the impudence of the infect,
and even if its eggs are deposited upon it, receives little
injury in point of produce in grain: this provides,
however, no remedy for the loss of the barley crop,
nor for that which must be incurred by fowing the
yellow-bearded wheat, which is better fitted by nature
for the produce of other kinds; it appears also that
this very kind is liable to degenerate, and probably
from a different cause than that proposed by colonel
Morgan, viz. the mixture with common wheat. 10
Though the agricultural Society at Philadelphia, as
well as colonel Morgan have declared their opinions
decisively that no danger can arise from wheat import-
ed into Britain, as the infect has no immediate con-
nection with the grain; yet with nearly if not exactly
the same materials before him which these gentlemen
were furnished with, Sir Joseph Banks could not avoid
drawing a conclusion directly contrary; and he con-
cludes his report with the words of Mr Bond in a let-
ter to the marquis of Caermarthen. “Satisfactory as
the would be to my feelings to be able to say with preci-
sion, that I apprehend no danger of extending the
mischief by feed, my duty urges me to declare, that
I have not heard or seen any conclusive fact by which
I could decide in a matter of such importance; and
till that tell occurs, the wisdom of guarding against so
grievous a calamity is obvious.”

On the 27th of April the same year, another pap-
er, by way of appendix to the foregoing was given
in by sir Joseph Banks. In this he again observes,
that none of the descriptions of any European infect
hitherto published answer exactly to the Hessian
fly. In a letter from Mr Bond to the marquis of Caer-
marthen he mentions another kind of infect in the state
of Maryland, called by way of eminence the fly; and
which in some things resembles the Hessian fly, though
it cannot be accounted the same. It makes its way
into the mow, and bizes the ends of the grain percepti-
able; and no doubt depoits its eggs in the grain it-
self: since it has been observed, that wheat recently
threshed, and laid in a dry warm place, will soon be
covered with an extreme clammy crust, which binds
wheat on the surface together in such a way as to
admit it being lifted in lumps; but the wheat beneath
will not be hurt to any considerable depth. Such is
the quality of this fly, that if the hand be inferrer into
the heap affected by it, watery blisters are immedi-
atly raised; and the farmers and flaves, riding up-
on bags of this infected wheat, never fail to be severely
blistered thereby. “This infect (says he) is called
in Maryland the Revolution fly, by the friends of the
British government; but from all I can learn it is not
the same infect which originated on Long Island, and
is called the Hessian fly (by way of approbrium) by
those who favoured the revolution. All the papers I
have read on the Hessian fly are very inaccurate, not
to say contradictory; and I am convinced it is by no
means a settled point at this moment in which man-
ner and place the eggs of these infects are deposited. The
policy which induced government to open the ports
being founded on an appearance of a scarcity of corn,
that evil may be remedied by the admission of flour
instead of grain; and tho’ the countries from whence
the flour is carried will have the advantage of the
manufacture, still that cannot be reckoned as an ob-
ject, when opposed in the scale to an evil of such in-
 tense magnitude as the introduction of so destructive
an infect may occasion. The ravages here are beyond
conception ruinous. Many farmers have had their
lands so completely cut off as to be left without bread-
corn or even feed-corn. If the measure of confining
the importation to flour alone should be adopted, great
attention should be paid to the quality of the flour ad-
mitted into the British ports. An infinite deal of the
wheat of the last harvest is of a very wretched qual-
ity; and stratagems will be practised to give an ex-
tensive vent to so essential a plague of the middle states of
America.”

Ja
HET

In another letter to the same nobleman, Mr Bond expresses himself to the following purpose. "I have not been able to collect any decided information which fixes the essential point, how far the insect may be communicated by feed. It is a matter at this time quite undecided here: nor have I heard or observed any very conclusive reason to suppose that the fly makes its way generally into barns and ricks. A very intelligent farmer in the country of Bucks, informed me that it was the prevailing opinion there, and to find, that the fly did not either in the field or in the straw affect the grain of the wheat: a neighbour of his, in threshing the little wheat he had saved last harvest, observed the fly rise from the straw in great numbers wherever it was struck by the flail; but though it was at first presumed that the fly had infested itself into the mow for the purpose of depositing its eggs in the grain or in the straw, no trace of the egg could be discovered from the appearance of any mucus or dust, either in the grain or in the straw; hence it was inferred that all the mischief was done in the field.

HESYCHIUS, the most celebrated of all the ancient Greek grammarians whose works are now extant, was a Christian; and, according to some, the same with Hesychius patriarch of Jerusalem, who died in 609. He wrote a Greek lexicon; which, in the opinion of Caffanbon, is the most learned and useful work of that kind produced by the ancients. Schrevelius published a good edition of it in 1668, in 40, with notes; but the best is that of John Alberii, printed at Leyden in 1746, in two vols folio.

HETERIARCH, HETERIACH, in antiquity, an officer in the Greek empire, whereof there were two species; the one called simply heteriarch, and the other great heteriarch, who had the direction of the former.

The word is Greek, ἕτεραι ἀρχη, formed of the Greek ἕτερος, ἀρχή, "command." Their principal function was to command the troops of the allies; besides which, they had some other duties in the emperor's court, described by Codin, De Officis, cap. ii. n. 30, 31, 32, 37.

HETEROCLITE, HETEROCLITON, in grammar, an irregular or anomalous word, which either in declension, conjugation, or regimen, deviates from the ordinary rules of grammar. The word is Greek, ἕτερος κλίτος, formed of ἕτερος, "another," and κλίτος, "I decline."

Heterocline is more peculiarly applied to nouns which vary or are irregular in point of declension; having fewer cases, numbers, &c. than ordinary; or that are of one declension in one number, and another in another: as, ἄντων, ἀνταί; ἀντωνία, ἀντονία.

HETERODOX, in polemical theology, something that is contrary to the faith or doctrine established in the true church. The word is formed of the Greek ἕτερος, ὁδός, a compound of ἕτερος "another" and ὁδός "opinion." Thus, we say a heterodox opinion, a heterodox divine, &c. The word stands in opposition to orthodox.

HETEROGENEITY, in physics, the quality or disposition which denominates a thing heterogeneous. The word is also used for the heterogeneous parts themselves; in which sense, the heterogeneities or a Heterogeneous body are the same thing with the impurities thereof.

HETEROGENEOUS, or HETEROGENEAL, literally imports something of a different nature, or that confits of parts of different or dissimilar kinds; in opposition to homeogeneous. The word is Greek; formed of ὑέτερος άλλως, "different," and γένος, γένεις, "kind;" γ. d. composed of different kinds of parts.

HETEROGENEOUS Light, is by Sir Isaac Newton to be that which consists of rays of different degrees of refrangibility. Thus the common light of the sun or clouds is heterogeneous, being a mixture of all sorts of rays.

HETEROGENEOUS Nouns, one of the three variations in irregular nouns; or such as are of one gender in the singular number, and of another in the plural.—Heterogeneous, under which are comprehended mixed nouns, are six-fold. 1. Those which are of the masculine gender in the singular number, and neuter in the plural; as, hie tatarus, hae tatarus. 2. Those which are masculine in the singular number, but feminine and neuter in the plural; as, his locus, hi loci & hae loca. 3. Such as are feminine in the singular number, but neuter in the plural; as, hae carbo, & hae carbam. 4. Such nouns as are neuter in the singular number, but masculine in the plural; as, hie colunm, hi colui. 5. Such as are neuter in the singular, but neuter and masculine in the plural; as, hae raftrum, hi raftri, & hae rafira. And, 6. Such as are neuter in the singular, but feminine in the plural number; as, hae eplum, ba eplae.

HETEROGENEOUS Qualities, are those which are of such different kind and consideration, as that one of them, taken any number of times, never equals or exceeds the other.

HETEROGENEOUS Surds, are such as have different radical signs; as, √ aa, and √ bb, √ y z, and √ z y. 9. HETEROCH, in geography, a term of relation, denoting such inhabitants of the earth as have their shadows falling but one way, as those who live between the tropics and polar circles; whose shadows at noon in north latitude are always to the northward, and in south latitude to the southward.

HETH, the father of the Hitites, was the eldest son of Canaan (Gen. x. 15.), and dwelt southward of the promised land, at Hebron or thereabouts. Ephron, an inhabitant of Hebron, was of the race of Heth, and this whole city in Abraham's time was peopled by the children of Heth. There are some who maintain that there was a city called Heth, but we find no footsteps of it in the scripture.

HETRURIA, and ETRURIA, a celebrated country of Italy, on the west of the Tyber. It originally contained 12 different nations, which had each their respective monarch. Their names were Velenis, Chiusini, Perusini, Cortonisenes, Arretini, Vetuloni, Volaterrini, Rufellani, Volceini, Tarquinii, Falisci, and Cæretani. The inhabitants were particularly famous for their superstitition and strict confidence in omens, dreams, auguries, &c. They all proved powerful and resolute enemies to the rising empire of the Romans, and were conquered only after much effusion of blood.

HEVÆI (anc. geog.), one of the seven people who occupied Canaan; a principal and numerous people, and the name with the KaamlJlei, dwelling at the foot of
HEUCHER

HEWSON [William], a very ingenious anatomist, was born in 1739. He became a friend to Dr Hunter, and was afterwards in partnership with him; but, on their disagreement, read anatomical lectures at his own house (in which he was preceded by Mr. Falconer). He wrote "Inquiries into the Properties of the Blood, and the lymphatic System," 2 vols. and disputed with Dr Muro the discovery of the lymphatic system of vessels in invertebrate animals. He died in 1774.

HEXACHORD, in geometry, a figure of six sides and angles; and if these sides and angles are equal, it is called a regular hexagon.

HEXAHEDRON, in geometry, one of the five platonics bodies, or regular solids, being the same with a cube.

HEXAMETER, in ancient poetry, a kind of verse consisting of six feet; the first four of which may be indifferently either spondees or dactyls; the fifth is generally a dactyl and the sixth always a spondee. Such is the following verse of Horace:

I 2 3 4 5 6

Aut profde voleant, antideliaare poetae.

HEXAMILON, HEXAMORI, or HEXAMURRIUM, a celebrated wall, built by the emperor Emanuel in 1413 over the Thames of Corinth. It took its name from εξαμείλον, and μείλλα, which in the vulgar Greek signifies a mile, as being six miles long.

HEXAHEDRON, in geometry, one of the five platonics bodies, or regular solids, being the same with a cube.

HEXAMETER, in ancient poetry, a kind of verse consisting of six feet; the first four of which may be indifferently either spondees or dactyls; the fifth is generally a dactyl and the sixth always a spondee. Such is the following verse of Horace:

I 2 3 4 5 6

Aut profde voleant, antideliaare poetae.

HEXAMILON, HEXAMORI, or HEXAMURRIUM, a celebrated wall, built by the emperor Emanuel in 1413 over the Thames of Corinth. It took its name from εξαμείλον, and μείλλα, which in the vulgar Greek signifies a mile, as being six miles long.

The design of the hexamilon was to defend Peloponnesus from the incursions of the barbarians. Amurath II, having raised the siege of Constaninople in the year 1422, demolished the hexamurrium, though he had before concluded a peace with the Greek emperor. The Venetians restored it in the year 1423, by 30,000 workmen, employed for 15 days, and covered by an army commanded by Bertoldo d'Este general of the land forces, and Louis Loredano commander of the sea. —The infidels made several attempts upon it: but were repulsed, and obliged to retire from the neighbourhood thereof: but Bertoldo being killed at the siege of Corinth, which was attempted soon after, Bertino Calciano, who took on him the command of the army, abandoned, upon the approach of the begleri, both the siege and the defence of the wall which had cost them so dear; upon which it was finally demolished.

HEXANDRIA, in botany, (from εξαμείλον, and άμελλα a man); the name of the fifth class in Linnaeus's sexual method, consisting of plants with hermaphroditic flowers, which are furnished with six stamens or male organs, that are of all equal length. See Botan. p. 450.

HEXAPLA (formed of εξαμείλον, and ἄμελλα I open, I unfold), in church history, a Bible dispersed in six columns; containing the text and various versions thereof compiled and published by Origen, with a view of securing the facred text from future corruptions, and to correct those that had been already introduced.

Eusebius. Hist. Eccl. lib. vi. cap. 16, relates, that Origen, after his return from Rome under Curacalla, applied himself to learn Hebrew, and began to collect the several versions that had been made of the sacred writings.
HEXASTYLE, in architecture, a building with six columns in front.

HEXHAM, a town of Northumberland, situated near the conflux of the north and south Tyne. It is commonly reckoned to be the Alexandria of the Romans, where the first cohort of the Spaniards were in garrison. It was made a bishop's see by Ethelreda, wife of king Egfred, in the year 675. Its first bishop St Wilfred built here a most magnificent cathedral and monastery, and it was poached by seven bishops successively; but being very much infested by the Danes, the see was removed to York. The town and priory were destroyed by the Scots in 1296, and pillaged again in 1346. There was a remarkable and bloody battle fought near this town between the houses of Lancaster and York, wherein the former were defeated, chiefly by the extraordinary bravery and conduct of John Nevil, lord Montague, who was for that reason created earl of Northumberland. The present town is not populous, and the streets are narrow, with ill-built houses. The market-place, near the centre of the town, is a spacious square, and is supplied by a fountain with water. Among the remains of ancient structures, is a gateway of Saxon architecture, leading to the priory, but of a much older date. There are two ancient towers in the town, one of which is used as a feelions-house, and was formerly an exploratory tower; the other is on the top of a hill towards the Tyne, of remarkable architecture, which has been much higher than at present, and has two dungeons within it, besides several chambers with very little narrow windows. The town has a charity or grammar school. It was in 1571 annexed to the county of Cumberland; but only in civil matters; for its ecclesiastical jurisdiction is not the same with the rest of the county, it being still a peculiar belonging to the archbishop of York; and the vulgar still call the neighbouring country Hexhamshire. It is a corporation governed by a bailiff chosen yearly. Newcastle is about 15 miles distance. The markets here are Tuesday and Saturday; fairs on August 5. and November 8. A rivulet, called Hexholt, runs by the town, which sometimes overflows suddenly.

HEYDON, a little, pleasant, well-built town of Yorkshire, in that part called Holderness, seated on a river that falls into the Humber. It has now but one church, tho' there are the remains of two more; and had formerly a considerable trade, which is now lost, on account of its being so near Hull. The houses being rebuilt, adds to the beauty of the place. It is a corporation; and is governed by a mayor, a recorder, nine aldermen, and two bailiffs, who have the power of choosing sheriffs, and are judges of the peace. It lends two members to parliament. W. long. 0. 55. N. lat. 53. 46.

HEYDON (John), who sometimes assumed the name of Epigenes Theodorus, was a great pretender to skill in the Rosicrucian philosophy and the celestial signs, in the reign of king Charles I., and wrote a considerable number of chemical and alchemical works, with
HEYWOOD

very singular titles. This ridiculous author was much referred to by the duke of Buckingham, who was infatuated with judicial astrology. He employed him to calculate the king's and his own nativity, and was assured that his stars had promised him great things. The duke also employed Heydon in some treacherous and ficitious practices, for which he was sent to the Tower. He lost much of his former reputation by telling Richard Cromwell and the nine lords that Oliver had disguised like cavaliers, that Oliver would infallibly be hanged by a certain time; which he outlined several years.

HEYLIN (Dr Peter), an eminent English writer, was born at Burford, in Oxfordshire, in 1600. He studied at Hart Hall, Oxford; where he took his degrees in arts and divinity, and became an able geographer and historian. He was appointed one of the chaplains in ordinary to king Charles I.; was presented to the rectory of Hemingford in Huntingdonshire, made a prebendary of Westminster, and obtained several other livings: but of these he was deprived by the parliament, who also forfeited his estate; by which means he and his family were reduced to great necessities. However, upon the restoration, he was restored to his spiritualities; but never rose higher than to be subdean of Westminster. He died in 1662; and was interred in St Peter's church in Westminster, where he had a neat monument erected to his memory. His writings are very numerous: the principal of which are, 1. Microcosm, or a Description of the Great World. 2. Cosmographia. 3. The History of St George. 4. Ecclesiastical Antiquities. 5. Historical and Miscellaneous Tracts, &c.

HEYWOOD (John), one of the most ancient dramatic poets, was born at North-Mims, near St Albans in Hertfordshire, and educated at Oxford. From thence he retired to the place of his nativity, where he had the good fortune to become acquainted with Sir Thomas More, who, it seems, had a feast in that neighbourhood. This patron of genius introduced this comic poet to the princess Mary, and afterwards to her father Henry, who, we are told, was much delighted with his wit and skill in music, and by whom he was frequently rewarded. When his former patrons, queen Mary, came to the crown, Heywood became a favourite at court, and continued often to entertain her majesty, exercising his fancy before her, even to the time that she lay languishing on her deathbed. On the accession of Elizabeth, being a zealous Papist, he thought fit to decamp, with other favorites of her deceased Majesty. He settled at Nechlin in Flanders, where he died in the year 1565. John Heywood was a man of no great learning, nor were his poetical talents by any means extraordinary; but he possessed talents of more importance in the times in which he lived, namely, the talents of a jester. He wrote several plays; 500 epigrams; A Dialogue in Verse concerning English Proverbs; and The Spider and Fly, a Parable, a thick 4to. Before the title of this last work is a whole-length wooden print of the author; who is also represented at the head of every chapter in the book, of which there are 77. — He left two sons, who both became Jesuits and eminent men: viz. Ellis Heywood, who continued some time at Florence under the patronage of cardinal Pole, and became so good a master of the Italian tongue, as to write a treatise in that language, intitled A Petro; he died at Louvain about the year 1572. His other son was Jasper Heywood, who was obliged to reign a fellowship at Oxford on account of his immorality: he translated three tragedies of Seneca, and wrote various poems and deviues; some of which were printed in a volume intitled The Paradise of Dainty Devises, 4to, 1573. He died at Naples in 1597.

HEYWOOD (Eliza), one of the most voluminous novel writers that Britain ever produced; of whom we know no more than that her father was a tradesman, and that she was born about the year 1696. In the early part of her life, her pen, whether to gratify her own disposition on the prevailing taste, dealt chiefly in licentious tales, and memoirs of personal scandal; the celebrated Atlantus of Mrs Manley served her for a model; and The Court of Carmania, The new Utopia, with other pieces of a like nature, were the copies her genius produced. She also attempted dramatic writing and performance, but did not succeed in either. Whatever it was that provoked the resentment of Pope, he gave full scope to it by distingiuishing her as one of the favorites of the king, and the gallantry of the great ladies in the Roman in honour of Dallin's, in his Dunciad. Nevertheless, it seems undeniable, that there is much spirit, and much ingenuity, in her manner of treating subjects, which the friends of virtue may perhaps with her never medled with at all. But, whatever offence she may have given to delicacy or morality in her early works, she appears to have been convinced of, and endeavoured to atone for, in the latter part of her life; as no author then appeared a greater advocate for virtue. Among her riper productions may be specified, The Female Spectator, 4 vols; The History of Mrs Betty Thoughtless, 4 vols; Jenny and Jenny Jaffary, 3 vols; The invisible Spy, 4 vols; with a pamphlet intitled A present for a fervent maid. She died in 1759.

HIAMEN, or Emouy. See Emouy.

HIATUS, properly signifies an opening, chasm, or gap; but it is particularly applied to those verses in which one word ends with a vowel, and the following word begins with a, and thereby occasion the mouth to be more open, and the sound to be very harsh.

The term hiatus is also used in speaking of manuscripts, to denote their defects, or the parts that have been lost or effaced.

HIBISCUS, SYRIAN MALLOW: A genus of the polyandria order, belonging to the monodelphia class of plants; and in the natural method ranking under the 37th order, Cullumifera. The calyx is double, the exterior one polyphylous, the capsule quinquilocular and polypermum.

Species. Of this genus there are 36 species; the most remarkable are, 1. The Syriacus, commonly called althaea frutes, is a native of Syria. It rises with shurbie stalks to the height of eight or ten feet, sending out many woody branches covered with a smooth grey bark, garnished with oval spear-shaped leaves, whose upper parts are frequently divided into three lobes. The flowers come out from the wings of the stalk at every joint of the same year's shoot. They are large, and shaped like those of the mallow, having five large, roundish petals which join at their base, spreading open at the top, in the shape of an open bell.
Hibiscus bell. These appear in August; and if the season is not too warm, there will be a succession of flowers till September. The flowers are succeeded by short capsules, with five cells, filled with kidney-shaped seeds; but unless the season proves warm, they will not ripen in Britain. Of this species there are four or five varieties, differing in the colour of their flowers: the most common hath pale purple flowers with dark bottoms; another hath bright purple flowers with black bottoms; a third hath white flowers with purple bottoms; and a fourth variegated flowers with dark bottoms. There are also two with variegated leaves, which are by some much esteemed. All these varieties are very ornamental in a garden.

2. The Rosa Sinensis, with an arborescent stem, and egg-pointed fawed leaves. It is a native of the East-Indies, whence it has got the name of Chinesis rose; but the seeds having been carried by the French to their West-India settlements, it hath thence obtained the name of Martinois rose. Of this there are the double and single flowering kinds; the seeds of the first frequently produce plants that have only single flowers, but the latter seldom vary to the double kind.

3. The mutabilis, or changeable rose, has a soft fpongy stem, which by age becomes ligneous and pithy. It rises to the height of 12 or 14 feet, sending out branches towards the top, which are hairy, garnished with heart-shaped leaves, cut into five acute angles on their borders, and softly fawed on their edges; of a lucid green on the upper side, but pale below. The flowers are produced from the wings of the leaves; the single are composed of five petals which spread open, and are at first white, but afterwards change to a bluish rose colour, and as they decay turn purple. In the West-Indies, all these alterations happen on the same day, and the flowers themselves are of no longer duration; but in Britain the changes are not so sudden. The flowers are surrounded by short, thick, blunt, capsiles, which are very hairy; having five cells, which contain many small kidney-shaped seeds, having a fine plume of fibrous down adhering to them.

4. The al balloon, or touch-feeder hibiscus, is a native of the West-Indies, where the French cultivate great quantities of it. The plant rises with an herbaceous stalk three or four feet high, sending out two or three fide branches, garnished with large leaves cut into five or seven acute angles, fawed on their edges, having long footstalks, and placed alternately. The flacks and leaves of this fort are very hairy. The flowers come out from the wings of the leaves upon pretty long footstalks which stand erect. They are large, of a sulphur colour, with purple bottoms; and are succeeded by pyramidal five-cornered capsules, which open in five cells, filled with large kidney-shaped seeds of a very musky odour.

5. The tilaccus, or maho-tree; is a native of both the Indies. It rises with a woody, pithy stem, to the height of ten feet, dividing into several branches towards the top, which are covered with a woolly down, garnished with heart-shaped leaves ending in acute points. They are of a lucid green on their upper side, and hoary on the under side, full of large veins, and are placed alternately. The flowers are produced in loose spikes at the end of the branches, and are of a yellowish-white colour. They are succeeded by short acuminate capsules, opening in five cells, filled with kidney-shaped seeds.

6. The Thesaurus, Venice mallow, or flower of an hour, is a native of some parts of Italy, and has long been cultivated in the gardens of England. It rises with a branching stalk a foot and a half high, having many short spikes, which are soft and do not appear unless closely viewed: the leaves are divided into three lobes, which are deeply jagged almost to the midrib. The flowers come out at the joints of the stalks, upon pretty long footstalks. They have a double empanement; the outer being composed of ten long narrow leaves, which join at their base: the inner is of one thin leaf swollen like a bladder, cut into five acute segments at the top, having many longitudinal purple ribs, and is hairy. Both these are permanent, and include the capsule after the flower is past. The flower is composed of five oblong petals; which spread open at the top; the lower part forming an open bell-shaped flower. These have dark purple bottoms, but are of a pale sulphur-colour above. In hot weather the flowers continue but a few hours open; however, there is a succession of flowers that open daily for a considerable time. The sepalums, or cattable hibiscus, rises to five or six feet; has broad five parted leaves, and yellow large flowers. The pod or okra is from two to six inches long, and one inch diameter. When ripe, it opens longitudinally in five different places, and discharges a number of heart-shaped seeds.

Culture. The first fort may be propagated either by seeds or cuttings. The seeds may be sown in pots filled with light earth about the latter end of March, and the young plants transplanted about the same time next year. They will succeed in the full ground; but must be covered in winter whilst young, otherwise they are apt to be destroyed. The second, third, fifth, and seventh forts are propagated by seeds; which must be sown in a hot-bed. The young plants are to be transplanted into small separate pots, and treated like other tender vegetables, only allowing them a good share of air. The fourth fort is annual in Britain, though biennial in those places where it is native. It is propagated by seeds, and must be treated in the manner directed for Amaranth. The fifth fort is propagated by seeds, which should be sown where the plants are designed to remain, for they do not bear transplanting well. They require no other culture than to be kept free from weeds, and thinned where they are too close; and if the seeds are permitted to fatten, the plants will come up fully as well as if they had been fown.

Uses. The fourth fort is cultivated in the West-Indies by the French for the sake of its seeds. These are annually sent to France in great quantities, and form a considerable branch of trade, but the purposes which they answer are not certainly known. The inner rind of the fifth fort is very strong, and of great eetn, which the following recital from Dampier may serve to illustrate: They (the Musketo Indians) make their lines, both for fibbing and tying, with the bark of Maho, which is a fort of tree or shrub that grows plentifully all over the West-Indies, and whole bark is made up of strings or threads very strong; you may draw it off either in flakes or small threads, as you have occasion.—It is fit for any manner of cordage, and pri
ters
HID

HICETAS

Hidalgo.

The thirteenth fort is a native of the West-Indies, where it is cultivated in gardens and enclosures as an article of food.—The whole of it is mucilaginous, especially the pods. "These (Dr Wright informs us) are gathered green, cut into pieces, dried, and sent home as presents, or are boiled in broths or soups for food. It is the chief ingredient in the celebrated pepper-pot of the West-Indies, which is no other than a rich olla; the other articles are either deer meat, or dried fish and capucins. This dish is very palatable and nourishing.—As a medicine okra is employed in all cases where emollients and lubricants are indicated."

HICETAS of Syracuse, an ancient philosopher and astronomer, who taught that the sun and stars were motionless, and that the earth moved round them. This is mentioned by Cicero, and probably gave the first hint of the true system of Copernicus. He flourished 344 B.C.

HICKES (George), an English divine of extraordinary parts and learning, born in 1642. In 1681 he was made king's chaplain, and two years after dean of Worcester. The death of Charles II. stopped his farther preferment; for though his church principles were very high, he manifested too much zeal against Popery to be a favourite with James II. On the revolution, he and many others were deprived for refusing to take the oaths to king William and queen Mary; and soon after, archbishop Sancroft and his colleagues considering how to maintain episcopal secession among those who adhered to them, Dr Hickes carried over the deprived clergy to king James; and with his sanction a private consecration was performed, at which it is said lord Clarendon was present. Among the rest Dr Hickes was consecrated suffragan bishop of Thetford, and died in 1715.—He wrote, 1. Institutiones Grammaticae Angliae Saxonicae, et Mino-Gothicae. 2. Antiqua literatura septentrionalis. 3. Two treatises, one of the Christian priesthood, the other of the dignity of the episcopal order. 4. Jovian, or an answer to Julian the apostate. 5. Sermons; with many controversial pieces on politics and religion.

HICKUP, or Hicough, a spasmodic affection of the stomach, ophagous, and muscles subfervient to deglutition, arising sometimes from some particular injury done to the stomach, ophagous, diaphragm, &c. and sometimes from a general affection of the nervous system. See (the Index subjoined to) Medicine.

HIDAGE (Hidalgismus), was an extraordinary tax payable to the kings of England for every hide of land. This taxation was levied not only in money, but in provision, armour, &c.; and when the Danes landed in Sandwich in 994, king Ethelred taxed all his lands by hides; so that every 210 hides found one ship furnished, and every eight hides furnished one jack and one saddle, to arm for the defence of the kingdom, &c.—Sometimes the word hidade was used for the being quit of that tax; which was also called hidigild; and interpreted from the Saxon, "a price or random paid to save one's skin or hide from beating."

HIDALGO, in modern history, a title given in Spain to all who are of noble family.

Hidalgo, who retired into Castile, and the mountains of Africa, and other remote parts of Spain, on the invasion of the Moors, where having fortified themselves, they successively defended into the plains, in proportion to the success of their arms: from the notoriety of their persons, or the lands they became possessed of, they acquired the appellation of Hidalgos ostarios, Hidalgo de soler conocido de caña solariq. Of these, according to Hernando Mexia, there are three sorts: the first being lords of places, villages, towns, or castles, from whence they took their surnames, as the Guzmans, Mendoza's, Laras, Guivaras, and others; the second, who recovered any castles from the Moors, as the Ponces of Leon, and others; and the third sort, from the places where they resided, or held jurisdiction, as Rodrigo de Narvaez was called of Antequera, from being Alca füh there. But this definition is not considered as exact or conclusive by Otalora, another civilian, who says that the true meaning of Hidalgos de soler conoçido is explained by the laws of Castile to be a well known mansion or assurance, in nature of which is particularly explained in the laws of Parditas, lib. 5. tit. 35. which describes three sorts of tenures called Devols, Solaría, and Beheria. By the first, lands are devised by the ancestor; soler is a tenure upon another person's manor, and obliges the owner to receive the lord of the fee when necessity obliges him to travel; and Beheria is in the nature of an alodiam. In proportion as these Aborigines gained ground on the Moors, and increased in their numbers, many private persons distinguished themselves by their valor, and obtained testimonies of their services, called cartas de merece, which served them as a foundation of their birth and good descent, without which documents and amends would not make it appear; and if from a lapse of time, or other unavoidable accidents, such proof should happen to be lost or destroyed, the law affords them a remedy under these circumstances, by a declaration, importing, that such persons as are supposed to have had such certificates, may be relieved by making it appear that their ancestors, time immortal, have always been held and reputed as Hidalgos, and enjoyed the privileges of such, from a strong presumption in their favour; the possession of land having equal force to any other document; which is fully set forth in the Pragmatica of Cordova. To these exehutory letters are granted, cartas executorias, expressive of their privileges: and for the better regulation of these matters, proper officers are appointed in the chancery courts, called alcaldes de los hidalgos, who ought to be hidalgos themselves, and hold jurisdiction in these cases, and no others: but even here innovations have taken place; for as these grants flow from the sovereign, who is the fountain of honour, some are declared Hidalgos de junquex, by right of descent, and others de privilegio, or by office, in which the will of the sovereign has made amends for any deficiency of blood.

There is a set of people near Segovia, at a place called Zamaramala, who are exempt from tribute on account of the care they take in feeding proper persons every night to the castle of Segovia to keep counsel—once cries out Vela, vela, hero, and another blows a horn, from whence they have been titled hidalgos by the horn. In Catalonia these gentlemen who
HID

HID

HID

HID
HIERACIUM, HAWKWEED: A genus of the
polygamy aequalis order, belonging to the
fungenia class of plants; and in the natural method ranking
under the 49th order, Compositae. The receptacle is
naked, the calyx imbricated and ovate; the pappus simple
t and feathery.

Species. 1. The aurantiacum, commonly called grim
the collier, hath many oblong oval entire leaves, crowning
the root; an upright, single hairy, and almost leaf-
less stalk, a foot high, terminated by reddish orange-
coloured flowers in corymbs. These flowers have
dark and ash coloured calices; whence the name of
grim the collier. 2. The pilosella or mouse-ear, hath
blooms red on the out-side, and pale yellow within;
the cups fuch thick with black hairs. The flowers open
at eight in the morning, and close about two in the
afternoon. 3. The umbellatum grows to the
three feet, with an erect and firm stalk, terminated
with an umbel of yellow flowers.

Culture. The flir is the only species cultivated in
gardens. It is propagated by seeds, or parting the
roots. The seed may be sown in autumn or spring.
In June, when the plants are grown two or three
inches high, they may be picked out and planted in
beds, where they will remain till the next autumn,
and then transplanted where they are to remain.

Properties. The second species is commonly in dry
patures in England; it has a milky juice, but is less
bitter and astringent than is usual with plants of that
class. It is reckoned hurtful to sheep. An infect
of the cochineal genus (Coccus Poloniensis) is often found
at the roots, (All. Upsal. 1752.) Goats eat it; sheep
are not fond of it; horses and fwanne refuse it. —
The third species is a native of Scotland, and grows in
rough flony places, but it is not very common. The
flowers are sometimes used for drying yard of a fine
yellow colour.

HIERACITES, in church-history, Christian he-
retics in the third century; so called from their leader
Hierax, a philopher of Egypt; who taught that
Melchisedek was the Holy Ghost, denied the res-
urrection, and condemned marriage.

HIERANOSIS, or MORSUS SACER. See (the
Loden subjoined to) MEDICINE.

HIERA PICA. See PHARMACY, p. 826.

HIERAPOLIS, (anc. geog.), a town of Phrygia,
abounding in hot springs, and having its name from the
number of its temples. There are coins exhibiting
figures of various gods who had temples here. Of this
place was Epictetus the folic philopher. — It is now
called Pambook, and is situated near the Seaman-
der, on a portion of Mount Megulis, distant fix miles from
Laodicea. — Its site appears at a distance as a white
lofty cliff; and upon arriving at it, the view which
it presents is fo marvellous (says Dr Chandler), that
the description of it, to bear even a faint resemblance,
ought to appear romantic. Dr Chandler’s description
is as follows:

"The vast slope which at a diftance we had taken for
the Miner’s chalk, was now behold with wonder, it feeming an
immense frozen cascade, the surface wavy, as of water at
once fixed, or in its headlong course suddenly petrified.
Round about us were many high, bare, flony ridges;
clofe by our tent, one with a wide bafe, and a
flender rill of water, clear, soft, and warm, running in a
small channel on the top. A woman was washing linen
in it, with a child at her back; and beyond were ca-
bins of the Turcomans, standing distinct, much nearer
than any we had seen, each with poultry feeding, and
a fence of reeds in front.

"It is an old observation, that the country about the
Meander, the foil being light and friable, and full of
fals generating inflammable matter, was undermined
by fire and water. Hence it abounded in hot springs,
which, after passing under-ground from the reservoirs,
appeared on the mountain, or were found springing
up in the plain or in the mud of the river: and hence it
was subject to frequent earthquakes, the mirrors vapor
compressed in the cavities, and subdued by heat or fer-
mentation, hurting its prison with loud explosions, agi-
tating the atmophere, and shaking the earth and wa-
ters with a violence as extensive as destructive; and
hence, moreover, the petitional grotsos, which had
subterraneous communications with each other, derived
their sublime effluvia; and serving as smaller vents to
these furnaces or hollows, were regarded as apertures of
hell, as passages for deadly fumes rising up from the
realms of Pluto. One or more of the mountains perhaps
has burned. It may be suspected, that the sur-
face of the country has in some places been formed from
its own bowels; and in particular, it seems probable,
that the hill of Laodicea was originally an eruption.

"The hot waters of Hierapolis have produced that
most extraordinary phenomenon, the cliff, which is one
entire incumbent. They were anciently renowned
for this species of transformation. It is related, they
changed to eaily, that being conducted about the
vineyards and gardens, the channels became long fences,
each a single flone. They produced the ridges by our
tent. The road up to the ruins, which appears as a wide
and high canfeaw, is a petrifiation; and overlooks
many green spots, once vineyards and gardens sepa-
rated by partitions of the same material. The surface
of the flat, above the cliff, is rough with flone and
with channels, branching out in various directions, a
large pool overflowing and feeding the numerous rills,
some of which spread over the slope as they descend,
and give to the white flony bed a humid look, resem-
bng falt or driven fnow when melting. This cruf!
which has no taste or finely, being an alkaline, will
ferment with acids; and Picenini relates, that trial
of it had been made with spirit of vitriol. The waters,
though hot, were used in agriculture.

"Tamerlane, when he invaded this country, en-
camped for the summer at Tangazlik, where many of
his men were destroyed by drinking of a spring which
stagnated and petrified. The Turkish name Pambook
signifies cotton; and, it has been said, refers to the
whiteness of the incumbent.

The shepherd-poit of Smyrna, after mentioning
a cave in Phrygia sacred to the Nymphs, relates, that
there Luna had once descended from the sky to En-
dymion, while he was sleeping by his herds; that marks
of their bed were then extant under the oaks; and that
in the thickets round it the milk of cows had been
spilt, which men still behold with admiration (for such
was the appearance if you saw it very far off); but that from
there flowed clear or warm water, which in a little
while concreted round about the channels, and formed
a flone pavement. The writer describes the cliff of
Hierapolis,
Hierapolis. Hierapolis, if I mistake not, as in his time; and has added a local story, current when he lived. It was the genius of the people to unite fiction with truth: and, as in this and other instances, to dignify the tales of their mythology with fabulous evidence taken from the natural wonders in which their country abounded.

"We ascended in the morning to the ruins, which are on a flat, passing by sepulchres with inscriptions, and entering the city from the east. We had soon the theatre on our right hand, and the pool between us and the cliff. Opposite to it, near the margin of the cliff, is the remains of an antique structure, once perhaps baths, or, as we conjectured, a gymnasium; the huge vaults of the roof striking horror as we rode underneath. Beyond it is the mean ruin of a modern fort, and farther on are massive walls of edifices, several of them leaning from their perpendicular, the stones distorted, and seeming every moment ready to fall; the effects and evidences of violent and repeated earthquakes. In a recess of the mountain on the right hand is the area of a stadium. Then again sepulchres succeed, some nearly buried in the mountain-side, and one a square building, with an inscription in large letters. All these remains are plain, and of the stone created by the waters. The fire has been computed about two hundred paces wide and a mile in length."

After passing a general view, we returned to the theatre, intending to copy inscriptions, and examine more particularly as we changed our station. We found this a very large and sumptuous structure, and the least ruined of any we had seen. Part of the front is standing. In the heap which lies in confusion, are many sculptures well executed in baflo relievo; with pieces of architrave inlaid, but disjointed; or so encumbered with massive marbles, that we could collect from them no information. The character is large and bold, with groups. The marble seats are full removed. The numerous ranges are divided by a low semicircular wall, near mid-way, with inscriptions on the face of it, but mostly illegible. I copied a short but imperfect one, in which Apollo Archegites of The Lender is requested to be propitious. In another compartment, mention is made of the city by its name Hierapolis; and on a third is an encomium in verse, which may be thus translated, "Hail, golden city Hierapolis, the spot to be preferred before any in wide Asia; revered for the hills of the Nymphs; adorned with splendor." The Nymphs presided over springs and fountains.

After attentively viewing them, and considering their height, width, and manner of arrangement, I am inclined to believe that the ancient Asiae sat at their plays and public spectacles, like the modern, with their legs crossed or gathered under them; and it is probable upon carpets.

"The waters of Hierapolis were surprisingly attempted for tingling wool, with a colour from roots rivaling the more costly purples; and were a principal source of the riches of the place. The company of dyers is mentioned in the inscription on the square building among the sepulchres. That heroism or monument was to be crowned by them with garlands or fountains of flowers. The springs flowed so copiously, that the city was full of spontaneous baths; and Apollo, the tutelar deity of the Hierapolitans, with Asklepius and Hygieia, on their medals, bear witness to the medicinal virtues which they poissed. The people, in some of their Hierapolis inscriptions, are styled the most splendid, and the senate the most powerful.

"The pool before the theatre has been a bath, and marble fragments are visible at the bottom of the water, which is perfectly transparent, and of a briny taste.

"Hierapolis was noted, besides its hot waters, for a platinum. This was an opening in a small brow of the adjacent mountain, capable of admitting a man, and very deep, with a square fence before it, including about half an acre; which space was filled with black thick mist, so that the bottom could be fearfully discerned. The air, to those who approached it, was innocent on the outside of the fence, being clear of the mild in ferreous weather, it remaining then within the boundary; but there death above. Bulls, as at Nysa, drop down, and were dragged forth without life; and fome sparrows which Strabo let fly instantly fell senseless. But eunuchs, the priests of Magna Mater, or Cybele, could go in quite to the aperture, lean forward, or enter it unharmed; but they held their breath, as their vigils testified, and sometimes until in danger of suffocation. Strabo, the relater, was in doubt whether all eunuchs could do this, or only they of the temple; and whether they were preferred by Divine Providence, as in cases of enthousiasm, or were preferred of some powerful spirits. But it was likely that the mist was the condensed stream of the hot waters, made noxious by the qualities of the soil; and that the whole secret of the priests consisted in carrying their faces high in the air, as another spectator has observed they always did; and in avoiding respiration when they trooped. I had hoped the description of this spot would have enabled me to find it, but I searched about for it unsuccessfully.

"We descended to our tent at the approach of evening, by a steep track down the cliff, beginning beyond the pool, in which we alighted by a platform on the side next the gymnasium. Our way was often rough and slippery, resembling ice, and our horses with difficulty preferred their footing. When arrived at our tent, I renewed my enquiries for the plutonium; and an old Turk, with a beard as white as snow, told me he knew the place, that it was often fatal to their goats; and accounting for the effect, said, it was believed to be the habitation of a demon or evil spirit. We ascended again early in the morning to the theatre, where he had promised to join us; and a live fowl was intended to be the martyr of experiment."

Our author was interrupted by some banditti, and obliged to leave Hierapolis in haste.

HIERARCHY, among divines, denotes the subordination of angels.

Some of the rabbins reckon four, others ten, orders or ranks of angels; and give them different names according to their different degrees of power and knowledge.

HIERARCHY, likewise denotes the subordination of the clergy, ecclesiastical polity, or the constitution and government of the Christian church considered as a society.

HIERES, the name of some small islands lying near the coast of Provence in France, opposite to the towns of Hieres and Toulon, where the English fleet lay many months in 1744, and blocked up the French and Spanish fleets in the harbour of Toulon.
Hierocles, a Platonic Philosopher of the fifth century, taught at Alexandria, and was admired for his eloquence. He wrote seven books upon Providence and Fate; and dedicated them to the philosopher Olympiodorus, who by his embassies did the Romans and Greeks under the emperors Honorius and Theodosius the younger. But these books are lost, and we only know them by the extracts in Pholus. He wrote also a commentary upon the golden verses of Pythagoras; which is still extant, and has been several times published with those verses.

Hieroglyphics, in antiquity, mythical characters, or symbols, in use among the Egyptians, and that as well in their writings as inscriptions; being the figures of various animals, the parts of human bodies, and mechanical instruments. The word is composed of the Greek ἱερός, "holy," and γραφεῖν, "to engrave;" it being the custom to have the walls, doors, &c. of their temples, obelisks, &c. engraved with such figures. Hieroglyphics are properly emblems or signs of divine, sacred, or supernatural things, by which they are distinguished from common symbols, which are signs of sensible and natural things. Hermes Trismegistus is commonly esteemed the inventor of hieroglyphics: he first introduced them into the heathen theology, from whence they have been transplanted into the Jewish and Christian.

Sacred things, says Hippocrates, should only be communicated to sacred persons. Hence it was that the ancient Egyptians communicated to none but their kings and priests, and those who were to succeed to the priesthood and the crown, the secrets of nature, and the secrets of their morality and history; and this they did by a kind of cabbala, which, at the same time that it instructed them, only amused the rest of the people. Hence the use of hieroglyphics, or mystic figures, to veil their morality, politics, &c. from profane eyes. This author, it may be observed, and many others, do not keep to the precise character of a hieroglyphic, but apply it to profane as well as divine things.

Hieroglyphics are a kind of real characters, which do not only denote, but in some measure express, the things. Thus, according to Clemens Alexandrinus, Strom. v. a lion is the hieroglyphic of strength and fortitude; a bullock, of agriculture; a horse, of liberty; a sphinx, of folly, &c.

Such is the opinion that has generally been embraced, both by ancient and modern writers, of the origin and use of hieroglyphics. It has been almost uniformly maintained, that they were invented by the Egyptian priests in order to conceal their wisdom from the knowledge of the vulgar; but the late bishop Warburton hath, with much ingenuity and learning, endeavored to show that this account is erroneous.

According to this writer, the hieroglyphics were mere pictures, because the most natural way of communicating our conceptions by marks or figures was by tracing out the images of things; and this is actually verified in the case of the Mexicans, whose only method of writing their laws and history was by this picture-writing. But the hieroglyphics invented by the Egyptians were an improvement on this rude and inconvenient essay towards writing, for they contrived to make them both pictures and characters. In order to effect this improvement, they were obliged to proceed gradually, by first making the principal circumference of the subject stand for the whole; as in the hieroglyphics of Horapollo, which represent a battle of two emperors Honorius and Theodosius, holding a shield and the other a bow: then putting the instrument of the thing, whether real or metaphorical, for the thing itself, as an eye and sceptre to represent a monarch, a ship and pilot the governor of the universe, &c.; and finally, by making one thing stand for or represent another, where their observations of nature or traditional superfluities led them to discover or imagine any resemblance: thus, the universe was signified by a serpent in a circle, whose viviparous spots denoted the stars; and a man who had nobly surmounted his misfortunes, was represented by the skin of the hyena, because this was supposed to furnish an invulnerable defence in battle.

The Chinese writing, he observes, was the next kind of improvement in the use of hieroglyphics. The Egyptians joined characteristic marks to images; the Chinese threw out the images and retained only the contracred marks, and from these marks proceeded letters. The general concurrence of different people in this method of recording their thoughts can never be supposed to be the effect of imitation, finiter views, or chance; but must be considered as the uniform voice of nature speaking to the rude conceptions of mankind: for not only the Chinese of the East, the Mexicans of the West, and the Egyptians of the South, but the Scythians likewife of the North, and the intermediate inhabitants of the earth, i.e., the Indians, Phœnicians, Ethiopians, &c. used the same way of writing by picture and hieroglyphic.

The bishop farther shows, that the several species of hieroglyphic writing took their rise from nature and necessity, and not from choice and artifice, by tracing at large the origin and progress of the art of speech. He proceeds to show how in process of time the Egyptian hieroglyphics came to be employed for the vehicle of mystery. They used their hieroglyphics two ways; the one more simple, by putting the part or the whole, which was the eurilologic hieroglyphic; and the other more artificial, by putting one thing of resembling qualities for another, called the tropical hieroglyphic: thus
Thus the moon was sometimes represented by a half circle and sometimes by a crescent. They employed their proper hieroglyphics to record openly and plainly their laws, policies, public morals, and history, and all kinds of civil matters; this is evident from their obelisks, which were full of hieroglyphic characters, designed to record regular events, memorable actions, and new inventions: and also from the celebrated inscription on the temple of Minerva at Sais, where an infant, an old man, a hawk, a fish, and a river-horse, exhibited this moral instruction: "All you who come into the world and go out of it, know this, that the gods hate impudence." However, the tropical hieroglyphics which were employed to divulge, gradually produced symbols which were preferred to secrete or conceal: thus Egypt was sometimes expressed by the crocodile, sometimes by a burning censer with a heart upon it; where the simplicity of the first representation and the abstrusetness of the latter show, that the one was a tropical hieroglyphic for communication, and the other a tropical symbol invented for secrecy.

Enigmatic symbols were afterwards formed by the assemblage of different things, or of their properties that were least known: and though they might have been intelligible at first, yet when the art of writing was invented, hieroglyphics were more generally diffused, the people forgot the signification of them, and the priests, retaining and cultivating the knowledge of them because they were the repositories of their learning and history, at length applied them to the purpose of preserving the secrets of their religion.

Symbols were the true original of animal worship in Egypt, as Sir John Marham conjectured, Can. Chron. p. 38; because in these hieroglyphics was recorded the history of their greater deities, their kings, and lawmakers, represented by animals and other creatures. The symbol of each god was well known and familiar to his worshippers, by means of the popular paintings and engravings on their temples and other sacred monuments; so that the symbol presenting the idea of the god, and that idea exciting sentiments of religion, it was natural for them, in their addresses to any particular god, to turn to his representative mark or symbol, especially when we consider farther, that the Egyptian priests feigned a divine original for hieroglyphic characters, in order to increase the venerating of the people for them. These would of course bring on a relative devotion to these symbolic figures, which, when it came to be paid to the living animal, would soon terminate in an ultimate worship.

Another consequence of the sacredness of the hieroglyphic characters was, that it disposed the more superflitions to engrave them on gems, and wear them as amulets or charms. This magical abuse seems not to have been much earlier than the established worship of the god Serapis, which happened under the Ptolemies, and was first brought to the general knowledge of the world by certain Christian heretics and natives of Egypt, who had mixed a number of Pagan superflitions with their Christianity. These gems, called abraxas, are frequently to be met with in the cabinets of the curious, and are engraved with all kinds of hieroglyphic characters. To these abraxas succeeded the talismans.

Vol. VIII.
Hierophylax, an officer in the Greek church, who was guardian or keeper of the holy utensils, vestments, &c. anfwering to our sacrifi-cts or veftry-keeper. High, a term of relation, importing one thing's being superior or above another: thus we lay, a high mountain, the high court of parliament, high reli-
vo, &c.

High, in music, is sometimes used in the fame fense with loud, and sometimés in the fame fense with acute. High Dutch, is the German tongue in its greatest purity, &c. as spoken in Miinfia, &c.

High Operation, in chirurgery, is a method of extracting the stone; thus called, because the stone is taken out at the upper part of the bladder. See Surgery.

High Places, were eminences on which the heathens used to worship their gods, chosen for that purpofe as being supposed to be nearer heaven their conftall

tiles mountains with groves planted about them. Where should the ark, it was no more allowed of to facrifice out of the tabernacle, where in David's time, they facrificed to the Lord at Jerusalem and Gibeon; but after the temple was built, and to surveyors.

The Highlanders, or, as they are often termed by ancient authors, the Caledonians, were always a brave, warlike, and hardly race of people; and, in the remoteft times, seem to have profefed a degree of refinement in sentiment and manners then unknown to the other nations that surrounded them. This appears not only from their own traditions and poems; but also from the testimony of many ancient authors. This civilization was probably owing in a great measure to the order of the bards, or Druids, and some other institutions peculiar to this people.

The ancient Highlanders lived in the hunting state till some time after the era of Tingal, who was one of their kings towards the end of the third centur

High Priests. See Pontifex and Priest.

High Way, a free passage for the king's Subjects; on which account it is called the king's high way, tho' the freehold of the soil belong to the owner of the land. Those ways that lead from one town to another, and such as are drift or cart ways, and are for all travellers in great roads, or that communicate with them, are high ways only; and as to their repa-

ration, are under the care of surveyors.

Highwaymen, are robbers on the high way; for the apprehending and taking of whom, a reward of 40l. is given by the statute of 4 and 5 W. & M. to be paid within a month after conviction by the treafury of the county; to which the statute 8 Geo. II. cap. 16. supe

rads rol. to be paid by the hundred indemnified by such taking.

Highman Ferrers, an ancient borough of Northamptonshire in England, which has its name from the family of the Ferrers, to whom it formerly be-

longed, and who had a castle in its neighbourhood. It sends one member to parliament. E. Long. 1. 40. N. Lat. 52. 20.

Highgate, a village five miles north of Lon-
don. It has its name from its high situation, and from Highland Gate. It is set up there about 400 years ago, to receive toll for the bishop of London, when the old miry road from Gray's-inn Lane to Barnet was turned through the bishop's park. There was a hermitage where the chapel now stands; and one of the hermits caused a caufeway to be made between Highgate and Chingford, with gravel dug out of the top of the hill, where there is now a pond. Near the chapel, in 1563, lord chief baron Cholmondeley built and endowed a free school, which was enlarged in 1570 by Edwin Sandys; bishop of London.—This village is a noted and airy retire-
ment for the gentry and wealthy citizens; and is a place of good accommodation, besides its affording a delightful and pleafant prospect over the city and adja-
cent country.

Highlanders, a general appellation for the inhabitants of the mountainous parts of any country. In Britain, the name is appropriated to the people who inhabit the mountainous parts of Scotland, to the north and north-west, including those of the Hebrides or Western Isles. They are a branch of the ancient Celts; and undoubtedly the descendents of the first inhabitants of Britain, as appears from the many monuments of their language still retained in the most ancient names of places in most parts of the island. The Highlanders, or, as they are often termed by ancient authors, the Caledonians, were always a brave, warlike, and hardy race of people; and, in the remotest times, seem to have professed a degree of refinement in sentiment and manners then unknown to the other nations that surrounded them. This appears not only from their own traditions and poems; but also from the testimony of many ancient authors. This civilization was probably owing in a great measure to the order of the bards, or Druids, and some other institutions peculiar to this people.

The ancient Highlanders lived in the hunting state till some time after the era of Tingal, who was one of their kings towards the end of the third centur-

y, and to surveyors. The chief-

The Highlanders always enjoyed a king and go-

vernment of their own, till Kenneth McAlpine (anno 845), after having subdued the Pictish kingdom, transferred thither the seat of royalty. This event proved very unfavourable to the virtues of the High-

landers, which from this period began to decline. The country, no longer awed by the presence of the sovereign, fell into anarchy and confusion. The chief-
tains began to extend their authority, to form factions, and to fragment divisions and feuds between contending clans. The laws were either too feeble to bind them, or too remote to take notice of them. Hence sprung all those evils which long disgraced the country, and disturbed the peace of its inhabitants. Robbery or plunder, providing it was committed on any one of an adverse clan or tribe, was countenanced and authorised; and their reprisals on one another were perpetual. Thus quarrels were handed down from one generation to another, and the whole clan were bound in honour to expoue the cause of every individual that belonged to it. By this means the genius of the people was greatly

Hierophy-

lax
greatly altered, and the Highlanders of a few ages back were almost as remarkable for their irregular and disorderly way of life as their predecessors were for their civilization and virtue. It is from not attending to this distinction between the ancient Highlanders and their posterity in latter times, that many have doubted the existence of those exalted virtues ascribed by their poets to the more ancient inhabitants of the country. But now that the power of the chieftains is again abolished, law established, and property secured, the genius of the people (where it is not hindered by some other extraneous cause) begins again to flow itself in its genuine colours; and many of their ancient virtues begin to thine with conspicuous lustre. Justice, generosity, honesty, friendship, peace, and love, are perhaps no where more cultivated than among this people. But one of the most excellent features which marked the character of the Highlanders in every age, was their hospitality and benevolence to strangers. At night the traveller was always sure to find a hearty welcome in whatever house he should go to; and the host thought himself happier in giving the entertainment than in receiving it. Even with regard to their enemies, the laws of hospitality were observed with the most sacred regard. They who fought against each other in the day, could in the night feast and even sleep together in the same house. From the same principle they were, in most other cases, to faithful to their trust, that they rarely betrayed any confidence reposed in them. A promise they thought as binding as an oath, and held it equally inviolable and sacred.

The Caledonians in all ages have been much addicted to poetry and music. The poems of Ossian, so universally repeated, and so highly esteemed by every Highlander, are a strong proof of the early proficiency of this people in the poetical art. Even to this day, notwithstanding the many disadvantages they labour under, the most illustrious of either sex discover frequently a genius for poetry, which often breaks forth in the most natural and simple strains, when love, grief, joy, or any other subject of song, demands it. Wherever their circumstances are so easy as to allow them any repose from toil, or any cheerfulness of spirits, a good portion of their time, especially of the winter-nights, is still devoted to the song and tale. This tall species of composition is chiefly of the noble kind, and is handed down by tradition like their poems. It was the work of the bards; and proved while they existed: no contemptible entertainment. But since the extinction of that order, both the Gaelic poems and tales are in a great measure either lost or adulterated — the genius and character of the Gaelic poetry is well known. It is tender, simple, beautiful, and sublime.

Among the ancient Highlanders, the harp was the chief instrument of music. It suited the mildness of their manners, and was well adapted to the peace and quiet which they enjoyed under their own kings. In a later period, however, when the constant quarrels of their chiefs, and the endless strife of contending clans turned all their thoughts to war, it was forced to give place to the bag-pipe, an instrument altogether of the martial kind, and therefore well suited to the state of the country at that time. But ever since the captive which had brought this instrument in Vogue has ceased to operate, the attention to it has been on the decline; so that the harp, with very little encouragement, might again resume the feat from which it was once expelled. — The moat, and especially the oldest of the Highland music, having been composed to the harp, is of a soft, tender, and elegiac cast, as best suited to the genius of that instrument. These pieces are generally expressive of the passion of love and grief. Other pieces, which were composed in their state of war, and adapted to a different instrument, are altogether bold and martial. And many are of a sprightly and cheerful cast, the offspring of mirth, and the sport of fancy in the season of festivity. Many of these last are of the chorus kind; and are sung in almost all the exercises in which a number of people are engaged, such as rowing, reaping, fulling, &c. The time of these pieces is adapted to the exercises to which they are respectively sung. They greatly forward the work and alleviate the labour. The particular music which is generally used by the Highlanders in their dances is well known by the name of Strathspey rest.

The language of the Highlanders is still the Gaelic; which, with many of their customs and manners, been secured to them by their mountains and fastnesses, amidst the many revolutions which the rest of the island has undergone in so long a course of ages. The Gaelic seems to be the oldest and purest dialect which remains of the Celtic, as appears from its approaching the nearest to the names of places, &c which that language left in most countries where it prevailed, and from its most obvious affinity to those tongues, ancient or modern, which have been in any measure derived from the old Celtic. The Gaelic has all the marks of an original and primitive language. Most of the words are expressive of some property or quality of the objects which they denote. This, together with the variety of its sounds (many of which, especially of those that express the soft and mournful passions, are peculiar to itself), renders it highly adapted for poetry. It is generally allowed to have been the language of court, in Scotland till the reign of Malcolm Canmore. The Gaelic epithet of Can more, or “large head,” by which this king is distinguished, seems to intimate so much. In some particular parliaments at least, it was spoken much later, as in that held by Robert the Bruce at Ardechattan. That it has been formerly a good deal cultivated, appears from the style and complexion of its poems and tales, and from several ancient MSS, that have come down to the present times. To strangers the Gaelic as a forbidding aspect, on account of the number of its queflict confonants (which are retained to mark the derivation of words and their variation in cafe and tense), but its sound is abundantly musical and harmonious; and its genius strong and masculine. Its alphabet consists of 18 letters of which one is an aspirate, 12 are confonants, and five are vowels.

The Highlanders are beginning of late to apply to learning, agriculture, and especially to commerce, for which the country, every where indented with arms of the sea, is peculiarly favourable. Cattle is the chief staple of the country; but it produces more grain than would supply its inhabitants, so much of it were not consumed in whisky. The natives are
Highmore are beginning to avail themselves of their mines, woods, wool, and fisheries; and by a vigorous application, with the due encouragement of government, may become a prosperous and useful people.

The Highlanders are of a quick and penetrating genius, strongly toned with a curiosity or thirst of knowledge, which disposes them to learn any thing very readily. They are active and industrious, where oppression does not discourage them by excluding even the hope of thriving. They are remarkably bold and adventurous, which qualifies them for being excellent seamen and soldiers. They are generally of a middle size, rather above it than otherwise; their eyes are bright and lively, their features distinctly marked, and their persons tall and well made. Their countenance is open and ingenuous, and their temper frank and communicative.

HIGHMORE, (Joseph, Esq.) an eminent painter, was born in the parish of St James's, Garlickhithe, London, June 13, 1692, being the third son of Mr Edward Highmore, a coal-merchant in Thames-street.

Having such an early and strong inclination to painting that he could think of nothing else with pleasure, his father endeavoured to gratify him in a proposal to his uncle, who was fejeant-painter to king William, and with whom Mr (afterwards Sir James) Thornhill had served his apprenticeship. But this was afterwards for good reasons declined, and he was articled as clerk to an attorney, July 18, 1707; but so much against his own declared inclination, that in about three years he began to form resolutions of indulging his natural disposition to his favourite art, having continually employed, his leisure hours in designing, and in the study of geometry, perspective, architecture, and anatomy, but without any instructors except books. He had afterwards an opportunity of improving himself in anatomy, by attending the lectures of Mr Chestelden, besides entering himself at the painters academy in Great Queen-street, where he drew 10 years, and had the honour to be particularly noticed by Sir Godfrey Kneller, who distinguished him by the name of 'the young Lawyer.' On June 13th 1714, his clerkship expired; and on March 26th 1715, he began painting as a profession, and settled in the city. In the same year Dr Brook Taylor published his "Linear Perspective; or a new method of representing justly all manner of objects as they appear to the eye in all situations." On this complete and universal theory our artist grounded his subsequent practice; and it has been generally allowed, that few, if any of the professors at that time, were so thorough masters of that excellent but intricate system. In 1716, he married Miss Susanna Miller, daughter and heiress of Mr Anthony Miller of Effingham in Surrey; a young lady in every respect worthy of his choice. For Mr Chestelden's "Anatomy of the human body," published in 1722, he made drawings from the real subjects at the time of dissection, two of which were engraved for that work, and appeared; but without his name, in plates xii. and xiii. In the same year on the exhibition of "The Confident Lover," written by Sir Richard Steele, Mr Highmore addressed a letter to the author on the limits of filial obedience, pointing out a material defect in the character of Bevil, with that清晰ness and precision for which, in conversation and writing, he was always remarkable, as the pencil by no means engrossed his whole attention. His reputation and business increasing, he took a more conspicuous station, by removing to a house in Lincoln's-Inn Fields, in March 1723-4; and an opportunity soon offered of introducing him advantageously to the nobility, &c. by his being defir'd, by Mr Pine the engraver, to make the drawings for his prints of the knights of the bath, on the revival of that order in 1725. In consequence, several of the knights had their portraits also by the same hand, some of them whole lengths; and the duke of Richmond, in particular, was attended by his three elquires, with a perspective view of king Henry VIIth's chapel. This capital picture is now at Godwood. And our artist was sent for to St James's by George I. to draw the late duke of Cumberland, from which Smith scraped a mezzotinto.

In 1728, Mr Hawkins Browne, then of Lincoln's-Inn, who had ever a just sense of his talents and abilities, addressed to him a poetical epistle "On Design and Beauty," and, some years after, an Elegant Latin Ode, both now collected in his poems. In the summer of 1732, Mr Highmore visited the continent, in company with Dr Pemberton, Mr Benjamin Robins, and two other friends, chiefly with a view of seeing the gallery of pictures belonging to the elector Palatine at Duffeldorp, collected by Rubens, and suppos'd to be the best in Europe. At Antwerp also he had peculiar pleasure in contemplating the works of his favourite master. In their return they visited the principal towns in Holland. In 1734, he made a like excursion, but alone, to Paris, where he received great civilities from his countrymen there then, particularly the duke of Kingston, Dr Hickman (his tutor), Robert Knight, Esq. (the late califier), &c. Here he had the satisfaction of being shown, by cardinal de Polignac, his famous group of antique statues, the court of Lycomedes, then just brought from Rome, and since pur chased by the king of Prussia, and destroyed at Charlottenbourg in 1760 by the Russians. In 1742, he had the honour to paint the late prince and princess of Wales for the duke of Saxe Gotha; as he had some years after the late queen of Denmark for that court. The publication of "Petrina," in 1744, gave rise to a set of paintings by Mr Highmore, which were engraved by two French engravers, and published by subscription in 1745. In the same year he painted the only original of the late general Wolfe, then about 18. His Pamela introduced him to the acquaintance and friendship of the excellent author whose picture he drew, and for whom he painted the only original of Dr Young. In 1750 he had the misfortune to lose his wife. On the first institution of the academy of painting, sculpture, &c. in 1753, he was elected one of the professors; an honour which, on account of his many avocations, he desired to decline. In 1754 he published "A Critical Examination of those two Paintings [by Rubens] on the ceiling of the Ban queting-house at Whitehall, in which Architecture is introduced, so far as relates to Perspective; together with the Difcussion of a Question which has been the Subject of Debate among Painters." printed in 40. In the solution of this question, he proved that Rubens and several other great painters were mistaken in the practice, and Mr Kirby and se veral...
HIG [509]

... in the Beauties of Painting, &c." In the same Highmore year he published, with only his initials, "J. H." two small volumes of "Effays", moral, religious, and miscellaneous; with a Translation in prose of Mr Browne's Latin Poem on the Immortality of the Soul," selected from a larger number written at his leisure, at different periods of life. "As such (says Dr Hawkeworth) they do the author great credit. They are not excursions of fancy, but efforts of thought, and indubitable indications of a vigorous and active mind."

In the Gentleman's Magazine for 1769, p. 287, he communicated "A natural and obvious Manner of confounding Sun-dials, deduced from the Situation and Motion of the Earth with respect to the Sun," explained by a scheme. And in that for 1788, p. 526,... his remarks on colouring, suggested by way of a note on the "Epistle to an eminent Painter," will show that his talents were by no means impaired at the age of 86. Indeed he retained them to the last, and had even strength and spirit sufficient to enable him to ride out daily on horseback the summer before he died. A strong constitution, habitual temperance, and constant attention to his health in youth as well as in age, prolonged his life, and preserved his faculties to his 88th year, when he gradually ceased to breathe, and, as it were, fell asleep on March 3, 1780. He was interred in the fourth aisle of Canterbury cathedral, leaving one son, Anthony, educated in his own profession, and a daughter, Susanna, mentioned above.

His abilities as a painter appear in his works, which will not only be admired by his contemporaries, but by their posterity; as his tints, like those of Rubens and Vandycyk, instead of being impaired, are improved by time, which some of them have now withstood above 60 years. His idea of beauty, when he indulged his fancy, was of the highest kind; and his knowledge of perspective gave him great advantages in family-pieces, of which he painted more than any one of his time. He could take a likeness by memory as well as by a fitting, as appears by his picture of the duke of Lorraine (the late emperor), which Faber engraved; and those of king George II. (in York-assembly-room); queen Caroline, the two Miss Gunings, &c. Like many other great painters, he had a poet for his friend, in the late Mr Browne, to which may be added a poem addressed to him in 1766, by the Rev. Mr Bunce, at that time of Trinity-hall, Cambridge, who succeeded Mr Highmore, and in 1780 was vicar of St Stephen's near Canterbury.

HIGHNESS, a quality or title of honour given to princes.—The kings of England and Spain had formerly no other title but that of highness; the first till the time of James I. and the second till that of Charles V. The petty princes of Italy began first to be complimented with the title of highness in the year 1630.—The duke of Orleans assumed the title of royal highness in the year 1631, to distinguish himself from the other princes of France.

The duke of Savoy, late king of Sardinia, bore the title of royal highness, on account of his pretensions to the kingdom of Cyprus. It is said that duke only took the title of royal highness, to put himself above the duke of Florence, who was called great duke; but the great duke afterwards assumed the title of royal highness, to put himself on a level with the duke of Savoy.
HILARY-TERM. See Term HILDESHEIM, a small district of Germany, in the circle of Lower Saxony. It lies between the duchies of Lunenburg and Brunswick; and may be about 25 from east to west, and 36 from north to south. It is watered by the rivers Leine and Luneberge. The soil is fertile; and its principal places are Peine, Salzgitter, Bruggen, and Alfeld. Hildesheim, from whence it takes its name, is governed as an imperial city. Its bishop is now elector of Cologne.

HILDESHEIM, a strong city of Germany, in Lower Saxony, with a Roman-catholic bishop's see whose bishop is sovereign. It is a free imperial city, tho' in some things dependent on the bishop. It is a large town well built and fortified. It is divided into the Old Town and the New, which have each their separate council. It is seated on the river Neste, in E. Long. 10. O. N. Lat. 52. 17.

HILL, a term denoting any considerable eminence on the earth's surface. It is sometimes synonymous with the word mountain; though generally it denotes only the lesser eminences, the word mountain being particularly applied to the very largest. See Mountain.

HILL (Aaron), a poet of considerable eminence, the son of a gentleman of Malmsbury-abatey in Wiltshire, was born in 1685. His father's imprudence having cut off his paternal inheritance, he left Weitminster school at 14 years of age; and embarked for Constantinople, to visit lord Paget the English ambassador there, who was his distant relation. Lord Paget received him with surprize and pleasure, provided him a tutor, and sent him to travel: by which opportunity he saw Egypt, Palestine, and a great part of the east; and returning home with his noble patron, visited most of the courts of Europe. About the year 1709, he published his first poem intitled Camillus, in honour of the earl of Peterborough who had been general in Spain; and being the same year made master of Drury-lane theatre, he wrote his first tragedy, Elfred, or the fair Inconstant. In 1710, he became master of the opera-house in the Hay-market; when he wrote an opera called Rinaldo, which met with great success, being the first that Mr Handel set to music after he came to England. Unfortunately for Mr Hill, he was a projector as well as poet, and in 1715 obtained a patent for extracting oil from beech-nuts; which undertaking, whether good or bad, miscarried after engaging three years of his attention. He was also concerned in the first attempt to settle the colony of Georgia; from which he never reaped any advantage; and in 1728 he made a journey into the Highlands of Scotland, on a scheme of applying the woods there to ship-building; in which also he lost his labour. Mr Hill seems to have lived in perfect harmony with all the writers of his time, except Mr Pope, with whom he had a short paper-war, occasioned by that gentleman's introducing him in the Dunce-ạy, as one of the competitors for the prize offered by the goddes of Dullness, in the following lines:

"Then Hill eth's up, his face vanish'd out of sight,
He buzzy up instant, and returns to light.
He bears no token of the falter streams,
He mounts far off among the Swans of Thames."

This, though far the gentlest piece of satire in the whole poem,
Hill, poem, and conveying at the same time an oblique compliment, routed Mr. Hill to take some notice of it; which he did by a poem written during his peregrination in the north, intitled, "The projects of wit, a caveat for the use of an eminent writer," which he begins with the following eight lines, in which Mr. Pope's too well-known disposition is elegantly, yet very severely characterized:

"Tuneful Muses on the Thames' fair side,
This is a fubject, and the Muse's pride.

With merit popular, and with wit polite,
Easy thy' vain; and elegant thou' light;

Defiring and deferving others praise,
Poorly accepts a Flame he's'er rays:

And wants the soul to fire the worth he loves.

The sweakingly approves, in the couplet, Mr. Pope was much affected by; and indeed through their whole controversy afterwards, in which it was generally thought that Mr. Hill had much the advantage, Mr. Pope seems rather to express his repentance by denying the offence, than to vindicate himself supposing it to have been given. Besides the above poems, Mr. Hill, among many others, wrote one called The author's firft year, upon the actions of Czar Peter the Great; for which he was several years afterwards complimented with a gold medal from the empress Catharine, according to the Czar's desire before his death. He likewise altered some of Shakespeare's plays, and translated some of Voltaire's. His last production was Merope; which was brought upon the stage in Drury-lane by Mr. Garrick. He died on the 8th of February 1749, as it is said, in the very minute of the earthquake; and after his decease four volumes of his works in prose and verse were published in Oxford, and his dramatic works in two volumes to cherish, sweakingly approves.

Hill (Sir John), a voluminous writer, was originally bred an apothecary, but his marrying early and without a fortune, made him very soon look round for other resources than his profession. Having, therefore, in his apprenticeship, attended the botanical lectures of the company, and being possessed of quick natural parts, he soon made himself acquainted with the theoretical as well as practical parts of botany; from whence being recommended to the late duke of Richmond and lord Petre, he was by them employed in the inspection and arrangement of their botanic gardens. Afflicted by the liberality of these noblemen, he executed a scheme of travelling over the kingdom, to collect the most rare and uncommon plants; which he afterwards published by subscription; but after great researches and uncommon industry, this undertaking turned out by no means adequate to his expectation. The stage next presented itself, as a foil in which genius might stand a chance of flourishing; but after two or three unsuccessful attempts, it was found he had no pretensions either to the fock or bofin; which once more reduced him to his botanical pursuits, and his business as an apothecary. At length, about the year 1746, he translated from the Greek, a small tract, written by Theophrastus, on Gems, which he published by subscription; and which being well executed, procured him friends, reputation, and money. Encouraged by this, he engaged in works of greater extent and importance. The first he undertook was A general natural history, in 3 vols. folio. He next engaged, in conjunction with George Lewis Scott, Esq., in furnishing a Supplement to Chambers's Dictionary. He at the same time started the British Magazine; and while he was engaged in a great number of these and other works, some of which seemed to claim the continued attention of a whole life, he carried on a daily eify, under the title of Inspector. Amidst this busy hum of business, Mr. Hill was to laborious and ready in all his undertakings, and was nithal to exact an eonomy of his time, that he fearcl

...Hill, now Dr. Hill (for he procured a diploma from the college of St. Andrew's), through all his various pursuits in life. A quarrel he had with the Royal Society, for being refused as a member; which provoked him to ridenileth learned body, in a review of the works of the Royal Society of London, 4to, 1751; together with his over-writing himself upon all subjects without reserve; made him sink in the estimation of the public nearly in the same pace as he had ascended. He found as usual, however, resources in his own invention. He supplied himself to the preparation of certain simple medicines; such as the essence of waterdock, tincture of veteran, balm of honey, &c. The well-known simplicy of these medicines made the public judge favourably of their effects, insomuch that they had a rapid sale, and once more enabled the doctor to figure in that style of life ever so congenial to his inclination. Soon after the publication of the first of these medicines, he obtained the patronage of the Earl of Bute, through whose interest he acquired the management of the royal gardens at Kew, with a handsome salary; and to wind up the whole of an extraordinary life, having, a little before his death, seized an opportunity to introduce himself to the knowledge of the king of Sweden, that monarch invested him with one of the orders of his court, which title he had not the happiness of enjoying above two years. He died towards the close of the year 1775.

Hillel, senior, of Babylon, president of the sanhedrim of Jerusalem. He formed a celebrated school there, in which he maintained the oral traditions of the Jews against Shammai, his colleague, whose disciples adhered only to the written law; and this controversy gave rise to the distinction between the Pharisees and Sadducees. He was likewise one of the compilers of the Talmud. He also laboured much at giving a correct edition of the sacred text; and there is attributed to him an ancient manuscript bible, which bears his name. He flourished about 30 years B.C. and died in a very advanced age.

Hillel, the nasi, or prince, another learned Jew, the grandson of Judas Maccabaeus, or the Saint, the author of the Mishna, lived in the fourth century. He composed a cycle; and was one of the principal doctors of the Gemara. The greatest number of the Jewish writers attribute to him the correct edition of the Hebrew text which bears the name of Hillel, which we have already mentioned in the preceding article. There have been several other Jewish writers of the same name.

Hillia, in botany: A genus of the monogynia order, belonging to the Flexandria class of plants; and in the natural method ranking with those of which the order is doubtful. The calyx is hexaphilious; the corolla,
HILLBROUGH, or Hickley.

HILLSBOROUGH, a borough, fair, and port-town, in the county of Down, and province of Ulster, 69 miles from Dublin. Here is a fine seat of the earl of Hillsborough. The town is pleasantly situated and almost completely built, in view of Lluburn, Belfast, and Carrickfergus bay; the church is magnificent, having an elegant spire, as lofty as that of St Patrick's in Dublin, and several pointed windows. Here is an excellent, and a thriving manufacture of mulins. It has three fairs, and sends two members to parliament. This place gives title of earl to the family of Hillsborough. N. Lat. 54° 30'. W. Long. 6° 20'.

HILLSBOROUGH, in North Carolina. See North Carolina.

HILUM, among botanists, denotes the eye of a bean.

HIMERA (anc. geog.), the name of two rivers in Sicily: one running northwards into the Tufcan sea, now called Fiume di Termini; and the other southwards into the Lybian, dividing Sicily into two parts, being the boundary between the Syracusans to the east and Carthaginians to the west; not rising from the sea, but from different springs.

HIMERENSES THERMAE (anc. geog.), a town of Sicily, at the mouth of the Himera, which ran northwards, on its left or west side: A colony of Zancle; afterwards destroyed by the Carthaginians (Diodorus Siculus).

Himerenses Thermae (anc. geog.), a town of Sicily, on the east side of that Himera which runs to the sea.

After the destruction of the town of Himera by the Carthaginians, such of the inhabitants as remained, settled in the same territory, not far from the ancient town. Now Termini. Made a Roman colony by Augustus.

HIN, a Hebrew measure of capacity for things liquid, containing the fifth part of an ephah, or one gallon two pints English measure.

HINCKLEY, a market-town of Leicestershire, built on a rising ground, nearly on the borders of Leicestershire, from which it is separated by the Roman Watling-street road. It is distant from Coventry and Leicestershire 15 miles each, and 102 from London. It has been much larger than it is at present, the back lanes between the orchards having evidently been streets originally, and the traces of the town-wall and ditch are in many places yet visible. There are vestiges of two Roman works, viz. the mound near the river, and the ruins of a bath near St Nicholas church, where tessellated pavements have been dug up. The Jewry wall is said to have been the temple of Janus. The castle was inhabited by John of Gaunt; but is now no more, the feite being converted into garden ground, the castle-hill considerably lowered, and a gentleman's house erected on the spot in 1770. The steeple of the present church was built with some of the stones of the castle. The town is now divided into the borough, and the bond without the liberties. It has a good market on Mondays, and a fair in August. The chief manufacture is stockings and fine ale. The town is said to contain about 750 houses. There are two churches, one chapel, and a place of worship for the Roman Catholics, hidden under sitting-houses. The church is near a large old structure with a modern tower and a spire, the body of it was built in the 13th century, and near it are three mineral springs. This town is said to be the middle and highest ground in England; and from it 50 churches may be seen, besides gentlemen's seats. It received great damage by fire Sept. 5, 1728.

HIND, a female flag in the third year of its age. See Cervus.

HINDON, a small town of Wilshire in England, which sends two members to parliament. It is situated in E. Long. 2° 7'. N. Lat. 51° 13'.

HINDOOS, or Gentooos, the inhabitants of that part of India known by the name of Hindu or the Mogul's empire, who profess the religion of the Brahmans, supposing to be the same with that of the ancient Gymnosophists of Ethiopia.

From the earliest period of history these people seem to have maintained the same religion, laws, and customs, which they do at this day; and indeed they and the Chinese are examples of preference in these respects altogether unknown in the western world. In the time of Diodorus Siculus they are said to have been divided into seven castes or tribes; but the intercourse between Europe and India was in his time so small, that we may well suppose the historian to have been mistaken, and that the same faculty for which they are so remarkable in other respects has manifested itself also in this. At present they are divided only into four tribes: 1. The Brinam; 2. The Khatri; 3. The Bhyse; and, 4. The Soudara. All these have distinct and separate offices, and cannot, according to their laws intermingle with each other; but for certain offences they are subject to the laws of their caste, which is reckoned the highest punishment they can suffer; and hence is formed a kind of fifth caste named Paritar on the coast of Coromandel, but in the Sanskrit or sacred language Chandala. These are esteemed the dregs of the people, and are never employed in the meanest offices. There is besides a general division which pervades the four castes indiscriminately; and which is taken from the worship of their gods, Visnou and Sheevah; the worshippers of the former being named Visnou-buklis; of the latter, Sheevabukki.

Of these four castes the Brahmins are accounted the foremost in every respect; and all the laws have such an evident partiality towards them, as cannot but induce us to suppose that they have had the principal hand in framing them. They are not, however, allowed to assume the sovereignty: the religious ceremonies and the instruction of the people being their peculiar province. They alone are allowed to read the Veda or sacred books; the Khatries, or cast next in dignity, being only allowed to hear them read; while the other two can only read the Sastitas or commentaries upon them. As for the poor Chandals, they dare not enter a temple, or be present at any religious ceremony.

In point of precedence the Brahmins claim a superiority even to the princes; the latter being chosen out of the Khattri or second caste. A rajah will receive with respect the food that is prepared by a brahman, but the latter will eat nothing that has been prepared by any member of an inferior caste. The punishment of a brahman for any crime is much milder than if he had belonged to another caste, and the punishment that can be committed is the murder of a brahmin.

No magistrate must desire the death of one of these sacred persons, or cut off one of his limbs. They must be...
of the Hindoos.

The religion of the Hindoos, by which these maxims are inculcated, and by which they are made to differ from other nations, is contained in certain books named Veda, Vedanta, or Bedi, written in a language called Sanscrit, which is now known only to the learned among them. The books are supposed to have been the work not of the Supreme God himself, but of an inferior deity named Brimha. They inform us, that Brama, or Brahma, the supreme God, having created the world by the word of his mouth, formed a female deity, named Bawaney, who in an enthusiasm of joy and praise brought forth three eggs. From these were produced three male deities, named Brimha, Vishnou, and Sheevah. Brimha was endowed with the power of creating the things of this world, Vishnou with that of cherishing them, and Sheevah with that of restraining and correcting them. Thus Brimha became the creator of man; and in this character he formed the four castes from different parts of his own body, the Bramins from his mouth, the Khatry from his arms, the Banians from his belly and thighs, and the Soodera from his feet. Hence, they say, these four different castes derive the different offices assigned to them; the Bramins to teach; the Khatry to defend and govern; the Banians to enrich by commerce and agriculture; and the Soodera to labour, serve, and obey. Brahma himself endowed mankind with passions, and understanding to regulate them; while Brimha, having created the inferior beings, proceeded to write the Vedams, and delivered them to be read and explained by the Bramins.

The religion of the Hindoos, though involved in superstition and idolatry, seems to be originally pure; inculcating the belief of an eternal and omnipotent Being; their subordinate deities Brimha, Vishnou, and Sheevah, being only representatives of the wisdom, goodnec5, and power, of the supreme God Brahma. All created things they suppose to be types of the attributes of Brahma, whom they call the principle of truth, the spirit of wisdom, and the supreme being; so that it is probable that all their idols were at first only designed to represent these attributes.

There are a variety of sects among the Hindoos: Different two great classes we have mentioned already, viz. the sects, worshippers of Vishnou and those of Sheevah; and these distinguish themselves, the former by painting their faces with an horizontal line, the latter by a perpendicular one. There is, however, very little difference in point of religion between these or any other Hindoo sects. All of them believe in the immortality of the soul, a state of future rewards and punishments, and transmigration. Charity and hospitality are inculcated in the strongest manner, and exist among them not only in theory, but in practice. "Hospitality (say they) is commanded to be exercised even towards an enemy, when he cometh into thine house; the tree doth not withdraw its shade even from the woodcutter. Good men extend their charity even to the vilest animals. The moon doth not withhold her light even from the Chandals." These pure doctrines, however, are intermixed with some of the vilest and most absurd superstitions; and along with the true God they worship a number of inferior ones, of whom the principal are:

1. Bawaney, the mother of the gods, already men. Account of tioned, and inferior to all but Brahma himself; but all the other goddesses are reckoned inferior to their gods or lords.

2. Brimha, in the Sanscrit language, said to mean "the wisdom of God," and who is supposed to fly on the wings of the haggar (flamingo); an image of which is constantly kept near that of the god in the temple.
Hindoos. where he is worshipped. He has a crown on his head, and is represented with four hands. In one of these he holds a sceptre, in another the sacred books or Vedas, in the third a ring or circle as the emblem of eternity, supposed to be employed in afflicting and protecting his works.

3. Serafwaite, the goddess or wife of Brimha, presides over music, harmony, eloquence, and invention. She is also said to be the inventress of the letters called Devanagry, by which the divine will was first promulgated among mankind. In the argument of an hymn addressed to this goddess, she is supposed to have a number of inferior deities acting in subordination to her. These are called Ras, which preside over each mode, and likewise over each of the seafons. These seafons in Hindoos are fixed in number; viz. 1. The Sefar, or dewy season. 2. Heemat, or the cold season. 3. Vesant, the wild season or spring. 4. Grishma, or the hot season. 5. Yarst, the rainy season. 6. Sarat, the breaking up or end of the rains.

The Ras, in their musical capacity, are accompanied each with five Ragis, a kind of female deities or nymphs of harmony. Each of these has eight sons or genii; and a distinct season is appointed for the music of each rag, during which only it can be sung or played; and this at different and stated hours of the day or night. A seventh mode of music belonging to Dripre, or Cupid the inslayer, is said once to have existed, but now to be lost; and a musician, who attempted to improve it, has been confounded with fire from heaven.

Vishnu, the most celebrated of all the Indian deities, is supposed to fly or ride on the garoora, a kind of large brown kite, which is found in plenty in the neighbourhood; and on which Vishnou is sometimes represented as sitting; though at others he is represented on a serpent with a great number of different heads. At some of his temples the bramin acceunmen all birds they can find, of the species abovementioned, to come and be fed; calling them by striking upon a brafs plate. This deity is said to have had ten different incarnations to destroy the giants with which the earth was infested; and in these he is represented in as many different figures, all of which are to the last degree beautiful and magnificent. His common form is that of a man with four hands, and a number of heads set round in a circle supposed to be emblems of omniscience and omnipotence. In his first incarnation he is represented as coming out of the mouth of a fish, with several hands containing swords, &c. In another he has the head of a boar with monstrous tusks, bearing a city in the air, and stands upon a vanquished giant with horns on his head. In others of his incarnations, he has the head of a horse or other animals, with a great number of arms brandishing swords, &c.

In some of his characters this deity is represented not as a destroyer, but a preserver of mankind; and in one of his different forms he is called Bish. Wilkins describes an image of him in this character at a place named Jahan-guery, a small rocky island of the Ganges in the province of Bahar. This image is of a gigantic size, recumbent on a coiled serpent, whose numerous heads are twisted by the artist into a kind of canopy over the sleeping god, and from each of its mouth issued a forked tongue, as threatening destruction to those who should dare to approach.

5. Shreevar, is represented under a human form, though frequently varied, as is also his usual seat, which is most frequently called Shreevar and Mahadev. In his destroying character he is represented as a man with a fierce look, with a snake twisted round his neck. He is thought to preside over good and evil fortune, in token of which he is represented with a crescent on his head. He rides upon an ox.

6. Jikan, the god of victory, is said to have had a particular kind of sacrifice offered to him somewhat like the scape goat of the Jews, viz., by letting a horde loose in the forest, and not employing him again.

7. Tam Rajah, or Darhun Rajah, is represented as the judge of the dead, and ruler of the infernal regions, in a manner similar to the Minos and Pluto of the ancient Greeks. He is the fon of Saur, "the fun," by Bijookama daughter of the great architect of the heavenly mansions, and patron of artificers. He rides upon a buffalo, with a sceptre in his hand, having two aifiliants, Chiter and Copt; the former of whom reports the good, and the latter the bad actions of men. These are attended by two genii, who watch every individual of the human race; Chiter's spy being on the right, and Copt's on the left. The souls of deceased persons are carried by the Jamboha or messengers of death into the presence of Darhun, where his actions are instantly proclaimed, and sentence passed accordingly. The infernal mansions are named by the Hindoos Narekha, and are divided into a great number of places, according to the degrees of punishment to be endured by the criminal; but eternal punishment for any offence is supposed to be inconsistent with the goodness of God. Instead of this, the Hindoos suppose, that after the souls of the wicked have been punished long enough in Narekha, they are sent back into the world to animate other bodies either of men or beasts, according to circumstances. Those who have lived a life partly good and partly bad, are likewise sent back to this world; and these trials and transmutations are repeated till they be thoroughly purged of all inclination to sin. But as for those holy men who have spent their time in piety and devotion, they are instantly conveyed by the genie to the mansions of celestial bliss, where they are absorbed into the universal spirit; a state according to every idea we can form equivalent to anihilation!

8. Krihen and the nine Copias, among the Hindoos, correspond with Apollo and the nine muses of the Greeks. This deity is represented as a young man sometimes playing on a flute. He has a variety of names, and is supposed to be of a very amorous complexion, having once resided in a district named Birges, where he embraced almost all the women in the country. From his residence here, or from thefts amorous exploits, he is sometimes called Birje-pot.

9. Nama-deva, the god of the name of Haran. His name, according to the name of Maya, or the general attractive power; married to Retty, or Affection. He is represented as a beautiful youth, sometimes conversing with his mother or confort in his temples or gardens; at other times riding on a parrot by moonlight: and Mr Foller informs us, that on the taking of Tanjore by the English, a curious
vious picture was found, representing him riding on an elephant, the body of which was composed of seven young women twined together in such a manner as to represent the enormous animal. This is supposed to be a device of a similar nature with that of the Greeks, who placed their Erōs upon a lion; thus intimating, that love is capable of taming the fiercest of animals.

The bow of this deity is said to be of sugar-cane or of flowers; and the string of bees: he has five arrows, each of them tipped with an Indian blossom of an heating nature. His chariot is a fish on a red ground, carried by the foremost of his attendant nymphs or dancing girls.

10. Lingam, corresponding to the Priapus or Phallus of the ancients, is worshipped by the Hindoos in order to obtain fecundity. This deity is adored the more fervently, as they depend on their children for performing certain ceremonies to their manes, which they imagine will mitigate their punishment in the next world. The devotees of this god go naked, but are supposed to be such sanctified persons, that women may approach them without any danger. They vow perpetual chastity; and death is the consequence of a breach of their vow. Husbands whose wives are barren invite them to their houses, where certain ceremonies, generally thought to be effectual, are performed.

Besides these, there are a number of other gods whose character is less eminent, though we are by no means acquainted, nor are the Hindoos themselves perhaps, with the particular rank which each deity carries with respect to another. Some of these deities are, 11. Nārada, the son of Brigha, and inventor of a fretted instrument named Vina. 12. Leshem, the goddess of plenty, and wife of Vihnoo. 13. Cowry, Kali, from Kala, time; 14. Varuna, the god of the seas and waters, riding on a crocodile. 15. Vayā, the goddess of the winds, riding on an antelope with a fabre in his hand. 16. Agna, the god of fire, riding on a ram. 17. Vasudēka, a god representing the earth. 18. Pakrēta, or nature, represented by a beautiful young woman. 19. Sum or Shan, the sun; called also the king of the stars and planets, represented as sitting in a chariot drawn by one horse, sometimes with seven, and sometimes with twelve heads. 20. Sangia, the mother of the river Jumna, and wife of the moon. 21. Chanda, the moon, in a chariot drawn by antelopes, and holding a rabbit in her right hand. 22. Vṛkṣakṣatu, the god of learning, attended by beautiful young nymphs named V≡dāyāharas, or professors of science. 23. Cūma, the god of prudence and policy worshipped before the undertaking of any thing of consequence. 24. Fare, represented by a serpent with a great number of tongues; and known by several names. 25. Darma-dvēt, the god of virtue, sometimes represented by a white bull. 26. Virāvata or Gubbair, the god of riches, represented by a man riding on a white horse. 27. Dhan-wantur, the god of medicine.

Besides these supreme deities, the Hindoos have a number of demigods, who are supposed to inhabit the air, the earth, and the waters, and in short the whole world; so that every mountain, river, wood, town, village, &c. has one of these tutelar deities, as was the cafe among the western heathens. By nature these demigods are subject to death, but are supposed to obtain immortality by the use of a certain drink named Amrut. Their exploits in many instances resemble those of Bacchus, Hercules, Theseus, &c. and in a beautiful epic poem named Rāmāyana, we have an account of the wars of Rām, one of the demigods, with Ravana tyrant of Ceylon.

All these deities are worshipped, as in other countries, by going to their temples, fasting, prayers, and the performance of ceremonies to their honour. They pray thrice a day, at morning, noon, and evening, turning their faces towards the east. They use many ablations, and, like the Pharisees of old, they always wash before meals. Running water is always preferred for this purpose to such as flaggates. Fruits, flowers, incense and money, are offered in sacrifice to their idols; but for the dead they offer a kind of cake named Pecuda; and offerings of this kind always take place on the day of the full moon. Nothing fingularity is known in the worship of the Hindoos at present, though there is a tradition that it was formerly of this kind; nay, that even human sacrifices were made use of: but if such a custom ever did exist, it must have been at a very remote period. Their sacred writings indeed make mention of bloody sacrifices of various kinds, not excepting even those of the human race: but so many peculiarities are mentioned with regard to the proper victims, that it is almost impossible to find them. The only instance of bloody sacrifices we find on record among the Hindoos is that of the buffalo to Bawaney, the mother of the gods.

Among the Hindoos there are two kinds of worship, distinguished by the name of the worship of the invisible God and of idols. The worship of the invisible God are, strictly speaking, deists: the idolaters perform many absurd and unmeaning ceremonies, too tedious to mention, all of which are conducted by a bramin; and during the performance of these rites, the dancing women occasionally perform in the court, singing the praises of the Deity in concert with various instruments. All the Hindoos seem to worship the fire; at least they certainly pay a great veneration to it. Bishop Wilkins informs us, that they are enjoined to light up a fire at certain times, which must be produced by the friction of two pieces of wood of a particular kind; and the fire thus produced is made use of for consuming their sacrifices, burning the dead, and in the ceremonies of marriage.

Great numbers of devotees are to be met with everywhere through Hindostan. Every cast is allowed to vote. They assume this way of life excepting the Chandalas, who are excluded. Those held most in esteem are named Bāsīfas and Jīpipā. The former are allowed no other clothing but what finishe for covering their nakedness, nor have they any words or gods before they beget a pitcher and staff; but though they are strictly enjoined to meditate on the truths contained in the sacred writings, they are expressly forbidden to argue about them. They must eat but once a day, and that very sparingly, of rice or other vegetables: they must also show the most perfect indifference about hunger, thirst, heat, cold, or anything whatever relative to this world; looking forward with continual desire to the separation of the soul from the body. Should any of them fail in this
Hindus.

Hindus. extravagantly self-denial, he is rendered so much more criminal by the attempt, as he neglected the duties of ordinary life for those of another which he was not able to accomplish. The Yogees are bound to much the same rules, and both subject themselves to the most extravagant penances. Some will keep their arms constantly stretched over their heads till they become quite withered and incapable of motion; others keep them crossed over their breast during life; while others, by keeping their hands constantly shut, have them quite pierced through by the growth of their nails. Some chain themselves to trees or particular spots of ground, which they never quit; others resolve never to lie down, but sleep leaning against a tree; but the most curious penance perhaps on record is that of a Yogee, who measured the distance between Benares and Jugarnaut with the length of his body, lying down and rising alternately. Many of these enthusiasts will throw themselves in the way of the chariots of Vishnou or Sheevah, which are sometimes brought forth in procession to celebrate the feast of a temple, and drawn by several hundreds of men. Thus the wretched devotees are in an instant crushed to pieces.

A certain set of devotees are named Pandarams; and another on the coast of Coromandel are named Gop-patra Pandarams. The former rub themselves all over with cow-dung, running about the country singing the praises of the god Sheevah whom they worship. The latter go about asking charity at doors by striking their hands together, for they never speak. They accept of nothing but rice; and when they have got as much as will satisfy their hunger, never give themselves any trouble about more, but pass the rest of the day in the shade, in a state of such supine indolence as scarce to look at any object whatever. The Todinums are another sect of mendicants, who sing the incantations of Vishnou. They have hollow brass rings round their ankles, which they fill with pebbles; so that they make a considerable noise as they walk, their hands being bare.

The greatest singularity in the Hindoo religion, however, is, that so far from perfecting those of the Hindoo religion. a contrary persuasion, which is too often the case with other professed, they absolutely refuse even to admit of a profecyee. They believe all religions to be equally acceptable to the Supreme Being; assigning as a reason, that if the Author of the universe preferred one to another, it would have been impossible for any other to have prevailed than that which he approved. Every religion, therefore, they conclude to be adapted to the country where it is established; and that all in their original purity are equally acceptable.

Among the Hindoos, marriage is considered a sa-religious duty; and parents are strictly commanded to marry their children by the time they arrive at eleven years of age at farthest. Polygamy is allowed; but this licence is seldom made use of, unless there should be no children by the first wife. In case the second wife also proves barren, they commonly adopt a son from among their relations.

The Hindoos receive no dower with their wives; but, on the contrary, the intended husband makes a present to the father of his bride. Nevertheless, in many cases, a rich man will choose a poor relation for his daughter; in which case the bride's father is at the expense of the wedding, receives his son-in-law into his house, or gives him a part of his fortune. The bride-groom then quits the dwelling of his parents with certain ceremonies, and lives with his father-in-law. Many formalities take place between the parties even after the match is fully agreed upon; and the celebration of the marriage is attended with much expense; magnificent proceSSIONS are made, the bride and bridegroom sitting in the same palanquin, attended by their friends and relations; some riding in palanquins, some on horses, and others on elephants. So great is their vanity indeed on this occasion, that they will borrow or hire numbers of these expensive animals to do honour to the ceremony. The rejoicings last several days; during the evenings of which, fire-works and illuminations are displayed, and dancing women perform their feats; the whole concluding with alms to the poor, and presents to the bramins and principal guests, generally consisting of shawls, pieces of mullin, and other cloths. A number of other ceremonies are performed when the parties come of age, and are allowed to cohabit together. The same are repeated when the young wife becomes pregnant; when she gives the seventh month without any accident; and when she is delivered of her child. The relations assemble on the tenth day after the birth, to assist at the ceremony of naming the child; but if the bramins be of opinion that the aspect of the planets is at that time unfavourable, the ceremony is delayed, and prayers offered up to avert the misfortune. When the lucky moment is discovered, they fill as many pots with water as there are planets, and offer a sacrifice to them; afterwards they sprinkle the head of the child with water, and the bramin gives it such a name as he thinks best adapted to the time and circumstances; and the ceremony concludes with prayers, presents to the bramins, and alms to the poor. Mothers are obliged to suckle their own children; nor can this duty be dispensed with except in cases of sickness. New ceremonies, with presents to the bramins, take place when the couple come of age to receive the string which the three first castles round their waist.

Boys are taught to read and write by the bramins, who keep schools for that purpose throughout the country. They use leaves instead of books, and write with a pointed iron instrument. The leaves are generally those of the palm-tree, which being smooth and hard, and having a thick substance, may be kept for almost any length of time, and the letters are not subject to grow faint or be effaced. The leaves are cut into slips about an inch broad, and their books consist of a number of these tied together by means of a hole in one end. Sometimes the letters are rubbed over with a black powder, to render them more legible. When they write upon paper, they make use of a small reed. Sometimes they are initiated in writing by making letters upon sand fired on the floor; and they are taught arithmetic by means of a number of small pebbles. The education of the girls is much more limited, seldom extending farther than the articles of their religion. Among these people the custom of burning the dead prevails.
The Hindoos, though naturally mild and timid, will on many occasions meet death with the most heroic intrepidity. An Hindoo who lies at the point of death, will talk of his decease with the utmost composure, and if near the river Ganges, will direct to be carried out, that he may expire on its banks. Such is the excessive veneration they have for their religion and customs, that no person will infringe them even to preserve his own life. An Hindoo, we are told, being ill of a putrid fever, was prevailed upon to fend for an European physician, who prescribed him the bark in wine; but this was refused with the greatest obstinacy even spiritual liquors, and eat any kind of meat except beef; their dances are said to resemble pretty exactly those of the ancient Bacchanalians represented in some of the ancient paintings and bas reliefs. In some of their dances they attach gold and silver bells to the rings of the same metal they wear on their ankles.

The Hindoos, though formerly very common, though now much less so. At present it is totally prohibited in the British dominions; and even the Mohammedans endeavour to discountenance the practice so barbarous, though many of their governors are accused of conniving at it through motives of avarice. At present it is most common in the country of the Rajaas, and among women of high rank.

This piece of barbarity is not enjoined by any law existing among the Hindoos; it is only said to be proper, and rewards are promised in the next world to those who do so. But though a wife chooses to outlive her husband, she is in no case whatever permitted to marry again, even though the marriage with the former had never been completed. It is unlawful for a woman to burn herself if the be with child at the time of her husband’s decease, or if he died at a distance from her. In the latter case, however, she may do so if she can procure his girdle or turban to be put on the funeral pile along with her. These miserable enthusiasts, who devote themselves to this dreadful death, suffer with the greatest constancy; and Mr. Holwell gives an account of one who, being told of the pain of one who, being told of the pain

...
round their shoulder they hang the sacred string called Zeumar, made of a kind of perennial cotton, and composed of a certain number of threads of a determined length. The Khatries wear also a string of this kind, but composed of fewer threads; the Bhyre have one with full fewer threads, but the Soodras are not allowed to wear any string. The other dreds of the brahmins consist of a piece of white cotton cloth wrapped about the arms, different cloth being belted round the body. They wear a shawl round their heads, and wrap a shawl round their bodies. — The Khatries, and most other of the inhabitants of this country, wear also pieces of cotton cloth wrapped round them, which cover the upper as well as the lower part of the body. Ear-rings and bracelets are worn by the men as well as women: and they are fond of ornamenting their feet of fine woollen cloth or velvet, frequently embroidered with precious stones, when they can procure them. They wear slippers or sandals, or their feet of fine woollen cloth or velvet, frequently embroidered with precious stones. The lower order of the people, who are the attendants of the upper, are often seen in coarse clothing, the lower part of which is as coarse as any of the materials which they wear, and which is the origin of all our desires. The external senses, according to this author, are representations of external things to the mind, by which it is furnished with materials for its various operations; but unless the mind act in conjunction with the senses, the operation is lost, as in that absence of mind which takes place in deep contemplation. He treats likewise of reason, memory, perception, and other abstract subjects. He is of opinion, that the world could not exist without a first cause; chance being nothing but the effect of an unknown cause: he is of opinion, however, that it is folly to make any conjectures concerning the beginning or duration of the world. In treating of providence, he denies any immediate interposition of the Deity; maintaining, that the Supreme Being having created the system of nature, allowed it to proceed according to the laws originally impressed upon it, and man to follow the impulse of his own desires, restrained and conducted by his reason. His doctrine concerning a future state is not different from what we have already stated as the belief of the Hindoos in general. According to bishop Wilkins, many of them believe that this world was founded, however, on two other sets of tables from Hindoos.

The science for which the brahmins, however, were their most remarkable, is that of astronomy; and in this their system, progress was so great, as even yet to furnish matter of admiration to the moderns. — The Europeans first became acquainted with the Indian astronomy in 1687, from a Siamee MS. containing rules for calculating the places of the sun and moon, brought home by M. Loubere the French ambassadour at Siam. The principles on which the tables in this MS. were founded, however, proved to be so obscure, that it required the genius of Cassini to investigate them. The missionaries afterwards lent over two other sets of tables from Hindoos; but no attention was paid to them till M. le Gentil returned from observing the transit of Venus in 1769. During the time of his stay in Hindoos, the brahmins had been much more familiar with him in account of his astronomical knowledge, than they usually were
The objects of this astronomy, according to Dr. Playfair, are, 1. Tables and rules for calculating the places of the sun and moon. 2. Of the planets. 3. For determining the phases of eclipses. They divide the zodiac into 27 constellations, probably from the motion of the moon through it in 27 days; and to this lunar motion the Doctor ascribes the general division of time into weeks, which has prevailed fo universally throughout the world. The days of the week were indicating considerable insight into their methods of calculation. In consequence of this instruction he published tables and rules, according to the Indian method, in the Academy of Sciences for 1772; and in the explanation of these M. Bailly has employed a whole volume.

The requisites for calculating by the Indian tables are, 1. An observation of the celestial body in some past moment of time, which is commonly called the Epoch of the tables. 2. The mean rate of the planet's motion. 3. The correction on account of the irregular motion of the body, to be added or subtracted from the mean place, according to circumstances. They calculate the places of the sun and moon, not from the time of their entrance into Aries, but into the moveable Zodiac. Thus the beginning of the year is continually advancing with regard to the seasons; and in 24,000 years will have made the complete round. The mean place of the sun for any time is deduced on the supposition that 800 years contain 292,207 days; from whence, by various calculations, the length of the year comes out only 1° 54' greater than that of De la Caille; which is more accurate than any of our ancient astronomical tables. In the equation of the sun's centre, however, they commit an error of no less than 16'; but Dr. Playfair is of opinion that this cannot be ascribed wholly to their inaccuracies, as there was a time when their calculation approached very near the truth; and even at present the error is less than it appears to be.

The motions of the moon are deduced from a cycle of 19 years; during which she makes nearly 235 revolutions, and which period constitutes the famous cycle supposed to have been invented by the Athenian astronomer, and from him called the Metonic Cycle. They are likewise surprisingly exact in calculating the moon's apogee and some of the inequalities of her motion; they know the apparent motion of the fixed stars eastward, and the Siamese tables make it only four seconds too quick; which still shows a great accuracy of calculation, as Ptolemy the celebrated astronomer made an error of no less than 14 seconds in calculating the same thing. M. Cassini, however, informs us, that these tables are not calculated for the meridian of Siam, but for a place 19° 15' to the westward of it, which brings us very near the meridian of Bencares, the ancient seat of Indian learning. This likewise agrees with what the Hindoos call their first meridian, which passes through Ceylon, and the banks of the river Remanur. It must be observed, however, that the geography of the Hindoos is much more inaccurate than their astronomy.

The dates of the Siamese tables are not very ancient; and that of the tables above-mentioned first from Hindoostan by the missionaries is still more modern. These, however, are written in such an enigmatical manner, that the missionary who sent them was unable to tell their meaning; and Dr. Playfair supposes that even the Brahmns themselves were ignorant of it. Nevertheless they were deciphered by M. le Gentil; who thinks that they have the appearance of being copied from inscriptions on stone. The minutes and seconds are not ranged in vertical columns, but in rows under one another, and without any title to point out their meaning or connection.

The tables of Tirvalore are among the most remarkable of all we are yet acquainted with. Their date, according to Dr. Playfair, corresponds with the year 3102 B.C. thus running up to the year of the world 502, when Adam was still in life. This era is famous in Hindostan under the name of Calyogham; and as this extraordinary antiquity cannot but create some suspicion, Dr. Playfair has been at some pains to determine whether it is real or fictitious. Whether it has been determined by actual observation, or derived by calculation from tables of more modern date. The result of his labours is, that we are to account the Calyogham as determined by observation; and that had it been otherwise, we must have been furnished with infallible methods of detecting the fallacy. His reasons for this opinion are,

1. That the task would have been too difficult, even for modern astronomers, to make the necessary calculations, without taking into account the disturbances arising from the action of the heavenly bodies upon one another, and with which we cannot suppose the ancient astronomers to have been equally well acquainted with the moderns. By reason of these variations, as well as from the small errors unavoidable in every calculation, any set of astronomical tables will be found sufficiently inaccurate if applied to any period very far distant from the time of observation. Hence, says our author, it may be established as a maxim, that if there be given a system of astronomical tables, founded on observations of an unknown date, that date may be found by taking the time when the tables represent the celestial motions most exactly.—This indeed might be done, provided we were furnished with any set of perfectly accurate tables with which we could compare the suspected ones; and Dr. Playfair thinks it a very reasonable postulate, that our modern astronomical tables, though not perfectly accurate, are yet capable of determining the places of all the celestial bodies without any sensible error for a longer period than that of the Calyogham.

2. By calculation from our modern tables, it appears that the place of the star Aldebaran, at the commencement of the Calyogham, differs only 53' from what the Indian tables make it. He thinks this coincidence the more remarkable, as the brahmans, by reason of the inaccuracy of their own date, would have erred by four or five degrees, had they calculated from their most modern tables dated in 1497.

At the commencement of this epoch (which, according to
HIN [520]

Hindoo.

Hindoo.
of them, and other passages of his work. He seems to have taken it for granted, without due examination, that the year 3600 of the latter must have been produced by the multiplication of the cycle of 60 into itself; and consequently that the first year of this grand era must likewise have been the first of the cycle. But this is totally inconsistent with the fact: the Kake Yeog began the thirteenth year of the cycle of 60, and all the reasoning founded on the self-production and harmony of these periods must fall to the ground.

From what Mr. Martin here sets forth, it is plain that we must make very considerable abatements in our confidence of the extreme antiquity of the Hindoos observations. Indeed we can scarce conceive a possibility of reconciling such extravagant antiquity with the authentic histories of which we are poffessed, or with these of scripture. The want of an ancient history of Hindoos leaves us indeed in the dark, and gives room for ingenious and speculative men to indulge themselves in marvellous reveries concerning their antiquity. But the flood, which if it existed at all, could not be but general over the whole earth, has been mistaken (even though we should not be able to determine the particular manner,) than at once to deny the authenticity of all history both sacred and profane, and attempt to evade evidence which no power of reasoning can ever set aside.

It is, however, undeniable, that the progress of the Great skill Hindoos in geometry as well as astronomy has been of the Hindoos in great antiquity. Of this a most remarkable instance is given by Dr. Playfair, in their finding out the proportion of the circumference of a circle to its diameter to a great degree of accuracy. This is determined, in the Ayeen Akbary, to be 3927/1250; and which, to do it arithmetically in the simplest manner possible, would require the inscription of a polygon 768 sides; an operation which cannot be performed without the knowledge of some very curious properties of the circle, and at least nine extractions of the square root, each as far as ten places of decimals. This proportion of 1250 to 3927 is the same with that of 1 to 3.1416; and differs very little from that of 125 to 155 discovered by Metra. He and Victa were the first who surpassed the accuracy of Archimedes in the solution of this problem; and it is remarkable that these two mathematicians flourished at the very time that the Ayeen Akbary was composed among the Hindoos.—In geography, however, they are much deficient; and it is very difficult to find out the true situation of the meridians mentioned by their authors from what they have said concerning them.

The art of painting among the Hindoos is in an imperfect state; nor are there any remains of antiquity which evince its ever being more perfect than it is at present. Their principal defect is in drawing, and they seem to be almost totally ignorant of the rules of perspective. They are much better skilled in colouring; and some of their pictures are finished with great nicety. Their sculptures are likewise rude, and greatly resemble those of the Egyptians. They seem to follow no regular rules in architecture; their temples in...
Hindoos. are filled with innumerable columns, but most of them without any just shape or proportion. They are principally remarkable for their immense size, which gives them an air of majesty and grandeur.

The music of the Hindoos is but little known to Europeans; and the art seems to have made but little progress among them in comparison with what it has done in the western countries, though some of the Indian airs are said to be very melodious. Their musical instruments are very numerous: in war they use a kind of great kettle drum named nagar, carried by a camel, and sometimes by an elephant. The dhol is a long narrow drum slung round the neck; and the tam-tam is a flat kind of drum resembling a tabour, but larger and louder. They use also the cymbal, which they name tulas; and they have various sorts of trumpets, particularly a great one named tarry, which emits a most doleful sound, and is without any interval. They are generally made use of at funerals, and sometimes to announce the death of persons of distinction.

The jugglers among the Hindoos are so expert, that many of the missionaries have ascribed their tricks to supernatural power; and even so late a traveller as Mr. Grose seems to be of a very different opinion. Like the Egyptians, they seem to have the power of disarming serpents of their poison; and there are many flatterers who go about with numbers of these animals in bags, having along with them a small bagpipe called magudy, which they pretend is useful to bring them from their lurking places. They take the serpents, though of the most poisonous kinds, out of the bags with their naked hands, and throw them on the ground, where they are taught to rear and move about to the sound of their music. They say that this is accomplished by means of certain incantations.

The use of fire-arms appears to have been of great antiquity in India. They are prohibited by the code of Gentoo laws, which is certainly of a very ancient date. The phrase by which they are denominated is agnecer, or weapons of fire; and there is also mention made of fet agnee, or the weapon that kills an hundred men at once. It is impossible to guess at the time when these weapons were first used by the Hindoos; but we are certain, that in many places of the east, which have neither been frequented by Mohammedans nor Europeans, rockets are almost universally made use of as weapons of war. The Hindoos books themselves ascribe the invention of fire-arms to Baoghswoorima, who formed all the weapons made use of in a war between the good and evil spirits. Fire-balls, or blue lights, employed in besieged places in the night-time, to observe the motions of the besiegers, are met with everywhere where Hindoostan, and are contructed in full as great perfection as in Europe. Fireworks also are met with in great perfection; and, from the earliest ages, have constituted a principal article of amusement among the Hindoos. Gun-powder, or a composition somewhat resembling it, has been found in many other places of the east; particularly China, Pegu, and Siam; but there is reason to believe that the invention came originally from Hindostan. Poisoned weapons of all kinds are forbidden in this country.

The Hindoos are remarkable for their ingenuity in all kinds of handicraft; but their utensils are simple, and in many respects inconvenient, so that incredible labour and patience are necessary for the accomplish- ment of any piece of work; and for this the Hindoos are very remarkable. Lacquering and gilding are used all over the country, and must have been used in very early ages; though in some places the lacquering is brought to much greater perfection than in others.

The principal article of food throughout all Hindoo land is rice, and of consequence the cultivation of it forms the principal object of agriculture. In this the Hindoos are very remarkable. A vast number of tanks and water-courses are to be met with throughout the country, though in some places there are too much neglected, and gradually going to decay. After the rice is grown to a certain length, it is pulled up, and transplanted into fields of about two yards square, separated from each other by ridges of earth, which are daily supplied with water let in upon them from the neighbouring tanks. When the water happens to fall below the level of the channels made to receive it, it is raised by a simple machine named piotti, the construction of which is as follows. A piece of timber is fixed upright in the ground, and forked so as to admit another piece to move transversely in it by means of a strong pin. The transverse timber is flat on one side, and has pieces of wood crossed in it in the manner of steps. At one end of this timber there is a large bucket, at the other a weight. A man walking down the steps throws the bucket into the well or tank; by going up, and by means of the weight, he raises it, and another person standing below empties it into a channel made to convey the water into the fields. The man who moves the machine may support himself by long bamboo sticks that are fixed in the way of railing from the top of the piece of upright timber towards the wall.

A number of other kinds of grain are to be met with in Hindostan, but wheat is not cultivated farther south than 18° latitude. It is imported, however, to every part of the country by the Banjaries. These are a sort of people belonging to a particular cast, who live in tents, and travel in separate bodies, each of them, which is governed by its own particular regulations. They frequently visit towns on the sea-coast, with bullocks loaded with wheat and other articles; carrying away in exchange spices, cloths, but especially salt, which they carry into the inland parts of the country. Some of their parties have several thousands of oxen belonging to them. They are rarely molested, even in time of war, other wise than by being sometimes pressed into the service of an army to carry baggage or provisions; but for this they are paid, and dismissed as soon as the service is over. The Hindoos themselves are prohibited from going out of the country, under the severest of all penalties, that of losing their cast. Norwithstanding this, however, it is certain that they do settle in foreign parts in the character of merchants and bankers. Perhaps these may have a toleration from the principal bramin, or there may be an exemption for people of their profession; but this is not known. At any rate, wherever they go, they appear inviolably attached to their religious ceremonies, and refuse to eat what is prohibited to them in their
HINDOSTAN.

their Own country. The Ryots, or people who cultivate the ground, are in many places in the most miserable situation; their only food being some coarse rice and pepper, for which they are obliged to endure all the inclemencies of a burning fun, and the inconveniences which attend alternately wading in water and walking with their bare feet on the ground heated intensely by the solar rays; by which they are frequently blistered in a miserable manner. All this, however, they submit to with the utmost patience, and without making any complaint, expecting to be released from their sufferings by death; though even then their religion teaches them to hope for nothing more than what they call absorption into the essence of the Deity; a state almost synonymous with what we call annihilation.

HINDOSTAN, a celebrated and extensive country of Affia, bounded on the north by Great and Little Thibet; on the south, by the lither peninsula of India, part of the Indian Sea, and Bay of Bengal; on the west, by Peru; and on the east, by Thibet and the farther peninsula. It is situated between 84° and 102° of east longitude, and between 21° and 50° of north latitude; being in length about 1204 miles, and in breadth 960; though in some places much less.

Derivation of the name.

This country was in early times distinguished among the Greeks by the name of Indus, the most probable derivation of which is from Hind the Persian name.

We are assured by Mr. Wilkins, that no such words as Hindoo or Hindoostan exist in the Sanscrit or learned language of the country; in which it is named Bharata, a word totally unknown to Europeans. The first accounts we have of Hindostan are from Herodotus, who lived 153 years before the expedition of Alexander the Great. His accounts, however, convey very little information, as he appears only to have heard of the western part of the country, and that on account of its being tributary to Persia. He informs us, that Darius Hyphasis, about 508 B. C., had sent Scylax of Caryandria to explore the river Indus. He fell fat from Capatynus, a town near the source of the Indus, and the territories of Padis (which major Renel supposes to be the modern Pekkelly), and continued his course eastward to the sea; then altering his course to the west, he arrived at that place where the Phenicians had formerly sailed from the continent of Africa; after which Darius subdued the Indians, and became master of that sea. The northern inhabitants of India, he says, resembled the Bactrians in their manners, and were more valiant than the rest; those far to the northward were as black as the Ethiopians, killed no animals, but lived chiefly upon rice; and clothed themselves with cotton. By the expedition of Alexander, the Greeks acquired a little more knowledge of the country of Hindostan; though he did little else than march over the tracks described by Herodotus. He was informed of the existence of the river Ganges, which had not been known to Herodotus; and the story of his supposing that he had discovered the source of the Nile, when near the head of the Indus, is well known, as well as his suprise and consternation when he arrived at the mouth of that river, on account of the high tides. Major Renel is of opinion that both these stories are falsehoods. He thinks it impossible that Alexander could have been ignorant of the writings of Herodotus, who gave an account of the discoveries of Scylax; and with regard to the other circumstances he expresses himself as follows. "The story of Alexander's surprise at seeing the tides in the Indus, appears to me equally improbable; seeing that the fame Herodotus, book iii. speaks very particularly of the tides in the Red Sea, and describes them as being not only strong, but ebulling and flowing every day. (That most intelligent and ingenious traveller M. Volney informs us, that the tide ebbs and flows three feet and an half at Suez). Arrian takes no notice of the tides until Alexander's fleet had arrived near the mouth of the river. It is true, the tide in the Indus does not go up so high as in other rivers of equal bulk, and that run on to small a descent; but nevertheless, as the tide is perceptible at 50 or 60 miles above the river's mouth, we may conclude, that it could hardly escape the notice of Alexander and his people in their voyage from Patalla to the sea, supposing they had not been apprised of the circumstance. Besides, Arrian's account of the tide which did so much mischief to the fleet, is descriptive of the bore, or sudden influx of the tide, in a body of water elevated above the common surface of the sea; such as occurs in the Ganges, &c. He says, those ships which lay upon the sand were swept away by the fury of the tide; while those that stuck in the mud were set afloat again without any damage. To the generality of readers no reason will appear why the circumstances of the ships should be different in the mud and on the sand: the fact is, that the bottoms of channels in the great rivers are muddy, while their shallows are formed of sand; and it is the nature of the bore to take the shortest cut up a river, instead of following the windings of the channel; consequently it must cross the sand-banks it meets in its way, and will also prove more destructive to whatever it meets with a-ground than what is a-float." For an account of the exploits of Alexander in Hindostan, see the article Macedon. The Grecian expedition into India soon excited a general curiosity in the Europeans to become acquainted with a country so wealthy and so remote. Megathenes, the ambassador of Seleucus, resided long at Paliboithra the capital of an Indian nation, and from him the ancient writers learned most of what they knew concerning that part of the world. He lived about 300 years before the Christian era, and kept a journal during the time he resided in India.

For some time the western provinces of India continued subject to the Syrian empire founded by Seleucus; but he quickly ceded these distant countries to one Sandrocousus, who gave him only 300 elephants in exchange. Soon after this the province of Bactria likewise became independent; and thus the connection between India and the western parts of the world was entirely dissolved, and we are almost entirely ignorant of the transactions of that country till the time of the Mogul Mohammedan conquest. That the extensive country we now call Hindostan was divided among many different nations, we have no reason to doubt; but major Renel is of opinion, that however this might be the case, there was generally a large empire or kingdom, which occupied...
Hindofian. occupied the principal part of that immense valley through which the Ganges took its course; the capital of which was situated between Delhi and Patna, as the limits of the empire have varied. This was named the kingdom of the Pars or Ganganides in the times of Alexander and Megalithenes. Major Rennel is of opinion that it extended westward to the Punjab country; and he also thinks it probable that the capital named Falisthara stood on the first spot which is now occupied by the city of Patna. The kingdom, according to this supposition, would occupy part of Bengal; and he thinks that it could not be less than that of France. It was on the borders of this kingdom that Alexander's army mutinied and refused to proceed any farther. Arian informs us, that the people were rich, excellent soldiers, and good husbandmen; that they were governed by nobility, and that their rulers imposed nothing harsh upon them.

The Hindoos themselves pretend to an extravagant antiquity; but we are informed by major Rennel, that "there is no known history of Hindoos (that rests on the foundation of Hindoo materials or records) except before the period of the Mahomedan conquests; for since the Hindoos kept no regular histories, or they were all destroyed, or excluded from common eyes by the Pundits. We may judge of their traditions by that existing concerning Alexander's expedition; which is, that he fought a great battle with the emperor of Hindoos near Delhi, and though victorious, retired to Persia across the northern mountains; so that the remarkalble circumstance of his falling down the Indus, in which he employed many months, is sunk altogether. And yet, perhaps, few events of ancient times rest on better foundations than this part of the history of Alexander, as appears by its being so highly celebrated, not only by contemporaries, but by several of the most eminent authors for some centuries following. The only traces of Indian history we meet with are in the Persian historians. In the beginning of the 17th century, Mahomed Ferishta composed an history of Hindoos, most of which was given in that of colonel Dow, published upwards of 50 years ago; but with regard to the early part of it, major Rennel is of opinion that it cannot at all be depended upon.

The authentic history of Hindoos commences with the conquests of Mahim or Mahmood Gazi, about the year 1000. His kingdom had arisen out of that of Saracen, who under the khalil Al Walid had extended their conquests immensely both to the east and west. Mahmood was the third from Abishazi a governor of Khurasan, who had revolted from the king of Bakhtaria. He pillaged great part of the country, formerly known by the name of Badaria. Gazi, Gzani, or Ghizini, was the capital; a city which stood near the source of the Indus, though Balkh likewise claimed this honour. Subutagi, the father of Mahmood, had projected the conquest of the western part of India; but dying before he could put his designs in execution, Mahmood took upon himself the conduct of the expedition; but previous to his invasion of India, he strengthened himself by the conquest of the whole of the ancient Badaria. His first invasion took place in the year 1000; during which he made no farther progress than the province of Moultan. That part of the country was inhabited by the Kutchy and Rajpoot tribe, the Malli and Cathari of Alexander, Hindoos, who still retained their ancient spirit, and made a very stout resistance to the armies of that august enthusiast. As he was prompted to this undertaking no less by a desire of exterminating the Hindoo religion than by that of conquest, a league was at first formed against him among the Indian princes from the banks of the Ganges to the Nerbudda. Their allied forces, however, were defeated, and the year 1008 was marked by the destruction of the famous temple of Nagarat in the Punjab country. Having satisfied himself with plunder on this occasion, Mahmood returned to his own country; but in 1011 invaded Hindoos once more, destroying Tanafar a city on the west of Delhi, and a more celebrated place of worship than Nagarat itself. Delhi was reduced on this occasion; and in seven years after Canoge was taken; the temples of Matra or Methura, the Methoras of Pliny, a city of great antiquity, and remarkable for a place of worship near Agra, were likewise demolished; but he failed in his attempts on the Rajpoots of Agimere, either through their own valor or the strength of their country. His 12th expedition took place in the year 1013, when he deftroyed the city of Samnaut in the peninsula of Guzerat, adjoining to the city of Puttan on the sea-coast, and not far from the island of Diu, now in the hands of the Portuguese. In this expedition he proved very successful, reducing the whole peninsula of Guzerat, with many cities, the temples of which he constantly destroyed; and indeed seemed no less pleased with the overthrow of the Hindoo religion than with the conquest of the country. At his death, which happened in 1028, he was pofled of the eastern and by far the largest part of Persia, and nominally of all the provinces from the western part of the Ganges to the peninsula of Guzerat; as well as those lying between the Indus and the mountains of Agimere; but the Rajpoots in that country still preserved their independence, which they have done all along, even to the present time.

In the year 1158 the empire of Gazna fell to pieces, and the empire of Guzerat being destroyed. The western and largest part, which still retaining the name of Gazna, was feized upon by the family of Gaurides, that named from Gaur or Ghor, a province beyond the Indian Caucasus; while those contiguous to both shores of the Indus were allowed to remain in the possession of ventures. Chitero or Cufroc, whose capital was fixed at Lahore. In 1114 the possession of this prince were driven out of their territories by the Gaurees; by which means the Mahomedans became neighbours to the Hindoos, and in a short time began to extend their dominions to the eastward. In 1194 Mahomed Gori penetrated into Hindoos as far as Benares, and repeated the same scenes of devastation which had formerly taken place under Mahmood Gazi. At this period major Rennel is of opinion, that the purity of the language of Hindoos began to decline, and continued to do so till it became what it is at present; the original dialect being what is called the Sanskrit, and which is now a dead language. Mahomed Gori also reduced the southern part of the province of Agimere, and the territory to the south of the river Jumna, taking possession of the strong fortresses of Gualfour. After
The country of Hindustan. After his death in 1205, the empire of Gazna was again divided; and the Persian or Afghan empire was founded by Cutub, who had the Indian part, the Persian remaining to Eldoez. Cutub fixed his imperial residence at Delhi; and in 1210 the greatest part of Hindostan Proper was conquered by the emperor Al-tumilah, the successor of Cutub. After his time the government of Bengal was always bestowed upon one of the reigning emperor's sons; and during his reign the bloody conqueror Jenhiz Khan put an end to the other branch of the Gaznian empire, known by the name of Kharajm; of which revolution an account is given under the article GAZNA; but Hindostan was at that time left undisturbed. In 1242 the Moguls began to make irruptions into Hindostan, but did not at this time make any permanent conquest. The country was now in much the same state in which it had been before the invasion of the Mahommedans, viz. divided into a great number of states tributary to the emperor, but in a great measure independent; and which did not fail to revolt whenever a favourable opportunity offered. The kingdom of Malwa, which had been reduced by Cutub in 1205, shook off the yoke in the year 1265, and the Rajpoots were on every occasion ready to revolt, notwithstanding that their country lay in the neighbourhood of the capital. The most dreadful massacres, rebellions, and confusion, now took place, which from that period almost to the time that the British government commenced, make up the history of Hindostan. The empire being parcelled out among a set of rapacious governors, the people were reduced to the last degree of misery, and were at last so far misled as to imagine that it was their interest to take up arms in order to render these governors independent. Had the emperors of Hindostan consulted their true interest, they would have given up the provinces which lay beyond the upper part of the Indus and the deserts of Agimier; as these formed a barrier which could not easily be passed by any invader. By neglecting this precaution, however, they at last gave an opportunity to the Moguls to penetrate into their country; and these, after several invasions, became at last so formidable, that they were permitted by the emperors, in the year 1292, to settle in the country. At this time the reigning emperor was Ferofe II. of the tribe of Chilliog or Khilju, so named from Kil-lige near the mountains of Gaur; and in 1393 this emperor projected the conquest of the Deccan; by which was meant at that time all the territory lying to the southward of the Nerbudda and Mahanada and Cau-tack rivers: an extent of dominion almost equal to all that he already possessed in Hindostan. Ferofe was invited to attempt this by the riches of one of the princes of Deccan; and the person who proposed it was one Alla, governor of Gurrah, a country nearly bordering upon that which he was about to invade. Alla, having accomplished his undertaking, during which he amassed an incredible quantity of treasure, deposed and murdered the emperor, assuming to himself the sovereignty of Hindostan. He then began a new plan of conquest; and the first instance of his success was the reduction of Guzerat, a strong fortress, which had hitherto remained independent, and, when it continued so, was a strong obstacle to his designs upon the Deccan. He next reduced Rantapur and Chelotore, two of the strongest forts in the Rajput Hindostan country. In 1326 the city of Warangole, capital of a kingdom of the Deccan, named Tellungana was reduced: but in the midst of these conquests the Moguls invaded the country from an opposite quarter, and plundered the suburbs of Delhi. Notwithstanding this check the emperor resumed his plan of conquest; the remainder of Malwa was subdued; and in 1360 the conquest of the Deccan was again undertaken. The conduct of the war was now committed to Caffor; who not only carried his army into Dowlatabad, but in 1310, penetrated into the Carnatic also. The extent of his conquests in that country is not known; and indeed his expeditions seem to have been made with a view rather to plunder than to achieve any permanent conquest. The quantity of riches he amassed was so great that the soldiers are said to have carried away only the gold, leaving silver behind them as too cumbersome. As the treasure carried off on this occasion had been accumulating for a number of ages, it is probable that the country had long remained in a state of tranquility. Caffor still proceeding in his conquests, ravaged a second time the northern part of the Deccan, and obliged the inhabitants of Tellungana and the Carnatic to become tributary to him. Revolts took place in 1322; but the country was again reduced in 1326, and the whole Carnatic ravaged from one sea to the other. This year Alla died, and his succourors, not being possessed of his abilities, were unable to retain the dominions he had left. Under the emperor Mohammed III. the people of the Deccan again revolted, and drove the Mohammedans completely out of these countries, that nothing remained to them but the fortresses of Dowlatabad. In 1344 the city of Bijinagar, properly Bijinagar, was founded by Belfabeo the king of Deccan, who had headed the inhabitants in their late revolt. Mohammed in the mean time attempted to extend his dominions towards the eft; but while he employed himself in this, many provinces were left to rebellions in Bengal, Guzerat, and the Punjab. His successor, Ferofe III. who ascended the throne in 1351, seemed more desirous of improving the remains of his empire than of extending it: and, during his reign, which continued for 37 years, agriculture and the arts were the favourite objects of his pursuit. After his death, in 1388, a rebellion and civil war took place, and continued for several years; and matters were brought to a crisis in the time of Mahmud III. who succeeded to the throne in 1393; and, during this time the empire of Hindostan exhibited the singular circumstance of two emperors reducing the same capital, and in arms against each other. While matters remained in this situation, a Samaritan, having subdued all the western part of Tartary and Asia, turned his arms against Hindostan in the year 1398. His conquest was easy, and his behaviour such as rendered him worthy of the name by which he is yet known in Hindostan, "the destroying prince." After having brought into captivity a vast number of the poor inhabitants, he caused a general massacre to be commenced left they should join the enemy in caves of any hidden emergency; and in consequence of this cruel order, war and peace were in one hour. In the beginning of the year 1399 he was met by the Indian army, whom he defeated with great slaughter,
Reign

Several other famous ancient Emirs were ordered to put a stop to these disorders, but found it impossible. In his last invasion he is said to have brought with him only 10,000 horse; having been furnished with the rest by the disaffected subjects of the emperor. During the five years that he reigned, his chief employment was the reduction of some of the eastern provinces, but he had not time to compose the disturbances which took place throughout the whole of his dominions. On his death the seeds of rebellion, which Baiker had not been able to exterminate, produced so many revolts and insurrections, that his son Humainoo, though a prince of great abilities and virtue, was driven from the throne, and obliged to take shelter among the Rajpoot princes of Agimere, where he lived in great distress. During the time of his exile his son Akbar was born, whom Mr. Rennel looks upon to be one of the greatest princes that ever sat on the throne of Hindoostan. The sovereignty was held in the mean time by an usurer, named Sheerkham, who in 1545 was killed at the siege of Cheitore, and buried in a magnificent mausoleum, of which Mr. Hodges lately exhibited a drawing in England. His territories, at the time of his death, extended from the Indus to Bengal; but so unfelted was the government that after his decease 20 fewer than five sovereigns appeared in the space of nine years. This induced a strong party in Hindoostan to recall Humainoo; but he lived only one year after his return.

In 1555, Humainoo was succeeded by his son Akebar, at that time only 14 years of age. During his long reign of 51 years he established the empire on a more secure foundation than it had probably ever been before; though even at this time Mr. Rennel is of opinion, that all the tranquillity enjoyed by the people was merely that there was no actual rebellion. The first years of his reign were spent in reducing the provinces which had revolted from Agimere to Bengal; and the obedience of these he took care to secure as well as possible by a careful choice of governors; particularly by an unlimited toleration in religious matters, and an attention to the rights and privileges of the people. In 1585, he resolved to invade the Deccan, which had hitherto resisted the power of the Mogul princes. The war continued for 20 years; during all which time no further
The empire reached its greatest height by Aurungzebe.

13 Great misfortunes befel the empire in the time of Aurungzebe, and once were of some consequence in Upper Hindostan. After the roth year of Aurungzebe's reign, however, we know very little of his transactions, as he would not allow any history of it to be written. At the time of his death the empire extended from the 10th to the 35th degree of latitude, and almost as many degrees in longitude. "His revenue (taxis major Renell) exceeded 35 millions of pounds Sterling, in a country where the products of the earth are about four times as cheap as in England. But so weighty a sceptre could be wielded only by a hand like Aurungzebe's: and we accordingly find, that in a course of 30 years after his death, a succession of weak princes and wicked ministers reduced this astonishing empire to nothing."

Aurungzebe left four sons; Mauzum, afterwards emperor, under the title of Bahader Shah; Azem, Kaum Buh, and Achar, who had been obliged to fly to Persia 50 years before on account of his being engaged in rebellion against his father. A civil war instantly commenced between Azem and Mauzum; the event of which was decided in a great battle, where 300,000 combatants were brought into the field on each side. In this battle Azem was defeated and killed; after which Mauzum ascended the throne by the title of Bahader Shah. He was a prince of considerable abilities; but the disorders of the empire were already risen to such a height, that during his short reign of five years, he found it impossible to compose them. He was first engaged in war with his brother Kaum Buh, whom he also defeated and killed; after which his attention was engaged by the Seiks, a new set of religionists, who, during the reign of Shah Jehan, had silently established themselves along the foot of the eastern mountains. They now appeared in arms in the province of Lahore, and ravaged the whole country from thence to the banks of the Jumna. The emperor marched against these adversaries in person, and with great difficulty brought them under subjection. He then took up his residence at Lahore, where he died after a short illness, without having ever visited the imperial cities of Agra or Delhi.

After the death of Bahader Shah the empire was again contested among his four sons. Of these the second, named Azem Oolhau, took possession of the treasuries; but was opposed by his three brothers, who agreed to divide the empire among them. Azem was defeated and killed in a battle, gained chiefly by the valour and conduct of the youngest named Shah Jehan; who seemed resolved to abide by the agreement, and as a proof of his sincerity, ordered the treasuries to be divided. This was prevented by the intrigues of Zoolfecar Khan, an omrah in high trust. A new civil war commenced, in which Shah Jehan was killed. The two remaining brothers tried their fortune in a third battle, which left Jehaunber, the eldest, in possession of the throne. In nine months he was deposed by Fezarakers.
This revolution was accomplished by the subduing of two brothers, Hooftan Ali Khan and Abdoola Khan, who had extensive governments in the eastern provinces. The calamities of the empire were not at all abated during this reign. In 1713 the Seiks appeared again in arms; and in 1716 were grown so formidable, that the emperor himself was obliged to march against them; but we are totally ignorant of the particulars of this campaign. About this time the English East India company obtained the famous firman or grant, by which their goods of export and import were exempted from duties or customs; which was regarded as the company's commercial charter in India, while they lived in need of protection from the princes of that country.

Firokhzor was deposed, and his eyes put out by the two brothers who had raised him to the throne; and in the course of the same year two other emperors, whom they afterwards set up, were deposed and murdered; and thus, in eleven years after the death of Aurengzebe, 14 princes of his line, who had either mounted the throne or been competitors for it, were exterminated, while the government declined with such rapidity, that the empire seemed ready to be dismembered to a greater degree than it had even been before the invasion of Tamerlane. In 1718 the two brothers raised to the throne of Mohammed Shah, the grandson of Bahader Shah, but this prince having got sufficient warning by the fate of his predecessors, took care to rid himself of these powerful subjects, though this could not be accomplished without a civil war. New enemies, however, started up. Nizam-al-Muluk, vicerey of the Deccan, had been for some time augmenting his power by every possible method, and was evidently aspiring at independence. Having received some affronts from the two brothers, who for some time had ruled everything with an absolute sway, he thought proper to retire to his government. In 1722 he was invited to court, and offered the place of vizier or prime minister, but declined accepting it, while the growing and abundant power of the usurper put him in such fear of his having a large party at court, that he came thither attended by a great body of armed followers. Finding, however, that the interest of the emperor was still too powerful for him, he invited the celebrated Persian

Invasion of usurper Nadir Shah; commonly known by the name Nadir Shah of Kohut Khan to invade Hindoostan. The invitation was accepted, and Nadir entered the country without opposition. The imperial general Douran being killed in a skirmish, no decisive engagement took place; and the Persian chief, though far advanced into Hindoostan, yet looked upon matters to be so uncertain, that he offered to evacuate the country and retire for 50 lacks of rupees, about half a million sterling. The intrigues of the Nizam and his party hindered the emperor from complying with this moderate demand; instead of which he absurdly threw himself upon the usurper's mercy, who then took possession of Delhi, demanding a ransom of 30 millions sterling. At an interview with the emperor, he severely reprimanded him for his misconduct; however, he told him, that as he was of the race of Timur (Tamerlane), who had not offended the reigning family of Persia, he would not take the empire from him; only as he had put him to the trouble of coming so far to settle his affairs, he insisted that his expenses should be paid. The unfortunate emperor made no answer to this speech; but Nadir took care to enforce the latter part of it. Some time after the departure of the emperor, Nadir went to the camp to pay him a visit; where he seized upon 200 cannon, with some treasure and valuable effects, sending them off immediately to Candahar. He then marched back to Delhi, where a mob arose about the price of corn. As Nadir Shah was endeavouring to quell it, a mob was designedly fired at him, by which he narrowly escaped being killed. Exasperated at this, he commanded an indiscriminate massacre to be made, which his cruel soldiery instantly put in execution with the greatest alacrity, and 120,000, or, according to others, 150,000 of the miserable inhabitants were slaughtered without mercy. This was followed by a seizure of all the jewels, plate, and valuable articles which could be found, besides the exaction of the 30 millions, which was done with the utmost rigor; in such a manner that many of the inhabitants chose rather to put an end to their own lives than to bear the torments to which they were subjected in case of inability to pay the sum imposed on them. During these horrid scenes, Nadir killed the marriage of his son to be celebrated with a grand daughter of Aurungzebe; and after having extorted every thing the emperor had left, Nadir took leave of the emperor with every mark of friendship. He put the crown upon his head with his own hands; and after having given him some salutary advice relative to the government of his empire, he set out from Delhi on the 6th of May 1739.

By this invasion the empire sustained prodigious loss. Since the arrival of Nadir in Hindoostan, about 200,000 people had been destroyed, and goods and treasure carried off to the amount of 125 millions sterling. Mohammed had ceded to the usurper all the provinces of Hindoostan situated to the east of the Indus. A detachment left the Nizam in possession of all the remaining power in the empire, which he instantly made use of to establish himself in the sovereignty of the Deccan. The province of Bengal had already become independent under Aliverdy Cawn, in the year 1739; and not long after, it was invaded by a vast army of Mahrattas under faction of the emperor's name; who being unable to satisfy them in the arrears of tribute he had been obliged to content to pay, sent them into Bengal to collect for themselves. About the same time, the Rohillas, a tribe from the mountains which lie between India and Persia, erected an independent state on the coast of the Ganges, within 80 miles of Delhi. The total disaffection of the empire spread now to be fast approaching. In the confusion which took place after the murder of Nadir Shah, Abdallah, one of his generals, seized upon the eastern part of Persia, and the adjoining provinces of India, which had been ceded to Nadir by Mohammed Shah; which he formed into a kingdom still known by the name of Candahar.
This year Mohammed Shah died, after a reign of 20 years; which, considering the fate of his immediate predecessors, and the anarchy universally prevalent throughout Hindoostan, must be accounted very wonderful. He was succeeded by his son Ahmed Shah; during whose reign, which lasted about six years, the total division of the remainder of the empire took place. Nothing now remained to the family of Tamerlane but a small tract of territory round the city of Delhi, now no longer a capital, and exposed to the repeated depredations of invaders, with consequent massacres and famines. The last army which could with propriety be termed imperial, was defeated by the Rohillas in 1749; by which their independence was fully established in the eastern parts of the province of Delhi. The Jats, or Jats, a Hindoo tribe, established themselves in the province of Agra; the Deccan and Bengal were seized upon by the viceroy's, Najm and Allivirdo. Oude was seized on by Seifdar Jang (father to the late Sojah Dowlah); Allahabad by Mohammed Kooli. Maliva was divided between the Poonah Maharattas and several native princes and Zamindars: Agimere reverted of course to its ancient lords, the Raj-poot princes, and the Maharattas, in addition to their proper share of Maliva, possessions the greatest part of Gzerat, Berar, and Orilhia; besides their ancient dominions in the Deccan. These people were now become so powerful, that they were alternately courted and employed by the contending parties, like the Swifs in Europe; with this difference, that the Swifs are paid by those who employ them, whereas the Maharattas always take care to repay themselves. Abdalla having established his empire in the manner above related, entered Lahore and Multan, or the Panjab, with a view to conquest. "The whole country of Hindostan was in commotion (says Major Renell) from one entrance to the other, each party fearing the machinations or attacks of the other; so that all regular government was at an end, and villany was practised in every form. Perhaps in the annals of this world it had not been supposed that the bonds of government were so suddenly dissoluted, over a portion of country containing at least 60 millions of inhabitants."

In 1748 the Nizam died at the age of 104, and was succeeded by his son Nazirjuin, to the prejudice of his eldest brother Gazi, vizier to the nominal emperor. The contents that followed on this occasion for the throne of the Deccan, and nobiship of Arcot, first engaged the French and English as auxiliaries on opposite sides. This was followed by a long series of hostilities, which terminated in the total expulsion of the French from Hindostan, the entire humiliation of the Mogul, and his being reduced to the state of a mere tool of the English East Indian company; together with the subjection of a vast tract of country to the latter. These transactions have occasioned very considerable revolutions, not only in the country properly called Hindostan, but in other places of that extensive tract called the East Indies; for some account of which see the article India.

The vast country of Hindostan is at present divided among the following powers.

1. Timur Shah, son of Ahmed Shah, or Abdallah, Vol. VIII.

This country, extending all the way between India and Persia, is known by the name of Duram or Turan; and was possessed by the Afghans, of whom Abdallah became the sovereign. He was descended from an illustrious family; and having the misfortune of being taken prisoner by Haidin Khan, then chief of Hindostan, along with his brother Zulfecur Khan, they were released by the celebrated Nadir Shah in his passage through that country to Hindostan; but as that conqueror still looked upon them with a jealous eye on account of their great influence with their compatriots, both were sent to Mazendaran in Persia. Here Zulfecur Khan, the brother of Ahmed, died; and, some time after, we find the latter promoted to the command of a body of Afghan cavalry in the Persian army. He continued attached to the interests of Nadir while that conqueror lived; and even attempted, though ineffectually, to revenge his death. After his accession, in the attempt, he returned to his own country; and, arriving at Kandahar, was saluted chief of the Afghans. In the course of a few months he became master of all the countries which the Mogul had been obliged to cede to Nadir Shah; and, encouraged by the distracted state of the affairs of Hindostan at that time, he crossed the Indus, and plundered the country to the south-east. An indecisive battle fought with the Indian army under the command of the prince royal and vizier, in which the latter was killed, obliged Ahmed to return to his own territories; but he soon undertook another expedition, in which he conquered the province of Lahore. In 1755 he returned; and after staying some time at Lahore, marched to Delhi the capital, having been invited thither, as was supposed, by the Mogul himself, in order to get rid of the tyranny of his vizier. The latter was accordingly defeated in a battle by orders of the emperor, and obliged to surrender himself prisoner; but instead of being put to death, he had the address to ingratiate himself with the conqueror; and the unfortunate Alumgireh, the Mogul, was obliged to submit to his rule as before. Ahmed took care to indemnify himself for his trouble, by laying the cities of Delhi under a heavy contribution; and having stayed for about a month, during which time he concluded a marriage between his son Timur and the emperor's niece, he marched against a tribe of Hindoos named the Jats, and conquered the greatest part of the province of Agra. In this expedition he surprised the city of Merta, famous for being the birth-place of Krishna, the Apollo of the Hindoos; and sacrificed to the Copsis, the mutes of the conquerors. He failed in his attempt to surprize Agra through the revolution of Fazl-Cele, the governor; after which he led back his troops to Delhi, where he married the daughter of Mohammed Shah the late emperor, whom Allumgireh had in vain solicited for himself.

Having settled his son Timur in the government of Lahore, Ahmed quieted Hindostan, and returned to his dominions, where he found every thing in confusion. Timur, who during his father's absence had been frequently disturbed by the Seiks, a tribe of Hindoos who profess delin, was in 1760 driven out by a vast army of Maharattas commanded by Roganan Row.
Hindostan, the Paithwa's brother, of whom so much mention has already been made. Next year, however, Ahmed crossed the Indus, and easily recovered his former territories; soon after which he became head of a league formed among some of the Indian princes, in order to oppose the overgrown power of the Maharrattas. In this enterprise he proved successful; and overthrew the Maharrattas in a decisive and very bloody battle, in which more than 50,000 of them were killed on the spot. The purruli fled several days, and their vast army was totally dispersed; Ahmed being every where received with acclamations as the deliver of the faithful. In 1762 he again crossed the Indus, with a view to conquer, or rather to exterminate, the Seiks, whose incursions had become very troublesome, and even dangerous, to his kingdom. Having defeated their army, and forced them to take refuge as far as their being the Indus, and making part of Hindostan properly so called. They derive their origin from a Hindoo named Nanuck of the cast of Khattri. His father, named Baba Caloo, possessed a small district in the province of Lahore named Telvandi, where Nanuck was born in the year 1470. Like other founders of new sects or nations, he is said during his infancy to have given many indications of his future superiority to the rest of mankind. He seems, however, to have received no further education than what was common to young men of his cast; viz., reading, writing, and arithmetic, and hearing the fables or commentaries on the sacred books. In his early youth he was married to a woman of his own cast, by whom he had two sons. Being a convert to the worship of the Invisible, or deis, he accustomed himself to declaim against the folly of worshipping idols, and the impiety of paying adoration to any but the supreme Being. At the age of 25 he left his family to visit Bengal and the eastern parts of Hindostan; in a second journey he visited the south, and in a third he went as far as Persia and Arabia. On his return from this last journey, he expressed a desire of remaining in his native country; and was furnished, according to his wish, with a piece of ground on the banks of the river Bavy, about 80 miles north-eastward Hindostan from the city of Lahore. Here he took up his residence for the rest of his days; choosing to be free from the cares of this world, he dwelt at a distance from his wife and children, who came occasionally to visit him. Having acquired great reputation for his piety, wisdom, and learning, he died at the age of 70, and since his death the place of his abode has obtained the name of Dabra Deina, or the place of worship. His eldest son founded a sect of devotees named Nanuck Shopy; but his second employed himself in the usual occupations of mankind. On account of the oppression of the Mohammadian governors, however, he removed from Telvandi, the estate of his ancestors, and settled at Kartarpour, which his descendants still possess. They are respected by the Seiks on account of their being the posterity of Nanuck, but are not held in any veneration on a religious account.

The doctrines of Nanuck were taught by a favourite disciple of his named Lhina, but on whom he bestowed on his death-bed the appellation of Angud. By him the doctrines of the sect were collected in a work named Fezey, or "the book," and an history of the present nanuck himself, was given in another book named Janum Sakky. Both these were written in a particular kind of character called Gur Mouchty, and said to have been invented by Nanuck himself. Angud named for his successor another disciple called Anwadz; and this method of continuing the succession seems to have been practised as long as the disciples continued to own one supreme chief.

For many years the Seiks lived in peace, and gained the good-will of the Mohammadian governors by their quiet and inoffensive behaviour. By degrees their numbers and their power greatly increased, but in proportion to their good fortune, they seem to have lost their virtue; so that their gourous, or chiefs, who had hitherto borne the character of apostles, at last stood forth as military leaders. The first of these was named Taigh, whose successor, named Gandad Sing, was the tenth and last of the gourous. He engaged in a rebellion against the government, but was at last obliged to submit, and even attended the emperor Bahader Shah in person. At last he was assassinated by a Petan soldier, not without a suspicion of the emperor himself being concerned. As he did not name a successor, his followers chose a chief for themselves named Bando, who soon began to make depredations on his neighbours, but being at last taken prisoner, and sent to Delhi with his family and many of his countrymen, they were all put to an ignominious death. By this execution the Seiks were so much exasperated, that they swore eternal vengeance against the Mohammadians, and have ever since manifested a most implacable hatred against them. Taking advantage of the distruction of the Mogul empire by the invasion of Nadir Shah, they conquered several provinces. Wherever they came they threw down the mosques, and obliged every one to quit the country who refused to embrace their tenets. Their war with Ahmed Shah has been already mentioned. Since his death they have recovered all the territories they lost during his reign, and now posses the greatest part of Moutan, as well as several districts in the province of Delhi, including in their territory the
Hindoostan, the whole of that rich country named the Panjab, on account of five rivers which descend from the northern mountains, and inclose or intersect it, running afterwards into the Indus.

The Seiks, as has already been mentioned, worship one God, but without image, or believing in any mediator. They eat all kinds of meat except beef; sparring the black cattle, in all probability on account of their utility. Pork is very generally eaten probably on account of its being forbidden by the Mohommans. They are commonly dressed in blue, a colour reckoned unlucky by the other Hindoos. Their chief consists of blue trowsers of cotton, a fort of plain generally chequered with blue and thrown over the right shoulder with a blue turban. Their government is lodged in an assembly of different chiefs; but who, as individuals, are independent of one another, and have separate territories. They meet annually, or oftener if occasion requires, at a place called Aulthera, which is held in a kind of religious veneration; where there is a large tank lined with granite and surrounded with buildings, and beautifully ornamented. Their force is very considerable, amounting to no fewer than 200,000 cavalry. However, they can seldom be brought to act in concert, unless the whole nation be threatened with some imminent danger. They are a strong hardy race of men, and capable of bearing much fatigue; and so expert in war, that of late almost all the neighbouring countries have been laid under contribution by them, several petty chiefs having consented to pay them a small annual tribute in order to avoid their incursions. When in the field, none but the principal officers have tents, and those extremely small, so that they may be struck and transported with the greater quickness and facility. In cold weather the soldiery wrap themselves during the night in a coarse blanket, which in the time of marching is folded and carried on their horse. Their country is well cultivated, populous, and abounding in cattle, particularly horses, which are reckoned the best in all Hindoostan. This may probably be owing to the lands which were formerly established in different places of the province of Lahore on account of the Mogul himself. Stations were sent thither from Persia and Arabia, and there was a fixed order to send to the lands in Lahore all such Arabian and Persian horses as by any accident should be rendered unfit for mounting. Notwithstanding their delin, the Seiks are said to have a superfluous veneration for their sword; infomuch, that before one of them will eat with a person of another religion, he draws his sword, and paling it over the victuals, repeats some words of prayer, after which he will freely partake of them. Contrary to the practice of all the other Hindoos, they dislike the smoking of tobacco, but many of them smoke and chew bang, which sometimes produces a degree of intoxication.

3. The provinces of Delhi have, in the course of a few years, frequently changed their masters, but have scarcity at any period during that time been under the authority of the sovereign. Their last governor was named Nadjiff Khan, under the title of genaralifimo of the emperor. He was involved in the ruin of Mohammed Koully Khan, cousin to Soujah al Dowlah; after which he went to Collim Aly Khan nabab of Bengal; after whose expulsion he retired with a party Hindoos of horse to Bundelcund into the service of Raja Coman Singh. He next joined the English; and at last became the general of Shah Alum. With a body of English feapoy who had been put under his command, and some other troops whom he had taken into his service, he subdued the countries near Delhi, conquered almost all the territories of the Jaits, reducing the cities of Agra, Dige, and other principal towns. These conquests were indeed effected in the name of the Mogul, but he derived little benefit from them: Nadjiff being the real master, and keeping possession of them till his death, which happened in 1782; and since that time the countries we speak of have been involved in a scene of continual anarchy and bloodshed.

4. Next to the provinces of Delhi are the dominions of the independent rajahs, whose dominions lie contiguous to one another. The principal are those of Joinagar or Jaypore, Joapour, or Morwar, Oudiapour or Chitore, and Jefamire. These countries are under a kind of feudal constitution, and every village is obliged to furnish a certain number of horsemen at the shortest warning. The people are brave, hardy, and very much attached to their respective chiefs; and their army is very formidable, amounting when collected to about 150,000 horsemen.

5. The Jauts were a tribe who followed the occupation of agriculture in the northern parts of Hindoostan. About 40 years ago they were formed into a nation by Tackou Souragemul, proprietor of an inconsiderable district. After making himself master of all the countries dependent on Agra, of the town itself, and many other important places he was killed in battle with Nanjibul Dowlah, the Rohilla chief, in 1763. Since that time the power of this people has been so much reduced by domestic contentions and foreign wars, that the present rajah possesses only a strong town named Bartpoor, with a small district around it. The Jauts, however, are said to manifest a martial disposition, and thus may possibly be found in a condition to recover their former extent of territory.

6. The most considerable of all the Hindoo powers are the Maharras, with whom the Europeans first became acquainted in their original territories of Malabar. The first of their chiefs was named Seevaa jee; who is said to have been descended from the ancient Hindoo emperors, and whose father was lord of a small district, for which he paid tribute to the Mohammedan king of Vizaiopour. For some reason unknown to us he was at last arrested by order of that king, and died in confinement; but his son Seeva jee took up arms in defence of his country, and made himself master of several important places, with a considerable tract of territory, which were afterwards ceded to him by the queen-regent, the king of Vizaiopour having died soon after the commencement of the war.

Seeva jee having thus established himself, became formidable to his neighbours. Many of the Hindoos princes put themselves under his protection, and he at length ventured to make war upon the emperor Aurungezebe. In this he proved unsuccessful, was taken prisoner, and carried to Delhi. Having found means, however, to make his escape, he quickly recommenced hostilities;
Hindoofan and the emperor, who was now far advanced in life, thought proper to come to an accommodation with his troublesome enemy. On this occasion the Malhat-tas pretend that their prince obtained a grant of 10 per cent. on all the revenue of the coast which has often served as a pretence to invade that country, and levy contributions on the southern nabobs. Since that time the Malhat-tas have become so powerful, that all the princes of Hindoofan are alarmed when they put themselves in motion. Their territories extend about 10,000 miles in length and 700 in breadth; and they are governed by a number of separate chiefs, all of whom acknowledge the Ram Rajah as their sovereign and all except Moodajee Boohliah acknowledge the Paithwa as his viceroy. The capital of the sovereign, was Satara, but the Paithwa generally resides at Poonah, one degree to the southward, and about 100 miles distant from Bombay. The country extends along the coast nearly from Cambay to Bombay. On the north it borders on the territories of Tippe Saih, on the east it has those of the Nizam and the rajah of Berar, and on the north those of the Malhat-tas Sindia and Holkar.

7. The rajah of Berar, besides that country, has the greatest part of Orissa. His dominions extend about 600 miles in length from east to west, and 250 from north to south. The eastern part of the Orissa extends along the sea-coast for about 150 English miles, and divides the Bihar possessions in Bengal from those commonly called the Northern Circars. On the west its territories border upon those of the Paithwa, on the south, upon those of the Nizam, Mahomet Hyat a Patan chief, Nizam Shah, and Ajid Sing. The rajah himself resides at Nagarpour, about midway betwixt Calcutta and Bombay.

8. Madajee Sindia has the greatest part of the government of Malva, together with the province of Cardeilh. The remainder is under the government of Holkar; who, as well as Sindia, pretends to be descended from the ancient kings of Malva. The principal residence of Sindia is at Ugie near the city of Mulun, which was once the capital of those kings. Holkar resides at Indoor, a town little more than 30 miles to the westward of the former. The dominions of thefe, and some other princes of smaller note, extend as far as the river Jumna. The two last mentioned princes, though properly Malhat-tas, own no allegiance to the Ram Rajah or great chief to whom the main body are nominally subject. Some time ago the Malhat-tas aimed at the conquest of all Hindoofan, and even avowed a design of expelling all the Mohammedan princes; but their power was effectually checked by the British, and their dispositions among themselves put an end to all schemes of that kind. Still, however, they were ready to watch every opportunity of invading the territories of their neighbours, and their resources being so considerable, they were defervedly accounted a very formidable enemy. The strength of their army consists chiefly in cavalry, both foot and horse, capable of enduring a great deal of fatigue. Bodies of 50 or 60,000 cavalry have been known to travel 50 miles a day for many days together; which considering the excessive heat of the country, must certainly appear very surprising. The country abounds very much in horses, and there is one kind named the Bicemteddy horse which is greatly Hindoofan: esteemed, and sold at a very high price. The common horse of these parts is lean and looks ill, but is abundantly fit for the purposes of war. The only weapon used by the horfes is a bare, in which they are so dexterity, that it is supposd the best European horse would not be more than a match for a Malhat-ta horfeman. There are considerable finds in every province belonging to the Paithwa and different chiefs, and there are likewise many jukes or great herds of horses belonging to particular persons, who turn those they have occasion for loose in the open plains.

The Malhat-ta horfemen are drest in a quilted jacket of cotton, which is supposd to be one of the best defences against a sword that can easily be contrived of equal lightness; but the heart of the climate frequently renders it necessary to be taken off. The head of their dress consists of a pair of trousers, and a kind of broad turban which defends low enough to cover the neck and shoulders. In cases of enemy the horfemen carry provision both for themselves and their horses in a small bag tied upon the face; the food of the rider consists only of a few small cakes with a little flour or rice, and some salt and spices; the horse is fed with a kind of peas named gram, or with balls made of the flour of these peas mixed with butter, prepared after a certain manner, and named ghee together with some garlic and hot spices. These balls are given by way of cordial, and have the property of invigorating the animal after extraordinary fatigue. Sometimes it is said that they add a small quantity of hang, a kind of drug which polishes an exhilarating virtue, and produces some degree of intoxication.

The Malhat-ta cavalry seldom make any use of tents; even the officers frequently have no other accommodation than a small carpet to sit and lie on; and a single camel is able to carry the whole baggage of the general. The officers, however, are generally well mounted, and have spare horses in the field.

All the subjects and vassals of the Malhat-ta princes are generally ready to follow them into the field; and in any case in which the honour or interest of the nation appears to be concerned, they generally unite in the common cause. Before they invade any country, the general is at great pains to ascertain the nature and situation of it; and they have now made incursions into so many different parts of Hindoofan, that there are but few countries there with which they are not very well acquainted. Their great fertility, and the fatigue they are capable of undergoing, render them very dangerous enemies. In all their expeditions the soldier first provides for his horse, and then goes to his own meal; after which he lies down contented by the side of the animal, and is ready to mount him at the first sound of the nagar or great drum. They have their horses under the most excellent management; and by perpetually caressing and conversing with them, the animals acquire a degree of docility and sagacity unknown in other countries. When on an expedition, the horses are accustomed to eat grass pulled up by the roots, which is said to be very nutritive, and to be defitive of that purgative quality which belongs to the blade alone. When they make an invasion, the devastation is terrible; the cattle
Hindostan. are driven off, the harvest destroyed, the villages burned, and every human creature destroyed who comes in their way. Notwithstanding this barbarity in time of war, however, they are very humane in time of peace, living in great harmony among themselves, and being always ready to entertain and assist strangers. Many of the cruelties they commit may be justly reckoned the effects of retaliation for other cruelties exercised upon them by their adversaries. Thus in 1775, after having given Hyder Ali a great defeat, they cut off the ears and noses of a whole regiment of prisoners, and in that condition sent them back to their commander in return for having done the same to a few prisoners he had taken some time before.

The revenue of the Pathan is very considerable; being not less than ten millions sterling; but after deducting the expense of collection, and the expense of troops kept in readiness for the service of the state, it is supposed that he cannot receive more than four millions. From this again we must deduct the expense of the troops immediately belonging to the Pathan himself, and which may amount to about three millions sterling; so that there remains a surplus only of one million after paying all the necessary expenses of government. This nevertheless has been managed with such economy, that though long and expensive wars were carried on after the death of Nara Ram Row, the state was not only clear of debt, but there was a surplus of two millions in the treasury, which Ragoba disbanded.

9. The Deccan, as left in 1748 by Nizam al Mulek, was by far the most important and extensive forbady or viceroyship in the empire. It then surpassed in size the largest kingdom in Europe; but since that time many provinces have been conquered by the Marathas, and the northern Circars by the British. The possessions of the Nizam are also diminished by the cession of the Carnatic to the nabob of Arcot; great part of the territories of Tippoo Saib; and many other provinces of lesser note. Still, however, the Nizam possesses very considerable territories; but his finances are in such a wretched condition, and his provinces so ill governed, that he is accounted a prince of no consequence, though otherwise he might be reckoned one of the most considerable powers of Hindostan.

10. The dominions of Tippoo Saib, the son and successor to Hyder Ali, are bounded on the north by the territories of the Pathan; on the south by Travancore, the territory of an independent Hindu prince; on the west by the sea; and on the east by a great ridge of mountains, which separate them from the territories of the nabob of Arcot. The country lying to the eastward of these mountains is called the Carnatic Payen Chat, and to the westward the Carnatic Bhalia Chat. The latter belongs to Tippoo Saib; and the two together make up the country formerly named the Carnatic, though the name is now restricted to the Payen Chat. The situation of the Bhalia Chat is considerably more elevated than the other; by which means the temperature of the air is much cooler. On the coast of Coromandel there is a pile of ruins called by the name of Mahanipetam, and by the British the pagoda. Concerning this there is a tradition, that it once stood at a considerable distance from the sea; though most of the ruins are now covered with water and there is likewise a tradition, that the mountains Hindostan we speak of once formed the boundary of the ocean. The dominions of Hyder Ali are said to have been greatly exaggerated; the former amounting to no more than four millions annually, though by his economy and good management he made it suffice every purpose both in time of war and peace. He was at great pains to introduce the European discipline among his troops; but notwithstanding all his endeavours, he was far from being able to make them cope with the British. The advantages he gained were owing to his vast superiority in cavalry, and the celebrity of his marches; which would have been counteracted had his adversaries been possessed of a good body of cavalry; and it is probable that the event of the war would have been decided in a single campaign. His son Tippoo Saib is said to be a man of less abilities than his father; though more violent in his disposition. Against this prince hostilities have lately been commenced by the British in conjunction with the Mahattas, between whom an alliance had been formed. But this event has not yet been attended with any consequences that merit a detail.

With regard to the present government of Hindostan, our limits will not allow us to enter particularly upon it, nor indeed is it perhaps of any importance, as the country is divided into so many different kingdoms; the sovereigns of which, however, the British differ in other respects, seem all to agree in despotism and oppression of their subjects. As a very considerable part is now under the dominion of Britain, it may be necessary to take some notice of the behaviour of the Britons in that part of the world, especially as an idea of their excessive despotism and oppression of the natives has of late prevailed so much, that the national character has suffered considerably by it. This has arisen partly from the great pains taken to propagate it, and partly from the ignorance of those among whom the report was circulated; and the exaggerated accounts and contentions of the members of the government themselves, have contributed to lessen the prejudice of the public.

The British territories in the East Indies were originally under the jurisdiction of a governor and 13 the British members; but this number has fluctuated occasionally government from 14 to 4, at which it was fixed by act of parliament. In this council all matters, whether relating to peace or war, government or commerce, were debated, the governor having no other superiority than that of giving the calling vote. In other respects the whole executive power was lodged in his hands, and all the correspondence with the native princes of India was carried on by his means, the dispatches to them being signed by him singly; and all the princes and great men who visited the presidency were first received by him, and then introduced to the councilors. He was military governor of Fort William, and commander in chief of the presidency; whence, as by his office he was invested with a considerable degree of power, he became an object of some envy and jealousy to the members of the council and other considerable people. In consequence of this, a division of the government was divided into two parties, one favoring the governor, and the other opposing him; in consequence of which, the debates were frequently carried
Hindostan, filled with such heat and violence, that the records of the company are frequently stuffed with nothing but accounts of the conditions of these warring parties. This indeed may be looked upon as one of the principal causes by which the reputation of the British government in the eastern parts of the world has suffered; for as there are very frequently opinions diametrically opposite to one another recorded upon the same subject, the contending parties in the British parliament had always sufficient authority for what they said, let them take which side they would; and thus the characters of all concerned in the East India government were, by one person or another, set forth in the most opprobrious light.

Another source of reproach to the British government in India, was that the court of directors in England became infected with the same spirit of party and contention which prevailed in all other departments of the state. Lord Clive and Mr Sullivan were the two great leaders in these party-disputes; and as the interest of the one or the other prevailed, different persons were appointed to the administration, and different measures adopted. The event of all this was, that whenever a new administration was formed, the first object was to condemn the measures of those who had gone before them. Thus, in the year 1764, when Lord Clive was made governor of Bengal, the new directors represented the affairs of the company as in the worst situation imaginable, from which they could only be extricated by the abilities of Clive. On the arrival of the latter in the east, he took care to write home reports to the same purpose, and to condemn in the most violent manner every thing that had been done; the whole body of the company's servants were censured indiscriminately without being allowed any means of defence, as they were in truth ignorant of the charges brought against them. When the affairs of the company were brought under a parliamentary review in the year 1774, the government was brought under a new regulation; and now consisted of a governor-general and four councillors; three of whom were sent from England; two being military gentlemen of high rank; and the third a gentleman employed in the war-office. On their arrival they proceeded in the same manner that Lord Clive had done before them; they pronounced in the most decisive manner, that the company's affairs were in a ruinous state; and that every species of corruption had been practised by the former government. This general accusation, unsupported by any kind of evidence, was the constant theme of the dispatches sent by them to England; and thus has the reputation of the British government suffered exceedingly through the unwarrantable liberties which its own servants have been allowed to take with one another. It must also be considered, that from the remote situation of India, and the unavoidable ignorance of its affairs on that account, it was easy for any person, whose malicious purpuses it might suit, to prejudice the public against the servants of the company to so great a degree as he pleased. Hence some persons, foured by disappointment, or envious of the supposed emoluments of others, represented matters in such an unfair light to their correspondents in England, that the most unjust and shameful charges were frequently brought against innocent persons, which they could neither prevent nor defend themselves against. The dreadful famine which took place in Bengal in the year 1769, offered to these malevolent persons a most fruitful source of calumny; and many individuals were accused of having brought on this dreadful calamity, which arose entirely from a natural cause, viz. the failure of the rains, and which no human power could have prevented or removed.

Opinions of this kind have not only been circulated through the island of Britain in the most open manner, but have even appeared in some very respectable publications. Thus in Mr Smith's Treatise on the Wealth of Nations, when speaking of the oppression arising from monopolies, and comparing their effects in different states: "The English company (says he) have not yet had time to establish in Bengal so perfectly destructive a system. The plan of the government, however, has had exactly the same tendency. It has not been uncommon, I am well assured, for the chief, that is, the first clerk of a factory, to order a peasant to plow up a rich field of poppies, and sow it with rice or some other grain. The pretence was to prevent a scarcity of provisions; but the real reason, to give the chief an opportunity of selling at a better price a large quantity of opium he had on hand. Upon other occasions the order has been reversed, and a rich field of rice or other grain has been plowed up to make room for a plantation of poppies, when the chief saw that extraordinary profit was to be made by opium." To this, however, the following answer has appeared in a late publication, intitled "A Short Review of the British government in India." The poppy is a plant which requires a peculiar soil, and particular care in the culture of it. The medium price of the land on which it is cultivated is about 11 or 12 rupees a bigha, or one third of an English acre. It is sowed at the beginning of October, when the season of the periodical rains expires. The plant begins to be fit for incision, in order to extract its juice, of which opium is made, about the end of December, and continues till March. It requires a dry soil, and can be brought to maturity only in the dry season, when the periodical rains have ceased. Paddy or rice lands let on a medium rent of three rupees a bigha. Rice is sowed about the end of May, just before the periodical rains commence. One crop is raised about the end of September; and another, which is the laft, and by far the greatest, about the end of December. It requires a soil faturated with water, and lies soaked in it for a considerable time. On this account it is sowed just before the periodical rains commence; and nine-tenths of the quantity of rice produced in the company's provinces grows in the kingdom of Bengal, which is so low and flat, that the grounds are either overflowed by the rivers Ganges and Burramooter, with their tributary streams, or soaked with the rain which falls and stagnates upon them. It is therefore evident, that the soil and the season, which alone can fructify the paddy or rice; would rot and destroy the poppy; and it is therefore as evident, that it is utterly impossible, from the nature of the two plants, that the one can be plowed up to sow the other."

With regard to the administration of the British affairs in the East Indies, it must be remarked, that the company now act in a very different capacity from what
what they originally did. From a society of merchants, they are now become sovereigns of the country to which they trade. The latter character was quite foreign to them: and they have accordingly looked upon that of merchants to be the principal one, while that of sovereigns was to be only a kind of appendage to it. Thus, instead of acting for the interest of the country they govern, and which as sovereigns they naturally ought to do, they have acted in many cases directly opposite to it, which, as merchants, is also their natural interest. Hence also, when the administration in India did any thing in obdience to the orders of the directors, which orders being dictated by merchants, were prejudicial to the interests of the country, that injury has been sometimes unjustly attributed to their servants, who acted merely in obedience to the orders they received. On the other hand, when the Indian administration acted with the generous spirit of sovereigns, they were sometimes blamed by the directors, who judged as merchants, and sometimes by the ministry, who were always ready upon the smallest pretence to interfere in their affairs.

At the time when the British administration first commenced in Hindostan, the Hindu-governors were universally named Rajahs; but though many of the Hindu families yet bear that title, it does not appear respectable, in any manner of way, our titles of nobility, or to be a dignity which can be conferred by any of the princes, or even by the Mogul himself. Hence in that part of the world there are no ancient nobility the titles being conferred merely by usurpers, who have neither right nor title derived from any thing but violence.

In this country we find the title of Zemindar, very common; a word compounded of two others, signifying, in the Persian language, a landlord. It appears to have been introduced by the Mohammedans, and to have been a kind of temporary office, prescribing the performance of certain duties, and requiring fealty for the personal appearance of the Zemindar. He is obliged to attend the exchequer of the king's chief collector, at the commencement of every new year, to settle his revenues; and he is not allowed to enter upon the duties of his office for the year without a special order for that purpose. On the death of a Zemindar, the candidate for succession must petition the sovereign, engaging himself to perform all the stipulated duties, and to pay the customary fees; nor can he enter upon his office without a special investiture. As the Zemindars were of various of their office-intervened with considerable power, the title became not only despotic in their own dominions, but by degrees began to encroach upon the power of the sovereign himself. After the irruption of Nadir Shah, every thing was thrown into confusion; the viceroys threw off all obedience to the emperor, the nabobs threw off all obedience to them, and usurped their power; at which time it is probable that the Zemindars likewise assumed powers to which they were by no means entitled from their office. Notwithstanding this, however, they were sometimes treated by the Mohammedan governors as mere revenue-officers, and used very hardly. At some times there was a set of people bound for the Zemindars under the title of Wodehars; and these had either a joint power with the former; or were superior to them in the collection of the revenues; and sometimes they were superintended by officers appointed immediately by government itself, under the various names of Amils, Talhildars, or Scewnards.

The Zemindars are not limited in extent of value; there being some in Bengal which yield a revenue as high as 350,000 sterling, while others scarcely amount to 350l.; but all the great Zemindars, and many of those in middle circumstances, having procured for themselves the title of Rajah, affect much pomp and state in their different districts, and keep their interiors in as great a subjection as the Mohammedan governors keep them. Some of them also have their power augmented by being of the brahmin cast; and by the reverence supposed to be due to religion on that account, joined with the power conferred upon them by the sovereign, they are in general rendered exceedingly despotic, with an almost unlimited authority to plunder their tenants; in which they were indulged by the Nabobs from the motive of plundering them again. From the confusions of the select committee in 1769, we are informed that the Zemindars have a power of levying fines at pleasure; that they raise large sums from duties collected in the market; and that they frequently oblige the ryots or husbandmen to work for nothing. In short, the same claims made by the European barons on their valets in the times of the feudal system, are now made by the Zemindars on the common people of Hindostan. If one of them is to be married, if he has a child born, if honours are to be conferred upon him; nay, if he is even to be fined for his own misconduct, the poor ryot must always contribute his share. Mr. Scrofton, in his history of Hindostan, sets forth the situation of the inhabitants in the following words:—"Unhappily for the Gentoo, themselves are made the ministers of oppression over each other; the Moor men, haughty, lazy, and voluptuous, make them, of whom they have no jealousy, the ministers of their oppression, which they either answer in their persons, or prevent their uniting to fling off the yoke: and by the strange intoxication of power, they are found still more rapacious and cruel than their foreign masters; and what is more extraordinary, the bramin still exceed the rest in every abuse of power, and seem to think, if they—bribe God by bellowing a part of their plunder on cows and fakirs, their iniquities will be pardoned." From this account of the situation of the people of Hindostan under their native rulers, it is by no means probable that they could make a worse exchange by falling under the jurisdiction either of the Mohammedans or Europeans. A notion indeed hath been industriously propagated, that the British government has behaved with the greatest cruelty in collecting the revenues, and that they have even invented tortures to make the rich people discover their treasures; but on examining the matter impartially, the reverse of this is found to be true. At the time that the British government interfered in the affairs of Hindostan, the provinces were found to be in a ruinous state, in consequence of the wars which had taken place in the country. Even in the most settled state, and when the administration was most regular, the government was altogether despotic, and the mode of collecting its revenues extremely arbitrary,
The punishments inflicted very cruel; and the whole system of government such as would be reckoned quite shocking in Europe. It is only within the last few years that the British could effectually interpose in behalf of the natives; and in that short time it has produced a very considerable reformation. It is certain, that the British government has discouraged oppressive measures as much as possible; abolished the cruel modes of punishment used by the Mahommedans; and by instituting a more regular plan of justice, has procured ease and security to the natives, and preferred them in a state of tranquillity altogether unknown to them before its commencement. Many instances of the greatest cruelty exerted upon the Zemindars and other collectors are to be met with in the history of Bengal, written by a native historian, and translated by Gladwin, yet the person who exerted these cruelties was disgraced with the titles of the faithful servant of the Empe. and the glory of his state, which shows that the people were absolutely familiarised with cruelty, and did not know what it was to be under a lenient government. Since the British had the dominion, matters have been totally reversed, and the Hindoos, instead of being treated with cruelty, perfected on account of their religion, and compelled to renounce it, have been used at least with comparative lenity, and great indulgence has been shown to them even in their most absurd practices and superstitions. When the British government first accepted the office of Dewanny, or collection of the revenues, it was not in their power to institute with any kind of efficacy for the relief of the inhabitants; because it was at first thought proper to allow the taxes to be collected by natives, who would undoubtedly follow their ancient modes of collection. Even at that time, however, the mildness of the British governors had some effect upon the Atheists; so that the people in general were treated with more lenity than formerly; and in the year 1772, when the council of Bengal openly affirmed the office of Dewanny itself, an immediate stop was put to all those arbitrary and oppressive methods which had been formerly in use. Formerly some Zemindars had been flogged even to death, by an instrument called a koral from the moment that the British council took the collection into their own hands, not only this instrument was laid aside, but all kinds of corporal punishment; by which means the severity of the Mohammedan government has been entirely abolished, and no other punishments inflicted in cases of insolvency than such as are in use in Britain. Still, however, in such extensive dominions, where a great share of power must be one way or other committed to the natives, it is impossible but some arbitrary acts must be committed, as the natives are always prone to acts of depredation whenever they can commit them with impunity; but examples of this kind cannot with any degree of candour be brought as a general charge against the British government in India. Mr. Scrope gives the following account of the wretched state of the provinces now under the British jurisdiction at the time they were ceded to them by the Mogul. "When the governors of the provinces found the weakness of the Mogul, and each set up as sovereign in his own province, although they could not break through the immutable laws, they invented new taxes under new names, which doubled or trebled the value of the Hindoo.

By the sudden accession of a brave young prince to the British throne, the crown lands are still worse; for the money of usurers at exorbitant interest; and the government still continuing these demands, the lords of the lands were obliged to do the same: but as all this took place while the value of lands did not increase, the consequence was, that at last, unable to pay the interest of the mortgages, the rents were seized by rapacious usurers. The government finding the revenues fall shorter every year, at last sent collectors and farmers of the revenues into the provinces. Thus the lord of the land was divested of power over his country, and the tenants exposed to merciless plunders; till the farmers and manufacturer, finding that the more they laboured the more they paid, the manufacturer would work no more, and the farmer would cultivate no more than was just sufficient for the subsistence of his family. Thus this once flourishing and plentiful country has, in the course of a few years, been reduced to such misery, that many thousands are continually perishing through want. The crown lands are still worse off, let out to the highest bidder; and the jagir, lands alone remain un plundered. Hence that equal distribution of wealth that makes the happiness of a people, and spreads a face of cheerfulness and plenty through all ranks, has now ceased; and the riches of the country are settled partly in the hands of a few usurers and greedy contractors, and the rest is carried out of the country by the foreign troops taken into pay, to maintain the governors in their usurpations. This unhappy decay the India company has already experienced in the decay of their trade, and the rise and price of their manufactures; and will I fear, experience more and more annually."

With regard to the depopulations of the Nabobs by the British, which has been used as a great argument against the general spirit of the British government in those parts, it must be remembered, in the first place, that these Nabobs were mere usurers, who had not the least title to their dominions, and consequently could not, in point of law, claim any consideration more reasonably of being deprived of their dominions; that the persons from whom they had taken them might do of their injustice in driving them out. Their behaviour in government also was such, that it was impossible it could have subsisted for any length of time without the absolute ruin of the countries they possessed. Thus, in the case of Jaffier Aly Cawn, Mr. Vanhittart declared the country to be in so confused and impoverished a state, that in all human appearance another month could not have been run through before he would have been cut off by his own Scapoes for want of pay, and the city become a scene of plunder and disorder. On this account he was degraded, though without any of those circumstances of cruelty which generally characterise the revolutions in this part of the world. The administration was transferred to his son-in-law Meer Coffin; who being an enemy to the British government altogether, a war followed, terminating in his expulsion. This was followed by the invasion of Sujah Dowlah, and by scenes of horrid barbarity and devastation: when in 1765 Lord Clive took
Hindoostan. took upon himself the office of Dewan, or minister, who superintends the lands and collections of the revenue. An account of his proceedings has already been given; but whatever applause he might gain, and in some respects deserves at the time, it is now said, with some probability, that he raised the expectations of the people of England by far too high. The seeds of the succeeding evils were already sown. Many sources of wealth were dried up. Raw-silk, cloths, and other manufactures, had formerly been exported to Guzerat, Lahore, and even Iphal, This had ceased on the invasion of Nadar Shah; and the influx of wealth from the European nations had ceased before the British government in Bengal had an existence. It was computed that Collin Ayl Cawn robbed the country of near five millions sterling in jewels and specie. China, Madras, and Bombay, were supplied from Bengal to the amount of more than two millions; and several other circumstances besides these contributed to diminish the riches and opulence of the country. In the mean time the internal administration of the country had been extremely defective. The Zemindars being under very little restraint, acted in a very arbitrary manner within their own districts; and the tenants had no redress against the impositions and exactions which were laid upon them. Meir Collin appointed Aumils to the collection of the revenues rather than Zemindars. The Aumils derive their authority directly from the people, who, from the command of the country for the present time, and consequently are more easily called to an account than the Zemindars. At last, however, these Aumils, having obtained too great an influence in the country, Lord Clive thought proper to change the plan of collection. Three natives were now appointed, in the nabob’s name, to superintend this department; and one English gentleman, through whom the business was transacted, had his residence at the nabob’s court, and communicated the intelligence to Calcutta. The principal acting minister in this plan, however, thought proper to change the mode of collection once more, and to re-appoint the Aumils; in consequence of which the revenue became greatly diminished, and they were besides complained of as greatly oppressing the people. To remedy these evils, it was first proposed by Mr Verelst to send some of the company’s servants into the internal parts of the country with the title of supervisors; but the defects of administration were now beyond their power to remedy; the revenue was not only greatly diminished, but the expense of government exceedingly augmented; and in the year 1771 the company were alarmed by accounts that bills had been drawn upon them to the amount of 1,200,000. At this time Mr Hasting was appointed to be governor of Bengal; and the confusion in which matters were at the commencement of his administration will easily appear from the following part of a letter from the government of Bengal, dated in the month of November 1772. “Every zemindary was left to its own particular customs. The articles which composed the revenue, the form of keeping the accounts, the computation of time, even the technical terms, which ever form the greatest obscurity in every science, differed as much as the soil and productions of the province. The nabobs exacted what they could from the zemindars and great farmers of the revenue, whom they left at liberty to plunder all below, by delivering to themselves the liberty of plundering them in their turn, when they were supposed to have enriched themselves with the spoils of the country. The multitudes, who stood between the nabob and zemindars, and between them and the people, had each their shares of the public wealth. These profits were considered as illegal embezzlements, and therefore were taken with every precaution which could ensure secrecy; and being, consequently, fixed by no rule, depended on the temper, abilities, or power, of each individual for the amount. It therefore became a duty to every man to take the most effectual measures to conceal the value of his property, and evade every inquiry into his conduct; while the Zemindars and other landholders, who had the advantages of long possession, availed themselves of it by complex divisions of the lands, and intricate modes of collection, to perplex the officers of government, and confine the knowledge of the rents to themselves. The internal management of each district varied so much, that in the whole province, the lands subject to the same collection and intermixed with each other, were some held by farm, some superintended by thuckdars or agents on the part of the collector; and were left to the Zemindars themselves, under various degrees of control.” For some political reasons the company, though they had acquired the Dewanny, had not yet thought fit to assume the management of the office themselves, but committed it to the management of natives, as has already been mentioned, and their plans had been found extremely defective. By the time that Mr Haftings had been invested with the government, the court of directors had resolved to change their plan, and openly assume the office of the Dewanny; and the rules established by that gentleman for the collection of the revenues, his mode of administering Justice, and his police for the government of the country, are still observed with very little variation.

The plan for collecting the revenues consisted, in the first place, in rendering the accounts as simple and intelligible as possible; in the next, in establishing fixed rules for the collection; and in the third, making the mode of them uniform in all parts of the provinces; and in the fourth, providing for the equal administration of justice. The power of the Zemindars was now circumscribed, and their extortions thoroughly put an end to; many vexatious taxes and tolls were abolished, and a new mode of collecting the customs was established, to the great relief of the merchants: and as well were all the parts of this plan found to be adapted to the purposes they were designed to answer, that it has hitherto been made the model of all subsequent regulations.

One great objection to the India government is, that the English law, which undoubtedly is better calculated than any other for securing the liberties of the people, has not yet been adopted in India; whence it is thought that the company’s servants have still showed a disposition to oppress rather than to relieve, the oppressed inhabitants of Hindoostan. But in answer to this it is said, that the difference between the two countries is so great, that there can be no comparison between the one and the other, nor can the constitution of England be in any degree adapted to that of the other.
HINDOOS and Mohammedans are essentially different from those of this country, that it is impossible to assimilate them, though ever anything of the kind be attempted. The only true method therefore of judging whether the present state of Hindoos is preferable to what it formerly was, is to compare it with what it was under the best Mogul emperors; and in this comparison it must certainly appear that the preference is greatly in favour of the British administration. In Major Renel's work we are informed, that during the reign of Akbar, whom he styles "the glory of the house of Timur," the country had never enjoyed so much tranquillity; "but this tranquillity would hardly be deemed such in any other quarter of the world, and must therefore be understood to mean a state short of actual rebellion, or at least commotion." The same author, speaking of the state of the British empire there, gives the following words: "The Bengal provinces, which have been in our actual possession near 25 years, have, during that whole period, enjoyed a greater degree of tranquillity than any other part of India, or indeed than those provinces had ever experienced since the days of Aurengzebe." To this we may add, that the provinces have not only experienced a perfect freedom from external invasions, but likewise enjoy a degree of internal tranquillity altogether unknown before, by the subjection and civilization of a set of banditti who inhabited the hills of Rajemah, and infested the travellers who passed that way; a wandering tribe of religious mendicants, who were wont to commit the greatest enormities.

Another advantage the inhabitants of this country reap from the British government, is the security from violence and oppression either by the Mohammedan superiors or by one another. Under the article HINDOOS we have already mentioned the particular circumstance that these people are liable to the punishment of losing their cast from a variety of causes, and that this is looked upon by them to be the most grievous calamity they can suffer. The Mohammedan governors frequently took advantage of their superstition in this respect to oppress them, and this circumstance alone frequently produced the most horrid confusion. In the instructions given to the supervisors, Mr. Verelst informs them, that it is difficult to determine whether the original customs, or the degenerate manners of the Muffelmen, have most contributed to confound the principles of right and wrong in these provinces. Certain it is (adds he), that almost every decision of theirs is a corrupt bargain with the highest bidder. Compensations were frequently accepted of even for capital crimes, and fines became at last an intolerable grievance; nay, so venal were the judges at that time, that it became at last a fetted rule to allow each of them a fourth part of any property in dispute as a compensation for his trouble.—It is impossible to suppose that such monstrous abuses continue under the British government; on the contrary, we must readily believe, what the governors themselves affirm, that immediately after the provinces fell under British jurisdiction, both Hindoos and Mohammedans have been left to the free exercise of their religion, laws, and customs. The Hindoos themselves acknowledge this, and are as well pleased with the mildness of the British government, as they are displeased with the superstition and cruelty of the Mohammedans. Under the British government we cannot suppose but that commerce, to which the inhabitants of this country are so much addicted, will be much more encouraged than by the avaricious and barbarous Mogul emperors. The latter had imposed so many restraints upon trade of all kinds, by the multitude of taxes collected at the landing-places, watch-houses, markets, &c. that it was almost impossible to carry it on with any advantage. Among other salutary regulations, however, enacted by the British government in 1772, many of those taxes upon commerce were abolished, and a plan laid for effectually liberating the inhabitants from those shackles by which their commerce had been so long fettered. REGARD has also been paid to the instruction of the people in useful knowledge; and the seminary established at Calcutta by Sir William Jones, certainly does much honour to the founder. Some regard had indeed been paid to this by the Mohammedan emperors; but at the time that the British government commenced, these had been entirely neglected, their endowments resumed by government, and even the buildings fallen into ruin.

From a comparison of any government to which the Hindoos have hitherto been subject, with that of Britain, indeed, it is evident that the preference must be given greatly in favour of the latter. At the time when the British first visited that country, they were not under the jurisdiction of their native sovereigns, nor had they been so for a long time before. The Moguls were not only foreigners, but a most cruel and detestable race of men; and it was by usurpations of their own rebellious subjects that the anarchy and confusion was introduced, in which the country was involved for so long a time. The British are foreigners as well as the Moguls; but the latter, who profess the intolerant superstition of Mohammed, suffer their conduct to be influenced by it in such a manner as to treat the natives with the utmost cruelty. The greatest evil perhaps which results from the British government is, the exportation of great sums of money to a foreign country; but this evil, with respect to the provinces possessed by the British, existed also under the Mohammedan government. The Mogul emperors resided at Delhi, which is far distant from the provinces of Bengal, Bahar, and Orissa, the territories now possessed by Britain; so that the greatest part of the treasure sent to that capital was totally lost to them. In the time of Aurengzebe, the emperor's tribute amounted to three millions sterling; and of this a considerable part was specie; but since that time the tribute was fixed at only 1,250,000l. and even this was a vast sum; to which if we add that carried out of the country by commanders of mercenary troops who were all foreigners, it is not unreasonable to suppose that under the Mogul government matters were still worse, even in this respect, than under that of Britain.

We shall conclude this apology for the British government, with the following extract from the treatise lately quoted, A Short Review of the British Government in India. "A more detestable or detested race of people never appeared than the Mohammedan conquerors of India: whether we consider the brutality of their pillages, the bigotry of their religion, the corruption
Hindooan. The fanatical ignorance of the savage caliph which dictated his barbarous reason for destroying the Alexandrian library, had neither been torted nor refined by the Tartar education of Timur and his predecessors. The fame superstitious bigotry which incited the Arabian caliphs to destroy the monuments of western learning, likewise impelled the Tartar khans to overthrow the religious temples of the eastern worship. At the commencement of the 14th century Mahmood entered Hindooan, and in the course of 12 expeditions he destroyed the famous temples of Nagracot, Tannafar, Matra, and Sumnart. In the latter end of the next century, Mahmood Gori penetrated as far as the city of Benares, and committed outrages as Mahmood had done before in Nagracot and Sumnart, Tamerlane pontificating as much as of this furious zeal as any of his savage predecessors; and if the enthusiasm of this destructive religion had not occasionally abated among some of his successors, they would scarce have left a Hindoo temple or priest in the country they subdued.

With regard to the geography of this country, Mr Rentel observes, that though by the modern Europeans, Hindooan has been understood to mean the tract situated between the rivers Indus and Ganges on the east and west, the mountains of Thibet and Tartary on the north, and the ocean on the south, the extent of Hindooan, properly so called, is much more circumfered; and the name ought only to be applied to that part which lies to the northward of 21° or 22° latitude. The reputed southern boundary of Hindooan is the Nerbudda river; as far as it goes, and the northern frontiers of Bengal and Bahar compose the remainder. The countries to the south of this line are called Decian by the Indian geographers, and comprehended about one half of the territory generally known by the name of the Mogul Empire. Our author therefore chooses to distinguish the northern part by the name of Hindooan Proper; which has indeed the Indus and mountains of Thibet and Tartary for its western and northern boundaries, but the Burrunpooter river is rather to be considered as the eastern boundary than the Ganges; the latter interferring some of the richest provinces in the empire. According to this supposition, Hindooan Proper will equal in size the countries of France, Germany, Bohemia, Hungary, Switzerland, Italy, and the Low Countries; the Decian and peninsula being about equal to the British isles, Spain, and Turkey in Europe.

Towards the north, Hindooan is very cold and barren; but towards the south, very hot, and fertile in corn, rice, fruits, and other vegetables. The northern provinces are very mountainous and sandy; while the southern are for the most part level, and well watered with several rivers.

The most remarkable mountains are those which surround it on three sides. Those on the west, separating it from Persia, called, in general, Soleyman Kay; or the mountains of Soleyman, are of a vast height as well as breadth, and are only passable in certain places, through which roads have been made for the sake of commerce. The chief are those which lead to Kabul, Guna, and Kandahr. This great chain of mountains is inhabited by different nations, the principal of which are the Afghans, or Patans, and the Balouches, who have extended themselves on the side of India, as well as Persia. The mountains on the north, called Nagracot, Hindooan, whom they harassed without mercy, and destroyed without remorse. The British conquerors came from a country famed for arts and sciences; the generous principles of public liberty had been infused into their minds from their earliest infancy; the mild tenets of Christianity cherished and commanded every charitable duty; and they had been taught by precept and example, to rule with equity, and to obey with freedom. Can it be supposed that, under these circumstances, the two nations should have totally changed characters on their coming into India? That the barbarous and ferocious Tartar should become mild and enlightened; that the cultivated and generous Briton should have degenerated into a cruel tyrant; and that the British governors should have rendered the situation of their Hindoo subjects worse than it was under the Mogul emperors? Reason revolts at the idea; and nothing but the rank prejudice could either foster or adopt it."

But notwithstanding these facts, and that the history of their government is a disgusting repetition of oppression, massacres, and rebellion, the fashion of the times has been to praise it, and to represent the situation of the Hindoos as easy and happy under it, till they were disturbed in this peaceful state of repose and security by the English; who have been described (with unparalleled injustice) as a set of rapacious taskmasters. It surely requires a very small degree of reflection to perceive, that such representations of the two governments must, from the very nature of things, be false.

"The Mohammedan conquerors came into India from a barbarous region, with minds and manners as uncultivated as the wilds from which they fled. The only notion they had of government was absolute power in the sovereign, and absolute subjection in the subject. The tenets of their religion, so far from softening the ferocity of their nature, served only to whet the edge of the persecution towards the Hindooans, whom they harassed without mercy, and destroyed without remorse. The British conquerors came from a country famed for arts and sciences; the generous principles of public liberty had been infused into their minds from their earliest infancy; the mild tenets of Christianity cherished and commanded every charitable duty; and they had been taught by precept and example, to rule with equity, and to obey with freedom. Can it be supposed that, under these circumstances, the two nations should have totally changed characters on their coming into India? That the barbarous and ferocious Tartar should become mild and enlightened; that the cultivated and generous Briton should have degenerated into a cruel tyrant; and that the British governors should have rendered the situation of their Hindoo subjects worse than it was under the Mogul emperors? Reason revolts at the idea; and nothing but the rank prejudice could either foster or adopt it."
Hindoofan, separating Hindoofan from Thibet. The very prospect of these mountains is frightful, being nothing but hideous precipices, perpetually covered with snow, and not to be crossed without the greatest danger, and difficulty.

The most remarkable rivers of Hindoofan are the Indus and Ganges. The former is called by the orientals, Sind, Sindib, or Sindhi. It rises in the mountains to the north or north-east of Hindoofan; whence, after a long course, first to the south, and then to the south-west, it falls into the Persian sea, below Lower Badmer, by several mouths. In its course it receives several other large rivers, as the Nilah, Jumal, Behat, and Lakka.

The Ganges, called in the Indies Ganga, rises in the kingdom of Thibet: entering Hindoofan about the 50th degree of latitude, it runs first south-eastward by the cities of Bekaner; Minapor, Hulbas, Benares, and Patna, to Rajah Mahli, where it divides into two branches. The eastern having passed by Dakka, the capital of Bengal, enters the gulf of that name about Chattigan. The western descending by Kohfum Bazar and Hughly, falls into the gulf below Shandernagore, towards Pipel.

Many of the people and ancient Christians believed this river to be the Pinon, one of the four mentioned in scripture as the boundaries of the terrestrial paradise. The Indians retain the greatest reverence for its waters, going in crowds from the remotest parts of the country to wash in them, from a persuasion that they deface from all the spots of sin. The reason of this is, because they imagine this river does not take its source from the bosom of the earth, but descends from heaven into the paradise of Devendre, and from thence into Hindoofan. Nothing is more childlike than the fables of the Brahmins on this subject, yet the people swallow them all. The Mogul and prince of Golconda drink no other water than that of the Ganges: foreigners, on the contrary, pretend that it is very unwholesome, and that it cannot be safely drank till it is first boiled. There are a great number of superb pagodas on the banks of the Ganges, which are immemorially rich. At certain festivals, there has been sometimes a concourse of 100,000 people who came to bathe in it. But what principally distinguishes this river, besides its greatness and rapidity, is the gold it brings down in its sands and throws on its banks; and the precious stones and pearls it produces, not only in itself, but in the gulf of Bengal, into which it discharges its waters, and which abound therewith. The Chinn or Jemna, the Gaterafo, the Perisib, Lakka, and several other rivers, discharge themselves into it during its course.

The weather and seasons are, in general, very regular in this spacious country; the winds blowing constantly for six months from the south, and six months from the north, with very little variation. The months of April, May, and the beginning of June, till the rains fall, are so extremely hot, that the reflection from the ground is apt to blister one's face; and but for the breeze or small gale of wind which blows every day, there would be no living in that country for people bred in northern climates; for, excepting in the rainy season, the coldest day is hotter there at noon than the hottest day in England. However, very surprising changes of heat and cold sometimes happen within a few hours; so that a baking hot day is succeeded by a night cold enough to produce a thin ice on the water, and that night by a noon as scorching as the preceding. Sometimes, in the dry season, before the rains, the wind blows with such extreme violence, that they carry vast quantities of dust and sand into the air, which appear black, like clouds charged with rain; but fall down in dry showers, filling the eyes, ears, and nostrils of those among whom they descend, and penetrate every cheet, cabinet, or cupboard, in the houses or tents, by the key-hole or crevices.

From Surat to Agra, and beyond, it seldom or never rains, excepting in one season of the year: that is, from the middle of June to the middle of September. These rains generally begin and end with most furious storms of thunder and lightning. During the three months it rains usually every day, and sometimes for a week together without intermission; by this means the land is enriched, like Egypt by the Nile. Although the land looks before like the barren sands of the Arabian deserts; yet, in a few days after those showers begin to fall, the surface appears covered with verdure. When the rainy season is over, the sky becomes perfectly serene again, and scarce one cloud appears all the other nine months: however, a refreshing dew falls every night during that dry interval, which cools the air, and cherishes the earth.

The produce of Hindoofan is very rich in every kind, whether it be fruit, vegetable, or animal. Besides other precious stones found in it, there is a diamond mine at the town of Soumerpir in Bengall. Quarries of other precious stones are found in the Mogul's empire, that there are both mosques and pagodas built entirely of it. Some travellers tell us, there are mines of lead, iron, and copper; and even silver; but tho' the last, if there be any, need not be opened, since the bullion of all nations is sunk in this empire, which will take nothing else in exchange for her commodities, and prohibits the exporting it again. They till the ground with oxen and foot-ploughs, fowing in May and the beginning of June, that all may be over before the rains, and reaping in November and December, which with them are the most temperate months in the year. The land is no where inclosed, excepting a little near towns and villages. The grains is never mowed to make hay, but cut off the ground, either green or withered, as they have occasion to use it. Wheat, rice, barley, and other grain, grow here in plenty, and are very good. The country abounds no less in fruits, as pomegranates, citrons, dates, grapes, almonds, and cacao-nuts; plums, those especially called mirabaius; plantains, which in shape resemble a slender cucumber, and in taste excel a Norwich pear; mangos, an excellent fruit, resembling an apricot, but larger; ananas or pine-apples; lemons and oranges, but not so good as in other countries; variety of pears and apples in the northern parts; and the tamarind-tree, the fruit of which is contained in a pod resembling those of beans. There are many other kinds of fruit-trees peculiar to the country. But the valuable trees are the cotton and mulberry, on account of the wealth they bring the natives from the manufactories of calicoes and silks. They plant abundance of sugar-
In Bangladesh, as well as tobacco; but the latter is not so rich and strong as that of America, for want of knowing how to cure and order it.

Hindostan affords also plenty of ginger, together with carrots, potatoes, onions, garlic, and other roots known to us, besides small roots and herbs for salads; but their flowers, though beautiful to look at, have no scent, excepting roses, and some few other kinds.

There is a great variety of beasts for carriage, as camels, dromedaries, mules, asses, horses oxen, and buffaloes. Most of the horses are white, and many curiously dappled, pied, and spotted all over. The flesh of the oxen is very sweet and tender. Being very tame, many use them as they do horses to ride on. Instead of a bit, they put one or two small rings through the gristle of the nostrils, and fastening the ends to a rope, use it instead of a bridle, which is held up by a bunch of gristly flesh which he has on the forepart of his back. They saddle him as they do a horse; and, if spurred a little, he will go as fast. They are generally made use of all over the Indies; and with them only are drawn waggons, coaches, and chariots. Some of these oxen will travel 15 leagues in a day. They are of two sorts; one fix feet high, which are rare; another called dwarfs, which are only three. In some places, where the roads are ftony, they shoe their oxen when they are to travel far. The buffalo's skin makes excellent buff, and the female yields very good milk, but their flesh is neither so palatable nor wholesome as beef. The sheep of Hindostan have large heavy tails, and their flesh is very good, but their wool coarse.

The country is much infested with reptiles and insects; some of a noxious kind, as scorpions, snakes, and rats; but the lizards, which are of a green colour, are not hurtful. Snakes and serpents, we are told, are sometimes employed to dispatch criminals, especially such as have been guilty of some atrocious crime, that kind of death being attended with the most grievous torture. The most troublesome insects in this hot country are flies, musketeers, and chinchins or bugs, the first by day, and others in the night; when they offend no less by their rancid than their bite.

HINE, or HIND, a husbandman's servant. Thus the person who overlees the reft, is called the master's hine.

HINNOM, or the Valley of Hinnom (anc. Gehon, a place that lay to the south of Jerusalem. It was also called the valley of Tophet, and was remarkable for the cruel and barbarous worship of the god Molech, where parents made their children pass through the fire in honour of that idol.

HIP, in the materia medica, the fruit of the dog-rose or wild brier. See Rosa.—They contain a four-arched sweetish pulp; with a rough prickly matter inclining the seeds, from which the pulp ought to be carefully separated before it be taken internally; the Wirtemberg college observes, that from a neglect of this caution, the pulp of hips sometimes occasion severe pain and uneasiness about the anus; and the conserve of it has been known to excite violent vomiting. The conserve is the only official preparation of this fruit. And as it is not supposed to poffefs any particular medical virtue, but is merely used to give form to other articles, the Edinburgh college have, perhaps without any material disadvantage, entirely omitted it.

HIPPARCHUS, a great astronomer, born at Nica in Bithynia, flourished between the 153th and 163d Olympics. His commentary upon Aratus's phenomena is still extant. Rohault was very much miffaken when he ascertained, that this astronomer was not acquainted with the particular motion of the fixed stars from west to east, by which their longitude changes. By foretelling eclipses, he taught mankind not to be frightened at them, and that even the gods were bound by laws. Pliny, who tells this, admires him for making a review of all the stars; by which his descendants would be enabled to discover whether they are born and die, whether they change their place, and whether they increafe and decrease.

HIPPAS, in botany, a genus of the polygama necessaria order, belonging to the fycogelia clas of plants. The receptacle is naked; there is no pappus; the seeds are naked, with very broad margins; the calyx is hemispheric, and subiliisbricated; the radius consists of ten corollules, obscure, and rather cleft into three.

HIPPBOBOSCA, or Horse-fly, in zoology; a genus of insects, belonging to the order of diptera. The beak consists of two valves, is curved, obtuse, and hanging; and the feet have several claws. There are four species, distinguished by their wings. &c. The most remarkable is the equina, the peft of horses and cows. This insect is black, flat, shining, and as it was fensively, it has, thorax, and abdomen, are yellow, undulated with brown, and the legs are incenticated with yellow and brown. The wings, crossed one over the other, exceed the length of the body by above one half; they are transparent, tinged with a little yellow towards their outward edge, and have a spot near that edge of a brown colour. These insects are very difficult to be killed on account of the hard excreascent shell which covers them; and they fix to close and fast to the poor animals, with their claws; that they cannot rub or bite them off without wounding themselves.

HIPPOCAMPUS, in ichthyology. See Syngnathus.

HIPPOCASTANUM, or common horse-chestnut. See Aesculus. — It may be observed, that from several experiments in the French Memoires d'Academie, it appears that t.e fruit of the horse-chestnut affords a wholesome nourishment for cattle, and may even be employed with success for fastening them. It is laid to ready the tallow of those fatsed with it particular
larity firm. The milk yielded by ewes fed upon it, is also said to be thicker and richer than that produced from any other kind of food. — The fruit of this tree has been likewise used as food for sheep and poultry, and as soap for washing. It was much employed in powder as a vermifugary by an itinerant occultist, and has been recommended by some others in certain states of ophthalmia, headache, &c. in which erhrines are indicated. Its effects as a vermifugary may also be obtained by using it under the form of infusion or decoction drawn up into the nostrils. And it is entirely with a view to its erhrine power that it is now introduced into the pharmacopoeia of the Edinburgh college. But besides this, the bark has also been recommended by some as a cure for intermittent fevers; and it is probably with this intention that this part of the hippocasamnum is introduced as an official article in the Pharmacopoeia Rossica.

HIPPOCENTAUR (formed of ἱππος, "horse," κένταυρος, "centaur," ἴσος, "equal," and ἑκατός, "one hundred," in antiquity, a fabulous monster, supposed to have made Cornelius Cellus and some others imagine, that the hippocentaur was the doppelganger of Democritus, though it is probable they never saw each other till this interview which was occasioned by the Abderites. Hippocrates had also public invitations to other countries. Thus, when a plague invaded the Illyrians and Persians, the kings of those countries begged him to come to their relief: he did not go; but learning from the messengers the course of the wind there, he concluded that the plague would come to Athens; and foreseeing what would happen, applied himself to take care of the city and the students. He was indeed such a lover of Greece, that when his fame had reached as far as Persepolis, and upon that account Artaxerxes had treated him by his governor of the Hellespont, with a promise of great rewards, to come to him, he refused to go. He also delivered his own country from a war with the Athenians, that was just ready to break out, by prevailing with the Thessalians to come to their assistance, for which he received very great honours from the Coans. The Athenians also conferred great honours upon him: they admitted him next to Heracles in the Eleusinian ceremonies; gave him the freedom of the city; and voted him and his family in the Prytanæum or council-house at Athens, where none were maintained at the public charge but such as had done signal service to the state. He died among the Larissæans, some fifty in his 90th year, some in his 83d, others in his 104th, and some in his 109th. The best edition of his works is of Pecius, in Greek and Latin. Hippocrates wrote in the Ionian dialect. His aphorisms, proverbs, and all that he has written on the symptoms of disease, is justly pats for master-pieces. See History of Medicine.

HIPPOCRENE (anc. geog.), a fountain of mount Helicon, on the borders of Boeotia, sacred to the Muses. Some, as Ovid, make Hippocrene and Aganippe the same. See Aganippe.

HIPPOPHAGI (anc. geog.), a people of Scythia, so called from their living on horse-flesh: the fate at this day of the Tartars are their descendants. Also a people of Persia (Pleomeny).

HIPPOCREPIS, COMMON HORSE-SHOE VETCH, in botany: A genus of the decidua order, belonging to the diadelpheia class of plants; and in the natural method ranking under the 3rd order, Papilionaceae. The legumen is compressed and crooked, with many
incisions on the interior future. There are three species, two natives of the warm parts of Europe and one of Britain. They are all low herbaceous trailing plants, with yellow flowers. They are propagated by seeds; but having no great beauty are seldom kept in gardens.

HIPPODROME, HIPPODROMUS, (composed of ἱππος, "horse," and δρόμος, "course"), or of the verb ὑπάρχω, "I run," in antiquity, a list or course wherein chariot and horses races were performed, and horses exercised.

The Olympian hippodrome or horse-course was a space of ground of 600 paces long, surrounded with a wall, near the city Elis, and on the banks of the river Alpheus. It was uneven, and in some degree irregular, on account of the situation; in one part was a hill of a moderate height, and the circuit was adorned with temples, altars, and other embellishments. See STADIUM. There is a very famous hippodrome at Constantinople, which was begun by Alexander Severus, and finished by Constantine. This circus, called by the Turks atmeica, is 400 paces long, and above 100 paces wide. At the entrance of the hippodrome there is a pyramidal obelisk of granite in one piece, about 50 feet high, terminating in a point, and charged with hieroglyphics. The Greek and Latin inscriptions on its base with hieroglyphics. The Greek and Latin inscription is tripartite; and the plum or capsule trilocous.

Species. 1. The mancephala, with oval fawed leaves, is a native of all the West-India Islands. It hath a smooth brown bark; the trunk divides upwards into many branches, garnished with oblong leaves about three inches long. The flowers come out in short spikes at the end of the branches, but make no great appearance, and are succeeded by fruit of the same shape and size with a golden pipkin. The tree grows to the size of a large oak. 2. The biglandulosa, with oblong bay leaves, is a native of South America; and grows to as large a size as the first, from which it differs mostly in the shape of its leaves. 3. The pinophora, with holly leaves, is a native of Campeachy, and seldom rises above 20 feet high; the leaves greatly resemble those of the common holly, and are set with sharp prickles at the end of each indenture. They are of a lucid green, and continue all the year.

Culture. These plants being natives of very warm climates, cannot be preserved in this country without a flower; nor can they by any means be made to rise above five or six feet high even with that affinities. They are propagated by seeds; but must have very little moisture, or they will certainly be killed by it.

Properties. These trees have a very poisonous quality, abounding with an acrid milky juice of a highly caustic nature. Strangers are often tempted to eat the fruit of the first species; the consequences of which are, an inflammation of the mouth and throat, pains in the stomach, &c. which are very dangerous unless remedies are speedily applied. The wood is much esteemed for making cabinets, book-cases, &c. being very durable taking a fine polish, and not being liable to become worm-eaten: but as the trees abound with a milky caustic juice already mentioned, fires are made round their trunks, to burn out their juice; otherwise those who fell the trees would be in danger of losing their sight by the juice flying in their eyes. This juice raises blisters on the skin wherever it falls, turns linen black; and makes it fall out in holes. It is also dangerous to work the wood after it is sawn out; for if any of the sawdust happens to get into the eyes of the workmen, it causes inflammations and the loss of sight for some time; to prevent which, they generally cover their faces with fine sawdust during the time of working the wood. It is with the juice of this tree that the Indians used to poison their arrows.

HIPPOMANES, a sort of poison famous among the ancients as an ingredient in amorous philters or love-charms. The word is Greek ἵππομανής, composed of ἵππος, "horse," and μάνης, "fury or madness."

Authors are not agreed about the nature of the hippomanes. Pliny describes it as a blackish caruncle found on the head of a new-born colt; which the dam
HIPPOPOTAMUS, a Greek poet, born at Ephesius 540 years before the Christian era. He cultivated the same satirical poetry as Archilochus, and was not inferior to him in the beauty or vigour of his lines. His satirical raillery obliged him to fly from Ephesius. As he was naturally deformed, two brothers, Baphylus and Antherus, made a statue of him; which, by the ugliness of its features, exposed the poet to universal ridicule. hippocax resolved to revenge the injury; and he wrote such bitter invectives and satirical lampoons against them, that they hanged themselves in despair. (Cic. ad Famil. vii. cap. 24.)

HIPPOPHAE, sax-br-cthorn: a genus of the tetrandria order, belonging to the dicasia class of plants; and in the natural method ranking under the 15th order, Calycifera. The male calyx is bipartite; there is no corolla; the female calyx is bifid; there is no corolla; there is one style, and a monopetalous berry.

Species. 1. The rhamnoides hath a shrubby stem, branching irregularly eight or ten feet high, having a dark brown bark. It is armed with a few thorns; hath spic-shaped, narrow, sickle leaves, of a dark green above, and hoary underneath. 2. The camenstis hath a shrubby brown stem, branching eight or ten feet high, with oval leaves, and male and female flowers on different plants.

Culture, &c. Both these species are very hardy, and may be propagated in abundance by suckers from the roots, by layers, and by cuttings of their young shoots. They are retained in gardens on account of their two-coloured leaves in summer; and in winter, on account of the appearance of the young shoots, which are covered with turgid, irregular, fleshy buds. Goats, sheep, and hares, eat the first species; cows refuse it.

HIPPOPODES, Hippopedes, or Hippopedia, composed of 27 inches, to 20, feet, in the ancient geography, an appellation given to a certain people situated on the banks of the Scythian sea, as being supposed to have had horses feet. The hippopodes are mentioned by Dionysius, Geogr. v. 540. Mela, lib. iii. cap. 6. Pliny, lib. iv. cap. 13. and St. Augustine, De Civit. lib. xvi. cap. 8. But it is conjectured, that they had this appellation given them on account of their swiftnes or lightnes of foot. Mr Pennant supposes them to have been the inhabitants of the Bothnian Gulph, and that they were the same sort of people as the Finni Lignipeses of Olaus. They wore no shoes; which he thinks might fairly give the idea of their being, like horsfs, hoofed and shod.

HIPPOPEDAMUS, the river-horse; a genus of quadrupeds belonging to the order of belluses, the characters of which are these: it has four fore-teeth in the upper jaw, disposed in pairs at a distance from each other; and four prominent fore-teeth in the under jaw, the intermediate ones being longest; there are two Hippopodes in each jaw, those of the under one very long and obliquely truncated; in both they fluid follow, and are recurved: the feet are hoofed on the edges.

There is but one known species, viz. the amphibius, or river-horse, (Plate CCCXXXVI.) The head of this animal is of an enormous size, and the mouth vastly wide. The ears are small and pointed, and lined with in very thickly with short fine hairs. The eyes and nostrils are small in proportion to the bulk of the animal. On the lips are some short hairs scattered in patches here and there. The hair on the body is very thin, of a whitish colour, and scarce discernible at first sight. There is none on the mane, as some writers feign, only the hairs on that part are rather thicker. The skin is very thick and strong, and of a dusky colour. The tail is about a foot long, taper, compressed, and naked. The hoofs are divided into four parts. The legs are short and thick. In bulk it is second only to the elephant. The length of a male has been found to be 17 feet, the circumference of the body 15, the height near 7, the legs near 3, the head above 3, and the girth near 9. The mouth, when open, is above 2 feet wide; and furnished with 44 teeth of different figures (including the cutting teeth and the canine). The cutting teeth, especially those of the under jaw, are very long, cylindrical, and chamfered. The canine teeth are also long, crooked, prismatical, and sharp, like the tusks of the wild boar. The grinders are square or oblong, like those of man, and so large that a single tooth sometimes weighs three pounds. The tusks, according to Dr Sparman, are 27 inches long.

With such powerful arms, and such a prodigious strength of body, the hippopotamus might render himself formidable to every other animal. But he is naturally of a mild disposition, and is only formidable when provoked. His bulk is so great, that twelve oxen have been found necessary to draw one achor which had been shot in a river above the Cape; and Haffelquins says, its hide is a load for a camel. Tho' he delights in the water, and lives in it as freely as upon land; yet he has not, like the beaver or otter, membranes between his toes. The great size of his body renders his specific gravity nearly equal to that of water, and makes him swim with ease.

These animals inhabit the rivers of Africa, from the Niger to Berg River, many miles north of the Cape of Good Hope. They formerly abounded in the rivers nearer the Cape, but are now almost extirpated; and to preserve the few which are left in Berg River, the governor has absolutely prohibited the floating them without particular permission. They are not found in any of the African rivers which run into the Mediterranean except the Nile, and even there only in Upper Egypt, and in the fens and lakes of Ethiopia which that river passes through. From the unwieldiness of his body and the thickness of his legs, the hippopotamus
The hippopotamus was known to the Romans: Hippopotamus Scænus treated the people with the sight of five crocodiles and one hippopotamus during his admittance, and exhibited them in a temporary lake. Augustus produced one at his triumph over Cleopatra.

This animal is the behemoth of Job; who admirably describes its manners, food and haunts. "1. Behold now behemoth, which I made near thee: he eateth grass as an ox. 2. Lo! now his strength is in his loins, and his force is in the navel of his belly. 3. His bones are as strong pieces of braze; his bones are like bars of iron. 4. He lyeth under the shady trees, in the covert of the reed and ferns. 5. Behold he drinketh up a river; he truelth he can draw up Jordan into his mouth."

The first, the learned Bohart observes, implies the locality of its situation; being an inhabitant of the Nile, in the neighbourhood of Uz, the land of Job. The second describes its great strength; and the third, the peculiar hardness of its bones. The fourth indicates its residence amidst the vast reeds of the river of Egypt, and other African rivers overshadowed with thick forests. The fifth, the characteristic wideness of its mouth; which is hyperbolically describ'd as large enough to exhaust such a stream as Jordan.

That this article may include every sort of information which could be collected concerning a creature so highly noted and of such ancient fame, we shall add the following particulars extracted from Sparman's Voyage to the Cape of Good Hope, where these animals are called sea-cows.

"Towards evening (Jan. 24. 1776), we came to a pit in the river, which our guides knew to be frequented by sea-cows. For this reason, all the different ways by which these animals might come up from the river, were beset by us separately; our hunting-party confining in the whole of seven pendors, viz. five of us Christians, together with my Hottentot and another belonging to the farmers. Besides this, the rest of the Hottentots were ordered to go to the windward and to the more open places; and by smacking their whips, and making other noises, to frighten and drive the animal towards us so soon as it should make its appearance; in consequence of which measures, it appeared to us, that when at length obliged to go on shore in quest of its food, it must necessarily come to the hiding-place of some one of the hunters. Every one of these places were just at the edge of the river, between the reeds which grew on the dry parts of the river, or on those spots which the water had left, and at the same time close to the very narrow paths which the animal had made for itself at each place: in consequence of which disposition, it would inevitably pass not above six inches, or a foot at most, from the mouth of the sportman's piece. Consequently our whole dependance was upon two circumstances; viz. that our guns should not miss fire, and that the shot should not fail to prove mortal. In the former case, the sportman must have inevitably paid for his temerity with his life; though in the latter he had reason to hope, from instances of what had happened to others, that the fire, together with the report from the piece, as well as the ball itself, would confound the animal, so as to prevent it from immediately making towards its enemy. The banks of the pit which we then beset..."
were in most places steep and perpendicular, and the pit itself was almost three quarters of a mile long; but my puff and that of my fellow traveller (Mr Immelman) happened to be at the distance of not above 30 or 40 feet from each other. To these very places too, after we had waited at them an hour and a half in the most profound silence, the enormous animals did not fail to report. They had already, while on the other side of the river, got scent of the Hottentots; and now showed by their swimming up and down and blowing themselves, as well as by a short but acute and piercing grunt or neighing noise, that they had a great suspicion of these palls. I believe Mr Immelman was not less eager and anxious than myself, each of us expecting every moment to have a but with a huge enormous beast which we knew had given certain proofs of its being able to bite a man afunder. Yet were we each of us at times no less fearful lest the other should have the honour of killing game of such consequence. The hippopotamus, however, left us, and had made its appearance in the same manner where the farmers were stationed; notwithstanding which, at that very instant we heard it flourished at by one of the Hottentots. The fierce darkness of the night, and the glittering of the Hottentot's piece, together with the loudness of the report from it, occasioned by the weight of the charge, was not less eager and eminently wonderfully; notwithstanding which, at that very instant we heard it flourished at by one of the Hottentots. This sublime spectacle was immediately followed by a ridiculous kind of farce performed by a troop of baboons; which, from their calling and answering each other along a straight line, we could discover to be encamped on a steep rocky mountain in the neighbourhood, with regular out-posts in the trees on each side of it. After an interval of a couple of minutes, silence again took place, till two o'clock, when the other Hottentot fired his piece; and another alarm, though of shorter duration, went through the baboons out-posts and head-quarters.

"The next morning, for the arrival of which we ardently longed, in order to satisfy our curiosity, our Hottentot sportsmen related to us the following particulars concerning the adventures of the night. Involved in darkness, covered up to the eyes in reeds, and overshadowed with branches of trees, they could only get a glimpse of the animal, and consequently could not answer for their shots having taken place; and one of them acknowledged, that he was a little confused, as he could not well see what he was about; and for the same reason fired his piece too soon, before the animal had well risen out of the water. The other indeed had had an opportunity, both with the ball and shot that made up the charge, of wounding the animal, which went on its road, and passed directly by him; but he could not see which part of the animal presented itself before the muzzle of his piece. As soon as he had fired, he flung away, and directly afterwards heard the beast take to the water. The rest of the Hottentots had observed one of these animals, probably a different one from this, run up on a shallow along the river side, and thus make its escape, without their having been able to prevent it. After this we waited here till the afternoon, in hopes that the wounded animals would die and rise to the top of the water. But we fluid in vain; and to as little purpose would it probably have been had we waited still longer, as there grew by the side of the river a great number of trees, to the roots of which these creatures, it is said, in the agonies of death, make themselves fall by means of their long and crooked tails. On the other hand, supposing these two sea-cows to be but slightly wounded, they would be cautious how they made their appearance; and indeed, in all probability, it would have been a dangerous service to the sportsman who should have ventured to have followed them any farther. Besides, the water had now, in the space of a few hours, risen considerably, and had overflowed many spots fit for lying in ambush; for which reason we departed to another hippopotamus pit lest from this. Here too we laid, by way of snare, a large blunderbuss. The Hottentots occupied one post; two of our company guarded another: other two (an old farmer and his son) stationed themselves at the third, and placed me in the middle of them. Just in this part the banks of the river were considerable height, and the river itself was dried up near an extensive shallow, where it would have overflowed, as it had into a little plain covered with pebble-stones and gravel. We three then set ourselves down close by the side of each other, in a path made by the sea-cows, making ourselves pretty certain, as the place was flat, and consequently it was light here, of being able, if any hippopotamus should chance to come upon the shallow and look about it, to see it plain enough to kill it with a volley of three shots. But to the great endangering of our lives, on a sudden found the animal much quicker in its motions, as well as bolder, than we had thought it; for while I was sitting half sleeping, and moralizing on the subject, struck with the consideration that we with our guns had at that present moment the dominion over Job's leviathan or behemoth; while, on the other hand, the flies or small musquitoes had the dominion over us (so much, indeed, that I was obliged to wrap up my face up in a handkerchief), a sea-cow came rushing upon us out of the river, with a hideous cry, as swift as an arrow out of a bow, at the same time I heard the farmer call out, "Heer Jefus!" But fortunately at the very instant he discharged his piece, which flashed full in the animal's face, contributed perhaps more than the ball to make it start back; when setting up another cry, it threw itself into the water again with as great precipitation as it came out.

"At this I was not a little alarmed, yet, what is very singular, not at the danger which was real, of being trampled under foot, or being bitten afunder by the beast, but in consequence of my apprehensions which were merely imaginary, of being drowned: for the rattling noise, arising from the creature's running out of the water and along the flouncy beech, immediately suggested to me the idea that the river had on a sudden overflowed its banks; a supposition to which I was the more inclined, as I knew that this accident happens very frequently here. And as the hippopotamus, when it is newly come up out of the water, and is wet and slimy, is said to glitten in the moon-shine like a fish, it is no wonder that as soon as I took my handkerchief from before my eyes, it should appear to me,
On the 26th likewise we were on the look-out after these animals, between the hours of ten and eleven in the forenoon, and also just before dusk, though upon a quite different plan from what we had before, as we meant now to hit them on their flouts the instant they should click them up within the reach of our guns out of the water in order to take breath, or more properly (as it is not unaptly called by the colonists) to blow themselves. In order that the shot might prove mortal, we were obliged, however, on this occasion, to direct it in such a manner, that the ball should pass through the cavity of the nose into the brain. It was merely upon this plan that we went out after the sea-cows before we arrived at *AFTER BRUIKERHOOGTE*, and were strengthened by the farmer’s party.

But we constantly found these animals too shy to allow us to put our designs in execution: for although, in these lodges or quarters, they had not been frightened or wounded, they will often in the middle of the day raise their heads and part of their bodies above the surface of the water, they at this time fearfully ventured just to put one of their nostrils only out of it, in order to breathe almost imperceptibly; and this only for the most part in those spots in which they were sheltered from us by the hanging branches of trees. Notwithstanding this disadvantageous situation, they, in consequence of the acuteness of their smell, seemed still to discern us, especially when we were to the windward of them; as in that case they instantly withdrew to another part.

The same night we betook ourselves again to our boats; and at half an hour after eight, it being already very dark, a sea-cow began at intervals to put its head up above the water, and utter a sharp, piercing, and, as it were, a very angry cry, which seemed to be between grunting and neighing. Perhaps this cry may be best expressed by the words *heurk! heurk!, hoo-hoo*: the two first being uttered slowly, in a hoarse but sharp and tumultuous sound, resembling the grunting of other animals; while the third, or compound word, is rounded extremely quick, and is not unlike the neighing of a horse. It is true, it is impossible to express these inarticulate sounds in writing; but perhaps one may make nearer approaches to it than one can to the gutturopalatinal sounds of the Hottentot language. At eleven o’clock came the farmer or else some other hippopotamus, and in like manner visited the pofts we occupied. He did not, however, dare to come up, though to our extreme mortification we heard him come and nibble the boughs which hang over the surface of the water, as well as a little grass and a few low shrubs which grew here and there on the inside of the river’s banks. We were however, in hopes that this way of living would not long suffice animals, one of which only required almost a larger portion than a whole teamsofen. Thus far at least is certain, that if one should calculate the consumption of provisions made by a sea-cow from the side of its fances, and from that of its body and of its belly, which hangs almost down to the ground, together with the quantity of
Hippopotamus

grasses which I have at different times observed to have been consumed by one of these animals in spots whither it has come over night to graze, the amount would appear almost incredible.

"We passed the following night at the same posts as we occupied on the night preceding, the sea-cows acting much in the same manner as before. On the 28th, after sun rise, just as we were thinking of going from our posts home to our waggons, there comes a female hippopotamus with her calf, from some other pit or river, to take up her quarters in that which we were then blockading. While she was waiting at a rather steep part of the river's banks, and looking back after her calf, which was lame, and consequently came on but slowly, she received a shot in her side, upon which she directly plunged into the river; but was not mortally wounded; for Flip (the farmer's son), the drollery of all ablutionary beings, who had shot her, and that instant could hardly be awakened by two Hottentots, was still half asleep when he fired his piece. And happy was it for him that the enormous beast did not make towards his hiding or rather fleaping place, and send him into the other world to sleep for ever. In the mean while his shot was far of service, that one of my Hottentots ventured to seize the calf, and hold it fast by its hind-legs till the rest of the hunting party came to his assistance. Upon which the calf was fast bound, and with the greatest joy borne in triumph to our waggons; though while they were taking it over a shallow near the river, the Hottentots were very much alarmed, which the calf was fast between two posts. The found, however, the height two feet; though it ceased crying; and when the Hottentots had passed their hands several times over its nose, in order to accustom it to their effluvia, began directly to take to them.

"While the calf was yet alive, I made a drawing of it, a copy of which may be seen in the Swedish Transactions for 1778. After this it was killed, dissected, and eaten up in less than three hours time. The reason of this quick dispatch was partly the warmth of the weather, and partly our being in absolute want of any other fresh provisions. We found the flesh and fat of this calf as flabby as one might have expected from its want of age, and consequently not near so good as that of the old sea-cows; of which I found the flesh tender, and the fat of a nice like marrow, or at least not so greasy and strong as other fat. It is for this reason likewise that the colonists look upon the flesh and fat of the sea-cow as the wholesome meat that can be eaten: the gelatinous part of the feet in particular, when properly dressed, being accounted a great delicacy. The dried tongues of these animals are also considered even at the Cape as a rare and savory dish.

On my return to Sweden, I had the honour to furnish his majesty's table with a dried sea-cow's tongue, two feet and eight inches long. With respect to form, the tongue of a full-grown hippopotamus is very blunt at the tip, and is in fact broadest at that part; if at the same time it is flattened off towards one side, and marked with lobes, as I was informed it is, this circumstance may, perhaps, proceed from the friction it suffers against the teeth, towards the side on which the animal chiefly chews; at least some traces of this oblique form were discoverable on the dried tongue I am speaking of.

"The hide of the adult hippopotamus bears a great resemblance to that of the rhinoceros, but is rather thicker. Whips likewise made of his hide are stronger, and after being used some time, are more pliable than those made of the hide of the rhinoceros usually are, though they are not so transparent as those latter are when new.

"The food of the hippopotamus consists entirely of herbs and grasses, a circumstance of which we are informed by Father Lobo; and which may partly be inferred from what I have already said on the subject, as well as from the figure of the stomach belonging to the faetus of a hippopotamus given in Meffrs de Buffon and Daubenton's elegant work. I therefore do not look upon it as very probable, that these animals, agreeably to the assertions of M. de Buffon, p. 93. or of Dampier in his voyage, should hunt after fish by way of preying upon them; especially as in some of the rivers of the southern part of Africa, where the sea-cows are seen daily and in great abundance, there is not a fish to be seen; and in others only a few bastard springers, as they are called (of the species of Cyprinus gonorhynchus), which are scarcely as big a common herring. It is said, that a small species of carp is still more rarely to be met with here. It is true, that the sea-cows sometimes frequent the mouths of the rivers here, which are full of sea-fish, and even sometimes the sea itself: we know, however, that these huge quadrupeds are notwithstanding this obliged to go from thence upon dry land in quest of food. Neither is it probable that they can drink the sea-water; as an incident related to me of the contrary in a hippopotamus, which having been disturbed in the rivers, had taken refuge in the sea, and yet was obliged to go ashore every night and drink fresh water from a well in the neighbourhood, till at last it was shot by some people that lay in wait for it there. That the hippopotamuses actually lived in salt-water, I have seen evident proofs at the mouths both of Kronne and Gautoriver rivers, particularly in the latter, on my journey homewards; where many of these animals showed themselves in broad-day-light, and thrust their heads up above the water; and one of them in particular, which had been wounded by an ill directed shot on the nose, neighed from anger and resentment. In Krakemamma I saw on the beach manifest traces of a hippopotamus which had come out of the sea, but had retired thither again directly. That very attentive navigator Captain Burtz informed me, that he had frequently seen on the eastern coast of Africa sea-horses (meaning probably the hippopotamus) raise their heads above the surface of the water, in order to blow themselves and neigh. I have..."
have been induced to be rather circumstantial on this subject, as M. Adamson has taken into his head, in his "Voyage à la Sénégal," to limit the abode of the hippopotamus to the fresh-water rivers only in Africa; and M. de Buffon has taken upon himself to support this opinion, and to render Kolbe's testimony to the contrary liable to suspicion.

"An old experienced huntsman told me, that he had once seen two hippopotamuses coalesce, which they did in the same manner as common cattle. On this occasion the beasts flooded in a shallow part of the river, where the water reached up to their knees.

"The method of catching the hippopotamus consists (besides shooting it) in making pits for it in those parts which the animal passes in his way to and from the river; but this method is peculiar to the Hottentots, and is only practised by them in the rainy season, as the ground in summer is too hard for that purpose. It is said that they have never succeeded in killing this huge aquatic animal with poisoned darts, though this way of killing game is practised with advantage by the Hottentots for the destruction both of the elephant and rhinoceros. The colonists likewise were not entirely unacquainted with the method mentioned by M. Hoffquill, as being common in Egypt, viz. to fire on the ground as many peats or beans as the animal could possibly eat, by which means it bursts its belly and dies. But as this method is very expensive, and it can generally have this animal for a single charge of powder and a tin ball, shot in a proper direction, they chiefly and almost solely have recourse to this cheaper expedient.

"The hippopotamus is not so quick in its pace on land as the generality of the larger quadrupeds, though perhaps it is not so slow and heavy as M. de Buffon describes it to be; for both the Hottentots and colonists look upon it as dangerous to meet a hippopotamus out of the water, especially as, according to report, they had had a recent instance of one of these animals, which, from certain circumstances, was supposed to be in rut; having, for several hours pursued a Hottentot, who found it very difficult to make his escape. The people of this country did not entertain that opinion of the medical virtues of the hippopotamus, as they did of certain parts of the elephant and rhinoceros; excepting one colonist, who imagined he had found the opium of the animal reduced to powder, and taken in the quantity that would lie on the back of a knife, excellent in convulsions, and particularly in the convulsions (fluenca) of children. That the flesh is reckoned very wholesome food, I have already mentioned.

"Having already exceeded the limits I had prescribed to myself, I do not intend to dwell here on the anatomy of the hippopotamus we caught, particularly, as the internal conformation of the calves is somewhat different from that of the adult animal. I shall therefore only briefly mention the following particulars; the stomachs were four in number, and consequently one more than in the fetus examined by M. Daubenton, which was kept in spirits. Compare Buffon, Tom. xii. Tab. iv. fig. 2. The two first stomachs were each of them about seven inches long and three inches in diameter; the third was nine inches in length, and a little wider than the two former; the fourth was seven inches long, and at the upper part five inches broad, decreed by degrees on one side till it terminated in the pylorus, which had an aperture an inch in width, being about half as wide again as the cardia. I did not observe any such valves as M. Daubenton has delineated. The first stomach we found mostly empty, it containing only a few lumps of cheese or curd; it likewise differed from the rest by the superior fineness of its internal coat. The internal membrane of the second stomach was rather coarser, and had many small holes in it; it likewise contained several clods of ceseinous matter, together with several leaves quite whole and fresh, and at the same time some dirt. The interior membrane of the fourth stomach was very smooth, though it was not without folds; in the stomach itself there was a good deal of dirt, with a small quantity of curds, which, were whiter than they were in any of the other stomachs. This fourth stomach in a great measure covered the rest, being situated on the right side of the animal, and was found to have the upper part of the material adhering to its superior and inferior edge. This latter viscus which was one foot long and three inches broad, diverged from it downwards on the left side. The intestinal canal was 109 feet long; the liver measured 14 inches from right to left, and 7 or 8 from the hind part to the fore part. On its anterior edges it had a large notch, being in other respects undivided and entire; it was of an oblique form, being broadest towards the left side where I discovered a gall-bladder five inches in length. In the uterus there was nothing particularly worthy of observation. I found two teats, and the heart surrounded with much fat; the length of this muscle was five inches, and the breadth about four inches and a half. The communication between the auricles, called the foramen ovale, was above an inch in diameter. Each lung was eleven inches long and undivided: but at the superior and inferior part of the right lung there were two globules or processes elevated half an inch above the surface; and on the side corresponding to it, in the left lung, and in the upper part of it, there was a little excrecence, terminating in a point; somewhat below this, yet more forwards, there was found likewise a process half an inch in height. Directly over the lower part of the communication formed between the right and left lungs, there was a kind of crest or comb, measuring an inch from the top to the base.

"One of my brother sportmen said, he had once observed a peculiar kind of vermin on the body of one of these amphibious animals; but on the calf we had caught we found nothing but a species of leech, which kept only about the anus, and likewise a good way up in the strait gut, where, by a timely abstraction of the blood, they may be of use to these large amphibious animals; and particularly may act as preservatives against the pikes, repaying themselves for their trouble in kind. Most of them were very small; but on the other hand there was a considerable number of them. The only large one I saw of this species, being somewhat:
HIPPOBATUS, what more than an inch in length, I described and made a drawing of; this is inferred by the name of the Hyrudo Capensis, corpus super nigrans, medio longitudinali fibro-brunneo, fulcis pallidis fusco, in the elegant Treatise on Worms, which M. Adolphus No-deer first secretary of the patriotic society, is preparing for the press. Instead of the lighter colored streak upon the back, there was discoverable in some of these leeches one and sometimes more longitudinal brownish lines, which grew fainter and fainter towards the extremities.

"The huge animal of which we have been speaking, has doubtless obtained its present name of hippopotamus, which signifies river-horse, merely in consequence of the perceiving it makes; as otherwise in its form it bears not the least resemblance to a horse, but rather to a hog. Neither does it in the least resemble the ox; so it could be only the different stomachs of this animal which could occasion it to be called sea-cow at the Cape; and perhaps it is for the same reason that the Hottentots call it the t'gag, which nearly approaches to t'kou, the name by which the buffalo is known among these people.

"From the account given by Bellonius of a tame hippopotamus, which he describes as a beast of a very mild and gentle nature, as well as from the disposition of the calf we had just caught, it follows, that this animal might be easily brought over to Europe; where it has been formerly exhibited at two different times in the public spectacles at Rome. For this purpose the capture might easily be made at Konaps-river, where there are animals, according to the accounts given me by the Caiffes, reside in great abundance; and milch cows might be kept ready at hand, in order to rear the calf in case it was a suckling. Indeed I am apt to suppose that one a little older than this would not be very nice in its food; as that which we caught was induced by hunger as soon as it was let loose near the waggon, to put up with something not extremely delicate, which had been just dropped from one of our oxen. This perhaps may appear very extraordinary in an animal with four stomachs; but there have been instances of this kind known in common cattle, which in Herjedal are partly fed with horse dung. Vid. a Treatise on the Rambouillet, on Norrland *; 3rd edition, p. 27-87." I have been likewise assured, that this method of feeding cattle has been practised with great advantage in Uplandia, when there has been a scarcity of fodder; and that afterwards these same cattle, even when they have not been in want of proper fodder, have taken to this food of their own accord, and eaten it without any thing else mixed with it."

HIPPURIS, MARE'S-TAIL: A genus of the monogynia order, belonging to the monandria class of plants; and in the natural method ranking under the 15th order Innotae. There is no calyx, nor any petals; the stigmas is simple; and there is one seed. There is only one species, a native of Britain, and which grows in ditches and stagnant waters. The flower of this plant is found at the base of each leaf, and is as simple as can be conceived; their being neither empleniug nor lobom; and only one chive, one pointal, and one seed. It is a very weak astrin-

HIREA, in botany: A genus of the trygina order, belonging to the decandria class of plants. The calyx is pentaphylous; the petals roundish and unguiculated: there are three bilbilated seeds.

HIRAM, a king of Tyre, contemporary with Solomon, whom he supplied with cedar, gold, silver, and other materials for building the temple. He died 1000 years B.C.

HIRAM OF TYRE, an artist who assisted in the construction of Solomon's temple, and other public buildings at Jerusalem, born 1015 B.C.

HIRCANA (anc. geog.) See HYRCANIA.

HIRCH-HORN, a town of Germany, in the circle of the lower Rhine, with a strong castle. It is seated on the tide of a hill on the river Neckar, and belongs to the elector Palatine. E. Lat. 9. O. N. Lat. 49. 28.

HIRE (Philip de), an eminent French mathematician and astronomer, born at Paris in 1640. His father, who was painter in ordinary to the king, designed him for the same profession: but he devoted himself to mathematical studies, and was nominated together with M. Picard, to make the necessary observations for a new map of France by the directions of M. Colbert. In 1683, he was employed in continuing the famous meridian line begun by M. Picard; and was next engaged in constructing those grand quadrants which were projected by Louis XIV. He died in 1718, after having written a great number of works, besides several occasional papers dispersed in journals, and in memoirs of the Academy of Sciences.

HIRING, in law. See Borrowing and Hiring.

HIRPINI (anc. geog.), a people of Italy, next to the Samnites, to the south east, and descendants from them; situated to the north of the Picentini, and to the west of the Apuli, having on the north the Apennin and a part of Samnium. The name is from Hippus, a term denoting a wolf in their language; either because under the conduct of this animal the colony was led and settled, according to Strabo; or because, like that prowling animal, they lived on plunder, according to Servius.

HIRSÉBURG, a town of Sile sia, in the territory of Jauer, famous for its mineral baths. It is seated on the river Bofar in E. Long. 17. 50. N. Lat. 50. 50.

HIRSCHFELD, a town of Germany, in the circle of the upper Rhine, and capital of a principality of the same name, depending on a famous abbey which was secularized in favor of the house of Caffel. It is seated on the river Fulda, in E. Long. 9. 52. N. Lat. 51. 45.

HITTELLA, in botany: A genus of the monogynia order belonging to the pentandria class of plants, and in the natural method ranking with those of which the order is doubtful. There are five petals; the filaments are very long, perifmile and spiral; the berry is monoporous; the stipes lateral.

HIRUDUS, the leech, a genus of insects belonging to the order of vermex intestina. The body moves either forward or backward. There are several species, principally distinguished by their colour. The most remarkable are the following.

* Holper's Description of Norway.
1. The medicinal, or medicinal leech, the form of which is well known, grows to the length of two or three inches. The body is of a blackish brown colour, marked on the back with six yellow spots, and edged with a yellow line on each side; but both the spots and the lines grow faint, and almost disappear, at some seasons. The head is smaller than the tail, which fixes itself very firmly to any thing the creature pleases. It is viviparous, and produces but one young one at a time, which is in the month of July. It is an inhabitant of clear running waters, and it is well known for its use in bleeding. 2. The fangifuga, or horse-leech, is larger than the former; its skin is smooth and glossy; the body is divided into two parts; the back is dusky; and the belly is of a yellowish green, having a yellow lateral margin. It inhabits stagnant waters. 3. The geometra, or geometrical leech, grows to an inch and a half in length; and has a smooth and a glossy skin of a dusky brown colour, but in some fea-snails greenish spotted with white. When in motion, its back is elevated into a kind of ridge; and it then appears as if measuring the space it passed over like a compass, whence its name. Its tail is remarkably broad; and it holds itself firmly by it as by the head. It is common on the whole upper part of the shelves in shallow running water; and is often found on trouts and other fish after the spawing season. 4. The muricata, or muricated leech, has a taper body, rounded at the greater extremity, and furnished with two small tentacula or horns strongly annulated and rugged upon the rings; the tail dilated. It inhabits the Atlantic Ocean, and is by the fishermen called the sea-leech. It adheres to fishes, and generally leaves a black mark on the spot. The organs of generation in leeches are formed like those of the sea and land snails. See H.1.9. — The leech's head is armed with a sharp instrument that makes three wounds at once. They are three sharp tubercles, strong enough to cut through the skin of a man, or even of an ox or horse. Their mouth is as it were the body of the pump, and their tongue or fleshy nipple the sucker; by the working of this piece of mechanism, the blood is made to rise up to the communication, which conveys it to the animal's stomach, which is a membranaceous skin divided into 24 small cells. The blood which is sucked out is there preserved for several months without coagulating, and proves a store of provifion to the animal. The nutritious parts, pure and already digested by animals, have no call to be difengaged from heterogeneous substances; nor indeed is there an anus discoverable in the leech, mere trapiputation seeming to be all that it performs, the matter fixating on the surface of its body, and afterwards coming off in small threads. Of this an experiment may be tried by putting a leech into oil, where it keeps alive for several days; upon being taken out and put into water, there appears to loofen from its body, a kind of tough shaped like the creature's body. The organ of respiration, though uncertain, seems to be situated in the mouth; for if, like an insect, it drew its breath through vent holes, it would not subfbrt in oil, as by it they would be stopped up. It is only the first species that is used in medicine; being applied to tender parts upon the veffels in order to draw off the inflamed blood with which they are overcharged, or to phlebotomize young children. If the leech does not affen, a drop of milk is put on the spot it is wished to fix on, or a little blood is drawn by means of a flight puncture, after which it immediately settles. Prudence requires it should be held fast with a piece of ruff, lest it should find its way into the anus when used for the hemorrhoids, or penetrate into the oesophagus if employed to draw the gums; otherwife it would make the greatest havock either in the stomach or intestines. In such a cafe, the best remedy is to drink salt water, which is the method practifed to make it lose its hold when it fucks longer than was intended. Oil of tartar, volatile alkalis, pepper, and acids make it also leave the part on which it was applied. If, on the contrary, it is intended it should draw a larger quantity of blood, the end of its tail is cut off. It then fucks continually to make up the loss it fuffers. The discharge occafioned by the puncture of a leech is easily stopped with brandy or other fpirituous liquors.

At Ceylon, travellers who walk bare legged are molested by the great numbers of leeches concealed under the grass. — All leeches vary in their colours at some seasons, but they are generally of a dusky greenish brown or yellow, and often variegated. They are said to be very felfervile before a change of weather, if confined in glaffes.

HIRUNDO, in ornithology, a genus of birds of the order of passerers. There are 37 species, chiefly distinguished by their colour. The most remarkable are,

1. The rufiaca, common or chimney-swallow, is distinguished from all the other species by the superior forkinck of its tail, and by the red spot on the forehead and under the chin. The crown of the head, the whole upper part of the bill, and the coverts of the wings are black, glossed with a rich purplish blue, most resplendent in the male: the breast and belly white, and in the male tinged with red: the tail is black; the two middle feathers are plain, the others marked transversely near their ends with a white spot: the exterior feathers of the tail are much longer in the male than in the female. The food of this swallow is the same with the others of its kind, viz. insects. For the taking of these, in their swiftest flight, nature has admirably contrived their several parts: their mouths are very wide to take in flies; &c. In their quickest motion; their wings are long, and adapted for distant and continual flight, and their tails are forked, to enable them to turn the reader in pursuing their prey. This species is the first comer of all the British Hirundines; and appears in general on or about the 15th of April, though now and then a straggler is seen much earlier. This Hirundo, though called the chimney-swallow, by no means builds altogether in chimneys, but often within barns and out-houses against the rafters; and so the did in Virgil's time:

In Sweden he builds in barns, and is called lady fisala, the barn swallow. Besides in the warmer parts of Europe, there are no chimneys to houses except they are English built; in those countries he constructs her nest in porches and gateways, and galleries, and open halls. Here and there a bird may affect some old peculiar places.
...in general this species breeds in chimneys; and loves to haunt those flacks where there is a constant fire, doubtless, for the sake of warmth. Not that it can subsist in the immediate shaft where there is a fire; but prefers one adjoining to that of the kitchen, and disregards the perpetual smoke of that funnel. Five or six or more feet down the chimney does this little bird begin to form her nest about the middle of May, which consists, like that of the house-martin, of a crust or shell composed of dirt or mud, mixed with short pieces of straw to render it tough and permanent; with this difference, that whereas the shell of the martin is nearly hemispheric, that of the swallow is open at the top, and like half a deep dish: this nest is lined with fine grasses, and feathers which are often collected as they float in the air. Wonderful is the address (Mr White observes) which this adroit bird shows all day long in ascending and descending through so narrow a pass. When hovering over the mouth of the funnel, the vibrations of her wings acting on the confined air occasion a rumbling like thunder. It is not improbable that the dam submits to this inconvenient situation below in the shaft, in order to secure her brood from rapacious birds, and particularly from owls which frequently fall down chimneys, perhaps in attempting to get at these nestlings. This bird lays from four to six white eggs, dotted with red specks; and brings out her first brood about the last week in June, or the first week in July. The progressive method by which the young are introduced into life is very amusing: First, they emerge from the shaft with difficulty enough, and often fall down into the rooms below: for a day or so they are fed on the chimney-top, and then are conducted to the dead leaves bough of some tree, where, fitting in a row, they are attended with great affinity, and may then be called perchers. In a day or two more they become flyers, but are still unable to take their own food: therefore they play about near the place where the dams are hawking for flies; and, when a mouthful is collected, at a certain signal given, the dam and the nestlings advance, rising towards each other, and meeting at an angle: the young one all the while uttering such a little quick note of gratitude and complacency, that a person must have paid very little regard to the wonders of Nature that has not often remarked this feat. The dam betakes herself immediately to the busines of a second brood as soon as she is disengaged from her first; which she at once associates with the first-broods of house-martins; and with them congregates, clustering on sunny roofs, towers and trees. This Hirundo brings out her second brood towards the middle and end of August. All the summer long is the swallow a most instructive pattern of unwearied industry and attention; for from morning to night, while there is a family to be supported, she spends the whole day in skimming close to the ground, and executing the most sudden turns and quick evolutions. Avenues, and long walks under hedges, and pasture-fields, and mown meadows where cattle graze, are her delight, especially if there are trees interspersed; because in Hirundo such spots infects moat around. When a sky is taken a smart snap from her bill is heard, resembling the noise at the shutting of a watch-case; but the motion of the mandibles are too quick for the eye.

The swallow, probably the male bird, is the excelsior to house-martins and other little birds, announcing the approach of birds of prey. For as soon as an hawk appears, with a shrill alarming note he calls all the swallows and martins about him; who pursue in a body, and buffet and strike their enemy till they have driven him from the village, darting down from above on his back, and rising in a perpendicular line in perfect security. This bird also will sound the alarm, and strike at cats when they climb on the roofs of houses or otherwise approach the nests. Each species of hirundo drinks as it flies along, lipping the surface of the water; but the swallow alone, in general, washes on the wing, by dropping into a pool for many times together: in very hot weather house-martins and bank-martins dip and wash a little. The swallow is a delicate fly-gatherer, and in soft funny weather flies both perching and flying; on trees in a kind of concert, and on chimney-tops: it is also a bold flyer, ranging to distant towns and commons even in windy weather, which the other species seem much to dislike; nay, even frequenting exposed sea-port towns, and making little excursions over the salt water. Nor men on wide downs are often closely attended by a little party of swallows for miles together, which plays before and behind them, sweeping around and collecting all the feulking insects that are roufed by the trampling of the horses' feet: when the wind blows hard, without this expedient, they are often forced to fettle to pick up their lurking prey.

This species feeds much on little coleopters, as well as on gnats and flies; and often fettle on dog ground, or paths, for gravel to grind and digest its food. Mr White informs us, that before they depart, for some weeks, to a bird, they forake houses and chimneys, and roost in trees; and usually withdraw about the beginning of October; though some few stragglers may be seen at times till the first week in November. Mr Pennant says, that for a few days previous to their departure, they assemble in vast flocks on house-tops, churches, and trees, from whence they take their flight (A). They are supposed to take up their winter-quarters in Senegal and parts adjacent; and seem to poiffe in turn the whole of the old continent, being known from Norway to the Cape of Good Hope on the one hand, and from Kamtschatka to India and Japan on the other. They are also found in all parts of N. America, migrating north and south, as in Europe. Kalm says, that in America they build in houes and under the outsides of the roofs; also on the mountains, in such parts of them as project beyond the bottom, as well as under the corners of perpendicular rocks.

2. The tahitica, or Otaheite swallow, is five inches in length; its body is of a brown-black colour with a shining...
flashing bluish gloss, the breast of a fulvous purple, the abdomen of a sooty brown; the bill, tail, and legs are black. It inhabits the mountainous parts of Otaheite. See Fig. 1.

3. The eulentor, or edible swallow, according to Buffon, is less than the wren, and only two inches and a quarter in length. The bill is black; the upper parts of the body are brown, the under whistful, the tail is forked, and each feather of it tipped with white: the legs are brown. See Fig. 2.

Mr Latham thinks, that the size as above described is by much too small, as Mr Maridens says that the bird is a peculiar sort of swallow, that is at least of that size, from the eggs which accompany the nest now in the British museum, which are as big as those of the martin, and of the same colour. However, we cannot dispute the point. The most curious part of the natural history of this bird consists in the nest, which is composed of such materials as render it not only edible, but one of the greatest dainties of the Asiatic epicures.

These nests (of which a particular account is given under the article Birds:J:iji) are found in vast numbers in certain caverns, in various isles in the Soloo Archipelago, situated between longitude 117 and 120, latitude 5 and 7; particularly in three small isles or rather rocks, in the caverns of which the nests are found fixed to the sides in astonishing numbers. They are also found in amazing quantities on a small island called Tse, in the straits of Sonda: the caverns of which are lined with the nests: but here in greater abundance than about Cree, near the south end of Sumatra, four miles up a river of that name. But they are not peculiar to the above places: for they are likewise common from Java to Cochinchina, on the north, and from the point of Sumatra west, to New Guinea on the east: where the sea is said to be covered with a vifious thick mass, which sometimes it is not so, but then the Dutch alone export from Batavia 6000 pickles (a) every year, which are brought from the islands of Cochinchina, and those lying to the east of them. It is much to be wondered, that, among other luxuries imported by us from the east, the use of these nests should not have found a way to our tables; as being yet so scarce in England as to be kept as rarities in the cabinets of collectors. The bird itself at Sumatra is known by the name of Lyngglaong.

4. The borbonica, or wheat-swallow, is about the size of the twist: the plumage above is blackish brown; beneath grey marked with longitudinal brown spots: the tail is even at the end: the bill and legs are black. This species inhabits the Isle of France; frequently places down with wheat, and grinds its stones: affecting elevated situations, and frequently seen perched on trees and houses. It follows herds of cattle for the sake of the flies which are around them; and is frequently seen in the wake of ships in great numbers, in Vol. VIII.

5. The francisca, or grey-rumped swallow, is in length four inches and a quarter; having the upper parts of the body blackish, the rump and under parts whistful or grey. This species also inhabits the Isle of France, but not in great numbers: and is found chiefly in the neighbourhood of fresh waters. It flies swift; and is seldom observed to perch. It is fagged to rest in the woods at night, being seen about the skirts of them towards evening. It is generally very lean, and not good food.

6. The urbica, or martin, is inferior in size to the chimney-swallow, and its tail much less forked. The head and upper part of the body, except the rump, is black glossed with blue: the breast, belly, and rump, are white: the feet are covered with a short white down. This is the second of the swallow kind that appears in England: and of its manners and economy we have the following curious account in the Rev. Mr White's Natural History of Selborne. "They begin to appear about the 16th of April; and for some time they in general pay no attention to the buds or flowers of any kind or other.: they play and sport about, either to recover from the fatigue of their journey, if they do migrate at all, or else that their blood may recover its natural warmth and texture after it has been so long benumbed by the severities of winter. About the middle of May, if the weather be fine, the martin begins to think in earnest of providing a mansion for its family. The crust or shell of this nest seems to be formed of such dirt or loam as comes most readily to hand, and is tempered and wrought together with little bits of broken twigs to render it tough and tenacious. As this bird often builds against a perpendicular wall without any projecting ledge under it, it requires its utmost efforts to get the first foundation firm and fixed, in order to carry the superstructure. On this occasion the bird not only clings with its claws, but partly supports itself by strongly inclining its tail against the wall, making that a fulcrum; and thus steadied, it works and plasters the materials into the face of the brick or stone. But then, that this work may not, while it is soft and green, pull itself down by its own weight, the provident architect has prudence and forbearance enough not to advance her work too fast; but by building only in the morning, and by dedicating the rest of the day to food and amusement, gives it sufficient time to dry and harden. About half an inch seems to be a sufficient layer for a day. Thus careful workmen, when they build mud-walls (informed at first perhaps by this little bird) raise mats of similar layer at a time, and then esteem them work should become top-heavy, and be broken by its own weight. By this method in about 10 or 12 days is formed an hemispheric nest, with a small aperture towards the top, strong, compact, and warm; and perfectly fitted for all the purposes for which it was intended."

(a) The pickle, or pork, is about 125 pounds; or as Dampier says, 300 pickles are equal to 366 pounds English weight. — See Voy. vol. ii. p. 132.
HIR

[554]

HIR

But then nothing is more common than the house sparrow, as soon as the shell is finished, to seize on it as its own, to eject the owner, and to line it after its own manner. After so much labour is bestowed in erecting a mansion, as nature seldom works in vain, martins will breed on for several years together in the same nest, where it happens to be well sheltered and free from the injuries of the weather. The shell or crust of the nest is a hollow, full of knowledge, and probability on the outside; nor is the inside of those that I have examined smoothed with any exactness at all; but is rendered soft and warm, and fit for incubation, by a lining of small straws, grasse, and feathers; and sometimes by a bed of moss interwoven with wool. In this nest they tread or engender, frequently during the time of building; and the hen lays from three to five white eggs. At first, when the young are hatched, and are in a naked and helpless condition, the parent birds, with tender affiduity, carry out what comes away from their young. Was it not for this affectionate cleanliness, the nestlings would soon be burnt up and destroyed in so deep and hollow a nest by their own caustic excrements. In the place where the nest is made use of, particularly among dogs and cats, where the dams lick away what proceeds from their young. But in birds there seems to be a particular provision, that the dung of nestlings is enveloped in a tough kind of jelly, and therefore is the easier conveyed off without fouling or daubing. Yet, as nature is cleanly in all her ways, the young perform this office for themselves in a little time, by thrusting their tails out at the aperture of their nest. As the young of small birds presently arrive at their fullest, or "full growth," they soon become impatient of confinement, and sit all day with their heads out at the orifice, where the dams, by clinging to the nest, supply them with food from morning to night. For a time the young are fed on the wing by their parents; but the feast is done so quick and almost imperceptible a flight, that a person must have attended very exactly to their motions, before he would be able to perceive it. As soon as the young are able to shift for themselves, the dams immediately turn their thoughts to the business of a second brood: while the first flight, shaken off and rejected by their mates, congregates in great flocks, and are the birds that are seen fluttering and hovering on sunny mornings and evenings round towers and seeples and on the roofs of churches and houses. These congregations of males begin to take place about the first week in August; and therefore we may conclude that by that time the first flight is pretty well over. The young of this species do no quit their abodes all together, but the more forward birds get abroad some days before the rest. These approaching the eaves of buildings, and playing about before them, make people think that several old ones attend one nest. They are often capricious in fixing on a nestling place, beginning many edifices, and leaving them unfinished; but when once a nest is completed in a sheltered place, it serves for several seasons. Those which breed in a newly finished house, get the start in hatching of those that build new by 10 days or a fortnight. These industrious artificers are at their labours in the long days before the morning; when they fix their materials, they plaster them on with their chins, moving their heads with a vigorous motion.—They dip and wash as they fly sometimes very hot weather, but not so frequently as swallows. Martins love to frequent towns, especially if there are great lakes and rivers at hand. They are by far the most agile of the British hirundines: their wings and tails are short, and therefore they are not capable of such surprising turns, and quick and glancing evolutions as the swallow. Accordingly, they make use of a very placid, easy motion, full of knowledge of the air, seldom mounting to any great height, and never sweeping long together over the surface of the ground or water. They do not wander far for food; but affect sheltered districts, over some lake, or under some hanging wood, or in some hollow vale, especially in windy weather. They breed the latest of all the swallow kind: in 1772 they had nestlings on to October the 21st, and are never without un fledged young as late as Michaelmas.—As the summer declines, the congregating flocks increase in numbers daily, by the constant accession of the second broods; till at last they swarm in myriads upon myriads round the villages on the Thanes, darkening the face of the sky as they frequent the banks of that river, and even the whole course of that stream, as is well known. The birds that retire, the bulk of them I mean, in vast flocks together about the beginning of October; but have appeared of late years in a considerable flight in this neighbourhood, for one day or two as late as November the 3d and 4th, after they were supposed to have been gone for more than a fortnight. They therefore withdraw with us the latest of any species. Unlesse these birds are very short-lived indeed; or unless they do not return to the districts where they are bred, they must undergo vast devastations some how, and some where; for the birds that return yearly bear no manner of proportion to the birds that retire. 7. The rufa, or rufous-bellied swallow, is of the same size with the former; and has the upper parts of the body of a glossy black; the under rufous, growing paler towards the vent: the forehead is whitish; and the bill and legs are dusky. These are found at Cayenne, and not unfrequently as far north as New York. They build in houses, without any mixture of mud; fabricating the nest with moss, dried plants, and short bits of ficks, all united with a sort of gum, so as to be broken, and lined with feathers; suspending it from the beams and rafters, sides of walls, and eaves of houses. It is at times a foot and a half in length; and is fixed by one of its sides, the opening being made near the bottom. The female lays four or five eggs; and the young go out as soon as their wings will support them. 8. The riparia, sand-martin, or shore-bird, is 4½ inches in length, with the whole upper parts of the body of a monfe-colour, the throat and under parts white, the bill and legs blackish. It is common about the banks of rivers and sand-pits, where it teretrates a round and regular hole in the sand or earth, which is serpentine and horizontal, and about two feet deep. At the inner end of this burrow does the bird deposit, in a good degree of safety, her male nest, containing nine straws and feathers, usually goose-feathers, very artificially laid together. Though at first (says Dr. White) one would be disinclined to believe that this weak bird, with her soft and tender bill and clasps, should ever be able to bore the flint
they had furies, they
'then (miers, but
infects; and in hollows of trees, where it is convenient.

butterfly. Doubtless
its young
long use, or because they may abound with fleas as
old holes are
to ascertain the time of breeding, were it not for the
moreover is strangely annoyed
as much too

Wcre inrelltinnally made in
much forelight

and new ones bored; perhaps
and then some fragglers remain to the 10th of October.
This species is also found in the mountains of
Auvergne and Dauphine; and specimens have been
received from Gibraltar.

10. The purpurea, or purple swallow, is in length
seven inches, and the whole body is of a deep violet,
very glossy; the quills and tail are of the same colour,
but still deeper, and the last forked: the legs and claws
are blackish, and the bill is black. The colour
of the female is dusky brown, with a slight tinge of violet.
This species is found in summer in Carolina and Virginia;
coming in May, and retiring in the approach of
winter. The common people are very fond of
them; and make little conveniences of boards on the
outside of their houses for the birds to build in, like
as is done for sparrows in England; being defirous to
keep them near, as they are of much use in alarming
the poultry of the approach of the hawk and other
birds of prey; and not only flittering violently on the ap-
pearance of these enemies, but attacking them with
all the efforts of the martins in Europe. See fig. 4.

11. The apus, or swift, is a large species, being
near eight inches long, with an extent of wing near
eighteen inches, though the weight of the bird is
only one ounce. Their feet are so small, that the
action of walking and ruffling from the ground is ex-
tremely difficult; so that nature has made it full
amends, by furnishing it with ample means for an easy
and continual flight. It is most on the wing than any
other swallow; its flight is the most rapid, and that at-
tended with a shrill fercem. It rests by clingsing
against some wall, or other apt body; from whence
Klein styles this species hirundo muraria. It breeds
under the eaves of houses, in stables, and other lofty
buildings; and makes its nest of grasses and feathers.
The feet of this species are of a particular structure,
all the toes standing forward: the least consists of only
one bone; the others of an equal number, viz. two
each; in which they differ from those of all other
birds: a conformation, however, nicely adapted to the
purposes in which their feet are employed.

The swift is a summer inhabitant of Britain. It
comes the latest, and departs the soonest, of any of
the tribe; not always staying to the middle of August,
and often not arriving before the beginning of May.
A pair of these birds were found adhering by
their claws, and in a rapid state, in Feb. 1766, under
the roof of Longnor-chapel, Shropshire; on being brought
to a fire, they revived, and moved about the room.

The fabulous history of the manudista, or bird of
paradise (says Mr Pennant), is, in the history of this
species, in a great measure verified. It was believed
they have no feet; to live upon the celestial dew; to
float perpetually on the atmosphere; and to perform
all its functions in that element. The swift actually
HIR

perform what has been in those enlightened times disproved of the former, except the small time it takes in flying, and what it devotes to incubation; every other action is done on the wing. The materials of its nest it collects either as they are carried about by the winds, or picks them up from the surface in its sweeping flight. Its food is undeniably the insects that fill the air. Its drink is taken in transient licks from the water's surface. Even its amorous rites are performed on high. Few persons who have attended to them in a fine summer's morning, but must have seen them make their aerial courses at a great height, encircling a certain space with an easy and fiery motion. On a sudden they fall into each other's embraces, then drop precipitately with a loud shriek for numbers of yards. This is the critical conjunction; and to be no more wondered at, than that insects (a familiar influence) should discharge the same duty in the same element.

The swift is a most alert bird, rising very early, and retiring to roost very late; and is on the wing in the height of summer at least sixteen hours. In the longest day it does not withdraw to roost till a quarter before time in the evening, being the latest of all day birds. Just before they retire, whole groups of them assemble high in the air, and squeak, and shoot about with wonderful rapidity. But this bird is never so much alive as in fair thundery weather, when it expresses great alacrity, and calls forth all its powers. In hot mornings, several getting together in little parties, dash round the steeples and churches, squeaking as they go in a very clamorous manner: these, by nice observers, are supposed to be males ferenading their sitting hen; and not without reason, since they seldom squeak till they come close to the walls or eaves, and then those within utter at the same time a little inward note of complacency. When the hen has fat hard all day, the roost forth just as it is almost dark, and stretches and relieves her weary limbs, and finishes a feasty meal for a few minutes, and then returns to her duty of incubation. Swifts, when wantonly and cruelly shot while they have young, discover a little lump of their tongues, which they suck with their mouths, while they are under their tongue. In general, as already observed, they feed in a much higher district than the other species; they all range to vast distances; since locomotion is not labour to them, who are endowed with such wonderful powers of wing. At some certain times in the summer, however, they have been observed hawking very low for hours together over pools and streams; and upon inquiring into the object of their pursuit that induced them to defend it much below their usual range, it has been found that they were taking phraxanece, ephemerae, and libellule (caddis-flies, may-flies, and dragon-flies), that were just emerged out of their aurelia state. It appeared then no longer a wonder that they should be so willing to stoop for a prey that afforded them such plentiful and fanciful nourishment.

—Swifts sometimes pursue and strike at hawks that come in their way; but not with that vehemence and fury that swallows express on the same occasion. They are out all day long in wet days, feeding about And are sometimes called "flying hawks." They are often heard calling as they fly to go under the eaves. Mr White informs us, that having untied part of a roof over the nest of a swift, the dam notwithstanding the rain in the nest; for strongly was the affected by natural fever, for her brood, which the unfortunate inmates were in danger, that, regardless of her own safety, she would not stir, but laymotionless in the wind, and often wriggle and rush themselves, in their flight, to get rid of that clinging annoyance. And young ones, over-run with these insects, are sometimes found under their nests, fallen to the ground; the number of vermin rendering their abode insupportable.

Swifts
Swifts are no fowlers, and have only one harsh screaming note; yet there are ears to which it is not dis pleasing, from an agreeable appellation of dis ease, since that note never occurs but in the most lovely summer weather. They never settle on the ground but through accident; neither can they walk, but only crawl; but they have a strong grasp with their feet, by which they cling to walls, as already noticed. Their bodies being flat, they can enter a very narrow crevices; and where they cannot pass on their bellies, they will turn up edgewise.—In London a party of swallows frequents the tower, playing and feeding over the river Jail below the bridge; others haunt some of the churches of the borough next the fields; but do not venture, like the house-martin, into the close crowded part of the town. The Swedes have bestowed a very pertinent name on this swallow, calling it ring fuala, from the perpetual rings or circles that it takes round the scene of its nidification. As these birds are apt to catch at everything on the wing, many have taken them by a bolt of a cock-chatter tied to a thread, which they have swallowed as freely as a fish theirs. In the island of Zanz, the boys are paid to get on an elevated place, and merely with a hook baited with a feather, have caught five or six dozen of them in a day. Besides Britain, the swift is known to inhabit the whole of the European continent; and has also been noticed at the Cape of Good Hope, and Carolina in North America. Hence, most likely, a general inhabitant of both the old and new continent.

12. The ambrofiaca, or ambergris swallow, is about the size of a wren, with gray plumage and a very forked tail; the bill is blackish, and the legs are brown. It inhabits Senegal, and is said to smell very strong of ambergris.

13. The pelagica, or scaly-breasted swallow, is somewhat less than our chimney-swallow: its plumage is brown, but at the throat white, and all the tail feathers are terminated by a bare pointed shaft. It inhabits Carolina and Virginia in the summer time, and builds in chimneys. See fig. 3.

14. The melba, or white-bellied swift, is in length 8½ inches, and weighs two ounces five drams: the bill is half an inch, somewhat bent, and black: the upper parts of the body are of a grey brown; the wings and tail deep, with a glint of red and green in some lights; the throat, breast, and belly, are white; the neck is a collar of grey brown; mixed with blackish; the sides are dusky, and white mixed; lower part of the belly, and under tail coverts, the same as the back: the legs are flesh-colored, and covered with feathers on the fore part and under; all the toes are placed forward, as in the swift. This bird inhabits the mountainous parts of Spain; building in the holes of rocks. It is found also on the borders of the Rhine, in Savoy, the sile of Malta, Alps of Switzerland, and rock of Gibraltar. It comes into Savoy the beginning of April, and frequents the ponds and marshes for 15 or 20 days; after which it retires to the mountainous parts to breed. It flies higher than the swift; but feeds on the same food, and its flesh is accounted a delicate morsel. This species is not numerous. Scopoli says it builds on the summit of the mountains of Tyrol.

15. The cayennensis, or white-colored swallow, is about the size of the martin: the head and bill are black; the chin and throat white, palling from the tail in a narrow collar round the neck; between the bill and eye is a streak of white, which forks off into two; one palling a little above and the other a little way beneath the eye; the rest of the plumage is black, with a glint of violet, but the greater coverts, nearest the body, are brown, edged with white: the quills and tails are black: the last forked: the legs are black; and all the four toes placed before as in the swift; and covered with feathers to the claws. This bird makes its nest in the houses at Cayenne. It is of a large size, in shape of a truncated cone; five inches one way by three the other, and nine inches in length. It is common of the down of dog's bane, will move together; the cavity divided obliquely about the middle, lengthways, by a partition, which spreads itself over that part of the nest where the eggs lie, which is pretty near the base: a small parcel of the same soft down, forming a kind of plug, is placed over the top, serving to keep the young brood from the impulsion of the air: from which we may suppose them to be very tender.

16. The erythrophila, or red-headed swallow, has a red head, with a short flat dull bill: the back is dusky, the feathers edged with white: the under parts of the body are white; the tail coverts pale brown: the wings are both dusky; as also the tail, which is a little forked. It inhabits India; and is only the size of a small humming bird.

17. The nigra, or black swallow, measures near six inches in length: the colour of the bird is wholly black, and the tail is forked. It inhabits St. Domingo and Cayenne; but is not numerous. It is often seen to perch on dead trees; and only inhabits dry savannas inland. It scoops out a hole in the earth, half a foot in length, the mouth of it very small, too small to permit entrance: in this cavity it constructs the nest and rears the young.

18. The dominicus, or St Domingo swallow, is 7 inches in length, and wholly black, with the gloss of polished steel, except the belly and under tail coverts, which are white: the tail is very little forked: the legs, bill, and claws are brown. It inhabits St Domingo, and other of the West Indian islands, in May, June, and July; and is said to imitate a lack in its song.

To this article we may not improperly subjoin the following paper (from the Gentleman's Magazine) on the utility of encouraging the breed of swallows, swifts, and martins. “The advantages that accrue to man, from the docility with which the domesticated animals accommodate themselves to his uses, are obvious. But there are others, who attend on him of their own accord, whose beneficial exertions are little known or observed. Among these I shall at present only notice the family of swallows (hirundines); of the four kinds of which bird found in our island three attach themselves to his dwelling, as it peculiarly licentious for his welfare. This connexion seems to reciprocal, that where men do not inhabit, few swallows can find proper conveniences for their summer-residences; and as their food consists wholly of insects, the most diligent inquirer hath not been able to discover that they injure in the slightest degree the productions of the field or garden; a circumstance nearly singular.
For the months of the swallow tribe are by no means adapted to catch flying insects with impunity. The birds which prey on bees have a long extended bill constructed for that purpose, very different from that of the swallow.

By the myriads of insects which every single brood of swallows destroy in the course of a summer, they defend as a great measure from the personal and domestic annoyance of flies and gnats; and what is of infinitely more consequence, they keep down the numbers of our minute enemies, who, either in the grub or winged state, would otherwise render the labors of the husbandman fruitless. Since then swallows are guardians of our corn, they should everywhere be protected by the fame popular veneration in which in Egypt defends the ibis and the stork in Holland. We more frequently hear of unproductive harvests on the continent than in this country; and it is well known that swallows are caught and sold as food in the markets of Spain, France, and Italy. When this practice has been very general and successful, I have little doubt that it hath at times contributed to the fecrity of corn. In England we are not driven to such resources to furnish our tables. But what apology can be made for thieving, and many there are, whose education and rank should have taught them more innocent amusements, who wantonly murder swallows, under the idle pretence of improving their skill in shotting game! Setting aside the cruelty of harving whole nests of young by killing the dam; they who follow this barbarous diversion would do well to reflect, that by every swallow they kill, they infect blights, mildews, and vermin, in causing a fecrity of bread. Every lord of a manor should refrain his game-keeper from this execrable practice; nor should anyone permit any person to sport on his lands who does not refrain from it. For my part, I am not ashamed to own that I have tempted martins to build around my house, by fixing escalllop shells, in places convenient for their pecking beds and procerant cradles; and have been pleased to observe with what caution the little architect raised a buttress under each shell before he ventured to form his nest on it.

What has induced me to send you these strictures at this time, are the accounts of the ravages committed on the cultivation of corn in the United States of North America, by an insect called the Hispan. Fly. (See the article Hispan. Fly.) How far there is danger of this debilitating insect being imported into this country by the adulteration of American wheat, I must leave to others entomologicals to decide. But that this destructive insect should, as hath lately been asserted, totally disappear in one season, after having for a number of years successively laid waste wide extended districts, is a phenomenon hardly to be allotted to by those who have turned their minds to inquiries of this fort.

Might I not here enlarge on the importance of researches into the works of the creation, when we see statesmen, as in the present instance, making solemn applications to those who are infidems of nature, requesting their direction how to avoid the calamity apprehended from a fly? And may we not then add, that the minutest observations of this kind are only deemed trivial by the indolent and unenformed.

I recolled but a single complaint against the swallow, and that this is made by Anacreon, Oct. 12, who bitterly reproaches this bird for disturbing him by its twittering while he was dozing away the intoxication of the preceding night. Yet, had the poet been temperate, like Milton, he would with pleasure have arisen from his bed at the earliest hours.

With what joy the Grecians welcomed the return of the swallow, appears by the very ancient carol preferred by Athenæus; of which the following is a translation:

"The swallow! the swallow! she does with her bring soft seasons and all the delights of the spring: The swallow! the swallow! we are right, For her back is all black, and her belly all white, From your chores, ye good housewives, produce, if you please, Lumps of figs, jugs of wine, and some wheat and some cheese. With some ben eggs the swallow will well be content. Muff we go then, or shall we have any thing eat?" We will not allow you to do as you choose, To give or give not, to comply or refuse; But will certainly take from its hinges the door, Or bear off the good dame as she lies on the floor: She is little and light, we can manage her fare. Open, open the door to the swallow—for we Are playful young children, not men—you may fire."

HISPA, in zoology; a genus of insects belonging to the coleoptera order, the characters of which are these: The antennae are fusiform, growing gradually larger from each extremity towards the middle; and are bifurcated between the eyes: the thorax and elytra are covered with protuberances or spines. The larva of this insect seems to be yet wholly unknown. There are but two species of the perfect animal met with in Europe; one of which, the ara, is found in Britain, and is all over of a deep unpollished black, and has the upper part of its body entirely covered with long and strong spines, which render it brilliantly like the shell of a chelnet. There is even a spine at the base of the antennæ; the thorax has a row flat transversely, which are forked; and the elytra are furnished with a very great number that are single. Its being thus covered with spines, makes it resemble a hedge-hog in miniature. It is rather hard to catch, letting itself fall down on the ground as soon as approached. It bears its antennae upright before it.

HISPALIS, a town of Baecia, in the farther Spain; an ancient mart or trading town on the Baetic, navigable quite up to it for ships of burthen, and thence to Corduba for river barges. Called Colonia Rarnule­ris. It has also a conventus juridicus, a coat of justice, or sallizes, (Pliny.) Now called Seville, W. Long. 6°, N. Lat. 37.

HISPANIA, called Hispania Ultima, (Horace,) because the westmost part of Europe; also Iberia from the river Iberus. Its name Hispanic, or Spainia, (Grec. Plate CXXXV)
Hispaniola. (Greek), is of Phoenician origin, from its great number of rabbits; the Phoenicians, who settled several colonies on the coast calling it Spaniab from these animals. It has the sea on every tide, except that next to Gaul, from which it is separated by the Pyrenees. The Romans at first divided it into the farther and Hither Spain, under two pretors. In that state it continued down to Augustus: who divided the farther Spain into Bética, which he left to the people to be governed by a pro-consul; and into Lusitania, which he added to his own provinces; calling the Hither Spain Terraeocasus. Hispania was a country celebrated for its fertility, of which it has greatly fallen short in modern times. The people were of a warlike turn, (Sreebo); and their bodies being formed for hardships and labour, they ever preferred war to peace, and were remarkably prodigal of life (Juifin, Sil. Italicus.) Spain produced several great men, both in a literary and a political capacity. See Spain.

HISPANIOLA, called also St Domingo, the largest of the Antilles or Caribbean islands, extending about 420 miles from east to west, and 120 in breadth from north to south; lying between 17° 37' and 29° of N. Lat. and between 67° 37' and 74° 17' W. Long. The climate is hot, but not so hot as Barbadoes; and some of the inhabitants are said to arrive at the age of 120. It is sometimes refreshed by breezes and rains; and its salubrity is likewise in a great measure owing to the beautiful variety of hills and valleys, woods, and rivers, which every where prefer themselves. It is indeed reckoned by far the finest and most pleasant island of the Antilles, as being the best accommodated to all the purposes of life when duly cultivated.

This island, famous for being the earliest settlement of the Spaniards in the new world, was at first in high estimation for the quantity of gold it supplied: this wealth diminished with the inhabitants of the country, whom they obliged to dig it out of the bowels of the earth; and the source of it was entirely dried up, when they were exterminated, which was quickly done by a series of the most shocking barbarities that ever disgraced the history of any nation. Benzoni relates, that of two millions of inhabitants, contained in the island when discovered by Columbus in 1492, scarce 153 were alive in 1545. A vehement desire of opening again this fountain of wealth inspired them with the idea of getting slaves from Africa; but, besides that these were found unfit for the labours they were designed to, the multitude of mines, which then began to be wrought on the continent, made those of Hispaniola no longer of any importance. An idea now suggested itself, that their negroes, which were healthy, strong, and patient, might be usefully employed in husbandry; and they adopted, through necessity, a wise resolution, which, had they known their own interest, they would have embraced by choice.

The produce of their industry was at first extremely small, because the labours were few. Charles V., who, like most sovereigns, preferred his favourites to everything, had granted an exclusive right of the slave trade to a Flemish nobleman, who made over his privilege to the Genoese. Those avaricious republicans conducted this infamous commerce as all monopoly is conducted; they resolved to sell dear, and Hispaniola they sold but few. When time and competition had fixed the natural and necessary price of slaves, the number of them increased. It may easily be imagined, that the Spaniards, who had been accustomed to treat the Indians as beasts, did not entertain a higher opinion of these negro Africans, whom they subjugated in their place. Degraded still farther in their eyes by the price they had paid for them, even religion could not restrain them from aggravating the weight of their servitude. It became intolerable, and these wretched slaves made an effort to recover the unalienable rights of mankind. Their attempt proved unsuccessful; but they reaped this benefit from their despair, that they were afterwards treated with less inhumanity.

This moderation (if tyranny cramped by the apprehension of revolt can deserve that name) was attended with good consequences. Cultivation was pursued with some degree of success. Soon after the middle of the 16th century, the mother country drew annually from this colony ten millions weight of sugar, a large quantity of wood for dying, tobacco, cacao, coffee, ginger, cotton, and peltry in abundance. One might imagine, that such favourable beginnings would give both the desire and the means of carrying them farther; but a train of events, more fatal each than the other, ruined these hopes.

The first misfortune arose from the depopulation of the island. The Spaniards had contributed to promote the success of an island, which nature seemed to have formed to be the centre of that vast dominion arising around it, to be the staple of the different colonies. But it fell out quite otherwise: on a view of the immense fortunes raising in Mexico, and other parts, the rich inhabitants of Hispaniola began to deplete their settlements, and quit the true source of riches, which is on the surface of the earth, to go and ravish the bowels of it for veins of gold, which are quickly exhausted. The government endeavoured in vain to put a stop to this emigration; the laws were always either artfully eluded, or openly violated.

The weaknesses, which was a necessary consequence of such a conduct, leaving the coasts without defence, encouraged the enemies of Spain to ravage them. Even the capital of this island was taken and pillaged by that celebrated English sailor, Sir Francis Drake. The carriers of-less consequence contented themselves with intercepting vessels in their passage through those latitudes, the best known at that time of any in the new world. To complete these misfortunes, the Car- tillians themselves commenced pirates. They attacked no ships but those of their own nation; which were more rich, worse provided, and worse defended, than any others. The custom they had of fitting out ships clandestinely, in order to procure slaves, prevented them from being known; and the assistance they purchased from the ships of war, contributed to protect the trade, inferred to them impunity.

The foreign trade of the colony was its only resource in this distress; and that was illicit: but as it continued to be carried on, notwithstanding the vigilance of the governors, or, perhaps, by their connivance,
His, [560] His

History, in general, signifies an account of some remarkable facts which have happened in the world, arranged in the true order in which they actually took place, together with the causes to which they were owing, and the different effects they have produced, as far as can be discovered.—The word is Greek ἱστορία; and literally denotes a search of curious things, or a desire of knowing, or even a rehearsal of things we have seen; being formed from the verb ἱστήμην, which properly signifies to know a thing by having seen it. But the idea is now much more extensive, and is applied to the knowledge of things taken from the reports of others. The origin is from the verb ἅστημι, “I know,” and hence it is, that among the ancients several of their great men were called ἱστορία, i.e., persons of various and general knowledge.

Sometimes, however, the word history is used to signify a description of things, as well as an account of facts. Thus, Theophrastus calls his work, in which he has treated of the nature and properties of plants, an history of plants; and we have a treatise of Aristotle, intitled an history of animals; and to this day the description of plants, animals, and minerals, are called by the general name of natural history.

But what chiefly merits the name of history, and History what is here considered as such, is an account of the how and why of principal transactions of mankind since the beginning of the world; and which naturally divides itself into two parts, namely, civil and ecclesiastical. The first contains the history of mankind in their various relations to one another, and their behaviour, for their own amusement, or that of others, in common life; the second considers them as acting, or pretending to act, in obedience to what they believe to be the will of the Supreme Being.—Civil history, therefore, includes an account of all the different states that have existed in the world, and likewise of those men who in different ages of the world have most eminently distinguished themselves either for their good or evil actions. This last part of civil history is usually termed Biography.

History is now considered as a very considerable branch of polite literature: few accomplishments are more valued than an accurate knowledge of the histories.
HISTORY.

4. The conquest of Babylon by Cyrus, and the destruction of the Babylonian empire. 5. The reign of Alexander the Great, and the overthrow of the Persian empire. 6. The destruction of Carthage by the Romans, when the latter had no longer any rival capable of opposing their designs. 7. The reign of the emperor Trajan, when the Roman empire was brought to its utmost extent. 8. The division of the empire under Constantine. 9. The destruction of the western empire by the Huns, and the settlement of the different European nations. 10. The rise of Mahomet, and the conquests of the Saracens and Turks. 11. The crusades, and all the space intervening between that time and the present.

Concerning the number of years which have elapsed since the creation of the world, there have been many disputes. The compilers of the Universal History determine it to have taken place in the year 4305 B.C. so that, according to them, the world is now in the 6096th year of its age. Others think it was created only 4000 years B.C. so that it has not yet attained its 6096th year. Be this as it will, however, the whole account of the creation rests on the truth of the Moslem account of the creation; and which we must of necessity accept, because we can find no other which does not either abound with the grossest absurdities, or lead us into absolute darknes. The Chinese and Egyptian pretensions to antiquity are so absurd and ridiculous, that the bare reading must be a sufficient confusion of them to every reasonable person. See the articles CHINA and EGYPT. Some historians and philosophers are inclined to differ from the Moslem accounts, from the appearances of volcanoes, and other natural phenomena: but their objections are by no means sufficient to invalidate the authority of the sacred writings; not to mention that every one of their own systems is liable to imperceptible objections. See the article EARTH. It is therefore reasonable for every person to accept of the Moslem account of the creation as truth; but an historian is under an absolute necessity of doing it, because, without it, he is quite destitute of any standard or scale by which he might reduce the chronology of different nations to any agreement; and, in short, without receiving this account as true, it would be in a manner impossible at this day to write a general history of the world.

1. The transactions during the first period, viz. from the creation to the flood, are very much unknown, nothing indeed being recorded of them but what is to be found in the first six chapters of Genesis. In general, we know, that men were not at that time in a savage state; they had made some progres in the arts, had invented music, and found out the method of working metals. They seem also to have lived in one vast community, without any of those divisions into different nations which have since taken place, and which evidently proceeded from the confusion of languages. The most material part of their history, however, is, that having once begun to transgress the divine commands, they proceeded to greater and greater lengths of wickedness, till at last the Deity thought proper to send a flood on the earth, which destroyed the whole human race except eight persons, viz. Noah and his family. This terrible catastrophe happened, according to the Hebrew copy of the Bible, 1566 years after

The following is collected from respectable authorities, and may serve to help the ideas of the reader on this subject.

SECT. I. CIVIL HISTORY.

HISTORY, though seemingly incapable of any natural division, will yet be found, on a nearer inspection, to resolve itself into the following periods, at each of which a great revolution took place, either with regard to the whole world, or a very considerable part of it. 1. The creation of man. 2. The flood. 3. The beginning of prose history, i.e. when all the fabulous relations of heroes, demi-gods, &c. were expelled from historical narratives, and men began to relate facts with some regard to truth and credibility.
the creation; according to the Samaritan copy, 1307.

For the different conjectures concerning the natural causes of the flood, see the article **Druses**.

2. For the history of the second period we must again have recourse to the Scriptures, almost as much as for that of the first. We now find the human race reduced to eight persons possessed of nothing but what they had saved in the ark, and the whole world to be flooded with animals from those which had been preserved along with these eight persons. In what country their original settlement was, no mention is made. The ark is supposed to have rested on Mount Ararat in Armenia*; but it is impossible to know whether Noah and his sons made any stay in the neighbourhood of this mountain or not. Certain it is, that some time after, the whole or the greater part of the human race were assembled in Babylon, where they engaged in building a tower. This gave offence to the Deity, so that he punished them by confounding their language; whence the division of mankind into different nations.

According to a common opinion, Noah when dying left the whole world to his sons, giving Asia to Sem, Africa to Ham, and Europe to Japhet. But this hath not the least foundation in Scripture. By the most probable accounts, Gomer the son of Japhet was the father of the Goemarians or Celtes; that is, all the barbarous nations who inhabited the northern parts of Europe under the various names of Gauls, Germans, Cuths, &c. and who also migrated into Spain, where they were called Celtiberians. From Magog, Medech, and Tubal, three of Gomer's brethren, proceeded the Scythians, Sarmatians, Tartars, and Mongols. The three other sons of Japhet, Madai, Javan, and Tiras, are said to have been the fathers of the Medes, the Ionians, Greeks, and Thracians.

The children of Shem were Elam, Japhur, Arphaxad, Lud, and Aram. The first settled in Persea, where he was the father of that mighty nation: The descendants of Japhur peopled Assyria, now Curdeflan; Arphaxad settled in Cheldaea; Lud is supposed by Josephus to have taken up his residence in Lydia; though this is much controverted. Aram, with more certain, is thought to have settled in Meopotamia and Syria.

The children of Ham were Canaan, Mizraim, Phut, and Canaan. The first is thought to have remained in Babylonia, and to have been king of the south-eastern parts of it afterwards called Khuzistan. His descendants are supposed to have removed into the eastern parts of Arabia; from whence they by degrees migrated into the corresponding parts of Africa. The second peopled Egypt, Ethiopia, Cyrenaica, Libya, and the rest of the northern parts of the same continent. The place where Phut settled is not known; but Canaan is universally allowed to have settled in Phoenicia; and to have founded those nations who inhabited Judea, and were afterwards exterminated by the Jews.

Almost all the countries of the world, at least of the eastern continent, being thus furnished with inhabitants, it is probable that for many years there would be few or no quarrels between the different nations. The paucity of their numbers, their distance from one another, and their diversity of language, would contribute to keep them from having much communication with each other. Hence, according to the different circumstances in which the different tribes were placed some would be more civilized and others more barbarous. In this interval, also the different nations probably acquired different characters, which afterwards they obstinately retained, and manifested on all occasions; hence the propensity of some nations to monarchy, as the Atlantica, and the enthusiastic desire of the Greeks for liberty and republicanism, &c.

The beginning of monarchical government was very early; Nimrod the son of Cuth having found means to make himself king of Babylonia. In a short time Ashur emigrated from the new kingdom; built Nineveh, afterwards capital of the Assyrian empire; and two other cities called Resen and Rebeba, concerning the situation of which we are now much in the dark. Whether Ashur at this time set up as a king for himself, or whether he held these cities as vassal to Nimrod, is now unknown. It is probable, however, that about the same time various kingdoms were founded in different parts of the world, and which were great or small according to different circumstances. Thus the scripture mentions the kings of Egypt, Gerar, Sodom, Gomorrah, &c. in the time of Abraham; and we may reasonably suppose, that these kings reigned over nations which had excited for some considerable time before.

The first considerable revolution we read of is the migration of the Israelites out of Egypt, and their establishment in the land of Canaan. For the history of these transactions we must refer to the Old Testament, where the reader will see that it was attended with the most terrible catastrophe to the Egyptians, and with the utter extermination of some nations, the descendants of Ham, who inhabited Judea. Whether the overthrow of Pharaoh in the Red Sea could affect the Egyptian nation in such a manner as to deprive them of the greatest part of their former learning, and to keep them for some ages after in a barbarous state is not easily determined; but unless this was the case, it seems exceedingly difficult to account for the total silence of their records concerning such a remarkable event, and indeed for the general ignorance and uncertainty in which the early history of Egypt is involved. The settlement of the Jews in the promised land of Canaan is supposed to have happened about 1491 B.C.

For nearly 200 years after this period we find no account of any other nations than those mentioned in the Greek scripture. About 1280 B.C. the Greeks began to make other nations feel the effects of that enterprising and martial spirit for which they were so remarkable, and which they had undoubtedly exercised upon one another long before. The first enterprise was an invasion of Colon (now Mngreia), for the sake of the golden fleece. Whatever was the nature of this expedition, it is probable they succeeded in it; and it is like wise probable, that it was this specimen of the riches of Asia which inclined them so much to extensive expeditions ever after. All this time we are totally in the dark about the state of Asia and Africa, except in so far as can be conjectured from scripture. The ancient empires of Babylon, Assyria, and Persia, probably
About 1184 years B.C. the Greeks again distinguished themselves by their expedition against Troy, a city of Parysias Minor; which they plundered and burnt, massacring the inhabitants with the most unrelenting cruelty. Eneas, a Trojan prince, escaped with some followers into Italy, where he became the remote founder of the Roman empire. At this time Greece was divided into a number of small principalities, most of which seem to have been subjection to Agamemnon king of Mycenae. In the reign of Atreus, the father of Agamemnon, the Heraclidae, or descendants of Hercules, who had been formerly banished by Eurytheus, were again obliged to leave this country. Under their champion Hyllus they claimed the kingdom of Mycenae as their right, pretending that it belonged to their great ancestor Hercules, who was unhappily driven out by his mother. The controversy was decided by single combat; but Hyllus being killed, they departed, as had been before agreed, under a promise of not making any attempt to return for 50 years. About the time of the Trojan war, also, we find the Lydians, Myfians, and some other nations of Asia Minor, first mentioned in history. The names of the Greek states mentioned during this uncertain period are, 1. Sicily. 2. Leleg. 3. Melfina. 4. Athens. 5. Crete. 6. Argos. 7. Sparta. 8. Pelagia. 9. Thessaly. 10. Attica. 11. Phocis. 12. Lucis. 13. Oeza. 14. Corinth. 15. Eleusina. 16. Elis. 17. Pilus. 18. Arcadia. 19. Eogina. 20. Ithaca. 21. Cephalone. 22. Pitthis. 23. Phocidia. 24. Ephyra. 25. Eola. 26. Thebes. 27. Calif. 28. Etolia. 29. Doloppa. 30. Oechalia. 31. Mycena. 32. Euboea. 33. Myria. 34. Doris. 35. Phera. 36. Iola. 37. Trachina. 38. Thrapecia. 39. Myrmidonia. 40. Salamine. 41. Scyros. 42. Hyperia or Melite. Concerning many of the cities we know nothing besides their names; the most remarkable particulars concerning them may be found under their respective articles.

About 1048 B.C. the kingdom of Judea under king David approached its utmost extent of power. In its most flourishing condition, however, it never was remarkable for the largeness of its territory. In this respect it scarce exceeded the kingdom of Scotland, though, according to the accounts given in scripture, the magnificence of Solomon was superior to that of the most potent monarchs on earth. This extraordinary wealth was owing partly to the spoil amassed by king David in his conquests over his various enemies, and partly to the commerce with the East-Indies which Solomon had established. Of this commerce he owed his share to the friendship of Hiram king of Tyre, a city of Phoenicia, whose inhabitants were now the most famed for commercial skill in maritime affairs of any in the whole world.

After the death of Solomon, which happened about 975 B.C. the Jewish empire began to decline, and soon after many powerful states arose in different parts of the world. The disposition of mankind in general seems now to have taken a new turn, not easily accounted for. In former times whatever wars might have taken place between neighbouring nations, we have no account of any extensive empire in the whole world, or that any prince undertook to reduce far distant nations to his subjection. The empire of Egypt indeed is said to have been extended immensely to the east, even before the days of Sesostris. Of this country, however, our accounts are so imperfect, that no fear of any thing can be concluded from them. But now, as it were all at once, we find almost every nation aiming at universal monarchy, and refusing to put any bounds whatever to its ambition. The first shock given to the Jewish grandeur was the division of the kingdom into two through the imprudence of Rehoboam. This rendered it more easily a prey to Shishak king of Egypt; who five years after came and pillaged Jerusalem, and all the fortified cities of the kingdom of Judah. The commerce to the East-Indies was now discontinued, and consequently the sources of wealth were greatly diminished; and this added to the perpetual wars between the kings of Israel and Judah, contributed to that remarkable and speedy decline which is now so easily to be observed in the Jewish affairs.

Whether this king Shishak was the Sesostris of profane writers or not, his expedition against Jerusalem as recorded in scripture seems very much to resemble the defultory conquest ascribed to Sesostris. His infancy is said to have been innumerable. Composed of different African nations; and his cavalry 120,000, with 1200 chariots; which agrees pretty well with the mighty armament ascribed to Sesostris, and of which an account is given under the article Egypt, n. 2. There indeed his cavalry are said to have been only 24,000; but the number of his chariots are increased to 27,000; which last may not unreasonably be reckoned an exaggeration, and these supernumerary chariots may have been only cavalry: but unless we allow Sesostris to be the same with Shishak, it seems impossible to fix on any other king of Egypt that can be supposed to have undertaken this expedition in the days of Solomon.

Though the Jews obtained a temporary deliverance from Shishak, they were quickly after attacked by new enemies. In 941 B.C. one Zerah an Ethiopian invaded Judea with an army of a million of infantry and 300 chariots; but was defeated with great slaughter by Aha king of Judah, who engaged him with of the Syrian army of 580,000 men. About this time also we learn find the Syrians grown a considerable people, and bitter enemies both to the kings of Israel and Judah; aiming in fact at the conquest of both nations. Their kingdom commenced in the days of David, under Hadadezer, whose capital was Zobah, and who probably was at last obliged to become David's tributary, after having been defeated by him in several engagements. Before the death of David, however, one Rezon, who it seems had rebelled against Hadadezer, having found means to make himself master of Damascus, erected there a new kingdom, which soon became very powerful. The Syrian princes being thus in the neighbourhood of the two rival states of Israel and Judah (whose capitals were Samaria and Jerusalem), found it an easy matter to weaken them both, by pretending to affit the one against the other; but a detail of the
transactions between the Jews and Syrians is only to be found in the Old Testament, to which we refer. In 740 B.C., however, the Syrian empire was totally destroyed by Tiglath-Pileser king of Assyria; as was also the kingdom of Samaria by Shalmaneser his successor in 721. The people were either massacred, or carried into captivity into Media, Persia, and the countries about the Caspian Sea.

While the nations of the east were thus destroying each other, the foundations of very formidable empires were laid in the west, which in process of time were to swallow up almost all the eastern ones. In Africa, Carthage was founded by a Tyrian colony, about 869 B.C., according to those who ascribe the highest antiquity to that city; but, according to others, it was founded only in 769 or 770 B.C. In Europe a very considerable revolution took place about 900 B.C. The Heracleidae, whom we have formerly seen expelled from Greece by Atreus, the father of Agamemnon, after several unsuccessful attempts, at last conquered the whole Peloponnæus. From this time the Grecian states became more civilized, and their history less obscure. The invasion, or rather the revival and continuance of the Olympic games, in 776 B.C. also greatly facilitated the writing not only of their history, but of that of other nations; for as each Olympiad consisted of four years, the chronology of every important event became indubitably fixed by referring it to such and such an Olympiad. In 748 B.C. or the last year of the seventh Olympiad, the foundations of the city of Rome were laid by Romulus; and, 43 years after, the Spartan state was new modelled, and received from Lycæus those laws, by observing of which it afterwards arrived at such a pitch of splendor.

With the beginning of the 28th Olympiad, or 368 B.C. commence the third general period above mentioned, when profane history becomes somewhat more clear, and the relations concerning the different nations may be depended upon with some degree of certainty. The general flats were most of the world was at that time. The northern parts of Europe were either thinly inhabited, or filled with unknown and barbarous nations, the ancestors of those who afterwards destroyed the Roman empire. France and Spain were inhabited by the Germanians or Celtes. Italy was divided into a number of petty states, arising partly from Gaulish and partly from Grecian colonies; among which the Romans had already become formidable. They were governed by their king Servius Tullius; had increased their city by the demolition of Alba Longa, and the removal of its inhabitants to Rome; and had enlarged their dominions by several cities taken from their neighbours. Greece was also divided into a number of small states, among which the Athenians and Spartans, being the most remarkable, were rivals to each other. The former had, about 599 B.C., received an excellent legislation from Solon, and were enriching themselves by navigation and commerce; the latter were become formidable by the martial institutions of Lycurgus; and having conquered Messenia, and added its territory to their own, were justly esteemed the most powerful people in Greece. The other states of most consideration were Corinth, Thébes, Argos, and Arcadia.—In Asia great revolutions had taken place. The ancient kingdom of Assyria was destroyed by the Medes and Babylonians, its capital city Nineveh utterly ruined, and the greatest part of its inhabitants carried to Babylon. Nay, the very materials with which it was built were carried off, to adorn and give strength to that lately metropolis, which was then undoubtedly the first city in the world. Nebuchadnezzar, a wife and valiant prince, now sat on the throne of Babylon. By him the kingdom of Judæa was totally overthrown in 587 B.C. Three years before this he had taken and razed the city of Tyre, and over-run all the kingdom of Egypt. He is even said by Josephus to have conquered Spain, and reigned there nine years, after which he abandoned it, to the Carthaginians; but this seems by no means probable. The extent of the Babylonian empire is not certainly known: but from what is recorded of it we may conclude, that it was not at all inferior even in this respect to any that ever existed; as the scripturae tells us it was superior in wealth to any of the succeeding ones. We know that it comprehended Phœnicia, Palestine, Syria, Babylonia, Media, and Persia, and not improbably India also; and from a consideration of this vast extent of territory, and the riches with which every one of these countries abounded, we may form some idea of the wealth and power of this monarch. When we consider also, that the whole strength of this mighty empire was employed in beautifying the metropolis, we cannot look upon the wonders of that city as related by Herodotus to be at all incredible. See Babylon, and Architecture, No. 13.

As to what passed in the republic of Carthage about this time, we are quite in the dark; there being a chaos in its history for no less than 500 years.

The fourth general period of history, namely, Fourth period from the end of the fabulous times to the conquest of the world, begins by Cyrus, is very short, including no more than 31 years. This sudden revolution was occasioned by the misfortunes of Evil Merodach, Nebuchadnezzar's son, even in his father's lifetime. For having, in a great war, lost the Median forces, which entered the country of the Medes, and some of his troops coming up at the same time to relieve the garrisons in those places, he joined them to those already with him, and without the least provocation began to plunder and lay waste the neighbouring country. This produced an immediate revolt, which quickly extended over all Media and Persia. The Medes, headed by Alyages and his son Cyaxares, drove back Evil-merodach and his party with great slaughter; nor doth it appear that they were afterwards reduced even by Nebuchadnezzar himself. The new empire continued daily to gather strength; and at last Cyrus, Alyages's grandson, a prince of great prudence and valour, being made generalissimo of the Median and Persian forces, took Babylon itself in the year 538 B.C. as related under the article Babylon.

During this period the Romans increased in power of the under the wife administration of their king Servius Tullius, who, though a pacific prince, rendered his people more formidable by a peace of 20 years than his predecessors had done by all their victories. The Greeks, even at this early period, began to interfere with the Persians, on account of the Ionians or Greek colonies in Asia Minor. These had been subdued.
Sect. I. H I S T O R Y.

Civil History.

The time of Nebuchadnezzar’s death. Whether theLydians had been subdued by the Babylonish monarchy or not, it is not now to be ascertained; though it is very probable that they were either in subjection to him, or greatly swayed by his power, as before his death nothing considerable was undertaken by them. It is indeed probable, that during the infancy of Nebuchadnezzar, spoken of by Daniel, the affairs of his kingdom would fall into confusion; and many of those princes whom he formerly retained in subjection would set up for themselves. Certain it is, however, that if the Babylonians did not regard Cyrus as their subject, they looked upon him to be a very faithful ally; insomuch that they celebrated an annual feast in commemoration of a victory obtained by him over the Scythians. After the death of Nebuchadnezzar, Cyrus subdued many nations in Asia Minor, and among the rest the Ionians, as already related. They were, however, greatly attached to their government; for though they paid him tribute, and were obliged to furnisb him with some forces in time of war, they were yet free from all kind of oppression. When Cyrus therefore was proceeding in his conquests of different parts of the Babylonish empire, before he proceeded to attack the capital, the Ionians refused to submit to him, though he offered them very advantageous terms. But soon after, Cyrus himself being defeated and taken prisoner, the Ionians sent ambassadors to Cyrus, offering to submit on the terms that had formerly been proposed. These terms were now refused; and the Ionians being determined to resist, applied to the Spartans for aid. Though the Spartans at that time could not be prevailed upon to give their countrymen any assistance, they sent ambassadors to Cyrus with a threatening message; to which he returned a contemptuous answer, and then forced the Ionians to submit at different times before the taking of Babylon. Thus commenced the hatred between the Greeks and Persians; and we see, that in the two first great monarchies the seeds of their destruction were sown even before the monarchs themselves were established. For while Nebuchadnezzar was raising the Babylonian empire to its utmost height, his son was destroying what his father built up; and at the very time when Cyrus was establishing the Persian monarchy, by his ill-timed severity to the Greeks he made that warlike people his enemies, whom his successors were by no means able to reéstif, and who would probably have overcome Cyrus himself, had they united in order to attack him. The transactions of Africa during this period are almost entirely unknown; though we cannot doubt that the Carthaginians enriched themselves by means of their commerce, which enabled them afterwards to attain to such a considerable share of power.

5. Cyrus having now become master of all the east, the Atic affairs continued for some time in a state of tranquillity. The Jews obtained leave to return to their own country, rebuild their temple, and again establish their worship, of which an account is given in the sacred writings, though undoubtedly they must have been in a state of dependence on the Persians from that time forward. Cambyses the successor of Cyrus added Egypt to his empire, which had either not been submitted to Cyrus, or revolted soon after his death.

He intended also to have subdued the Carthaginians; but as the Phoenicians refused to supply him with ships to do it, he set against their own countrymen, he was obliged to lay this design aside.

In 517 B.C. the Babylonians finding themselves grieved and oppressed by their Persian masters, resolved to shake off the yoke, and set up for themselves. For this purpose, they took care to store their city with all manner of provisions; and when Darius Hydaspes, then king of Persia, advanced against them, they took the most barbarous method that could be imagined of preventing an unnecessary consumption of those provisions, which they had so carefully amassed. Having collected all the women, old men, and children, into one place, they strangled them without distinction, whether wives, fathers, mothers, brothers, or sisters; every one being allowed to save only the wife he liked best, and a maid servant to do the work of the house. This cruel policy did not avail them; their city was taken by treachery (for it was impossible to take it by force); after which the king caused the walls of it to be beaten down from 200 to 500 cubits height, that their strength might no longer give encouragement to the inhabitants to revolt. Darius then turned his arms against the Scythians; but finding that expedition turn out both tedious and unprofitable, he directed his course eastward, and reduced all the country as far as the river Indus. In the mean time, the Ionians revolted; and being assailed by the Greeks, a war commenced between the two nations, which was not thoroughly extinguished but by the destruction of the Persian empire. In 431 B.C. the Ionians, however, were for this time obliged to submit, after a war of six years; and were treated with great severity by the Persians. The conquest of Greece itself was then projected; but the expeditions for that purpose ended most unfortunately for the Persians, and encouraged the Greeks to make reprisals on them, in which they succeded according to their utmost wishes; and had it only been possible for them to have agreed among themselves, the downfall of the Persian empire would have happened much sooner than it did. See ATHENS, SPARTA, MACEDON, &c.

In 419 B.C. the Egyptians made an attempt to recover their liberty, but were reduced after a war of six years. In 413 B.C. they revolted a second time; and being assailed by the Sidonians, drew upon the latter that terrible destruction foretold by the prophets; while they themselves were so thoroughly humbled, that they never after made any attempt to recover their liberty.

The year 403 B.C. proved remarkable for the revolt of Cyrus against his brother Artaxerxes Meneion; in which, through his own rashness, he miscarried, and lost his life at the battle of Cumana in the province of Babylon. Ten thousand Greek mercenaries, who served in his army, made their way back into Greece, though surrounded on all sides by the enemy, and in the heat of a hostile country. In this retreat they were commanded by Xenophon, who has received the highest praise on account of his conduct and military skill in bringing it to a happy conclusion. Two years after, the invasions of Artaxerxes king of Sparta threatened the Persian empire with total destruction; from which however, it was relieved by his being recalled in order.
to defend his own country against the other Grecian states; and after this the Persian affairs continued in a more prosperous way till the time of Alexander.

During all this time, the volatile and giddy temper of the Greeks, together with their enthusiastic desire of romantic exploits, were preparing fetters for themselves, which indeed seemed to be absolutely necessary to prevent them from destroying one another. A zeal for liberty was what they all pretended; but on every occasion it appeared, that this love of liberty was only a desire of dominion. No state in Greece could bear to see another equal to itself; and hence their perpetual contests for pre-eminence, which could not be confined the whole body, and render them an easy prey to an ambitious and political prince, who was capable of taking advantage of those divisions. Being all equally impatient of restraint, they never could bear to submit to any regular government; and hence their determinations were nothing but the decisions of a mere mob, of which they had afterwards almost constantly reason to repent. Hence also their late treatment of those eminent men whom they ought most to have honoured; as Miltiades, Aristides,Themistocles, Alcibiades, Socrates, Phocion, &c. The various transactions between the Grecian states, though they make a very considerable figure in particular history, make nothing at all in a general sketch of the history of the world. We shall therefore only observe, that in 404 B.C. the Athenian power was in a manner totally broken by the taking of their city by the Spartans. In 370, that of the Spartans received a severe check from the Thebans at the battle of Leuctra; and eight years after was still further reduced by the battle of Mantinea. Epa­minondas the great enemy of the Spartans was killed; but this only proved a more speedy means of subjugating all the states to a foreign, and at that time despotic, power. The Macedonians, a barbarous nation, lying to the north of the states of Greece, were two years after the death of Epa­minondas reduced to the lowest level by the Lycians, another nation of barbarians in the neighbourhood. The king of Macedon being killed in an engagement, Philip his brother departed from Thebes, where he had studied the art of war under Epa­minondas, in order to take possession of his kingdom. Being a man of great prudence and policy, he quickly settled his own affairs; vanquished the Lycians; and, being no stranger to the weak state of Greece, began almost immediately to meditate the conquest of it. The particulars of this enterprise are related under the article MACEDON: here it is sufficient to take notice, that by first attacking those he was sure he could overcome, by corrupting those whom he thought it dangerous to attack, by sometimes pret­ending to submit one state and sometimes another, and by impressing upon all as bet served his turn, he at last put it out of the power of the Greeks to make any resistance, at least such as could keep him from gaining his end. In 338 B.C. he procured himself to be elected general of the Amphictyons, or council of the Greek states, under pretence of settling some troubles at that time in Greece; but having once obtained liberty to enter that country with an army, he quickly convinced the states that they must all submit to his will. He was opposed by the Athenians and Thebans; but the intestine wars of Greece had cut off all her great men, and no general was now to be found capable of opposing Philip with success.

The King of Macedon being now master of all Greece, projected the conquest of Asia. To this he was encouraged by the ill success which had attended the Persians in their expeditions against Greece, the successes of the Greeks in their invasions, and the retreat of the ten thousand under Xenophon. All these events showed the weaknesses of the Persians, their vast superiority to the Greeks in military skill, and how easily their empire might be overthrown by a proper union among the states.

Philip was preparing to enter upon his grand design. Conquest of Persia by Alexander: He was opposed by the Athenians and {by} the execution of some great plan; and his impetuosity of temper made him execute it with a rapidity unheard of either before or since. It must be confessed, indeed, that the Persian empire was now ripe for de­struction, and could not in all probability have with­stood an enemy much less powerful than Alexander. The Allies have in all ages been much inferior to the European nations in valour and military skill. They were now sunk in luxury and effeminacy; and what was worse, they seem at this period to have been seized with that infatuation and distraction of counsels which scarce ever fails to be a forerunner of the destruction of any nation. The Persian ministers persuaded their sovereign to reject the prudent advice that was given him, of divesting Alexander by laying waste the country, and thus forcing him to return for want of provi­sions. Nay, they even prevented him from engaging the enemy in the most proper manner, by dividing his forces; and persuaded him to put Charidemus the Athenian to death, who had promised, with 100,000 men, of whom one third were mercenaries, to drive the Greeks out of Asia. In short, Alexander met with only two checks in his Persian expedition. The one was from the city of Tyre, which for seven months resisted the forces; the other was from Memnon of Tyre, who had undertaken to invade Macedo­nia. The first of these obstacles Alexander at last got over, and treated the governor and inhabitants with the utmost cruelty. The other was scarce felt; for Memnon died after reducing some of the Grecian islands, and Darius had no other general capable of conducting the undertaking. The power of the Per­sian empire was totally broken by the victory gained over Darius at Arbela in 331 B.C. and next year a total end was put to it by the murder of the king by Bessus one of his subjects.

The ambition of Alexander was not to be satisfied with the possession of the kingdom of Persia, or indeed of any other on earth. Nothing left him than the total sub­jection of the world itself from the Jordon to the Indus, and therefore he was now prompted to invade every country of which he could only learn the name, whether it had belonged to the Persians or not. In consequence of this disposition, he invaded and reduced Hyrcania, Bactria, Sagredis, and all that vast tract of country now called Bactri­a. At last, having entered India, he reduced all the countries to the river Hy­rcania, one of the branches of the Indus. But when he would have proceeded farther, and extended his con­quests quite to the eastern extremities of Asia, his troops
troops positively refused to follow him farther, and he was constrained to return. In 323, this mighty conqueror died of a fever; without having time to settle the affairs of his vast extended empire, or even to name his successor. While the Grecian empire thus suddenly sprang up in the east, the rival states of Rome and Carthage were making considerate advances in the west. The Romans were establishing their empire on the most solid foundations; to which their particular situation naturally contributed. Being originally little better than a parcel of lawless banditti, they were deplored and hated by the neighbouring states. This soon produced wars; in which, at first from accidental circumstances, and afterwards from their superior valour and conduct, the Romans proved almost constantly victorious. The jealousies which prevailed among the Italian states, and their ignorance of their true interest, prevented them from combining against that aspiring nation, and crushing it in its infancy. While the people were easily have done; while in the mean time the Romans, being kept in a state of continual warfare, became at last such expert soldiers, that no other state on earth could resist them. During the time of their kings they had made a very considerable figure among the Italian nations; but after their expulsion, and the commencement of the republic, their conquests became much more rapid and extensive. In 509 B.C. they subdued the Sabines; eight years after, the Latins; and in 290 the city of Veii, the strongest in Italy excepting Rome itself, was taken after a siege of ten years. But in the midst of their successes a sudden irruption of the Gauls had almost put an end to their power, and nation at once. The city was burnt to the ground in 382 B.C. and the capitol on the point of being burnt, when the Gauls, who were climbing up the walls in the night, were accidentally discovered and repulsed*. In a short time Rome was rebuilt with much greater splendor than before, but now a general revolt and combination of the nations formerly subdued took place. The Romans, however, still got the better of their enemies; but, even at the time of the celebrated Camillus’s death, which happened about 352 B.C. their territories scarce extended six or seven leagues from the capital. The republic from the beginning was agitated by those discontents which at last proved its ruin. The people had been divided by Romanus into two classes, namely, Patricians and Plebeians, answering to British nobility and commonalty. Between these two bodies were perpetual jealousies and contentions; which retarded the progress of the Roman conquests, and deceived both the states they had conquered. The tribunes of the people were perpetually opposing the confuls and military tribunes. The senate had often recourse to a dictator endowed with absolute power; and then the valour and experience of the Roman troops made them victorious; but the return of domestic seditions gave the full-gauged nations an opportunity of shaking off the yoke. Thus had the Romans continued for near 400 years, running the same round of wars with the same enemies, and reaping very little advantage from their conquests, till at last matters were compounded by choosing one of the consuls from among the plebeians; and from this time chiefly we may date the prosperity of Rome, to that by the time that Alexander the Great died they were held in considerable estimation among foreign nations.

The Carthaginians in the mean time continued to enrich themselves by commerce; but, being left concurring in military affairs, were by no means equal to the Romans in power, though they excelled them in wealth. A new state, however, made its appearance during this period, which may be said to have taught the Carthaginians the art of war, and by bringing them into the neighbourhood of the Romans, proved the first source of contention between these two powerful nations. This was the island of Sicily. At what time people were first settled on it, is not now to be ascertained. The first inhabitants we read of were called Sicani, Siculi, Latins, etc. but of these little or nothing. In the second year of the 17th Olympiad, or 710 B.C. some Greek colonies are said to have arrived on the island, and in a short time founded several cities, of which Syracuse was the chief. The Syracusans at last subdued the original inhabitants; though it doth not appear that the latter were ever well affected to their government, and therefore were on all occasions ready to revolt. The first considerable prince, or, (as he is called by the Greeks) tyrant of Syracuse, was Gelon, who obtained the sovereignty about the year 483 B.C. At what time the Carthaginians first carried their arms into Sicily is not certainly known; only we are assured, that they possessed some part of the island as early as 505 B.C. For in the time of the first confuls, the Romans and Carthaginians entered into a treaty chiefly in regard to matters of navigation and commerce; by which they were stipulated, that the Romans should touch at Sardina, or that part of the island which belonged to Carthage should be received therein the same manner as the Carthaginians themselves. Whence it appears, that the dominion of Carthage already extended over Sardinia and part of Sicily: but in 28 years after, they had been totally driven out by Gelon; which probably was the first exploit performed by him. This appears from his speech to the Athenian and Spartan ambassadors who desired his assistance against the forces of Xerxes king of Persia. The Carthaginians made many attempts to regain their possessions in this island, which occasioned long and bloody wars between them and the Greeks, as related under the articles Carthage and Sicily. This island also proved the scene of much slaughter and bloodshed in the wars of the Greeks with one another*. Before the year 342 B.C. however, the Carthaginians had made themselves masters of a very considerable part of the island, from whence all the power of the Greeks could not dislodge them. It is proper also to observe, that after the destruction of Tyre by Alexander the Great, almost all the commerce in the western part of the world fell to the share of the Carthaginians. Whether they had at this time made any settlement in Spain, is not known. It is certain, that they traded to that country for the sake of the silver, in which it was very rich; as they probably also did to Britain, for the tin with which it abounded.

6. The beginning of the sixth period presents us with a state of the world entirely different from the foregoing. We now behold all the eastern part of the world, from the confines of India to the river Indus, and...
and beyond it, newly united in one vast empire, and at the same time ready to fall to pieces for want of a proper head; the western world filled with fierce and savage nations, whom the rival republics of Carthage and Rome were preparing to enslave as fast as they could. The first remarkable events took place in the Macedonian empire. Alexander, as already observed, had not distinctly named any successor; but he had left behind him a victorious, and, we may say, invincible army, commanded by most expert officers, all of them ambitious of supreme authority. It is not to be supposed that peace could long be preserved in such a situation. For a number of years, indeed, nothing was to be seen or heard of but the most horrid slaughters, and wickedness of every kind; until at last the mother, wives, children, brothers, and even sisters of Alexander were cut off; not one of the family of that great conqueror being left alive. When matters were a little settled, four new empires, each of them of no small extent, had arisen out of the empire of Alexander. Cassander, the son of Antipater, had Macedon, and all Greece; Antigonus, Asia Minor; Seleucus had Babylon, and the eastern provinces; and Ptolemy Lagus, Egypt, and the western ones. One of these empires, however, quickly fell; Antigonus being defeated and killed by Seleucus and Lysimachus at the battle of Ipsus, in 301 B.C. The greatest part of this dominions then fell to Seleucus; but several provinces took the opportunity of these confusions to shake off the Macedonian yoke altogether; and thus were formed the kingdoms of Pontus, Bithynia, Per- gamum, Armenia, and Cappadocia. The two most powerful and permanent empires, however, were those of Syria, founded by Seleucus, and Egypt by Ptolemy Lagus. The kings of Macedon, though they did not preserve the same authority over the Grecian states that Alexander, Antipater, and Cassander, had done, yet effectually prevented them from those outrages upon one another, for which they had formerly been so remarkable. Indeed, it is somewhat difficult to determine whether their condition was better or worse than before they were conquered by Philip; since, though they were now prevented from destroying one another, they were most grievously oppressed by the Macedonian tyrants.

While the eastern parts of the world were thus deluged with blood, and the successors of Alexander were pulling to pieces the empire which he had established; the Romans and Carthaginians proceeded in their attempts to enslave the nations of the west. The Romans, ever engaged in war, conquered one city and state after another, till about the year 253 B.C. they had made themselves masters of almost the whole of Italy. During all this time they had met only with a single check in their conquests; and that was the invasion of Pyrrhus, king of Epirus. That ambitious and sanguine prince had projected the conquest of Italy, which he fancied would be an easy matter. Accordingly, in 271 B.C. he entered that country, and maintained a war with the Romans for six years; till at last, being utterly defeated by Curius Dentatus, he was obliged to return. The Romans had no sooner made themselves masters of Italy, than they wanted only a pretence to carry their arms out of it; and this pretence was soon found out. Being invited into Sicily to assult the Mamertines against Hiero king of Syracuse and the Carthaginians, they immediately commenced a war with the latter, which continued with the utmost fury for 23 years. The war ended greatly to the disadvantage of the Carthaginians, chiefly owing to the bad conduct of their generals; none of whom, Hamilcar Barca alone excepted, seem to have been possessed of any degree of military skill; and the state had suffered too many misfortunes before he entered upon the command, for him or any other to retrieve it at that time. The consequence of this war was the entire loss of Sicily to the Carthaginians; and soon after, the Romans feized on the island of Sardinia.

Hamilcar perceiving that there was now no alternative, but that in a short time either Carthage must conquer Rome, or Rome would conquer Carthage,bethought himself of a method by which his country might become equal to that haughty republic. This was by reducing all Spain, in which the Carthaginians had already considerable possessions, and from the territories of which they drew great advantages. He had, therefore, no sooner finished the war with the mercenaries, which succeeded that with the Romans, than he set about the conquest of Spain. This, however, he did not live to accomplish, though he made great progress in it. His son Aemilius continued the war with success; till at last, the Romans, jealous of his progress, persuaded him to enter into a treaty with them, by which he engaged himself to make the river Iberus the boundary of his conquests. This treaty probably was never ratified by the senate of Carthage; nor, though it had, would it have been regarded by Hannibal, who succeeded Aemilius in the command, and had sworn perpetual enmity with the Romans. The transactions of the second Punic war are perhaps the most remarkable which the history of the world can afford. Certain it is, that nothing can show more clearly the slight foundations upon which the greatest empires are built. We now see the Romans, the nation most remarkable for their military skill in the whole world, and who, for more than 500 years, had been constantly victorious, unable to reftitute the efforts of one single man. At the same time we see this man, though evidently the first general in the world, lost for want of a slight support. In former times, the republic of Carthage supplied her generals in Sicily with hundreds of thousands, though their enterprises were almost constantly unsuccessful; but now Hannibal, the conqueror of Italy, was obliged to abandon his design, merely for want of 20 or 30,000 men. That degeneracy and infatuation, which never fails to overwhelm a falling nation, or rather which is the cause of its fall, had now infected the councils of Carthage, and the supplies were denied. Neither was Carthage the only infatuated nation at this time. Hannibal, whose prudence never forsook him either in prosperity or adversity, in the height of his good fortune had concluded an alliance with Philip king of Macedon. Had that prince sent with him to the assistance of the Carthaginians in Italy immediately after the battle of Cannae, there can be no doubt but the Romans would have been forced to accept of that peace.
peace which they so haughtily refused; and, indeed, this offer of peace, in the midst of so much success, is an instance of moderation which perhaps does more honour to the Carthaginian general than all the military exploits he performed. Philip, however, could not be routed from his indolence, nor fece that his own ruin was connected with that of Carthage. The Romans had now made themselves masters of Sicily; after which they recalled Marcellus, with his victorious army, to be employed against Hannibal; and the consequence at last was, that the Carthaginian armies, unsupported in Italy, could not conquer it, but were recalled into Africa, which the Romans had invaded. The northern nations seem to have been as blind to their own interest as the northern ones. They ought to have seen that, it was necessary for them to preserve Carthage from being destroyed; but, instead of this, Masinissa, king of Numidia sided with the Romans, and by his means Hannibal was overthrown at the battle of Zama, which finished the second Punic war, in 183 B.C.

Sec. I. HISTORY.

The event of the second Punic war determined the fate of almost all the other nations in the world. All this time, indeed, the empires of Egypt, Syria, and Greece, had been promoting their own ruin by mutual wars and intestine divisions. The Syrian empire was now governed by Antiochus the Great, who seems to have had little right to such a title. His empire, though diminished by the defection of the Parthians, was still very powerful; and to him Hannibal applied, after he was obliged to leave his country, as related under CARTHAGE, n° 152. Antiochus, however, had not sufficient judgment to see the necessity of following that great man's advice; nor would the Carthaginians be prevailed upon to contribute their assistance against the nation which was soon to destroy them without any provocation. The pretense for war on the part of the Romans was, that Antiochus would not declare his Greek subjects in Asia to be free and independent states; a requisition which neither the Romans nor any other nation had a right to make. The event of all was that Antiochus was every where defeated, and forced to conclude a peace upon very disadvantageous terms.

Sec. II.

Of Egypt and Syria.

In Europe, matters went on in the same way; the states of Greece, weary of the tyranny of the Macedonians, entered into a resolution of recovering their liberties. For this purpose was framed the Achaean League; but as they could not agree among themselves, they at last came to the imprudent determination of calling in the Romans to defend them against Philip King of Macedon. This produced a war, in which the Romans were victorious. The Macedonians, however, were still formidable; and, as the intention of the Romans to enslave the whole world could no longer be doubted, Perseus, the successor of Philip, renewed the war. Through his own cowardice he lost a decisive engagement, and with it his kingdom, which submitted to the Romans in 167 B.C.

Def. of Carthage and Georgia.

Macedon being thus conquered, the next step was utterly to exterminate the Carthaginians; whose republic, notwithstanding the many disasters that had befallen it, was still formidable. It is true, the Carthaginians were giving no offence; nay, they even made the most obejct submissions to the republic of Rome; but all was not sufficient. War was declared a third time against that unfortunate state; there was now no Hannibal to command their armies, and the city was utterly destroyed 146 B.C. The same year the Romans put an end to the liberties they had pretended to grant the cities of Greece, by the entire destruction of Corinth. See that article.

After the death of Antiochus the Great, the affairs of Syria and Egypt went on from bad to worse. Egypt, Syria, and Alexandria, the degenerate princes which filled the thrones of Asia, and those empires, regarding only their own pleasures, either spent their time in oppressing their subjects, or in attempting to deprive each other of their dominions, by which means they became a more easy prey to the Romans. So far indeed were they from taking any means to secure themselves against the overgrown power of that republic, that the kings both of Syria and Egypt sometimes applied to the Romans as protectors. Their downfall, however, did not happen within the period of which we now treat. The only other transaction which makes any considerable figure in the Syrian empire is the oppression of the Jews by Antiochus Epiphanes. After their return from the Babylonish captivity, they continued in subjection to the Persians till the time of Alexander. From that time they were subject to the kings of Egypt or Syria, as the fortune of either happened to prevail. Egypt being reduced to a low ebb by Antiochus Epiphanes, the Jews fell under his dominion; and being overpowered by him, imprudently showed some signs of joy on a report of his death. This brought him against them with a powerful army; and in 170 B.C. he took Jerusalem by storm, committing the most horrid cruelties on the inhabitants, insomuch that they were obliged to hide themselves in caverns and in holes of rocks to avoid his fury. Their religion was totally abolished, their temple profaned, an image of Jupiter Olympus set up on the altar of burnt-offerings: which profanation is thought to be the abomination of desolation mentioned by the prophet Daniel. This revolution, however, was of no long continuance. In 167 B.C. Mattathias restored the true worship in most of the cities of Judea, and in 165 the temple was purified, and the worship therewo restored by Judas Maccabees. This was followed by a long series of wars between the Syrians and Jews, in which the latter were almost always victorious; and before these wars were finished, the destruction of Carthage happened, which puts an end to the sixth general period formerly mentioned.

7. The beginning of the seventh period presents us with a view of the rise of the Greek empire in the period. Ge-declining states of Syria and Egypt; both of them much circumscribed in bounds. The empire of Syria of the world at first comprehended all Asia to the river Indus, and beyond it; but in 312 B.C. most of the Indian provinces were by Seleucus ceded to one Sandrocottus, or Androcottus, a native, who in return gave him 500 elephants. Of the empire of Sandrocottus we know nothing farther than that he subdued all the countries between the Indus and the Ganges; so that from this time we may reckon the greatest part of India independent on the Syro-Macedonian princes. In 350 B.C. however, the empire contained a much greater
losts by the revolt of the Parthians and Bactrians from
Antiochus Theus. The former could not be subdued;
and as they held in subjection to them the vast tract
which now goes under the name of Persia, we must
look upon their defection as an irreparable los. Whether
any part of their country was afterwards recover-
ed by the kings of Egypt or Syria, is not very certain;
nor is it of consequence, since we are assured
that in the beginning of the seventh period, i.e. 146
B.C., the Greek empires of Syria and Egypt were
reduced by the los of India, Persia, Armenia, Pontus,
Bithynia, Capadocia, Pergamus, &c. The
general state of the world in 146 B.C. therefore was
as follows. In Asia were the empires of India, Par-
thia, and Syria, with the lesser states of Armenia,
Pontus, &c. abovementioned; to which we must add
that of Arabia, which during the sixth period had
grown into some consequence, and had maintained its
independence from the days of Hamael the son of
Abraham. In Africa were the kingdoms of Egypt
and Ethiopia; the Carthaginian territories, now sub-
ject to the Romans; and the kingdoms of Numidia,
Mauritania, and Getulia, ready to be swallowed up
by the same ambitious and infaible power, now that
Carthage was destroyed, which served as a barrier a-
gainst it. To the south lay some unknown and bar-
arous nations, seere by reason of their situation
and insignificance, rather than their strength, or distance
from Rome. In Europe we find none to oppose the
progrres of the Roman arms, except the Gauls Ger-
mans, and some Spanish nations. These were brave
indeed; but through want of military skill, incapable
of contending with such masters in the art of war as
the Romans then were.

The Spaniards had indeed been subdued by Scipio
Africanus in the time of the second Punic war: but in
115 B.C. they revolted; and, under the conduct
of one Viriathus, formerly a robber, held out for
a long time against all the armies the Romans could send
into Spain. Him the Conful Cæsar caused to be
murdered about 138 B.C. because he found it impos-
fible to reduce him by force. The city of Numantia
defied the whole Roman power for six years longer;
still at laft, by dint of treachery, numbers, and persever-
ance, it was not taken, but the inhabitants, reduced
to extortion by famine, set fire to their houses and perished in the flames, or killed one an-
other, so that not one remained to grace the triumph
of the conqueror; and this for the present quieted the
rest of the Spaniards. About the same time Attalus
king of Pergamus, left by will the Roman people heirs
to all his goods; upon which they immediately feized
on his kingdom, as part of those goods, and reduced it
to a Roman province, under the name of Asia Proper.
Thus they continued to enlarge their dominions on
every side, without the least regard to justice; to the
means they employed, or to the milites they brought
upon the conquered people. In 122 B.C. the Bale-
arie islands, now called Majorca, Minorca, and Jativa,
were subdued, and the inhabitants exterminated; and,
soon after, several of the nations beyond the Alps
were obliged to submit.

In Africa the crimes of Jugurtha soon gave this
ambitious republic an opportunity of conquering the
kingdoms of Numidia and Mauritania: and indeed
this is almost the only war in which we find the Ro-
mans engaged where their pretensions had the least
colour of justice; though in no case whatever could a
nation show more degeneracy than the Romans did on
this occasion. The particulars of this war are re-
lated under the articles Numidia and Rome. The
event of it was the total reduction of the former about
the year 105 B.C. but Mauritania and Getulia pre-
ferred their liberty for some time longer.

In the east, the empire of Syria continued daily to de-
cline; by which means the Jews not only had an op-
portunity of recovering their liberty, but even of be-
coming as powerful, or at least of extending their do-
minions as far, as in the days of David and Solomon.
This declining empire was still farther reduced by the
civil dissensions between the two brothers Antiochus
Grypus and Antiochus Cyzicenus; during which the
cities of Tyre, Sidon, Ptolemais, and Gaza, declared
themselves independent, and in other cities tyrants
started up who refused allegiance to any foreign power.
This happened about 160 B.C.; and 17 years after,
the whole was reduced by Tigranes, king of Arme-
nia. On his defeat by the Romans, the latter re-
duced Syria to a province of their empire. The
kingdom of Armenia itfelf, with those of Pontus, Cappa-
docia, and Bithynia, soon shared the fame fate; Pon-
tus the most powerful of them all, being subdued
about 64 B.C. The kingdom of Judea also was
reduced under the same power much about this time.
This state owed the los of its liberty to the fame
cause that had ruined several others, namely, calling
in the Romans as arbitrators between two contending
parties. The two sons of Alexander Janneus (Hy-
canus and Aristobulus) contended for the kingdom.
Aristobulus, being defeated by the party of Hirc-
cus, applied to the Romans. Pompey the Great,
who acted as ultimate judge in this affair decided it
against Aristobulus, but at the same time deprived
Hyrcanus of all power as a king; not allowing him
even to assume the regal title, or to extend his terri-
ory beyond the ancient borders of Judea. To such
length did Pompey carry this laft article, that he
obliged him to give up all those cities in Cæsarsyria
and Phoenicia which had been gained by his predece-
sors, and added them to the newly acquired Roman
province of Syria. Thus the Romans became masters of all the eastern
parts of the world from the Mediterranean sea to the
borders of Parthia. In the weft, however, the Gauls
were still at liberty, and the Spanish nations bore the
Roman yoke with great impatience. The Gauls in-
fested the territories of the republic by their frequent
incursions, which were sometimes very terrible; and the
several attempts had been made to subdue them, they
always proved insufficient till the time of Julius Cæsar.
By him they were totally reduced, from the river
Rhine to the Pyrenæan mountains and many of their
nations almost exterminated. He carried his arms
also into Germany and the southern parts of Brit-
tain; but in neither of these parts did he make any
permanent conquests. The civil wars between him
and Pompey gave him an opportunity of seizing on
the kingdom of Mauritania and those parts of Numi-
dia which had been allowed to retain their liberty.
The kingdom of Egypt alone remained, and to this
nothing
nothing belonged except the country properly so called. Cyrenaica was bequeathed by will to the Romans about 38 B.C.; and about the same time the island of Cyprus was seized by them without any pretence, except a desire of possessing the treasure of the king. — The kingdom of Egypt continued for some time longer at liberty; which in some measure must be ascribed to the internal divisions of the republic, but more especially to the amours of Pompey, Julius Caesar, and Marc Antony, with the famous Cleopatra, queen of Egypt. — The battle of Actium, however, determined the fate of Antony, Cleopatra, and Egypt itself; which last was reduced to a Roman province about 30 B.C. — While the Romans thus employed all means to reduce the world, to their obedience, they were making one another feel the same miseries at home which they inflicted upon other nations abroad. The first civil dissensions took their rise at the siege of Numantia in Spain. We have already observed, that this small city refilled the whole power of the Romans for six years. Once they gave them a most terrible and shameful defeat, wherein 30,000 Romans fell before 4000 Numantines. Twenty thousand were killed in the battle, and the remaining ten thousand so shut up, that there was no possibility of escaping. In this extremity they were obliged to negotiate with the enemy, and a peace was concluded, upon the following terms: 1. That the Numantines should suffer the Romans to retire unmolested; and, 2. That Numantia should maintain its independence, and be reckoned among the Roman allies. — The Roman senate, with an inju‐ rious and ingratitudinous hardness to be matched, broke this treaty, and in return ordered the commander of their army to be delivered up to the Numantines; but they refused to accept of him, unless his army was delivered along with him; upon which the war was renewed, and ended as already related. The fate of Numantia, however, was soon revenged. Tiberius Sempronius Gracchus, brother-in-law to Scipio Africanus the second, had been a chief promoter of the peace with the Numantines already mentioned, and of consequence had been in danger of being delivered up to them along with the commander in chief. This disgrace he never forgot; and, in order to revenge himself, undertook the caufe of the Plebeians against the Patricians, by whom the former were greatly opprest. He began with reviving an old law, which had enabled that no Roman citizen should possess more than 500 acres of land. The overplus he designed to distribute among those who had no lands, and to reimburse the rich out of the public treasury. This law met with great opposition, bred many tumults, and at last ended in the death of Gracchus and the perdition of his friends, several hundreds of whom were put to cruel deaths without any form of law. The disturbances did not cease with the death of Gracchus. New contests ensued on account of the Sempronian law, and the giving to the Italian allies the privilege of Roman citizens. This last not only produced great commotions in the city but occasioned a general revolt of the states of Italy against the republic of Rome. This rebellion was not quelled without the utmost difficulty; and in the mean time, the city was deluged with blood by the contending factions of Sylla and Marius; the former of whom sided with the patricians, and the latter with the plebeians. These disturbances ended in the perpetual dictatorship of Sylla, about 80 B.C. — From this time we may date the loss of the Roman liberty; for though Sylla resigned his dictatorship two years after, the succeeding contests between Caesar and Pompey proved equally fatal to the republic. These contests were decided by the battle of Pharsalia, by which Caesar became in effect master of the empire in 43 B.C. — Without loss of time he then crossed over into Africa; totally defeated the republican army in that continent; and, by reducing the country of Mauritania to a Roman province, completed the Roman conquests in these parts. — His victory over the sons of Pompey at Munda 40 B.C. secured him from any further apprehensions of a rival. Being therefore sole master of the Roman empire, and having all the power of it at his command, he projected the greatest schemes; tending, according to some, not less to the happiness than to the glory of his country; when he was assassinated in the Senate-house, in the 46th year of his age, and 29 B.C. — Without investigating the political justice of this action, or the motives of the perpetrators, it is impossible not to regret the death of this great man, when we contemplate his virtues, and the designs which he is said to have formed: (See Rome.) Nor is it possible to justify, from ingratitude at least, even the most virtuous of the conspirators, when we consider the obligations under which they lay to him. And as to the measure itself, even in the view of expediency, it seems to be generally condemned. In fact, from the transactions which had long preceded, as well as those which immediately followed, the murder of Caesar, it is evident, that Rome was incapable of preserving its liberty any longer, and that the people had become unfit for being free. The efforts of Brutus and Cassius were therefore unsuccessful, and ended in their own destruction and that of great numbers of their followers in the battle of Philippi. The defeat of the republicans was followed by numberless disturbances, murders, procrisipions, &c. till at last Octavianus, hav‐ ing cut off all who had the courage to oppose him, put an end and finally got the better of his rivals by the victory to the re‐ turn of Augustus, put an end to the republic in the year public 27 B.C. — The destruction of the Roman commonwealth proved advantageous to the few nations of the world who still retained their liberty. That outrageous desire of conquest, which had so long marked the Roman charac‐ ter, now in a great measure ceased; because there was now another way of satisfying the desires of ambitious men, namely, by courting the favour of the em‐ peror. After the final reduction of the Spaniards, therefore, and the conquest of the countries of Media, Pan‐ nonia, and some others adjacent to the Roman terri‐ tories, and which in a manner seemed naturally to be‐ long to them, the empire enjoyed for some time a profound peace. — The only remarkable transactions which took place during the remainder of the period of which we treat, were the conquest of Britain by Claudius and Agricola, and the destruction of Jerusalem by Vespasian and Titus. The war with the Jews began A. D. 67; and...
HISTORY

was occasioned by their obstinately claiming the city of Caesarea, which the Romans had added to the province of Syria. It ended in 72, with the most terrible destruction of their city and nation; since which time they have never been able to assemble as a distinct people. The southern parts of Britain were totally subdued by Agricola about ten years after. In the 88th year of the Christian era, Trajan was created emperor of Rome; and being a man of great valour and experience in war, carried the Roman conquests to their utmost extent. Having conquered the Dacians, a German nation beyond the Danube, and who had of late been very troublesome, he turned his arms eastward; reduced all Melopotamia, Chaldaea, Assyria; and having taken Ctesiphon, the capital of the Parthian empire, appointed them a king, which he thought would be a proper method of keeping them warlike people in subjection. After this, he proposed to return to Italy, but died by the way, and with his reign the seventh general period above mentioned is concluded.

8. The beginning of the eighth period presents us with a view of the vast empire, in which almost all the nations of the world were swallowed up. This empire comprehended the best part of Britain, all Spain, France, the Netherlands, Italy, part of Germany, Egypt, Barbyza, Bithynia, Turkey in Europe, Turkey in Asia, and Persia. The state of India at this time is unknown. The Chinese lived in a remote part of the world, unheard of and unvisited by the western nations who struggled for the empire of the world. The northern parts of Europe and Asia were filled with barbarous nations, already formidable to the Romans, and who were soon to become more so. The vast empire of the Romans, however, had no sooner attained its utmost degree of power, than like others before it, it began to decline. The provinces of Babylonia, Melopotamia, and Assyria, almost instantly revolted, and were abandoned by Adrian the successor of Trajan in the empire. The Parthians having recovered their liberty, continued to be very formidable enemies, and the barbarians of the northern parts of Europe continued to increase in strength; while the Romans, weakened by internal divisions, became daily less able to resist them. At different times, however, some warlike emperors arose, who put a stop to the incursions of these barbarians; and about the year 125, the Parthian empire was totally overthrown by the Persians, who had long been subject to them. This revolution proved of little advantage to the Romans. The Persians were enemies still more troublesome than the Parthians had been; and though often defeated, they still continued to infest the empire on the east, as the barbarous nations of Europe did on the north. In 260, the defeat and captivity of the emperor Valerian by the Persians, with the disturbances which followed, threatened the empire with utter destruction. Thirty tyrants seized the government at once, and the barbarians pouring in on all sides in prodigious numbers ravaged almost all the provinces of the empire. By the vigorous conduct of Claudius, Aurelian, Tacitus, Probus, and Carus, the empire was restored to its former lustre; but as the barbarians were only repelled, and never thoroughly subdued, this proved only a temporary relief. What was worse, the Roman soldiers, grown impatient of restraint, commonly murdered those emperors who attempted to revive among them the ancient military discipline which alone could ensure the victory over their enemies. Under Diocletian, the disorders were so great, that though the government was held by two persons, they found themselves unable to bear the weight of it, and therefore took other two partners in the empire. Thus was the Roman empire divided into four parts; which by all historians is said to have been productive of the greatest mischiefs. As each of the four sovereignties would have as many officers both civil and military, and the sum total of forces, that had been maintained by the state when governed only by one emperor, the people were not able to pay the sums necessary for supporting them. Hence the taxes and imposts were increased beyond measure, the inhabitants in several provinces reduced to beggary, the land left unvisited for want of hands, &c. An end was put to these evils when the empire was again united under Constantine the Great; but in 330 a mortal blow was given to it by removing the imperial seat to Byzantium, now Constantinople, and making it equal to Rome. The introduction and establishment of Christianity, already corruptions in the professed superstitions, proved also a most grievous detriment to the empire. Instead of that ferocious, and obstinate vileness in which the Romans had for a long time accustomed to put their trust, they now imagined themselves secured by signs of the cross, and other external symbols of the Christian religion. These they used as a kind of magical incantations, which undoubtedly proved at all times ineffectual, and hence all in some measure proceeded the great revolution, which took place in the next period.

9. The ninth general period shows us the decline of the western empire. We see that mighty empire, which formerly occupied almost the whole world, now weakened by division, and surrounded by enemies. On the east, the Persians; on the north, the Scythians, Sarmatians, Goths, and a multitude of other barbarous nations, watched all occasions to break into it; and mischievous in their attempts, rather through their own barbarity, than the strength of their enemies. The devastations committed by these barbarians when they made their incursions are incredible, and the relation shocking to human nature. Some authors feem so much inclined to favour them, and so even intimate, that barbarity and ignorance were their chief if not their only faults; but from their history it plainly appears, that not only barbarity and the most shocking cruelty, but the highest degrees of avarice, perfidy, and disregard to the most solemn promises, were to be numbered among their vices. It was ever a sufficient reason for them to make an attack, that they thought their enemies could not resist them. Their only reason for making peace, or for keeping it, was because their enemies were too strong; and their only reason for committing the most horrid massacres, rapes, and all manner of crimes, was because they had gained a victory. The Romans, degenerate as they were, are yet to be esteemed much better than these savages; and therefore we find not a single province of the empire that would submit to the barbarians while the Romans could possibly defend them.

Some of the Roman emperors indeed withstood this inundation of savages; but as the latter grew daily more
more numerous, and the Romans continued to weaken themselves by their intestine divisions, they were at last obliged to take large bodies of barbarians into their pay, and teach them their military discipline, in order to drive away their countrymen, or others who invaded their empire. This at last proved its total destruction; for, in 476, the barbarians who served in the Roman armies, and were dignified with the title of allies, demanded the third part of the lands of Italy as a reward for their services; but meeting with a refus, they revolted, and made themselves masters of the whole country, and of Rome itself, which from that time ceased to be the head of an empire of any consequence.

This period exhibits a most unfavourable view of the western parts of the world: The Romans, from the height of grandeur, sunk to the lowest slavery, may, in all probability, almost exterminated; the provinces they formerly governed, inhabited by human beings scarce a degree above the brutes: every art and science lost; and the savage conquerors, even in danger of starving for want of a sufficient knowledge of agriculture, hunger now no means of supplying themselves by plunder and robbery as before. Britain had long been abandoned to the mercy of the Scots and Picts; and in 450 the inhabitants had called in the Saxons to their assistance, whom they soon found worse enemies than those against whom they had implored their aid. Spain was held by the Goths and Suevians; Africa (that is, Barbary and Bilulgerid), by the Vandals; the Burgundians, Goths, Franks, and Alans, had erected several small states in Gaul; and Italy was subjected to the Heruli under Odacer, who had taken upon him the title of king of Italy. In the east, indeed, matters were not affected so much more agreeable. The Roman empire continued to live in that of Constantinople, which was still very extensive. It comprehended all Asia Minor and Syria, as far as Persia; in Africa, the kingdom of Egypt; and Greece in Europe. The Persians were powerful, and rivalled the emperors of Constantinople; and beyond them lay the Indians, Chinefe, and other nations, who, unequalled in the inhabitants of the more western parts, enjoyed peace and liberty.

The Constantinopolitan empire continued to decline by reason of its continual wars with the Persians, Bulgarians, and other barbarous nations; to which also superstition and relaxation of military discipline largely contributed. The Persian empire also declined from the same causes, together with the intestine broils from which it was seldom free more than that of Constantinople. The history of the eastern part of the world during this period, therefore, consists only of the wars between these two great empires, of which an account is given under the articles Constantinople and Persia, and which were productive of no other consequence than that of weakening them both, and making them more easy prey to those enemies who were now as it were in embryo, but shortly about to erect an empire almost as extensive as that of the Greeks or Romans.

Among the western nations, the revolutions, as might naturally be expected from the character of the people, succeeded one another with rapidity. The Heruli under Odacer were driven out by the Goths under Theodoric. The Goths were expelled by the Romans, and, while the two parties were contending, both were attacked by the Franks, who carried off an immense booty. The Romans were in their turn expelled by the Goths: the Franks again invaded Italy, and made themselves masters of the province of Venetia; but at last the superior fortune of the emperor of Constantinople prevailed, and the Goths were finally subdued in 553. Narres, the conqueror of the Goths, governed Italy as a province of the eastern empire till the year 568, when Longinus his successor made considerable alterations. The Italian provinces had ever since the time of Constantine the Great been governed by consulari, eontfulares, and prefects; no alteration having been either made by the Roman emperors or the Gothic kings. But Longinus, being invested with absolute power by Julianus, suppressed those magistrates; and, instead of them, placed in each city of note a governor, whom he distinguished with the title of duke. The city of Rome was not more honoured than any other: for Longinus, having abominated the very name of senate and consuls, appointed a duke of Rome as well as of other cities. To himself he assumed the title of exarch; and, residing at Ravenna, his government was styled the Exarchate of Ravenna. But while he was estableishing this new empire, the greatest part of Italy was conquered by the Lombards.

In France a considerable revolution also took place. Of France.

In 487, Clovis, the founder of the present Frankish monarchy, prevailed himself of all the countries lying between the Rhine and the Loire. By force or treachery, he conquered all the petty kingdoms which had been erected in that country. His dominions had been divided, reunited, and divided again; and were on the point of being united a second time, when the great imプロ王 Mahomet began to make figures in the world.

In Spain, the Visigoths erected a kingdom ten years before the conquest of Rome by the Heruli. This kingdom they had extended eastward, about the same time that Clovis was extending his conquests to the west: so that the two kingdoms met at the river Loire. The confluence of this approach of such barbarous conquerors towards each other was an immediate war. Clovis proved victorious, and subdued great part of the country of the Visigoths, which put a final stop to their conquests on that side.

Another kingdom had been founded in the western parts of Spain by the Suevi, a considerable time before the Romans were finally expelled from that country. In 409 this kingdom was entirely subverted by the Gothic king of the Goths; and the Suevi were pushed up in a small district of Lusitania and Galicia, that it seemed impossible for them to recover themselves. During the above-mentioned period, however, while the attention of the Goths was turned another way, they had found means again to erect themselves into an independent state, and to become masters of considerably extended territories. But this too proved of short duration. In 584 the Goths attacked them; totally destroyed their empire a second time; and thus became masters of all Spain, except some small part which still owned subjection to the emperor.
I H S T O R Y.

Tent of Confianteine. Of this part, however, the Goths became masters also in the year 623; which concludes the 10th general period.

Africa, properly so called, had changed its masters three times during this period. The Vandals had expelled the Romans, and erected an independent kingdom, which was at last overthrown by the emperors of Confianteine; and from them the greatest part of it was taken by the Goths in 620.

At the commencement of the tenth general period (which begins with the flight of Mahomet in the year 622, from whence his followers date their era called the Hegira), we see every thing prepared for the great revolution which was now to take place; the Roman empire in the west annihilated; the Persian empire and that of Confianteine weakened by their mutual wars and intestine divisions; the Indians and other eastern nations unacquainted to war, and ready to fall a prey to the first invader; the southern parts of Europe in a distracted and barbarous state; while the inhabitants of Arabia, from their earliest origin, accustomed to war and plunder, and now united by the most violent superstition and enthusiasm of conquest, were like a flood pent up, and ready to overwhelm the rest of the world.—The northern nations of Europe and Asia, however formidable in aftertimes, were at present unknown and peaceable, at least with respect to their southern neighbours; so that there was in no quarter of the globe any power capable of opposing the conquests of the Arabs. With amazing celerity, therefore, they over-ran all Syria, Paleflne, Persia, Bukharia, and India, extending their conquests farther to the eastward than ever Alexander had done. On the west side, their empire extended over Egypt, Barbarry, and Spain, together with the islands of Sicily, Sardinia, Majorca, Minorca, &c. and many of the Archipelago islands; nor were the coasts of Italy itself free from their incursions; nay, they are even said to have reached the distant and barren country of Iceland. At last this great empire, as well as others, began to decline. Its ruin was very sudden, and owing to its internal divisions. Mahomet had not taken care to establish the apothecary in his family, or to give any particular directions about a successor. The conformity of this was, that the caliphate, or succession to the apothecary, was feized by many usurpers in different parts of the empire; while the true caliphs, who reigned at Bagdad, gradually lost all power, and were regarded only as a kind of high priests. Of these divisions the Turks took advantage to establish their authority in many provinces of the Mohammedan empire: but as they embraced the same religion with the Arabs, and were filled with the same enthusiastic desire of conquest, it is of little consequence to distinguish between them; as indeed it signified little to the world in general whether the Turks or Saracens were the conquerors. Their guilt was cruel, barbarous, ignorant, and superflitious.

While the barbarians of the east were thus grasping at the empire of the whole world, great disturbances happened among the less barbarous nations of the west. Superflition seems to have been the ruling notion in both cases. The Saracens and Turks conquered for the glory of God, or of his apostle Mahomet and his successors; the western nations professed an equal regard for the divine glory, but which was only to be perceived in the respect they paid to the pope and clergy. Ever since the establishment of Christianity by Confianteine, the bishops of Rome had been gradually extending their power, and attempting not only to render them independent, but even to assume an authority over the emperors themselves. The destruction of the empire was far from weakening their power, that it afforded them opportunities of greatly extending it, and becoming judges of the sovereigns of Italy themselves, whose barbarity and ignorance prompted them to submit to their decisions. All this time, however, they themselves had been in subjection to the emperors of Confianteine; but on the decline of that empire, they found means to get themselves exempted from this subjection. The principal authority in the city of Rome was then engrossed by the bishop; though of right it belonged to the duke appointed by the exarch of Ravenna. But tho' they had now little to fear from the eastern emperors, they were in great danger from the ambition of the Lombards, who aimed at the conquest of all Italy. This aspiring people the bishops of Rome determined to check; and therefore, in 726, when Liutprand, king of the Lombards had taken Ravenna and expelled the exarch, the pope undertook to restore him. For this purpose he applied to the Venetians, who are now first mentioned in history as a state of any consequence; and by their means the exarch was restored. Some time before, a quarrel had happened between the pope (Gregory II.) and Leo emperor of the east, about the worship of images. Leo, who it seems, in the midst of so much barbarism, had still preserved some share of common sense and reason, reproved the worship of images in the strongest terms, and commanded them to be destroyed throughout his dominions. The pope, whose cause was favoured by the most absurd superstitions, and by these only, refused to obey the emperor's commands. The exarch of Ravenna, as a subject of the emperor, was ordered to force the pope to a compliance, and even to seize or afflict him in case of a refusal. This excited the pious zeal of Liutprand to assist the pope, whom he had formerly designed to subdue: the exarch was first excommunicated, and then torn in pieces by the enraged multitude; the duke of Naples shared the same fate; and a vast number of the Iconodulists, or Image-breakers, as they were called, were slaughtered without mercy; and to complete all, the subject of the exarchate, at the instigation of the pope, renounced their allegiance to the emperor.

Leo was no sooner informed of this revolt than he ordered a powerful army to be raised, in order to reduce the rebels, and take vengeance on the pope. Alarmcd at these warlike preparations, Gregory looked round for some power on which he might depend for protection. The Lombards were polluted with sufficient force, but they were too near and too dangerous neighbours to be trusted; the Venetians, though zealous Catholics, were as yet unable to withstand the force of the empire; Spain was over-run by the Saracens: the French seemed, therefore, the only people to whom it was advisable to apply for aid; as they were able to oppose the emperor, and were likewise enemies to his edict. Charles Martel, who at the
Civil History.

Time governed France as mayor of the palace, was therefore applied to; but before a treaty could be concluded, all the parties concerned were removed by death. Constanstine Copronymus, who succeeded Leo at Constantinople, not only perished in the opposition to image-worship, begun by his predecessor, but prohibited also the invocation of saints. Zachary, who succeeded Gregory III. in the pontificate, proved as zealous an adversary as his predecessors. Pepin, who succeeded Charles Martel in the sovereignty of France, proved as powerful a friend to the pope as his father had been. The people of Rome had nothing to fear from Constantinople; and therefore drove out all the emperor's officers. The Lombards, awed by the power of France, for some time allowed the pope to govern in peace the dominions of the exarchate; but in 752, Attilius king of Lombardy not only reduced the greatest part of the pope's territories, but threatened the city of Rome itself. Upon this an application was made to Pepin, who obliged Attilius to restore the places he had taken, and gave them to the Pope, or, as he said, to St. Peter. The Greek emperor, to whom they of right belonged, remonstrated to no purpose. The pope from that time became possessed of considerable territories in Italy; which, from the manner of their donation, go under the name of St Peter's Patrimony. It was not, however, before the year 774 that the pope was fully secured in these new dominions. This was accomplished when the kingdom of the Lombards was totally destroyed by Charlemagne, who was thereupon crowned king of Italy. Soon after, this monarch made himself master of all the Low-Countries, Germany, and part of Hungary; and in the year 800, was solemnly crowned emperor of the west by the pope.

This was the world once more shared among three great empires. The empire of the Arabs or Saracens extended from the river Ganges to Spain; comprising almost all of Asia and Africa which has ever been known to Europeans, the kingdoms of China and Japan excepted. The eastern Roman empire was reduced to Greece, Asia Minor, and the provinces adjoined to Italy. The empire of the west under Charlemagne, comprehended France, Germany, and the greatest part of Italy. The Saxons, however, as yet possessed Britain un molested by external enemies, though the seven kingdoms erected by them were engaged in perpetual contests. The Venetians also enjoyed a nominal liberty; though it is probable that their situation would render them very much dependent on the great powers which surrounded them. Of all nations on earth, the Scots and Piets, and the remote ones of China and Japan seem to have enjoyed, from their situation, the greatest share of liberty; unless, perhaps, we except the Scandinavians, who, under the names of Danes and Normans, were soon to infest their southern neighbours. But of all the European potencies, the popes certainly exercised the greatest authority; since even Charlemagne himself submitted to accept the crown from their hands, and his successors made them the arbiters of their differences.

Matters, however, did not long continue in this state. The empire of Charlemagne was on the death of his son Lewis divided among his three children. Endless disputes and wars ensued among them, till at last the sovereign power was seized by Hugh Capet in 987. The Saxon heptarchy was disjoined in 827, and the whole kingdom of England reduced under one head. The Danes and Normans began to make depredations and infest the neighbouring states. The former conquered the English Saxons, and seized the government, but were in their turn expelled by the Normans in 1066. In Germany and Italy the greatest disturbances arose from the contests between the papal emperors. To all this if we add the internal contests which happened through the ambition of the powerful barons of every kingdom we can scarce form an idea of times more calamitous than those of which we now treat. All Europe, nay, all the world, was one great field of battle; for the empire of the Mahometans was not in a more settled state than that of the Europeans. Caliphs, sultans, emirs, &c. waged continual war with each other in every quarter; new sovereignties every day sprung up, and were as quickly destroyed. In short, through the ignorance and barbarity with which the whole world was overspread, it seemed in a manner impossible that the human race could long continue to exist; when happily the crusades, by directing the attention of the Europeans to one particular object, made them in some measure suspend their slaughters of one another.

11. The crusades originated from the suzerainity of Eleventh and twelfth grand parties into which the world was at that period. The era time divided, namely, the Christians and Mahometans. Both looked upon the small territory of Palestine which they called the Holy Land, to be an invaluable acquisition, for which no sum of money could be an equivalent; and both took the most unjustifiable methods to accomplish their desires. The superstition of Omar the second caliph had prompted him to invade this country, part of the territories of the Greek emperor, who was doing him no hurt; and now when it had been so long under the suzerainty of the Mahometans, a similar superstition prompted the pope to send an army for the recovery of it. The crusaders accordingly poured forth in multitudes, like those with which the kings of Asia formerly invaded Greece; and their fate was pretty similar. Their impious vices at first, indeed, carried every thing before them; they recovered all Palestine, Phcenicia, and part of Syria, from the infidels; but their want of conduct soon lost what their valour had obtained, and very few of that vast multitude which had left Europe ever returned to their native countries. A second, a third, and several other crusades, were preached, and were attended with all success, in both respects: vast numbers took the cross, and repaired to the Holy Land; which they polluted by the most abominable massacres and treacheries, and from which very few of them returned. In the third crusade Richard I. of England was embarked, who seems to have been the bel general that ever went into the east; but even his valour and skill were not sufficient to repair the faults of his companions; and he was obliged to return even after he had entirely defeated his antagonists, and was within sight of Jerusalem.

But while the Christians and Mahometans were thus successively contending for a small territory in the of the western parts of Asia, the nations in the more easterly parts were threatened with total extermination. Jen-
In the before anee. The rapidity of his laue. coming; extinct, conqueror ifuia ~r~r~d worth the notion with ridicule when this day, but he ~eign, not heard of a temple, or any particular place to him.

The Moguls, over whom Jenghiz Khan assumed the sovereignty, were a people of East Tartary, divided into a great number of petty governments as they are at this day, but who owned a sujebtion to one sove reign, whom they called Vang-khan, or the Great Khan. Temujin, afterwards jengiz-khan, was one of these petty princes; but unjustly deprived of the greatest part of his inheritance at the age of 13, which he could not recover till he arrived at that of 40. This corresponds with the year 1201, when he totally reduced the rebels; and as a specimen of his lenity exiled 70 of their chiefs to be thrown into as many caldrons of boiling water. In 1202, he defeated and killed Vang-khan himself (known to the Europeans by the name of Taugur John of Affin); and posseing himself of his vast dominions, became from henceforward altogether irresistible. In 1206, having still continued to enlarge his dominions, he was declared khan of the Moguls and Tartars; and took upon him the title of Jenghiz Khan or The most Great Khan of Khans. This was followed by the reduction of the kingdom of Hya in China, Tangut, Kitay, Turksettan, Karazm, (the kingdom of Gauza founded by Mahmud Gauza), Great Bukhara, Persia, and part of India; and all these vast regions were reduced in 26 years. The devastations and slaughters with which they were accompanied were unparalleled, no fewer than 14,470,000 persons being computed to have been massacred by Jenghiz Khan during the last 22 years of his reign. In the beginning of 1227 he died, thereby freeing the world from a most bloody tyrant. His successors completed the conquest of Korea and China; but were foiled in their attempts on Cochinchina, Tong-king, and Japan. On the western side the Tartar dominions were not much enlarged till the time of Bulula, who conquering Media, Babylonia, Mefopotamia, AfSyria, Syria, Georga, Armenia, and almost all Asia Minor; putting an end to the empire of the Saracens by the taking of Bagdad in 1258.

The empire of Jenghiz Khan had the fate of all others. Being far too extensive to be governed by one head, it split into a multitude of small kingdoms, as it had been before his time. All these princes, however, owned allegiance to the family of Jenghiz Khan till the time of Timur Bek, or Tamerlane. The Turks, in the mean time, urged forward by the inundation of Tartars who poured in from the east, were forced upon the remains of the Greek empire; and at the time of Tamerlane afo remembered, they had already founded this once mighty empire within the walls of Constaninopole.

In the year 1335, the family of Jenghiz Khan becoming extinct in Persia, a long civil war ensued; during which Timur Bek, one of the petty princes among whom the Tartar dominions were divided, found means to aggrandize himself in a manner similar to what Jenghiz Khan had done about 150 years before. Jenghiz Khan, indeed, was the model whom he proposed to imitate; but it must be allowed that Timur was more merciful than Jenghiz Khan, if indeed the word can be applied to such inhuman tyrants. The plan on which Jenghiz Khan conducted his expeditions was that of total extermination. For some time he utterly extinguished the inhabitants of those places which he conquered, design ing to people them anew with his Moguls; and in consequence of this resolution, he would employ his army in beheading 100,000 prisoners at once. Timur's cruelty, on the other hand, seldom went farther than the pounding of 2000 or 4000 people in large mortars, or building them among bricks and mortar into a wall. We must observe, however, that Timur was not a deist, but a Mahometan, and conquered expressely for the purpose of spreading the Mahometan religion; for the Moguls had now adopted all the superflitious and absurdities of Mahomet. Thus was all the eastern quarter of the world threatened anew with the most dreadful devastations, while the western nations were exhausting themselves in fruitless attempts to regain the Holy Land. The Turks were the only people who seem at this period to have been gathering strength, and by their perpetual encroachments threatened to swallow up the western nations as the Tartars had done the eastern ones.

In 1362, Timur invaded Bukharia, which he reduced in five years. He proceeded in his conquests, though not with the same celerity as Jenghiz Khan, till the year 1387, when he had subdued all Persia, Armeniа, Georgia, Karazin, and great part of Tartary. After this he proceeded westward, subduing all the countries to the Euphrates; made himself master of Bagdad; and even entered Raffia, where he pillaged the city of Moscows. From thence he turned his arms to the east, and totally subdued India. In 1393, he invaded and reduced Syria; and having turned his arms against the Turks, forced their sultan Bajazet to raise the siege of Constaninopole. This brought on an engagement, in which Bajazet was entirely defeated and taken prisoner; which broke the power of the Turks to such a degree, that they were not for some time able to recover themselves. At last this great conqueror died in the year 1405, while on his way to conquer China, as Jenghiz Khan had done before him.

The death of Timur was followed almost immediately by the dissolution of his empire. Most of the nations he had conquered recovered their liberty. The Turks had now no further obstacle to their conquest of Constaninopole. The western nations having exhausted themselves in the holy wars, as they were called, had lost that inatiible thirst after conquest which for so long time poisoned the minds of men. They had already made considerable advances in civilization, and began to study the arts of peace. Gunpowder was invented, and its application to the purposes of war already known; and though no invention threatened to be more destructive, perhaps none was ever more beneficial to the human race. By the use of...
History.

Civil History.

of fire-arms, nations are put more on a level with each other than formerly they were; war is reduced to a regular system, which may be studied with as much success as any other science. Conquests are not now to be made with the same ease as formerly; and hence the last ages of the world have been much more quiet and peaceful than the former ones. In 1453, the conquest of Constantinople by the Turks fixed that wandering people to one place: and though now they possess very large regions both in Europe, Asia, and Africa, an effectual stop hath long been put to their further progress.

About this time, also, learning began to revive in Europe, where it had been long lost; and the invention of printing, which happened about the same time, rendered it in a manner impossible for barbarism ever to take place in such a degree as formerly. All nations of the world, indeed, seem now at once to have laid aside much of their former ferocity; and, though wars have by no means been uncommon, they have not been carried on with such circumstances of fury and savage cruelty as before. Instead of attempting to enrich themselves by plunder, and the spoils of their neighbours, mankind in general have applied themselves to commerce, the only true and durable source of riches. This soon produced improvements in navigation; and these improvements led to the discovery of many regions formerly unknown. At the same time, the European powers, being at last tolerably fertile that extensive conquests could never be permanent, applied themselves more to provide for the security of those dominions which they already possessed than to attempt the conquest of another; and this produced the policy to which so much attention was later paid, namely, the preserving of the balance of Europe, which happened about the same time, by acquiring sufficient strength to overpower another.

In the end of the 15th century, the vast continent of America was discovered; and, almost at the same time, the passage to the East-Indies by the Cape of Good Hope. The discovery of these rich countries gave a new turn to the ambition of the Europeans. To enrich themselves, either by the gold and silver produced in these countries, or by traffic with the natives, now became the object. The Portuguese had the advantage of being the first discoverers of the eastern and the Spaniards of the western countries. The former did not neglect so favourable an opportunity of enriching themselves by commerce. Many settlements were formed by them in the East-India islands, and on the continent: but their avarice and perfidious behaviour towards the natives proved at last the caule of their total expulsion. The Spaniards enriched themselves by the vast quantities of the precious metals imported from America, which were not obtained but by the most horrid massacres committed on the natives, and of which an account is given under the different names of the American countries. These possessions of the Spaniards and Portuguese soon excited other European nations to make attempts to share with them in their treasures, by planting colonies in different parts of America, and making settlements in the East Indies; and thus has the rage of war in some measure been transferred from Europe to these distant regions; and, after various contests, the British at last obtained a great superiority in the East Indies, and in America previous to the late revolutions.

In Europe the only considerable revolutions which happened during this period, were, the total expulsion of the Moors and Saracens from Spain, by the taking of Grenada in 1491; the union of the kingdoms of Aragon and Castile, by the marriage of Ferdinand and Isabella; and the revolt of the states of Holland from the Spaniards. After much contention and bloodshed, these last obtained their liberty, and were declared a free people in 1668; since which time they have continued an independent and very considerable nation of Europe.

In Asia nothing of importance hath happened since the taking of Constantinople by the Turks. That continent is now divided among the following nations. The most northerly part, called Siberia, extending to the very extremity of the continent, is under the power of Russia. To the southward, from Asia Minor to China and Corea, are the Tartars, formidable indeed from their numbers, but, by reason of their barbarity and want of union, incapable of attempting anything. The Turks possess the western part of the continent called Asia Minor, to the river Euphrates. The Arabs are again confined within their own peninsula; which they possess, as they have ever done, without owning subjection to any foreign power. To the east of Turkey in Asia lies Persia, now more confined in its limits than before; and to the eastward of Persia lies India, or the kingdom late of the Mogul, comprehending all the country from the Indus to the Ganges, and beyond that river. Still farther to the east lie the kingdoms of Siam, Pegu, Thibet, and Cochin-China, little known to the Europeans. The vast empire of China occupies the most easterly part of the continent; while that of Japan comprehends the islands which go by that name, and which are supposed to lie at no great distance from the western coasts of America.

In Africa the Turks possess Egypt, which they conquered in 1517, and have a nominal jurisdiction over the states of Barbary. The interior parts are filled with barbarous and unknown nations, as they have always been. On the western coasts are many settlements of the European nations, particularly the British and Portuguese; and the southern extremity is possessed by the Dutch. The easterly coasts are almost totally unknown. The Astatic and African islands are either possessed by the Europeans, or inhabited by savage nations.

The European nations at the beginning of the 17th century were, Sweden, Muscovy, Denmark, Poland, Britain, Germany, Holland, France, Spain, Portugal, Italy, and Turkey in Europe. Of these the Russians, though the most barbarous, were by far the most considerable, both in regard to numbers and the extent of their empire; but their situation made them little feared by the others, who lay at a distance from them. The kingdom of Poland, which was first set up in the year 1000, proved a barrier betwixt Russia and Germany; and at the same time the policy afo mentioned, of keeping up the balance of power in Europe, rendered it probable that no one European nation, whatever wars it might be engaged in, would have been totally destroyed, or ceased to exist as
as a distinct kingdom. The late dismemberment of Poland, however, or its partition between the three powers, Russia, Hungary, and Prussia, was a step very inconvenient with the above political system; and it is flattering with what tameness it was acquiesced in by the other powers. Subsequent circumstances particularly the passilences with which the ambitious designs of Russia against the Porte have been so long held, seem to indicate a total dereliction of that scheme of equilibrium, formerly so wisely, though perhaps sometimes too anxiously, attended to.

The revolution of the British colonies in America; it was suppos'd by the enemies of Britain, would have given a fatal shock to her strength and wond'rous superiority. The consequences, however, have been very different. Those colonies, it is true, have been disjointed from the mother country, and have attained an independent rank among the nations. But Britain has had no cause to repine at the separation. Divested only of a splendid circumference, an expensive and invidious appanage, and encumbrance, an expensive and invidious appanage, were never otherwise, nor ever knew what native vigour, and to display new energies, which indeed have thus become a nation of freemen as well as the Americans and the British; who, by the way, were never otherwise, nor ever knew what oppression was except in instilling it upon their African brethren. But neither is the French revolution an event which Britons, as lovers of liberty and friends to their brethren, can ever have, nor ever knew what oppression was except in instilling it upon their African brethren. But neither is the French revolution an event which Britons, as lovers of liberty and friends to the rights of mankind, should regret; or which, even in a political view, if duly considered, ought to excite either their jealousy or apprehension. In fine, we seem to be advancing to a great era in the history of human affairs. The emancipation of France, it is not to be doubted, will in time be followed by that of Spain, and other countries of Europe. The papal power, too, that scourge of nations, is declining; and the period seems to be approaching when the Roman pontiff will be reduced to his original and simple title of bishop of Rome. More liberal ideas both in politics and religion are every where gaining ground. The regulation, and perhaps in time the abolition, of the slave-trade, with the endeavours of the societies for difcovering Africa, may lead to the civilization of some parts of that immense continent and open new markets for manufactures. Finally, the Americans having established a settled government, have already become a great commercial people.

The history of religion, among all the different nations that have existed in the world, is a subject no less important and interesting than that of civil history. It is, however, less fertile of great events, affords an account of fewer revolutions, and is much more uniform than civil history. The reason of this is plain. Religion is conversant about things which cannot be seen; and which of consequence cannot suddenly and strongly affect the fates of mankind, as natural things are apt to do. The expectation of worldly riches can easily induce one nation to attack another; but it is not easy to find any thing which will induce a nation to change its religion. The invisible nature of spiritual things, the prejudice of habit and of early education, all stand in the way of changes of this kind. Hence the revolutions in religion have been few, and the duration of almost any religion of longer standing than the most celebrated empires, the changes which have happened, in general have required a long time to bring them about, and history scarce affords an instance of the religion of any nation being essentially and suddenly changed for another.

As with regard to the origin of religion, we must have recourse to the Scriptures; and are as necessarily constrained to adopt the account there given, as we are to adopt that of the creation given in the same book; namely, because no other hath made its appearance which seems in any degree rational, or consistent with itself. In what manner the true religion given to Adam was falsified or corrupted by his descendants before the flood, doth not clearly appear from Scripture. Idolatry is not mentioned; nevertheless we are assured that the inhabitants of the world were then exceedingly wicked; and as their wickedness did not confit in worshipping false gods, it may be concluded that they worshipped none at all; i. e. that the crime of the antediluvians was drin. or atheism.

After the flood, idolatry quickly made its appearance; but what gave rise to it is not certainly known. This supersition indeed seems to be natural to man, especially when placed in such a situation that he hath little opportunity of instruction, or of improving his rational faculties. This seems also probable from a caution given to the Jews, lest, when they looked up to the sun, moon, and stars, and the rest of the host of heaven, they should be driven to worship them. The origin of idolatry among the Syrians and Atlans, and also in Greece, is therefore accounted for with great probability in the following manner by the author of The Ruins of Balbec. "In those uncomfortable deserts, where the day presents nothing to the view but the uniform, tedious, and melancholy prospect of barren sands, the night dislothes a most delightful and magnificent spectacle, and appears arrayed with charms of the most attractive kind. For the most part unclouded and serene, it exhibits to the wondering eye the host of heaven in all their variety and glory. In the view of this stupendous scene, the transition from admiration to idolatry was too easy to unfractured minds; and a people whose climate offered no beauties to contemplate but those of the firmament, would naturally look thither for the objects of their worship. The form of idolatry in Greece was different from that of the Syrians; which perhaps may be attributed to that smiling and variegated scene of mountains, valleys, rivers, woods, groves, and fountains, which the transported imagination, in the midst of its pleasing astonishment, supposed to be the seats of invisible deities."
The gods of the Egyptians, who deified plants, animals, and a great variety of the productions both of nature and art. Each people also had their own particular manner of worshipping and appealing their respective deities, entirely different from the sacred rites of other countries. All this variety of religions, however, produced neither wars nor divisions among the different nations; each nation suffered its neighbours to follow their own method of worship, without discovering any displeasure on that account. There is nothing surprising in this mutual toleration, when we consider, that they all looked upon the world as one great empire, divided into various provinces, over each of which a certain order of divinities presided; for which reason they imagined that none could behold with contempt the gods of other nations, or force strangers to pay homage to theirs. — The Romans exercised this toleration in the most amiable manner; for though they would not allow any change to be made in the religions that were publicly professed in the empire, nor any new form of worship to be openly introduced, yet they granted to their citizens a full liberty of observing in private the sacred rites of other nations, and of honouring foreign deities as they thought proper.

The heathen deities were honored with rites and sacrifices of various kinds, according to their respective natures and offices. Their rites were absurd and ridiculous; while the priests, appointed to preside over this strange worship, abused their authority, by deceiving and impuling the people in the grossest manner.

From the time of the flood to the coming of Christ, idolatry prevailed among all the nations of the world, the Jews alone excepted; and even they were not always ready to run into it, as is evident from their History in the Old Testament. At the time of Christ’s appearance, the religion of the Romans, as well as their empire, extended over a great part of the world. Some people there were among the heathens who perceived the absurdities of that system, but being destitute of means, as well as of abilities, to effect a reformation, matters went on in their old way. Though there were at that time various sects of philosophers, yet all of them proceeded upon false principles, and consequently could be of no service to the advancement or reformation of religion. Nay, some, among whom were the Epicureans and Academicians, declared openly against every kind of religion whatever.

Two religions at this time flourished in Palestine, viz. The Jewish and Samaritan; between whose respective followers reigned the most violent hatred and contempt. The difference between them seems to have been chiefly about the place of worship; which the Jews would have to be in Jerusalem, and the Samaritans on Mount Gerizim. But though the Jews were certainly right as to this point, they had greatly corrupted their religion in other respects. They expected a Saviour indeed, but they mistook his character; imagining that he was to be a powerful and warlike prince, who should set them free from the Roman yoke, which they bore with the utmost impatience. They also imagined that the whole of religion consisted in observing the rites of Moses, and some others which they had added to them, without the least regard to what is commonly called morality or virtue; as is evident from the many charges our Saviour brings against the Pharisees, who had the greatest reputation for sanctity among the whole nation. To these corrupt and vicious principles they added several absurd and superstitious notions concerning the divinity, invisible powers, magic, &c. which they had partly imbibed during the Babylonian captivity, and partly derived from their neighbours in Arabia, Syria, and Egypt. The principal sects among them were the Essenes or Elefians, Pharisees, and Sadducees. The Samaritans, according to the most general opinion, had corrupted their religion still more than the Jews.

When the true religion was preached by the Saviour of mankind, it is not to be wondered at if it became on that account obnoxious to a people so deeply sunk in corruption and ignorance as the Jews then were. It is not here requisite to enter into the particulars of the doctrine advanced by him, or of the opposition he met with from the Jews; as a full account of these things, and likewise of the preaching of the gospel by the Apostles, may be found in the New Testament. — The rapid progress of the Christian religion, under the faithful and inspired ministers, soon alarmed the Jews, and raised various persecutions against its followers. The Jews, indeed, seem at first to have been every where the chief promoters of persecution; for we find that they officiously went from place to place, wherever they heard of the increase of the gospel, and by their calumnies and false suggestions endeavoured to excite the people against the Apostles. The Heathens, however, though at first they showed no very violent spirit of persecution against the Christians, soon came to hate them as much as the Jews themselves.Tacitus acquaints us with the causes of this hatred, when speaking of the first persecution under Nero. That inhuman emperor having, as was supposed, set fire to the city of Rome, to avoid the imputation of this wickedness, transferred it on the Christians. Our author informs us that they were already apprehended on account of their many and enormous crimes. Account of the author of this name (Christians), says he, was the first Christ, who in the reign of Tiberius, was executed under Pontius Pilate, procurator of Judea. The by Nero.
HISTORY.

Second persecution.

The persecution under Nero was succeeded by another under Domitian; during which the Apostle John was banished to Patmos, where he saw the visions, and wrote the book called his Revelation, which completes the canon of Scripture. This persecution commenced in the 95th year of the Christian era; and John is supposed to have written his Revelation in the year after, or in the following one.

During the first century, the Christian religion spread over a great number of different countries; but as we have now no authentic records concerning the travels of the Apostles, or the success which attended them in their ministry, it was impossible to determine how far the gospel was carried during this period. We are, however, assured, that even during this early period many corruptions were creeping in, the progress of which was with difficulty prevented even by the apostles themselves. Some corrupted their profession by a mixture of Judaism, others by mixing it with the oriental philosophy; while others were already attempting to deprive their brethren of liberty, setting themselves up as eminent pastors, in opposition even to the apostles, as we learn from the epistles of St. Paul, and the third epistle of St. John. Hence arose the schisms, Cerinthians, Nicolaitans, Nazarenes, Visonites, &c., with which the church was troubled during this century.

Concerning the ceremonies and method of worship used by the Christians of the first century, it is impos-

sible to say any thing with certainty. Neither is the church order, government, and discipline, during this period, ascertained with any degree of exactness. Each of those parties, therefore, which exist at this day, contends with the greatest confidence for that particular mode of worship which they themselves have adopted; and some of the most rigidly would willingly monopolise the word church in such a manner as to exclude from all hope of salvation every one who is not attached to their particular party. It does not however appear that, excepting baptism, the Lord’s supper, and anointing the sick with oil, any external ceremonies or symbols were properly of divine appointment. According to Dr. Mollison, “there are several circumstances which incline us to think, that the friends and apostles of our blessed Lord either tolerated through necessity, or appointed by wise reasons, many other external rites in various places. At the same time, we are not to imagine, that they ever contended upon any person a perpetual, indeclinable, pontifical authority, or that they enjoined the same rites in all churches. We learn, on the contrary, from authentic records, that the Christian worship was from the beginning celebrated in a different manner in different places; and that, no doubt, by the orders, or at least with the approbation, of the apostles and their disciples. In those early times, it was both wife and necessary to shew, in the establishment of outward forms of worship, some indulgence to the ancient opinions, manners, and laws, of the respective nations to whom the gospel was preached.”

The second century commences with the third year of the emperor Trajan. The Christians were still persecuted; but as the Roman emperors were for the most part of this century princes of a mild and moderate turn, they persecuted less violently than formerly. Marcus Aurelius, notwithstanding the clemency and philosophy for which he is so much celebrated, treated the Christians worse than Trajan, Adrian, or even Severus himself did, who was noted for his cruelty. This refpite from rigorous persecution proved a very favourable circumstance for the spreading of the Christian religion; yet it is by no means easy to point out the particular countries through which it was diffused. We are, however, assured, that in the second century, Christ was worshipped as God almost through the whole east; as also among the Germans, Spaniards, Celts, and many other nations: but which of them received the gospel in the first century, and which in the second, is a question unanswerable at this distance of time. The writers of this century attribute the rapid progress of Christianity chiefly to the extraordinary gifts that were imparted to the first Christians, and the miracles which were wrought at their command; without supposing that any part of the successes ought to be ascribed to the intervention of human means, or secondary causes. Many of the moderns, however, are so far from being of this opinion, that they are willing either to deny the authenticity of all miracles said to have been wrought since the days of the apostles or to ascribe them to the power of the devil. To enter into the particulars of this controversy is foreign to our present purpose; for which reason we must refer to the writers of polemic divinity, who have largely treated of this and other points of a similar nature.

The
HISTORY.

The corruptions which had been introduced in the first century, and which were almost coeval with Christianity itself, continued to gain ground in the second. Ceremonies, in themselves futile and uncivil, but which must be considered as highly pernicious when joined to a religious nature, by other ordinance of heaven and virtue, and virtuous conduct of its professors, were multiplied for no other purpose than to please the ignorant multitude. The immediate consequence of this was, that the attention of Christians was drawn aside from the important duties of morality; and they were led to imagine, that a careful observance of the ceremonies might make amends for the neglect of moral duties. This was the most pernicious opinion that could possibly be entertained; and was indeed the very foundation of that enormous system of ecclesiastical power which afterwards took place, and held the whole world in slavery and barbarism for many ages.

Another mischief was the introduction of mysteries, as they were called, into the Christian religion; that is, infusing that some parts of the worship in common use had a hidden efficacy and power far superior to the plain and obvious meaning allotted to them by the vulgar; and by paying peculiar respect to these mysteries, the pretended teachers of the religion of Jesus accommodated their doctrines to the taste of their harvest neighbours, whose religion consisted in a heap of mysteries, of which nobody knew the meaning. By these, and other means of a similar kind, the Christian pastors greatly abridged the liberty of their flocks. Being masters of the ceremonies and mysteries of the Christian religion, they had it in their power to make their followers worship and believe whatever they thought proper; and this they did not fail to make use of for their own advantage. They perverted the people, that the ministers of the Christian church succeeded to the character, rights, and privileges of the Jewish priesthood; and accordingly the bishops considered themselves as invested with a rank and character similar to those of the high-priest among the Jews, while the prebendaries represented the priests, and the deacons the Levites. This notion, which was first introduced in the reign of Adrian, proved a source of very considerable honour and profit to the clergy.

The form of ecclesiastical government was in this century rendered permanent and uniform. One inspector or bishop presided over each Christian assembly, to which office he was elected by the voices of the whole people. To affih him in his office, he formed a council of prebendaries, which was not confined to any stated number. To the bishops and prebendaries the ministers or deacons were subject; and the latter were divided into a variety of classes, as the different exigencies of the church required. During a great part of this century, the churches were independent of each other; nor were they joined together by association, confederacy, or any other bonds but those of charity. Each assembly was a little state governed by its own laws: which were either enacted, or at least approved of, by the society. But in proces of time all the Christian churches of a province were formed into one large ecclesiastical body, which, like confederate states, assembled at certain times, in order to deliberate about the common interests of the whole. This institution had its origin among the Greeks; but in a short time became universal, and similar assemblies were formed in all places where the gospel had been planted. These assemblies, which consisted of the deputies or commissioners from several churches, were called synods by the Greeks, and councils by the Latins; and the laws enacted in their general meetings were called canon, i.e., rules.

The councils, of which we find not the smallest trace before the middle of this century, changed the whole face of the church, and gave it a new form; by them the ancient privileges of the people were considerably diminished, and the power and authority of the bishops greatly augmented. The humility, indeed, and prudence, of these pious prelates hindered them from uniting all at once the power with which they were afterwards invested. At their first appearance in these general councils, they acknowledged that they were no more than the delegates of their respective churches, and that they acted in the name and by appointment of their people. But they soon changed this humble tone; imperceptibly extended the limits of their authority; turned their influence into dominion, their counsels into laws; and at length openly asserted, that Christ had empowered them to prefer and to his people authoritative rules of faith and manners. Another effect of these councils was the gradual abolition of that perfect equality which reigned among all bishops in the primitive times: for the order and dignity of these assemblies required, that some one of the provincial bishops met in council should be invested with a superior degree of power and authority; and hence the right of metropolitans derive their origin. In the mean time the bounds of the church were enlarged; the custom of holding councils was followed wherever the sound of the gospel had reached; and the universal church had now the appearance of one vast republic formed by a combination of a great number of little states. This occasioned the creation of a new order of ecclesiastics, who were appointed in different parts of the world as heads of the church, and whose office it was to preserve the confederacy and union of that immense body, whose members were so widely dispersed throughout the nations; such was the nature and office of the Patriarchs; an among whom, at length, ambition, being arrived at its most indolent period, formed a new dignity, investiture the bishop of Rome with the title and authority of the prince of the Patriarchs.

During the second century, all the sees continued account of which had sprung up in the first, with the addition of several others; the most remarkable of which were the See of Antioch. These owed their rise to their error propagated by some doctors of the church, who affirmed that Christ had established a double rule of canon and virtue for two different orders of Christians. Of these rules, one was ordinary, the other extraordinary; the one of a lower dignity, the other more sublime: the first for persons in the active scenes of life; the other for those who, in a sacred retreat, aspir'd after the glory of a celestial state. In consequence of this system, they divided into two parts all those moral doctrines and instructions which they had received either by writing or tradition. One of these divisions they called precepts, and the other consuls. They gave the name of consuls to those laws that were universally obli-
Thus were prevailed for the original superstitions and those by which Christian men were led astray. They believed in invisible beings and spirits, and breathed after an intimate communion with the Supreme Being. Thus were these men, who made pretensions to uncommon holiness, and obeying all the precepts and counsels of Christ, in order to their enjoyment of communion with God, here, and after the dissolution of their mortal bodies, they might ascend to the greater facility, and find nothing to retard their approach to the centre of happiness and perfection. They looked upon themselves as prohibited from the use of things which it was lawful for other Christians to enjoy; such as wine, flesh, marriage, and commerce. They thought it their indispensible duty to extenuate their body by watchings, abstinence, labour, and hunger. They looked for felicity in solitary retreats, and desert places; where by severe and affidious efforts of sublime meditation, they raised the soul above all external objects, and all sensual pleasures. They were distinguished from other Christians, not only by their title of Ascetics, mortific, and philosophers, but also by their garb. In this century, indeed, those who embraced such an austere kind of life, submitted themselves to all these mortifications in private, without breaking afunder their social bonds, or withdrawing themselves from mankind; but in process of time they retired into deserts, and, after the example of the Elenes and Therapeutae, they formed themselves into certain companies. This austere sect arose from an opinion which has been more or less prevalent in all ages and in all countries, namely, that religion consists more in prayers, meditations, and a kind of secret intercourse with God, than in fulfilling the social duties of life in acts of benevolence and humanity to mankind. Nothing can be more evident than that the Scripture reckons the fulfilling of these infinitely superior to the observance of all the ceremonies that can be imagined; yet it somehow or other happens, that almost every body is more inclined to observe the ceremonial part of devotion than the moral; and hence, according to the different humours, or constitutions of different persons, there have been numberless forms of Christianity, and the most virulent contentions among those who professed themselves followers of the Prince of Peace.

It is obvious, that if the moral conduct of Christians was to be made the standard of faith, instead of speculative opinions, all these divisions must cease in a moment; but while Christianity or any part of it, is made to confit in speculation, or the observance of ceremonies, it is impossible there can be any end of sects or heresies. No opinion whatever is so absurd, but some people have pretended to argue in its defence; and no ceremony so insignificant, but it hath been explained and sanctified by hot-headed enthusiasts. And hence ceremonies, sects, and absurdities, have been multiplied without number, to the prejudice of society and of the Christian religion. This short relation of the rise of the Ecclastic sect will also serve to account for the rise of any other; so that we apprehend it is needless to enter into particulars concerning the rest, as they all took their origin from the same general principle variously modified, according to the different dispositions of mankind.

The Ecclastic sect began first in Egypt, from whence it spread into Syria and the neighbouring countries. At length it reached the European nations; and hence that train of austerities and superstitious vows and rites which totally obscured, or rather annihilated, Christianity; the celibacy of the clergy, and many other absurdities of the like kind. The errors of the Ecclastics, however, did not stop here: In compliance with the doctrines of some Pagan Philosophers, they affirmed, that it was not only lawful, but even praiseworthy, to deceive, and to use the expedient of a lie, in order to advance the cause of piety and truth; and hence the pius frauds for which the church of Rome hath been so notorious, and with which she hath been so often and justly reproached.

As Christians thus deviated more and more from the true practice of their religion, they became more zealous in the external profession of it. Anniversary festivals were celebrated in commemoration of the death and resurrection of Christ, and of the effusion of the Holy Ghost on the Apostles. Concerning the days on which these festivals were to be kept, there arose violent contests. The Asiatic churches in general differed in this point from those of Europe; and towards the conclusion of the second century, Victor, bishop of Rome took it in his head to force the eastern churches to follow the rules laid down by the western ones. This they absolutely refused to comply with: upon which Victor cut them off from communion with the church of Rome, though by means of the intercession of some prudent people, the difference was made up for the present.

During most of the third century, the Christians were allowed to enjoy their religion, such as it was, without molestation. The emperors Maximinus and Decius, indeed, made them feel all the rigours of a severe persecution; but their reigns were short, and from the death of Decius to the time of Dioclesian the Church enjoyed tranquillity. Thus vast multitudes were converted; but at the same time the doctrine grew daily more corrupt, and the lives of professed Christians more wicked and scandalous. New ceremonies were invented in great numbers, and an unaccountable passion no sooner prevailed for the oriental superstitions concerning demons; whence proceeded the whole train of exorcism, spells, and fears for the apparition of evil spirits, which to this day are nowhere eradicated. Hence also the custom of avoiding all connections with those who were not baptised, or who lay under the penalty of excommunication, as persons supposed to be under the dominion of some evil spirit. And hence the rigour and severity of that discipline and penalty imposed upon those who had incurred, by their immoralities, the censure of the church. Several traditions were now made in the manner of celebrating the Lord's supper. The prayers used on this occasion were lengthened, and the solemnity and pomp with which it was attended were considerably increased. Gold and silver vessels were used in the celebration; it was thought essential to salvation, and for that reason administered even to infants. Baptism was celebrated twice a year to such as, after a long course of trial and preparation, offered themselves candidates.
The remission of sins was thought to be its immediate consequence; while the bishop, by prayer and imposition of hands, was supposed to confer those sanctifying gifts of the Holy Ghost that are necessary to a life of righteousness and virtue. An evil demon was supposed naturally to reside in every person who was the author and source of all the corrupt dispositions and unrighteous actions of that person. The driving out of this demon was therefore an essential requisite for baptism; and, in consequence of this opinion the bishops, from whom returned home clothed in white garments, adorned with crowns, as sacred emblems, the former of their inward purity and innocence, and the latter of their victory over sin and the world.

Failings began now to be held in more esteem than formerly. A high degree of facility was attributed to this practice; it was even looked upon as indispensably necessary, from a notion that the demons directed their force chiefly against those who pampered themselves with delicious foods and were left troublesome to the lean and hungry. Whosoever lived under the severities of a rigorous abstinence.—The sign of the cross also was supposed to administer a vicarious power over all forts of trials and calamities; and, in consequence of this opinion, the bishops, from whom returned home clothed in white garments, adorned with crowns, as sacred emblems, the former of their inward purity and innocence, and the latter of their victory over sin and the world.

The fourth century is remarkable for the establishment of Christianity by law in the Roman empire; which, however, did not take place till the year 324. In the beginning of this century, the empire was governed by four chieftains, viz. Diocletian, Maximian, Constantius Chlorus, and Galerius; under whom the church enjoyed a perfect toleration. Diocletian, the much addicted to superstition, had no ill-will against the Christians; and Constantius Chlorus, having abandoned polytheism, treated them with condescension and benevolence. This alarmed the Pagan priests, whose interests were so closely connected with the continuance of the ancient superstitions; and who apprehended, not without reason, that the Christian religion would at length prevail throughout the empire. To prevent the downfall of the pagan superstition therefore, they applied to Diocletian and Galerius; Caesar by whom a most bloody persecution was commenced in the year 303, and continued till 311. An asylum, however, was opened for the Christians in the year 304. Galerius having dethroned Diocletian and Maximian, declared himself emperor in the east; leaving all the western provinces to which great numbers of Christians referred to avoid the cruelty of the former to Constantius Chlorus. At length Galerius, being overthrown with an inurable and dreadful defeat, published an edict ordering the persecution to cease, and restoring freedom to the Christians, whom he had most inhumanely oppressed for eight years. Galerius died the same year; and in a short time after, when Constantine the Great ascended the throne, the Christians were freed from any further uneasiness, by his revoking all the penal laws against them; and afterwards lifting edicts, by which no other religion than the Christian was tolerated throughout the empire.

This event, however, so favourable to the outward peace of the church, was far from promoting its internal harmony, or the reformation of its leaders. The clergy, who had all this time been augmenting their power at the expense of the liberty of the people, now set no bounds to their ambition. The bishop of Rome, the first in rank, and distinguished by a sort of pre-eminency above the rest of the prelates. He surpassed all his brethren in the magnificence and splendor of the church over which he presided, in the riches of his revenues and possessions, in the number and variety of his ministers, in his credit with the people, and in his magnanimous and splendid manner of living. Hence it happened, that when a new pontiff was to be chosen, he was to be chosen by the city of Rome; which was generally agitated with diversities of turbulent and cabalistical spirit, and often produced fatal consequences. The intrigues and disturbances which prevailed in that city in the year 366, when, upon the death of Liberius, another pontiff was to be chosen in his place, are a sufficient proof of what we have advanced. Upon this occasion, one faction elected Damasus to that high dignity, while the opposite party chose Ursicius, a deacon of the vacant church, to succeed Liberius. This double election gave rise to a dangerous schism; and to a state of civil war within the city of Rome: which was carried on with the utmost barbarity and fury, and produced the most cruel massacres and depopulations. The inhuman contest ended in the victory of Damasus; but whether his cause was more just than that of Ursicius, is not so easily determined.

Notwithstanding the pomp and splendor which surrounded the Roman see, it is certain that the bishops of Rome had not yet acquired that pre-eminence of power and jurisdiction which they afterwards enjoyed in the ecclesiastical commonwealth. Indeed, they were the most eminent order of citizens; but still they were citizens as well as their brethren, and subject, like them, to the laws and edicts of the emperors. All religious causes of extraordinary importance were examined and determined, either by judges appointed by the emperors, or councils assembled for that purpose, while those of inferior moment were decided in each district by its respective bishop. The ecclesiastical laws were enacted either by the emperor or councils. None of the bishops acknowledged that they derived their authority from the permission and appointment of the bishop of Rome, or that they were created bishops by the favour of the apostolic see. On the contrary, they all maintained that they were the ambassadors and ministers of Jesus Christ, and that their authority was derived from above. It must, however, be observed, that even in this century several of their steps were laid by which the bishops of Rome mounted afterwards to the summit of ecclesiastical power and deposition. This happened partly by the influence of the emperors, partly by the dexterity of the Roman prelates themselves, and partly by the inconveniences.
rate zeal and precipitate judgment of certain bishops. The imprudence of the emperor, and precipitation of the bishops, were remarkably discovered in the following event, which favoured extremely the ambition of the Roman pontiff. About the year 374, Valentinian enacted a law, empowering the bishop of Rome to examine and judge other bishops, that religious disputes might not be decided by any profane or secular judges. The bishops assembled in council at Rome in 378, not considering the fatal consequences that must arise from this imprudent law both to themselves and to the church, declared their approbation in the strongest terms, and recommended the execution of it in their address to the emperor Gratian. Some think, indeed, that this law empowered the Roman bishop to judge only the bishops within the limits of his jurisdiction; others, that his power was given only for a certain time, and for a particular purpose. This last notion seems the most probable; but still this privilege must have been an excellent instrument in the hands of facerrial ambition.

By the removal of the seat of empire to Constantinople, the emperor raised up, in the bishop of this new metropolis, a formidable opponent to the bishop of Rome, and a bulwark which threatened a vigorous opposition to his growing authority. For as the emperor, in order to render Constantinople a second Rome, enriched it with all the rights and privileges, honours and ornaments, of the ancient capital of the world; so its bishop, measuring his own dignity and rank by the magnificence of the new city, and its eminence as the residence of the emperor, assumed an equal degree of dignity with the bishop of Rome, and claimed a superiority over the rest of the episcopal order. Nor did the emperors disapprove of these high pretensions, since they considered their own dignity as connected in a certain measure with that of the bishop of their imperial city. Accordingly, in a council held at Constantinople in the year 381, by the authority of Theodosius the Great, the bishop of that city was, during the absence of the bishop of Alexandria, and against the consent of the Roman prelate, placed by the third canon of that council in the first rank after the bishop of Rome, and consequently above those of Alexandria and Antioch. Necstarius was the first bishop who enjoyed these new honours accumulated up on the see of Constantinople. His successor, the celebrated John Chrysostom, extended still farther the privileges of that see, and subjected it to its jurisdiction all Thrace, Asia, and Pontus; nor were the succeeding bishops of that imperial city delirious of a fervent zeal to augment their privileges and extend their dominion. By this unexpected promotion, the most disagreeable effects were produced. The bishops of Alexandria were not only filled with the most inveterate hatred against those of Constantinople, but a contention was excited between the bishops of Rome and Constantinople; which, after being carried on for many ages, concluded at last in the separation of the Greek and Latin churches.

Constantine the Great, in order to prevent civil commotions, and to fix his authority on a stable and solid foundation, made several changes not only in the laws of the empire, but also in the form of the Roman government. And as there were many important reasons which induced him to suit the administration of the church to these changes in the civil constitution, this necessarily introduced among the bishops new degrees of eminence and rank. The four bishops, of Rome, Constantinople, Antioch, and Alexandria, were distin-
guished by a certain degree of pre-eminence over the rest. These four prelates answered to the four prætorian prefects created by Constantine; and it is possible, that even in this century they were distinguished by the Jewish title of patriarchs. After these followed the exarchs, who had the inspection of several provinces, and answered to the appointment of certain civil officers who bore the same title. In a lower class were the metropolitan, who had only the government of one province; under whom were the archbishops, whose inspection was confined to certain dioceses. In this pradition the bishops brought up the rear; but the sphere of their authority was not in all places equally extensive; being in some considerably ample, and in others contained within narrow limits. To these various ecclesiastical orders we might add that of the churcñbishops, or superintendents of the country-churches; this last order was in most places suppressed by the bishops, with a design to extend their own authority, and enlarge the sphere of their power and jurisdiction. The administration of the church itself was divided by Constantine into an external and internal inspection. The latter, which was committed to bishops and councils, related to religious controversies, the forms of divine worship, the offices of priests, the vices of the ecclesiastical orders, &c. The external administration of the church the emperor assumed to himself. This comprehended all those things which related to the outward state and discipline of the church; it likewise extended to all contentions that should arise between the miniyters of the church, superiors as well as inferior, concerning their poïleidions, their reputation, their rights and privileges, their offences against the laws, &c. but no controversies that related to matters purely spiritual were cognizable by this external inspection. In consequence of this artful division of the ecclesiastical government, Constantine and his successors called councils, presided in them, appointed the judges of religious controversies, terminated the differences which arose between the bishops and the people, fixed the limits of the ecclesiastical provinces, took cognizance of the civil causes that subfribed between the miniyters of the church, and punished the crimes committed against the laws by the ordinary judges appointed for that purpose; giving over all causes purely ecclesiastical to the bishops and councils. But this famous division of the administration of the church was never explained with sufficient accuracy; so that both in the fourth and fifth centuries, there are frequent instances of the emperors determining matters purely ecclesiastical, and likewise of bishops and councils determining matters which related merely to the external form and government of the church.

After the time of Constantine many additions were made by the emperors and others to the wealth and honours of the clergy; and these additions were followed by a proportionable increase of their vices and luxury, particularly among those who lived in great and opulent cities. The bishops, on the one hand, contended with each other in the most scandalous manner con-
Ecclesiastical History.

Sect. II.

HISTORY.

...concerning the extent of their respective jurisdictions; while on the other, they trampled on the rights of the people, violated the privileges of the inferior ministers, and initiated in their conduct such an odious arrogation, voluptuoun, and luxury of magistrates and princes. This pernicious example was soon followed by the several ecclesiastical orders. The prelates, in many places, assumed an equality with the bishops in point of rank and authority. Many complaints are also made by the authors of this century about the vanity and effeminacy of the deacons. Those particularly of the prelates and deacons who filled the first stations of these orders, carried their pretensions to an extravagant length, and were offended at the notion of being placed on an equality with their colleagues. For this reason they not only assumed the titles of arch-prelates and arch-deacons, but also claimed a degree of authority and power much superior to that which was vested in the other members of their respective orders.

In the fifth century, the bishops of Constantinople had already reduced under their jurisdiction all the Asiatic provinces, began to graze still further acclamations of power. By the 28th canum of the council held at Chalcedon in 451, it was resolved, that the same rights and honours which had been conferred on the bishop of Rome were due to the bishop of Constantinople, on account of the equal dignity and suffrages of the two cities in which their prelatges exercised their authority. The same council confirmed also, by a solemn act, the bishop of Constantinople in the spiritual government of those provinces over which he had usurped the jurisdiction. Leo the Great, bishop of Rome, opposed with vehemence the usurpation of this jurisdiction. He was regarded with esteem by the bishops of the East, and his opposition was seconded by that of several other prelates. But their efforts were vain, as the emperors threw their weight into the balance, and thus supported the decisions of the Grecian bishops. In consequence, then, of the decisions of this famous council, the bishop of Constantinople began to contend obstinately for the supremacy over the Roman pontiff, and to crush the bishops of Antioch and Alexandria. About the same time, Juvenal, bishop of Jerusalem, attempted to withdraw himself and his church from the jurisdiction of the bishop of Caesarea, and aspired after a place among the first prelates of the Christian world. The high degree of veneration and esteem in which the church of Jerusalem was held among all other Christian societies (on account of its rank among the apostolical churches, and its title to the appellation of mother church, as having succeeded the first Christian assembly formed by the apostles), was extremely favourable to the ambition of Juvenal, and rendered his project much more practicable than it would otherwise have been. Encouraged by this, and likewise by the pretentions of Theodoreus the younger, this aspiring prelate not only assumed the dignity of patriarch of all Palestine, a rank which rendered him independent of all spiritual authority; but also invaded the rights of the bishop of Antioch, and usurped his jurisdiction over the provinces of Phoenicia and Arabia. Hence arose a warm contest between Juvenal and Maximus bishop of Antioch; which the council of Chalcedon decided, by restoring to the latter the provinces of Phoenicia and Arabia, and confirming the former in the spiritual possession of all Palestine and in the high rank which he had assumed in the church.

In 598, John, bishop of Constantinople, anathematized the Father, either by his own authority or that of the emperor Mauritius, anathematized a council at Constantinople to enquire into an accusation brought against Gregory, bishop of Antioch; and upon this occasion assumed the title of exarchical or universal bishop. This title had been formerly enjoyed by the bishops of Constantinople without any offence; but now, Gregory the Great, at that time bishop of Rome, suspecting that John was aiming at the supremacy over all the churches, opposed his claim with the greatest vigour. For this purpose he applied by letters to the emperor, and others, whom he thought capable of affixing him in his opposition: but all his efforts were without effect; and the bishops of Constantinople were allowed to enjoy the disputed title, though not in the sense which had alarmed the Roman pontiff.

Gregory, however, adhered tenaciously to his purpose, called new tumults and dissensions among the clergy, and aimed at nothing less than an unlimited supremacy over the Christian church. This ambitious design succeeded in the west; while in the eastern provinces, his arrogant pretensions were fearlessly respected by any but those who were at enmity with the bishop of Constantinople. How much the people were at this time deluded by the Roman pontiff's appearance from the expression of Emnias, one of the functionaries of Symmachus (who was a prelate of that ambiguous fame), that the Roman pontiff was constituted judge in the place of God, which he filled as the vicegerent of the Most High. On the other hand, it is certain, from a variety of the most authentic records, that both the emperors and the nations in general were far from being disposed to bear with patience the yoke of servitude which the fee of Rome was arrogantly imposing on the whole church.

In the beginning of the seventh century, according to the most learned historians, Boniface III. engaged the supremacy of Pho-as, emperor of Constantinople, to take from the metropolitan of that metropolis the title of exarchical or universal bishop, and to confirm it upon the Roman pontiff; and thus was first introduced the supremacy of the pope. The Roman pontiffs used all methods to maintain and enlarge this authority and pre-eminence which they had acquired from one of the most odious tyrants that ever disgraced the annals of history.

In the eighth century, the power of the bishop of Rome, and of the clergy in general, increased prodigiously. The chief cause of this, besides the superstition of the people, was the method at that time used by the European princes to secure themselves on their thrones. All these princes being then employed either in usurpation or in self-defence, and the whole continent being in the most unsettled and barbarous condition, they endeavoured to attach warmly to their interest those whom they considered as their friends and clients. For this purpose they distributed among them extensive territories, cities, and fortresses, with the various rights and privileges belonging to them; reserving only to themselves the supreme dominion, and the military service of these powerful vassals. For this reason it was by the European princes reckoned a high influence of political pre-eminence to distribute among the...
bishops and other Christian doctors the same sort of donations which had formerly been given to their generals and clients. By means of the clergy, they hoped to check the seditions and turbulent spirit of their vassals; and to maintain them in their obedience by the influence and authority of their bishops, whose commands were highly respected, and whose spiritual thunderbolts, rendered formidable by ignorance, struck terror into the boldest and most resolute hearts. This prodigious accession to the opulence and authority of the clergy in the west, began at their head viz. the Roman pontiffs; from whence it spread gradually among the inferior ecclesiastical orders. The barbarous nations who had received the gospel, looked up on the bishop of Rome as the successor of their chief druid or high priest: and as this tremendous druid had enjoyed under the darkens of Paganism, a kind of boundless authority; so these barbarous nations thought proper to confer upon the chief bishop the same authority which had belonged to the chief druid. The pope received these august privileges with great pleasure; and left, upon any change of affairs, attempts should be made to deprive him of them, he strengthened his title to that extraordinary honours by a variety of passages drawn from ancient history, and what is still more astonishing, by arguments of a religious nature. This swelled the Roman druid to an enormous size; and gave to the see of Rome that high pre-eminence and despotic authority in civil and political matters, that were unknown to former ages. Hence among other unhappy circumstances, arose that monstrous and pernicious opinion, that such persons as were excluded from the communion of the church by the pontiff himself, or any of the bishops, forfeited thereby, not only their civil rights and advantages as citizens, but even the common claims and privileges of humanity. This horrid opinion, which was a fatal source of wars, massacres and rebellions, without number, and which contributed more than any other to disturb the peace of Europe, was borrowed by the clergy from the Pagan superstitions. — Though excommunication, from the time of Constantine the Great, was in every part of the Christian world attended with many disagreeable effects; yet its highest terrors were confined to Europe, where its aspect was truly formidable and hideous. It acquired also, in the eighth century, new accessions of terror; so that from that period the excommunication practised in Europe differed entirely from that which was in use in other parts of Christendom. Excommunicated persons were indeed considered in all places as objects of hatred both to God and man: but they were not, on that account, robbed of the privileges of citizens, nor of the rights of humanity; such lefs were those kings and princes, whom an infulent bishop had thought proper to exclude from the communion of the church, supposed to forfeit on that account their crowns or their territories. But from this century it was quite otherwise in Europe. Excommunication received that infernal power which dissolved all connections: so that those whom the bishops, or their chief, excluded from church communion, were degraded to a level with the heathens. The origin of this unnatural and horrid power was as follows. On the conversion of the barbarous nations to Christianity, those ignorant profelytes confounded the excommunication in use among Christians with that which had been practised in the times of Paganism, and which was attended with all the dreadful effects above mentioned. The Roman pontiffs, on the other hand, were too artilful not to encourage this error; and therefore employed all sorts of means to gain credito it to an opinion well calculated to gratify their ambition, and to aggravate in general the episcopal order. The annals of the French nation furnish us with the following instance of the enormous power which was at this time vested in the Roman pontiff Peipin, who was mayor of the palace to Childeric III. king of France, and who in the exercise of that high office was possessed in reality of the royal power and authority, aspired to the titles and honours of majesty also, and formed a scheme of dethroning his sovereign. For this purpose he assembled the lates in 751; and though they were devoted to the interests of this ambitious usurper, they gave it as their opinion that the bishop of Rome was previously to be consulted whether the execution of such a scheme was lawful or not. In consequence of this, ambassadors were sent by Pepin to Zachary, the reigning pontiff, with the following question, "Whether the divine law did not permit a valiant and warlike people to dethrone a puffed up and indolent prince who was incapable of discharging any of the functions of royalty? and to subdue in his place one more worthy to rule, and who had already rendered most important services to the state?" The situation of Zachary, who flood much in need of the succours of Pepin against the Greeks and Lombards, rendered his answer such as the usurper desired: and when this favourable decision of the Roman oracle was published in France, the unhappy Childeric was stripped of his royalty without the least opposition; and Pepin, without the smallest resistance, stepped into the throne of his master and his sovereign. This decision was solemnly confirmed by Stephen II. the successor of Zachary; who undertook a journey into France in the year 754 in order to solicit assistance against the Lombards. The pontiff at the same time dissolved the obligation of the oath of fidelity and allegiance which Pepin had sworn to Childeric, and violated by his usurpation in the year 751; and to render his title to the crown as sacred as possible, Stephen anointed and crowned him, with his wife and two sons, for the second time. This complaisance of the pope was rewarded with the exarchate of Ravenna and all its dependencies, as we have already related. See Civil History, p. 44. supra; and History of Italy.
Eccl. Hist., vol. 2

CHAPTER II.

HISTORY.

The church of Rome, and new laws established in their place. The European princes fancied themselves to be divested of the supreme authority in religious matters, which they had enjoyed from Charlemagne; the power of the bishops was greatly diminished, and even the authority of both provincial and general councils began to decline. The popes, elated with their overgrown prosperity, and become arrogant beyond measure by the daily accessions that were made to their authority, were eagerly bent upon establishing the maxim, that the bishop of Rome was constituted and appointed by Jesus Christ supreme legislator and judge of the church universal; and that therefore the bishops derived all their authority from this opinion, which they incubulated with the utmost zeal and ardour, was opposed in vain by such as were acquainted with the ancient ecclesiastical constitutions, and the government of the church in the earlier ages. In order to gain credit to this new ecclesiastical code, and to support the pretensions of the popes to supremacy, it was necessary to produce the authority of ancient deeds, in order to stop the mouths of such as were disposed to set bounds to their usurpations. The bishops of Rome were aware of this; and as their means were looked upon as the most lawful that tended best to the accomplishment of their purposes, they employed some of their most ingenious and zealous partisans in forging conventions, acts of councils, epistles, and such-like records, by which it might appear, that in the first ages of the church the Roman pontiffs were clothed with the same spiritual majesty and supreme authority which they now assumed. There were not, however, wanting among the bishops some men of prudence and sagacity, who saw through these impious frauds, and perceived the chains that were forging both for them and the church. The French bishops distinguished themselves eminently in this respect: but their opposition was soon quelled; and as all Europe was sunk in the greatest ignorance and darkness, none remained who were capable of detecting these odious impostures, or disposed to support the expiring liberty of the church.

This may serve as a general specimen of the character and behaviour of the pretended viceregents of Jesus Christ to the 16th century. In the 11th century, indeed, their power seems to have risen to its utmost height. They now received the popes the titles of Emperor of the world, and Pope, i.e. universal father. They presided everywhere in the councils by their legates, assumed the authority of supreme arbiters in all controversies that arose concerning religion or usurpations of kings and princes. Their authority, however, was confined within certain limits; for, on the one hand, it was restrained by sovereign princes, that it might not arrogantly aim at civil dominion; and, on the other, it was opposed by the bishops themselves, that it might not arise to a spirit of despotism, and utterly destroy the privileges and liberty of synods and councils. From the time of Leo IX. the popes employed every method which the most artful ambition could suggest to remove those limits, and to render their dominion both despotic and universal. They not only aspired to the character of supreme legislators in the church, to an unlimited jurisdiction over all fairs and councils whichever general or provincial, to the sole distribution of all ecclesiastical honors and benefices, as divinely authorized and appointed for that purpose: but they carried their inordinate pretensions to far, as to give themselves out for gods of the universe, arbiters of the fate of kingdoms and empires, and supreme rulers over the kings and princes of the earth. Hence we find in those of their giving away kingdoms, and leading subjects from their allegiance to their sovereignty, among where Christianity was preserved as where it was not, and therefore, on the discovery of America and the East-Indies, the pope, by virtue of this spiritual property, granted the Portuguese right to all the countries lying eastward, and to the Spanish all those lying to the westward, of Cape Non in Africa which they were able to conquer by force of arms; and that nothing might be wanting to complete their character, they pretended to be lords of the future world also, and to have a power of retaining even the divine justice itself, and remitting that punishment which the Deity hath denounced against the workers of evil.

All this time the power of superstition reigned Christianly greatly corrupted. The innovations of fairs, pursued by many fervent prayers, while none stood up for justice, were increased by the invocation of the happy souls of departed saints. Their alliance was literally, as is said even in the sentence of the council of Florence, of the saints in heaven, and in the names of the saints. The images of those who during their lives had acquired the reputation of uncommon sanctity, were now honoured with a particular worship in several places; and many imagined that this drew into the image the propitious presence of the saints or celestial beings, which they were supposed to represent. A singular and irreparable efficacy was attributed to the bones of martyrs, and to the figure of the cross, in defeating all the attempts of Satan, removing all sorts of calamities, and in healing not only the diseases of the body, but also those of the mind. The famous Pagan doctrine concerning the purgation of departed souls by means of a certain kind of fire, i.e. purgatory, was also confirmed and explained more fully than it had formerly been; and nobody one knows of how much confusion this absurd doctrine hath been to the wealth and power of the Romish clergy.

In the sixth century, Gregory the Great advanced an opinion, that all the words of the sacred writings were images of invisible and spiritual things; for which reason he loaded the churches with a multitude of ceremonies the most insignificant and futile that can be imagined; and hence arose a new and most difficult science, namely, the explication of these ceremonies, and the investigation of the causes and circumstances whereby they derived their origin. A new method was contrived of administering the Lord's supper, with a magnificent arrangement of pompous ceremonies. This was called the canon of the mass. Baptism, except in cases of necessity, was administered only on the great festivals. An incredible number of temples were erected in honour of the saints. The places for the public worship were also very numerous: but now they were considered as the means of purchasing the protection of the spirit of the gods.
tion and favour of the saints; and the ignorant and barbarous multitude were persuaded, that these departed spirits defended and guarded against evils and calamities of every kind, the provinces, lands, cities, and villages in which they were honoured with temples. The number of these temples were almost equalled by that of the festivals, which seem to have been invented in order to bring the Christian religion as near as possible of Paganism as possible.

In the seventh century, religion seemed to be altogether buried under a heap of superstitious ceremonies; the worship of the true God and Saviour of the world was exchanged for the worship of bones, bits of wood (said to be of the cross), and the images of saints. The eternal state of misery threatened in Scripture to the wicked was exchanged for the temporary punishment of purgation; and the expressions of faith in Christ by an upright and virtuous conduct, i.e., the augmentation of the riches of the clergy by donations to the church, and the observance of a heap of idle ceremonies. New festivals were still added; one in particular was instituted in honour of the true cross on which the Saviour suffered; and churches were declared to be sanctuaries to all such as fled to them, whatever their crimes might have been.

Superstition, it would seem, had now attained its highest pitch; nor is it easy to conceive a degree of ignorance and degeneracy beyond what we have already mentioned. If any thing can possibly be imagined more contrary to true religion, it is an opinion which prevailed in the eighth century, namely, that Christians might appease an offended Deity by voluntary acts of mortification, or by gifts and oblations lavished on the church; and that people ought to place their confidence in the works and merits of the saints. The piety in this and some succeeding ages consisted in building and embellishing churches and chapels; in endowing monasteries and basilics; hunting after the relics of saints and martyrs, and treating them with an absurd and excessive veneration; in procuring the intercession of the saints by rich oblations, or superstitious rites; in worshipping images; in pilgrimages to those places which were esteemed holy, particularly to Palestine, &c. The genuine religion of Jesus was now utterly unknown both to clergy and people, if we except a few of its general doctrines contained in the creed. In this century also, the superstitiouscustom of solitarymoffet had its origin. These were celebrated by the priest alone in behalf of souls detained in purgatory, as well as upon some other occasions. They were prohibited by the laws of the church, but proved a source of immense wealth to the clergy. Under Charlemagne they were condemned by a synod assembled at Mentz, as criminal effects of avarice and faith. A new superstition, however, still sprung up in the tenth century. It was imagined, from Rev. xx. 1, that Antichrist was to make his appearance on the earth, and that soon after the world would be destroyed. An universal panic ensued; vast numbers of people, abandoning all their connections in society, and giving over to the churches and monasteries all their worldly effects, repaired to Palestine, where they imagined that Christ would descend from heaven to judge the world. Others devoted themselves by a solemn and voluntary oath to the service of the churches, convents, and priesthood, whose slaves they became, in the most rigorous sense of that word, performing daily their heavy tasks, and all this from a notion that the supreme judge would diminish the severity of their sentence, and look upon them with a more favourable and propitious eye, on account of their having made themselves the slaves of his ministers. When the eclipse of the sun or moon happened to be visible, the cities were deferted, and their miserable inhabitants fled for refuge to hollow caverns, and hid themselves among the craggy rocks, and under the bending summits of steep mountains. The opulent attempted to bribe the saints and the Deity himself by rich donations conferred upon the ecclesiastical tribe, who were looked upon as the immediate vicereigns of heaven. In many places, temples, palaces, and noble edifices both public and private, were suffered to decay, nay, were deliberately pulled down, from a notion that they were no longer of any use, as the final disfranchisement of all things was at hand. In a word, no language is sufficient to express the confusion and despair that tormented the minds of miserable mortals upon this occasion. The general delusion was increased by the discerning few, who endeavoured to dispel these terrors, and relieve the notion from which they arose in the minds of the people. But their attempts were ineffectual; nor could the dreadful apprehensions of the superstitious multitude be removed before the end of the century, and this terror became one of the accidental causes of the Crusades. That nothing might now be wanting to complete that antichristian system of religion which had overspread all Europe, it was in the 11th century determined that divine worship should be celebrated in the Latin tongue, though now unknown throughout the whole continent. During the whole of this century, also, Christians were employed in the rebuilding and ornamenting their churches, which they had destroyed through the superstitious fear already taken notice of. In much the same way with what is above related, or worse, if possible, matters went on till the time of the reformation. The clergy were immersed in crimes of the deepest dye; and the laity, imagining themselves able to purchase pardon of their sins for money, followed the examples of their pastors without remorse. The absurd principle formerly mentioned, namely, that religion consists in acts of austerity, and an unknown mental correspondence with God, produced the most extravagant and ridiculous behaviour in the devotees and reputed saints. They not only lived among the wild beasts, but also after the manner of the savage animals: they ran naked through the lonely deserts with a furious aspect, and all the agitations of madnes and frenzy; they prolonged their wretched life by grubs and wild herbs, avoided the sight and conversation of men, remaining almost motionless in certain places for several years exposed to the rigour and inclemency of the seasons, and towards the conclusion of their lives that themselves up in narrow and miserable huts; and all this was considered as true piety, the only acceptable method of worshipping the Deity and attaining a share in his favour. But of all the instances of superstitious frenzy which disgraced the times we now speak of, none was held in higher veneration, or excited more wonder of the multitude.
HISTORY

Sect. II.

Ecclesiastical History.

tude, than that of a certain order of men who were called Sintes by the Greeks, and Sabbi COLUMBARI, or Pillar Saints, by the Latins. These were persons of a most singular and extravagant turn of mind, who stood motionless on the tops of pillars expressly raised for this exercise of their patience, and remained there for several years amidst the adoration and applause of the stupid populace. The inventor of this strange discipline was one Simeon a Syrian, who began his follies by changing the agreeable employment of a shepherd for the austerities of a monk life. He began his devotion on the top of a pillar fix cubits high; but as he increased in facility, he also increased the height of his pillar, till, towards the conclusion of his life, he had got up on the top of a pillar 40 cubits in height. Many of the inhabitants of Syria and Palestine, reduced by a feudal ambition and an utter ignorance of true religion, followed the example of this fanatic, though not with the same degree of austerity. This superstition and vices began in the fifth century, and continued in the east for 600 years. The Latins, however, had too much wisdom and prudence to imitate the Syrians and Orientals in this whimsical superstition: and when a certain fanatic, or impostor, named Wulfilaicus, erected one of these pillars in the country of Treves, and proposed to live on it after the manner of Simeon, the neighbouring bishops ordered it to be pulled down.

The practices of austerer worship and discipline in other respects, however, gained ground throughout all parts of Christendom. Monks of various kinds were to be found in every country in prodigious numbers. But though their discipline was at first exceedingly severe, it became gradually relaxed, and the monks gave into all the prevailing vices of the times. Other orders succeeded, who pretended to still greater degrees of severity, and to reform the abuses of the preceding ones; but these in their turn became corrupted and fell into the same vices they had blamed in others. The most violent anthologies, disputes, and hatred, also reigned among the different orders of monks; and, indeed, between the adherents of all sorts and degrees, whether we consider them as clasped in different bodies, or as individuals of the same body. To enter into a detail of their wranglings and disputes, the methods which each of them took to aggrandize themselves at the expense of their neighbours, and to keep the rest of mankind in subjection, would require many volumes. We shall only observe, therefore, that even the external profession of the austerer and ascetic piety which took place in the fourth and fifth centuries, continued gradually to decline. Some there were, indeed, who boldly opposed the torrent of superstition and wickedness which threatened to overflow the whole world: but their opposition proved fruitless, and all of these towards the era of the reformation had either silenced or destroyed: so that, at that time, the pope and clergy reigned over mankind without control; had made themselves masters of almost all the wealth in every country of Europe, and may truly be said to have been the only sovereigns; the rest of the human race, even kings and princes, being only their valets and slaves.

While the Pagan superstition reigned thus violently in the west, the absurd doctrines of Mahomet over-

spread all the east. The rise of this impostor is related under the article ARABIA. His successors conquered in order to establish the religion of their apostle; and thus the very name of Christianity was extinguished in many places where it had formerly flourished. The conquests of the Turks having intermingled them with the Mahometans, they greedily embraced the superstitions of that religion, which thus almost entirely overshadowed the whole continents of Asia and Africa; and, by the conquest of Constantinople by the Turks in 1453, was likewise established throughout a considerable part of Europe.

About the beginning of the 16th century, the Roman pontiffs lived in the utmost tranquillity; nor had they, according to the appearance of things at that time, any reason to fear an opposition to their authority in any respect, since the commotions which had been raised by the Waldenses, Abigens, &c., were now entirely suppressed. We must not, however, conclude, from this apparent tranquillity and security of the pontiffs and their adherents, that their measures were universally applauded. Not only private persons, but also the most powerful princes and sovereign states, exclaimed loudly against the tyranny of the popes, and the unbridled licentiousness of the clergy of all denominations. They demanded, therefore, a reformation of the church in its head and members, and a general council to accomplish that necessary purpose. But these complaints and demands were not carried to such a length as to produce any good effect; since they came from persons who never entertained the least doubt about the supreme authority of the pope in religious matters, and who, of course, instead of attempting themselves to bring about that reformation which was so ardently desired, remained entirely inactive, or looked for redress to the court of Rome, or to a general council. But while the much desired reformation seemed to be at such a great distance, it suddenly arose from a quarter whence it was not at all expected. A single person, Martin Luther, a monk of the order of St Augustine, ventured to oppose himself to the whole torrent of papal power and despotism. This bold attempt was first made public on the 3d of September 1517; and, notwithstanding all the efforts of the pope and his adherents, the doctrines of Luther continued daily to gain ground. Others, encouraged by his success, lent their assistance in the work of reformation; which at last produced new churches, founded upon principles quite different from that of Rome, and which still continue. But for a particular account of the transactions of the first reformers, the opposition they met with, and the final settlement of the reformed churches in different nations in Europe, see the articles Luther and Reformation.

The state of religion in other parts of the world seems as yet to be but little altered. Asia and Africa are sunk in the greatest superstitions either of the Mahometans or Pagan kinds. The southern continent of America, belonging to the Spaniards, continues immersed in the most absurd superstitions of Popery. The northern continent, being mostly peopled with colonies from Great Britain, professes the reformed religion. At the same time it must be owned, that some kind of reformation hath taken place even in Popery and Mahometanism themselves. The popes have no longer
HISTORY.

Sect. III.

Composition of History.

Cicero has given us the whole art of composing history, in a very short and comprehensive manner. We shall first transcribe what he says, and then consider the several parts of it in their proper order.

"No one is ignorant (says he), that the first law in writing history is, Not to dare to say any thing that is false; and the next, not to be afraid to speak the truth: that on the one hand there be no fulmination of affections, nor of prejudice on the other. These foundations are what all are acquainted with. But the supererogation consists partly in things, and partly in the style or language. The former require an order of times, and descriptions of places. And because in great and memorable events, we are defirous to know first their causes, then the actions themselves, and lastly their consequences; the historian should take notice of the springs or motives that occasioned them; and, in mentioning the facts themselves, should not only relate what was done or said, but likewise in what manner; and, in treating upon their consequences, show how they were the effects of chance, wisdom, or imprudence. Nor should he but recite the actions of great and eminent persons, but likewise describe their characters. The style ought to be fluent, smooth, and even, free from that hardness and poignancy which is usual at the bar." Thus far Cicero.

An history written in this manner, and furnished with all these properties, must needs be very entertaining, as well as instructive. And perhaps few have come nearer this plan than Tacitus: though his subject is attended with this unhappy circumstance, or at least unpleasant one, that it affords us examples rather of what we ought to avoid than what to imitate. But it is the business of the historian, as well as of the philosopher, to represent both virtues and vices in their proper colours; the latter doing it by precepts, and the former by examples. Their manner is different; but the end and design of both is, or should be, the same: And therefore history has not improperly been said by some to be moral philosophy exemplified in the lives and actions of mankind.

We shall reduce these several things mentioned by Cicero to three heads, Matter, Order, and Style; and treat upon each of them separately. But as Truth is the basis and foundation of all history, it will be necessary to consider that in the first place.

Art. I. Of Truth in History.

Truth is, as it were, the very life and soul of historic history, by which it is distinguished from fable or romance. An historian therefore ought not only to be a man of probity, but void of all passion or bias. He must have the readiness of a philosopher, joined with the vivacity of a poet or orator. Without the former, he will be infamously betrayed by some passion to give a false colouring to the actions or characters he describes, as favour or dislike to parties or persons affect his mind. Whereas he ought to be of no party, not to have either friend or foe while writing; but to preserve and safeguard his own nature, and the character of his own mind. He must be so firm and sedate, as when he were a Roman officer, and the greatest public interests were at stake, to have the judgment of which they really are in their own nature, and not as connected with this or that person or party. And with this firm and sedate temper, a lively imagination is requisite; without which his descriptions will be flat and cold, nor will he be able to convey to his readers a just and adequate idea of great and generous actions. Nor is the assistance of a good judgment less necessary than any of the former qualities, to direct him what is proper to be said and what to be omitted, and to treat every thing in a manner suitable to its importance. And since there are the qualifications necessary for an historian, it may perhaps seem the less strange that we have so few good histories.

But historical truth consists of two parts; one is, Not to say any thing we know to be false: Though it is not sufficient to excite an historian in relating a falsehood that he did not know it was so when he wrote it, unless he first used all the means in his power to inform himself of the truth; for then, undoubtedly, an invincible error is as unpardonable in history as in morality. But the generality of writers in this kind content themselves with taking their accounts from hearsays, or transcribing them from others; without duly weighing the evidence on which they are founded, or giving themselves the trouble of a strict inquiry. Few will use the diligence necessary to inform themselves of the certainty of what they undertake to relate. And as the want of this greatly abates the pleasure of reading such writers, while persons read with indifference; so nothing more recommends an historian than such industry. Thus we are informed of Thucydides, that when he wrote his history of the Peloponnesian war, he did not satisfy himself with the best accounts he could get from his contemporaries, the Athenians, fearing they might be partial in their own cause; but spared no expense to inform himself how the same facts were related by their enemies the Lacedaemonians; that, by comparing the relations of both parties, he might better judge of the truth. And Polybius took greater pains than he, in order to write his history of the Roman affairs: for he travelled into Africa, Spain, Gaul, and other parts of the world, that...
that by viewing the several scenes of human, and informing himself from the habitants, as might come at a greater certainty of the facts, and repute them in a just light. Not as an historian ought not to allow what he knows to be false; for he should, like withe cautions in relating things which are doubtful, and acquaint his readers with the evidence he goes upon in such facts, from whence they may be able to judge how far it is proper to credit them. So Herodotus tells us what things he saw himself in his travels, and what he heard from the information of the Egyptian priests and others with whom he conversed. And Curtius, in the life of Alexander, speaking of the affairs of India, ingeniously contrives, that he wrote more than he fully believed. "For (says he) I never dare to affirm positively what I doubt of, nor can I think it proper to omit what I have been told." By such a conduct the author secures his credit, whether the things prove really true or false; and gives room for further inquiry, without imposing on his readers.

The other branch of historical truth is, Not to omit any thing that is true, and necessary to set the matter treated of in a clear and full light. In the actions of past ages or distant countries, wherein the writer has no personal concern, he can have no great inducement to break in upon this rule. But where interest or party is engaged, it requires no small candour, as well as firmness of mind, constantly to adhere to it. Affection to some, aversion to others, fear of dissembling friends or those in power, will often interpose and try his integrity. Besides, an omission is less obvious to censure, than a false assertion: for the one may be easily ascribed to ignorance or forgetfulness; whereas the other will, if discovered, be commonly looked upon as design. He therefore, who in such circumstances, from a generous love to truth, is superior to all motives to betray or flatter it, justly deserves the character of a brave as well as honest man.

What Polybius says upon this head is very well worth remarking: "A good man ought to love his friends and his country, and to have a like disposition with them, both towards their friends and enemies. But when he takes upon him the character of an historian, they must all be forgot. He must often speak well of his enemies, and commend them when their actions deserve it; and sometimes blame, and even upbraid his greatest friends, when their conduct makes it necessary. Nor must he bear sometimes to reprove, and at other times to commend, the same persons; for all are liable to mischief in their management, and there are scarce any persons who are always in the wrong. Therefore, in history, all personal considerations should be laid aside, and regard had only to their actions."

What a different view of mankind and their actions should have were these rules observed by all historians? Integrity is undoubtedly the principal qualification of an historian; when we can depend upon this, other imperfections are more easily pallied over. Suetonius is said to have written the lives of the first twelve Roman emperors with the same freedom where-with they themselves lived. What better character can be given of a writer? The same ingenious temper appears in the two Greek historians above mentioned, Thucydides and Polybius: The former of whom, though banished by his countrymen the Athenians, yet expresses no marks of resentment in his history, either against them in general, or even against the chief authors of it, whom he has occasion to mention them; and the latter does not forbear capturing what he thought blamable in his nearest relations and friends. But it is often necessary to know whether an historian speaks truth or not, and -russ up to the several characters here mentioned, that it seems reasonable, upon the common principles of justice due to all mankind, to credit him where no marks of partiality or prejudice appear in his writings.

Sometimes, indeed, a judgment may in a good measure be formed of the veracity of an author from his manner of expressing himself. A certain candour and frankness, that is always uniform and consistent with himself, runs through their writings who have nothing in view but truth, which may be justly esteemed as a very good evidence of their sincerity. Whereas those who have partial designs to answer are commonly more close and covert; and if at other times they assume an air of openness and freedom, yet this is not constant and even, but soon followed again with the appearance of some bias and reserve: for it is very difficult to act a part long together without lying open to a discovery. And therefore, though craft and design is exceedingly various, and Proteus-like, assumes very different shapes, there are certain characters by which it may often be perceived and detected. Thus, where things are uncertain by reason of their being reported various ways, it is partiality in an historian to give into the most unfavourable account, where others are as well known and equally credible. Again, it is a proof of the same bad temper, when the facts themselves are certain and evident, but the design and motives of those concerned in them are unknown and obscure, to assign some ill principle, such as avarice, ambition, malice, interest, or any other vicious habit, as the cause of them. This conduct is not only unjust to the persons whose actions they relate; but hurtful to mankind in general, by endeavouring to destroy the principal motive to virtue, which springs from example. Others, who affect to be more covert, content themselves with suspicions and by insinuations; and then endeavour to come off, by intimating their unwillingness to believe them, though they would have their readers do so. And to mention no more, there are others, who, when they have loaded persons with unjust calumnies and reflections, will allow them some slight commendations, to make what they have said before look more credible, and themselves less partial. But the honest and faithful historian condemns all such low and mean arts; he considers things as they are in themselves, and relates them as he finds them, without prejudice or affection.

ART. II. The Subject or Argument of History.

The subject in general is facts, together with such subject of things as are either connected with them, or may at history, least be requisite to set them in a just and proper light. But although the principal design of history be to acquaint us with facts, yet all facts do not merit the regard of an historian; but such only as be of right of life and service for the conduct of human life. Now is it allowable for him, like the poet, to form the plan and scheme of his work as he pleases. His latitude
is to report things as he finds them, without any colouring or disguise to make them more pleasing and palatable; to his reader, which would be to convert his history into a novel. Indeed, some histories afford more pleasure and entertainment than others, from the nature of the things of which they consist; and it may be esteemed the happiness of an historian to meet with such a subject, but it is not his fault if it be otherwise. Thus Herodotus begins his history with flowing, that the barbarians gave the first occasion to the wars between them and the Greeks; and ends it with an account of the punishment which, after some ages, they suffered from the Greeks on that account. Such a relation must not only be very agreeable to his countrymen the Greeks, for whose fate it was written; but likewise very instructive, by informing them of the justice of Providence in punishing public injurious to this world, wherein societies, as such, are only capable of punishment. And therefore those examples might be of use to caution them against the like practices. On the contrary, Thucydides begins his history with the unhappy state of his countrymen the Athenians; and in the course of it plainly intimates, that they were the cause of the calamitous war between them and the Lacedaemonians. Whereas, he had been more inclined to please and gratify his countrymen than to write the truth, he might have left things in such a light as to have made his enemies appear the aggressors. But he learned to court applause at the expense of truth and justice, and has let a noble example of integrity to all future historians. But as all actions do merit a place in history, it requires no small judgement in an historian to select facts only as are proper. Cicero observes very justly, that history “is conversant in great and memorable actions.” For this reason, an historian should always keep poorness in view; and relate nothing which may not, upon some account or other, be worth the notice of after-ages. To descend to trivial and minute matters, such as frequently occur in the common affairs of life, is below the dignity of history. Such writers ought rather to be deemed journalists than historians, who have no view or expectation that their works should survive them. But the skilful historian is fired with a more noble ambition. His design is to acquaint succeeding ages with the remarkable occurrences that happened in the world before them; to do justice to the memory of great and virtuous men; and at the same time to perpetuate his own. Pliny the younger has some fine reflections upon this head, in a letter to a friend. “You advise me,” says he, “to write an history; and not you only, for many others have done the same, and I am myself inclined to it. Not that I believe myself qualified for it, which would be rash to think till I have tried it; but because I esteem it a generous action not to suffer those to be forgotten, whose memory ought to be eternized; and to perpetuate the names of others, together with one’s own. For there is nothing I am so devious or ambitious of, as to be remembered hereafter; which is a thing worthy of all men, and especially of one who, conscious of no guilt, has nothing to fear from poorness. Therefore I am thinking day and night by what means, as Virgil says,”

To Raise Abot: My name "Here patriots live, who, for their country’s good,"

In fighting fields were prodigal of blood:

Priests
especially for a person to talk or write of his own virtues, at a time when vice and a general corruption of manners prevails, let what he says be ever so true, it will be apt at least to be taken as a reflection upon others. "Anciently (says Tacitus), many wrote, their own lives, rather as a testimony of their conduct, than from pride." Upon which he makes this judicious remark: "That the more virtue abounds, the sooner the report of it is credited." But the ancient writers had a way of taking off the reader's attention from themselves in recording their own actions, and so rendered what they said less invidious; and that was, by speaking of themselves in the third person, and not in the first. Thus Caesar never says, "I did," or, "I said, this or that;" but always, "Caesar did, or said, so and so." Why the moderns have not more chosen to follow them in this, we know not, since it seems less exceptionable.

2. In a continued history of particular dates, some account may be given of their original, and founders; the nature of their soil, and situation; what advantages they have for their support or improvement, either within themselves, by foreign traffic, or conquests; with the form of their government. Then notice should be taken of the methods by which they interested in wealth or power, till they gradually advanced to their highest pitch of grandeur; whether by their virtue, the goodness of their constitution, trade, industry, wars, or whatever cause. After this the reasons of their declensions should be shewn; what were the vices that principally occasioned it (for that is generally the case); whether avarice, ambition, luxury, discord, cruelty, or several of these in conjunction. And lastly, where that has been their unhappy fate, how they received their final ruin and subversion. Most of these things Livy had in view when he wrote his history of the Roman state, as he acquaints his readers in the preface. "The accounts (says he) of what happened either before or while the city was building, conflicting rather of poetical fables than any certain records of facts, I shall neither affect nor confute them. Let antiquity be allowed to make the origin of their cities more venerable, by uniting things human and divine. But if any nation may be suffered to fetch their origin from the gods, such is the military glory of the Romans, that when they represent Mars as the father of their founder, other nations may as easily acquiesce in this as they do in their government. But I lay no great stress upon these things, and others of the like nature, whatever may be thought of them. What I am desirous every one should carefully attend to, are our lives and manners: by what men, and what arts, civil and military, the empire was both acquired and enlarged: then let him observe, how our manners gradually declined with our discipline; afterwards grew worse and worse; and at length so far degenerated, that at present we can neither bear with our vices nor suffer them to be remedied. This is the chief benefit and advantage to be reaped from history, to fetch instruction from eminent examples of both kinds; in order to imitate the one, which will be of use both to yourself and your country, and avoid the other, which are equally base in their rise and event." Thus far Livy. And

Vol. VIII.
3. But as a particular history consists of a number of facts relating to the same state, suitably connected and laid together in a proper series; so a general history is made up of several particular histories, whose separate transactions within the same period of time, or part of it, should be so distinctly related as to cause no confusion. Such was the history of Diodorus Siculus, which contained an account of most of the eminent states and kingdoms in the world, though far the greatest part of it is now unhappily lost. Of the same nature is the history of Herodotus, though not so extensive; to whom we are especially indebted for the Persian affairs. And to this kind may likewise be referred Justin's history, though it be only the epitome of a larger work written by another hand. The rules proper for conducting such histories are much the same as those abovementioned concerning particular histories; excepting what relates to the order, of which we shall have occasion to speak hereafter.

But the histories both of particular states and those which are more general frequently contain only the affairs of some short period of time. Thus the history of the Peloponnesian war, written by Thucydides, comprises only what was done in the first twenty years of that war, which lasted seven years longer than his account reaches; though indeed the reason of that might be, because Thucydides died before the war was finished, otherwise he would very probably have continued his history to the conclusion of it. But the history of the war between the Romans and King Jugurtha of Africa, given us by Sallust, as also Caesar's histories of the Gallic and civil wars, are all confined within a much less number of years than that of Thucydides. Nay, sometimes one single transaction is thought sufficient to furnish out a history. Such was the conspiracy of Catiline to subvert the Roman state, written likewise by Sallust. As to more general histories, Xenophon's consists of the engagements of that war which are contained in the works of Thucydides, and contains the affairs of forty-eight years. And Polybius called his a general history; which, though it principally contained the Roman affairs, yet took in the most remarkable transactions of several other states, for the space of fifty-three years: though it has met with the same hard fate as that of Diodorus Siculus, so that only the first five books out of forty, of which it consists at first, now remain entire. And to mention no more, the celebrated history of Thucydides is another instance of this fort, in which the principal transactions of Europe for about 60 years, chiefly in the 16th century, are described with that judgment and fidelity, and in a manner so accurate and beautiful, that he has been thought fearfully inferior to any of the ancient historians. Now, in such histories as these, to go farther back than is necessary to let the subject in a just light, seems as improper as it is unnecessary.

The general subject or argument of history, in its several branches, may be reduced to the four heads; narration, reflection, speech, and digression.

I. By **narration** is meant a description of facts or actions, with such things as are necessarily connected with them; namely, persons, time, place, design, and event.

As to **actions** themselves, it is the business of the historian to acquaint his readers with the manner in which they were performed; what measures were concerted on all sides, and how they were conducted, whether with vigilance, courage, prudence, and caution, or the contrary, according to the nature of the action; as likewise, if any unforeseen accidents fell out, by which the designed measures were either promoted or broken. All actions may be referred to two forts, military and civil. And as war arises from injustice and injuries received on one side or the other, it is fit the reader should be informed who were the aggressors. For though war is never to be desired, yet it is sometimes necessary. In the description of battles, regard should be had equally to both parties; the number of forces, conduct of the generals, in what manner they engaged, what turns and chances happened in the engagement, either from accidents, courage, or stratagem, and how it issued. The like circumstances should all be observed in sieges and other actions. But the most agreeable scene of history arises from a state of peace. Here the writer acquaints us with the constitution of states, the nature of their laws, the manners and customs of the inhabitants, the advantages of concord and unanimity, with the disadvantages of contention and discord; the invention of arts and sciences, in what manner they were improved and cultivated, and by whom; with many other things, both pleasant and profitable in the conduct of life.

As to **persons**, the characters of all these should be described who act any considerable part in an history. This excites the curiosity of the reader, and makes him more attentive to what is said of them; as every one is more inquisitive to hear what relates to others in proportion to his knowledge of them. And it will likewise be of use to observe, how their actions agree with their characters; and what were the effects of their different qualifications and abilities.

The circumstances of **time** and **place** are carefully to be regarded by a historian, without which his accounts of facts will be very lame and imperfect. And therefore chronology and geography seem not improperly to have been called the two eyes of history. Besides, they very much affist the memory: for it is much easier to remember anything said to be done at such a time, and in such a place, than if only related in general; nay, the remembrance of these often recalls those things to mind which other-wise had been obliterated. By time is meant not only the year of any particular era or period; but likewise the season, as summer or winter; and the age of particular persons. For it is oftentimes from hence that we are principally enabled to make a just estimate of facts. Thus Cicero commends Pompey for undertaking and finishing the Piratic war at a season of the year when other generals would not have thought it safe to venture out at sea. This double danger, as Pro Leg, well from the weather as the enemy, considering the **Man. c. 12.**, necessity of the cafe, heightens the glory of the action; since to have done the same thing in summer would not have been an equal proof of the courage and
and intrepidity of the general. And there is nothing more surprising in the conquests of Alexander than that he should subdue so large a part of the world by the time he was little more than 30 years old; an age at which few other generals have been much distinguished. Had we not known this, a considerable part of his character had been lost.

The like advantages arise from the other circumstances of place. And therefore in marches, battles, and other military actions, the historian should take notice of the nature of the country, the pales, rivers, distances of places, situation of the armies, and strength of the towns either by nature or art; from which the reader may the better form a judgment of the difficulties and greatness of any enterprise. Caesar is generally very particular in these things, and seems to have thought it highly requisite in order to give his readers a just idea of his actions. The descriptions of countries, cities, and rivers, are likewise both useful and pleasant; and help us to judge of the probability of what is related concerning the temper and genius of the inhabitants, their arts, traffic, wealth, power, or whatever else is remarkable among them.

But an accurate historian goes yet further, and considers the causes of actions, and what were the designs and views of those persons who were principally concerned in them. Some, as Polybius has well observed, are apt to confound the beginning of actions with their springs and causes, which ought to be carefully separated. For the causes are often very remote, and to be looked for at a considerable distance from the actions themselves. Thus, as he tells us, some have represented Hannibal’s besieging Saguntum in Spain, and palling the Ebro, contrary to a former agreement between the Romans and the Carthaginians, as causes of the second Punic war. But these were only the beginnings of it. The true causes were the jealousies and fears of the Carthaginians from the growing power of the Romans; and Hannibal’s inveterate hatred to them, with which he had been impressed from his infancy. For his father, whom he succeeded in the command of the Carthaginian army, had oblied him, when but nine years old, to take a molt solemn oath upon an altar never to be reconciled to the Romans: and therefore he was no sooner at the head of the army, than he took the first opportunity to break with them. Again, the true causes and causes of actions are to be distinguished from such as are only feigned and pretended. For generally the worse designs men have in view, the more malicious they are to cover them with specious pretences. It is the historian’s business, therefore, to lay open and expose to view these arts of politicians. So, as the same judicious historian remarks, we are not to imagine Alexander’s carrying over his army into Asia to have been the cause of the war between him and the Persians. That had its being long before. The Greeks had formerly two armies in Asia, one under Xenophon and the other commanded by Agesilas. Now the Athenians did not venture to oppose or molest either of these armies in their march. This made king Philip, Alexander’s father, who was an ambitious prince, and aspired after universal monarchy, think it might be a practicable thing to make a conquest of Asia. Accordingly, he kept it in his view, and made preparations for it; but did not live to execute it. That was left for his son. But as king Philip could not have done this without first bringing the other states of Greece into it, his pretence to them was only to avenge the injuries they had all suffered from the Persians; though the real design was an universal government, both over them and the Persians, as appeared afterwards by the event. But in order to our being well assured of a person’s real designs, and to make the accounts of them more credible, it is proper we should be acquainted with his dispositions, manners, way of life, virtues, or vices; that by comparing his actions with these, we may see how far they agree and suit each other. For this reason Sallust is so particular in his description of Carthage, and Livy of Hannibal; by which it appears credible, that the one was capable of entering into such a conspiracy against his country, and the other of performing such great things as are related concerning him. But as the causes of actions lie in the dark, and unknown, a prudent historian will not trouble himself or his readers with vain and trifling conjectures unless something very probable offers itself.

Lastly, an historian should relate the issue and event of the actions he describes. This is undoubtedly the most useful part of history; since the greatest advantage arising from it is to teach us experience from what has happened in the world before us. When we learn from the examples of others the happy effects of wisdom, prudence, integrity, and other virtues, it naturally excites us to an imitation of them, and to pursue the same measures in our own conduct. And, on the contrary, by perceiving the unhappy consequences which have followed from violence, deceit, rashness, or the like vices, we are deterred from such practices.

But description of the effects are often very necessary, for the simple narration of events is not sufficient to determine us in the choice of our measures, and many accidents may happen to frustrate the best concerted designs; when we meet with instances of this nature, it prepares us for the like events, and keeps us from too great a confidence in our own schemes. However, this is not commonly the case, but in the ordinary course of human affairs like causes usually produce like effects; the numerous examples of the happy consequences of virtue and wisdom recorded in history are sufficient to determine us in the choice of our measures, and to encourage us to hope for an answerable success, though we cannot be certain we shall in no instance meet with a disappointment. And therefore Polybius very justly observes, that “he who takes from history the causes, manner, and end of actions, and omits to take notice whether the event was answerable to the means made use of, leaves nothing in it but a bare amasement, without any benefit or instruction.”

Thee, then, are the several things necessary to be attended to in historical narrations; but the proper disposition of them must be left to the skill and prudence of the writer.
 allowed to draw such inferences from his precepts as he thinks just and proper, why has not the historian an equal right to make reflections upon the facts he relates? The reader is equally at liberty to judge for himself in both cases, without danger of being prejudiced. And therefore we find, that the best historians have allowed themselves this liberty. It would be easy to prove this by a large number of instances, but one or two here may suffice. When Sisloft has given a very distinct account of the designs of Catiline, and of the whole scheme of the conspiracy, he concludes it with this reflection: "All that time the empire of the Romans seems to me to have been in a very unhappy state. For when they had extended their conquests through the whole world from east to west, and enjoyed both peace and plenty, which mankind esteem their greatest happiness; some persons were obstinately bent upon their own ruin, and that of their country. For notwithstanding two decrees were published by the senate, not one out of so great a multitude was prevail'd with, by the rewards that were offered, either to discover the conspiracy or to leave the army of Catiline. So desperate a purpose, and as it were infection, had seiz'd the minds of most people!" And as it is a very handsome observation that Livy makes upon the ill-conduct of Hannibal in quartering his army in Capua after the battle of Cannæ; by which means they loft their martial vigour through luxury and ease. "These (says he) who are skilled in military affairs reckon this a greater fault in the general, than his not marching his army immediately to Rome after his victory at Cannæ; for such a delay might have seemed only to defer the victory, but this ill step deprived him of the power to gain it." The modesty of the historian in this passage is worth remarking, in that he does not represent this as his own private opinion, and by that means endeavour to censure the conduct of so great a general as Hannibal was, but as the sense of those who were skilled in such affairs. However, an historian should be cautious in such remarks; and consider, that although he does not exceed his province by applauding virtue, expressing a just indignation against vice, and interposing his judgment upon the nature and consequences of the facts he relates; yet there ought to be a difference between his reflections and the encomiums or declamations of an orator."

III. Speeches inferted by historians. Thes of two sorts, oblique and direct. The former are such as the historian recites in his own person, and not in that of the speaker. Of this kind is that of Hannibal in Justin; by which he endeavoures to persuade king Antiochus to carry the feast of the war against the Romans into Italy. He says thus: "Having desired liberty to speak (he said), none of the present counsels and designs pleased him; nor did he approve of Greece for the feast of the war, which might be managed in Italy to greater advantage: because it was impossible to conquer the Romans but by their own arms, or to subdue Italy but by its own forces; since both the nature of those men, and of that war, was different from all others. In other wars, it was of great importance to gain an advantage of place or time, to ravage the countries and plunder the towns; but though you gain some advantage over the Romans, or defeat them, you must still fight with them when beaten. Wherefore, should any one engage with them in Italy, it was possible for him to conquer them by their own power, strength, and arms, as he himself had done; but should he attempt it out of Italy, the source of their power, he would be as much deceived, as if he endeavoured to alter the course of a river, not at the fountain-head, but where its streams were largest and deepest. This was his judgment in private, and what he had offered as his advice, and now repeated in the presence of his friends; that all might know in what manner a war ought to be carried on against the Romans, who were invincible abroad, but might be conquered at home. For they might sooner be driven out of their city than their empire, and from Italy than their provinces; having been taken by the Gauls, and almost subdued by himself. That he was never defeated till he withdrew out of their country; but upon his return to Carthage, the fortune of the war was changed with the place." He seems to intimate by this speech, that the Romans were like some fierce and impetuous animals, which are no otherwise to be subdued than by wounding them in some vital part.

In speeches related after this manner, we are not necessarily to suppose the historian gives us the very words in which they were at first delivered, but only the sense. But in direct speeches, the person himself is introduced as addressing his audience; and therefore the words as well as the sense are to be fitted to his character. Such is the speech of Lumenes, one of Alexander's captains and succours, made to his soldiers when they had traiterously bound him in chains in order to deliver him up to his enemy Antigonus, as we have it in the time writer. "You see, soldiers (says he), the habits and ornaments of your general, which have not been put upon me by mine enemies; that would afford me some comfort: it is by you, that of a conqueror I am become conquered, and of a general a captive; though you have sworn to be faithful to me four times within the space of a year. But I omit that, since reflections do not become persons in captivity. One thing I intreat, that, if Antigonus must have my life, you would let me die among you. For it no way concerns him how or where I suffer, and I shall escape an ignominious death. If you grant me this, I free you from your oath, with which you have been so often engaged to me. Or, if shame restrains you from offering violence to meet my request, give me a sword, and suffer your general to do that for you without the obligations of an oath which you have sworn to do for your general."

But this likewise is a matter in which critics have been divided in their sentiments; whether any, or what kind, of speaking in speeches should be admitted. Some have thought all speeches should be excluded; and the reason given for that opinion is this; that it breaks the thread of the discourse, and interrupts the reader, when he is desirous to come to the end of an action, and know how it issued. This is true, indeed, when speeches are either very long or too frequent; but otherwise they are not only entertaining, but likewise instructive. For it is of service to know the springs and reasons of actions; and these are frequently opened and explained in the speeches of those by whom they were performed. Others therefore have not been
against all speeches in general, but only direct ones. And this was the opinion of Trogus Pompeius, as Justin informs us, though he did not think fit to follow him in that opinion, when he abridged him, as we have seen already by the speech of king Lamenes. The reason offered against direct speeches is, because they are not true; and truth is the foundation of all history, from which it never ought to depart. Such speeches, therefore, are said to weaken the credit of the writer; since he who will tell us that another person spoke such things which he does not know that he ever did speak, and in such language as he could not use, may take the same liberty in representing his actions. Thus, for example, when Livy gives us the speeches of Romulus, the Sabine women, Brutus, and others, in the first ages of the Roman state, both the things themselves are imaginary, and the language wholly disagreeable to the times in which those persons lived. Accordingly, we find, that when several historians relate some particular speech of the same person, they widely differ both in the subject-matter and expressions. So the speech of Vettius, by which he disinherited her son Coriolanus from being king, when he came again to it with an army of Volscians to avenge the injuries he had received, is very differently related by Livy, Dionyfius of Halicarnassus, and Plutarch. Such fictitious speeches therefore are judged more fit for poets, who are allowed a greater liberty to indulge their fancy than historians. And if any direct speeches are to be inferred, they should be such only as were really spoken by the persons to whom they are ascribed, where any such fact has been preferred. These have been the sentiments of some critics both ancient and modern. However, there is scarce an ancient historian now extant, either Greek or Latin, who has not some speeches, more or less, in his works; and those not only oblique, but also direct. They seem to have thought it a necessary ornament to their writings: and even where the true speeches might become at, have chosen rather to give them in their own words; in order, probably, to preserve an equality in the style. Since therefore the best and most faithful historians have generally taken this liberty, we are to distinguish between their accounts of facts and their speeches. In the former, where nothing appears to the contrary, we are to suppose they adhere to truth, according to the best information they could get; but in the latter, that their view is only to acquaint us with the causes and springs of actions, which they chose to do in the form of speeches, as a method most ornamental to the work, and entertaining to the reader, though the best historians are cautious of inferring speeches, but where they are very proper, and upon some solemn and weighty occasions. Thucydid's is said to have been the first who brought complete and finished speeches into history, the orner of Herodotus being but short and imperfect. And though Dionyfius of Halicarnassus, in his censure upon Thucydid's, seems then to have disliked that part of his conduct; yet he afterwards thought fit to imitate it in his A. tiquities of Rome, where we find many, not only oblique, but also direct speeches.

What has been said of speeches, may likewise be understood of letters, which we sometimes meet with in histories; as that of Alexander to Darius in Q: Curtius, theof of Tiberius and Drusus in Tacitus, and many others. Some letters are wholly fictitious; and in others perhaps the historian represents the substance of what was really said, but gives it in his own dress.

Thus we find that short letter of Lentulus to Catiline, at the time of his conspiracy differently related by Cicero and Sallust. The reason of which seems to be: That as Cicero recited it publicly to the people of Rome in his third oration against Catiline, it is reasonable to imagine he did it in the very words of the letter, which he had by him; whereas Sallust, as an historian might think it sufficient to give the sense of it in his own words.

IV. Digressions. These, if rightly managed, afford the reader both delight and profit. Like speeches, they should neither be too long or frequent; lest they interrupt the course of the history, and divert the reader from the main design of the work. But now and then to introduce a beautiful description, or some remarkable incident, which may give light to the subject, is so far from an interruption, that it is rather a relief to the reader, and excite him to go on with greater pleasure and attention. See further on this head, Oratory, n. 37.

ART. III. OF ORDER.

Since most histories consist of an introduction and of order, the body of the work, in each of which some order is requisite, we shall speak to them separately.

1. The design of the introduction is the same here as in orations. For the historian proposes three things by his introduction, which may be called its parts: to give his reader some general view of the subject, to engage his attention, and to persuade him with a candid opinion of himself and his performance. Some have thought this last unnecessary for an historian. But if we consider how differently mankind are apt to judge of the same persons and actions, it seems as requisite for an historian to be well-stemmed as an orator. And therefore we find some of the best historians have not omitted this part. Livy's introduction has been very much applauded by the learned, as a master-piece in its kind. It begins with an account of his design. Whether (says he) it may answer any valuable end for me to write the history of the Roman affairs from the beginning of the city. I neither am certain, nor if I was would I venture to declare it.

Soon after he endeavours to prepare the reader's attention, by representing the grandeur and usefulness of the subject in the following words: 'Either I am prejudiced in favour of my subject, or there never was any state greater, more virtuous, and fruitful of good examples, or in which avarice and luxury had a later admittance, or poverty and thriftiness were either more highly or longer esteemed, they always coveting left instead of what they enjoyed.' And then he presently proceeds to ingratiate himself with his readers, and gain their favourable opinion: 'Although my name is obscure in so great a number of writers, yet it is a comfort that they clound it by their fame and character. But I shall gain this advantage by my labour, that I shall be diverted for a time from the prospect of those evils which the age has seen for so many years; while my mind is wholly intent upon former times, free from all that care which gives the writer unceasing, though it cannot bias.
bias him against the truth.” In this passage we see he endeavours to gain the good esteem of his readers from two very powerful motives, modesty and a strict regard to truth. It may scarce seem necessary to observe, that those introductions are esteemed the best which are most natural; that is, such as are taken from the subject matter of the history itself, and closely connected with it. Such are those of Herodotus, Thucydides, Livy, Tacitus, and others. And therefore Sallust is greatly blamed by Quintilian on the account of his introductions, which are so general, that they might suit other histories as well as those to which they are prefixed. Introductions should likewise be proportioned to the length of the work. We meet with some few histories, in which the writers immediately enter upon their subject, without any introduction; as Xenophon in his Expedition of the younger Cyrus, and Caesar in his Commentaries of the Gallic and Civil Wars. But the latter does not profess to write a just history; and therefore left himself more at liberty, as well in this respect as in some others.

2. But order is principally to be regarded in the body of the work. And this may be managed two ways; either by attending to the time in a chronological series, or the different nature and circumstances of the things contained in the history. However, as these two methods do not equally suit all subjects, we shall a little consider to what kind of histories each of them seems more properly adapted. All history then, as we have observed already, may be reduced to three sorts; biography, the history of particular states, and the general history of several states existing at the same time.

In biography, or the lives of particular persons, most writers follow the order of time; though some reduce them to certain general heads, as their virtues and vices, or their public and private character. Plutarch and Cornelius Nepos have taken the former method, and Suetonius the latter.

As to the history of particular states, the order of time is generally best, as being most natural and easy. And therefore it has usually been observed by the best historians, as Thucydides, Livy, and others. Tacitus, indeed, wrote two distinct works; one of which he called Annals, and the other Histories. And as in both he has kept to the order of time, critics have been at a loss to assign any other reason for these different titles, unless that in the former work he confines himself more closely to the facts themselves, and does not treat so largely upon the causes, manner, or event of them, as he has done in the latter. And even in the circumstances of facts, there is a certain order proper to be observed, for rendering the account more plain and intelligible. Thus, for instance, in the description of a battle or siege, the time should first be known, then the chief person or persons who conducted it, then the number of forces, and other requisites, afterwards the nature of the place, then the action itself, and lastly the event. But sometimes it is necessary to add the time in which several of the other circumstances happened, especially in actions of any considerable length. Where the order of these circumstances is confused, it perplexes the account, and renders it both less entertaining to the reader, and more difficult to remember.

In a general history, the order of time cannot always be preferred; though, where the actions of different communities have respect to one as the principal, they should all, as far as possible, be referred to the transactions of that state. But even here the several affairs of those different states ought to be related separately, which will necessarily occasion the anticipating some things, and postposing others, so that they cannot all stand in the order of time in which they were performed. However, Velleius Paterculus says very justly with regard to this subject, “That every entire action, placed together in one view, is much better apprehended than if divided by different times.” In this case, therefore, for better preserving the chronology, it is usual with historians, when they have finished any particular narrative, in passing to the next, to express the time by some short and plain transition; and sometimes to apologize for themselves, by alluding the reasons of their conduct. So Polybius, whose history is of this kind, says concerning himself: “As in writing the actions of each year, in the order of time, I endeavour to represent the affairs of the same nation together in one summary view, it is plain that inconvenience must of course attend this way of writing.” Curtius professes only to write the actions of Alexander king of Macedon; but his history contains in it the principal affairs of the greatest states in the world during that period. Now although, in the course of those transactions, the war between Archelaus governor of Macedonia, and Agis king of Sparta, happened before the battle of Alexander at Arbela; yet the historian not only relates that battle first, but carries on the account of Alexander’s affairs in Asia to the death of Darius without interruption: for which he gives this reason: “If I should relate the affairs of Alexander, which happened in the mean time, either in Greece, or Illyrium and Thrace, each in their proper order and time, I must interrupt the affairs of Asia; which is much better to represent together in one continued series as they fell out, to the flight and death of Darius.” Such anachronisms, therefore, are nothing more than what necessarily arise sometimes from the nature of the subject: As every thing, the more complex it is, and containing under it a great number of parts, is more difficult to be digested in a regular order. But in an history composed of several states, whose affairs are independent of one another, the actions of each nation must necessarily be separated, in order to represent them in a just view, and prevent confusion. This is the method which Herodotus has taken, as likewise Diodorus Siculus and Justin. Now both the pleasure and benefit which such histories afford, arise from observing the conduct of each state separately in the course of their affairs, and then comparing one with the other. And as the order of time must frequently be interrupted, it is not unusual to continue the chronology at proper distances in relating the affairs of each nation; which preserves an unity in the whole, and connects it in one confitent body.

The division of histories into books was designed only for the better distinction of the subject and ease of the reader. And the dividing these books again into chapters, is rather a practice of later editors (founded, as they have thought, on the same reasons),
Art. IV. Of Style.

An historical style is said to be of a middle nature, between that of a poet and an orator, differing from both not only in the ornamental parts, but like with in the common idioms and forms of expression.

Cicero observes, that "nothing is more agreeable in history than brevity of expression, joined with purity and perspicuity." Purity indeed is not peculiar to history, but yet it is absolutely necessary; for no one will ever think him a good historian who is not master of the language in which he writes: and therefore when Albinus had written an history of the Roman affairs in Greek, and apologized for any slips or improprieties that might be found in the language upon the account of his being a Roman, Cato called him a trifler, for choosing to do that which, after he had done it, he was obliged to ask pardon for doing.

Nor is perspicuity less requisite in an historical style.

The nature of the subject plainly directs to this. For as history confifts principally in narration, clearness and perspicuity is nowhere more necessary than in a relation of facts. But these two properties are to be accompanied with brevity, since nothing is more disagreeable than a long and tedious narrative. And in this respect an historical style differs both from that of poetry and oratory. For the poet frequently heightens and enlarges his description of facts, by dwelling upon every circumstance, placing it in different views, and embellishing it with the finest ornaments of wit and language, to render his images more agreeable; and the orator often does the like, with a design to strike the passions. But such colouring is not the business of an historian, who aims at nothing more than a just and faithful representation of what he relates, in a way best suited to its nature, and in such language as is most proper to set it in a plain and easy light.

Again, Cicero, treating of a historical style, says: "It ought to be fluent, smooth, and even, free from that harshness and poignancy which is usual at the bar. The properties here mentioned distinguish this style from that of judicial discourses, in which the orator often finds it necessary to vary his manner of speaking, in order to allure different views, either pursuing an argument, preying an adversary, addressing a judge, or recommending the merits of his cause.

This occurs an inequality in his style, while he speaks sometimes directly, at other times by way of question, and intermixes short and concise expressions with round and flowing periods. But the historian has no necessity for such variations in his style. It is his province to cope with no party, to have neither friend nor foe, but to appear wholly disinterested and indifferent to all; and therefore his language should be smooth and equal in his relations of persons and their actions.

But further: Dionysius makes "decency a principal virtue in an historian," which he explains by saying, that "he ought to preserve the characters of the persons and dignity of the actions of which he treats." And to do this it seems necessary that an historical style should be animated with a good degree of life and vigour; without which neither the characters of eminent persons, nor their remarkable actions, which make up the main business of history, can be duly represented; for even things in themselves great and excellent, if related in a cold and lifeless manner, often do not affect us in a degree suitable to their dignity and importance. And this seems particularly necessary in speeches, in order to represent what every one says, according to his different country, age, temper, and station of life, in the same manner we may suppose he either really did, or would have spoken himself on that occasion. Besides, there are some scenes of action which require very pathetic and moving language to represent them agreeably to their nature. And in descriptions, the most beautiful tropes and lively figures are often necessary to set the ideas of things in a proper light. From whence it appears, that painting and imagery makes up no small part of the historian's province, though his colours are not so strong and glittering as those of the poet or orator. He ought therefore to be well acquainted with the manners of men and the nature of the passions, since he is often obliged to describe both, in the former of which Herodotus excels, and Thucydides in the latter, as Dionysius has observed.

Now from these several properties laid down by ancient writers, as requisite for an historical style, it seems upon the whole to agree best with the middle character. And this will further appear, by what they say relating to the ornamental parts of style; namely, composition and dignity. As to the former of these, which respects the structure of sentences, and the several parts of them, Demetrius remarks, that "An historical period ought neither to rise very high, nor sink very low, but to preserve a medium." This simplicity (he says) "becomes the gravity and credit of history; and distinguiishes it from oratory on the one hand, and dialogue on the other." His meaning is, that historical periods should neither be so full and honors as is frequent in oratory; nor yet so short and flat, as in dialogue: the former of which, as he says, require a strong voice to pronounce them; and the latter have scarce the appearance of periods.

But that, according to this judicious writer, the periods best suited for history are those which, being of a moderate length, will admit of a just rise and cadence, and may be pronounced with ease. And Dionysius tells us, that "History should flow smooth and easy, everywhere consistent with itself, without roughness or chasms in the found." This relates to the harmony of periods, which arises from such a portion of the words, as renders the found pleafant and agreeable, and, as he thinks, ought to be attended to in history. And as to dignity, which respects the use of tropes and figures, the same author says, that "History should be embellished with such figures as are neither vehement nor carry in them the appearance of art." This is agreeable to what Cicero observes, in comparing Xenophon and Callithenes, two Greek historians. "Xenophon the Socratic (says he) was the first philosopher, and after him Callithenes, the scholar of Aristocles, who wrote an history: the latter almost like a rhetorician; but the style of the former is more moderate, and has not the force of an orator." De Orat. lib. ii. c. 14.
and pleasant." The difference between these two writers, with regard to their style, consisted chiefly in the choice of their figures; which in Xenophon were more gentle and moderate, and therefore in the judgment of Cicero more agreeable to history. Now the several properties relating to the ornaments of language, as well as those before mentioned, which by ancient writers have been thought requisite for history, are all fitted to the middle style, as we have elsewhere shown at large. See Oratory, n° 99—121.

But notwithstanding this general account of the several properties which constitute an historical style, it admits of considerable varieties from the different nature and dignity of the subject. The lives of particular persons do not require that strength and majesty of expression, nor all those ornaments of language, as an history of the Roman empire. And accordingly we find the style of Nepos and Suetonius very different from that of Livy. The former is smooth and easy, scarce rising above the low character; but the latter often approaches near to the sublime. And other historians again have kept a medium between these. Upon the whole, therefore, we may conclude, that the middle style is the proper character for history; though historians may sometimes sink into the low character, and at other times rise to the grandeur and magnificence of the sublime, from the different nature of their subject, or some particular parts of it. For that is to be esteemed the proper character of any writing which in the general best suits it. And this distinction may help us in some measure to reconcile the sentiments of writers upon this head, who seem to attribute different characters to an historical style, or at least to judge where the truth lies; since a variety of style is not only requisite in different subjects, but likewise in different parts of the same work.

HISTORY.

HISTORY OF NATURE, or Natural History. See Natural History.

HISTORY. See Hystrix.

HISTORIO, in the ancient drama, signified an actor or comedian; but more especially a pantomime, who exhibited his part by gestures and dancing. Livy informs us, that the histrioines were brought to Rome from Etruria, in the year of the city 391, (Dec. 1. lib. 7.)

HISTRIO. See Hystrix.

HITCHING, a large and populous town of Harfordshire in England, situated near a large wood called Hitchwood. The manor was the ancient demeane of the kings of England, as it continues at this day; and it has been the dower of several of their queens. The town is reckoned the second in the county for number of streets, houses, and inhabitants. It was formerly famous for the staple commodities of the kingdom, and divers merchants of the staple of Calais resided here, since which that trade is lost. The inhabitants now make large quantities of malt; and the market is one of the greatest in England for wheat. W. Long. c. 20. N. Lat. 51. 55.

HITHE, a town of Kent in England, 70 miles from London. It is one of the cinque ports; and had formerly five parishes, but by the chinking up of its harbour and other accidents is now reduced to one. In the reign of Henry IV. numbers of its inhabitants were cut off by a pestilence, 200 of their houses consumed by fire, and five of their ships sunk at sea, with the loss of 100 men; so that the people were going to abandon the town, had not the king by his charter generously releasethem, for five terms next following, their service of five ships of 100 men and five horse, which they were to have furnished and kept at their own charge in the king's wars for 15 days. It was first incorporated by the name of barons of the town and port of Hithe; but the government was afterwards changed. It was incorporated by Queen Elizabeth with the name of the mayor, jurats, and communalty of the town and port of Hithe, who with the freemen elected the members of parliament. The mayor is chosen yearly on Candlemas day. Here is a market on Saturdays, and fairs in July and December. From hence to Canterbury is a paved Roman military-way, called Stone Street; and at a little distance from hence are the remains of the walls of a castle, which included 10 acres. There is a remarkable pile of dry bones in the town, 28 feet long, 6 broad, and 8 high; they are kept in a vault under the church in as good order as books in a library, consisting of several thousand heads, arms, legs, thigh-bones, &c. some very gigantic, and appear by an inspection to be the remains of the Danes and Britons killed in a battle near this place, before the Norman conquest. From hence to Boulogne is reckoned the shortest cut to France. E. Long. r. 7. N. Lat. 51. 6.

HITTITES, the descendants of Heth. See Heth.

HIVE, in country affairs, a convenient receptacle for bees. See Aries and Bes.

HIVITES, a people descended from Canaan. They dwelt at first in the country which was afterwards possessed by the Caphtorims, or Philiutines. There were Hivites likewise at Shechem and Gibeon, and consequently in the centre of the promified land; for the inhabitants of Shechem and the Gibeonites were Hivites, (Joshua xi. 19. Genesis xxxiv. 2.) Lastly, there were some beyond Jordan, at the foot of mount Hermon (Joshua xi. 3.) Bochart is of opinion, that Cadmus, who carried a colony of Phoenicians into Greece, was an Hivite. His name Cadmus, comes from the Hebrew Kedem, "the east," because he was of the eastern part of the land of Canaan. The name of his wife Hermione, comes from mount Hermon, at the foot whereof the Hivites had their dwelling. The metamorphosis of Cadmus's companions into serpents is grounded on the signification of the name Hivites, which in Phoenician signifies "serpents."

HOACHE, in natural history, a kind of earth approaching to the nature of chalk, but harder, and feeling like soap; whence some think that it is either the same with the soap rock of Cornwall, or very like it. The Chinefe dilfolve it in water till the liquor is of the confection of cream, and then varnish their China-ware with it.

HOADLEY
Hoadley. Hoadley. (Benjamin), successively bishop of Bangor, Hereford, Salisbury, and Winchester, was born in 1675. His first preferment in the church was the rectory of St Peter-le-Poore, and the lectureship of St Mildred's in the Poultry. In the year 1706, he published some Remarks on the late bishop Atterbury's sermon at the funeral of Mr Bennet, in which Dr Atterbury had, in the opinion of Mr Hoadley, laid down some dangerous propositions. Two years after, Mr Hoadley again entered the lists against this formidable antagonist, and in his exceptions against a sermon published by Dr Atterbury, intituled "The Power of Charity to cover him," he attacked the doctor with his usual strength of reasoning and dispassionate inquiry. In 1759, another dispute arose between these two learned combatants, concerning the doctrine of non-resistance, occasioned by a performance of Mr Hoadley's, intituled "The Measures of Obedience;" some passages in which Dr Atterbury endeavoured to confute in his elegant Latin sermon, preached that year before the London clergy. In this debate Mr Hoadley signalled himself so eminently a degree, that the honourable house of commons gave him a particular mark of their regard, by representing, in an address to the queen, the signal services he had done to the cause of civil and religious liberty. The principles, however, which he espoused being repugnant to the general temper of those times, drew on him the virulence of a party; yet it was at this period (1710, when, as he himself expressed it, "fury seemed to be let loose upon him") that the late Mrs Hoadley presented him to the rectory of Streatham in Surrey, unfixed, unapplauded to, and without his either having seen her or been seen by her. Soon after the accession of King George I. Mr Hoadley was consecrated to the see of Bangor; and, 1717, having broached some opinions concerning the nature of Christ's kingdom, &c. he again became the object of popular clamour. At this juncture he was distinguished by another particular mark of the royal regard, by means of which the convention was successively procured, and it was not permitted to sit, nor do they build that till that resentment was entirely subsided. In 1721, he was translated to Hereford; and from thence, in 1732, to Salisbury. In 1734, he was translated to Winchester (on the demise of Dr Willis), and published his Plain Account of the Sacrament: a performance which served as a butt for his adversaries to shoot at: yet impartially owns it to be clear, rational, and manly, wrote with great candour and judgment, and suited to the capacity of every serious and considerate inquirer after truth.—His latter days were embittered by a most vile instance of fraud and ingratitude. The bishop took a French priest, who pretended to abjure his religion, under his protection, with no other recommendation than that of his necessities; in return for which act of humanity, the priest found an opportunity of getting the bishop's name written by his own hand, and, canceling a note of some thousand pounds to be placed before it, offered it in payment. But the bishop deny ing it to be his, it was brought before a court of justice, and there found to be a gross imposture. The ungrateful villain had now recourse to a pamphlet, in which he charged the bishop with being a drunkard; and alleged that he had the note of him when he was in liquor. To this calumny the bishop made a full and nervous answer; in which he exposed the man's falsehood, and solemnly averred that he was never drunk in his whole life. The world with becoming ardour embraced his defense, and he had the happiness to find himself piously acquitted even of any suspicion of such a charge. As a writer, he pohticed uncommon abilities. His sermons (published in 1754 and 1755) are esteemed inferior to few writings in the English language, for plainness and perspicuity, energy and strength of reasoning, and a free and masterly manner. In private life, he was naturally facetious, easy, and complying; fond of company, yet would frequently leave it for the purposes of study or devotion. He was everywhere happy; and particularly in his own family, where he took all opportunities of instructing by his influence and example. He died in 1761, aged 83. Besides the works already mentioned, he wrote, 1. Terms of Acceptance, 8vo. 2. Reasonable Conversions. 3. On the Eucharist. His tracts and pamphlets are extremely numerous; and the reader may see a complete catalogue of them in his life inferred in the supplement to the Biographical Britannica.

Hoadley (Benjamin, M. D.), son of the former was born in 1706; and studied at Bennet college Cambridge, under the tuition of Dr Herring afterwards archbishop of Canterbury. He took his degree in physic; and particularly applying himself to mathematical and philosophical studies, was, when very young, admitted a member of the royal society. He was made registrar of Hereford while his father filled that seat, and was early appointed physician to his majesty's household, but died at his house in Chelsea in 1757. He wrote, 1. Three Letters on the organs of respiration, 4to. 2. The Sufpicious Husband, a comedy. 3. Observations on a series of electrical experiments; and 4. Oratio anniversaria, in Theatro Col. Med. London. en Herici institutione habita die Octob. 1742.

Hoa-i-nan-fou, a city of China, in the province of Hwang-nan. According to Crofder, it is situated in a marsh, and is enclosed by a triple wall. The ground on which it stands is lower than the bed of the canal, the inhabitants live in continual dread of an inundation. The suburbs extend to the distance of a league on each side of the canal, and form at their extremity a kind of port on the river Hoang-ho. This place is very populous, and everything in it announces an active and brisk trade. One of those great mandarins who have the inspection of the canals and navigation, and who are also obliged to supply the court with necessary provisions, resides here. This city has eleven other under its jurisdiction; two of which are of the second, and nine of the third class.

Hoa-hound, in botany. See MURURY.

Hoaresheness, in medicine, a diminution of the voice, commonly attended with a preternatural asperity and roughness thereof. The parts affected are the a-spera arteria and larynx: for its caufes and cure, see the Index subjoined) to MEDICINE.

Hobal, in mythology, an idol of the ancient Arabs, the worship of which at Mecca was destroyed by Mahomet.

Hobbes (Thomas), a famous writer, born at Malmiburh in 1588, was the son of a clergyman. He...
Hobbes completed his studies at Oxford, and was afterwards governor to the eldest son of William Cavendish, earl of Devonshire. He travelled through France and Italy with that young nobleman, and at length applied himself entirely to the study of polite literature. He translated Thucydides into English; and published his translations in 1628, in order to show his countrymen, from the Athenian history, the disorders and confusions of a democratical government. In 1625, his patron the earl of Devonshire died; and in 1628 his son died also; which lost affected Mr Hobbes to such a degree, that he very willingly accepted an offer made him of going abroad a second time with the son of Sir Gervase Clifton; whom he accordingly accompanied into France, and stayed there some time. But while he continued there, he was solicited to return to England, and to resume his concern for the hopes of that family to whom he had attached himself so early, and to which he owed so many and so great obligations. In 1631, the countess dowager of Devonshire desired to put the young earl under his care, who was then about the age of 13. This was very suitable to Mr Hobbes's inclinations, who discharged that trust with great fidelity and diligence; and in 1632, he republished his translation of Thucydides, and prefixed to it a dedication to that young nobleman, in which he gives a large character of his father, and represents in the strongest terms the obligations he was under to that illustrious family. The same year he accompanied his noble pupil to Paris, where he applied his vacant hours to the study of natural philosophy, and more especially to the perfect understanding of mechanism, and the causes of animal motion. He had frequent conversations upon those subjects with father Martin Merfenne; a man deservedly famous, and who kept up a correspondence with almost all the learned in Europe. From Paris he attended his pupil into Italy, where at Pisa he became known to that great astronomer Galileo Galilei, who communicated to him his notions very freely; and after having seen all that was remarkable in that country, be returned with the earl of Devonshire into England. Afterwards, foreseeing the civil wars, he went to seek a retreat at Paris; where by the good offices of his friend father Merfenne, he became known to the famous Renatus des Cartes, and afterwards held a correspondence with him upon several mathematical subjects, as appears from the letters of Mr Hobbes published in the works of Des Cartes. But when this philosopher printed afterwards his Meditations, wherein he attempted to establish points of the highest consequence from innate ideas, Mr Hobbes took the liberty of differing from him; as did also the French king's mathematical professor, the illustrious Peter Gaffendi, with whom Mr Hobbes contracted a very close friendship, which was not interrupted till the death of the former. In 1642, Mr Hobbes printed a few copies of his famous book De Givis, which, in proportion as it became known, railed him many adversaries, who charged him with infilling principles which had a dangerous tendency. Among many illustrious persons who, upon shipwreck of the royal cause, retired to France for safety, was Sir Charles Cavendish, brother to the duke of Newcastle; and this gentleman, being skilled in every branch of the mathematicks, proved a constant friend and patron to Mr Hobbes; who, by embarking in 1645 in a controversy about squaring the circle, was grown so famous for it, that in 1647 he was recommended to instruct Charles prince of Wales, afterwards king Charles II. in that kind of learning. His care in the discharge of this office gained him the esteem of that prince in a very high degree: and tho' he afterwards withdrew his public favour from Mr Hobbes on account of his writings, yet he always retained a taste of the services he had done him; showed him various marks of his favour after he was restored to his dominions; and, as some say, had his picture hanging in his closet. This year also was printed in Holland, by the care of M. Sorbiere, a second and more complete edition of his book De Givis; to which are prefixed two Latin letters to the editor, the one by Mr Gaffendi, the other by father Merfenne, in commendation of it; and in 1650 was published at London a very small treatise of Mr Hobbes's, intitled Human Nature; and another, De corpore politico, or "Of the elements of the law."

All this time Mr Hobbes had been digesting with great care and pains his religious, political, and moral principles, into a complete system, which he called the Leviathan, and which was printed in English at London in 1650 and 1651. After the publication of his Leviathan he returned to England, and passed the summer commonly at his patron the earl of Devonshire's seat in Derbyshire, and some of his winters in town, where he had for his intimate friends some of the greatest men of the age. In 1660, upon the restoration, he quitted the country, and came up to London, where he obtained from the king assurance of protection, and had an annual pension of L. 100 settled upon him out of the privy purse. Yet this did not render him entirely safe; for, in 1666, his Leviathan and his treatise De Givis were cenured by parliament; which alarmed him very much, as did also the bringing in of a bill into the house of commons to punish atheism and profaneness. When this bill was a little blown over, he began to think of procuring a beautiful edition of his pieces that were in Latin; but finding this impracticable in England, he caused it to be undertaken abroad, where they were published in quarto in 1668, from the press of John Bleau. In 1669, he was visited by Colmo de Medicis, then prince, afterwards duke of Tuscany, who gave him ample marks of his esteem and respect; and having received his picture, and a complete collection of his writings caused them to be repolished, the former among his curiosities, the latter in his noble library at Florence. The like visits he received from foreign ambassadors and other strangers of distinction; who were curious to see a person whose singular opinions and numerous writings had made so much noise all over Europe. In 1672, he wrote his own life in Latin verse, when, as he observes, he had completed his 84th year: and in 1674, he published in English verse four books of Homer's Odyssey; which was so well received, that it encouraged him to undertake the whole Iliad and Odyssey, which he likewise performed and published in 1675. About this time he took his leave of London, and went to spend the remainder of his days in Derbyshire, where, however, he did not remain inactive, not withstanding his advanced
HOB

Hobbes vanced age; but published from time to time several pieces, to be found in the collection of his works. He died in 1679, aged 92.

As to his character and manners, they are thus described by Mr. Granger in his Memoirs of the Cavendish family. "The earl of Devonshire (says he) for his whole life entertained Mr. Hobbes in his family, as his old tutor, rather than as his friend or confidant. He let him live under his roof in ease and plenty, and in his own way, without making use of him in any public, or so much as domestic affairs. He would often express an abhorrence of some of his principles in policy and religion; and both he and his lady would frequently put off the mention of his name, and say, 'He was a humorist, and nobody could account for him. There is a tradition in the family, of the manners and customs of Mr. Hobbes, somewhat observable. His professed rule of health was to dedicate the morning to his exercise, and the afternoon to his studies. And therefore, at his first rising, he walked out, and climbed any hill within his reach; or if the weather was not dry, he fatigued himself within doors by some exercise or other, to be in a sweat: recommending that practice upon this opinion, that an old man had more moisture than heat, and therefore by such motion heat was to be acquired and moisture expelled. After this, he took a comfortable breakfast; and then went round the lodgings to wait upon the earl, the countess, and the children, and any considerable strangers, paying some short adresses to all of them. He kept these rounds till about 12 o'clock, when he had a little dinner provided for him, which he eat always by himself without ceremony. Soon after dinner he retired to his study, and had his candle with 10 or 12 pipes of tobacco laid by him; then shutting his door, he fell to smoking, thinking, and writing, for several hours. He retained a friend or two at court, and especially the lord Arlington, to protect him if occasion should require. He used to say, that it was lawful to make use of ill instruments to do ourselves good: 'If I were cast (says he) into a deep pit, and the devil should put down his clenched foot, I would take hold of it to be drawn out by it.' After the restoration, he watched all opportunities to ingratiate himself with the king and his prime ministers: and looked upon his pension to be more valuable, as an ernest of favour and protection, than upon any other account. His future course of life was to be free from danger. He could not endure to be left in an empty house. Whenever the earl removed, he would go along with him, even to his last stage, from Chatworth to Hardwick. When he was in a very weak condition, he dared not to be left behind, but made his way upon a feather-bed in a coach, tho' he survived the journey but a few days. He could not bear any discourse of death, and seemed to cast off all thoughts of it: he delighted to reckon upon longer life. The winter before he died, he made a warm coat, which he said must last him three years, and then he would have such another. In his last sickness his frequent questions were, whether his life was curable? and when intimations were given, that he might have ceas'd, but no remedy, he used this expression, 'I should be glad to find a hole to creep out of the world at;' which are reported to have been his last sensible words; and his lying some days following in a silent stupification, did seem owing to his mind more than to his body.'

The reverend Mr. Granger observes, that Hobbes's Hobgoblins, style is incomparably better than that of any other writer in the reign of Charles I., and was for its uncommon strength and purity scarcely equalled in the succeeding reign. "He has in translation (says he) done Thucydides as much justice as he has done injury to Homer; but he looked upon himself as born for much greater things than reading in the fleas of his predecessors. He was for striking out new paths in science, government, and religion; and for removing the land-marks of former ages. His ethics have a strong tendency to corrupt our morals, and his politics to destroy that liberty which is the birthright of every human creature. He is commonly represented as a sceptic in religion, and a dogmatist in philosophy; but he was a dogmatist in both. The main principles of his Leviathan are as little founded in moral or evangelical truths, as the rules he has laid down for squaring the circle are in mathematical demonstration. His book on human nature is esteemed the best of his works."

HOBIMA (Minderhout), an eminent landscape painter, was born about the year 1611 at Antwerp, but the master from whom he received his instruction is not known. He studied entirely after nature, sketching every scene that afforded him pleasure, and his choice was exceedingly picturesque. His grounds are alwaysagreeably broken, and he was particularly fond of describing slopes diversified with shrubs, plants, oreees, which conducted the eye to some building, ruin, grove, or piece of water, and frequently to a delicate remote distance, every object perspective contribut ing to delude our observation to that point. The figures which he himself designed are but indifferent; which was a defect imputable to Claude Lorrainе and Gaspar Pouffin as well as to Hobima; but the latter, conscious of his inability in that respect, admitted but few figures into his designs, and those he usually placed somewhat removed from the immediate view at a prudent distance from the front line. However, most of his pictures were supplied with figures by Oltade, Teniers, and other very famous masters, which must always give them a great additional value. They are now exceedingly scarce, and indistinctly sought for.

HOBBY, the name of a hawk called by some authors fabricius. See Falco.

It is a hawk of the lune, and not of the fict; and is very like the laker, only much lefs. It makes excellent sport with net and spaniels; for when the birds see the hobby, they dare not commit themselves to the wing, but lie close to the ground, and so are taken in nets.

HOBGOBLIN is a name vulgarly applied to faries and apparitions. Skinner calls the word rogogoblins, and derives it from Robin Goodfellow, Hob being the nick name of Robin: but Wallis and Junius, with greater probability, derive it from hophogoblins, empus, because
HOB, or HoBlerS, HOBler, HABlar, in ancient customs, were men who, by their tenure, were obliged to maintain a light horse or hobby, for the certifying any invasion towards the sea-side. The name was also used for certain Irish knights, who used to serve as light horsemen upon hobbies. HOB-NAIL, a nail with a thick iron head, used in shoeing a hobby or little horse. HOB-O-NAP, or HAB-NAP, a cant word formed from hab ne hap, and denoting an event which happens at random or by mere chance. HOBBOO, a name given by the people of Otaheite, and in the neighboring islands of the South Sea, to their superfine cloth. It is the thinnest and most finished preparation of the cotton.

HOB-HEE-COFFERESS, a kind of Abyssinian slaves very frequent in the empire of Hindoostan. They come mostly from a province subject to the Negus of Ethiopia, called Imnariah, to the south of his other dominions, and bordering on Negroland in Africa; from whence they are selected, and a great traffic made of them ever all Mogolistan and Peria; but it is chiefly from the ports of Arabia and the Red Sea that they are brought. Nothing can be imagined more smooth or glossy, and perfectly black, than their skin; in which they far surpass the negroes on the coast of Guinea; and, generally speaking, have not any thing of their thick lips, though otherwise as woolly haired as they. They are highly valued for their courage, fidelity, and swiftness; in which they far excel, as often to rise to perils of great honour, and are made governors of places under the title Siddees.

HOBSON's choice, a vulgar proverbial expression, applied to that kind of choice in which there is no alternative. It is said to be derived from the name of a carrier at Cambridge, who let out hackney horses, and obliged each customer to take in his turn that horse which stood next the stable door.

HOCUS-POCUS, a cant expression with which the exhibitors of legedemain tricks generally preface their feats. They are thought to be derived from that arch legedemain trick of the Romish priests converting the sacramental bread into Deity; in which wonderful metamorphosis the words hoc eft corpus made a conspicuous part of the ceremony, and which words may be considered as the probable root of our modern hoc eft.

HOD, a sort of tray for carrying mortar, in use among bricklayers.

HODEGOS, a term purely Greek, odysseus, signifying guide. The word is chiefly used as the title of a book composed by Athenaeus the Sinar, towards the close of the fifth century; being a method of disputing against the heretics, particularly the Apcchali.

Mr Toland has also published a dissertation under the same title. Its subject is the pillar of fire, &c. which went before the three Israelites as a guide in the desert.

HODGEPODE. See HODGEPOCH.

HODMAN, a cant term formerly used for a young scholar admitted from Westminster-school to be student in Christ-church in Oxford.

HODY (Humphry), a learned English divine, was born in 1639. At twenty years of age, he published his celebrated Dissertation against Aristaeus's history of the 70 interpreters; which was received with great applause by all the learned, Isaac Vossius excepted, who could not bear to have his opinions opposed by such a youth. Twenty years after, he treated the subject more fully in his De Bibliorum textibus originalibus, verisimilibus Gracie & Latina vulgata, libri IV. In 1689, he wrote the Prologomena to John Melan's Chronicle, printed at Oxford; and the year after was made chaplain to Dr Stillingfleet bishop of Worcester. The deprivation of the nonjuring bishops engaged him in a controversy with Mr Dodwell; which recommended him to archbishop Tillotson, to whom, and his successor Dr Tennison, he was domestic chaplain. In 1698 he was made regius professor of the Greek tongue at Oxford, and archdeacon of Oxford in 1704. On occasion of the controversy about the convocation, he, in 1701, published A history of the English councils and convocations, and of the clergy's sitting in parliament, &c. He died in 1706, leaving in MS. An account of those learned Grecians who retired to Italy on the taking of Constantinople, &c. which was published in 1742 by Dr Jebb.

HOE, or H0w, a husbandman's tool, made like a cooper's adze, to cut up weeds in gardens, fields, &c. This instrument is of great use, and ought to be much more employed than it is in hoeing and clearing the several corners and patches of land in spare times of the year, which would be no small advantage to it.

Horfe-Hoe, a large kind of hoe drawn by horses, and used to fill the intervals in the new husbandry, and clear the corn from weeds. See AGRICULTURE.

HOEING, in the new husbandry, is the breaking or dividing the soil by tillage while the corn or other plants are growing thereon. It differs from common tillage (which is always performed before the corn or plants are sown or planted) in the time of performing it; and it is much more beneficial to the crops than any other tillage. This sort of tillage is performed various ways, and by means of different instruments, and is described under the article Hoe.

HOEI-TCHEOU, the most southern city of the province of Kiang-nan in China, and one of the richest of the empire. The people are economical and temperate, but they are active and enterprising in trade: they boast of their tea, varnish, and engravings, which are indeed the most esteemed in China. It has dependent upon it six cities of the third class; the mountains which surround this canton contain gold, silver, and copper mines.

HOEMATOPUS, in ornithology; a genus of birds, of the order of grallae. It has a long compressed bill, with the end cuneate; the nostrils are prenasal, and the feet bare only the toes. There is but one species, the ourelagus, sea-pie, or oyster-catcher. They are very common on most of our coasts; feeding on marine insects, oysters, limpets, &c. Their bills, which are compressed, and oblong, are very strong instruments to invertebrate between the limpet and the rock to which these shells adhere; which they do with great dexterity to get at the fish. On the coast of France, where the tides recede so far as to leave the beds of oysters bare, these birds feed on them, forcing the shells open with their bills. They keep in summer-time in pairs, laying their eggs on
HOGG [605]

Hogan, the name of several eminent physicians; of whom Maurice Hoffman, and John Maurice Hoffman his son practiced at Altorf. Maurice died in 1608, leaving behind him many works; and was succeeded by his son John Maurice, who wrote as well as his father, and died in 1727, highly esteemed by the faculty. — Frederic Hoffman, probably of the same family, was born at Magdeburg in 1660. The principal known circumstances of his life are, his journey into Holland and England, where he became intimately acquainted with Paul Herman and Robert Boyle; never taking any fees, being supported by his annual stipend; his curing the emperor Charles VI. and Frederic I. king of Prussia of invertebrate diseases; to which may be added, his accurate knowledge of the nature and virtues of mineral waters. He survived his 80th year; and his works, which are in extenso, were printed in five volumes folio at Geneva, in 1740.

Hoffmannists, in ecclesiastical history, denote those who espoused the sentiments of Daniel Hoffmann, professor of the university of Helmstedt, who, from the year 1598, maintained, that philosophy was a mortal enemy to religion; and that what was true in philosophy was false in theology. These absurd and pernicious tenets occasioned a warm and extensive controversy; at length Hoffmann was compelled by Julius duke of Brunswick to retract his invectives against philosophy, and to acknowledge, in the most open manner, the harmony and union of found philosophy with true and genuine theology. **Hog,** in zoology. See Stts.

Hog's Eard. See Axumia.

Hogarth (William), a truly great and original genius, is said by Dr Burn to have been the descendant of a family originally from Kirkby Thore, in Westmorland. His father, who had been a schoolmaster in the same county, went early to London, where he was employed as a corrector of the press; and appears to have been a man of some learning, a dictionary, in Latin and English, which he compiled, for the use of schools, being still existing in MS. He married in London; and kept a school in Ship-Court, in the Old Bailey. Our hero was born in 1697 or 1698, in the parish of St Martin Ludgate. The outcast of his life, however, was unpromising. "He was bound," says Mr Walpole, "to a mean engraver of arms upon plate." Hogarth probably chose this occupation, as it required some skill in drawing; to which his genius was particularly turned, and which he contrived skilfully to cultivate. His master, it seems appears, was Mr Ellis, a maker of flat, which he afterwards used in Cranbourn-street, Leicester-fields. In this profession it is not unusual to bind apprentices to the fingle branch of engraving arms and cyphers on every species of metal; and in that particular department of the business young Hogarth was placed; "but, before his time was expired, he felt the impulsive genius, and that it directed him to painting." During his apprenticeship, he set out one Sunday, with two or three companions, on an excursion to Highgate. The weather being hot, they went into a public house, where they had not been long before a quarrel arose between some persons in the same room. One of the disputants struck the other on the head with a quart pot, and cut him very much. The blood running down the man's face, together with the agony of the wound, which had diversified his features into a most hideous grin, presented Hogarth, who showed himself thus early, "apprised of the mode Nature had intended he should arrive," with too laughable a subject to be overlooked. He drew out his pencil, and produced on the spot one of the most ludicrous figures that was ever seen. What rendered this piece the more valuable was, that it exhibited
HOG [606]

Hogarth exhibited an exact likeness of the man, with the portrait of his antagonist, and the figures in caricature of the principal persons gathered round him.

How long he continued in obscurity we cannot exactly learn; but the first piece in which he distinguished himself as a painter is supposed to have been a representation of Wanstead Assembly. The figures in it, it is told, were drawn from the life, and without any circumstances of burlesque. The faces were said to be extremely like, and the colouring rather better than in some of his lace and more highly finished performances. From the date of the earliest plate that can be ascertained to be the work of Hogarth, it may be presumed that he began business on his own account at least as early as 1720.

His first employment seems to have been the engraving of arms and shop-bills. The next was to design and furnish plates for bookellers. Mr Bowles, at the Black Horse in Cornhill, was one of his first patrons, whose prices were very low. His next friend in that line was Mr Philip Overton, who paid him four guineas for his last plate where the ingenuity

There are still many family pictures by Hogarth existing, in the style of serious conversation-pieces. What the prices of his portraits were, Mr Nichols strove in vain to discover; but he suspects they were originally very low, as the people who are best acquainted with them choose to be silent on that subject.

It happened in the early part of Hogarth’s life, that a nobleman who was uncommonly ugly and deformed came to fit him for his picture. It was executed with a skill that did honour to the artist’s abilities; but the likeness was rigidly observed, without even the necessary attention to compliment or flattery. The peer disdained at this counterpart of his dear self, never once thought of paying for a reflector that would only insult him with his deformities. Some time was suffered to elapse before the artist applied for his money; but afterwards many applications were made to him (who had then no need of a banker) for payment, without success. The painter, however, at last hit upon an expedient which he knew must alarm the nobleman’s pride, and by that means answer his purpose. It was couched in the following word: “Mr Hogarth’s dutiful respects to lord ——; finding that he does not mean to have the picture which was drawn for him, is informed again of Mr H.’s necessity for the money; if, therefore, his lordship does not send for it in three days, it will be disposed of, with the addition of a tail, and some other little appendages, to Mr Hare, the famous wild-beast man; Mr H. having given that gentleman a conditional promise of it for an exhibition-picture on his lordship’s careful.”

This intimation had the desired effect. The picture was sent home, and committed to the flames.

Mr Walpole has remarked, that if our artist indulged his spirit of ridicule in personations, it never proceeded beyond sketches and drawings; and wonders that he never, without intention, delivered the very features of any identical person. Mr Nichols affurers us, from unquestionable authority, that almost all the performances that were drawn from the late Mr. Hogarth were undoubted portraits; and that in “Southwark Fair,” and the “Modern Midnight Conversation,” as many more were discoverable. While Hogarth was painting the “Rake’s progress,” he had a summer residence at Ipsworth; and never failed to question the company who came to see these pictures, if they knew for whom one or another figure was designed. When they guessed wrong, he let them right.

The Duke of Leeds has an original scene in the “Beggar’s Opera,” Painted by Hogarth. It is that in which Lucy and Polly are on their knees, before their respective fathers, to intercede for the life of the hero of the piece. All the figures are either known or supposed to be portraits. If we are not misinformed, the late Sir Thomas Robinson (perhaps better known by the name of Long Sir Thomas) is standing in one of the side boxes. Macbeth, unlike his spruce representative on the present stage, is a lounging bully; and Polly appears happily disencumbered of such a hoop as the daughter of Peachum within our younger memories has worn. Mr Walpole has a picture of a scene in the same piece, where Macbeth is going to execution. In this also the likenesses of Walker and Mr. Featon, afterwards distinguished in surgery, are their respective fathers.

They are still many family pictures by Hogarth existing, in the style of serious conversation-pieces. What the prices of his portraits were, Mr Nichols strove in vain to discover; but he suspects they were originally very low, as the people who are best acquainted with them choose to be silent on that subject.

It happened in the early part of Hogarth’s life, that a nobleman who was uncommonly ugly and deformed came to fit him for his picture. It was executed with a skill that did honour to the artist’s abilities; but the likeness was rigidly observed, without even the necessary attention to compliment or flattery. The peer disdained at this counterpart of his dear self, never once thought of paying for a reflector that would only insult him with his deformities. Some time was suffered to elapse before the artist applied for his money; but afterwards many applications were made to him (who had then no need of a banker) for payment, without success. The painter, however, at last hit upon an expedient which he knew must alarm the nobleman’s pride, and by that means answer his purpose. It was couched in the following word: “Mr Hogarth’s dutiful respects to lord ——; finding that he does not mean to have the picture which was drawn for him, is informed again of Mr H.’s necessity for the money; if, therefore, his lordship does not send for it in three days, it will be disposed of, with the addition of a tail, and some other little appendages, to Mr Hare, the famous wild-beast man; Mr H. having given that gentleman a conditional promise of it for an exhibition-picture on his lordship’s careful.”

This intimation had the desired effect. The picture was sent home, and committed to the flames.

Mr Walpole has remarked, that if our artist indulged his spirit of ridicule in personations, it never proceeded beyond sketches and drawings; and wonders that he never, without intention, delivered the very features of any identical person. Mr Nichols affurers us, from unquestionable authority, that almost all the performances that were drawn from the late Mr. Hogarth were undoubted portraits; and that in “Southwark Fair,” and the “Modern Midnight Conversation,” as many more were discoverable. While Hogarth was painting the “Rake’s progress,” he had a summer residence at Ipsworth; and never failed to question the company who came to see these pictures, if they knew for whom one or another figure was designed. When they guessed wrong, he let them right.

The Duke of Leeds has an original scene in the “Beggar’s Opera,” Painted by Hogarth. It is that in which Lucy and Polly are on their knees, before their respective fathers, to intercede for the life of the hero of the piece. All the figures are either known or supposed to be portraits. If we are not misinformed, the late Sir Thomas Robinson (perhaps better known by the name of Long Sir Thomas) is standing in one of the side boxes. Macbeth, unlike his spruce representative on the present stage, is a lounging bully; and Polly appears happily disencumbered of such a hoop as the daughter of Peachum within our younger memories has worn. Mr Walpole has a picture of a scene in the same piece, where Macbeth is going to execution. In this also the likenesses of Walker and Mr. Featon, afterwards distinguished in surgery, are their respective fathers.
HOGARTH [607]

Hogarth, view of the Gate of Burlington-house, with Pope whitewashing it and bespattering the duke of Chandos's coach. This plate was intended as a faire on the tranflation of Houner, Mr. Kent the architect, and the earl of Burlington. It was fortunate for Hogarth that he escaped the falf of the former. Either Hogarth's infcurity at that time was his protection, or the bard was too prudent to exafperate a painter who had already given fuch proof of his abilities for fare.

Soon after his marriage, Hogarth had furnner lodgings at South Lambeth; and being intimate with Mr Tyers, contributed to the improvement of the Spring Gardens at Vauxhall, by the hint of embellifhing them with paintings, some of which were the fuggifhions of his own little comic pencil. For his affiance, Mr Tyers gratefully prefemed him with a gold ticket of admifferion for himfelf and his friends.

In 1733, his genius became conmienoufly known. The third fcene of his "Harlot's Progreff," introduced him to the notice of the great. At a board of treasury which was held a day or two after the appearance of that print, a copy of it was shown by one of the lords, as containing among other excellencies, a striking likenefs of Sir John Gonfion. It gave universal fatisfaction: from the fervice each lord repaired to the print-fhop for a copy of it, and Hogarth rose completely into fame.

The ingenious Abbé Du Bos has often complained that no hilory painter of his time went through a fe ries of actions, and thus, like an hilorian, painted the fucciffive fortune of an hero from the cradle to the grave. What Du Bos withifh to fee done, Hogarth performed. He lanclhes out his young adventurer a fimp1e girl upon the town, and conducts her through all the viciffitudes of wretchednefs to a premature progrefs of the work, did not a fimple girl upon the town,

In 1745, Hogarth fold about 20 of his capital picures by auction; and in the fame year acquired additional reputation by the fix prints of "Marriage à la Mode," which may be regarded as the ground-work of a novel called "The marriage Aé," by Dr Sh eb- hear, and of The Clandeffine Marriage." Soon after the peace of Aix la Chapelle, he went over to France, and was taken into custody at Calais while he was drawing the gate of that town; a circumfance which he has recorded in his picture, intitled "O the Roaf Beef of Old England!" published March 26, 1746. He was actually carried before the governor as a spy, and after a very firit examination committed a prisoner to Granfire, his landlord, on his promifing that Hogarth should not go out of his house till he was to embark for England.

In 1753, he appeared to the world in the character of an author, and published a quarto volume, intitled "The Analysis of Beauty, written with a view of fixing the fluctuating ideas of taste." In this performance he shows, by a variety of examples, that a curve is the line of beauty, and that round dwelling figures are most pleasing to the eye; and the truth of his opinion has been conmienouted by fubfquent writers on the fubject. In this work, the leading idea of which was hieroglyphically thrown out in a frontifpiece to his works in 1745, he acknowledges himfelf indebted to his friends for affiance, and particularly to one gentleman for his corrections and amendments of at least a third part of the wording. This friend was Dr Benjamin Hoadley, the phyfician who carried on the work to about the third part, Chap. IX. and then, through difpofition, declined the friendly office with regret. Mr Hogarth applied to his neighbour Mr Ralph; but it was impossible for two fuch perfons to agree, both alike vain and positive. He proceeded no farther than about a fheet, and they then parted friends, and fume to have continued fuch. The kind office of finishing the work, and foporting the publication, was lately taken up by Dr Morell, who went through the remainder of the book. The preface was in like manner correffed by the Rev. Mr Townley. The family of Hogarth rejoiced when the laft fheet of the "Analysis" was printed off; as the frequent disputes he had with his quadrators, in the progrefs of the work, did not much harmonize his difpofition. The work was tranflated into German by Mr Myfins, when in England, under the author's inpection; and the tranflation was printed in London, price five dollars. A new and correffed edition was in 1754 propofed for publication at Berlin, by Ch. Fr. Vok, with an explanation of Mr Hogarth's nfigorical prints, tranflated from the French; and an Italian tranflation was published in London.

Hogarth had one failing in common with moft people who attain wealth and eminence without the aid of liberal education. He affected to defpife every kind of knowledge which he did not possess. Having establiſhed his fame with little or no obligation to literature, he either conceived it to be needlefs, or defpifed it because it lay out of his reach. His sentiments, in short, refembled thofe of Jack Cade, who pronounced sentence on the clerk of Chatham because he could write and read. Tell, in evil hour, this celebrated arifecommenced author, and was obliged to employ the friends already mentioned to correct his "Analysis of Beauty," he did not feem to have discovered that even spelling was a neceffary qualification; and yet he had ventured to ridicule the late Mr Rich's deficiency as to this particular, in a note which lies before the Rake whose play is refufed while he remains in confinement for debt. Previous to the time of which we are now speaking, one of our artist's common topics of declamation was the uflefulnes of books to a man of his profession. In "Beer-free," among other volumes configned by him to the pultry-cook, we find Turn-
About 1757, his brother-in-law, Mr Thornhill, Hogarth resigned the place of king's portrait-painter in favour of Mr Hogarth.

The last remarkable circumstance of his life was his contest with Mr Churchill. It is said that both met at Westminster-hall; Hogarth to take by his eye a ridiculous likeness of the poet, and Churchill to furnish a description of the painter. But Hogarth's print of the poet was not much esteemed, and the poet's letter to Hogarth was but little admired; indeed, to say that it broke the painter's heart, but this we can from good authority say is not true. Indeed the report falls of itself; for we may as well say, that Hogarth's pencil was as efficacious as the poet's pen, since neither long survived the contest.

It may be truly observed of Hogarth, that all his powers of delighting were restrained to his pencil. Having rarely been admitted into polite circles, none of his sharp corners had been rubbed off, so that he continued to the last a grofs uncultivated man.

The flightest contradiction transported him into rage. To some confidence in himself he was certainly intitled; for, as a comic painter, he could have claimed no hobby that would not most readily have allowed him; but he was at once unprincipled and variable in his political conduct and attachments. He is also said to have beheld the rising eminence and popularity of Sir Joshua Reynolds with a degree of envy; and, if we are not misinformed, frequently spoke with asperity both of him and his performances.

Justice, however, obliges us to add, that our artist was liberal, hospitable, and the most punctual of paymasters; so that, in spite of the encomiums his works had procured to him, he left but an inconsiderable fortune to his widow. His plates indeed are such resources to her as may not speedily be exhausted. Some of his domestic had lived many years in his service; a circumstance that always reflected credit on a master. Of most of these he painted strong likenesses on a canvas still in Mrs Hogarth's possession.

Of Hogarth's letter plates many were destroyed. When he wanted a piece of copper on a sudden, he would take any from which he had already worked off a number of impressions, as he supposed he should sell. He then sent it to be effaced, beat out, or otherwise altered to his present purpose. The plates which remained in his possession were secured to Mrs Hogarth by his will dated Aug. 12. 1764, chargeable with an annuity of £80 to his sister Anne, who survived him. When, on the death of his other sister, she left off the business in which she was engaged, he kindly took her home, and generously supported her, making her at the same time, useful in the dispat of his prints. Want of tenderness and liberality to his relations was not among the failings of Hogarth.

The following character of Hogarth as an artist, is given by Mr Gilpin in his Effays on Prints. "The works of this master abound in true humour and satire, which is generally well directed; they are admirable moral leons, and a fund of entertainment suited to every taste; a circumstance which lews them to be just copies of nature. We may consider them too as valuable repositories of the manners, customs, and dress of the present age. What a fund of entertainment would a collection of this kind afford, that was from every period of the history of Britain?—How
HOG [609]

Hogarth. for the works of Hogarth will bear a critical examination, may be the subject of a little more enquiry.

Hogarth was a man of great invention, and his judgment accurate. An improper accident is rarely introduced, a proper one rarely omitted. No one could tell a story better, or make it in all its circumstances more intelligible. His genius, however, it must be owned, was suited only to low or familiar subjects; it never soared above common life; to subjects naturally sublime, or which from antiquity or other accidents borrowed dignity, he could not rise. In composition we see little in him to admire. In many of his prints the deficiency is so great as that no one could fancy beautiful forms could suffer so unmanfully to the light.

The light would have been brought a little lower in the composition, that it is amazing how an execution so little perfect, as in the engraving just mentioned; in which, if the figures at the right and left corners had been kept down a little, the light would have been beautifully distributed on the foreground, and a fine secondary light spread over part of the crowd. But at the same time there is so obvious a deficiency in point of effect in most of his prints, that it is very evident he had no principles. Neither was Hogarth a master in drawing. Of the muscles and anatomy of the head and hands he had perfect knowledge; but his trunks are often badly moulded, and his limbs ill fet on; yet his figures, upon the whole, are inspired with so much life and meaning, that the eye is kept in good-humour in spite of its inclination to find fault. The author of the Analysis of Beauty, it might be supposed, would have given us more instances of grace than we find in the works of Hogarth; which shows strongly that theory and practice are not always united. Many opportunities his subjects naturally afford of introducing graceful attitudes, and yet we have very few examples of them.

With instances of picturesque grace his works abound. Of his expression, in which the force of his genius lies, we cannot speak in terms too high. In every mode of it he was truly excellent. The passions he thoroughly understood, and all the effects which they produce in every part of the human frame. He had the happy art also of conveying his ideas with the same precision with which he conceived them. He was excellent too in expressing any humorous oddity which we often see flamped upon the human face. All his heads are cast in the very mould of nature. Hence that endless variety which is displayed thro’ his works; and hence it is that the difference arise between his heads and the affected caricatures of other masters who have sometimes amused themselves with patching together an assemblage of features from their own ideas. Such are Spaniolet’s; which, though admirably executed, appear plainly to have no archetypes in nature. Hogarth’s, on the other hand, are collections of natural curiosities. The Osiris heads, the Figi head, the, &c., none of his other pieces, are expressly of this humorous kind. They are truly comic, though ill-natured effusions of humour; more entertaining than Spaniolet’s, as they are pure nature; but less innocent, as they contain ill-directed ridicule.—But the species of expression in which this master perhaps most excels, is that happy art of catching those peculiarities of art and gesture which the ridiculous part of every profession contriv’d, and which for that reason become characteristic of the whole. His counsellors, his undertakers, his lawyers, his usherers, are all conspicuous at sight. In a word, almost every profession may see in his works that particular species of affectation which they should most endeavour to avoid.

The execution of this master is well suited to his subjects and manner of treating them. He etches with great spirit, and never gives one unnecessary stroke.

HOGSHEAD, in commerce, a measure of capacity containing 63 gallons.

HOIG, a town and cape on the north-west point of Normandy in France; near which Admiral Rook burnt the French admiral’s ship called the Rising Sun, and 12 more large men of war, the day after the victory obtained by Admiral Riffield near Cherbourg in May 1692.

HOIST, in sea-language, denotes the perpendicular height of a flag or ensign, as opposed to the flag, which signifies its breadth from the staff to the outer edge.

HOISTING signifies the operation of drawing up any body by the assistance of one or more tackles. Hoisting is never applied to the act of pulling up any body by the help of a single block, except in the exercise of extending the sails by drawing them upwards along the masts or stays, to which it is invariably applied.

HOKDAY, Hock-Day, or Hock-Tuesday, in ancient customs (die Martis, quem quidem nomine simplici non), the second Tuesday after Easter week; a solemn festival celebrated for many ages in England in memory of the great slaughter of the Danes in the time of king Ethelred, they having been in that reign almost all destroyed in one day in different parts of the kingdom, and that principally by women. This is still kept up in some counties; and the women bear the principal sway in it, flapping all passengers with ropes and chains, and exacting some small matter from them to make merry with. This day was very remarkable in former times, in much as to be used on the same footing with Michaelmas for a general term or time of account. We find leaves without date referring so much rent payable ad dua annos terminus, et al ad hoke-day, & ad feam sancti Michaelis. In the accounts of Magdalene college, Oxford, there is yearly an allowance pro multitudine hockdanticis of some manors of theirs in Hampshire, where the men hock the women on Mondays, and the women hock them on Tuesdays. The meaning of it is, that on that day the women in merriment flapped the way with ropes, and pulled passengers to them, deferring something to be laid out for pious uses.

Hokc-Day Money, or Hock-Tuesday Money, a tribute anciently paid the landlord, for giving his tenants and
Holbein, born at Basel in Switz. and sojourned there from 1498, learned the rudiments of painting from his father, who was a painter, and soon displayed his superior genius. In the house of Basili he painted our Saviour’s Passion; and in the fift-market of the same city Death’s Dance, and a Dance of Peasants, which were extremely admired; and Erasmus was so pleased with them, that he defired him to draw his picture, and was ever after his friend. He lived some years longer at Basili, till his necessities, occasioned by his own extravagance and an increasing family, made him comply with Erasmus’s persuasions to go to England. In his journey he lived some days at Strasbourg, where it is said he applied to a very great painter for work, who took him in, and ordered him to give a specimen of his skill. On which Holbein finished a piece with great care, and painted a fly on the most eminent part of it; after which he privately withdrew in the absence of his master, and pursued his journey, without saying anything to anybody. When the painter returned home, he was astonished at the beauty and elegance of the drawing; and especially at the fly, which he at first took for a real one, and endeavoured to remove it with his hand. He now sent all over the city for his journeyman; but after many inquiries, discovered that he had been thus deceived by the famous Holbein.—Holbein having in a manner begged his way to England, presented a letter of recommendation from Erasmus to Sir Thomas More, and also showed him Erasmus’s picture. Sir Thomas, who was then lord-chancellor, received him with all the joy imaginable, and kept him in his house between two and three years; in which time he drew Sir Thomas’s picture, and those of many of his relations and friends. Holbein one day happening to mention a nobleman who had some years before invited him to England, Sir Thomas was very solicitous to know who it was. Holbein said that he had forgot his title, but remembered his face so well, that he believed he could draw his likeness; which he did so perfectly, that the nobleman he said was immediately known by it. The chancellor having now adorned his apartments with the productions of this great painter, resolved to introduce him to Henry VIII. For this purpose, he invited that prince to an entertainment; having, before he came, hung up all Holbein’s pieces in the great hall, in the best order, and placed in the best light. The king, on his first entrance into this room, was so charmed with the sight, that he asked whether such an artist was now alive, and to be had for money! Upon this, Sir Thomas presented Holbein to his majesty; who immediately took him into his service, and brought him into great esteem with the nobility and gentry, by which means he drew a vast number of portraits. But while he was here, there happened an affair which might have proved fatal to him, had he not been protected by the king. On the report of this painter’s character, a lord of the first quality came to see him when he was drawing a figure after the life. Holbein vent to defer his lordship to defer the honour of his visit to another day; which the nobleman taking for an affront, broke open the door, and very rudely went up stairs. Holbein hearing a noise, came out of his chamber; and meeting the lord at his door, fell into a violent passion, and pushed him backwards from the top of the stairs to the bottom. However, immediately reflecting on what he had done, he escaped from the tumult he had raised, and made the best of his way to the king. The nobleman, much hurt, though not so much as he pretended, was there soon after him; and upon opening his grievance, the king ordered Holbein to ask his pardon. But this only irritated the nobleman the more, who would not be satisfied with less than his life; upon which the king sternly replied, ‘‘My lord, you have not now to do with Holbein, but with me: whatever punishment you may contrive by way of revenge against him, shall certainly be inflicted on yourself. Remember, pray, my lord, that I can whenever I please make seven lords of seven ploughmen, but I cannot make one Holbein of even seven lords.” Holbein died of the plague on the 8th of April, 1543. He was a painter (says De Piles), that a man born in Switzerland, and who had never been in Italy, should have so good a genius, and so fine a genius for painting.” He painted alike in every manner; in fresco, in water-colours, in oil, and in miniature. His genius was sufficiently shown in the historical style, by two celebrated compositions which he painted in the hall of the Stillyard company. He was also eminent for a rich vein of invention, which he showed in a multitude of designs which he drew for engravers, statuaries, jewellers, &c. and he had this singularity, that he painted with his left hand.

HOLCUS, INDIAN MILLET OR CORN

A genus of the monocotyledon order, belonging to the polygamia class of plants; and in the natural method ranking under the 4th order, Gramineae. The calyx of the hermaphrodite is an uniflorous or biflorous glume; the corolla is a glume with an awn; there are three stamens, two styles, and one seed. The male calyx is a bivalved glume; there is no corolla, but three staminodia. *Species.* Of this genus there are 13 species, two of which are natives of Britain. The most remarkable of these is the latamus, or creeping soft grass of Hudson; for the description and properties of which see *Agriculture*, n° 39. The most remarkable of the foreign species is the forghum, or Guinea-corn. The stalks are large, compact, and full eight feet high. In Senegal the fields are entirely covered with it. The negroes, who call it *guarascot*, cover the ears when ripe with its own leaves to shelter it from the sparrows, which are very mischievous in that country. The grain made into bread, or otherwise used, is esteemed very wholesome. With this the natives in the West Indies are generally fed, each being allowed from a pint to a quart every day. The juice of the stalks is very agreeably laudacious, that, if prepared as the sugarcane, they would afford an excellent sugar. The negroes on the coast of Guinea make of two kinds of miller a thick grained pap called *coqueus*, which is common food.

HOLD, the whole interior cavity or belly of a ship, or all that part of her inside which is comprehended
bended between the floor and lower-deck throughout her whole length. This capacious apartment usually contains the ballast, provisions, and stores of a ship of war, and the principal part of the cargo in a merchantman. The disposition of these articles with regard to each other naturally falls under consideration in the article SOWAGE; it suffices in this place to say, that the places where the ballast, water, provisions, and liquors are stowed, are known by the general name of the hold. The several stores-rooms are separated from each other by bulk-heads, and are denominated according to the articles which they contain, the crew-room, the bread-room, the fiffe-room, the spirit-room, &c.

HOLDER (William), a learned and philosophical Englishman, was born in Nottinghamshire, educated in Pembroke-hall, Cambridge, and in 1642 became rector of Blechington of Oxford. In 1660 he proceeded D. D. was afterwards canon of Ely, fellow of the Royal Society, canon of St Paul's, sub-dean of the royal chapel, and sub-almoner to his majesty. He was a very accomplished person, and with a great virtue; and he wonderfully distinguished himself, by making a young gentleman of distinction who was born deaf and dumb to speak. This gentleman's name was Alexander Popham, son of colonel Edward Popham, who was some time an admiral in the service of the long parliament. The cure was performed by him in his house at Blechington in 1669; but Popham losing what he had been taught by Holder after he was called home to his friends, was lent to Dr Wallis, who brought him to his speech again. Holder published a book, intitled "the Elements of Speech; an essay of inquiry into the natural Production of Letters: with an appendix concerning persons that are deaf and dumb, 1669," 8vo. In the appendix he relates how and by what methods, he brought Popham to speak. In 1678, he published in 4to "a Supplement to the Philosophical Translations of July 1670, with some reflections on Dr Wallis's letter thereto inserted." This was written to claim the glory of having taught Popham to speak, which Wallis in the said letter had claimed to himself; upon which the Doctor soon after published "a Defence of the Royal Society, and the Philosophical Translations, particularly those of July 1670, in answer to the Cavils of Dr William Holder, 1678," 4to. Holder was skilful in the theory and practice of music, and wrote "a Treatise of the natural Grounds and Principles of Harmony, 1694," 8vo. He wrote also "a Discourse concerning Time, with Application of the natural Day, lunar Month, and solar year, &c. 1694," 8vo. He died at Amen Corner in London, January 24. 1696-7, and was buried in St Paul's.

HOLDERSNESS, a peninsula in the East-Riding of Yorkshire, having the German sea on the east, and the Humber on the south. It had the title of an earldom, now extinct.

HOLDSWORTH (Edward), a very polite and elegant scholar, was born about 1688, and trained at Winchester school. He was thene elected demy of Magdalen college, Oxford, in July 1705: took the degree of M. A. in April 1711: became a college-tutor, and had many pupils. In 1715, when he was to be chosen into a fellowship, he resigned his demyship and left the Holcrauce college, because unwilling to swear allegiance to the new government. The remainder of his life was spent in travelling with young noblemen and gentlemen as tutor: in 1724 and 1744 he was at Rome in this capacity. He died of a fever at Lord Digby's house at Colehill in Warwickshire, December 30. 1747. He was the author of the "Miscellaneous," a poem, esteemed a master-piece in its kind, and of which there is a good English translation by Dr John Hoadly, in vol. 5. of Dodsley's Miscellanies. He was the author also of a dissertation, intitled "Pharlia, and Philippa; or the two Philippa in Virgil's Georgics attempted to be explained and reconciled to History, 1741," 4to; and of "Remarks and Dissertations on Virgil; with some other critical Observations, published with several notes and additional remarks by Mr Spence, 1768," 4to. Mr Spence speaks of him in Polymetis, as one who understood Virgil in a more masterly manner than any person he ever knew.

HOLEACE. (from holus, "pot herbs"); the name of the 12th order in Linnaeus's fragments of a natural method, consisting of plants which are used for the table, and enter into the economy of domestic affairs. See BOTANY, p. 419.

HOLIBUT, in ichthyology. See PLEUROSTEÆ. HOLIDAY (Dr Barten), a learned divine and poet, was the son of a Taylor in Oxford, and born there about the year 1593. He studied at Christ-church college, and in 1615 took orders. He was before admired for his skill in poetry and oratory; and now distinguishing himself by his eloquence and popularity as a preacher, he had two benches conferred on him in the diocese of Oxford. In 1618, he went as chaplain to Sir Francis Stewart, when he accompanied Count Gondomare to Spain. Afterwards he became chaplain to the king, and before the year 1626 was promoted to the archdeaconry of Oxford. In 1642 he was made doctor of divinity at Oxford, near which place he sheltered himself during the time of the rebellion; but after the restoration returned to his archdeaconry, where he died in 1661. His works are: 1. Twenty sermons, published at different times. 2. Philosophia poetae barbarea speciem, 4to. 3. Survey of the world, a poem in ten books, octavo. 4. A translation of the Satires of Juvenal and Persius. 5. Technogamia, or the marriage of the arts, a comedy.

HOLINESS, or SANCCTITY; a quality which constitutes or denominates a person or thing holy; i.e. pure, or exempt from sin. The word is also used in respect of persons and things that are sacred, i.e. set apart to the service of God, and the uses of religion. Holiness, is also a title or quality attributed to the pope; as that of majesty is to kings. Even kings, when writing to the pope, address him under the venerable appellation of Your Holiness, or Holy Father; in Latin, Sanctissime or Beatissime Pater. Anciently the same title was given to all bishops. The Greek emperors also were addressed under the title of Holiness, in regard of their being anointed with holy oil at their coronation. De Cange adds, that some of the kings of England have had the same attribute;
HOLLAND, one of the divisions of Lincolnshire in England. It is so much resembles the province of that name upon the continent, in most respects, being low and marshy, with the fea on one side, and canals running through it, that it must either have had its name from thence, or on the same account. On the east it has what the ancient geographers call Etherarium Maris, now the Washes, which are overflowed at high water, and part of Cambridgeshire on the south. The lower part of it is full of bogs and marshes, and has huge banks to defend it against the fea and landfloods. The ground is so soft, that horses are worked unhod; and it produces plenty of grafs, but little corn.—The whole tract seems to have been gained from the fea; and is divided into Upper and Lower, the latter of which was unpeopled; but since the fens have been drained, the lands are grown more solid, and the inhabitants low cole-feed upon them to their great profit. Though there are no fones to be found in or upon the ground, yet most of the churches are of stone. They have no fresh water but from the clouds, which is preserved in pits; but if these are deep, it soon turns brackish; and if they are shallow, they soon become dry.

New Holland, the largest ifland in the world, reaching from 10 to 44 deg. S. Lat. and between 110 and 114 of Long. eafe from London. It received its name from having been briefly ex, lored by Dutch navigators. The land fift discovered in those parts was called Eendragt (Concord) Land, from the name of the ship on board which the discovery was made, in 1616; 24 deg. and 25 deg. south. In 1618, another part of this coast, nearly in 15 deg. south, was discovered.
undoubtedly entitled to the name of New-Holland. One part, situated between 20 and 30 deg. south, was explored by Jan Van Edels in 1619, who gave it the name of Arnhem and Diemen; though a different part from what afterwards received the name of Diemen's Land from Tasman, which is the southern extremity, in latitude 43 deg. In 1619, Van Houten gave it the name of a southern part of New-Holland. Another part, situated between 30 and 35 deg. south, received the name of New-Holland. Peter Van Nuyit gave his name, in 1627, to a coast which communicates to Leuven's Land towards the westward; and a part of the western coast, near the tropic of Capricorn, bore the name of De Witt. In 1629, Peter Carpenter, a Dutchman, discovered the great gulf of Carpentaria, between 10 and 20 deg. south. In 1667, Dampier, an Englishman, failed from Timor, and coasted the western parts of New-Holland. In 1699, he left England, with a design to explore this country, as the Dutch supposed whatever discoveries had been made by them. He failed along the western coast of it, from 28 to 15 deg. He saw the land of Eendracht and of De Witt. He then returned to Timor; from whence he went out again; examined the islands of Papua; coasted New Guinea; discovered the passage that bears his name; called a great island which forms this passage or strait on the east side, New-Britain; and failed back to Timor along New-Guinea. This is the same Dampier who, between 1683 and 1691, failed round the world by changing his ships. Notwithstanding the attempts of all those navigators, however, the eastern part of this vast tract was totally unknown till Captain Cook made his late voyages; and if fully exploring that part of the coast, gave his country an undoubted title to the possession of it; which accordingly has since been taken possession of under the name of New-South Wales.

Some have disputed whether the title of island can be properly applied to a country of such vast extent, or whether it ought not rather to be denominated a continent; while others have replied, that though the word island, and others, similar to it, do indeed signify a tract of land surrounded by sea, yet in the usual acceptation it means only a land of moderate extent surrounded in this manner. Were it otherwise, we might call the whole world an island, as it is every where surrounded by the sea; and in fact, Dionysius Perigetes applies this term to it, with the addition of the word immene, to distinguish it from other islands. The belt rule, according to Mr. Stockdale, for determining when a country ought to lose the name of island and begin to be called a continent, is when it begins to lose the advantages of an insular situation. The first and principal of these is the being capable of an union under one government, and thence deriving a security from all external attacks excepting those by sea; but in countries of great extent, this is not only difficult, but impossible. If we consider, therefore, New-Holland as extending about a thousand miles every way, we shall find that its claim to be called a continent is undoubted; its length from east to west being about 2400 English miles, and 2360 from north to south. This coast was first explored by Captain Cook in the year 1770; but his stay was too short to examine the nature of the country with the accuracy which he would otherwise have done had he continued longer in it. In general, it was found rather barren than otherwise. Many brooks and springs were found along the eastern coast, but no river of any consequence. They found only two kinds of trees useful as timber, the pine, and another which produces a gum.

These little animals form their habitations, by bending down the leaves of trees, and gluing the ends of them together so as to form a purse. Though these leaves are as broad as a man's hand, they perform this feat by main strength, thousands of them being employed in holding down the leaves, while multitudes of others apply the glutinous matter. Captain Cook's people ascertained themselves that this was the case, by sometimes disturbing them at their work; in which case the leaf always sprang up with an elasticity which they could not have supposed that such minute insects were capable of overcoming. For this curiosity, however, they quarried pretty severely; for thousands of these little enemies instantly threw themselves upon the aggregators, and revenged themselves by their bites or stings for the interruption they had met with. These were little pests painful at first than the sting of a bee; but the pain did not last above a minute. Another species of ants burrow themselves in the root of a plant which grows on the bark of trees like the milletoe, and which is commonly as big as a large turnip. When this is cut, it appears interspersed with innumerable winding passages all filled with these animals; notwithstanding which, the vegetation of the plant suffers no injury. These do not give pain by their stings, but produce an intolerable itching by crawling about on the skin. They are about the size of the small red ant in Britain. Another sort, which do not molest in any manner, resemble the white ants (see Termes) of the East-Indies. They construct nests three or four times as big as a man's head on the branches of trees; the outsides being composed of some vegetable matter along with a glutinous substance. On breaking the outer crusts of these hives, innumerable cells appear swarming with inhabitants, in a great variety of winding directions, all communicating with each other, and with several other nests upon the same tree. They have also another house built on the ground, generally at the root of a tree; formed like an irregular solid cone; for times more than fixed feet high, and nearly as much in diameter. The outside of these is of well-tempered clay about two inches thick, and within are the cells, which have no opening outward. One of these is their summer and the other their winter dwelling, communicating with each other by a large avenue leading to the ground, and by a subterraneous passage. The ground structures are proof against wet, which thence on the branches are not.
This country has now become an object of more consequence than formerly, by reason of the establishment of a British colony in it; where the criminals condemned to be transported are sent to pass time of servitude. Before this plan was resolved on by government, another had been discussed, viz. that of employing these criminals in workhouses; and Judge Blackstone, with Mr. Eden and Mr. Howard, had considered of the best method of putting it in execution; but though this plan had been approved by parliament as early as 1779, some difficulties always occurred, which prevented its going forward; and at length, on the 6th of December 1786, orders were issued by his majesty in council for making a settlement on New-Holland, establishing a court of justice in the colony, and other regulations necessary on the occasion. The whole received the complete sanction of the legislature in the beginning of the year 1787. The squadron appointed for putting the design in execution began to assemble at the Mother Bank, the place of rendezvous, in the Isle of Wight, on the 10th of March 1787. It consisted of the Sirius frigate Captain John Hunter, the Supply armed tender Lieutenant H. L. Ball; three storeships, the Golden-grove, Filburn, and Borrowdale; for carrying provisions and stores for two years; and lastly, six transports, the Scarborough and Lady Penrhyn from Portsmouth, the Friendship and Charlotte from Plymouth, and the Prince of Wales and Alexander from Woolwich. These were to carry the convicts, with a detachment of marines in each proportioned to the nature of the service; the largest where resistance was most expected, viz. in those which carried the greatest number of male convicts.

On the arrival of Governor Phillip at the station, he hoisted his flag on board the Sirius as commodore of the squadron; and the embarkation being completed, he gave the signal to weigh anchor on the 13th of May at day-break. The number of convicts was 778, of whom 536 were men. They touched at the island of Teneriffe on the 3d of June, without meeting with any bad accident. Here they filled up their stores and provisions in order to procure such refreshments as were necessary for preventing the disorders most likely to be dreaded in such a long and perilous voyage. In this they succeeded to their wish; and were about to depart on the 9th of June, when it was discovered that one of the convicts had made his escape, having found means to cut away a boat and make off with it. He offered himself as a sailor aboard a Dutch vessel at that time in the harbour, but was refused; upon which he attempted to conceal himself in a cave. In this he would probably have succeeded, had it not been for the boat which he had not concealed; so that he was soon discovered and brought back to the ship, where, however, he obtained his pardon from the governor.

On the 10th of June the fleet set sail from Santa Cruz in the island of Teneriffe, and on the 18th came in sight of the Cape Verd islands, where they anchored for St. Jago; but the want of a favourable wind and other circumstances prevented their getting in; so that as Governor Phillip did not chuse to waste time, they did not touch land till they came to Rio Janeiro on the coast of Brazil. It may seem surprising, that a voyage to the eastward, which of itself might be accounted of sufficient length, should thus be wilfully made so much longer, by falling twice across the Atlantic. The calms, however, so frequent on the coast of Africa, seem of themselves to be a sufficient inducement for navigators to prefer a westerly course; and even the islands at which it is so necessary to touch, are not far distant from the American coast. The returning tracks of Captain Cook's three voyages are all within a little space of the 45th degree of west longitude, which is even 10 degrees farther west than Cape St. Roque; and that course appears to have been taken voluntarily, without any extraordinary inducement.

During the time of their stay at Santa Cruz the weather had been very moderate; the barometer about 30 inches; and the thermometer never above 72°; as they approached the Cape Verd islands it rose to 82°, and did not exceed 82° 51' all the way from thence to Rio Janeiro. Here they met with a very favourable reception, contrary to that which Captain Cook experienced on a similar occasion. Provisions were so cheap, that though the allowance of meat was fixed by the government at 20 ounces per day, the men were victualled completely at 37 1/2 each, including rice, vegetables, and every other necessary. Wine was not at this time to be had except at an advanced price; but rum was laid in, and such seeds and plants procured as were thought most likely to flourish in New South Wales, particularly coffee, indigo, cotton, and the cochineal fig. An hundred sacks of caflade were likewise purchased as a substitute for bread, if it should happen to be scarce. By the kindness of the viceroy also, some deficiencies in the military stores were made up from the royal arsenal, and every assistance given which the place could afford. They arrived here on the 5th of August 1787, and set sail on the 4th of September, receiving as the last compliment from the governor a salute of 21 guns.

From Rio Janeiro the fleet had a fine run to Table Bay, in the souther extremity of Africa, which they accomplished in 39 days; were they took in the refreshments meant to supply them during the remainder of the voyage. Here they arrived on the 13th of October, with a cargo of live fock, and having provided in the meantime for the want of their usual supplies. Here they were to put into the port of the colony, which was not till the 16th of November, but were long impeded by contrary winds from the southeaft. On the 25th they were only 80 leagues distant from the Cape, when Governor Phillip left the Sirius and went on board the Supply tender; in hopes, by leaving the convoy, to gain sufficient time for examining the country round Botany Bay, that the most proper situation for the new colony might be chosen before the transports should arrive. They now met with favourable winds, blowing generally in very strong gales from the north-west, well, and southerly. The wind shifted only once to the east, but did not continue in that direction above a short while. On the 30th of January 1788 the Supply came within sight of the coast of New South Wales, but the winds then became variable, and a current, which at times set very strongly to the southward, impeded her course so much, that it was not till the 18th of the month that she arrived at Botany Bay.

Governor Phillip no sooner landed than he had an opportunity of conversing with the natives, who were assembled on shore. As it was the intention of this gentleman to conciliate if possible their friendship, he used every method at this first interview to inspire them with a favourable idea of the Europeans. For this purpose...
Captain Cook found them very indifferent about any kind of finery he could furnish them with. They seemed, according to the account of that celebrated navigator, to be so attached to their own ornaments, that they made no account of any thing else. They received indeed such things as were given them, but made no offer to return any thing in exchange; nor could they be made to comprehend that any thing of the kind was wanted. Many of the presents which they had received were found afterwards thrown away in the woods.

Governor Phillip having parted with his new acquaintances in a friendly manner, next set about an examination of the country about Botany Bay, which had been strongly recommended by Captain Cook as the most eligible place for a settlement. He found, however, that the bay itself was very inconvenient for shipping; being exposed to the easterly winds, and so shallow that ships even of a moderate burden could not get far enough within land to be sheltered from the fury of the ocean. Neither did the land about any part of this bay appear an eligible situation for a colony; being in some places entirely swampy, in others quite destitute of water. Point Sutherland seemed to afford the situation most free from objections, but the ships could not approach it; and even here the ground seemed to be universally damp and swampy; so that, on the whole, finding no place within the compass of the bay proper for the new settlement, they found themselves obliged to remove somewhere else.

The rest of the fleet arrived in two days after the Supply; and that no time might be lost, Governor Phillip ordered the ground about Point Sutherland to be cleared, and preparations to be made for landing, while he went with several officers in three boats to examine Port Jackson, which was only three leagues distant. Here they had the satisfaction to find one of the finest harbours in the world, where the failure of the line might ride in perfect safety. On examining the different coves, one was preferred which had a fine run of spring water, and where ships could anchor so close to the shore, that a very small expense quays might be constructed for loading and unloading the largest vessels. This was named by the governor Sydney Cove, in honour of Lord Sydney, and the country around it defined for the place of settlement. It is about half a mile long, and a quarter of a mile broad at the entrance. On the governor's return to Botany Bay, the reports made him concerning the adjacent country were so exceedingly unfavourable, that orders were immediately given for the removal of the fleet to Port Jackson. On the morning of the 25th, therefore, the governor sailed from Botany Bay, and was soon followed by the whole fleet. In the mean time, they were surprised by the appearance of two other European vessels, which had been first seen off Botany Bay on the 24th. There were found to be two French ships, named the Afterlee and Bouffale, which had left France on a voyage of discovery under the command of M. La Peyrouse, in the year 1785. They had touched at the island of Santa Catharina on the coast of Brazil, and from thence gone by the extremity of South America into the Pacific Ocean, where they had run along by the coasts of Chili and California; after which they had visited Easter Island, Nooka Sound, Cook's river, Kamtschatka, Manilla, the Isles des Navigateurs, Sandwich, and the Friendly Isles. They had also attempted to land on Norfolk Island, but found it impossible on account of the surf. During the whole voyage none were lost by sickness; but two boats crews had unfortunately perished in a surf on the north-west coast of America; and at Maluna, one of the Isles des Navigateurs, M. L'Angle, captain of the Adrollment, with 12 of his people, officers and men, were murdered by the savages. This was the more surprising, as there had been an uninterrupted friendship between the time the French touched at the island, till that unfortunate moment M. L'Angle had gone ashore with two long boats for the purpose of filling some water-casks. His party amounted to 40 men; and the natives, from whom the French had already received abundance of refreshments, did not show any signs of an hostile disposition: But from whatever motive their resentment was excited, the men had no sooner begun to get out the boats, than the savages made a most furious and unexpected assault with stones. In this encounter M. L'Angle himself, with the people abovementioned, fell a sacrifice to the treachery of these barbarians. The remainder of the party escaped with great difficulty; the ships having at that time passed a point of land which intercepted their view of the affair.

The convicts and others destined to remain in New South Wales being landed, no time was lost in beginning to clear ground for an encampment, store-houses, &c. The work, however, went on but slowly, partly owing to the natural difficulties they had to encounter, and partly owing to the habitual indolence of the convicts, which indeed was naturally to be expected considering their former way of life. Nevertheless, by the end of the first week of February, the plan of an encampment was formed, and places were marked out for different purposes, so that the colony already began to assume some appearance of order and regularity. The materials and framework of a slight temporary habitation for the governor had been brought out from England ready formed, which were landed and put together with as much expedition as circumstances would allow. Hospital tents were also erected; and the sick-nets which soon took place showed the propriety of so doing. In the pellage from the Cape there had been but little sickness, and few of the convicts had died; but a little time after they landed a dysentery began to prevail, which proved fatal in several instances, and the scarcity began to rage with great violence, so that the hospital-tents were soon filled with patients. The disorder proved the more virulent as fresh provisions could not rarely be obtained; nor were excellent vegetables often obtained in such plenty as could produce any material alleviation of the complaint: the only remedy for the dysentery was found to be a kind of red gum, produced in plenty by the trees growing upon this coast. The yellow gum has the same properties, though in an inferior degree.

In the beginning of February, a most violent form of thunder and lightning destroyed five of the sheep which had a shed erected for them under a tree, which proved a prelude to other misfortunes among the cattle. The encampment, however, was carried on with great activity.
alacrity; the foundation of the store-houses were laid, and every thing began to wear a promising appearance.

On the 7th of the month a regular form of government was established in the colony, with all the solemnity which could possibly be given: the governor made a proper speech to the convicts, reminding them of the situation in which they stood; and that now, if they continued their former practices, it was impossible they could hope for mercy if detected; neither could they expect to escape detection in so small a society. Offenders, therefore, he said, would certainly be punished with the utmost rigour; though such as behaved themselves in a proper manner, might always depend upon encouragement. He particularly noticed the illegal intercourse between the sexes, as a practice which encouraged profligacy in every respect: for which reason he recommended marriage: and this exhortation was followed by the uttermost deference, as well as the sufficiency to contain all the navy of Great Britain; but the latter has a bar at the entrance of only 13 feet at low water. Within are from 7 to 15 fathoms. The land here is more level than on the south-west branch, and some situations are proper for cultivation. The governor determined to have returned by land, in order to explore the country betwixt Port Jackson and Broken Bay, but the continual rains prevented him.

On the 10th of March the French ships departed, Death of the little intercourse having failed between them and the Receveur. They went on towards Port Jackson. While the former remained in Botany Bay, Father la Receveur, who had come out in the Africola as a naturalist, died of the wound he had received in the battle with the inhabitants of Maffina. A kind of monument was erected to his memory, with the following inscription:

Hic jacet LE RECEVEUR
E. F. minimis Galliae faceros,
Physicus in circumnavigatione Mundi

Duce De LA PEYRouse,
Ob. 17th, Feb. 1788.

This monument, however, was soon after destroyed by the natives; on which Governor Philip caus’d the inscription to be engraved on copper and nailed to a neighbouring tree. M. de la Peyrouse had paid a similar tribute to the memory of Captain Clerke at Kamtchatka.

On the 15th of April, the governor, attended by several officers and a small party of marines, set out on an expedition into the interior parts of the country. Their first landing was at the head of a small cove named Shell Cove, near the entrance of the harbour on the north side. Proceeding in this direction, they arrived with great labour at a large lake surrounded on all sides with bog and marshy ground to a considerable extent, and in which they frequently plunged up to the waist. Here they observed that birds were rare in other parts of the world, viz. a black swan. On being fired at, it rose, and showed that its wings were edged with white, the bill being tined red. They spent three days in a very laborious manner in passing the marshes and swamps which lie in the neighbourhood of the harbour: and here they had an opportunity of observing, that all the small streams which descend into Port Jackson proceed from swamps, occasioned by the stagnation of the water in the low grounds as it rises from the springs. On leaving these low grounds, they found them succeeded by a rocky and barren country; the hills covered with various flowering shrubs, though frequently inaccessible by reason of various natural obstacles. At about 15 miles distance from the sea, the governor had a fine view of the internal parts of the country, which were mountainous.

To the Broken Bay examined.
New-Hol.

To the most northerly chain of these he gave the name of Carmania, and to the most southerly that of Landdown Hills; and to one which lay between these he gave the name of Richmond Hill. It was conjectured, that a large river must rise from these mountains; but there was now a necessity for returning. On the 22d, however, another expedition was undertaken. Governor Phillip with his party landed near the head of the harbour. Here they found a good country, but in a short time arrived at a close thicket through which they found it impossible to make their way, so that they were obliged to return. Next day, by keeping close to the banks of a small creek, they made a shift to pass that obstacle, and continued their course for three days to the westward. The country was now extremely fine, either entirely level or rising in small hills, the soil excellent, but rocky in many places. The trees grew at the distance of from 20 to 40 feet from each other, in general totally detached or underwood, which was continued from the barren and stony spots. On the 5th day they saw for the first time in this second expedition Carmarthen and Landdown Hills, but the country all round was so beautiful, that Governor Phillip gave it the name of Belle vue. They were still apparently 30 miles from the mountains which they had intended to reach; but not having been able to carry more than six days provisions along with them, they found it necessary to return; and even with this small flock the officers as well as men were obliged to carry heavy loads. During all this celebrated with as much greatInstance, the Supply was effected with much greater ease, having pointed boundaries were made after the governor had given the name of Cumberland County to this part of the territory. The appointed boundaries were Carmarthen and Landdown Hills on the west, the northern parts of Broken Bay on the north, and the southern parts of Botany Bay on the south; thus including these three principal bays, with Sidney Cove nearly in the centre.

The misfortunes which attended those convicts who A convict strayed too great a distance from the settlement, executed, were not sufficient to prevent some of them from rambling into the woods, and subsisting themselves there and regaining their liberty. One of these, who had been guilty of a robbery, fled into the woods on the 5th of June, but was obliged to return half-starved on the 24th. He had found it impossible to subsist in the woods, and had met with very little relief from the natives. One of them gave him a fish, but made signs for him to go away. According to his account, they themselves were in a very miserable situation; and he pretended to have seen four of them apparently dying of hunger, who made signs to him for something to eat. He pretended also to have fallen in with a party who would have burnt him, and that he had made his escape from them with difficulty. He said also, that he had seen the remains of a human body lying on a fire; and endeavoured to incurate the idea of these savages eating human flesh when other provisions were scarce. This poor wretch was tried and executed for the theft he had committed before his departure, along with another criminal.

By this time the colony was far advanced, that Regular the plan of a regular town had been marked out. The plan of a principal street, when finished, is to be 200 feet wide, town laid, terminated by the governor's house, the main guard, and
and criminal court. The plans of other streets are likewise marked out; and it is the governor's intention, that when houses are built here, the grants of land shall be made with such clauses as will prevent the building of more than one house on one allotment, which is to consist of 60 feet in front and 150 in depth. Thus a kind of uniformity will be preferred in the building, narrow streets prevented, and many inconveniences avoided, which a rapid increase of inhabitants might otherwise occasion. It has likewise been an object of the governor's attention to place the public buildings in such situations as will be eligible at all times, and particularly to give the townhouses and hospital sufficient space for future enlargement, should it be found necessary. The first houses erected in this place were composed only of the soft wood of the cabbage palm, in order to give immediate shelter, and which had the further inconvenience of being used quite green. The huts of the convicts were constructed only of upright posts wattled with twigs, and plastered up with clay. Buildings of stone might easily have been raised, had there been any means of procuring lime for mortar. There were three kinds of stone met with about Sidney Cove, one equal in goodness to Portland stone, an indifferent kind of sandstone or fire-stone, and a sort which seems to contain iron; but neither chalk nor any species of lime-stone have yet been discovered. Lime was indeed procured from oyster-shells collected in the neighbouring coves to confirm a small house for the governor; but it cannot be expected that a sufficient quantity can thus be procured for many or very extensive buildings. Good clay for bricks has been found near Sydney Cove, and very good bricks have been made of it; the wood also, notwithstanding the many reports to the contrary, is found abundantly fit for various purposes after being thoroughly seasoned. Such specimens as have been sent to England were fine-grained and free of knots, but heavy.

On the point of land that forms the west side of the Harbour Bay has been erected, the longitude of which has been ascertained to be 159° 10' 30" east from Greenwich, and the latitude 32° 52' 30" south. Instead of thatch they now use make of shingles made from a certain tree, which has the appearance of a fir, but produces wood like English oak.

With regard to the state of this colony there have been various and discordant accounts. Some of these have represented the country in such a light, that it would seem impossible to subsist on it; and it has been said, that the people who have had the misfortune to go there already were in the utmost danger of starving before any assistance could be sent from Britain. These reports, however, appear not to be well-founded. Difficulties must undoubtedly be felt at the first settlement of every uninhabited country; and we are not to expect that a colony, most of whom are wretches exiled for their crimes from their own country, can thrive in an extraordinary manner for some time. It appears, indeed, that so far from the transportation to this place having had any good effect in reforming them, the governor has been obliged to execute the utmost rigour of the law by hanging several of them. A good number of others have unaccountably disappeared, and are supposed to have been murdered by the natives, or perished with hunger in the woods; so that, unless the numbers be replenished by more respectable inhabitants, it is not likely that much can be expected from the Port Jackson settlement for a long time to come. Of this, however, there seems to be little doubt; the general spirit of emigration which prevails through most, indeed we may say all the countries of Europe, will undoubtedly soon supply a sufficient number; and even some of the Americans, notwithstanding the extent and fertility of their own country, and the liberty they enjoy in it, are said to be willing to exchange these blessings for the precarious hopes of what may be obtained in New-Holland among British convicts and slaves. This rabbling disposition may perhaps be accounted for from an observation which has been made, viz. that "it may admit of a doubt whether many of the accommodations of a civilized life be not more than counterbalanced by the artificial wants to which they gave birth. That these accommodations do not give a satisfaction equivalent to the trouble with which they are procured, is certain; and it is no wonder, then, to find numbers of people in every country who are willing to exchange them for independent ease and tranquillity, which belong, comparatively speaking, to few individuals in those countries which are called civilized." With regard to the geography of this extensive country, which may perhaps be reckoned a fifth general division of the world, Captain Cook and Furneaux, so fully explored its coasts, that succeeding navigators have added nothing to their labours. The only part which still remains unknown is that between the latitudes of 37° 58' and 39° south; and as none of the fleet which lately failed from Britain could be supposed to undertake any voyage of discovery, it is unknown whether a strait interferes the continent in this place or not. Captain Tench, however, informs us, on the authority of a naval friend, that "when the fleet was off this part of the coast, a strong set-off the wind was plain felt." A vast chain of lofty mountains run nearly in a north and south direction farther than the eye can trace, about 60 miles inland. The general face of the country is pleasing, diversified with gentle ridings and small winding valleys, covered for the most part with large spreading trees, affording a succession of leaves in all seasons. A variety of flowering shrubs, almost all entirely new to an European, and of exquisite fragrance, abound in those places which are free from trees; and among these, a tall shrub, bearing an elegant flower, which smells like English may, is particularly delightfull, and perfumes the air to a great distance. There are but few trees; and, as Captain Tench and others relate, of one particular kind, that they can scarcely be used for any purpose. This, however, Mr. Suckdale ascribes to their being used in an unseasoned state, as has been already mentioned. In return for these bad qualities, however, the trees yield vast quantities of the gum already mentioned as a cure for the dysentery. It is of a hard quality, and therefore requires to be given along with opiates. The tree which yields it is of very considerable size, and grows to a great height before it puts out any branches. The gum itself is usually compared to faungis draconis, but differs from it in being perfectly soluble in water, which
which the fanguis draconis is not. It may be extracted from the wood by tapping, or taken out of the veins when dry. The leaves are narrow, and not unlike those of a willow; the wood fine grained and heavy, but warps to such a degree, when not properly seasoned, as to become entirely useless.

The yellow gum is properly a resin, being entirely insoluble in water. It greatly resembles gamboge, but has not the property of flaming. It is produced by a low small plant with long grally leaves; but the fructification shoots out in a surprising manner from the centre of the leaves on a single straight stem to the height of 12 or 14 feet. This stem is strong and light, and is used by the natives for making their spears. The resin is generally dug up from the soil under the tree, not collected from it, and may perhaps be the same which Tasman calls gun lac of the ground. It has been tried by Dr. Blanc physician to St. Thomas's hospital, who found it very efficacious in the cure of old ulcers, and that in many and obdurate cases. Many of the New Holland plants have been already imported into Britain, and are now flourishing in perfect health at the nursery gardens of Mr. Lee of Hammersmith.

Cook speaks of some fine meadows about Botany Bay, but none of these have been seen by the present settlers, and Governor Phillip supposes them to have been swamps seen at a distance. Grass grows in almost every place, but in the swamps with the greatest vigour and luxu­riance, though not of the finest quality. It is found to agree better with cows and horses than sheep. A few wild fruits are sometimes procured; among which is a kind of small purple apple mentioned by Captain Cook; and a fruit which has the appearance of a grape, but is a kind of small purple apple mentioned by Captain Cook; and a fruit which has the appearance of a grape, but

20 Scarcity of fresh water.

From the first discovery of this continent, the extreme scarcity of fresh water has been mentioned by every navigator. None have been fortunate enough to enter the mouth of any navigable river such as might be expected in a country of such extent. The fellters about Port Jackson found enough for common purposes of life; but Captain Tench informs us, that when he left the country, towards the end of 1788, there has been no discovery of a stream large enough to turn a mill. Since that time, however, Governor Phillip has been more successful, as we are informed by a letter of his to Lord Sidney, of date Feb. 13, 1790: In this letter he relates, that soon after the ships failed in November 1788, he again made an excursion to Botany Bay, where he stayed five days; but the researches he made there tended only to confirm him in the opinion he already entertained that the country round it was by no means an eligible situation for a colony. After having visited Broken Bay several times with boats, a river was found, which has since been traced, and all those branches explored which afforded any depth of water. This river has obtained the name of Hawkesbury, from 300 to 800 New-Hol­land feet wide, and seems navigable for the largest merchant ships as far up as Richmond Hill, at which it becomes very shallow, and divides into two branches: on which account the governor calls Richmond Hill the head of the river. As after very heavy rains, however, the water sometimes rises 30 feet above its level, it would not be safe for ships to go up to far; but 15 or 20 miles below it they would lie in fresh water, and be perfectly safe.

The country about Broken Bay is at first high and rocky, but as we proceed up the river it becomes more level, the banks being covered with timber, and the soil a light rich mould, supposed to be very capable of cultivation. The other branches of this river are shallow, but probably run many miles up into the country. Great numbers of black swans and wild ducks were seen on these rivers, and the natives had several decoys for catching quails.

Richmond Hill, near which a fall prevented the boats from proceeding farther up, is the most loftly of a large range of hills which run to the northward, and probably join the mountains nearly parallel to the coast from 50 to 60 miles inland. The soil of this hill is good, and it lies well for cultivation. There is a very extensive prospect from the top, the whole country around seeming a level covered with timber. There is a flat of six or seven miles between Richmond hill and a break in the mountains which separates Landtown and Carmarthen hills; in which flat the governor supposes that the Hawkesbury continues its course; though the river could not be seen on account of the timber with which the ground is every where covered where the soil is good. Six miles to the southward of Port Jackson is a small river; and 20 to the westward is one more considerable, which probably empties itself into the Hawkesbury. As far as this river was at that time explored, the breadth was computed at from 300 to 400 feet. It was named the Nepaan, and, like the Hawkesbury, sometimes rises 50 feet above its level. A party who crossed the river attempted to reach the mountains, but found it impossible, probably for want of provisions. After the first day's journey they met with much fresh water; the sides of which were frequently so inaccessible, that in five days they could not proceed farther than 15 miles. At the time they turned back, they supposed themselves to be 12 miles from the foot of the mountains. With regard to the state of the colony, it appears from this letter to be as flourishing as could in any reasonable manner be expected. Another has been formed at a place called Rolphill, at the head of the harbour of Sydney Cove. At this place is a creek, which at high tide has water for large boats to go threes miles up; and one mile higher, the water is fresh and the soil good. Some ground having been cleared and cultivated, the governor in the above letter writes, that 277 acres were fown with corn, and that in December the crop was got in: That the corn was exceedingly good; about 200 bushels of wheat and 60 of barley, with a small quantity of flax, Indian corn, and oats; all which is preserved for seed: That if settlers are sent out, and the convicts divided amongst them, this settlement will very shortly maintain itself; but without which this country cannot be cultivated to any advantage. "At
the county for 20 miles to the westward is very capable of cultivation; though the labour of cutting down the trees is very great. At Sidney Cove the flores had been infested by a swarm of rats which destroyed no less than 12,000 lb. weight of flour and rice. The gardens also had suffered very considerably; so that, having met with such a considerable loss of produce, and a sufficient supply not being procured from the Cape, governor Phillip thought fit to send a further detachment to Norfolk Island, where the fertility of the soil afforded great hopes of their being able in a short time to subsist themselves independent of any assistance from the flores.

With regard to the civil establishment in this colony, the jurisdiction extends from 43° 49' to 100° 37' south, being the northern and southern extremities of the continent. It commences again in 13° 3'E. Long. from Greenwich: and proceeding in an easterly direction, includes all the islands within the above-mentioned latitudes in the Pacific ocean; by which partition it is supposed that every source of litigation will be cut off, as all these are indubitably the discovery of the British navigators.

The powers of the governor are absolutely unlimited, no mention being made of a council to assist him in any thing; and as no fixed time is appointed for assembling the courts similar to the alfizes and assizes delivered in England, the duration of imprisonment is altogether in his hands. He is likewise invested with a power of summoning general courts martial; but the nature of the marine mutiny act, of a smaller number of officers than 15 being able to compose such a tribunal, has been neglected; so that a military court, should detachments be made from head quarters, or sickens prevail, may not always be found practicable to be obtained, unless the number of officers in the settlement at present be increased. The governor is allowed to grant pardons in all cases of treason and wilful murder excepted; and even in these he has authority to stay the execution of the law until the king's pleasure shall be signified. In case of the governor's death, the lieutenant-governor takes his place; and on his decease, the authority is lodged in the hands of the senior officer.

It was not long after the convicts were landed that there appeared a necessity for assembling a criminal court: and it was accordingly convened by warrant from the governor. The members were the judge advocate, who presided, three n. v. o. and three marine officers. The number of members is limited by act of parliament to seven: who are expressly ordered to be officers either of his majesty's sea or land forces. The court being met, completely arrayed and armed as at a military tribunal, the judge advocate proceeds to administer the usual oaths taken by jurymen in England to each member; one of whom afterwards swears him in a like manner. This ceremony being over, the crime is laid to the prisoner's charge, and the question of 'guilty or not guilty' put to him. No law officer being appointed on the part of the crown, the party at whose suit he is tried is left to prosecute the prisoner entirely by himself. All the witnesses are examined on oath; and the decision must be given according to the laws of England, or "as nearly as may be, allowing for the circumstances and situation of the settlement," by a majority of votes, beginning with the youngest member, and ending with the president of the court. No verdict, however, can be given in cases of a capital nature, unless at least five of the seven members concur therein. The evidence on both sides being finished, and the prisoner's defence heard, the court is cleared, and, on the judgment being settled, is thrown open again, and sentence pronounced. During the time of such assembly the place is directed to be surrounded by a guard under arms, and admission granted to every one who wishes to enter it. Of late, however, says captain Tench, our colonists are supposed to be in a train of subordination, as to make the presence of so large a military force unnecessary; and the sentinels in addition to the provost martial are considered as sufficient.

The first trials which came before this court were of three convicts, one of whom was convicted of having struck a marine with a cooper's adze, and behaving otherwise in a most scandalous and riotous manner for this he was condemned to receive 150 lashes, being a smaller punishment than a soldier would have suffered in a similar case. A second, for having committed a petty theft, was sent to a small barren island, and kept there on bread and water only for a week. The third was sentenced to receive 50 lashes; but being recommended by the court to the governor, had his sentence remitted. The same lenity, however, could not be observed in all cases. One fellow, who had been condemned to be hanged, was pardoned while the rope was about his neck, on condition that he would become the common executioner ever after. He accepted the horrid office, but not without a protest. Some examples of severity were undoubtedly necessary, and among these it is impossible to avoid feeling some regret for the fate of one who suffered death for stealing a piece of soap of eight-pence value: but by the last letter of governor Phillip, we are informed that the convicts in general are now behaving much better; more so indeed than ever he expected. The last statement was of one woman who had suffered for a robbery; five children had died, and 28 been born. The whole amount of the deaths 77, of the births 87.

The number of convicts already sent to New South Wales amounts to 2000 and upwards—above 1800 are since embarked for that settlement. The annual expense of the civil and military establishments at that place is nearly L. 10,000.

Besides the criminal court, there is an inferior one composed of the judge advocate, and one or more justices.
justices of the peace, for the trial of small misdemea- nors. This court is likewise empowered to decide all law-suits; and its verdict is final, except where the sum exceeds L. 300, in which case an appeal can be made to England from its decree. In case of nec- cessity, an admiralty court, of which the lieutenant governor is judge, may also be summoned for the trial of offences committed on the high seas.

The quadrupeds on the continent of New-Holland hitherto discovered are principally of the Opossum kind, of which the most remarkable is the Kangaroo. There is also a species of dogs very different from those known in Europe. They are extremely fierce, and never can be brought to the same degree of familiarity with those we are acquainted with. Some of them have been brought to England, but still retain their usual ferocity. There are a great many beautiful birds of various kinds; among which the principal are the black swans already mentioned, and the ostrich or callowary; which last arrives frequently at the height of seven feet more. Several kinds of serpents, large spiders, and scolopendras, have also been met with. There are likewise many curious fishes; though the finny tribe seem not to be so plentiful on the coast as to give any considerable affidavit in the way of provisions for the colony. Some very large sharks have been seen in Port Jackson, and two smaller species, one named the Port Jackson shark, the other Watt’s shark. The latter, notwithstanding its diminutive size, the mouth fierce exceeding an inch in breadth, is excessively voracious. One of them having been taken and flung down upon the deck, lay there quiet for two hours; after which Mr. Watts’s dog happening to pass by, the fish sprang upon it with all the ferocity imaginable, and seized it by the leg in such a manner that the animal could not disengage himself without assistance.

The climate of this continent appears not to be disagreeable, notwithstanding the violent complaints which some have made about it. The heat has never been excessive in summer, nor is the cold intolerable in winter. Storms of thunder and lightning are frequent; but these are common to all warm countries; and it has been supposed (though upon what foundation does not well appear) that were the country cleared of wood, and inhabited, these would in a great measure cease. A shock of an earthquake has likewise been felt; but these natural calamities are incident to some of the finest countries in the world. It is not known whether there are any volcanoes or not.

The inhabitants of New Holland are by all accounts represented as the most miserable and savage race of mortals, perhaps, existing on the face of the earth. They go entirely naked; and though pleased at first with some ornaments which were given them, they soon threw them away as useless. It does not appear, however, that they are intolerable to the benefits of clothing, or of some of the conveniences which their new neighbours are in possession of. Some of them, whom the colonists partly clothed, seemed to be pleased with the comfortable warmth they derived from it; and they all expect a great defect for the iron tools which they see their neighbours make use of. Their colour, in the opinion of captain Cook, is rather a deep chocolate than a full black; but the filth with which their skins are covered, prevents the true colour of them from appearing. At some of their interviews with the colonists, several dreadful instances occurred of their inflicting the negroes among the colonists for their own countrymen. Notwithstanding their disregard for European finery, they are fond of adorning, or rather deforming, their bodies with scars; so that some of them cut the most hideous figures that can be imagined. The scars themselves have an uncommon appearance. Sometimes the flesh is cut several inches from the skin, and appears as if filled with wind; and all these seem to be reckoned marks of honour among some. Some of them perforate the earlobe of the nose and thrust a large bone through it, an hideous kind of ornament humorously called by the sailors their "signe-feuery." Their hair is generally so much clootted with the red gum already mentioned, that they resemble a mop. They also paint themselves with various colours like most other savages: they will also sometimes ornament themselves with beads and shells, but make no use of the beautiful feathers procurable from the birds of the country. Moll of the men want one of the fore-teeth in the upper jaw; a circumstance mentioned by Dampier and other navigators; and this also appears to be a badge of honour among them. It is very common among the women to cut off the two lower joints of the little finger; which, considering the clumsiness of the amputating instruments they possess, must certainly be a very painful operation. This was at first appoited to be peculiar to the married women, or those who had borne children, but some of the oldest women were found without this distinction, while it was observed in others who were very young.

The New Hollanders appear extremely deficient in the useful arts. Of the cultivation of the ground they have no notion; nor can they even be prevailed upon to eat bread or dressed meat. Hence they depend entirely for subsistence on the fruits and roots they can gather, with the fish they catch. Governor Phillip also mentions their frequent setting fire to the grass, in order to drive out the opolioms and other animals from their retreats; and we have already taken notice of their using decoys for quails. As all these resources, however, must be at best precarious, it is no wonder that they are frequently distressed for provisions. Thus, in the summer-time they would eat neither the shark nor fling-ray; but in winter anything was acceptable. A young whale being driven ashore, was quickly cut in pieces and carried off. They broil it only long enough to sear the outside; and in this raw state they eat all their fish. They boil also the fern root and another whole species is unknown. Among the fruits used by them is a kind of wild fig; and they eat also the kernels of a fruit resembling the pineapple. The principal part of their subsistence, however, is fish; and when these happened to be scarce, they were wont to watch the opportunity when the colonists hauled the seine, and often seized the whole, though a part had formerly been offered or given them. They sometimes strike the fish from the canoes with their spears, sometimes catch them with hooks, and also make use of nets, contrary to the allention of Dr. Hakeworth, who says that none of these are to be met with among them. Their nets are generally made of the fibres of the flax plant, with very little preparation, and are strong.
New Holland.

strong and heavy; the lines of which they are composed twisted like whip-cord. Some of them, however, appear to be made of the fur of an animal, and others of cotton. The meshes of their nets are made of very large loops artificially inserted into each other, but without any knots. Their hocks are made of the inside of a shell, very much resembling mother of pearl. The canoes in which they fill are nothing more than large pieces of bark tied up at both ends with vines; and considering the slight texture of these vessels, we cannot but admire the dexterity with which they are prepared and sometimes with which they venture in them out to sea. They generally carry fire along with them in these canoes, to dress their fish when caught. When fishing with the hook, if the fish appears too strong to be drawn ashore by the line, the canoe is paddled to the shore; and while one man gently draws the fish along, another stands ready to strike it with a spear, in which he generally succeeds. There is no good reason for supposing them to be cannibals, and they never eat animal substances but raw or next to it. Some of their vegetables are poisonous when raw, but deprived of this property when boiled. A convict unhappily experienced this by eating them in an unprepared state; in consequence of which he died in 24 hours. The dislike of the New Hollanders to the European provisions has already been mentioned; if bread be given them, they chew and spit it out again, seldom choosing to swallow it. They like salt beef and pork rather better; but they could never be brought to taste spirits a second time.

The habits of these savages are formed in the most rude and barbarous manner that can be imagined. They consist only of pieces of bark laid together in the form of an oven, open at one end, and very low, though long enough for a man to lie at full length. There is reason, however, to believe, that they depend less on them for shelter than on the canoes with which the rocks abound. They go invariably naked, as has already been observed; though we must not imagine that the custom of going naked inures them to the climate as to make them insensible to the injuries of the weather. The colonists had repeated opportunities of observing this, by seeing them shivering with cold in the winter time, or huddling together in heaps in their huts or in canoes, till a fire could be kindled to warm them. It is probable, however, notwithstanding their extreme barbarity, that some knowledge of the arts will soon be introduced among them, as some have been seen attentively considering the utensils and conveniences of the Europeans, with a view, seemingly, of making similar improvements of their own. It has also been observed, that in some things they possess a very great power of imitation. They can imitate the songs and language of the Europeans almost instantaneously, much better than the latter can imitate theirs by long practice. Their talent for imitation is also discernible in their sculptures representing men and other animals every where met with on the rocks; which, though rude, are very surprising for people who have not the knowledge even of contrasting habitations in the least comfortable for themselves, or even clothes to preserve them from the cold.

In their persons, the New Hollanders are active, vigorous, and stout, though generally lean. Dampier New-Hollanders assert that they have a dimness of sight; though later navigators have determined this to be a mistake, ascribing to them on the contrary, a quick and piercing sight. Their sense of smelling is also very acute. One of them having touched a piece of pork, held out his finger for his companion to smell with strong marks of disgust. The only kind of food they eagerly accept of is fish. Their behaviour with regard to the women has been hitherto unaccountable to the colonists. Few of them, comparatively speaking, have been seen; and these have sometimes kept back with the most jealous sensitiveness; sometimes offered with the greatest familiarity. Such of the females as have been seen, have soft and pleasing voices; and notwithstanding their barbarism and excessive rudeness, seem not to be entirely destitute of modesty.

The New Hollanders generally display great personal bravery on the appearance of any danger. An old man, whom governor Phillip had treated with some familiarity, took occasion to heal a spur; but being taken in the fact, the governor gave him a few light flaps on the shoulder; on which the old man caught hold of a spear, and, coming up to him, seemed for some time determined to strike, though had he done so, the Hollanders at the European provisions would have been impossible for him to escape, being then surrounded by the officers and soldiers. No encounters between parties of the natives themselves have been observed, though from some circumstances it appears that wars are carried on among them. They have more than once been seen assembled as if bent on some expedition. An officer one day met 14 of them marching along in a regular Indian file through the woods, each man having a spear in one hand and a flone in the other. A chief appeared at their head, who was distinguished from the rest by being painted. They passed on peaceably, though greatly superior in numbers to our people. On another occasion they offered no hostilities when assembled to the number of 200 or 300, and meeting the governor attended only by a small party. With all their courage, however, they are much afraid of a musket, and almost equally so of a red coat, which they know to be the martial drees of the Europeans. The mischief which they have hitherto done has been exercised only on some straggling convicts, most of whom probably have been the first aggressors.

Though these savages allow their beards to grow to a considerable length, it does not appear that they look upon them to be any ornament, but rather the contrary, as appears from the following instance. Some young gentlemen belonging to the Sirius, one day met an old man in the woods with a beard of considerable length. This his new acquaintance let him know that they would rid him of, stroaking his chin, and showing him the smoothness of them at the same time. At length the old fellow contented; and one of the young fellows taking a penknife from his pocket, and making the beft substitute for lather he could, performed the operation with such success that the Indian seemed highly delighted. In a few days he paddled alongside of the Sirius again, pointing to his beard; but could not by any means be prevailed upon to enter the ship. On this a barber was sent down to him, who again freed him from his beard, at which
which he expressed the utmost satisfaction. It has, however, been found impossible to form any kind of permanent intercourse with the natives, though many attempts have been made for that purpose; but in his letter above quoted, governor Phillip declares that he has not the least apprehension of their doing any damage to the colony. At first the colonists imagined the spears of the New-Hollanders to be very trivial weapons; but it now appears that they are capable of inflicting very grievous and mortal wounds. They are sometimes pointed with a sharp piece of the same reed of which the shafts are made, but more frequently with the sharp bone of the fling-ray. They certainly burn their dead; which perhaps has given rise to the report of their being cannibals. Governor Phillip, observing the ground to be raised in several places, caused one of these tomuli to be opened, in which were found a jaw-bone half consumed and some ashes. From the manner in which the ashes are deposited, it appears that the body has been laid at length, raised from the ground a little space, and consumed in that manner; and there is great reason to believe that the body has been laid at length, raised from the ground a little space, and consumed in that manner.

The only domestic animals they have are the dogs already mentioned, which resemble the fox-dog of England. In their language these animals are called dingo; but all other quadrupeds without exception they name kangaroo. They seem very little given to thieving in comparison with the inhabitants of most of the South Sea islands; and are very honest among themselves, leaving their spears and other implements open on the ground in full and perfect security of their remaining untouched. They are very expert at throwing their javelins, and will hit a mark with great certainty at a considerable distance; and it seems that sometimes they kill the kangaroo with this weapon, as a long splinter of one of the spears was taken out of the thigh of one of these animals, the flesh having closed over it completely. The people are more numerous than was at first imagined, though still the number of inhabitants must be not less few in comparison to the extent of country; and there is great reason to believe that the interior parts are uninhabited.

The New-Hollanders bake their provisions by the help of hot stones, like the inhabitants of the Southsea islands. They produce fire with great facility according to Captain Cook, but with difficulty according to later accounts, and spread it in a wonderful manner. To produce it, they take two pieces of dry soft wood; one is a flake about eight or nine inches long, the other piece is flat. The flake they shape into an obtuse point at one end; and pricking it upon the other, turn it nimbly, by holding it between both their hands, as we do a chocolate-mill; often shifting their hands up, and then moving them down upon it, to increase the pressure as much as possible. By this method they get fire in less than two minutes, and from the smallest spark they increase it with great speed and dexterity.

We have often seen (says captain Cook) one of them run along the shore, to all appearance with nothing in his hand, who leaping down for a moment, at the distance of every fifty or an hundred yards left fire behind him, as we could see, first by the smoke, and then by the flame along the drift of wood and other litter which was scattered along the place. We had the curiosity to examine one of these planters of fire when he set off, and we saw him wrap up a small spark in dry grass, which when he had run a little way, having been fanned by the air that his motion produced, began to blaze; he then laid it down in a place convenient for his purpose, including a spark of it in another quantity of grass, and so continued his course."

HOLLAND in commerce, a fine and close kind of linen, so called from its being first manufactured in Holland.

HOLLAR (Wenceslaus), a celebrated engraver, born at Prague in 1607. His parents were in a genteel line of life; and he was at first designed for the study of the law. But the civil commotions, which happened in his youth, ruining his family affairs, he was obliged to shift for himself; and by discovering some genius for the arts, he was placed with Marian, a very able designer and engraver of views. Being himself a man of great ingenuity, he profited handsomely from the instruction of his tutor. He principally excelled in drawing geometrical and perspective views and plans of buildings, ancient and modern cities and towns; also landscapes, and every kind of natural and artificial curiosities; which he executed with a pen in a very peculiar style, excellently well adapted to the purpose. He travelled through several of the great cities of Germany; and, notwithstanding all his merits, met with so little encouragement, that he found it very difficult to support himself. The earl of Arundel being in Germany took him under his protection, brought him to England, and recommended him to the favour of Charles I. He engraved a variety of plates from the Arundel collection, and the portrait of the earl himself on horseback. The civil wars, which happened soon after in England, ruined his fortune. He was taken prisoner, with some of the royal party, and with difficulty escaped; when he returned to Antwerp and joined his old patron the earl of Arundel. He settled in that city for a time, and published a considerable number of plates; but his patron going to Italy soon after for the benefit of his health, Hollar fell again into distress, and was obliged to work for the print and booksellers of Antwerp at very low prices. At the restoration he returned into England; where, though he had sufficient employment, the prices he received for his engravings were so greatly inadequate to the labour necessarily required, that he could but barely subsist; and the plague, with the succeeding fire of London, putting for some time an effectual stop to business, his affairs were so much embarrassed, that he was never afterwards able to improve his fortune. It is said that he used to work for the booksellers at the rate of being a penny an hour; and always had an hour-glass before him. He was so scrupulously exact, that when obliged to attend the calls of nature, or whilst talking, though with the persons for whom he was working and about their own business, he constantly laid down the glass, to prevent the sand from running. Nevertheless, all his great industry, of which his numerous works bear sufficient testimony, could not procure him a sufficient maintenance. It is melancholy to add, that on the verge of his 70th year, he was attached with an execution at his lodgings in Gardner's lane, Westminster, when he desired only the liberty of dying in his bed, and that he might not be removed to any other prison than
Hollar than the grave: a favour which it is uncertain whether he obtained or not. He died, however, in 1677.

Hollar, who, with her

Hollar, whose works amount nearly to 24,000 prints according to Vertue's Catalogue; and the lovers of the art are always zealous to collect them. Generally speaking, they are etchings performed almost entirely with the point; and their merits are thus characterized by Mr. Strutt: "They poise's great spirit, with astonishing freedom and lightness, especially when we consider how highly he has finitshed some of them. His views of abbeys, churches, ruins, &c. with his shells, muffes, and every species of still life, are admirable; his landscapes frequently have great merit; and his distant views of towns and cities are not only executed in a very accurate, but a very pleasing manner." A somewhat colder character is given of them by Mr. Gilpin in his Essay on Prints: "Hollar gives us views of particular places, which he copies with great truth, unornamented as he found them. If we are satisfied with exact representations, we have them no where better than in Hollar's works: but if we expect pictures, we must seek them elsewhere. Hollar was an antiquarian and a draughtsman; but seems to have been little acquainted with the principles of painting. Stiffleness is his characteristic; and a painful exactness void of taste. His larger views are mere plans. In some of his smaller, at the expense of infinite pains, something of an effect is sometimes produced. But in general, we consider him as a repository of curiosities, a record of antiquated dreffes, abolished ceremonies, and edifices now in ruins.""

HOLLOA, in the sea-language, an exclamation of answer, to any person who calls to another to ask some question, or to give a particular order. Thus, if the master intends to give any order to the people in the main-top, he previously calls Main top, hoy! to which they answer, Holloa! to show that they hear him, and are ready. It is also the first answer in sailing a ship at a distance. See Sailing.

HOLLY, in botany. See Ilex.

See Holly. See Eringium.

HOLM (Sax. hulma, infula amnica), denotes an isle or fenny ground, according to Bede: or a riverland. And where any place is called by that name, and this syllable is joined with any other in the names of places, it signifies a place surrounded with water; as the Flatholmes and Stepholmes in the Severn near Bristol: but if the situation of the place is not near the water, it may then signify a hilly place; holme in Saxon, signifying also "a hill or cliff."

HOLocaust (formed from hol, "whole," and oist, "I confume with fire"), a kind of sacrifice, wherein the whole offering is burnt or consumed by fire, as an acknowledgment that God, the creator, preserver, and lord of all, was worthy of all honour and worship; and as a token of men giving themselves entirely up to him. It is called also in Scripture a burnt-offering. - Sacrifices of this sort are often mentioned by the heathens as well as Jews; particularly by Xenophon, Cyrop. ed. lib. viii. p. 464. ed. Hutchins. 1738, who speaks of sacrificing holocausts of oxen to Jupiter, and of horses to the sun; and they appear to have been in use long before the institution of the other Jewish sacrifices by the law of Mofes; (see Job i. 5. xili. 8. and Gen. xxii. 13. viii. 20.) On this account, the Jews, who would not allow the Gentiles to offer Holofernes on their altar any other sacrifices peculiarly enjoined by the law of Mofes, admitted them by the Jewish priests to offer holocausts; because there was a sort of sacrifices prior to the law, and common to all nations. During their subjection to the Romans, it was not a common thing for the Gentiles to offer sacrifices to the God of Israel at Jerusalem. Holocausts were esteem'd by the Jews the most excellent of all their sacrifices. It is laid, that this kind of sacrifice was in common use among the heathens, till Prometheus introduced the custom of burning only a part; and referring the remainder for his own use. See Sacrifice.

HOLOFERNES, lieutenant-general of the armies of Nebuchadnezzar of king of Assyria, who having in a remarkable encounter overcome Arphaxad king of the Medes, sent to all the neighbouring nations with an intention of obliging them this way to submit to his empire, pretending that there could be no power capable of resisting him. At the same time Holofernes, at the head of a powerful army, passed the Euphrates, entered Cilicia and Syria, and subdued almost all the people of these provinces.

Being resolved to make a conquest of Egypt, he advanced towards Judæa, little expecting to meet with any resistance from the Jews. In the mean time, he was informed that they were preparing to oppose him; and Achior the commander of the Ammonites, who had already submitted to Holofernes, was with some auxiliary troops in his army, represented to him that the Hebrews were a people protected in a particular manner by God Almighty, so long as they were obedient to him; and therefore he could not flatter himself with expectations of overcoming them, unless they had committed some offence against God, whereby they might become unworthy of his protection. Holofernes, disregarding this discourse, commanded Achior to be conveyed within sight of the walls of Bethulia, and tied to a tree, and left there, whether the Jews came and loosed him.

In the mean time Holofernes formed the siege of Bethulia; and having cut off the water which supplied the city, and set guards at the only fountain which the besieged had near the walls, the inhabitants were soon reduced to extreme hunger, and resolved to end their fate if God did not send them succour in five days. Judith, being informed of their resolution, conceived the design of killing Holofernes in his camp. She took her finest clothes, and went out of Bethulia with her maid-servant; and being brought to the general, she pretended that she could no longer endure the sins and excesses of the Jews, and that God had inspired her with the design of surrendering herself to him. - As soon as Holofernes saw her, he was taken with her beauty; and some days after invited her to a great feast, which he prepared for the principal officers of his army. But he drank to much wine, that sleep and drunkenness hindered him from satisfying his passion. Judith, who in the night was left alone in his tent, cut off his head with his own sword; and departing with her servant from the camp, she returned to Bethulia with the head of Holofernes. As soon as it was day, the besieged made a sally upon the enemies, who going into their general's tent, found his headless carcasse wallowing in its own blood. They then
HOL

Hologramm, x

Holotheulria.

HOLSTEIN, in botany: A genus of the trionyx order, belonging to the triandria class of plants; and in the natural method ranking under the 22d order, Carystialis. The calyx is pentaphylous; the petals five, the capsule unilocular, and nearly cylindrical, opening at top.

Holotheulria, in zoology, a genus belonging to the order of vermesc mollusca. The body detached, naked, glosous, terminated by the anus. Many tentacula at the other extremity, surrounding the mouth. There are nine species, all inhabitants of the ocean. The following descriptions of three species are given by Mr. Barbot.

Plate CCXXXV

1. The tremula, or quivering holothuria, "commonly measures eight inches in length when dead; but alive it extends itself to more than a foot, or contracts its body into a ball. Its figure is cylindrical, the diameter of which is every way equal to an inch and a few lines. The back of a dark-brown brown bears a variety of flabby pyramid-like nipples, of a dark colour likewise at their basis, but white at their apex. They are observed to be of two different sizes; the larger occupying the length of the back, in number 14 on each side, at the distance of six lines from the other, when the holothuria is contracted, but the intervening space is full eight lines when the animal is extended. Others like these are placed here and there promiscuously. The legs are scattered in like manner, without order, in every part of the back. Out of them all exudes a whitish mucilage serving to lubricate the body. Hence all the forefaiid nipples seem to be so many glands furnished with an excretory duct, the aperture of which is fo minute as not to be discoverable by the help of a common glass. That they are moreover provided with various muscles follows hence, that the holothuria can raise and obliterate them at pleasure. While the larger papillae are quite ereft, their axis and the diameter of their base measures three lines. The belly or part opposite to the back in the holothuria is of a pale brown and fet all over with cylindrical tentacula, in such numbers that the head of a pin could scarce find room between. Their diameter is not much above a line, and their length is that of four lines. They are of a shining whiteness, except the extremity which is of a dark colour, and shaped like a socket. By the help of these tentacula the holothuria fixes its body at the bottom of the sea, so as not to be easily forced away by tempests, which would otherwise happen the more frequently, as this zoophite dwells near the shores where the water scarce rises to a fathom's height. Now it adheres to other bodies by means of its ventral tentacula, their point must necessarily have the form of a pocket, as the cuttle-fish, sea-urchins, and star-fish have theirs shaped, by which they lay hold of any other body. From this situation of the holothuria at the bottom of the sea, which it also retains when kept in a vessel filled with sea-water, it must be evident to any one, that I have not groundlessly determined which was its back, and which its belly, which otherwise in a cylindrical body would have been a difficult task. But as all animals uniformly walk or rest upon their bellies, and the holothuria has likewise that part of its body turned to the earth on which the cylindrical tentacula are to be seen, it is clear that part is the abdomen or belly of this zoophite. Moreover, both the abdominal and dorsal tentacula are raised and obliterate at the animal's pleasure; from which it is no light conjecture to conclude, that they are furnished with elevating and depressing muscles, and particularly because all the fore-said tentacula disapper after the animal's death: and hence it farther appears, that all naturalists have given the representation of a dead holothuria, seeing they have assigned it no tentacula. I entertain some doubt whether the illustrious Linnaeus himself did not draw his generical character of the holothuria from a dead subject, as he makes no mention of these tentacula.”

2. The phyllus, or bladder-shaped holothuria. The body of this species is oval, approaching to triangular, of a glossy transparency; the back sharply edged, of a dark green colour, whence run out a number of lines; anteriorly the body is of a reddish hue. The trunk spiral, reddish towards the thicker end. Many tentacula of unequal length under that thicker end; the shorter ones are taper and thicker, the middle ones cylindrical, the point clay colour and in shape like a ball; the rest which are longer are siliform, of which the middle one is thicker and twice as long. Brown, in his Jamaica, calls it a diaphanous bladder with numerous tentacula representing a man's belly; above it is furnished with a comb full of cells; under the other extremity hang a number of branch tentacula. It inhabits the seas.

3. The Pentaeuco, or five-rowed holothuri, has the mouth encompassed with tentacula, the body bearing tentacula five different ways. The animal is of a red colour, nearly oval, or somewhat cylindrical, assuming various shapes. The mouth is set round with ten rays brightly at the points. The body longitudinally dotted in five places with clay-coloured hollow warts, situate two together. It inhabits the sea of Norway, taking in and calling out again the water, as it either swims or dives to the bottom.

HOLSTEIN, a duchy of Germany, bounded by the German ocean on the west; the Baltic, or the gulf of Lubeck, on the east; the duchy of Mecklenburg on the south-east; that of Bremen, with the river Elbe, on the south-west; and Luneburg, with the territory of Hamburgh, on the south. Its greatest length

Vol. VIII.
Holstein. length is about 80 miles, and its breadth 60. The
dioecese of Eutin, and the county of Ranzau, though
they make a part of the duchy of Holstein, yet being
lands belonging to the empire and circle, shall be
described separately.

A great part of this country consists of rich marsh-
land, which being much exposed to inundations both
from the sea and rivers, dykes have been raised at a
great expense to guard and defend them. The pa-
furries in the marlites are so rich, that cattle are bred
in vast numbers and fattened in them, and great
quantities of excellent butter and cheese made of their
milk. They are also very fruitful in wheat, barley,
pea, beans, and rape-seed. In the more barren,
sandy, and heathy parts of the country, large flocks
of sheep are bred and fed: nor are orchards wanted,
or woods, especially of oak and beech; nor turf,
poultry, game, and wild-fowl. Here is a variety
both of sea and river fish; and the beef, mutton,
and lamb, are very fat and palatable. Holstein
is also noted for beautiful horses. The gentry usually
farm the cows upon their
fields, and they are called, who for every cow pays from six to ten
farmers, and after that lay them under water
of
are the Eyder, the Steer, and the Trave. The duchy
of the country; but several rivers, of which the principal
work daily for their lords, and not even at liberty to
merely there
dition, with other privileges and exemptions. For­
ty
is Lutheranism, with superintendencies as in other
tirely
land,olind

Wagria.

A great part
from
bllt afterwards they received the in­

their

empyre's name, thollgh

wind, fiih.

The manufaEtures of the

of Sweden, whofe formal profeilion of the Catholic

faith

was born

was not the author of any great works, his notes and
differtations on the works of others have been highly
disfarded, and the county of

HOL

Holt.

Holt.
HOLT [627]

Holt occupied himself of Gray's Inn in 1558; and applied to the common law with so much industry, that he soon became a very eminent barrister. In the reign of James II. he was made recorder of London, which office he discharged with much applause for about a year and an half; but lost his place for refusing to expound the law suitably to the king's designed. On the arrival of the prince of Orange, he was chosen a member of the convention parliament, which awarded him a good opportunity of displaying his abilities; so that, as soon as the government was settled, he was made lord chief justice of the court of king's bench, and a privy council. He continued chief justice for 22 years, with great repute for steadiness, integrity, and thorough knowledge in his profession. Upon great occasions he affected the law with intrepidity, though he thereby ventured to incur the displeasure of the learned. He never, however, venture to incur the displeasure of the learned, but was soon invested and retained.

HOLT (Six.) "a wood;" wherefore the names of towns beginning or ending with bolt, as Buck-bolt, &c. denote that formerly there was a great plenty of wood in those places.

HOLY. See HOLINESS.

HOLY-GHOST, or Holy Spirit. The Spirit of God. See TRINITY.

Order of the Holy Ghost, the principal military order in France, instituted by Henry III. in 1569. It consists of 100 knights, who are to make proof of their nobility for three décent. The king is the grand-master or sovereign; and as such takes an oath on his coronation-day to maintain the dignity of the order.

The knights wear a golden cros, hung about their necks by a blue silk ribbon or collar. But before they receive the order of the Holy-Ghost, that of St Michael is conferred as a necessary degree; and for this reason their arms are surrounded with a double collar.

HOLYHEAD, a town and cape of the isle of Anglesea in Wales, and in the Irish channel, where people usually embark for Dublin, there being three packet-boats that fail for that city every Monday, Wednesday, and Friday, wind and weather permitting. It is 276 miles from London, and has a very convenient harbour for the northern trade, when taken short by contrary winds. It is situated near the extremity of the isle, and is joined to the north-west part of it by a stone bridge of one arch. It has a small market on Saturdays. The parish is about five or six miles long, and two or three broad, bounded nearly by the sea. The church stands above the harbour, within an old quadrangular fortification, with a bastion at each corner, built about 450. On a mountain near it is another old fortification, called Turris Munimentum, which is an old stone wall without mortar, and in its centre is a small turret, and contains a well of water. Holyhead was frequently formerly visited by Irish rovers, and was defended as a place of conquest. There are several remains of old fortifications and Druidical antiquities in its neighbourhood, as well as chapels of religious worship. The parish church of Holyhead was built in the reign of Edward III. and is in the form of a cross, with a porch and three little very antique. There was an old chapel near the church, now converted into a school-house. A salt-house was erected on an island in the harbour in queen Anne's reign, but it is now in ruins. The town is little more than a fishing town, rendered considerable by being the place of pillage to Ireland, it has three good inns. The pillage hence to Ireland is a passage of two or three hours. There is no fresh water here except from rain, nor any bread fold but what comes from Ireland. A bath and assembly-room were erected here in 1770. Under the mountains that overlook the town is a large cavern in the rock, supported by natural pillars, called the Parliament-house, accessible only by boats, and the tide runs into it. If this harbour was properly repaired, and ware-houses built, it would be very convenient for the Irish to import much of their goods as pay English duty, it being but a few hours sail from Dublin. Before, the Dublin merchants might come over with the packet to see their goods landed. The commodities are, butter, cheese, bacon, wild-fowl, lobsters, crabs, oysters, razor-fish, shrimp, herrings, cod-fish, whiting, whiting-pollacks, cod-fish, sea-trenches, turbots, foles, flounders, rays, and plenty of other fish. On the rocks the herb grows in which they make kelp, a fixed salt used in making glass, and in alum works. In the neighbourhood there is a large vein of white fullers earth and another of yellow, which might be useful to fullers. On the isle of Skerries, nine miles to the north, is a light-house, which may be seen 22 miles off. Large flocks of puffins are often seen here; they all come in one night, and depart in the same manner.

HOLYLAND, a small island lying on the coast of England, 10 miles south-east of Berwick, in Northumberland. Bede calls it a semi-island, being, as he observes, twice an island and twice a continent in one day: for at the flowing of the tide, it is encompassed by water; and at the ebb, there is an almost dry passage, both for horses and carriages, to and from the main land; from which, if measured in a straight line, it is distant about two miles eastward; but on account of some quick sands passengers are obliged to make so many detours, that the length of the way is nearly doubled. The water over those lands at spring tides is only seven feet deep.—This island was by the Britons called Insula sancta; also Lindisfarne, from the small rivulet of Lindi or Landi, which here runs into the sea, and the Celtic word Faebren or "receets;" and on account of its being the habitation of some of the first monks in this country, it afterwards obtained its present name of Holy-Island. It measures from east to west about two miles and a quarter, and its breadth from north to south is scarcely a mile and an half. At the north-west part there runs out a spit of land of about a mile in length. The monastery is situated at the south-west extremity; and at a small distance north of it stands the village. On this island there is plenty of fish and fowl; but the air and soil are bad. There is not a tree on the island. The village which stands on a rising ground, consists of but a few scattered houses, chiefly inhabited by fishermen; and it has two inns. The north and east coasts are formed of perpendicular rocks, the other sides by gradual slopes to the sands. There is a commodious harbour defended by a block-house; which last was surpised and taken in 1715, but was soon invested and retaken.

Holy-Island, though really part of Northumberland, belonged to Durham; and all civil disputes must be de-
Holm Island.

-determined by the justices of that county.—It was a very ancient episcopal seat. Aedan, the first bishop, after reposing in it 14 years, died and was buried here A.D. 651. Finan, his successor, built a wooden church, thatched with reeds, but before the end of the century covered with lead by bishop Earlburt. St Cuthbert, who from a poor shepherd became monk of Melroso 15 years, was prior here 12 more, when he retired to one of the barren Furn rocks, from whence he was called to this see, which he held only two years, and returned to his retirement, where he died, and was buried at the east end of his oratory, where his stone coffin is still shown. His body was found fresh 14 years after his death. Lindisfarne was ruined by the Danes, A.D. 793, when the monks carried his body about for seven years, and at last settled at Chester-le-Street, whether the see was translated, and where it continued many years. On a second destruction of the monastery by the Danes they were removing to Rippon, but stopped by a miracle at Durham, where the faint continued till the reformation, when his body was found entire, and privately buried in a wooden coffin, as some pretend, near the clock, but more probably in the ground under where his shrine stood. The entrenchments among the rocks at Lindisfarne are called St Cuthbert’s heads, and pretended to be made by him in the night. Eighteen bishops sat here till the removal of the see to Chester, which had eight Holy-Rood more till the removal to Durham, A.D. 995. Lindisfarne became a cell to that Benedictine monastery valued at 85s. per ann. The north and south walls of the church are standing, much inclined; part of the west end remains, but the east is down. The columns of the nave are of four different sorts, 12 feet high, and 5 feet diameter, maly and richer than those of Durham; the bays and capitals plain, supporting circular arches. Over each arch are large windows in pairs, separated by a short column, and over these smaller single windows. In the north and south walls are some pointed arches. The length of the body is 393 feet, breadth 18 feet, and with the two aisles 76 feet; but it may be doubted whether there ever was a transept. One arch of the centre tower remains adorned at its entrance from the nave with Saxon zigzag. Somewhat to the east is the base of a cross, and to the west the present parish church.

(a) A reference was inadvertently made to this article for a description of Bamborough, as if it had been situated upon, or belonging to, Holy Island.—Bamborough lies several miles to the south, and is situated on the main land. The town is now an inconsiderable village; but it once was a royal borough, and sent two members: it even gave name to a large tract extending southward, which was called Bamboroughshire. It had also three religious foundations; a house of friars preachers founded by Henry III. a cell of canons regular of St Austin, and an hospital. Its very ancient castle stands on an almost perpendicular rock close to the sea, and accessible only on the south-east side, on a spot where, according to the monkish historians, there stood the castle or palace of the kings of Northumberland; built, as it is said, by king Ida, who began his reign about the year 559. Part of the present ruins are by some supposed to be the remains of king Ida’s work. The ancient name of this place was, it is said, Bambanborough; whole name Cambden, from the authority of Bede, imagines borrowed from Bebb, Ida’s queen: but the author of the additions to that writer is of a contrary opinion, as in the Saxon copy it is called Gymelanbeneg, or the “royal mansion.” According to Florilegus, king Ida at first fenced it only with a wooden inclosure, but afterwards surrounded it with a wall. It is thus described by Roger Hoveden, who wrote in the year 1192: “Bebb is a very strong city, but not exceedingly large; containing not more than two or three acres of ground. It has but one hollow entrance into it, which is admirably raised by steps. On the top of the hill stands a fair church; and in the western point is a well curiously adorned, and of sweet clear water.” This castle was besieged anno 642 by Penda, the Pagan King of the Mercians, who, as the story goes, attempted to burn it: for which purpose he laid vast quantities of wood under the walls, and sent fire to it as soon as the wind was favourable; but no sooner was it kindled, than by the prayers of St Adrian, the wind changed and carried the flames into his camp, so that he was obliged to raise the siege. In 710, king Osred, on the death of Alfred his father, took shelter in this castle with Brithric, his tutor or guardian; one Edulph having feized the crown, by whom, with his partisans, they were unsuccessfully besieged. Brithric made so gallant a defense, that the siege was turned into a blockade, which gave the loyal subjects time to arm in defence of their young king. On their marching hither to his relief, Edulph fled but was followed, taken, and put to death by Brithric, who thereby securely seised Osred on the throne, when this castle became his palace. In the reign of Egbert, Kenulf bishop of Lindisfarne was confined here 20 years from 750 to 780. In 933, it was plundered and totally ruined by the Danes; but being of great importance in defending the northern parts against the continual incursions of the Scots, it was soon after repaired, and made place of considerable strength. It is said to have been in good repair at the time of the conquest, when it was probably put into the custody of some truly Norman, and had in all likelihood some additions made to its works; and this is the more probable, as the present area, contained within its walls, measures upwards of 80 acres, instead of three, as described by Hoveden. About the year 1095 it was in the possession of Robert de Mowbray earl of Northumberland, who engaging in some treasable practices against William Rufus, that king laid siege to it, and obliged it to surrender. In the next reign it was entrusted by Henry I. to Eustace Fitz John, who was disinherited of it and his other employments by king Stephen.
HOL [629]

Holywood

Spring guishes forth with such impetuosity, that at a small distance it turns several mills. Over the spring is a chapel built upon pillars, and on the windows are painted the history of St. Winnifred's life. There is a moss about the well, which some foolishly imagine to be St. Winnifred's hair. W. Lang. 2. 15. N. Litt. 54. 23.

HOLYOAK (Francis), author of the Latin dictionary, became rector of Southam in Warwickshire, in 1604; and being greatly esteemed, was chosen member of the convocation in the first year of Charles I.'s reign. He suffered much for the king; and died in 1653, aged 87. His son Thomas made enlargements to the said Dictionary.

HOLYOAK (John), or HALIFAX, or Sacrofoeso, was, according to Leland, Baie, and Pitts, born at Halifax in Yorkshire; according to Steinhuri, at Holywood near Dublin; and, according to Dempeter and Mackenzie, in Nithdale in Scotland. The last-mentioned author informs us, that, having fulfilled his studies, he entered into orders, and was made a canon regular of the order of St. Augustin in the famous monastery of Holywood in Nithdale. The English biographers, on the contrary, tell us, that he was educated at Oxford. They all agree, however, in affirming that he spent most of his life at Paris; where, says Homage, Mackenzie, he was admitted a member of the university on the fifth of June in the year 1214, under the syndics of the Scottish nation; and soon after elected professor of mathematics, which he taught for many years with applause. We are told by the same author, that he died in 1355, as appears from the inscription on his monument in the cloisters of the convent of St. Mautrine at Paris. Holywood was certainly the first mathematician of his time. He was contemporary with Roger Bacon, but probably older by about 20 years. He wrote, 1. De sphera mundi; often reprinted, and illustrated by various commentators. 2. De anno ratione, seu de computo ecclesiastic. 3. De alogrismo, printed with Comm. Petri Giroli Hifp. Paris 1498.

HOMAGE, in law, is the submission, loyalty, and service, which a tenant promised to his lord when he was first admitted to the land which he held of the lord in fee; also that owing to a king, or to any superior.

HOMER (William), a celebrated physician, chemist, and philosopher, was the son of a Saxon gentleman, and born in Batavia, in the East Indies, in 1652. His father afterwards settling at Amsterdam, William there prosecuted his studies; and from thence removed

Stephen, that king being jealous of his attachment to Maud, daughter of Henry I. Irritated at this, Fitz John delivered the castle of Alnwick to David, king of Scotland, and brought to his aid all the forces he could raise; he was, however, afterwards reconciled to king Stephen, and held the manors of Burg and Knareborough in Yorkshire, but never recovered the government of this castle.

In the 16th of Henry II. some great repairs seem to have been done here, as in Madox's history of the exchequer, under the article of Amerceaments, it appears one William, son of Waldes, was fined five marks for refusing his assistance in the king's works at Banchburg castle. Its keep is supposed to have been the work of this reign.

Edward I. summoned Baliol to meet him here 1296; and on his refusal invaded Scotland, and took him prisoner. Edward II. sheltered Gaveston here 1310. It was taken by the Yorkists after the battle of Hethem. In the reign of Elizabeth, Sir John Foster, warden of the marches, was governor of it, and made a knight banneret after the battle of Mulfelburgh; and his grandson John obtained a grant of both castle and manor from James I. His descendant Thomas forfeited it in 1715; but his maternal uncle Nathanial Crew bishop of Durham purchased and bequeathed them to unconfined charitable uses. The ruins are still considerable; but many of them now filled with sand, caught up by the winds which rage here with great violence, and carried to very distant places. The remains of a great hall are very singular; it had been warmed by two fire places of a vast size, and from the top of every window ran a flue like that of a chimney, which reached the flue of the battlements. These flues seem designed for many supernumerary chimneys to give vent to the smoke that the immense fires of those hospitable times filled the roofs with; for halls so lofty, but filled with good cheer, were in those days thought no inconvenience. In the year 1757, the trustees for Lord Crew's charity began the repairs of the keep or great tower; the direction and management being committed to Dr. Sharp archdeacon of Durham, one of their number; who has made a most judicious and humane application of his lordship's generous bequest. The walls are from 9 to 12 feet thick. The upper parts of the building have been formed into granaries; whence, in times of scarcity, corn is sold to the indigent without any distinction at four shillings per bushel. A hall and some small apartments are referred by the Doctor, who frequently resides here to see that his noble plan is properly executed. Among the variety of distreffed who find relief from the judicious disposition of this charity, are the mariners navigating this dangerous coast, for whose benefit a constant watch is kept on the top of the tower; from whence signals are given to the fishermen of Holy Island when any ship is discovered in distresses, these fishermen by their situation being able to put off their boats when none from the land can get over the breakers. The signals are so regulated as to point out the particular place where the distressed vessel lies. Besides which, in every great storm, two men on horseback patrol the adjacent coast from sun-tet to sun-rise, who, in case of any shipwreck, are to give immediate notice at the castle. Premiums are likewise paid for the earliest information of any such misfortune. By these means the lives of many seamen have been, and will be, preserved, who would otherwise have perished for want of timely assistance. Not does this benevolent arrangement stop here. The shipwrecked mariner find an hospitable reception in this castle; and is here maintained for a week or longer, as circumstances may require. Here likewise are stores-houses for depositing the goods which may be saved; instruments and tackle for weighing and raising the sunken and stranded vessels; and, to complete the whole, at the expense of this fund, the late offices are decently performed to the bodies of such drowned sailors as are cast on shore.
removed to Jena, and afterwards to Leipsic, where he studied the law. In 1642, he was made advocate at Magdeburg, and there applied himself to the study of experimental philosophy. Some time after he travelled into Italy; and applied himself to the study of medicine, anatomy, and botany, at Padua. He afterwards studied at Bologna; and at Rome learned optics, painting, sculpture, and music. He at length traveled into France, England, and Holland; obtained the degree of Doctor of physic at Wittemberg; travelled into Germany and the North; visited the mines of Saxony, Bohemia, Hungary, and Sweden; and returned to France, where he acquired the esteem of the learned. He was on the point of returning into Germany, when M. Colbert being informed of his merit, made him such advantageous offers, as induced him to fix his residence at Paris. M. Homberg, who was already well known for his phlogiston, for a pneumatic machine of his own invention more perfect than that of Guericke, for his microscopes, for his discoveries in chemistry, and for the great number and variety of his curious observations, was received into the academy of sciences in 1691, and had the laboratory of that academy at his disposal. He was one of its principal ornaments. The duke of Orleans, afterwards regent of the kingdom, at length made him his chemist, settled upon him a pension, gave him the most superb laboratory that was ever in the possession of a chemist, and in 1704 made him his first physician. He had abjured the Protestant religion in 1682, and died in 1715. There are a great number of learned and curious pieces of his writing, in the memoirs of the academy of sciences, and in several journals. He had begun to give the elements of chemistry in the memoirs of the academy, and the rest were found among his papers fit for printing.

HOMBERG, a town of Germany, in the circle of the Upper Rhine, and landgrave of Hesse, seated ten miles north of Francofort, and gives title to one of the branches of the house of Hesse, which is its sovereign.

HOME (Henry), Lord Kames, an eminent Scottish lawyer, and author of many celebrated works on various subjects, was defended of a very honourable and ancient family, and was born in the year 1696. Lord Kames's grandfather, Henry Home, was a younger son of Sir John Home of Renton, who held the high office of Lord Justice-Clerk, or chief criminal judge of Scotland, in the year 1663. He received the estate of Kames from his uncle George, brother to the then lord justice-CLerk. The family of Renton is descended from that of the Earl of Home, the representatives of the ancient princes of Northumberland, as appears from the records of the Lion Office.

The county of Berwick in Scotland has the honour of having given birth to this great and useful member of society. In early youth he was lively, and eager in the acquisition of knowledge. He never attended a public school; but was instructed in the ancient and modern languages, as well as in several branches of mathematics, and the arts necessarily connected with that science, by Mr Wingate, a man of considerable parts and learning, who spent many years as preceptor or private tutor to Mr Home.

After studying with assiduity and diligence, at the university of Edinburgh, the civil law, and the municipal law of his own country, Mr Home early perceived that a knowledge of the laws is insufficient to make an accomplished lawyer. An acquaintance with the forms and practical business of courts, and especially of the supreme court, as a member of which he was to seek fame and emolument, became absolutely necessary to qualify him to be a complete barrister. He accordingly attended for some time the chamber of a writer to the signet, where he had an opportunity of learning the stiles of legal deeds, and the modes of conducting different species of business. This wise step, independently of his great genius and unwearied application, procured him, after his admission to the bar, peculiar respect from the court, and proportional employment in his profession of an advocate.

Whoever peruses the law-papers composed by Mr Home when a young man, will perceive an uncommon elegance of stile, besides great ingenuity of reasoning, and a thorough knowledge of the law and constitution of his country. The productions, together with the strength and vivacity of his natural abilities, soon raised him to be an ornament to the Scottish bar; and, on the 2d day of February 1725, he was advanced to the bench as one of the judges of the court of session, under the title of Lord Kames.

Before this period, however, notwithstanding the unavoidable labours of his profession, Mr Home had favoured the world with several useful and ingenious works. In the year 1728, he published Remarkable Decisions of the Court of Session from 1716 to 1728, in one vol. folio.--In 1732 appeared Essays upon several subjects in law, viz. Justiciary, Beneficium civilium, Divorce, Vincitorem, and Proscription; in one volume 8vo. This first produce of his original genius, and of his extensive views, excited not only the attention, but the admiration of the judges, and of all the other members of the college of justice. This work was succeeded, in the year 1741, by Decisions of the Court of Session from its first institution to the year 1740, abridged and digested into proper heads, in form of a Dictionary, in two volumes folio: A very laborious work, and of the greatest utility to every practical lawyer. In 1747 appeared Essays upon several subjects concerning British Antiquities, viz. Introduction of the feudal law into Scotland. 2. Confinution of parliament. 3. Honour, Dignity. 4. Succession, or Defcent; with an appendix upon hereditary and indefeasible right, composed anno 1745, and published 1747, in one volume 8vo. In a preface to this work, Lord Kames informs us, that in the years 1745 and 1746, when the nation was in great suspense and distraction, he retired to the country; and in order to banish as much as possible the unceasing of his mind, he contrived the plan, and executed this ingenious performance.

Though not in the order of time, we shall continue the lift of all our author's writings on law, before we proceed to his productions on other subjects. In 1757, he published The Statute law of Scotland abridged, with historical notes, in one volume 8vo; a most useful and laborious work. In the year 1759, he presented to the public a new work under the title of Historical
Home.

Home.

rical Law Tracts in one vol. 8vo. It contains fourteen interesting tracts, viz. History of the Criminal Law:

From this sketch of Lord Kames's compositions and collections with a view to improve and elucidate the laws of Scotland, the reader may form some idea of his great industry, and of his anxious desire to promote the honour and welfare of his country. It remains to be remarked, that in the supreme court there, the law writings of Lord Kames are held in equal estimation, and quoted with equal respect, as those of Coke or Blackstone in the courts of England.

Lord Kames's mind was very much inclined to metaphysical disquisitions. When a young man, in order to improve himself in his favourite study, he corresponded with the famous Berkeley bishop of Cloyne, Dr Butler bishop of Durham, Dr Samuel Clark, and many other ingenious and learned men both in Britain and Ireland. The letters of correspondence, we are happy to learn, have been carefully preserved by his son and heir George Home-Drummond, Esq. of Blair-Drammond.

The year 1751 gave birth to the first fruits of his Lordship's metaphysical studies, under the title of Essays on the Principles of Morality and natural Religion, in two parts. Though a small volume, it was replete with ingenuity and acute reasoning, excited general attention, and gave rise to much controversy. It contained, in more explicit terms than perhaps any other work of a religious subject then known in Scotland, the doctrine which has of late made so much noise under the appellation of philofophical necessity. The same thing had indeed been taught by Hobbes, by Collins, and by the celebrated David Hume, Esq., but as those authors either were professed infidels, or were supposed to be such, it excited, as coming from them no wonder, and provoked for a time very little indignation. But when a writer, who exhibited no symptoms of extravagant scepticism, who infinuated nothing against the truth of revelation in general, and who inculcated with earnestness the great duties of morality and natural religion, advanced at the same time so uncommon a doctrine as that of necessity; a number of pens were immediately drawn against him, and for a while the work and its author were extremely obnoxious to a great part of the Scottish nation. On the other hand, there were some, and those not totally illiterate, who, confounding necessity with predetermination, condemned Mr. Home on his merely defence of the established faith; and though between these two schemes there is no sort of resemblance, except that the future happiness or misery of all men is, according to both, certainly fore-known and appointed by God; yet we remember, that a professor in a dissenting academy so far mistook the one for the other, that he recommended to his pupils the Essays on morality and natural religion, as containing a complete vindication of the doctrine of Calvin. For this mistake he was dismissed from his office, and excluded from the communion of the flock to which he belonged. Lord Kames, like many other great and good men, continued a Neckerian to the day of his death; but in a subsequent edition of the essays, he exhibited a remarkable proof of his candour and liberality of sentiment, by altering the expressions, which contrary to his intention, had given such general offence.

In 1761, he published an Introduction to the Art of Thinking, in one volume 12mo. This small but valuable book was originally intended for the instruction of his own family. The plan of it is both curious, amusing, and highly calculated to catch the attention and to improve the minds of youth. It consists of maxims collected from Rocheceux, and many other authors. To illustrate these maxims, and to rivet their spirit and meaning in the minds of young persons, his lordship has added to most of them beautiful fables, and historical anecdotes.

In the department of belles lettres, his Elements of Criticism appeared in 1762, in three volumes 8vo. This valuable work is the first and a most successful attempt to shew, that the art of criticism is founded on the principles of human nature. Such a plan, it might be thought, should have produced a dry and phlegmatic performance. Lord Kames, on the contrary from the sprightliness of his manner of treating every subject he handles, has rendered the Elements of Criticism not only highly instructive, but one of the most entertaining books in our language. Before this work was published, Rollin's Belles Lettres, a dull performance, from which a fludent could derive little advantage, was universally recommended as a standard; but, after the Elements of Criticism were presented to the public, Rollin infantly vanity, and gave place to greater genius and greater utility. With regard to real instruction and genuine taste in composition of every kind, a fludent, a gentleman, or a scholar, can in no language find such a fertile field of information, Lord Kames, accordingly, had the happiness of seeing the good effects of his labours, and of enjoying for twenty years a reputation which he so justly merited.

A still further proof of the genius and various pursuits of this active mind was given in the year 1772, when his Lordship published a work in one volume 8vo, under the title of The Gentleman Farmer, being an attempt to improve Agriculture by subduing it to the test of rational principles. Our limits do not permit us to give details; but, with regard to this book, we must
and in business of the first importance, could find leisure for so many different pursuits, and excel in them (A), it is not only for a meaner mind to form even a conception. Much, no doubt, is to be attributed to the superiority of his genius; but much must likewise have been the result of a proper distribution of his time. He rose early, when in the vigour of life at four o'clock, in old age at six, and studied all morning. When the court was sitting, the duties of his office employed him from eight or nine till twelve or one; after which, if the weather permitted, he walked for two hours with some literary friends, and then went home to dinner.

While he was on the bench, and we believe when he was at the bar, he neither gave nor accepted invitations to dinner during the term or session; and if any friend came uninvited to dine with him, his Lordship displayed his useful cheerfulness and hospitality, but always retired with his clerk as soon as he had drank a very few glasses of wine, leaving his company to be entertained by his lady. The afternoon was spent as the morning had been, in study. In the evening he went to the theatre or concert, from which he returned to the society of some men of learning, with whom he fat late, and displayed such talents for conversation as are not often found. It is observed by a late celebrated author, that "to read, write, and converse in due proportions, is the business of a man of letters; and that he who hopes to look back hereafter with satisfaction upon past years, must learn to know the value of single minutes, and endeavour to let no particle of time fall unnoticed to the ground." It was by practising those lessons that Lord Kames rose to literary eminence, in opposition to all the obstructions which the tumult of public business could place in his way.

To give a proper delineation of the public and private character of Lord Kames, would far exceed our limits. The writer of this article, however, who had the honour of an intimate acquaintance with this great and good man for more than twenty years, must be indulged in adding a few facts which fell under his own observation.

Lord Kames was remarkable for public spirit, to which he conjoined activity and great exertion. For a long tract of time had the principal management of all the societies and boards for promoting the trade, fisheries, and manufactures, in Scotland. As conduite to these ends, he was a strenuous advocate for making and repairing turnpike roads through every part of the country. He had likewise a chief lead in the distribution and application of the funds arising from the estates in Scotland which had unfortunately been annexed to the crown. He was no less zealous in supporting, both with his writings and personal influence, literary societies. He was in some measure the parent of what was called the Physical and Literary Society. This society was afterwards incorporated.

(A) Upon reflecting on the studiousness of Lord Kames's disposition, and his numerous literary productions, the reader will naturally recall to his mind a striking similarity between his Lordship and the laborious Pliny the Elder. In a letter from Pliny the Younger to Marcus, the following passages occurs, which is equally applicable to both: "Namque videtur tibi, recordarum quantum legere, quantum fortis, in officiis utilis, nec in amicitia principalium suis? which is thus translated by Melmoth: "When you reflect on the books he has read and the volumes he has written, are you not enclin'd to suspect, that he never was engaged in the affairs of the public, or the service of his prince?"
HOM [633]

Home... rated into the Royal Society of Edinburgh, which received a charter from the crown, and which is daily producing marks of genius, as well as works of real utility.

As a private and domestic gentleman, Lord Kames was admired by both sexes. The vivacity of his wit and of his animal spirits, even when advanced in years, rendered him agreeable, but greatly facilitated by the literati, and courted by ladies of the highest rank and accomplishments. He told very few stories; and rarely, if ever, repeated the same story to the same person. From the necessity of retailing anecdotes, the miserable refuge of those who without genius, attempt to shine in conversation, the abundance of his own mind fet him free; for his wit or his learning always suggested what the occasion required. He could with equal ease and readiness conduct the opinions of a metaphysician, unravel the intricacies of law, talk with a farmer on improvements in agriculture, or debate with a lady on the merits of the deists in fashion. Instead of being jealous of rivals, the characteristic of little minds, Lord Kames fostered and encouraged every symptom of merit that he could discover in the scholar, or in the lowest mechanic. Before he succeeded to the estate of Blair-Drummond, his fortune was small. Notwithstanding this circumstance, he, in conjunction with Mrs Drummond, his respectable and accomplished spouse, did much more service to the indigent than most families of greater opulence. He never meddled with politics, even when parties ran to indecent lengths. His mind was incessantly employed, either occupying with new ideas, or purifying active and laborious occupations. At the same time, with all this intellectual ardour, one great feature in the character of Lord Kames, besides his literary talents and his public spirit, was a remarkable innocency of mind. He not only never indulged in detraction, but when any species of scandal was exhibited in his company, he either remained silent, or endeavoured to give a different turn to the conversation. As natural consequences of this amiable disposition, he never meddled with politics, even when parties ran to indecent lengths in his country; and, what is still more remarkable, he never wrote a sentenc... HOMER, the prince of the Greek poets, flourished, according to Dr Blair, about 900 B. C. according to Dr Priestley 850, according to the Arundelian marbles 300, after the taking of Troy; and agreeable to them all, above 400 years before Plato and Aristotle. Seven cities disputed the glory of having given him birth, viz. Smyrna, Rhodes, Colophon, Sausal, Chios, Argos, and Athens; which has been expressed by the following distich:

Smyrna, Rhodes, Colophon, Sausal, Chios, Argos, Athens;
Ordes de patria virtut, Homer, tua.

We have nothing that is very certain in relation to the particulars of his life. The most regular account is that which goes under the name of Herodotus, and is usually printed with his history: and thought it generally supposed to be a spurious piece, yet as it is ancient, was made use of by Strabo, and exhibits that idea which the later Greeks, and the Romans in the age of Augustus, entertained of Homer, we must content ourselves with giving an abstract of it.

A man of Magnesia, whose name was Menalippos, went to settle at Cumae, where he married the daughter of a citizen called Phemius, and had by her a daughter called Critheis. The father and mother dying, the young woman was left under the tuition of Cleonax her father's friend, and suffering herself to be deluded was got with child. The guardian, though his care had not prevented the misfortune, was however willing to conceal it; and therefore sent Critheis to Smyrna, which was then building, 18 years after the founding of Cumae, and about 168 after the taking of Troy. Critheis being near her time, went one day to a festival, which the town of Smyrna was celebrating on the banks of the river Meles; where her pains coming upon her, she was delivered of Homer, whom she called Miletigenes, because he was born on the banks of that river. Having nothing to maintain her, she was forced to spin: and a man of Smyrna called Phemius, who taught literature and music, having often seen Critheis, who lodged near him, and being pleased with her housewifery, took her into his house to spin the wool he received from his scholars for their schooling. Here she behaved herself so modestly and discreetly, that Phemius married her; and adopted her son, in whom he discovered a wonderful genius, and the best natural disposition in the world. After the death of Phemius and Critheis, Homer succeeded to his father-in-law's fortune and school; and was admired, not only by the inhabitants of Smyrna, but by strangers, who resorted from all parts to that place of trade. A shipmaster called Mentes, who was a man of learning and a lover of poetry, was so taken with Homer, that he persuaded him to leave his school, and to travel with him. Homer, who had then begun his poem of the Iliad, and thought it of great consequence to see the places he should have occasion to treat of, embraced the opportunity. He embarked with Mentes, and during their several voyages never failed carefully...
H O M [634]

H o m e r, to note down all that he thought worthy observing. He travelled into Egypt; from whence he brought into Greece the names of their gods, the chief ceremonies of their worship, and a more improved knowledge in the arts than what prevailed in his own country. He visited Africa and Spain; in his return from whence he touched at Ithaca, where he was much troubled with a rheum falling upon his eyes. Menes being in haste to take a turn to Lucadia his native country, left Homer well recommended to Mentor, one of the chief men of the island of Ithaca, who took all possible care of him. There Homer was informed of many things relating to Ulysse, which he afterwards made use of in composing his Odyssey. Mentor returning to Ithaca, found Homer cured. They embarked together, and after much time spent in visiting the coasts of Peloponnesus and the islands, they arrived at Colophon, where Homer was again troubled with the defluxion upon his eyes, which proved so violent, that he is said to have lost his sight. This misfortune made him resolve to return to Smyrna, where he finished his Iliad. Some time after, the ill posture of his affairs obliged him to go to Cumes, where he hope'd to have found some relief. Here his poems were highly applauded; but when he proposed to immortalize their town, if they would allow him a salary, he was answered, that there would be no end of maintaining all the Odysee of blind men; and hence he got the name of Homer. He afterwards wandered through several places, and stopped at Chios, where he married, and composed his Odyssey. Some time after, having added many veris to his poems in praise of the cities of Greece, especially of Athens and Argos, he went to Samos, where he spent the winter, singing at the houses of the great men, with a train of boys after him. From Samos he went to Ithaca, one of the Sporades, with a design to continue his voyage to Athens; but landing by the way at Chios, he fell sick, died, and was buried on the sea-shore.

The only incontrovertible works which Homer has left behind him are the Iliad and Odyssey. The Parachomymachia, or battle of the frogs and mice, has been disputed. The hymns have been disputed also, and attributed by the scholiasts to Clymenus the rhapsodist: but neither Thucydides, Lucian, nor Paulus, have scrupled to cite them as genuine. Many other pieces are ascribed to him: epigrams, the Aris, the Cecropes, the destruction of Oechalia, of which only the names are remaining.

Nothing was ever comparable to the clearness and majesty of Homer's style; to the sublimity of his thoughts; to the strength and sweetness of his veris. All his images are striking; his descriptions just and exact; the passions so well expressed, and nature so just and finely painted, that he gives to every thing motion, life, and action. But he more particularly excels in invention, and in the different characters of his heroes, which are so varied, that they affect as in an inexplicable manner. In a word, the more he is read by a person of good taste, the more he is admired. Nor are his works to be esteemed merely as entertaining poems, or as the monuments of a sublime and varied genius. He was in general so accurate with respect to costume, that he seldom mentioned persons or things that we may not conclude to have been known during the times of which he writes; and it was Mr Pope's opinion, that his account of people, princes, and countries, was purely historical, founded on the real transactions of those times, and by far the most valuable piece of history and geography left us concerning the state of Greece in that early period. His geographical divisions of that country were thought so exact, that we are told of many controversies concerning the boundaries of Greek cities which have been decided upon the authority of his poems.

Alcibiades gave a rhetorician a box on the ear for not having Homer's writings in his school. Alexander was ravished with them, and commonly placed them under his pillow with his sword; he included the Iliad in the precious casket that belonged to Daricus; "in order (said he to his courtiers) that the most perfect production of the human mind might be included in the most valuable casket in the world." And one day seeing the tomb of Achilles in Ithaca, "Fortunate hero! (cried he), thou hast had a Homer to sing thy victories!" Lycurgus, Solon, and the kings and princes of Greece, let such a value on Homer's works, that they took the utmost pains in procuring correct editions of them, the most esteemed of which is that of Ariosto. Didymus was the first who wrote notes on Homer; and Eustathius, archbishop of Thessalonica, in the 12th century, is the most celebrated of his commentators. Mr Pope has given an elegant translation of the Iliad, adorned with the harmony of poetic numbers; and Mad. Dacier has translated both the Iliad and Odyssey in prose.

Those who desire to know the several editions of Homer, and the writers who have employed themselves on the works of that great poet, may consult Fabricius, in the fourth volume of his Bibliotheca Graeca.

A very singular discovery, however, which was made a few years ago in Russia, deserves to be here mentioned, together with the circumstances that attended it. Christian Frederic Matthias, who had been educated by the learned Ernsti, and did credit to the instructions of that celebrated master by the great credit that he displayed, being invited to publish at Moscow, and to affi all a plan of literature for which his abilities and acquisitions eminently qualified him, on his arrival at that city was informed, equally to his astonishment and satisfaction, that a very curious treasure of Greek manuscripts was deposited in the library of the Holy Synod, which no person in that country had either the abilities to make use of, or the curiosity to examine. Struck with the relation of a circumstance so unexpected, and at the same time so peculiarly agreeable to his classical taste, he immediately seized the opportunity that was fortunately offered him, to explore this repository of hidden treasure. After having examined several curious books, he discovered a manuscript copy of the works of Homer, written about the conclusion of the 14th century, but evidently a transcript from a very ancient and most valuable copy, which, besides the Iliad and the Odyssey, contains also 16 of the hymns, which have been long published under the name of Homer. Nor was this all. Twelve lines of a loft hymn to Bacchus, and the hymn to Ceres, which was also lost, were preserved in this curious and long unnoticed manuscript. The hymn to Ceres appears to be entire, excepting a few lines towards the close; and it is purely remarkable, that
HOMER. [635]

Homicide.

Homer, that a Greek poem, attributed to Homer, which had been lost for ages, should be at length discovered in Muscovy, the rudest and most uncultivated country in Europe. M. Matthaei, exulting in an acquisition so unexpected, and at the same time so valuable, communicated it, with singular distemperedness, to his learned friend M. Ruhnkenius, with whose talents and extraordinary erudition he was well acquainted, that this gentleman might present it to the world without those delays which would probably have retarded the publication of it at Muscovy. He was rather induced to employ M. Ruhnkenius in the publication of this curious and beautiful remnant of antiquity, because he knew that this gentleman had been particularly engaged in the study of the hymns of Homer, in order to give the public a complete edition of them. The hymn to Ceres, and the fragment of the hymn to Bacchus, were printed in 1780 at Leyden, under the care of M. Ruhnkenius; who has added some very valuable notes and observations on the hymn to Ceres, which tend to illustrate its beauties, and to throw a light on some of its obscurities. The learned editor observes, that nothing was more distant from his expectations than the discovery of the hymn to Ceres. He knew indeed that a poem bearing that title, and ascribed to Homer, exist- ed in the second century; as it had long been consid- ered as irretrievably lost, he had formed no hopes of ever seeing it rescued from the oblivion to which it had been condemned. He acknowledges, that he has many doubts with respect to the high and illustrious origin ascribed to this hymn; but as no positive exter- nal evidence can be produced to determine the point, he chooses to rest his argument on what appears to him the more certain ground of Homer's more striking and predominant characteristics. It wants his energy and spirit; that vigour, that inspiration, which animate all but inexorable power, as well as an enchanting beauty, to the poems of that sublime and inimitable bard. This opinion, as we have already seen, hath been given by other critics of all the hymns of Homer. But though M. Ruhnkenius is not inclined to attribute the hymn to Ceres to Homer, he yet acknowledges, that the structure of its language is founded on the model of that great poet, and he hesitates not to give it the honour of very high antiquity. He is of opinion, that it was written immedi- ately after Homer, or at least in the age of Hesiod: and he congratulates the age on the discovery of so curious a poem, rescued by mere accident from the dark- est retreats of oblivion, and perhaps but at a flight dis- tance from inevitable perdition. He deems it to be an acquisition, not only calculated to gratify the curiosity of the connoisseurs in classic antiquity, or to entertain those lovers of Greek poetry whose studies are made sublervent to a refined and elegant species of amuse- ment, but he also esteems it to be of particular use to the critic, as it tends to illustrate some obscure passages both in the Greek and Latin poets.

HOMER, or Chomer, a Jewish measure, containing the tenth part of the ephah. See CORUS and MEASURE.

HOMESOKEN. See HAMESCEN.

HOMICIDE, signifies in general, the taking away of any person's life. It is of three kinds; justifiable, execuable, and felonious. The first has no share of homicide, guilt at all; the second very little; but the third is the highest crime against the law of nature that man is capable of committing.

1. Justifiable homicide is of divers kinds.

1. Such as is owing to some unavoidable necessity, without any will, intent or design, and without any inadvertence or negligence, in the party killing, and therefore without any shadow of blame; as, for in- stance, by virtue of such an office as obliges one, in the execution of public justice, to put a malefactor to death, who hath forfeited his life by the laws and ver- dict of his country. This is an act of necessity, and even of civil duty; and therefore not only justifiable but commendable, where the law requires it. But the law must require it, otherwise it is not justifiable: therefore wantonly to kill the greatest of malefactors, a felon, or a traitor, attained or outlawed, deliberat- ely, uncorrected, and extrajudicially, is murder. And farther, if judgment of death be given by a judge not authorized by lawful commission, and execution is done accordingly, the judge is guilty of murder. Also such judgment, when legal, must be executed by the proper officer, or his appointed deputy; for no one else is re- quired by law to do it, which requisition is that justifies the homicide. If another person doth it of his own head, it is held to be murder; even though it be the judge himself. It must be further executed, if per- sonally it be hanged, or if per sonally it be hanged, or if per sonally it be hanged, or if in this court. If an officer beheads one who is adjudged to be hanged, or vice versa, it is murder: for he is merely ministerial, and therefore only justified when he acts under the authority and compulsion of the law. But, if a sheriff changes one kind of punishment for another, he then acts by his own authority, which extends not to the commiss of homicide; and besides, this licence might occasion a very gross abuse of his power. The king indeed may remit part of a sentence, as in the case of treason, all but the beheading: but this is no change, no introduction of a new punish- ment; and in the case of felony, where the judgment is to be hanged, the king (it hath been said) cannot legally order a peer to be beheaded.

Again: In some cases homicide is justifiable, rather by the permission, than by the absolute command, of the law: either for the advancement of public jus tice, which without such indemnification would never be carried on with proper vigour; or, in such instances where it is committed for the prevention of some atrocious crime, which cannot otherwise be avoided.

2. Homicides committed for the advancement of public justice, are, 1. Where an officer, in the execution of his office, either in a civil or criminal case, kills a person that assails and resists him. 2. If an officer, or any private person, attempts to take a man charged with felony, and is resisted; and, in the endeavours to take him, kills him. 3. In case of a riot, or rebellious assembly, the officers endeavouring to difperse the mob are justifiable in killing them, both at common law, and by the riot act, 1 Geo. 1. c. 5. 4. Where the prisoners in a gaol, or going to gaol, assault the gaoler or officer, and he in his defence kills any of them, it is justifiable, for the sake of preventing an escape. 5. If trespassers in woods, parks, chases, or warrens, will not surrender themselves to the keepers, they may be slain by virtue of the statute.
Homicide. Edward I. R. 2. de maleficioibus in pariis, and 35 4 W. & M. c. 10. But, in all those cases, there
must be an apparent necessity on the officer’s side: viz,
that the party could not be arrested or apprehended,
the riot could not be suppressed, the prisoners could
not be kept in hold, the deputer-earners could not but
escape, unless such homicide were committed: oth­
erwise, without such absolute necessity, it is not justi­
fiable. 6. If the champion in a trial by battle killed
either of them the other, such homicide was justifiable.
and was imputed to the just judgement of God, who
was thereby presumed to have decided in favour of
the truth.

3. In the next place, such homicide as is commit­
ted for the prevention of any forcible and atrocious
crime, is justifiable by the law of nature; and also by
the law of England, as it stood as early as the time of
Bracton, and as it is since declared by Stat. 24 H. VIII.
c. 5. If any person attempts a robbery or murder of
another, or attempts to break open a house in the night­
time, (which extends also to an attempt to burn it) and
also be killed in such attempt, the slayer shall be
acquitted and discharged. This reaches not to any
crime unaccompanied with force, as picking of pocket­
set; or to the breaking open of any house in the day­
time without it carries with it an attempt of robbery.
Also, as the Jewish law, which punished no theft
with death, makes homicide only justifiable in case of
nocturnal house-breaking; “if a thief be found break­
ing up, and he be smitten that he die, no blood shall
be shed for him: but if the sun be risen upon him,
there shall be blood shed for him; for he should have
made full restitution.” At Athens, if any theft was
committed by night, it was lawful to kill the criminal,
if taken in the fact: and by the Roman law of the
twelve tables a thief might be slain by night with
impunity; or even by day, if he armed himself
with any dangerous weapon: which amounts very
nearly to the same as is permitted by our own constitu­
tion.

The Roman law also justifies homicide: when com­
mited in defence of the chastity either of one’s self or
relations: and also, according to Selden, the law of the
Jewish republic. The English law likewise justifies a woman killing one who attempts to ravish her:
and so too the husband or father may justly killing
a man who attempts a rape upon his wife or daughter;
but not if he takes them in adultery by consent:
for the one is forcible and felonious, but not the
other. And there is no doubt the forcibly attempt­
ing a crime, of a still more detestable nature,
may be equally reified by the death of the unnatural
aggessor. For the one uniform principle that runs
through our own, and all other laws, seems to be this:
That where a crime in itself capital, is endeav­
oured to be committed by force, it is lawful to repel
the force by the death of the party attempting.
But we must not carry this doctrine to the fame visionary
length that Mr Locke does; who holds, “that all
manner of force without right upon a man’s person,
puts him in a state of war with the aggressor; and of
consequence, that being in such a state of war, he
may lawfully kill him that puts him under this unnatural
restraint.” However just this conclusion may be
in a state of uncivilized nature, yet the law of Eng­
land, like that of every other well-regulated commu­
nity, is too tender of the public peace, too careful of
the lives of the subjects, to adopt so contentious a sys­
tem; nor will it suffer with impunity any crime to be
prevented by death, unless the same, it committed
would also be punished by death.

In these instances of justifiable homicide, it may be
observed, that the slayer is in no kind of fault what­
ever, not even in the minutest degree: and is therefore
to be totally acquitted and discharged, with com­
mendation rather than blame. But that is not quite
the case in excusable homicide, the very name where­
imported some fault, some error, or omission; so
trivial, however, that the law excuses it from the guilt
of felony, though in strictness it judges it deferv­
ing of some little degree of punishment.

II. Excusable homicide is of two sorts; either per
infortunium, by misadventure; or se defendendo, upon
a principle of self preservation. We will first see where­
in its two species of homicide are distinct and then
wherein they agree.

1. Homicide per infortunium, or misadventure, is
where a man, doing a lawful act, without any inten­
tion of hurt, unfortunately kills another: as where
a man is at work with a hatchet, and the head thereof
flies off and kills a flander-by; or, where a person,
qualified to keep a gun, is shooting at a mark, and
unadvisedly kills a man: for the act is lawful, and
the effect is merely accidental, so where a parent is
moderate correcting his child, a master his appren­
tice or scholar, or an officer punishing a criminal, and
happens to occasion his death, it is only a misadventure;
for the act of correction was lawful: and i. he exceeds
the bounds of moderation, either in the manner, the
instrument, or the quantity of punishment, and death
ensues, it is manslaughter at least, and in some cases
(according to the circumstances) murder; for the act
of immoderate correction is unlawful. Thus by an
cédit of the emperor Constandine, when the rigour
of the Roman law with regard to slaves began to relax
and soften, a master was allowed to chastise his slave
with rods and imprisonment and if death accidentally
ensued he was guilty of no crime: but if he struck
him with a club or a stone, and thereby inflicted his
death, or if in any other yet graver manner, unmod­
erate flagellations, beyond what was just, were
homicidal.

But to proceed. A tilt or tournament, the mar­
tial diversion of our ancestors, was however an unlawful
act; and so are boxing and sword playing, the suc­
cceeding amusements of their posterity: and therefore,
if a knight in the former cafe, or a gladiator in the
latter, be killed, such killing is felony or manslaughter.
But if the king command or permit such diversion,
the act is said to be only a misadventure; for then the
act is lawful: In like manner as, by the laws both of
Athens and Rome, he who killed another in the
paestrium, or public games, authorized or permitted
by the state, was not held to be guilty of homicide.
Likewise to whip another’s horse, whereby he runs
over a child and kills him, is held to be accidental in
the rider, for he has done nothing unlawful; but
manslaughter is the person who whipped him, for the
act was a trespass, and at best a piece of idleness, of
ininitely dangerous consequence. And in general,
if death ensues in consequence of an idle, dangerous,
HOMICIDE. and unlawful sport, as shooting or calling fowes in a town, or the barbarous diversion of cock-throwing; in these and similar cases, the slayer is guilty of manslaughter, and not misadventure only; for these are unlawful acts.

2. Homicide in self-defence, or se defendendo, upon a sudden affray, is also excusable rather than justifiable by the English law. This species of self-defence must be distinguished from that just now mentioned, as calculated to hinder the perpetration of a capital crime; which is not only a matter of excuse, but of justification. But the self-defence which we are now speaking of, is that whereby a man may protect himself from an assault, or the like, in the course of a sudden brawl or quarrel, by killing him who assaulfs him. And this is what the law expresses by the word chance-medley, or (as some rather choose to write it) chough-medley; the former of which in its etymology signifies a casual-affray, the latter an affray in the heat of blood or passion; both of them of pretty much the same import; but the former is in common speech too erroneously applied to any manner of homicide by misadventure; whereas it appears from the statute 24 H. VIII. c. 5. and the ancient books, that it is properly applied to such killing as happens in self-defence upon a sudden encounter.

The right of natural defence does not imply a right of attacking; for, instead of attacking another for injuries past or impending, men need only have recourse to the proper tribunals of justice. They cannot, therefore, legally exercise this right of preventive defence, but in sudden and violent cases; when certain and immediate suffering would be the consequence of waiting for the affiance of the law. Wherefore to excuse homicide by the plea of self-defence, it must appear that the slayer had no other possible means of escaping from his assailant.

This species of homicide which happens frequently upon chance-medley in self-defence differs but little from manslaughter, which also happens frequently upon chance-medley in the proper legal sense of the word. But the true criterion between them seems to be this; when both parties are actually combating at the time when the mortal stroke is given, the slayer is guilty of manslaughter; but if the slayer hath not begun to fight, or (having begun) endeavours to decline any further struggle, and afterwards, being closely pressed by his antagonist, kills him to avoid his own destruction, this is homicide excusable by self-defence. For which reason the law requires, that the person, who kills another in his own defence, should have retreated as far as he conveniently or safely can, to avoid the violence of the assault, before he turns upon his assailant; and that not fictitiously, or in order to watch his opportunity, but from a real tenderness of shedding his brother's blood. And though it may be cowardice, in time of war between two independent nations, to flee from an enemy; yet between two fellow-subjects, the law countenances no such point of honour; because the constitutional courts are the vindicet iniquitatum, and will give to the party wronged all the satisfaction he deserves. In this the civil law also agrees with ours, or perhaps goes rather farther; "qui cum alteri turri se non possunt, damni culpavem deuntur, inoexitum sint." The party assaulfted must therefore flee as far as he conveniently can, either by reason of some wall, ditch, or other impediment; or as far as the fierceness of the Homicide affult will permit him; for it may be too fierce as not to allow him to yield a step, without manifest danger of his life, or enormous bodily harm; and, in his defence he may kill his assailant instantly. And this is the doctrine of universal justice, as well as of the municipal law.

And, as to the manner of the defence, so is also the time to be considered: for if the person assaulfted does not fall upon the aggressor till the affray is over, or when he is running away, this is revenge and not defence. Neither under the colour of self-defence, will the law permit a man to screen himself from the guilt of deliberate murder: for if two persons, A and B, agree to fight a duel, and A gives the first onset, and B retreats as far as he possibly can, and then kills A, this is murder; because of the previous malice and concerted design. But if A upon a sudden quarrel assaulfs B first, and, upon B's returning the assault, A really and bona fide flies; and being driven to the wall, turns again upon B and kills him; this may be se defendendo, according to some of our writers; tho' others have thought this opinion too favourable: inasmuch as the necessity, to which he is at last reduced, originally arose from his own fault. Under this excuse of self-defence, the principal civil and natural relations are comprehended: therefore, master and servant, parent and child, husband and wife, killing an assailant in the necessary defence of each other respectively, are excused; the act of the relation affisting being considered the same as the act of the party himself.

There is another species of homicide se defendendo, where the party slain is equally innocent as he who occasions his death; and yet this homicide is also excusable from the great universal principle of self preservation, which prompts every man to save his own life at the expense of another man's, is excusable through unavoidable necessity, and the principle of self-defence; since their both remaining on the same weak plank is a mutual, though innocent, attempt upon, and endangering of, each other's life.

Let us next take a view of those circumstances wherein those two species of homicide, by misadventure and self-defence, agree; and those are in their blame and punishment. For the law sets so high a value upon the life of a man, that it always intends some mitigation in the person who takes it away, unless by the command or express permission of the law. In the case of misadventure, it presumes negligence, or at least a want of sufficient caution in him who was so unfortunate as to commit it; who therefore is not altogether faultless. And as to the necessity which excuses a man who kills another se defendendo, lord Bacon intimates it necessestis culpabilis, and thereby distinguishes it from the former necessity of killing a chief or a malefactor. For the law intends that the quarrel or assault arose from some unknown wrong, or some provocation, either in word or deed; and since in quarel
HOM [638]

HOMILY, in ecclesiastical writers, a sermon or discourse upon some point of religion, delivered in a plain manner, so as to be easily understood by the common people. The word is Greek, ἡμιλία, formed of ἡμιλος, εὐτυχις, "assembly or council."

The Greek homily, says M. Fleury, signifies a familiar discourse, like the Latin sermo; and discourses delivered in the church took these denominations, to intimate that they were not harangues or matters of ornamentation and flourish, like those of profane orators, but familiar and useful discourses, as of a master to his disciples, or a father to his children.

All the homilies of the Greek and Latin fathers are composed by the bishops. We have none of Tertullian, Clemens Alexandrinus, and many other learned persons; because, in the first ages, none but bishops were admitted to preach. The privilege was not ordinarily allowed to priests till toward the fifth century. St Chrysostom was the first presbyter that preached publicly. Origen and St Augustine also preached; but it was by a peculiar licence or privilege.

Photius distinguishes homilia from sermon; in that the homily was performed in a more familiar manner, the prelate interrogating and talking to the people, and they in their turn answering and interrogating him, so that it was properly a conversation; whereas the sermon was delivered with one form, and in the pulpit, after the manner of the orators.

The practice of compiling homilies, which were to be committed to memory, and recited by ignorant or indolent priests, commenced towards the close of the 8th century; when Charlemagne ordered Paul Deacon and Alcin to form homilies or discourses upon the Gospels and Epistles, from the ancient doctors of the church. This gave rise to that famous collection intitled the Homiliarium of Charlemagne, and which being followed as a model by many productions of the same kind, composed by private persons, from a principle of pious zeal, contributed much (says Mosheim) to nourish the indolence, and to perpetuate the ignorance of a worthless clergy.

There are still extant several fine homilies, composed by the ancient fathers, particularly St Chrysostom and St Gregory.

Clementine Homilies, in ecclesiastical history, are nineteen homilies in Greek, published by Cotelerius, with two letters prefixed; one of them written in the name of Peter, the other in the name of Clement, to James bishop of Jerusalem; in which last letter they are intitled Clement's Epitome of the Preaching and Travels of Peter. According to Le Clerc, these homilies were composed by an Ebionite in the second century; but Montfaucon supposes that they were forged long after the age of St Athanasius. Dr Lardner apprehends, that the Clementine homilies were the original or first edition of the Recognitions; and that they are the same with the work censured by Eusebius under the title of Dialogues of Peter and Apion.

HOMINE REPLESIANDO, a writ for the bailing of a man out of prison when he is confined without commandment of the king or his judges, or for any cause that
HOMOC, a name given by mariners to a hillock or small eminence of land, resembling the figure of a cone, and appearing on the sea-coast of any country.

HOMO, MAN, is ranked by Linnaeus under the order of primates; and characterized by having four parallel foreteeth both in the upper and lower jaw, and two mamme on the breast. The species, according to this author, are two, viz. the homo sapiens, and the homo troglodytes.

The troglodytes, or orang outang, is a native of Ethiopia, Java, and Ambaina. His body is white; he walks erect; and is about one-half the ordinary human size. He generally lives about 25 years. He conceals himself in caves during the day, and searches for his prey in the night. He is said to be exceedingly sagacious, but is not endowed with the faculty of speech. See TROGLODYTES, SIMIA, and COMPARATIVE ANATOMY, p. 250, col. 2.

HOMOGENEOUS, or HOMOGENEAL (composed of the Greek homo and geneal), is a term applied to various subjects, to denote, that they consist of similar parts, or of parts of the same nature and kind: in contradiction to heterogeneous, where the parts are of different natures, &c.

HOMOLOGATION, in the civil law, the act of confirming or rendering a thing more valid and follem, by publication, repetition, or recognition thereon. See MAN.

The American, or Homo sapiens, is very extensive; for it comprehends one city of the second class and thirteen of the third; one of these cities named Teng-fong-hien, is famous on account of the tower erected by the celebrated Tchou-kong for an observatory; there is still to be seen in it an instrument which he made use of to find the shadow at noon, in order to determine the latitude. This astronomer lived above a thousand years before the Christian era, and the Chinefe pretend that he invented the mariner's compass.

HONAN-Fou, a city of the above province, situated amidst mountains and between three rivers. The Chines formerly believed this city to be the centre of the earth, because it was in the middle of their empire. Its jurisdiction is very extensive, for it comprehends one city of the second class and thirteen of the third; one of these cities named Teng-fong-hien, is famous on account of the tower erected by the celebrated Tchou-kong for an observatory; there is still to be seen in it an instrument which he made use of to find the shadow at noon, in order to determine the latitude. This astronomer lived above a thousand years before the Christian era, and the Chines pretend that he invented the mariner's compass.

HONAN-Fou, a city of the above province, situated amidst mountains and between three rivers. The Chinefes formerly believed this city to be the centre of the earth, because it was in the middle of their empire. Its jurisdiction is very extensive, for it comprehends one city of the second class and thirteen of the third; one of these cities named Teng-fong-hien, is famous on account of the tower erected by the celebrated Tchou-kong for an observatory; there is still to be seen in it an instrument which he made use of to find the shadow at noon, in order to determine the latitude. This astronomer lived above a thousand years before the Christian era, and the Chines pretend that he invented the mariner's compass.

HONDEKOOTER (Melchior), a famous Dutch painter born at Utrecht, excelled in painting animals, and especially birds. His father and grandfather were of the same profession, and their subjects the same. He was trained up to the art by his father; but surpassed not only him, but even the best of his contemporaries in a very high degree. Till he was seventeen years of age, he continued under the direction of his father, and accustomed himself to paint several forts of birds; but particularly he was pleased to represent cocks, hens, ducks, chickens, and peacocks, which he described in an elegant variety of figures, and manners.

After his father's death, which happened in 1653, he received some instructions from his uncle John Bajtiff Weeninx; but his principal and best instructor was nature, which he studied with intense application. His pencil was wonderfully neat and delicate; his touch light; his colouring exceedingly natural, lively, and remarkably transparent; and the feathers of his fowls were expressed with such a swelling softness, as might readily and agreeably deceive the eye of any spectator. It is reported that he had trained up a cock to stand in any attitude he wanted to describe, and that it was his custom to place that creature near his easel; so that at the motion of his hand the bird would fix itself in the proper posture, and would continue in that particular position without the smallest perceptible alteration for several hours at a time. The landscapes which he introduces as the back grounds of his pictures, are adapted with peculiar judgment and skill, and admirably finished; they harmonize with his subject, and always increase the force and the beauty of his principal objects. His touch was very singular, in imitating the natural plumage of the fowls he painted; which not only produced a charming effect, but also may prove serviceable to an intelligent observer, to assist him in determining which are the genuine works of this master, and which are imitations. His pictures fell at a high price, and are much fought after. He died at Utrecht in 1695; aged 59.

HONDURAS, a province of North America in New Spain, lying on the North Sea, being about 370 miles in length, and 200 in breadth; it was discovered,
Honey, a fine kind of what stone, used for setting razors, pen-knives, and the like.

Honey, a sweet vegetable juice, collected by the bees from the flowers of various plants, and deposited in the cells of the comb; from which it is extracted either by spontaneous percolation through a sieve in a warm place, the comb being separated and laid thereon, or by expression. That which runs spontaneously is purer than that which is expressed, a quantity of the wax and other matters being forced out along with it by the pressure. The best sort of honey is of a thick conferred, a whitish colour inclining to yellow, an agreeable smell, and pleasant taste: both the colour and flavour are said to differ in some degree, according to the plants which the bees collect it from. It is supposed that honey is merely the juice of the flower perfuming, and becoming impregnated therewith; and that the bee takes it up with its proboscis, and carries it to be deposited in its waxen cells, with which the young bees are to be fed in summer, and the old bees in winter: but it is certain, that honey can be procured by no other method of collecting this juice than by the bees. The honey wrought by the young bees, and that which is permitted to run from the comb without heat or pressure, is white and pure, and called virgin’s honey. The honey of old bees and that which is forced from the comb by heat or pressure, is yellow, from the wax. Honey produced where the air is clear and hot, is better than that where the air is variable and cold.—The honey of Narbonne in France, where rosemery abounds, is said to have a very manifest flavour of that plant, and to be imitable by adding to other honey an infusion of rosemery flowers.

Honey, considered as a medicine, is a very useful detergent and aperient, powerfully dissolving viscid juices, and promoting the expectoration of tough phlegm. In some particular constitutions it has an inconvenience of gripping, or of proving purgative; which is said to be in some measure prevented by previously boiling the honey. This, however, with all conclusions, is by no means effectual; and the circumspection mentioned has had so much weight with the Edinburgh college, that they do not now employ it in any preparation, and have entirely rejected the mells medicata, subtilizing syrups in their place: but there can be no doubt that honey is very useful in giving form to different articles, although there be some individuals with whom it may disagree. In order, however, to obtain the good effects of the honey itself, it must be used to a considerable extent, and as an article of diet. The following remarkable instances of the good effects of honey in some asmatic cafes, given by Dr. Monro in his Medical and Pharmaceutical Chemistry, deserve to be here inserted. “The late Dr. John Hume, one of the commissioners of the sick and hurt of the royal navy, was for many years violently afflicted with the asthma. Having taken many medicines without receiving relief, he at last resolved to try the effects of honey, having long had a great opinion of its virtues as a peculiar. For two or three years he ate some ounces of it daily, and got entirely free of his asthma, and like wife of a gravelly complaint which he had long been afflicted with. About two years after he had recovered his health, when he was sitting one day in the office for the sick and hurt, a person labouring under a great difficulty of breathing, who looked as if he could not live many days, came to him, and asked him by what means he had been cured of his asthma! Dr. Hume told him the particulars of his own case, and mentioned to him the means by which he had found relief. For two years after he had heard nothing of this person, who was a stranger to him, and had seemed to bad that he did not imagine that he could have lived many days, and therefore had not even asked him who he was; but at the end of that period, a man seemingly in good health, and decently dressed, came to the sick and hurt office, and returned him thanks for his cure, which he affirmed he had been entirely brought about by the free use of honey.”

Honey-Dew, a sweet faccharine substance found on the leaves of certain trees, of which bees are very fond, by the husbandmen supposed to fall from the heavens like common dew. This opinion has been refuted, and the true origin of this and other faccharine dews shown by the Abbe Boiffier de Sauvages, in a memoir read before the Society of Sciences at Montpelier. “Chance (says the Abbe) afforded me an opportunity of seeing this juice in its primitive form on the leaves of the holm oak: these leaves were covered with thousands of small round globules or drops, which, without touching one another, seemed to point out the pore from whence each of them had proceeded. My taste informed me that they were as sweet as honey: the honey-dew on a neighbouring bramble did not resemble the former; the drops having run together, owing either to the moisture of the air which had diluted them, or to the heat which had expanded them. The dew was become more viscous, and lay in large drops, covering the leaves; in this form it is usually seen.

The oak had at this time two sorts of leaves; the old, which were strong and firm; and the new which were tender, and newly come forth. The honey-dew was found only on the old leaves; though these were covered by the new ones, and by that means sheltered from any moisture that could fall from above. I observed the fame on the old leaves of the bramble, while the new leaves were quite free from it. Another proof that this dew proceeds from the leaves is, that other neighbouring trees not furnished with a juice of this kind had no moisture on them; and particularly the mulberry, which is a very particular circumstance, for this juice is a deadly poison to silkworms. If this juice fell in the form of a dew, mist, or fog, it would wet all the leaves without distinction, and every part of the leaves, under as well as upper. Heat may have some share in its production; for
Honey.

though the common heat promotes only the transpiration of the more volatile and fluid juices, a sultry heat, especially if reflected by clouds, may so far dilate the vessels as to produce a more vitious juice, such as the honey-dew.

"The second kind of honey-dew, which is the chief resource of bees after the spring-flowers and dew by transpiration on leaves are past, owes its origin to a small insect called a vine-fretter; the excrement ejected with some force by this insect makes a part of the most delicate honey known in nature (see Aris). These vine-fretters reft during several months on the barks of particular trees, and extract their food by piercing that bark, without hurting or deforming the tree. These insects also cause the leaves to curl up, and produce gall upon others. They settle on branches that are a year old. The juice, at first perhaps hard and crabbed, becomes, in the bowels of this insect, equal in sweetness to the honey obtained from the flowers and leaves of vegetables; excepting that the flowers may communicate some of their essential oil to the honey, and this may give it a peculiar flavour, as happened to myffy planting a hedge of rosemary near my bees at Sauvages: the honey has tasted of it ever since, that shrub continuing long in flower.

"I have observed two species of vine-fretters, which live unheltered on the barks of young branches; a larger and a lesser. The lesser species is of the colour of the bark upon which it feeds, generally green. It is chiefly distinguished by two horns, or strait, immovable, flathy substances, which rise perpendicularly from the lower sides of the belly, one on each side. This is the species which live on the young branches of bramble and elder. The larger species is double the size of the other; is of a brighter colour; and instead of the horns which distinguish the other, have in the same part of the skin a small button, black and shining like jet.

"The buzzing of bees in a tuft of holm-oak, made me suspect that something very interesting brought so many of them thither. I knew that it was not the feccion for expecting honey-dew, nor was it the place where it is usually found; and was surprized to find the tufts of leaves and branches covered with drops which the bees collected with a humming noise. The form of the drops drew my attention, and led me to the following discovery. Instead of being round like drops which had fallen, each formed a small longish oval. I soon perceived from whence they proceeded. The leaves covered with these drops of honey were situated beneath a swarm of the larger black vine-fretters; and on observing these insects, I perceived them from time to time raise their bellies, at the extremity of which there then appeared a small drop of an amber colour, which they instantly ejected from them to a distance of some inches. I found by stifling some of these drops which I had caught on my hand, that it had the same flavour with what had before fallen on the leaves. I afterwards saw the smaller species of vine-fretters eject their drops in the same manner. This ejection is so far from being a matter of indifference to these insects themselves, that it seems to have been wisely instituted to procure cleanliness in each individual, as well as to preserve the whole swarm from destruction; for preening as they go one upon another, they would otherwise soon be glued together, and rendered incapable of stinging. The drops thus spurted out fall upon the ground, if not intercepted by leaves or branches; and the spots they make on leaves remain some time, unless washed off by rain. This is the only honey dew that falls; and this never falls from a greater height than a branch where these insects can cluster.

"It is now easy to account for a phenomenon which formerly puzzled me greatly. Walking under a lime-tree in the king's garden at Paris, I felt my hand wetted with little drops, which I at first took for small rain. The tree indeed should have sheltered me from the rain, but I escaped it by going from under the tree. A seat placed near the tree borne with these drops. And being then unacquainted with any thing of this kind, except the honey-dew found on the leaves of some particular trees, I was at a loss to conceive how so glutinous a substance could fall from the leaves in such small drops: for I knew that rain could not overcome its natural attraction to the leaves till it became pretty large drops; but I have since found, that the lime-tree is very subject to these vine-fretters.

"Bees are not the only insects that feed upon this honey; ants are equally fond of it. Led into this opinion by what naturalists have said, I at first believed that the horns in the lesser species of these vine-fretters had in their extremity a liquor which the ants went in search of; but I soon discovered that what drew the ants after them came from elsewhere, both in the larger and leffer species, and that no liquor is discharged by the horns. There are two species of ants which search for these insects. The large black ants follow those which live on the oaks and chestnut; the lesser ants attend those on the elder. But as the ants are not, like the bees, provided with the means of sucking up fluids; they place themselves near the vine-fretters, in order to seize the drop the moment they see it appear upon the anus; and as the drop remains some time on the small vine-fretter before they can catch it off, the ants have leisure to catch it, and thereby prevent the bees from having any share; but the vine-fretters of the oak and chestnut belong strong, and perhaps more plentifully supplied with juice, and the drop instantly, so that the larger ants get very little of it.

"The vine-fretters finding the greatest plenty of juice in trees about the middle of summer, afford also at that time the greatest quantity of honey; and this lessens as the season advances, so that in the autumn the bees prefer it to the flowers then in season. Though these insects pierce the tree to the sap in a thousand places, yet the trees do not seem to suffer at all from them, nor do the leaves lose the least of their verdure. The husbandman therefore acts unjustly when he destroys them."
and trade in bone-lace. It is fisted on the river Seine, in E. Long, c. 8. N. Lat. 17° 49'.

"Honi soit qui mal y pense," q.d. "Evil to him that evil thinks," the motto of the most noble order of the knights of the Garter. See Garter.

FORTON, a very pleasant market and borough town in Devonshire, situated 16 miles W. of London, and 16 east of Exeter. It consists of about 400 houses; and has one church on a hill half a mile from the town, and a chapel and free grammar-school in the town. It is well paved and lighted, and lakes of water run through it. This place has suffered by fires greatly in 1747 and 1765. The market is on Saturday, and one fair in July; its manufactures are ferge, and rich bone lace and edgings. It was a chartered corporation by James II. but reverted to its old constitution on the revolution, and is now governed by a portreeve who is chosen annually. It first returned members the 28th Edw. 1.

HONORIACI, in antiquity, an order of soldiers under the eastern empire, who introduced the Goths, Vandals, Alani, Suevi, &c. into Spain. Didymus and Verianus, two brothers, had, with great vigilance and valour, defended the palaides of the Pyreneans against the barbarians for some time, at their own expence; but being at length killed, the emperor Constantius appointed the honoriaci to defend those palaides, as not contented to lay them open to all the nations of the north then ravaging the Gauls, joined themselves to them.

HONOUR, a testimony of esteem and submission, expressed by words, actions, and an exterior behaviour, by which we make known the veneration and respect we entertain for any one on account of his dignity or merit. The word honour is also used in general for the esteem due to virtue, glory, and reputation. It is also used for virtue and propriety themselves, and for an exactness in performing whatever we have promised; and in this last sense we use the term, a man of honour. But honour is more particularly applied to two different kinds of virtue: bravery in men, and chivalry in women.—Virtue and Honour were deified among the ancient Greeks and Romans, and had a joint temple consecrated to them at Rome: but afterwards each of them had separate temples, which were so placed, that no one could enter the temple of Honour without passing through that of Virtue. Thus all who wished the Romans were continually put in mind, that virtue is the only direct path to true glory. Plutarch tells us, that the Romans, contrary to their usual custom, sacrificed to Honour uncovered; perhaps to denote, that wherever honour is, it wants no covering, but shows itself openly to the world.

The Spanish historians relate a memorable instance of honour and regard to truth. A Spanish cavalier in a sudden quarrel flew a Moorish gentleman, and fled. His pursuers soon lost sight of him, for he had perceived himself over a garden wall. The owner, a Moor, happening to be in his garden, was addressed by the Spaniard on his knees, who acquainted him with his cafe, and implored concealment. "Eat this," said the Moor (giving him half a peach), "you now know that you may confide in my protection." He then locked him up in his garden apartment, telling him as soon as it was night he would provide for his escape to a place of greater safety. The Moor then went into his houfe, who he had but just feated him­self, when a great crowd with loud lamentations came to his gate, bringing the corpse of his fon, who had just been killed by a Spaniard. When the first shock of surprife was a little over, he learnt from the description given, that the fatal deed was done by the very person then in his power. He mentioned this to no one; but as soon as it was dark retir'd to his garden, as if to grieve alone, giving orders that none should follow him. Then accofing the Spaniard, he said, "Christian, the person you have killed is my fon, his body is now in my houfe. You ought to suffer; but you have eaten with me, and I have given you my faith, which must not be broken." He then led the abomini'd Spaniard to his stables, mounted him on one of his fleetest horses, and said, "Fly far while the night can cover you; you will be safe in the morn­ing. You are indeed guilty of my fon's blood: but God is just and good; and I thank him I am innocent of yours, and that my faith given is preferred."

This point of honour is most religiously observed by the Arabs and Saracens, from whom it was adopted by the Moors of Africa, and by them was brought into Spain. The following instance of Spanish honour may still dwell in the memory of many living, and deserve to be handed down to the latest posterity. In the year 1746, when the British were in hot war with Spain, the Elizabeth of London, captain William Edwards, coming through the Gulf from Jaima, richly laden, met with a most violent storm, in which the ship sprung a leak, that obliged them, for the saving of their lives, to run into the Hannavannah, a Spanish port. The captain went on shore, and directly waited on the govern­or, told the occasion of his putting in, and that he surrendered the ship as a prize, and himself, and his men as prisoners of war, only requesting good quarter. "No, Sir," replied the Spanish governor, "if we had taken you in fair war at sea, or approaching our coast with hostile intentions, your ship would then have been a prize, and your people prisoners; but when, distressed by a tempest, you come into our ports for the safety of your lives, we, though enemies, being men, are bound as such by the laws of humanity to afford relief to distressed men who ask it of us. We cannot even against our enemies take an advantage of an act of God. You have leave therefore to unload your ship, if that be necessary, to stop the leak; you may receive her here, and traffic so far as shall be necessary to pay the charges; you may then depart, and I will give you a pass to be in force till you are beyond Bermuda: if after that you are taken, you will then be a lawful prize; but now you are only a stranger, and have a stranger's right to safety and protection." The ship accordingly departed, and arrived safe in London.

A remarkable instance of the like honour is recorded of a poor unenlightened African negro, in Captain Snelgrave's account of his voyage to Guinea. A New England vessel, trading there in 1752, left a second mate, William Murrey, sick on shore, and failed without him. Murray was at the house of a negro named Cudjoe, with whom he had contracted an acquaintance during their trade. He recovered; and the ship being gone, he continued with his black friend till some other opportunity should offer of his getting home.
Honour, in the beau monde, has a meaning materially different from the above, and which is easier to illustrate than define. It is, however, subject to a system of rules, called the law of honour, constructed by people of fashion, calculated to facilitate their intercourse with one another, and for no other purpose. Consequently, nothing is considered as inconsistent with honour, but what tends to impede this intercourse. Hence, as Archdeacon Paley states the matter, profaneness, negligence of public worship or private devotion, cruelty to servants, rigorous treatment of tenants or other dependants, want of charity to the poor, injustice done to tradesmen by insolency or delay of payment, with numberless examples of the same kind, are accounted no breaches of honour, because a man is not a less agreeable companion for these vices, nor the worse to deal with in those concerns which are usually transacted between one gentleman and another.

Again, the law of honour being constituted by men occupied in the pursuit of pleasure, and for the mutual convenience of such men, will be found, as might be expected from the character and design of the law-makers, to be, in most instances, favourable to the licentious indulgence of the natural passions. Thus it allows of fornication, adultery, drunkenness, prodigality, duelling, and revenge in the extreme; and lays no fires upon the virtues opposite to these.

Honour or Rank.—The degrees of honour which are observed in Britain may be comprehended under these two heads, viz. nobles: majors, and nobles minors. Those included under the first rank are, archbishops, dukes, marquises, earls, viscounts, bishops, and barons; which are all distinguished by the respective ornaments of their escutcheons: and those of the last are baronets, knights, esquires, and gentlemen. There are some authors who will have baronets to be the last under the first rank; and that reason is, because their honour is hereditary, and by patent, as that of the nobility. See COMMONERS and Nobility.

Honours of War, in a siege, is, when a governor, having made a long and vigorous defence, is at last obliged to surrender the place to the enemy for want of men and provisions, and makes it one of his principal articles to march out with the honours of war: that is, with shouldered arms, drums beating, colours flying, and all their baggage, &c.

Military Honours. All armes salute crowned heads in the most respectful manner, drums beating a march, colours and standards dropping, and officers saluting. Their guards pay no compliment, except to the princes of the blood; and even that by courtesy, in the absence of the crowned head.

To the commander in chief the whole line turns out without arms, and the camp-guards beat a march, and salute. To generals of horse and foot they beat a march and salute. Lieutenant-generals of ditto, three ruffs, and salute. Major-generals of ditto, two ruffs, and salute. Brigadiers of ditto, rest ed arms, one ruff, and salute. Colonels of ditto, rest ed arms, and no bearing. Centinels rest their arms to all officers, and shouder to every officer. All governors, that are not general officers, shall, in all places where they are governors, have one ruff, with rested arms; but for those who have no commiation as governors, no drum shall beat. Lieutenant-governors shall have the main-guard turned out to them with shouldered arms. French Honours of War, chiefly imitated by most powers in Europe, are,

To the king all guards beat the march, and all officers salute. Field-marshals received with the march, and saluted in the king's absence. General of horse or foot, four ruffs; but if he commands in chief, a march and salute. Lieutenant-generals of horse or foot, commanding or not, guards beat three ruffs. Major-generals of horse and foot, two ruffs. Officers, when their guards are under arms, and a general makes a signal, must retire to him, but not beat; when not got under arms, and a signal made, only stand by their arms. Village-guards go under arms only to the king, field-marshals, generals of horse and foot, and to the general of the day. Generals guards go under arms only to the king, field-marshals, and the general over whom they mount. Commanding officers of regiments and battalions, their own quarter and rear guards to turn out; but not to other field officers, unless they are of the day. Generals in foreign service, the same.

Honours paid by Centinels. Field-marshals; two centinels with ordered fire-locks, at their tent or quarters. Generals of horse or foot; two centinels, one, with his fire-lock shouldered, the other ordered. Lieutenant-generals; one, with fire-lock ordered. Major-generals; one, with fire-lock shouldered.

The first battalion of British guards go under arms to the king only; not to stand by, nor draw up in the rear of their arms to any other; nor to give centinels to foreigners. Second and third battalions draw up behind their arms to the princes, and to field-marshals;
Honour, but when on grenadiers or out-posts, they turn out, as other guards do, to the officers of the day. They give one centinel with shoulder'd arms to the princes of the blood, and to field-marshals when they lie alone in garrison.

Court of Honour. See Court of Chivalry.

Honour of Honour. In Britain the king is foilled, as being the source of honours, dignities, &c. See Prerogative.

It is impossible that government can be maintained without a due subordination of rank; that the people may know and distinguish such as are set over them, in order to yield them their due respect and obedience; and also that the officers themselves being encouraged by emulation and the hopes of superiority, may the better discharge their functions, and the English law supposes, that no one can be so good a judge of their several merits and services as the king himself who employs them. It has therefore entrusted him with the sole power of conferring dignities and honours, in confidence that he will bestow upon none but such as deserve them. And therefore all degrees of nobility, of knighthood, and other titles, are received by immediate grant from the crown: either expressed in writing, by writs or letters patent, as in the creation of peers and baronets; or by corporeal investiture, as in the creation of a simple knight.

From the same principle also arises the prerogative of erecting and disposing of offices: for honours and offices are in their nature convertible and synonymous. All offices under the crown carry in the eye of the law an honour along with them; because they imply a superiority of parts and abilities, being supposed to be always filled with those that are most able to execute them. And, on the other hand, all honours in their original had duties or offices annexed to them: an earl, comte, was the conservator or governor of a county; and a knight, miles, was bound to attend the king in his wars. For the same reason therefore that honours are in the disposal of the king, offices ought to be so likewise; and as the king may create new titles, so may he create new offices: but with this restriction, that he cannot create new offices with new fees annexed to them, nor annex new fees to old offices; for this would be a tax upon the subject, which cannot be imposed but by act of parliament. Wherefore, in 13 Hen. IV. a new office being created by the king's letters patent for measuring cloths, with a new fee for the same, the letters patent were, on account of the new fee, revoked and declared void in parliament.

Upon the same or a like reason, the king has also the prerogative of conferring privileges upon private persons. Such as granting place or precedence to any of his subjects, as shall seem good to his royal wit: on such as converting aliens, or persons born out of the king's dominions, into denizens; whereby some very considerable privileges of natural born subjects are conferred upon them. Such also is the prerogative of erecting corporations; whereby a number of private persons are united and knit together, and enjoy many liberties, powers, and immunities in their public capacity, which they were utterly incapable of in their natural.

Maids of Honour, are young ladies in the queen's household, whole office is to attend the queen when she goes abroad, &c. In England they are six in number, and their salary 300l. per annum each.

Honour is particularly applied in English customs to the more noble kind of seignories or lordships, whereof other inferior lordships or manors hold or depend. As a man consents to several tenements, services, customs, &c. so an honour contains divers manors, knights-fees, &c. It was also formerly called beneficium or royal fee, being always held of the king in capite.

Honours, in heraldry, is that next above the centre of the escutcheon, dividing the upper part into two equal portions.

Honourable, a title conferred on the younger sons of earls, the sons of viscounts and barons; as also on such persons as have the king's commission, and upon those who enjoy places of trust and honour.

Honourary, something done or conferred upon any one, to do him honour. See the article Honour.

Honour is sometimes understood of a person who bears or possesses some title or title, only for the name's sake, without doing any thing of the functions belonging to it, or receiving any advantage from it: thus we say honourary counsellors, honourary fellows, &c.

Honourary is also used for a lawyer's fee, or a salary given to public professors in any art or science.

Hood (Robin), a famous outlaw and deer-stalker, who chiefly harboured in Sherwood forest in Nottinghamshire. He was a man of family, which by his pedigree appears to have had some title to the cardom of Huntington; and played his pranks about the latter end of the 13th century. He was famous for archery, and for his treatment of all travellers who came in his way; levying contributions on the rich, and relieving the poor. Falling sick at last, and requiring to be bled, he is said to have been betrayed and bled to death. He died in 1247; and was buried at Kirklees in Yorkshire, then a Benedictine monastery, where his grave-stone is still shown.

Hood. See Chapron and Cowl.

Hood, in falconry, is a piece of leather, wherewith the head of a hawk, falcon, or the like, is covered.

Hood Island, one of the Marquesas Islands, in the South Sea. It was discovered in April 1774 by Captain Cook, who gave it that name from the person who first saw the land. It is the most northerly of the cluster, and lies in S. Lat. 9. 25. W. Long. 139. 13.

Hoo, the horny substance that covers the feet of divers animals, as oxen, horses, &c.

Hoobound, in farriery. See there, § 411.

Hooft (Peter Cornelius Van), an eminent historian and poet, born at Amsterdam in 1581. He was lord of Mydren, judge of Guyland, and knight of the order of St Michael. He died at the Hague in 1647. He wrote, 1. An excellent history of the Netherlands, from the abdication of Charles V. to the year 1588. 2. Several Comedies, and other works. By these he acquired such reputation, that the Flemings considered him as the Homer and Tasso of the Netherlands.
HOOGESTRATTEENTOWN, a town of the Nether-
lands, in Dutch Brabant, and capital of a county of
the same name. E. Long. 4° 41'. N. Lat. 51° 25'.

HOOK, in angling, &c. See Fishing Hook.

Hooks, in building, &c. are of various sorts;
see of iron & others of brass, viz. 1. Amoum-
oughs, which are generally of brass, and are to lay up
arms upon, as guns, muskets, half-pikes, pikes, javelin,
&c. 2. Curtain-hooks. 3. Chimney hooks,
which are made both of brass and iron, and of different
faftions: their use is to fet the tongs and fire-
shovel againft. 4. Curtain-hooks. 5. Hooks for doors,
gates, &c. 6. Double line-hooks; large and small.
7. Single line-hooks, large and small. 8. Tenter-
hooks of various sorts. See Tenter.

Hooks of a ship, are all those forked timbers which
are placed directly upon the keel, as well in her run
as in her rake.

Can-hooks, those which being made fast to the end
of a rope with a noose (like that which brewers ufe
to fling or carry their barrels on), are made ufe of
for illing.

Pole-hooks, in a ship, the fame with futtocks.

Loof-hooks, a tackle with two hooks: one to hitch
it into a cringle of the main or fore-fail, in the bolt-rope
at the leech of the fail by the elew; and the other is
to hitch it into a strap, which is flipfed to the chefs-tree.
Their ufe is to pull down the faif, and fucreur the
tackles in a large faif and fliffge, that all the faifs
may not bear upon the tack. It is alfo ufed when
the tack is to be fleized more secure, and to take off or put
on a bonnet or drabler.

Hook Pins, in architecture, are tapper iron pins, only
with a hook-head, to pin the fame of a roof or floor
together.

HOOKAH, among the Arabs and other nations of
the East, is a pipe of a singular and complicated con-
struction, through which tobacco is flomed; out of
a small veftel of a globular form, and nearly full of
water, iffe two tubes, one perpendicularly, on which
is placed the tobacco; the other obliquely from the
side of the veftel, and to that the person who smokes
appUies his mouth; the fmoke by this means being
drawn through water, is cooled in its paffeage and ren-
dered more grateful: one takes a whiff, draws up
a large quantity of fmoke, puts it out of his nofe and
mouth in an immense cloud, and paffes the hookah
to his neighbour; and thus it goes round the whole
circle.—The hookah is known and ufed throughout
the east; but in thofe parts of it where the reftra-
Aence of life prevail greatly, every one has his hookah
faered to himfelf; and it is frequently an implement
of a very costly nature, being of silver, and fet with
precious stones: in the better kind, that tube which
is applied to the mouth is very long and pliant; and
for that reafon is termed the fnafe: people who ufe it
in a luxuriant manner, fill the veftel through which
the fmoke is drawn with rofe water; and it thereby
receives some of the fragrant quality of that fluid.

HOOKE (Robert), a very eminent English mathem-
atician and philofopher, was the fon of Mr John
Hooke minifter of Freewater in the Isle of Wight,
where he was born in 1635. He very early difcovered
a genius for mechanics, by making curious toys with
great art and dexterity. He was educated under Dr
Bathy in Weftmiifer school; where he not only ac-
quired a competent share of Greek and Latin, toge-
er with an infight into Hebrew and fome other
Oriental languages, but also made himself master of
a good part of Euclid's elements. About the year 1653
he went to Chris-church in Oxford, and in 1655 was
introduced to the Philosophical Society there; where,
discovering his mechanic genius, he was firft employed
in affisting Dr Willis in his operations in chemistry
and afterwards recommended to the honourable Robert
Boyle, Eq; whom he fervcd feveral years in the fame
capacity. He was alfo instructed in aflonomy about
this time by Dr Seth Ward, Savilian profeflor of
that science; and from henceforward distinguished
himfelf by many noble inventions and improvements
of the mechanic kind. He invented feveral alfonomi-
ical instruments, for making obfervations both at
sea and land; and was particularly serviceable to Mr
Boyle, in completing the invention of the air-pump.
Sir John Cutler having founded a mechanic fchool in
1664, he ftetled an annual fipend on Mr Hooke for
life, intrufing the president, council, and fellows,
of the Royal Society to direct him with refpect to the
number and fubjeft of his lectures; and on the 11th
of January 1664-5, he was elected by that fociety
curator of experiments for life, with an additional fa-
lary. In 1666 he produced to the Royal Society a
model for rebuilding the city of London deftroyed by
fire, with which the fociety was well pleafed; and
the lord mayor and aldermen prefented it to that
of the city surveyor, though it happened not to be car-
ried into execution. It is faid, by one part of this
model of Mr Hooke's, it was defigned to have all the
chief ftreets, as from Leaden-hall to Newgate, and
the like, to lie in exact ftraight lines, and all the
other crofs-streets turning out of them at right angles,
with all the churches, public buildings, markets,
&c. in proper and convenient places. The rebuild-
ing of the city according to the act of parliament,
requiring an able perfon to let out the ground to the
proprietors, Mr Hooke was appointed one of the
surveyors; in which employment he got moft part of
his eftate, as appeared pretty evident from a large
iron cleftind of money found after his death, locked
down with a key in it, and a date of the time, which
showed it to have been fo long above 30 years.—
Mr Oldenburgh, secretary to the Royal Society, dying
in 1677, Mr Hooke was appointed to supply his
place, and began to take minutes at the meeting in
October, but did not publish the Transactins. In
the beginning of the year 1687, his brother's daugh-
ter, Mrs Grace Hooke, who had lived with him fe-
veral years, died; and he was fo afflicted with grief
at her death, that he hardly ever recovered it, but
was obferved from that time to become lefs active,
more melancholy, and, if that could be, more cynical
than ever. At the fame time, a chancery fuit in which
he was concerned with Sir John Cutler, on account
of his falary for reading the Cutlerian lectures, made
him very uneafy, and increafed his disorder. In 1695,
his was employed in forming the plan of the hoftpil
1645
In July 1696, the chancery suit with Sir John Cutler was determined in his favour, to his inexpe-
riable satisfaction. His joy on that occasion was found
in his diary thus expressed: DOMHILCIISSA: that
is, Dey, Optine, Maximo, fit houor, laus, gloria, in
facienda facelorum, Amen. "I was born on this day
of July 1635, and God hath given me a new birth:
may I never forget his mercies to me! while he gives
me breath may I praise him." In the same year
1696, an order was granted to him for repeating most
of his experiments at the expence of the Royal So-
ciety, upon a promise of his furnishing the accounts,
observations, and deductions from them, and of per-
fecding the description of all the instruments contrived
by him; but his increasing illness and general decay
rendered him unable to perform it. He continued
some years in this waiting condition; and thus lan-
guishing till he was quite emaciated, he died March
31, 1702, at his lodgings in Gresham College, and
was buried in St Helen's church, Bishopsgate street; his
corpse being attended by all the members of the Royal
Society then in London. As to Mr Hooke's charac-
ter, it is not in all respects one of the most amiable.
He made but a debatable figure as to his person, being short
of stature, very crooked, pale, lean, and of a meagre
aspect, with dark brown hair, very long and hanging
over his face uncut and lank. Suitable to his per-
son, his face uncut and lank. Suitable to his per-
son, his

NICHOL's

Anecdotes of

Brewer,

&c.

I endeavoured to be rich, imagined for a while that I
was, and am in some measure happy to find myself at
this instant but just worth nothing. If your lordship,
or any of your numerous friends, have need of a ser-
vant, with the bare qualifications of being able to read
and write, and to be honest, I shall gladly undertake
any employments your lordship shall not think me
unworthy of. I have been taught, my lord, that nei-
ther a man's natural pride, nor his fel-love, is an equal
judge of what is fit for him; and I shall endeavour to
remember, that it is not the short part we act, but
the manner of our performance, which gains or loses as
the applause of him who is finally to decide of all human
actions. My Lord, I am just now employed in tran-
flecting from the French, a History of the Life of the
late archbishop of Cambry; and I was thinking to
beg the honour of your lordship's name to protect a
work which will have so much need of it. The or-
iginal is not yet published. 'Tis written by the author
of the "Discourse upon Epic Poetry," in the new edi-
tion of Telemachus. We have here some passages in the
book of a particular nature, I dare not solicit your
lordship to grant me the favour I have mentioned, till
you first have perused it. The whole is short, and
pretty fairly transcribed. If your lordship could find
a spare hour to look it over, I would wait upon your
lordship with it, as it may possibly be no unpleas-
ing entertainment. I should humbly ask your lordship's
pardon for so long an address in a season of so much
busines. But when should I be able to find a time in
which your lordship's goodness is not employed? I am,
with perfect respect and duty, my lord, your lordship's
most obliged, most faithful, and most obedient humble
servant, NATHANIEL HOOKE." The translation here
spoken of was afterwards printed in 1720, 1723. From
this period till his death, Mr Hooke enjoyed the con-
fidence and patronage of men not less distinguished
by virtue than by titles. In 1733 he published a trans-
lation of Ramay's Travels of Cyrus, in 4to; in 1733
he revived a translation of "the History of the Con-
quest of Mexico by the Spaniards, by Thomas Town-
end, Eq," printed in 2 vols 8vo; and in the same
year he published, in 4to, the first volume of "The
Roman History, from the building of Rome to the
ruin of the Commonwealth; illustrated with maps and
other plates." In the dedication to this volume, Mr
Hooke took the opportunity of publicly testifying his
just esteem for a worthy friend, to whom he had
been long and much obliged," by telling Mr Pope,
that the displaying of his name at the head of those
sheets was "like the hanging out a splendid sign, to
catch the traveller's eye, and entice him to make trial
of the entertainment the place affords. But," he pro-
ceeds, "when I can write under my sign, that Mr
Pope has been here, and was content, who will ques-
tion the goodness of the house!"

The volume is in-
trduced by "Remarks on the History of the Seven
Roman Kings, occasioned by Sir Isaac Newton's ob-
jections to the supposed 224 years duration of the
royal state of Rome." His nervous pen was next em-
ployed in digesting "An Account of the conduct of
the Dowager-duches of Marlborough, from her first
coming to Court to the year 1710, in a Letter from
herself to Lord ----, in 1742." 8vo. His reward on
this
Hooker (Richard), a learned divine, was born at Heavy-tree, near Exeter, in the year 1553. Some of his ancestors were mayors of that city, and he was nephew to John Hooker the historian. By this uncle he was first supported at the university of Oxford, with the addition of a small pension from Dr Jewel, bishop of Salisbury, who in 1567 got him admitted one of the clerks of Corpus Christi college. In 1573 he was elected scholar. In 1577 he took the degree of master of arts, and was admitted fellow the same year. In July 1579, he was appointed deputy-professor of the Hebrew language. In October, in the same year, he was for some trivial misdemeanour expelled the college, but was immediately restored. In 1581 he took orders; and being appointed to preach at St Paul's cross, he came to London, where he was unfortunately drawn into a marriage with Joan Churchman, the termagant daughter of his host. Having thus lost his fellowship, he continued in the utmost distress till the year 1584, when he was presented by John Cheny, Esq. to the rectory of Drayton-Beauchamp in Buckinghamshire. In this retirement he was visited by Mr Edwin Sandys, and Mr George Cranmer, his former pupils. They found him, with a Horace in his hand, tending some sheep in the common field, his servant having been ordered home by his sweet Xantippa. They attended him to his house; but were soon deprived of his company by an order from his wife Joan, for him to come and rock the cradle. Mr Sandys's representation to his father, of his tutor's situation, procured him the mastership of the Temple. In this situation he met with considerable molestation from one Travers, lecturer of the Temple, and a bigoted Puritan, who in the afternoon endeavoured to confute the doctrine delivered in the morning. From this disagreeable situa-
Hooper, his religious tranquillity, which sufficiently accounts for his being one of queen Mary's adherents.

When king Edward came to the crown, Mr Hooper was an enemy, and his papers burned in the privy council, and he was exiled and soon after suffered in the flames. He was buried in Wiltshire.

Hoope (John), bishop of Worcester, and a man in the Protestant cause, was born in Somersetshire, and educated at Oxford, probably at Merton College. He became a Cistercian monk, but at length, disliking his fraternity, returned to Oxford, and there became infected with Lutheranism. He was made chaplain and house-steward to Sir John Arundel, who afterwards suffered with the protector in the reign of Edward VI. But that very catholic knight, as Wood calls him, discovering his chaplain to be a heretic, Hooper was obliged to leave the kingdom. After continuing some time in France, he returned to England, and lived with a gentleman called Scialtouz; but being again discovered, he escaped to Ireland, thence embarked for Switzerland. When king Edward came to the crown, Mr Hooper returned once more to his native country. In 1550, by his old patron Sir John Arundel's intercessions with the earl of Warwick, he was consecrated bishop of Gloucester; and in 1552 was nominated to the see of Worcester, which he held in commendam with the former. But queen Mary had scarce ascended the throne, before his lordship was imprisoned, tried, and executed.

Hooper (George), a very learned writer, bishop of Bath and Wells, was well skilled in mathematics, and in the eastern learning and languages. He sat in those fea 24 years, often refused a seat in the privy council, and could not be prevailed upon to accept of the bishopric of London on the death of bishop Compton. He wrote, 1. The church of England free from the imputation of Popery. 2. A discourse concerning Lent. 3. New danger of Presbytery. 4. An inquiry into the state of the ancient measures. 5. De Valentinianorum heresi conjuratu. 6. Several sermons; and other works.

HOOPING-COUGH. See (the Index subjoined to) Medicine.

HOOPOE. See UPPA.

HOORNBECK (John), professor of divinity in the universities of Leyden and Utrecht, was born at Harlam in 1617. He understood the Latin, Hebrew, Chaldaic, Syriac, Rabbinical, Dutch, German, English, French, and Italian languages; and published many works, among which are, 1. A refutation of Socinianism, in 3 vols 4to. 2. A treatise for the conviction of the Jews. 3. Of the conversion of the Heathens. 4. Theological institutions, &c. which are written in Latin. Mr Bayle represents him as a complete model of a good pastor and divinity professor.

HOP, in botany. See Humulus.

Hops were first brought into England from the Netherlands in the year 1524. They are first mentioned in the English statute-book in the year 1552; viz. in the 5 and 6 of Edw. VI. cap. 5. And by an act of parliament of the first year of king James I. anno 1603, cap. 18. It appears, that hops were then produced in abundance in England.

The hop being a plant of great importance in the article of brewing, we shall consider what relates to the culture and management of it, under the following heads:

Of Soil. As for the choice of their hop-grounds, they esteem the richest and strongest grounds the most proper; and if it be rocky within two or three feet of the surface the hops will prosper well; but they will by no means thrive on a stiff clay or spongy wet land. The Kentish planters account new land best for hops; they plant their hop gardens with apple trees at a large distance, and with cherry-trees between; and when the land hath done its best for hops, which they reckon it will in about ten years, the trees may begin to bear. The cherry trees last about 30 years, and by that time the apple trees are large, they cut down the cherry trees.

The Essex planters account a moory land the most proper for hops.

As to the situation of a hop-ground, one that inclines to the south or west is the most eligible; but if it be exposed to the northeast or southwest winds, there should be a shelter of some trees at a distance, because the northeast winds are apt to nip the tender shoots in the spring; and the southwest winds frequently break and blow down the poles at the latter end of the summer, and very much endanger the hops.

In the winter-time provide your foil and manure for the hop-ground against the following spring.

If the dung be rotten, mix it with two or three parts of common earth, and let it incorporate together till
HOPS.

You have occasion to make use of it in making your hop hills; but if it be new dung, then let it be mixed as before till the spring in the next year, for new dung is very injurious to hops.

Dung of all sorts was formerly more commonly used than it is now, especially when rotted and turned to mould, and they who have no other manure must use it; which if they do, cows or hogs-dung, or human ordure mixed with mud, may be a proper compost, because hops delight most in a manure that is cool and moist.

Planting. Hops require to be planted in a situation so open, as that the air may freely pass round and between them, to dry up and dissipate the moisture, whereby they will not be subject to fire-blasts, which often destroy the middles of large plantations, while the outsides remain unharmed.

As for the preparation of the ground for planting, it should, in the preceding winter, be plowed and harrowed even; and then lay upon it in heaps a good quantity of fresh rich earth, or well rotted dung and earth mixed together, sufficient to put half a bushel in every hole to plant the hops in, unless the natural ground be very fern and good.

The hills where the hops are to be planted should be eight or nine feet alder, that the air may freely pass between them; for in close plantations, they are very subject to what the hop-planters call the fire-blast.

If the ground is intended to be ploughed with horses between the hills, it will be best to plant them in squares chequerwise; but if the ground is so small that it may be done with the break-plough or spade the holes should be ranged in a quincunx form. Which way you erect the plant so that the earth be stuck down at all the places where the hills are to be made.

Perfons ought to be very curious in the choice of the plants as to the kind of hop; for it the hop garden be planted with a mixture of several sorts of hops that ripen at several times, it will caufe a great deal of trouble, and a great detriment to the owner.

The two best sorts are the white and the grey kind; the latter is a large square hop, more hardy, and is the more plentiful bearer, and ripens later than the former.

There is also another sort of the white kind, which ripens a week or ten days before the common; but this is tender, and a leas plentiful bearer; but it has this advantage, that it comes first to market.

But if three grounds, or three different parts of one ground, be planted with these three sorts, there will be this convenience, that they may be picked successively as they become ripe. The sorts should be five or six inches long, with three or more joints or buds on them.

If there be a sort of hop you value, and would increase plants and sets from, the superfuous binders may be laid down when the hops are tied, cutting off the tops, and burying them in the hill; or when the hops are dried, all the cuttings may be saved; for almost every part will grow, and become a good sett the next spring of them.

As to the seasons of planting hops, the Kentish planters best approve the months of October and March, both which sometimes succeed very well; but the sets are not to be had in October, unless from some ground that is to be destroyed; and likewise there is some danger that the sets may be rotted, if the winter prove very wet; therefore the most usual time of procuring them is in March, when the hops are cut and dried.

As to the manner of planting the sets, there should be five good sets planted in every hill, one in the middle, and the rest round about, facing the tops meeting at the centre; they must stand even with the surface of the ground; let them be prefixed close with the hand, and covered with fine earth, and a stick should be placed on each side the hill to secure it.

The ground being thus planted, all that is to be done more during that summer, is to keep the hills clear from weeds, and to dig up the ground about the month of May, and to raise a small hill round about the plants. In June you must twist the young bind or branches together into a bunch or knot; for if they are tied up to small poles the first year, in order to have a few hops from them, it will not counteract the weakening of the plants.

A mixture of compost or dung being prepared for your hop ground, the best time for laying it on, if the weather prove dry, is about Michaelmas, that the wheels of the dung cart may not injure the hops, nor furrow the ground; if this be not done then, you must be obliged to wait till the frost has hardened the ground, so as to bear the dung cart; and this is also the time to carry on your new poles, and recruit those that are decayed, and to be call out every year.

If you have good score of dung, the best way will be to spread it in the alleys all over the ground, and to dig it in the winter following. The quantity they will require will be 40 loads to an acre, reckoning about 30 builiehs to the load.

If you have not dung enough to cover all the ground in one year, you may lay it on one part one year, and on the road in another, or a third; for there is no occasion to dung the ground after this manner oftener than once in three years.

Those who have but a small quantity of dung, usually content themselves with laying on about twenty loads upon an acre every year; this they lay only on the hills, either about November, or in the spring, which last some account the best time, when the hops are dried, to cover them after they are cut; but if it be done at this time, the compost or dung ought to be very well rotted and fine.

Dressing. As to the dressing of the hops, when the hop-ground is dug in January or February, the earth about the hills, and very near them, ought to be taken away with a spade, that you may come the more conveniently to the flock to cut it.

About the end of February, if the hops were planted the spring before, or if the ground be weak, they ought to be dressed in dry weather; but else, if the ground be strong and in perfection, the middle of March will be a good time; and the latter end of March, if it be apt to produce over-rank binders, or the beginning of April may be soon enough.

Then having with an iron picker cleared away all the earth out of the hills, so as to clear the flock to the principal roots, with a sharp knife you must cut off all the shoots which grew up with the binders the last year; and also all the young suckers, that none be left to rou
HOP [650]

Towards the latter end of May, when you have made an end of tying them, the ground must have the summer dressing: this is done by casting up with the spade some fine earth into every hill; and a month after this is done, you must hoe the alleys with a Dutch hoe, and make the hills up to a convenient height.

Gathering. About the middle of July hops begin to blow, and will be ready to gather about Bartholomew Tide. A judgment may be made of their ripeness by their strong scent, their hardness, and the brownish colour of their head.

When by these tokens they appear to be ripe, they must be picked with all the expedition possible; for if at this time, a form of wind should come, it would do them great damage by breaking the branches, and bruising and discolouring the hops; and it is very well known that the hops being picked green and bright, will fall for a third part more than those which are discoloured and brown.

The most convenient way of picking them is into a long square frame of wood, called a bin, with a cloth hanging on tent-hooks within it, to receive the hops as they are picked.

The frame is composed of four pieces of wood joined together, supported by four legs, with a prop at each end to bear up another long piece of wood placed at a convenient height over the middle of the bin; this serves to lay the poles upon which they are to be picked.

This bin is commonly eight feet long, and three feet broad; two poles may be laid on it at a time, and six or eight persons may work at it, three or four on each side.

It will be best to begin to pick the hops on the east or north side of your ground, if you can do it conveniently; this will prevent the south west wind from breaking into the garden.

Having made choice of a plot of the ground containing 11 hills square, place the bin upon the hill which is in the centre, having five hills on each side; and when these hills are picked, remove the bin into another piece of ground of the same extent, and so proceed till the whole hop-ground is finished.

When the poles are drawn up to be picked, you must take great care not to cut the bind too near the hills, especially when the hops are green, because it will make the top to flow excessively.

The hops must be picked very clean, i.e. free from leaves and stalks; and, as there shall be occasion, two or three times in a day the bin must be emptied into a hop-bag made of coarse linen cloth, and carried immediately to the oast or kiln in order to be dried; for if they should be long in the bin or bag, they will be apt to heat and be discoloured.

If the weather be hot, there should no more poles be drawn than can be picked in an hour, and they should be gathered in fair weather, if it can be, and when the hops are dry; this will save some expense in fixing, and preserve their colour better when they are dried.

The crop of hops being thus bestowed, you are to take care of the poles against another year, which are best to be laid up in a field, having first stripped off the bale from them; but if you have not that convenience,
HOP [651]

Hops. ency, set up three poles in the form of a triangle, or
six poles (as you please) wide at bottom; and having
set them into the ground, with an iron picker, and
bound them together at the top, set the rest of your
poles about them; and being thus disposed, none but
those on the outside will be subject to the injuries of
the weather, for all the inner poles will be kept dry,
unless at the top; whereas, if they were on the ground,
they would receive more damage in a fortnight than
by their standing all the rest of the year.

Drying. The best method of drying hops is with
charcoal on an oat or kiln, covered with hair-cloth, of
the same form and fashion that is used for drying malt.
There is no need to give any particular directions for
making these, since every carpenter or bricklayer in
those countries where hops grow, or malt is made,
knows how to build them.

The kiln ought to be square, and may be of 10, 12,
14, or 16 feet over at the top, where the hops are
laid, as your plantation requires, and your room will
allow. There ought to be a due proportion between
the height and breadth of the kiln and the bevels of
the fledge where the fire is kept, viz. if the kiln be
12 feet square on the top, it ought to be nine feet
high from the fire, and the fledge ought to be six feet,
and a half square, and so proportionable in other di-

The hops must be spread even upon the oat a foot
thick or more, if the depth of the curb will allow it;
but care is to be taken not to overload the oat if the
hops be green or wet.

The oat ought to be first warmed with a fire before
the hops are laid on, and then an even steady fire must
be kept under them; it must not be too fierce at first,
left it scorch the hops, nor must it be suffered to sink
or sicken, but rather be increaused till the hops be
nearly dried, lest the moisture or sweat which the fire
has raised fall back and discolour them. When they
have lain about nine hours they must be turned, and in
two or three hours more they may be taken off the
oat. It may be known when they are well dried by
the brittleness of the stalks and the easiness falling off
of the hop leaves.

It is found by experience that the turning of hops,
thought it be after the moist easy and best manner, is
not only an injury or waste to the hops, but also an
expense of fuel and time, because they require much
fuel and as long a time to dry a small quantity, by
turning them, as a large one. Now this may be pre-
vented by having a cover (to be let down and raised
at pleasure) to the upper bed whereon the hops lie.
This cover may also be tinned, by nailing single tin
plates over the face of it; so that when the hops begin
to dry, and are ready to burn, i.e. when the greatest
part of their moisture is evaporated, then the cover
may be let down within a foot or less of the hops (like a
reverberatory), which will reflect the heat upon them,
so that the top will soon be as dry as the lowest part,
and every hop be equally dried.

Bagging. As soon as the hops are taken off the
kiln, lay them in a room for three weeks or a
month to cool, give, and toughen; for if they are bag-
ged immediately they will powder, but if they lie a
while (and the longer they lie the better, provided they
be covered close with blankets to secure them from the
air) they may be bagged with more safety, and not be-
ing liable to be broken to powder in treading; and this
will make them bear treading the better, and the har-
der they are trodden the better they will keep.

The common method of bagging is as follows: if they
have a hole made in an upper floor, either round or
square, large enough to receive a hop bag, which con-
stitutes for bins and a half of cell wide, and also
contains ordinarily two hundred and a half of hops;
they tie a handful of hops in each lower corner of the
bag to serve as handles to it; and they fasten the
mouth of the bag, so placed that the hop may rest
upon the edges of the hole.

Then he that is to tread the hops down into the
bag, treads the hops on every side, another person con-
tinually putting them in as he treads them till the bag
is full, which being well filled and trodden, they unip
the fastening of the bag to the hoops, and let it down,
and close up the mouth of the bag, tying up a handful
of hops in each corner of the mouth, as was done in
the lower part.

Hops being thus packed, if they have been well
dried, and laid up in a dry place, will keep good seve-
ral years; but care must be taken that they be neither
destroyed nor spoiled by the mice making their nests
in them.

Produce. The charge of an acre of hop-ground in
most parts of England where hops are cultivated, is
computed thus: three pounds for the hufbandry, four
pounds for the wear of the poles, five pounds for pick-
ing and drying, one pound ten shillings for dung, one
pound for rent, though in some places they pay four or
five pounds an acre yearly for the rent of the land, and
ten shillings for tythe; in all L. 15 a year. The hop-
planters in England reckon that they have but a mo-
derate return, when the produce of an acre of hops
does not fall for more than L. 50. They frequently
have fifty, sixty, eighty, or a hundred pounds; and in
a time of general scarcity considerably more: so that,
upon the whole, if the total charge of an acre of hops
is computed at fifteen pounds a year, and its average
produce at thirty pounds, the clear profit from an acre
will be fifteen pounds a year. But the plantation of
hops has lately so much increased, and the average
produce so much exceeded the consumption, that hops
have been with many planters rather a losing than a
very profitable article.

Uses. In the spring-time, while the bud is yet ten-
der, the tops of the plant being cut off, and boiled, are
are like asparagus, and found very wholesome, and ef-
fectual to soften the body; the heads and tendrils are
good to purify the blood in the scurvy, and most cuta-
naneous diseases; decotions of the flowers, and syrups
thereof, are of use against pestilential fevers; juleps
and apozems are also prepared with hops for hypo-
chondriacal and hysterical affections, and to promote
the menses.

A pillow stuffed with hops and laid under the head,
is said to procure sleep in fevers attended with a delir-
ium. But the principal use of hops is in the brew-
ery for the preservation of malt liquors, which by the
superaddition of this balsamic, aperient, and diuretic
bitter, become very vivid, lefs apt to turn sour, more
detergent, more disposed to pass off by urine, and in
general more palatable. They are said to contain an
HOP [652]

HOP. agreeable odoriferous principle, which promotes the viscid fermentation. When high ly boiled or infufed in warm water, they increase its spirituality.

Laws relating to Hops. By 9 Ann. cap. 12. an additional duty of 3d. a pound is laid on all hops imported, over and above all other duties; and hops landed before entry and payment of duty, or without warrant for burning, shall be forfeited, and burned; the ship also shall be forfeited, and the person concerned in importing or landing shall forfeit 5 l. a hundred weight. 7 Geo. II. cap. 19. By 9 Ann. cap. 12. there shall be paid a duty of 1 d. for every pound of hops grown in Great Britain, and made fit for use, within six months after they are cured and bagged; and hops are required to be entered on pain of 40 s. an acre. Places of curing and keeping are also to be entered, on pain of 50 l. which may be visited by an officer at any time without obligation, under the penalty of 20 l. All hops shall, within six weeks after gathering, be brought to such places to be cured and bagged, on pain of 5 s. a pound. The re-bagging of foreign hops in British bagging for sale or exportation, incurs a forfeiture of 10 l. a hundred weight; and defrauding the king of his duty by using twice or oftener the same bag, with the officer's mark upon it, is liable to a penalty of 40 l. The removal of hops before they have been bagged and weighed, incurs a penalty of 50 l. Concealment of hops subjects to the forfeiture of 20 l. and the concealed hops; and any person who shall privately convey away any hops, with intent to defraud the king and owner, shall forfeit 5 s. a pound. And the duties are required to be paid within six months after curing, bagging, and weighing, on pain of double duty, two-thirds to the king, and one-third to the informer. No common brewer, &c. shall use any bitter ingredient instead of hops, on pain of 20 l. Hops which have paid the duty may be exported to Ireland; but by 6 Geo. II. cap. 11. there shall be no drawback; and by 7 Geo. II. cap. 19. no foreign hops shall be landed in Ireland. Notice of bagging and weighing shall be sent in writing to the officer, on pain of 50 l. 6 Geo. cap. 21. And by 14 Geo. III. cap. 68. the officer shall, on pain of 5 l. weigh the bags or pockets, and mark them the true weight or rare, the planter's name, and place of abode, and the date of the year in which such hops were grown; and the altering or forgery, by a person of any mark, incurs a forfeiture of 50 l. — The owners of hops shall keep their oats, &c. just weights and scales, and permit the officer to use them on pain of 20 l. 6 Geo. cap. 21. And by 10 Geo. III. cap. 44. a penalty of 100 l. is inflicted for false scales and weights. The owners are allowed to use casks instead of bags, under the same regulations. 6 Geo. cap. 21. If any person shall mix with hops any drug to alter the colour or scent, he shall forfeit 5 l. a hundred weight. If any person shall unlawfully and maliciously cut hops binding on poles in any plantation, he shall be guilty of felony without benefit of clergy. 6 Geo. II. cap. 37. By a late act, five per cent. is added to the duties on hops.

Hop. Hope, by the death of his mother he was defended from the ancient family of Glais of Sauchie in Stirlingshire. After finishing the usual course of school education, he entered the university of Edinburgh; and having, as it were, an hereditary predilection for the healing art, his attention was fixed particularly upon that branch of science. Having finished his academical education at Edinburgh, he visited other medical schools; and upon his return to his native country, he obtained the degree of Doctor of Medicine from the university of Glasgow in the beginning of the year 1750. A few months after that, he was admitted a member of the royal college of physicians in Edinburgh, and entered upon the practice of medicine in that city. After he had continued about ten years in practice, discharging the duties of his profession with a degree of judgment, attention, and humanity, which did him great honour; by the death of Dr Alston, the botanical chair in the university became vacant; when Dr Hope, by a commission from his sovereign dated the 15th of April 1761, was appointed king's botanist for Scotland and superintendent of the royal garden at Edinburgh. A few weeks after this he was elected by the town-council of Edinburgh as the successor of Dr Alston in the professorships both of botany and materia medica; and thus he became one of the members of the faculty of medicine in the university. After he had continued for about six years to give regular courses of lectures on these subjects, with no less credit to himself than benefit to his hearers, teaching the one branch during the summer, and the other during the winter months, he found that his health was considerably impaired; which induced him to form the resolution of resigning the materia medica, and of afterwards solely confining his labours as a teacher of his favourite science of botany. This resolution he carried into effect in the year 1768; and by a new commission from his majesty, dated the 8th of May, he was nominated regius professor of medicine and botany in the university, and had the offices of king's botanist and superintendent of the royal garden conferred upon him for life, which till that time had been always granted during pleasure only.

Dr Hope's predecessor, although a learned and worthy man, could never obtain sufficient public funds for the establishment of a proper botanical garden at Edinburgh; and from the situation as well as the extent of the garden at that time, joined to the smallness of its conservatories for plants, it could boast of no riches in the way of exotics. The only field for improvement, therefore, to the botanical student, was the environs of Edinburgh, to which it must indeed be allowed that nature has been uncommonly liberal, in affording a very great variety of indigenous vegetables. In this situation, the establishment of a new garden naturally suggested itself as a grand and important object; and it was accomplished by the zeal and industry of Dr Hope, aided by the munificence of his present majesty. The first assistance given to the undertaking was under the administration of Lord Belhaven; and afterwards, under that of the duke of Portland, a permanent fund for the support of the botanical garden at this place was established, which may render it not inferior to any in Europe. Dr Hope's unwarmed exertions...
HORTLY, a genus of the polyandria order, belonging to the polydiphtia class of plants. The calyx is quincual, inferior; the corolla pentalalous; the stamens are many and coiled into five filaments; there is one style; the fruit is a plum with a trilocular kernel. There is only one species, the”tinebora, a native of Carolina.

HOPKINS (Ezekiel), bishop of Derry in Ireland, was the son of an obscure clergyman in Devonshire; and was for some time a chorister of Magdalen college, Oxford, and usher of the adjoining school. He was afterwards a Presbyterian minister, and was excommunicated as an excellent preacher. John, lord Roberts, happening to hear him preach, was so pleased with his person, his discourse, and his manner, that he retained him as his chaplain when he was sent in quality of lord lieutenant into Ireland, and preferred him to the deanery of Raphoe; and on his being recalled, strongly recommended him to his successor, that he was soon preferred to the bishops of Raphoe, whence he was translated to Derry. During the war under the earl of Tyrconnell at the revolution, he withdrew into England; and was chosen minister of St Mary, Aldermarsh, in London, where he died in 1690. His sermons, his exposition of the ten commandments, and that of the Lord’s prayer, are much esteemed. His works were printed together in 1710, folio. He was the father of Mr Charles Hopkins, several of whose poetical pieces are in Dryden’s Miscellanies.

HOPITILLES, Hopite (formed of σωμα armour), in antiquity, were such of the candidates at the Olympic and other sacred games as ran races in armour.

One of the finest pieces of the famous Parrhasius was a painting which represented two hopitiles; the one running, and seeming to sweat large drops; the other laying his arms down, as quite spent and out of breath.

HOPITODROMOS (formed of σωμα armour, and δρομα run), in the ancient gymnastic sports, a term applied to such persons as went through those toilsome and robust exercises in complete armour; by which the exercise became much more violent, and the wearing of armour in the time of battle much more easy.

HOPLOMACHI, Oxybalsamos (composed of σωμα armour, and μαχημαν I fight), in antiquity, were a species of gladiators who fought in armour; either completely armed from head to foot, or only with a cowl and cuirass. HOPPER, a vessel wherein seed-corn is carried at the time of sowing.
The word is also used for the wooden trough in a mill, into which the corn is put to be ground.

HORATIO, a mountain, or mountainous tract of Arabia Petrea, situated in that circuit which the Israelites took to the fourth and fourth-east of Edom in their way to the borders of Moab; on this mountain Aaron died. The inhabitants were called Horatii. This tract was also called Seir, either from a native Horite, or from Edom, by way of anticipation from his hairy habit of body; whose potters drove out the Horites.

HORAE. See Hours.

HORAEA, in antiquity, solemn sacrifices, consisting of fruits, &c. offered in spring, summer, autumn, and winter; that heaven might grant mild and temperate weather. These, according to Muraus, were offered to the goddeses called Horae, i. e. Hours, who were three in number, attended upon the Sun, prêfided over the four seasons of the year, and had divine worship paid them at Athens.

HORAPOLLO, or HORS APOLLO, a grammarian of Panaplus in Egypt, according to Suidas, who first taught at Alexandria, and then at Constantinople under the reign of Theodosius. There are extant under his name, two books on the hieroglyphics of the Egyptians; which Aldus first published in Greek in 1505, in folio; and they have often been published since, with a Latin version and notes. It is not certain, however, that the grammarian of Alexandria was the author of these books; they being rather thought to belong to another Horapollo of more ancient date; on which head, see Fabricus' Bibliotheca Graeca.

HORATII, three Roman brothers, who, under the reign of Tullus Hostilius, fought against the three Curiti, who belonged to the Albanian army. Two of the Horatii were first killed; but the third, by his address, successfully flew the three Curiti, and by this victory rendered the city of Alba subject to the Romans. See Rome.

HORATIUS, surnamed Coles from his losing an eye in combat, was nephew to the conful Horatius Pulvillus, and descended from one of the three brothers who fought against the Curiti. Forfennus, laying siege to Rome, drove the Romans from Janiculum, and pursued them to the wooden bridge over the Tiber, which joined the city to Janiculum. Lagus, Herminius, and Horatius Coles, sustained the shock of the enemy on the bridge, and prevented their entering the city with the Romans; but Lagus and Herminius having passed the bridge, Horatius Coles was left alone, and repulsed the enemy till the bridge was broken under him: he then threw himself armed into the Tyber, swam across the river, and entered Rome in triumph.

HORATIUS (Quintus Flaccus), the most excellent of the Latin poets of the lyric and satirical kind, and the most judicious critic in the reign of Augustus, was the grandson of a freedman, and was born at Venusian 64 B. C. He had the best masters in Rome, after which he completed his education at Athens. Having taken up arms, he embraced the party of Brutus and Cassius, but left his shield at the battle of Philippi. Some time after, he gave himself up entirely to the study of polite literature and poetry. His talents soon made him known to Augustus and Mænas, who had a particular esteem for him, and loaded him with favours. Horace also contracted a strict friendship with Agrippa, Pollio, Virgil, and all the other great men of his time. He lived in tranquillity, and led a tranquil and agreeable life with his friends; but was subject to a delusion in his eyes. He died at the age of 57. There are still extant his Odes, Epistles, Satires, and the art of poetry; of which there have been a great number of editions. The best are those of the Louvre, in 1642, folio; of Paris, 1691, quarto; of Cambridge, 1699; and that with Bentley's emendations, printed at Cambridge in 1711.

HORD, in geography, is used for a company of wandering people, which have no settled habitation, but follow about, dwelling in wagons or under tents, to be ready to shift as soon as the herbage, fruit, and the present province is eaten bare; such are several tribes of the Tartars, particularly those who inhabit beyond the Volga, in the kingdom of Afrascan and Bulgaria.

A hord consists of 50 or 60 tents, ranged in a circle, and leaving an open place in the middle. The inhabitants in each hord usually form a military company or troop, the eldest whereof is commonly the captain, and depends on the general or prince of the whole nation.

HORDEUM, barley, in botany: A genus of the digynia order, belonging to the triandria class of plants; and in the natural method ranking under the 4th order, Graminae. The calyx is lateral, bivalved, uniflorous, and simple. The involucrum consists of six leaves, and contains three flowers. There are eight species; only one of which, sest. the murinum, or wall-barley-grafs, is a native of Britain. The native place of the vulgar, or common barley cultivated in the fields, is not known. For the culture, &c. of common barley see Agriculture, no 139—146.

HORDICALIA; or HORDICIDIA, in antiquity, a religious feast held among the Romans, wherein they sacrificed cattle big with young. This feast fell on April 15, on which day they sacrificed 30 cows with calf to the goddeses Tellus or the Earth; part of them were sacrificed in the temple of Jupiter. The calves taken out of their bellies were burnt to ashes at first by the pontifices, afterwards by the eldest of the vestal virgins.

HOREB, or OREB, a mountain of Arabia Petraea, contiguous to and on the south side of mount Sinai; the scene of many miraculous appearances.

HORESTI (Tacitus), a people of Britain, beyond Solway Frith. Now Eyredale (Camden).

HORITES, an ancient people, who at the beginning dwelt in the mountains of Seir beyond Jordan (Gen. xiv. 6.) They had princes, and were powerful, even before Edom made a conquest of their country, (ib. xxxvi. 20—30.) The Horites, the descendants of Seir, and the Edonites seem afterwards to have been confounded, and to have composed but one people (Deut. i. 2. xxxii. 2. and Judg. v. 4.) They dwelt in Arabia Petrea, and Arabia Deserta, to the south-east of the promised land. We find the Hebrew word erras Chorini, which in the book of Genesis is translated Horites, to be used in an appellative sense in several other passages of scripture, and to signify nobles,
HOREHOUND, Ballota, or Stachys, in botany. See Marrubium.

HORIZON, or Horison, in geography and astronomy, a great circle of the sphere, dividing the world into two parts or hemispheres; the one upper and visible, the other lower and hid. The word is pure Greek, ἡριζον, which literally signifies "bounding or terminating the sight," being formed of ἡριν, termino, define; "I bound, I limit;" whence it is also called finitor, finifter. See Astronomy and Geography.

The horizon is either rational or sensible. Rational, true, or achronomical Horizon, which is also called simply and absolutely the horizon, is a great circle, whose plane passes through the centre of the earth, and whose poles are the zenith and nadir. It divides the sphere into two equal parts or hemispheres.

Sensible, visible, apparent Horizon, is a lesser circle of the sphere, which divides the visible part of the sphere, from the invisible. Its poles, too, are the zenith and nadir: and consequently the sensible horizon is parallel to the rational; and it is cut at right angles, and into two equal parts, by the verticals. — The sensible horizon is divided into eastern and western. The eastern or active horizon, is that part of the horizon wherein the heavily bodies rise. The western or residual horizon, is that wherein the stars set. The altitude or elevation of any point of the sphere, is an arch of a vertical circle intercepted between it and the sensible horizon.

By sensible horizon is also frequently meant a circle; which determines the segment of the surface of the earth, over which the eye can reach; called also the physical horizon. In this sense we say, a spacious horizon, a narrow (or fancy) horizon.

HORIZONTAL, something that relates to the horizon, is taken in the horizon, or on a level with the horizon. — We say, a horizontal plane, horizontal line, &c.

Horizontal Dial, is that drawn on a parallel to the horizon: having its gnomon, or style, elevated according to the altitude of the pole of the place it is designed for. Horizontal dials are, of all others, the most simple and easy. The manner of describing them, see under the article Dial.

Horizontal Line, in perspective, is a right line drawn through the principal point, parallel to the horizon: or, it is the intersection of the horizontal and perspective planes. See Perspective.

Horizontal Plane, is that which is parallel to the horizon of the place, or nothing inclined thereto.

The barrels of levelling is to find whether two points be in the horizontal plane; or how much the deviation is. See Levelling.

Horizontal Plane, in perspective, is a plane parallel to the horizon, passing through the eye, and cutting the perspective plane at right angles.
Dyeing orainting Horn to imitate Tortoise-shell.

The horn to be dyed must be first prepared by the addition of several plates, scales, or other flat forms; and the following mixture prepared. Take of quick-time two parts, and of litharge one part; temper them together to the horns which were on her head firmly, as they say, in a liquid composed of quicklime steeped in rain water, strained, and to every pint an ounce of Brazil-wood added. In this decotion the bone, &c. is to be boiled till sufficiently red.

Dr. Lewis informs us that horns receive a deep thicker, and rectangular. It is generally found among fpecies of the toms, which if properly interpersed with mica, forming a compact stone.

Human Horns.

In Dr. Charles Leight's natural history of Lancashire, Cheshire, and the Peak in Derbyshire, England, is the print of a woman with two horns on her head. When she was 30 years of age an exuence grew upon her head like a wen, which continued 30 years, and then grew into two horns. After four years they caft them, and in their place grew two others. After four years she caft these also; and the horns which were on her head in 1691 (the time when the account was written) were then lost. Her picture and one of her horns are in Ashmole's museum.

In the university library at Edinburgh is a horn which was cut from the head of Elizabeth Love, in the 50th year of her age. It grew three inches above the ear, and was growing seven years.

Dyeing or oainting Horn to imitate Tortoise-shell. — The horn to be dyed must be first prepared by the addition of several plates, scales, or other flat forms; and the following mixture prepared. Take of quick-time two parts, and of litharge one part; temper them together to the horns which were on her head firmly, as they say, in a liquid composed of quicklime steeped in rain water, strained, and to every pint an ounce of Brazil-wood added. In this decotion the bone, &c. is to be boiled till sufficiently red.

Dr. Lewis informs us that horns receive a deep thicker, and rectangular. It is generally found among fpecies of the toms, which if properly interpersed with mica, forming a compact stone.

Human Horns.

In Dr. Charles Leight's natural history of Lancashire, Cheshire, and the Peak in Derbyshire, England, is the print of a woman with two horns on her head. When she was 30 years of age an exuence grew upon her head like a wen, which continued 30 years, and then grew into two horns. After four years they caft them, and in their place grew two others. After four years she caft these also; and the horns which were on her head in 1691 (the time when the account was written) were then lost. Her picture and one of her horns are in Ashmole's museum.

In the university library at Edinburgh is a horn which was cut from the head of Elizabeth Love, in the 50th year of her age. It grew three inches above the ear, and was growing seven years.

Dyeing or oainting Horn to imitate Tortoise-shell. — The horn to be dyed must be first prepared by the addition of several plates, scales, or other flat forms; and the following mixture prepared. Take of quick-time two parts, and of litharge one part; temper them together to the horns which were on her head firmly, as they say, in a liquid composed of quicklime steeped in rain water, strained, and to every pint an ounce of Brazil-wood added. In this decotion the bone, &c. is to be boiled till sufficiently red.
Horn

be taken to keep it clear, as it is apt to be clogged by a thin fluid that gradually oozes out and fills up the paffle. Some have practiced sawing off the horn; but, according to the best observations, it does not succeed better than boring. From the cates Dr. Tufts has seen, he is led to conclude that infections are in general unnecessary; that, when the distemper is early discovered, no more is required than a proper opening into the horn, keeping it sufficiently clear for the admission of fresh air, the removal of the compression, and the discharge of floating matter. But when the distemper has communicated its effect to the brain, so as to produce a high degree of inflammation, it is much to be doubted whether any method of cure will succeed.

Horn-Fish, Car-fish, or Sea-Needle. See Esox.

Horn-Work, in fortification, an outwork composed of two demi-bastions joined by a curtain. See Fortification.

Hornby, a town of Lancashire in England, seated on a branch of the river Lune, and beautified with a handsome parochial chapel. The ruins of a decayed castle are still to be seen here. W. Long, 2. 20. N. Lat. 54. 6.

Horn-Castle, a town of Lincolnshire in England. It had a castle, as the name imports; from the architecture of which, and the Roman coins that are sometimes dug up here, it is thought to have been a camp or station of the Romans. The town is now well built, and is almost surrounded with water. It is a city of 13 lordships. In these lordships there are several chapels for the convenience of the inhabitants, who are too great a distance from the mother-church, and pretty numerous. It has a market on Saturdays, and fairs in June and August.

Hordon, a town in Essex, in England. It stands near a rivulet, that at a small distance from hence falls into the Thames, which is there called the Hope. E. Long, 6. 30. N. Lat. 51. 20.

Horneck (Dr. Anthony), a learned and pious divine, was born at Bacharach, in the Lower Palatinate, in 1641. He studied divinity under Dr. Spanheim at Heidelberg; and afterwards coming to England, completed his studies at Oxford and became vicar of Allhallows in that city. In 1665, he removed into the family of the Duke of Albemarle; and was tutor to his grace’s son, then lord Torrington. The duke presented him to the rectory of Doulton in Devonshire, and procured for him a prebend in Exeter. He was afterwards chosen preacher of the Savoy. In 1693, he was collated to a prebend in Westminster, and the same year admitted to a prebend in the cathedral of Wells. He published, 1. The great law of consideration. 2. The happy ascetic. 3. Delight and judgment. 4. The fire of the alter. 5. The exercise of prayer. 6. The crucified Jesus. 7. Several sermons, and other works. He died in 1696, and was interred in Westminster Abbey, where a monument is erected to his memory.

Horners, those people whose business it is to prepare various utensils of the horns of cattle. The horners were a very ancient and considerable fraternity in the city of London some hundred years ago. In the reign of Edward II. they complained to parliament, that by foreigners buying up the horns in England, they were in danger of being ruined, and this business lost to the nation. For this reason was made the statute 6 Edw. IV. by which the sale of horns to foreigners (except such as the said horners refused) was prohibited; and the wardens had power granted them to search all the markets in London and 24 miles round, and to inspect Sturbridge and Ely fairs, to prevent such practices, and to purchase horns at stated prices. But on plausible pretences this law was repealed in the reign of James I. and thereupon the old evil revived. The horners again applied to parliament, and King Edward’s statute was renewed (excepting as to the inspection of the fairs), and still remains in force. The importation of unwrought horns into Britain is also prohibited. In 1750, there were exported to Holland 514,500 latten-leaves, beside powder flasks. There was formerly a duty of 20 shillings a thousand, under which in 1692 were exported 76,650; but in the reign of George I. this duty was taken off, and the and all other manufacturers made of horns may be exported free. The present company of horners were incorporated January 12, 1668; and consist of a master, two wardens, and nine alfrants, without livery or hall. They have a warehouse in Spitalfields, to which the horns are sent as brought from town and country markets, and thence regularly divided, the widows and orphans of deceased members having equal shares.

Hornet, in zoology, a species of wasp. See Vespæ.

Horning, in Scots law, a writing issuing from the signet, in his majesty’s name, at the instance of a creditor against his debtor, commanding him to pay or perform within a certain time, under pain of being declared rebel, and by a caption put in prison.

Hornius (George), professor of history at Leyden, was born in the Palatinate, and died at Leyden in 1670. He was a little maniacal towards the end of his life; which disorder was supposed to be occasioned by the loss of 6000 florins he had entrusted with a chemist at the Hague. His works are, 1. Historia Ecclesiastica ad ann. 1666. This has been well esteemed. 2. De Originiis Americanis, 1652, 8vo. 3. Geografia Vetus & Nova. 4. Orbis Politicus. He was a man of vast reading, rather than great parts.

Horsney, a town of Middlesex, five miles north of London. It is a long straggling place, situated in a low valley, but extremely pleasant, having the new river winding through it. Its church, of which Highgate is a hamlet, is supposed to be built with the stones that came from Lodge-Hill, the bishop of London’s hunting-leaf in his park here; it having been his mansion from the most ancient times. About a mile nearer this is a coppice of young trees, called horneys-wood, at the entrance of which is a public house, to which great numbers of persons resort from the city. This house being situated on the top of a hill, affords a delightful prospect of the neighbouring country.

Hornpipe, a common instrument of music in Wales,
HOR

HORSE.

Wales, consisting of a wooden pipe, with holes at flated distances, and a horn at each end; the one to collect the wind blown into it by the mouth, and the other to carry off the founds as modulated by the performer.

Hornpipe is also the name of an English air, probably derived from the above instrument. The measure of this air is triple time, with six crotchets in a bar; four of which are to be beat with the hand down and four up.

Horologium, or machine for measuring the hours; (see Chronometer).—Such are our clocks, watches, sundials, &c. See Clock, Watch, Dial, and Sundial.

Modern inventions, and gradual improvements, have given birth to some new terms that come properly under this head, and annexed new meanings to others totally different from what they had originally. All chronometers that announced the hour by striking on a bell, were called clocks; thus, we read of pocket-clocks, though nothing could seem more absurd than to suppose that a clock, according to the modern idea, should be carried in the pocket. In like manner, all clocks that did not strike the hour were called watches, or time-pieces; and the different parts of a striking clock were distinguished by the watch-part and the clock-part; the former meaning that part which measures the time, and the latter the part which proclaims the hours. In the report of Sir Isaac Newton to the house of commons, anno 1713, relative to the longitude, he states the difficulties of ascertaining the longitude by means of a watch: yet it is obvious, from several circumstances, that his remarks were directly to be underlaid of a time-piece regulated by a pendulum; for his objections are founded on the known properties of the pendulum, some of which differ essentially from the properties of the balance and spring. It is also to be remembered, that all the attempts of Huygens of finding the longitude were by means of pendulum clocks that did not strike the hours, and consequently, according to the language of the times, were called watches. At this time such machines for measuring time as are fixed in their places are called clocks; if they strike the hour; if they do not strike the hour, they are called time-pieces; and when contrived with more care, for a more accurate measure of time, they are called regulators. Some artificers of late have affected to call such watches as were contrived for astronomical and nautical observations by the name of time-pieces; probably to intimate that they possessed the advantages of those contrived with a pendulum.

Mr. John Harris first gave the name of time-keeper to his watch, for the performance of which he received from parliament the sum of L. 20,000. See Longitude.

For the account of the principles of this machine, see Time-keeper. And for the chief improvements that have been made for the more accurate measure of time, see Pallets, Pendulum, and Cepament.

Horoscope, in astrology, the degree or point of the heavens arising above the eastern point of the horizon at any given time when a predication is to be made of a future event; as, the fortune of a person then born, the success of a design then laid, the west and the verb espero, pelle, considero, 1 consider.

They were formerly so infatuated with horoscopes, that Albertus Magnus, Cardan, and others, are said to have had the temerity to draw that of Jesus Christ. Horoscope is also used for a scheme or figure of the twelve hours; i.e. the twelve signs of the zodiac, wherein is marked the disposition of the heavens for any given time. Thus we say, to draw a horoscope, contruct a horoscope, &c. We call it, more particularly, calculating a nativity, when the life and fortune of a person is the subject of the predication; for they draw horoscopes of cities, great enterprises, &c. See House.

Horoscope. See Divination, 2.

Horrea, in Roman antiquity, were public magazines of corn and salt meat, out of which the soldiers were furnished on their march in the military roads of the empire. Horrea was also the name which they gave to their granaries.

Horrox (Jeremiah), an eminent English astronomer in the 17th century, was born at Texteth near Liverpool in Lancashire in 1619. He died, to the great loss of that science and of the world, in the 22d year of his age, after he had just finished his Nauus in sole nubia; which, with some other works, were published by Dr Wallis, in quarto.

Horror, strictly signifies such an excess of fear as makes a person tremble. See Fear, Fright, and Terror. In medicine, it denotes a shivering and shaking of the whole body, coming by fits. It is common at the beginning of all fevers, but is particularly remarkable in those of the intermittent kind.

Horror of a Vacuum, was an imaginary principle among the ancient philosophers, to which they ascribed the ascent of water in pumps, and other similar phenomena, which are now known to be occasioned by the weight of the air.

Horse, in zoology. See the article Equus.

Horses were very rare in Judæa till Solomon's time. Before him we find no horsemen mentioned in the armies of Israel. David having won a great battle against Hadadezer king of Shobah (2 Sam. viii. 4. 5.) took 1700 horses, and lamed all belonging to the chariots of war, reserving only 100 chariots. The judges and princes of Israel used generally to ride on mules or asses. After David's time, horses were more common in the country of Judah, &c. Solomon is the first king of Judah who had a great number of horses, and he kept them rather for pomp than for war; for we do not read that he made any military expeditions. He had, says the scripture (1 Kings iv. 16.) 40,000 stalls of horses for his chariots, and 12,000 horsemen distributed in his fortified places (1 Kings x. 26.) He had his horses from Egypt (ibid. ver. 28, 29.) and there was not a fet which did not cost him more than 600 shekels, which made of our money about 90l. sterling.

Moses had forbidden the king of the Hebrews to keep a great number of horses (Deut. xvii. 16.); left at any time he should be inclined to carry the people back into Egypt. We read in the second book of Kings (xxiii. 17.) that Josiah took away the horses which the kings of Judah his predecessors had consecrated to the sun. We know
Hor. know the sun was worshipped over all the east, and that the horse, the swiftfeet of tame beasts, was consecrated to this deity, who was represented as riding in a chariot drawn by the most beautiful and swiftfeet horses in the world, and performing every day his journey from east to west, in order to communicate his light to mankind. Xenophon describes a solemn sacrifice of horses, which was made with ceremony to the sun; they were all the finest breeds, and were led with a white chariot, crowned, and consecrated to the same god. We may believe that the horses which Josiah removed out of the court of the temple, were appointed for the like sacrifices. The rabbins inform us, that those horses were every morning put to the chariots dedicated to the sun, whereof there is mention made in the same book; and that the king, or some of his officers, got up and rode to meet the sun in its rising, as far as from the eastern gate of the temple to the faburbs of Jerusalem. Others are of opinion, that the horses mentioned in the book of kings were of wood, stone, or metal, erected in the temple in honour of the sun: Others, that they were horses which none were permitted to ride or listen to the yoke, but were free, and left to themselves, like those which Julius Caesar let loose and set at liberty after his passage of the Rubicon.

Horses were used both amongst the Greeks and Romans in war, but were not originally numerous; for as each horsemann provided his own horse, few would be able to bear the expense. Horses for a while were of wood, stone, or metal, erected in the temple in honour of the sun: Others, that they were horses which none were permitted to ride or listen to the yoke, but were free, and left to themselves, like those which Julius Caesar let loose and set at liberty after his passage of the Rubicon.

Management of a Horse upon and after a Journey. See that his shoes be not too strait, or press his feet, but be exactly shaped; and let him be shod some days before you begin a journey, that they may be severely pressed to his foot. Observe that he is furnished with a bitt proper for him, and by no means too heavy, which may incline him to carry low, or to rest upon the hand when he grows weary, which horsemens call making use of his fifth leg.

The mouth of the bitt should rest upon his bars about half a finger's breadth from his tusks, so as not to make him crumble his lips; the curb should rest in the hollow of his beard a little above the chin; and if it gall him, you must defend the place with a piece of bulk or other soft leather.

Take notice that the faddle do not rest upon his withers, reins, or back-bone, and that one part of it do not press his back more than another.

Some riders gallo a horse's sides below the faddle with their stirrup-gallers, especially if he be lean; to hinder it, you should fix leather straps between the points of the fore and hind-bows of the faddle, and make the stirrup leather pass over them.

Begin your journey with short marches, especially if your horse has not been exercised for a long time: hinder him to flake as often as you find him inclined; and not only fo, but invite him to it; but do not excite your mares to flake, because their vigour will be thereby diminished.

It is advisable to ride very softly; for a quarter or half an hour before you arrive at the inn, that the horse not being too warm, nor out of breath, when put into the stable, you may unbridle him: but if your business obliges you to put on harsly, you must then (the weather being warm,) let him be walked in a man's hand, that he may cool by degrees; otherwise, if it be very cold, let him be covered with cloths, and walked up and down in some place free from wind; but in case you have not the convenience of a sheltered walk, flake him forthwith, and let his whole body be rubbed and dried with straw.

Although some people will have their horses legs rubbed down with straw as soon as they are brought into the stable, thinking to supple them by that means; yet it is one of the greatest errors that can be committed, and produces no other effects than to draw down into the legs those humours that are always stirred up by the fatigue of the journey: not that the rubbing of horse's legs is to be disallowed; on the contrary, we highly approve of it, only would not have it done at their first arrival, but when they are perfectly cooled.

Being come to your inn, as soon as your horse is partly dried, and eafies to beat in the flanks, let him be unbridled, his bit washed, cleansed, and wiped, and let him eat his hay at pleasure.

If your horse be very dry, and you have not given him water on the road, give him oats in good mild ale.

The dust and fand will sometimes fio dry the tongues and mouths of horses, that they lose their appetites: in such cafe, give them bran well moistened with water to cool and refresh their mouths; or wash their mouths and tongues with a wet sponge, to oblige them to eat.

The foregoing directions are to be observed after moderate riding; but if you have rode excessively hard, unbridle your horse, and scrape off the sweat with a sweating knife, or scraper, holding it between both hands, and going always with the hair; then rub his head and ears with a large hair-cloth, wipe him also between the forelegs and hind legs; in the mean while, his body should be rubbed all over with straw, especially under his belly and beneath the faddle, till he is thoroughly dry.

That done, let on the faddle again, cover him; and if you have a warm place, let him be gently led up and down in it, for a quarter of an hour; but if not, let him dry where he stands.

Or you may unbridle him immediately; scrape off the sweat; let the officer take a little vinegar in his mouth, and squirt it into the horfe's; then rub his head, between the fore and hind legs, and his whole body, till he is pretty dry: let him not drink till thoroughly cool and has eaten a few oats; for many, by drinking too soon, have been spoiled. Set the faddle in the sun or by a fire, in order to dry the panels.

When horses are arrived at an inn, a man should, before they are unbridled, lift up their feet, to see whether they want any of their shoes, or if those they have
HOR

[660]

HOR

have do not rest upon their sides; afterwards he should pick and clear them of the earth and gravel, which may be got between their shoes and soles. If you water them abroad, upon their return from the river caufe their feet to be stopped with cow-dung, which will ease the pain therein; and if it be in the evening, let the dung continue in their feet all night, to keep them soft and in good condition: but if your horses have been in the fields, it will be requisite to anoint the fore-feet at the on-setting of the hoofs, with butter, oil, or hog’s grease, before you water him in the morning, and in dry weather they should be also greased at noon.

Many horses, as soon as unbridled, instead of eating, lay themselves down to rest, by reason of the great pain they have in their feet, so that a man is apt to think they sick; but if he looks to their eyes, he will find they are lively and good; and if he offers them meat as they are lying, they will eat it very willingly; yet if he handles their feet, he will find them extremely hot, which discovers their suffering in that part. You must therefore see if their shoes do not rest upon their soles, which is somewhat difficult to be certainly known without unhoeing them; but if you take off their shoes, then look to the inside of them, and you may perceive that those parts which rest upon the soles are more smooth and shining than the others: in this case you are to pare their soles in those parts, and fix on their shoes again, anointing the hoofs, and stopping the soles with scalding hot black pitch or tar.

After a long day’s journey, at night feel your horse’s back, if he be pinched, galled, or swelled (if you do not immediately discern it, perhaps you may after supper) there is nothing better than to rub it with good brandy and the white of an egg. If the galls are between the legs, use the same remedy; but if the offser rubs him well between the legs, he will seldom be galled in that part.

In order to preserve horses after travel, take these few useful instructions. When you are arrived from a journey, immediately draw the two heel-nails of the fore-feet; and, if it be a large horse, then four: two or three days after, you may blood him in the neck, and feed him for 10 or 12 days only with wet bran, without giving him any oats; but keep him well littered.

The reason why you are to draw the heel-nails, is because the heels are apt to swell, and if they are not thus eased, the horses would press and straiten them too much; it is also advisable to stop them with cow-dung for a while; but do not take the shoes off, nor pare the feet, because the humour is drawn down by that means.

The following bath will be very serviceable for preserving your horse’s legs. Take the dung of a cow or ox, and make it thin with vinegar, so as to be of the consistence of thick broth; and having added a handful of small lard, rub his fore-legs from the knees, and the hind-legs from the gambrels, fasting them well with and against the hair, that the remedy may sink in and affect to those parts, that they may be all covered with the lard; then lead your horse till morning, not wetting his legs, but giving him his water that evening in a pail; next morning lead him to the river, or wash his legs in well-water, which is very good, and will keep them from swelling.

Those persons, who, to recover their horses feet, make a hole in them, which they fill with moistened cow-dung, and keep it in their fore-feet during the space of a month, do very ill; because, though the continual moisture that issues from the dung occasions the growing of the hoof, yet it dries and shrinks it excessively when out of that place, that it splits and breaks like glass, and the foot immediately straitens. For it is certain, that cow-dung (contrary to the opinion of many people) spoils a horse’s hoof: it does indeed moisten the soles; but it dries up the hoof, which is of a different nature from it. In order, therefore, to recover a horse’s feet, instead of cow-dung, fill a hole with blue wet clay, and make the keep his fore-feet in it for a month.

Most horses that are fatigued, over-rid, and made lean by long journeys, have their flanks altered without being purfy, especially vigorous horses that have worked too violently.

There is no better method to recover them, than to give each of them in the morning half a pound of bran very well mingled with scalded bran; and when they readily eat the half pound, give them the next time a whole one, and afterwards two pounds, every day continuing this course till your horses are empty, and purge kindly with it; but as soon as you perceive that their purging ceases, forbear to give them any more honey.

You may administer powder of liquorice in the scalded bran for a considerable time; and to cool their blood, it will not be improper to let them have three or four pitchers.

In case the horse be very lean, it is expedient to give him some wet bran, over and above his proportion of oats; and grats is also extraordinary beneficial, if he be not purfy.

It it be a mare, put her to a horse; and if she never had a foal before, it will enlarge her belly.

Sometimes excessive feeding may do horses more harm than good, by rendering them subject to the farcy. You should therefore be cautious in giving them too great a quantity at a time, and take a little blood from them now and then.

When a horse begins to drink water heartily, it is a certain sign that he will recover in a short time. As to the method of giving him water during a journey, observe the following rules:

All the while you are upon a journey, let your horse drink of the first good water you come to, after seven o’clock in the morning if it be in summer time, and after nine or ten in winter.

That is accounted good water which is neither too quick and piercing, nor too muddy and stinking.

This is to be done, unless you would have him gallop a long time after drinking; for if so, you must forbear.

Though it is the custom of England to run and gallop horses after drinking, which we call watering-courses, to bring them (as they say) into wind; yet says M. de Solleyjet, it is the most pernicious practice that can be imagined for horses, by which many are rendered purfy.

While a horse is drinking, draw up his head five or six times, making him move a little between every draught.
draught; and notwithstanding he be warm, and sweat very much, yet if he is not quite out of breath, and you have still four or five miles to ride, he will be better after drinking a little, than if he had drank none at all: it is true, indeed, that if the horse is very warm, you should, at coming out of the water, redouble your pace, to make him go at a gentle trot, to warm the water in his belly.

You ought to let him drink after this manner during the whole time of your journey; because, if when you happen to bate he be hot or sweaty, you must not let him drink for a long time, as it would endanger his life; and when his bridle is taken off, his excessive thirst will hinder him from eating, so that he will not offer to touch his meat for an hour or two, which perhaps your occasions will not allow you for a baiting time, and not to have any food will render him unfit for travel.

If you meet with any ford before you come to your inn, the days safe through it two or three times, but not up to the belly; this will only cleanse his legs; but the coldness of the water will bind up the humours, and prevent them from descending.

If your horse has been very warm, and you have not had the convenience of waterling upon him the road, he will, when unbridled, eat very little; therefore he should have his oats given him washed in ale or beer, or only some of them, if you intend to feed him again after he has drank.

Some are of opinion, that horses are often spoiled by giving them oats before their water; because they say the water makes the oats pass too soon, and out of the stomach undigested. But M. de Sollytel affirms, that though it be the common custom not to do it till after, yet it is proper to feed with oats both before and after, especially if the horse be warm, and has been hard rode; for they will be a great deal the better for it, and in no danger of becoming sick.

Breading of Horses. When the foal is chosen, and all the mares intended for him are collected together, there must be another fine-horse, to discover which of the mares are in heat; and, at the same time, contribute to enflame them. All the mares are to be brought successively to this fine-horse; which should also be inflamed, and suffered frequently to neigh. As he is for leaping every one, such as are not in heat keep him off, whilst thofe which are to suffer him to approach them. But instead of being allowed to satisfy his impulse, he must be led away, and the real stallion substitute in his stead. This trial is necessary for ascertaining the true time of the mare's heat, especially of thofe which have not yet had a colt; for with regard to such as have recently foaled, the heat usually begins nine days after their delivery; and on that very day they may be led to the stallion to be covered; and nine days after, by the experiment abovementioned, it may be known whether they are still in heat. If they are, they must be covered a second time; and thus successively every ninth day while their heat continues: for when they are impregnated, their heat abates, and in a few days ceases entirely.

But that every thing may be done easily and conveniently, and at the same time with success and advantage, great attention, expense, and precaution are requisite. The fluid must be fixed in a good foil, and in a suitable place, proportioned to the number of mares and stallions intended to be used. This spot must be divided into several parts; inclosed with rails or ditches well fenced; in the part where the pasture is the richest, the mares in fold, and those with colts by their sides, are to be kept. Those which are not impregnated, or have not yet been covered, are to be separated, and kept with the fillies in another close, where the pasture is less rich, that they may not grow too fat, which would obstruct the progress of generation. Lastly, the young foal-cots or geldings, are to be kept in the driest part of the fields, and where the ground is most unequal; that by running over the uneven surface, they may acquire a freedom in the motion of their legs and shoulders. This close, where the foal colts are kept, must be very carefully separated from the others, left the young horses break their bounds, and enervate themselves with the mares. If the tract be so large as to allow of dividing each of these closes into two parts, put the colts and horses into them alternately, the pasture will last much longer than if continually eaten by horses; the ox improving the fertility, whereas the horse lefisens it. In each of these closes should be a pond; standing water being better than running, which often grieves them: and if there are any trees in the ground, they should be left standing, their shade being very agreeable to the horses in great heats; but all stumps should be grubbed up, and all holes levelled, to prevent accidents. In these pastures your horses should feed during the summer; but in the winter the mares should be kept in the stable and fed with hay. The colts also should be houfed, and never suffered to feed abroad in winter, except in very fine weather. Stallions that stand in the stable should be fed more with straw than hay; and moderately exercised till covering time, which generally lasts from the beginning of April to the end of June. But during this season they should have no other exercise, and be plentifully fed, but with the same food as usual. Before the stallion is brought to the mare, he should be dressed, as that will greatly increase his ardour. The mare must also be curried, and have no shoes on her hind feet, for some of them beingticklish, and will kick the stallion. A person holds the mare by the halter, and two others lead the stallion by long reins; when he is in a proper situation, another attendant carefully directs the yard, pulling aside the mare's tail, as a single hair might hurt him dangerously. It sometimes happens that the stallion does not complete the work of generation, coming from the mare without making any injection: it should therefore be attentively observed, whether, in the last moments of the copulation, the dock of the stallion's tail has a vibrating motion; for such a motion always accompanies the emission of the feminal lymph. If he has performed the act, he must on no consideration be suffered to repeat it; but he must be led away directly to the stable, and there kept two days. For, however able a good stallion may be of covering every day during the three months, it is much better to let him be led to a mare only every other day: his produce will be greater, and he himself left exhausted. During the first seven days, let four different mares be successively brought to him; and the ninth day let the first be again brought, and so successively while they continue in heat; but as
soon as the heat of any one is over, a fresh mare is to be put in her place, and covered in her turn every nine days; and as several retain even at the first, second, or third time, it is computed that a stallion, by such management, may, during the three months, cover 15 or 18 mares, and beget 10 or 12 colts. These animals have a very large quantity of the feminal lymph; so that a considerable portion of it is lost during the emission. In the mares likewise an emission, or rather differentiation of the feminal lymph, during the whole time they are horning; ejecting a viscid whitish lymph, called the heats, which cease on conception. This ischor the Greeks called hippomaneis; and pretended that philtrums might be made of it, one remarkable effect of which was, to render a horse frantic with lust. This hippomaneis is very different from that found in the fcundinies of the foal, which M. Daubenton first discovered, and has so accurately described its nature, origin, and situation. The ejection of this liquor is the most certain sign of the mare's heat; but it is also known by the inflation of the lower part of the vulva, by her frequent neighings, and other attempts to get the horse. If a mare be covered, nothing more is requisite than to lead her away to the field. The first foal of a mare is never so strongly formed as the succeeding; so that care should be taken to procure for her, the first time, a larger stallion, that the defect of the growth may be compensated by the largeness of the size. Particular regard should also be had to the difference or congruity of the fashion of the stallion and the mare, in order to correct the faults of the one by the perfections of the other; especially never to make any disproportionate copulations, as of a small horse with a large mare, or a large horse with a small mare; as the produce of such copulation would be small, or badly proportioned. It is by gradations that the produce of a mare a little too clumsy, a well-made horse and finely shaped; to a small mare, a horse a little higher; to a mare which is faulty in her fore-hand, a horse with an elegant head and noble chest, &c.

It has been observed, that horses fed in dry and light grounds, produce temperate, swift, and vigorous foals, with muscular legs and a hard hoof; while the same breed in marshes and moist pastures have produced foals with a large heavy head, a thick carcass, clumsy legs, bad hoofs, and broad feet. These differences proceed from the air and food, which is easily understood; but what is more difficult to be accounted for, and still more essential than what we have hitherto observed, is, to be continually crossing the breed to prevent a degeneracy. In coupling of horses, the colour and size should be suited to each other, the shape contraried, and the breed crossed by an opposition of climates: but horses and mares foaled in the same fluid should never be joined. These are essential articles; but there are others which should by no means be neglected: as that no short-docked mares be suffered in a stall, because from their being unable to keep off the flies, they are much more tormented by them than any other; that foals more especially and their continual agitations from the flings of these insects, occasions a diminution in the quantity of their milk, and has a great influence on the constitution and size of the colt, which will be vigorous in proportion as its dam is a good nurse. Care must also be taken, that the stud mares be such as have been always brought up in pastures, and never over-worked. Mares which have always been brought up in the flable on dry food, and afterwards turned to grafs, do not breed at first: some time is required for accustoming them to this new aliment.

Though the usual season for the heat of mares be from the beginning of April to the end of June, yet it is not uncommon to find some among a large number that are in heat before that time: but it is advisable to let this heat pass over without giving them to the stallion, because they would foal in winter; and the colts, besides the inclemency of the season, would have bad milk for their nourishment. Again, if the mares are not in heat till after the end of June, they should not be covered that season; because the colts being foaled in summer, have not time for acquiring strength sufficient to repel the injuries of the following winter.

Many, instead of bringing the stallion to the mare, turn him loose into the close, where all the mares are brought together; and there leave him too choofe such as will stand to him. This is a very advantageous method for the mares: they will always take horse more certainly than in the other; but the stallion, in six weeks, will do himself more damage than in several years by moderate exercife, conducted in the manner we have already mentioned.

When the mares are pregnant, and their belly begins to swell, they must be separated from those that are not, lest they hurt them. They usually go 11 months and some days, and foal standing; whereas most other quadrupeds lie down. Those that cannot foal without great difficulty, must be assisted; the foal must be placed in a proper situation; and sometimes, if dead, drawn out with cords. The head of the colt usually presents itself first, as in all other animals: at its coming out of the matrix, it breaks the scundinies or integuments that enclose it, which is accompanied with a great flux of the lymph contained in them; and at the same time one or more solid lumps are discharged, formed by the sediment of the inflamed liquor of the amnion. This lump, which the ancients called the hippomaneis of the colt, is so far from being, as they imagined, a mass of flesh adhering to the head of the colt, that it is separated from it by a membrane called amnion. As soon as the colt is fallen, the mare licks it, but without touching the hippomaneis; which points out another error of the ancients, who affirmed that the instantly devours it.

The general custom is to have a mare covered nine days after her foaling, that no time may be lost; but it is certain, that the mare having, by this means, both her present and future foal to nourish, her ability is divided, and she cannot supply both so largely as she might one only. It would therefore be better, in order to have excellent horses, to let the mares be covered only every other year; they would thus stand longer, and the foals would be very vigorous. In common farms, it is so far from being true that all mares which have been covered bring colts every year, that it is considered
Guards. See Guards.

Horse.-as a fortunate circumstance if half or at most two thirds of them foal.

Mares when pregnant, will admit of copulation; but it is never attended with any supernumeration. They usually breed till they are 14 or 15 years of age; and the most vigorous till they are above 18. Stallions, when well managed, will engender till the age of 20, and even beyond; but it must be observed, that such horses as are fooneft made stallions, are also the fooneft incapable of generation: thus the large horses, which acquire strength sooner than the slender, and are therefore often used as stallions as soon as they are four years old, are incapable of generation before they are sixteen.

Gelding of Horses. See Gelding.

Draft-Horses. See Colt.

Draft-Horses, in farming, a sort of coarse made horse destined for the service of the cart or plough. In the choice of these horses for what is called the flow draught, they are to be chosen of an ordinary height; for otherwise, when put into the cart, one draws unequally with the other. The draught-horse should be large bodied and strong joined, and of such a disposition, as rather to be too dull than too brisk, and to remain the whip than to draw more than is needful. Mares are the best for this use for the farmer, as they will keep cheap, and not only do the work, but be kept breeding, and give a yearly increase of a foal. They should have a good head, neck, breast, and shoulders; for the rest of the frame, it is not of much consequence. Only, for breeding, the mare should have a large belly; for the more room a foal has in the dam, the better proportioned it will be. Draft-horses should be always kept to that employ. Some put them to the saddle on occasion, but it does them great harm, alters their pace, and spoils them for labour. The draught horse ought to have a large broad head, because horses of this shaped head are less subject than others to diseases of the eyes. The ears should be small, straight and upright; the nostrils large and open, that he may breathe well. A horse with a full and bold eye always promises well. On the other hand, a sunk eye and an elevated brow are bad as rather to be too dull than too brisk, and to remain the whip than to draw more than is needful. Mares are the best for this use for the farmer, as they will keep cheap, and not only do the work, but be kept breeding, and give a yearly increase of a foal. They should have a good head, neck, breast, and shoulders; for the rest of the frame, it is not of much consequence. Only, for breeding, the mare should have a large belly; for the more room a foal has in the dam, the better proportioned it will be. Draft-horses should be always kept to that employ. Some put them to the saddle on occasion, but it does them great harm, alters their pace, and spoils them for labour. The draught horse ought to have a large broad head, because horses of this shaped head are less subject than others to diseases of the eyes. The ears should be small, straight and upright; the nostrils large and open, that he may breathe well. A horse with a full and bold eye always promises well. On the other hand, a sunk eye and an elevated brow are bad.

In the evening, when the labouring horse has drunk his water, he should have his oats given him, and these should be carefully sifted, and the manger dusted first. It is a common practice, as soon as a horse is come in from his work, to rub down his legs with a hard whip of hay; but the best judges of horses absolutely condemn this, and observe, that rubbing of the legs after hard labour brings down humours into them, and makes them stiff.

The rubbing itself is wholesome, but the doing it when the creature is hot is the milchief; while a horse in a sweat it is a great relief and refreshment to him.

Horses take a moderate computation of 70 lb. each, will amount to 190 lb. Nothing is so essential to the health of their serviceable creatures as cleanliness; if they are fed ever so well, and not kept clean, they will be subject to numerous diseases.

The servant who has the care of them ought to be up very early, and to clean the tanks and mangers from all filth. The carrying of them ought to be carefully performed every morning, but not in the stable, for the dust to fall upon the other horses, as it is too often done. After the horses are dusted, they should daily twist a whip of straw hard up, and wetting it in water, rub the legs, shoulders and body with it. Many of the diseases of draught-horses, which are not owing to nailing, are owing to bad water; such as are too raw, too muddy, or too cold, being all improper. If there be any running stream in the neighbourhood, they should always be led to that to water every day in summer, but in winter, well-water is warmest, and is better for them. If there be a necessity of giving them well-water in summer, it must be drawn up some hours before the time, and exposed to the fun-beams in tubs or troughs; marish-water or that of lowland ditches is worst of all. When the labouring horse has drank his water, he should have his oats given him, and these should be carefully sifted, and the manger dusted first. It is a common practice, as soon as a horse is come in from his work, to rub down his legs with a hard whip of hay; but the best judges of horses absolutely condemn this, and observe, that rubbing of the legs after hard labour brings down humours into them, and makes them stiff.

The rubbing itself is wholesome, but the doing it when the creature is hot is the mischief; while a horse in a sweat it is a great relief and refreshment to him.

In the evening, when the labour of the day is over, the first thing to be done is to examine the feet, and see if any thing is amiss about the shoes, and what earth or gravel is lodged in the foot, between the shoe and the sole, is to be picked out and some fresh cow dung put in its place, which will cool and refresh the part.

A very material thing for the preservation of all forts of cattle, but of none so much as draught-horses, is fresh and clean litter.
Horse: Horsemanship.

Horse, or Equus, is a species of mammal belonging to the family Equidae. Horses are known for their strength, versatility, and intelligence. They have been domesticated for thousands of years and have played a significant role in human history, serving as transport, work animals, and in various sports and recreational activities. Horses have a long lifespan and require proper care and management to maintain their health and well-being. This includes feeding, grooming, and exercising, as well as handling medical and dental care. Horses are also part of cultural and religious practices in many societies around the world. They are known for their ability to adapt to different environments and tasks, making them valuable companions and work animals. Proper care and training are essential to ensure the safety and happiness of horses and their interaction with humans.

Horse: Anatomy and Physiology.

The horse is a large, quadrupedal, warm-blooded animal characterized by a long neck, a small head, and a strong, muscular body. Horses are adapted to a variety of environments and have evolved a number of physical traits that enable them to perform tasks such as pulling carts, racing, or working in agriculture. These traits include a long, flexible neck, powerful limbs, and a tough, resilient coat. Horses also have a complex digestive system that allows them to feed on a wide variety of vegetation.

Horse: Breeding.

Horses are commonly bred through selective mating to improve certain characteristics, such as size, color, or athleticism. Breeding programs involve the use of registered studbooks to maintain pedigrees and trace ancestry. Stallions and mares are mated to produce foals, which are then raised in specialized environments. The age and quality of the parents determine the potential outcome of the offspring, and breeders must carefully consider these factors when selecting partners for breeding.

Horse: Diseases.

Diseases can affect horses in a variety of ways, ranging from minor ailments to life-threatening conditions. Some common diseases in horses include respiratory infections, enteric disorders, and orthopedic issues. Early detection and treatment are crucial to prevent complications and ensure the health and well-being of the animal.

Horse: Racing.

Horse racing is a popular spectator sport that involves horses competing against each other in races. Races can be held on various types of tracks, such as turf or dirt, and can involve different distances, such as 5-furlongs or 1-mile. Horses are trained from a young age for racing and are often bred specifically for this purpose. The racing industry involves a complex system of stabling, training, and racing, and it is subject to strict regulations to ensure the safety and welfare of the animals.

Horse: Racing Terms.

In horse racing, there are a variety of terms that are used to describe the events and the animals involved. Some common terms include: finisher, horse, jockey, rider, apprentice, and turn. These terms are used in the context of the race, and they help to describe the location and timing of events.

Horse: Racing Movies.

Racing movies are a form of entertainment that involve the use of horses in either a fictional or historical context. These movies often feature stunning cinematography and dramatic storylines, and they may be either live-action or animated. Racing movies can be enjoyed by horse lovers and racing enthusiasts, as well as by those who are interested in the history of horse racing.

Horse: Racing History.

Horse racing has a long and rich history, dating back centuries. The sport has been enjoyed in various cultures, and it has played a significant role in the development of society. Racing began as a means of transportation and recreation, but it has since evolved into a competitive sport.

Horse: Racing Safety.

Safety is a key concern in horse racing, and it is essential to ensure the well-being of the animals and the participants involved. Racing organizations have implemented numerous safety measures, such as track inspections, medical checks, and training programs, to prevent injuries and fatalities.

Horse: Racing Rules.

Racing rules are a set of guidelines that govern the conduct of horse races. These rules are designed to ensure the safety of the horses and the participants, as well as to maintain the integrity of the sport. Racing rules cover a wide range of topics, such as the conditions of the race, the equipment used, and the procedures for entry and disqualification.

Horse: Racing Types.

There are several types of races that can be held in horse racing, each with its own unique characteristics. These include: flat races, steeplechases, hurdle races, and barrier races. Each type of race requires a different set of skills and strategies, and it offers a unique challenge to both the horses and their riders.

Horse: Racing Equipment.

Racing equipment includes the gear and apparatus used on the horse during a race. This includes the saddle, bridle, and other accessories that are essential for the horse's comfort and performance. Racing equipment is designed to be lightweight and durable, and it is carefully maintained to ensure its safety and effectiveness.

Horse: Racing Strategies.

Racing strategies are a set of tactics used by the jockey to gain an advantage in a race. These strategies may involve changing the horse's position on the track, altering the pace of the race, or using specific techniques to improve the horse's performance.

Horse: Racing Milestones.

Racing milestones are significant achievements in the context of horse racing. These milestones may include setting new records, winning important races, or achieving a high ranking in a race series.

Horse: Racing Traditions.

Racing traditions are a set of customs and practices that are associated with horse racing. These traditions may include the use of specific equipment, the wearing of traditional clothing, or the adherence to certain rules and protocols. Racing traditions are an important part of the sport's culture and history.

Horse: Racing Careers.

Racing careers involve the training, management, and racing of horses. This can include a variety of roles, such as trainer, groom, or racing executive. Racing careers require a deep understanding of the sport, as well as a commitment to the welfare and success of the animals involved.

Horse: Racing Organizations.

Racing organizations are a group of people or entities that are involved in the sport of horse racing. These organizations may include racing clubs, breeding associations, or racing boards. Racing organizations are essential to the development and promotion of the sport, and they work to ensure the safety and well-being of the horses and the participants involved.
which purports no other kinds of dung will do so well. Horse dung ferments the strongest; and if mixed with litter and sea coal ashes in a due proportion, will continue its heat much longer than any other kind of dung whatsoever: and afterwards, when rotted, becomes an excellent manure for most sorts of land; more especially for such as are of a cold nature. For stiff clayey land, horse-dung mixed with sea-coal ashes, and the cleansing of streets, will cause the parts to separate much sooner than any other compost: so that where it can be obtained in plenty, it is always to be recommended for such lands. See Dung.

Animated Horse-Hairs, a term used to express a sort of long and slender water-worm, of a blackish colour, and so much resembling a horse-hair, that it is generally by the vulgar supposed to be the hair alien from a horse's mane into the water as he drinks, and there animated by some strange power. Dr Lister has at large confuted this absurd opinion in the Philosophical Transactions.

Horse-Hair Worms. See Amphipoda.

Horse-Flying Husbandry. See Agriculture, No. 218.

HORSEMANKSHIP; Or, The Art of Riding, and of Training and Managing, Horses.

SECT. I. The Method of preparing Horses to be mounted.

Breaking of Horses.

THOUGH all horses are generally bought at an age when they have already been backed, they should be begun and prepared for the rider with the same care, gentleness, and caution, as if they had never been backed or handled, in order to prevent accidents, which might else arise from stiffening or other causes: and as it is proper that they should be taught the figure of the ground they are to go upon when forwards, and yet be disposed to their business of flying, which might otherwise happen from overmuch work, than by any other causes: and as it is proper that they should be disentangled, which might else arise from the utmost care in their management, by the utmost care in their management; and that by very contrary effects; sometimes it drives them into vice, madness, and despair, and often disgusts and totally dispirits them.

The first obedience required in a horse is going forwards; till he perform this duty freely, never even think of making him rein back, which would inevitably make him relish: so soon as he goes forwards readily, stop and care for him. You must remember in this, and likewise in every other exercise, to use him to go equally well to the right and left; and when he obeys, care for him and dismiss him immediately. If a horse that is very young takes fright and stands still, lead on another horse before him, which probably will induce him instantly to follow. Put a snaffle in his mouth; and when he goes freely, saddle him, girding him at first very loose. Let the cord, which you hold, be long and loose; but not so much so as to endanger the horse's entangling his legs in it. It must be observed, that small circles, in the beginning, would constrain the horse too much, and put him upon defending himself. No bend must be required at first: never suffer him to gallop fast; but whenever he attempts it, stop him without delay, and then let him off freely. If he gallops of his own accord, and truly, permit him to continue it; but if he does it not voluntarily, do not demand it of him at first. Should he fly and jump, shake the cord gently upon his nose without jerking it, and he will fall into his trot again. If he stands still, plunge, or rears, let the man who holds the whip make a noise with it; but never touch him till it be absolutely necessary to make him go on. When you change hands, stop and care for him, and entice him by fair means to come up to you: for by preventing yourself, as some do, on a sudden before horses, and frightening them to the other side, you run a great risk of giving them a frayness. If he keeps his head too low, shake the caressor to make him raise it; and in whatever the horse does, whether he walks, trots, or gallops, let it be a constant rule, that the motion be determined, and really such as is intended, without the least hussling, pacing, or any other irregular gait.

SECT. II. The Method of placing the Rider and rendering him firm on Horseback, with some occasional Instructions for Riders and the Horses.

It is necessary that the greatest attention, and the same gentleness that is used in teaching the horses, be observed likewise in teaching the rider, especially at the beginning. Every method and art must be practised to create and preserve, both in man and horse, all possible feeling and sensibility; contrary to the usage of most riding-masters, who seem industriously to labour at abolishing these principles both in the one and the other. As so many essential points depend upon the manner in which a man is at first placed on horseback, it ought to be considered and attended to with the strictest care and exactness. The absurdity of putting a man, who perhaps has never before been upon a horse, on a rough trotting horse, on which he is obliged to flick with all the force of his arms and legs, is too obvious to need mentioning. This rough work, all at once, is plainly as detrimental at first, as it is excellent afterwards in proper time. No man can be either well or firmly seated on horseback, unless he be master of the balance of his body, quite unconstrained, with a full possession of himself, and at his ease; none of which requires he can enjoy, if his attention be otherwise engaged; as it must wholly be in a raw, unfupplied, and un-
HORSEMANSHIP. Sect. II.

Of placing the Rider.

prepared lad, who is put at once upon a rough horse; in such a distressful state, he is forced to keep himself on at any rate, by holding to the bridle (at the expense of the sensibility both of his own hand and the horse's mouth), and by clinging with his legs, in danger of his life, and to the certain deprivation of a right feeling in the horse.

The first time a man is put on horseback, it ought to be upon a very gentle one. He never should be made to trot, till he is quite easy in the walk; nor gallop, till he is able to trot properly. The same must be observed in regard to horses; they should never be made to trot till they are obedient, and their mouths are well formed on a walk, nor to be made to gallop, till the same be rendered easy. This is not only the easiest and the horse's sides, but always to examine, if the curb be well placed, carefully used, and the horse's sensibility is preferred, and each in a situation fit to receive and produce all ideas effectually.

Among the various methods that are used of placing people on horseback, few are directed by reason. Before you let the man mount, teach him to know, and always to examine, if the curb be well placed, (that is, when the horse has a bit in his mouth, which at first he should not; but only a snaffle, till the rider is firm in his seat, and the horse also somewhat taught) to know if the nose-band be properly tight; the throat-lasso and the mouth-piece neither too high nor too low in the horse's mouth, but rightly put so as not to wink the flank nor to hang lux; the girths drawn moderately, but not too tight; and the crupper and the breastplates, though ever so deliciently used, must in some degree occasion. When the bridle, &c. have been well looked to, let the man approach the horse gently near the shoulder; then taking the reins and an handful of the mane in his left hand, let him put his foot softly in the left stirrup, by pulling it towards him, let him touch the horse with his toe; then raising himself up, let him rest a moment on it, with his body upright, but not stiff; and after that, placing his right leg clear over the saddle without rubbing against any thing, let him seat himself gently down. He must be cautious not to take the reins too short, for fear of making the horse rear, run, or fall back, or throw up his head; but let him hold them of an equal length, neither tight nor slack, and with the little finger betwixt them. It is fit that horses should be accustomed to stand still to be mounted, and not to stir till the rider pleases. All soldiers should be instructed to mount and dismount equally well on both sides, which may be of great use in times of hurry and the rider's confusion. Then place the man in his saddle, with his body rather back, and his head held up with ease, without stiffness; seated neither forwards nor very backwards; with the breast pafted out a little, and the lower part of the body likewise a little forwards; the thighs and legs turned in without constraint, and the feet in a straight line, neither turned in nor out. By this position, the natural weight of the thighs has a proper and sufficient pressure of itself; and the legs are in readiness to act when called upon: they must hang down easily and naturally; and be so placed, as not to be wriggling about, touching, and tickling, the horse's sides, but always near them in case they should be wanted, as well as the heels.

The body must be carefully kept easy and firm, and without any rocking when in motion; which is a bad habit very easily contracted, especially in galloping. The left elbow must be gently leant against the body, a little forwards: unless it be so refted, the hand cannot be steady, but will always be checking, and consequently have pernicious effects on the horse's mouth. And the hand ought to be of equal height with the elbow; if it were lower, it would constrain and confine the motion of the horse's shoulders: but, as the mouths of horses are different, the place of the hand also must occasionally differ: a leaning, low, heavy, fore-head requires a high hand; and a horse that pokes out his nose, a low one. The right-hand arm must be placed in symmetry with the left: only let the right hand be a little forwarder or backward, higher or lower, as occasions may require, in order that both hands may be free; both arms must be a little bent at the elbow, to prevent stiffness.

A soldier's right hand should be kept unemployed in riding; it carries the sword, which is a sufficient business for it.

There remains one further observation, that ought not to be omitted, about the hand, that it must be kept clear of the body; i.e. about two inches and a half forwards from the middle of the body, and never turned opposite to the belly, and the wrist a little rounded to it; a position not less graceful than ready for slackening, tightening, and moving the reins from one side to the other, as may be found necessary.

When the men are well placed, the more rough trotting they have without stirrups the better; but with a strict care always, that their position be preserved very exactly. In all cases, great care must be taken to hinder their clinging with their legs: in short, no sticking by hands or legs is ever to be allowed of at any time. If the motion of the horse be too rough, slacken it, till the rider grows by degrees more firm; and when he is quite firm and easy on his horse in every kind of motion, stirrups may be given him; but he must never leave off trotting often without any.

The stirrups must neither be short nor long; but of such a length, that when the rider, being well placed, puts his feet into them (about one third of the length of each foot from the point of it), the points may be between two and three inches higher than the heels. The rider must not bear upon his stirrups, but only let
HORSEMANSHIP.

In Procure the natural weight of his legs rest on them: For he bears upon them he would be raised above and out of his saddle; which should never be, except in charging sword in hand, with the body inclining forwards at the very instant of attacking. Spurs may be given as soon as the rider is grown familiar with stirrups; or even long before, if his legs are well placed.

A hand should always be firm, but delicate: a horse's mouth should never be surprised by any sudden transition of it, either from slack to tight, or from tight to slack. Everything in horsemanship must be effected by degrees, but at the same time with spirit and resolution. That hand which, by giving and taking properly, gains its point with the horse's mouth, is the best: and the horse's mouth, under this same hand's directions, will also consequentially be the best, supposing equal advantages in both from nature. This principle of gentleness should be observed upon all occasions in every branch of horsemanship. Sometimes the right hand may be necessary, upon some troublesome horses, to aid the left; but the flocker this is done, the better; especially in a soldier, who has a sword to carry, and to make use of.

The snaffle must on all occasions be uppermost; that is to say, the reins of it must be above those of the bridle, whether the snaffle or the bit be used separately, or whether they be both used together. When the rider knows enough, and the horse is sufficiently prepared and settled to begin any work towards suppling, one rein must be shortened according to the side worked to; but it must never be so much shortened, as to make the whole strength rest on that rein alone: for, not to mention that the work would be false and bad, one side of the horse's mouth would by that means be always deadened; whereas on the contrary, it should always be kept fresh by its own play, and by the help of the opposite rein's acting delicately in a somewhat smaller degree of tension; the joint effect of which produces in a horse's mouth the proper, gentle and easy degree of the joint effect.

It is very requisite in horsemanship, that the hand and legs should act in correspondence with each other in every thing; the latter always subservient and affiilant to the former. Upon circles, in walking, trotting, or galloping, the outward leg is the only one to be used, and that only for a moment at a time, in order to set off the horse true, or put him right if he be false; and as soon as that is done, it must be taken away again immediately; but if the horse be lazy, or otherwise retails himself, both legs must be used and pressed to his sides at the same time together. The legs of the legs are used in general, the better. Very delicate

Good riders, with horses they have dressed themselves, Instruc-

sions concern-
ing both Man and Horse.

Let the natural weight of his legs rest on them: For he bears upon them he would be raised above and out of his saddle; which should never be, except in charging sword in hand, with the body inclining forwards at the very instant of attacking. Spurs may be given as soon as the rider is grown familiar with stirrups; or even long before, if his legs are well placed.

A hand should always be firm, but delicate: a horse's mouth should never be surprised by any sudden transition of it, either from slack to tight, or from tight to slack. Everything in horsemanship must be effected by degrees, but at the same time with spirit and resolution. That hand which, by giving and taking properly, gains its point with the horse's mouth, is the best: and the horse's mouth, under this same hand's directions, will also consequentially be the best, supposing equal advantages in both from nature. This principle of gentleness should be observed upon all occasions in every branch of horsemanship. Sometimes the right hand may be necessary, upon some troublesome horses, to aid the left; but the flocker this is done, the better; especially in a soldier, who has a sword to carry, and to make use of.

The snaffle must on all occasions be uppermost; that is to say, the reins of it must be above those of the bridle, whether the snaffle or the bit be used separately, or whether they be both used together. When the rider knows enough, and the horse is sufficiently prepared and settled to begin any work towards suppling, one rein must be shortened according to the side worked to; but it must never be so much shortened, as to make the whole strength rest on that rein alone: for, not to mention that the work would be false and bad, one side of the horse's mouth would by that means be always deadened; whereas on the contrary, it should always be kept fresh by its own play, and by the help of the opposite rein's acting delicately in a somewhat smaller degree of tension; the joint effect of which produces in a horse's mouth the proper, gentle and easy degree of the joint effect.

A horse and a madman make alike bad riders, and are both alike discovered and confounded by the superior fenfe of the creature they are mounted upon, who is equally spoil'd by both, though in very different ways. The coward, by baffuring the animal to have his own way, not only confirms him in his bad habits, but creates new ones in him: and the madman by falseness and violent motions and corrections, drives the horse, through despair, into every bad and vicious trick that rage can suggest.

It is very requisite in horsemanship, that the hand and legs should act in correspondence with each other in every thing; the latter always subservient and subservient to the former. Upon circles, in walking, trotting, or galloping, the outward leg is the only one to be used, and that only for a moment at a time, in order to set off the horse true, or put him right if he be false; and as soon as that is done, it must be taken away again immediately; but if the horse be lazy, or otherwise retails himself, both legs must be used and pressed to his sides at the same time together. The legs of the legs are used in general, the better. Very delicate

good riders, with horses they have dressed themselves, Instruc-

sions concern-
ing both Man and Horse.
HORSEMANSHIP. Sect. III.

Of Suppling: Stiffness disgraces every right work; and flickering verxes only to throw a man (when displaced) a great distance from his horse by the spring he must go off with: whereas by a proper equilibrating position of the body, and by the natural weight only of the thighs he cannot but be firm and secure in his seat.

As the men become more firm, and the horses more supple it is proper to make the circles less; but not too much so, for fear of throwing the horses forwards upon their shoulders.

Some horses, when first the bit is put into their mouths, if great care be not taken, will put their heads very low. With such horses raise your right hand with the bridoon in it, and play at the same time with the bit in the left hand, giving and taking.

On circles, the rider must lean his body inwards; unless great attention be given to make him do it, he will be perpetually losing his seat outwards. It is scarce possible for him to be displaced, if he leans his body properly inwards.

SECT. III. The Method of Suppling Horses with Men upon them, by the Escault on dedans, &c. with and without a Longe, on Circles and on straight Lines.

When a horse is well prepared and settled in all his motions, and the rider firm, it will be proper then to proceed on towards a further suppling and teaching of both.

In setting out upon this new work, begin by bringing the horse's head a little more inwards than before, pulling the inward rein gently to you by degrees. When this is done, try to gain a little on the shoulders, by keeping the inward rein the shorter, as before, and the outward one crossed over towards the inward one. The intention of these operations is this: The inward rein serves to bring in the head, and procure the bend; whilst the outward one, that is a little crossed, tends to make that bend perpendicular and as it should be, that is to say, to reduce the nose and the forehead to be in a perpendicular line with each other: it also serves, if put forwards, as well as also crossed, to put the horse forwards, if found necessary; which is often requisite, many horses being apt in this, and other works; rather to lose their ground backwards than otherwise; when they should rather advance; if the nose were drawn in towards the breast beyond the perpendicular, it would confine the motion of the shoulders, and have other bad effects. All other bends, besides what are above specified, are false. The outward rein, being crossed, not in a forward sense, but rather a little backwards, serves also to prevent the outward shoulder from getting too forwards, and makes it approach the inward one; which facilitates the inward leg's crossing over the outward one, which is the motion that so admirably supple the shoulders. Care must be taken, that the inward leg pafs over the outward one, without touching it: this inward leg's crossing over must be helped also by the inward rein, which you must cross towards and over the outward rein every time the outward leg comes to the ground; in order that you may help the inward leg over it: at any other time, but just when the outward leg comes to the ground, it would be wrong to cross the inward rein, or to attempt to lift up the inward leg by it;

Directions for Men and Horses.

because in this case, a very great part of the horse's weight resting then upon that leg, would render such an attempt not only fruitless, but also prejudicial to the sensibility of the mouth, and probably oblige him to defend himself: and, moreover, it would put the horse under a necessity of straddling before, and also of leading with the wrong leg, without being productive of any suppling motion whatsoever.

When the horse is thus far familiarly acclimated to what you have required of him, then proceed to effect by degrees the same crossing in his hinder legs. By bringing in the fore legs more, you will of course engage the hinder ones in the same work; if they resist, the rider must bring both reins more inwards; and, if necessary, put back also, and approach his inward leg to the horse; and if the horse throws out his croup too far, the rider must bring both reins outwards, and, if absolutely necessary, he must also make use of his outward leg, in order to replace the horse properly: observing that the inner shoulder is drawn behind the shoulders, which in all actions must go first; and the moment that the horse obeys, the rider must put his hand and leg again in their usual position.

Nothing is more ungraceful in itself, more detrimental to a man's seat, or more destractive of the sensibility of a horse's sides, than a continual wriggling unsettledness in a horseman's legs, which prevents the horse from ever going a moment together true, steady, or determined.

A horse should never be turned, without first moving a step forwards: and when it is doing, the rider must not lift his elbow, and displace himself; a motion only of the hand from the one side to the other being sufficient for that purpose. It must also be a constant rule, never to suffer a horse to be stopped, mounted, or dismounted, but when he is well placed. The flower the motions are when a man or horse is taught any thing, the better.

At first, the figures worked upon must be great, and afterwards made less by degrees, according to the improvement which the man and horse make; and the cadenced pace also, which they work in, must be accordingly augmented. The changes from one side to the other, must be in a bold determined trot, and at first quite straight forwards, without demanding any side-motion on two pifles, which is very necessary to require afterwards when the horse is sufficiently suppled. By two pifles is meant, when the fore-parts and hinder parts do not follow, but describe two different lines.

In the beginning, a longe is useful on circles, and also on straight lines, to help both the rider and the horse; but afterwards, when they are grown more intelligent, they should go alone. At the end of the lefion, rein back; then put the horse, by a little at a time, forwards, by approaching both legs gently to his sides, and playing with the bridle: if he rears, pull him out immediately into a full trot. Shaking the ca- sefion on the horse's nose, and also putting one's self forward, will make him and rather work on the other side; but when he is considerably hindered, put him back, though he otherwise refuse to do it; and moreover a slight use and approaching of the rider's legs,
Sect. IV. Horsemanship.

Of head to legs, will sometimes be necessary in backing, in order to prevent the horse from doing it too much upon his shoulders; but the pressure of the legs ought to be very small, and taken quite away the moment that he puts himself enough upon his haunches. If the horse does not back upon a straight line properly, the rider must not be permitted to have recourse immediately to his leg, and so disturb himself by it; but first try, if crowding over his hand and reins to which ever side may be necessary, will not be alone sufficient: which most frequently it will, if not, then employ the leg.

After a horse is well prepared and settled, and goes freely on in all his several paces, he ought to be in all his works kept, to a proper degree, upon his haunches, with his hinder legs well placed under him; whereby he will be always pleasant to himself and his rider, will be light in hand, and ready to execute whatever may be demanded of him, with facility, vigour, and quickness.

The common method that is used, of forcing a horse side-wise, is a most glaring absurdity, and very hurtful to the animal in its consequences; for instead of pacifying him, it obliges him to stiffen and defend himself, and often makes a creature that is naturally benevolent, refractive, frightened, and vicious.

For horses, who have very long and high fore-hands, and who poke out their noses, a running snaffle is of excellent use; but for such as bore and keep their heads low, a yielding bridle is just come to the ground, with the left rein crossed towards the right, and keeping the right shoulder back with the right rein towards your body, in order to facilitate the left leg's crossing over the right; and so likewise vice versa to the left, each rein helping the other by their properly mixed effects.

In working to the right, the rider's left leg helps the hinder-parts on to the right, and his right leg flops them if they get too forwards; and so vice versa to the left: but neither ought to be used, till the hand being employed in a proper manner has failed, or finds that a greater force is necessary to bring about what is required than it can effect alone; for the legs should not only be corresponding with, but also subservient to, the hand; and all unnecessary aids, as well as all force, ought always to be avoided as much as possible.

In the execution of all lessons, the equilibrium of the horse's body is of great use to the horse; it ought always to go with and accompany every movement of the animal; when to the right, to the right; and when to the left, to the left.

Upon all horses, in every lesson and action, it must be observed, that there is no horse but has his own peculiar appui or degree of bearing, and also a sensibility of mouth, as likewise a rate of his own, which it is absolutely necessary for the rider to discover and make himself acquainted with. A bad rider always takes off at least the delicacy of both, if not absolutely destroys it. The horse will inform his rider when he has got his proper bearing in the mouth, by playing pleasantly and steadily with his bit, and by the spray about his chaps. A delicate and good hand will not only always prefer a light appui, or bearing, in its sensibility; but also of a heavy one, whether naturally so or acquired, make a light one. The lighter this appui can be made, the better; provided that the rider's hand corresponds with it; if it does not, the more the horse is properly prepared, so much the worse. Incessances of this inconvenience of the fret of appuis.
appus, when the rider is not equally taught with the horse, may be seen every day in some gentlemen, who try to get their horses bitted as they call it, without being suitably prepared themselves for riding them; the consequence of which is, that they ride in danger of breaking their necks; till at length, after much hawling about, and by the joint insensibility and ignorance of themselves and their grooms, the poor animals gradually become more tongueless unfeeling pots; and thereby grow, what they call, settled. When the proper appus is found, and made of course as light as possible, it must not be kept duly fixed without any variation, but be played with; otherwise one equally-continued tension of reins would render both the rider's hand and the horse's mouth very dull. The lightest and frequent giving and taking is therefore necessary to keep both perfect.

Whatever pace or degree of quickness you work in, (be it ever so fast, or ever so slow), it must be canced; time is as necessary for a horsemans as for a musician.

As to horses that are naturally afraid of burning objects, begin by keeping them still at a certain distance from some lighted straw; carest the horse; and in proportion as his fright diminishes, approach gradually the burning straw very gently, and increase the size of it. By this means he will very quickly be brought to be so familiar with it, as to walk undaunted even through it.

As to horses that are apt to lie down in the water, if animating them, and attacking them vigorously, should fail of the desired effect, then break a straw-bottle full of water upon their heads, and let the water run into their ears, which is a thing they apprehend very much.

All troop-horses must be taught to stand quiet and still when they are shot off from, to flop the moment you pretend, and not to move after firing till they are required to do it; this lesson ought especially to be observed in light troops; in short, the horse must be taught to be so cool and undisturbed, as to suffer the rider to act upon him with the same freedom as if he was on foot. Patience, coolness, and temper, are the only means requisite for accomplishing this end. Begin by walking the horse gently, then flop and keep him from firing for some time, so as to accustom him by degrees not to have the least idea of moving without orders; if he does, then back him; and when you flop him, and he is quite still, leave the reins quite loose.

The order to a horse to fire-arms, first put a pistol or a carbine in the manger with his feed; then use him to the sound of the lock and the pan; after which,

when you are upon him, show the piece to him, presenting it forwards, sometimes on one side, sometimes on the other: when he is thus far reconciled, proceed to flash in the pan; after which, put a small charge into the piece, and so continue augmenting it by degrees to the quantity which is commonly used: if he seems uneasy, walk him forward a few steps slowly; and then stop, back, and carest him. Horses are often also punctuated and unfeated at the clasp, and drawing, and returning of swords; all which they must be familiarizetd to by little and little, by frequency and gentleness.

It is very expedient for all cavalry in general, but particularly for light cavalry, that their horses should be very ready and expert in leaping over ditches, hedges, gates, &c. The leaps, of whatever sort they are, which the horses are brought to in the beginning, ought to be very small ones; the riders must keep their bodies back, raise their hands a little in order to help the fore-parts of the horse up, and be very attentive to their equilibrium. It is bett to begin at a low bar covered with furze, which pricking the horse's legs, if he does not raise himself sufficiently, prevents his contracting a fluggish and dangerous habit of touching, as he goes over, which any thing yielding and not pricking would give him a custom of doing. Let the ditches you first bring horses to be narrow; and in this, as in every thing else, let the increase be made by degrees. Accustom them to come up to every thing which they are to leap over, and to stand coolly at it for some time; and then to raise themselves gently up in order to form to themselves an idea of the distance. When they leap well standing, then use them to walk gently up to the leap, and to go over it without first halting at it; and after that practice is familiar to them, make the like in a gentle trot, and so by degrees faster and faster, till at length it is as familiar to them to leap flying on a full gallop as any other way; all which is to be acquired with great facility by calm and soft means, without any hurry.

As horses are naturally apt to be frightened at the sight and smell of dead horses; it is advisable to habituate them to walk over and leap over carcasses of dead horses: and as they are particularly terrified at this sight, the greater gentleness ought consequently to be used.

Horses should also be accustomed to swim, which often may be necessary upon service; and if the men and horses both are not used to it, both may be frequently liable to perish in the water. A very small portion of strength is sufficient to guide a horse anywhere indeed, but particularly in the water, where they must be permitted to have their heads, and be no-ways constrained in any shape.

The unreasonable rage in Britain of cutting off all extremities from horses, is in all cases a very pernicious custom. It is particularly so in regard to a troop-horse's tail. It is almost incredible, how much they suffer at the pike for want of it; contantly fretting, and sweating, kicking about and laming one another, tormented, and flung off their meet, miserable, and helpless; whilst other horses, with their tails on, bruk off all flies, are cool and at their ease, and mend daily; whilst the docked ones grow every hour more and more out of condition.
Of reining SECT. VI. HORSEMANSHIP.

NEVER finish your work by reining back with horses that have any disposition towards reining themselves; but always move them forwards, and a little upon the haunches also, after it, before you dismount, (unless they retain themselves very much indeed, in which case nothing at all must be demanded from the haunches). This lesson of reining back, and piafing, is excellent to conclude with, and puts an horse well and properly on the haunches: it may be done, according as horses are more or less supplied, either going forward, backing, or in the same place: if it is done well advancing, or at most on the lame spot, it is full sufficient for a soldier's horse: For to playe in backing, is rather too much to be expected in the hurry which cannot but attend such numbers both of men and horses as must be taught together in regiment. This lesson must never be attempted at all, till horses are very well supplied, and somewhat accustomed to be put together; otherwise it will have very bad consequences, and create resistentnes. If they refuse to back, and stand motionless, the rider's legs must be approached with the greatest gentleness to the horse's sides; at the same time that the hand is acting on the reins to sollicit the horse's backing. This sedum fails of procuring the desired effect, by raising one of the horse's fore-legs, which being in the air, has no weight upon it, and is consequently very easily brought backwards by a small degree of tension in the reins. When this lesson is well performed, it is very noble and useful, and has a pleasing air; it is an excellent one to begin teaching scholars with.

The lesson is particularly serviceable in the pillars, for placing scholars well at first. Very few regimental riding-houses have pillars, and it is fortunate they have not: for though, when properly made use of with skil, they are one of the greatest and best discoveries in horsemanship; they must be allowed to be very dangerous and pernicious, when they are not under the direction of a very knowing person.

WHENEVER a horse makes resistentnes, Vices, Defections, Starting, &c.

If a horse makes resistentnes, one ought, before remedy or correction is thought of, to examine very minutely all the tackle about him, if any thing hurts ortickles him, whether he has any natural or accidental weaknesses, or in short any the least impediment in any part. For want of this precaution, many fatal disasters happen: the poor dumb animal is frequently accused falsely of being resive and vicious, is used ill without reason; and, being forced into despair, is in a manner obliged to act accordingly, be his temper and inclination ever so well disposed. It is very seldom the case, that a horse is really and by nature vicious; but if such be found, he will delipse all carefles, and then chastifements become necessary.

Correction, according as you use it, throws a horse into more or less violent action, which, if he be weak, he cannot support: but a vicious strong horse is to be considered in a very different light, being able both to undergo and conseqently to profit by all lessons; and is far preferable to the best natured weak one upon earth. Patience and attention are never failing means to reclaim such a horse: in whatsoever manner he defends himself, bring him back frequently with gentleness (not however without having given him proper chastisement if necessary) to the lesson which he seems most averse to. Horses are by degrees made obedient, through the hope of recom pense and the fear of punishment: how to mix these two motives judiciously together, is a very difficult matter; it requires much thought and practice; and not only a good head, but a good heart likewise. The coolest and best natured rider will always succeed best. By a dexterous use of the incremelds abovementioned, you will gradually bring the horse to temper and obedience; mere force, and want of skill and coolness, would only tend to confirm him in his bad tricks. If he be impatient or choleric, never strike him, unless he absolutely refuse to go forwards; which you must reluctantly oblige him to do, and which will be of itself a correction, by preventing his having time to meditate and put in execution any defence by retaining himself. Resistance in horses, you must consider, is sometimes a mark of strength and vigour, and proceeds from spirit, as well as sometimes from vice and weaknesses. Weakness frequently drives horses into viciousnes, when any thing wherein strength is necessary is demanded from them; nay, it inevitably must; great care therefore should always be taken to distinguish from which of these two causes any remedy or punishment is thought of. It may sometimes be a bad sign when horses do not at all defend themselves, and proceed from a flagitious disposition, a want of spirit, and of a proper sensibility. Whenever one is so fortunate as to meet with a horse of just the right spirit, activity, delicacy of feeling, with strength and good nature, he cannot be cherished too much; for such a one is a rare and ineffimable jewel, and, if properly treated, will in a manner do everything of himself. Horses are often spoiled by having too much given to them; and by attempting to do them in too great a hurry, than by any other treatment.

If after a horse has been well supplied, and there are no impediments, either natural or accidental, if he still persists to defend himself, chastisement then becomes necessary: but whenever this is the case, they must not be frequent, but always firm, though always as little violent as possible; for they are both dangerous and very prejudicial when frequently or slightly played with, and still more so when used too violently.

It is impossible, in general, to be too circumstance in leasons of all kinds, in aids, chastisements, or carefles. Some have quicker parts, and more cunning, than others. Many will imperceptibly gain a little every day on the rider. Variations, in short, are their dispositions and capacities. It is the rider's business to find out their different qualities, and to make them sensible how much he loves them, and desires to be loved by them; but at the same time that he does not fear them, and will be master.

Plunging is a very common defence among resive and vicious horses; if they do it in the same place, or backing, they must, by the rider's legs and spurs firmly
Plain Rules for bad Horsemanship.

Sect. VIII.

In the first place every horse should be accustomed to stand still when he is mounted. One would imagine this might be readily granted; yet we see how much the contrary is practised. When a gentleman mounts at a livery-stable, the groom takes the horse by the bit, which he bends right round his under-jaw: the horse striving to go on, is forced back; advancing again, he frets, as he is again stopped short, and hurt by the manner of holding him. The rider, in the mean time, mounting without the bridge, or at least holding it but lightly, is helped to it by the groom, who being thoroughly employed by the horse's fluttering, has at the same time both bridge and stirrup to give. This contusion would be prevented, if every horse was taught to stand still when he is mounted.

Forbid your groom, therefore, when he rides your horse to water, to throw himself over him from a horse-block, and kick him with his leg, even before your horse is fairly upon him. The losing manner of mounting is what chiefly teaches your horse the vicious habit against which we are here warning. On the other hand, a constant practice of mounting in the proper manner, is all that is necessary to prevent a horse's going on till the rider is quite adjusted in the saddle.

The next thing necessary therefore is, that the rider should mount properly. The common method is to stand near the curb or hinder part of the horse, with the bridle held very long in the right hand. By this manner of holding the bridle before you mount, you are liable to be kicked; and when you are mounted, your horse may go on some time, or play what gambols he pleases, before the fremd is short enough in your hand to prevent him. It is common likewise for an awkward rider, as soon as his foot is in the stirrup, to throw himself with all his force to gain his seat: which he cannot do, till he hath first overbalanced himself on one side or the other: he will then wriggle it in by degrees. The way to mount with ease and safety is, to stand rather before than behind the stirrup. In this posture take the stirrup short, and the mane together in your left hand, lifting yourself to the stirrup with your right, so that your toe may not touch the horse in mounting. When your left foot is in the stirrup, move on your right, till you face the side of the horse, looking across over the saddle. Then with your right hand grasp the hinder part of the saddle; and with that and your left; which holds the mane and bridle, lift yourself upright on your left foot. Remain thus a mere instant on your stirrup, only so as to divide the action into two motions. While you are in this posture, you have a sure hold with both hands, and great liberty, either to get safely down, or to throw your leg over and gain your seat. By this deliberate motion, likewise, you avoid what every good horsemanship would endeavour to avoid, putting your horse into a flutter.

When you dismount, hold the bridge and mane together in your left hand, as when you mounted; put your right hand on the pommel of the saddle, and raise yourself; throw your leg back over the horse, grasp the hinder part of the saddle with your right hand, remain a moment on your stirrup, and in every respect dismount as you mounted; only what was your first motion when you mounted, becomes the left in dismounting. Remember not to bend your right knee in dismounting, left your spur should rub against the horse.

It may be next recommended to hold your bridle at a convenient length. Sit square; and let not the purchase of the bridle pull forward your shoulder; but keep your body erect, as it would be if each hand held a rein. Hold your reins with the whole grasp of your hand, dividing them with your forefingers. Let your hand be perpendicular; your thumb will then be uppermost, and placed on the bridge. Bend your writ
Manehip.

Plain Rules with a little outward; and when you pull the bridle, raise your hand toward your breast, and the lower part of the arm rather more than the upper. Let the bridle be at such a length in your hand, as, if the horse should stumble, you may be able to raise his head, and support it by the strength of your arms, and the weight of your body thrown backward. If you hold the rein too long, you are subject to fall backward as your horse tils.

If, knowing your horse perfectly well, you think a gentle rein unnecessary, advance your arm a little (but not your shoulder) towards the horse's head, and keep your usual length of rein. By this means, you have a check upon your horse, while you indulge him.

If you ride with a curb, make it a rule to hook on the chain yourself; the most quiet horse may bring his rider into danger, should the curb hurt him. It, in fixing the curb, you turn the chain to the right, the links will unfold themselves, and then oppose a farther turning. Put on the chain loose enough to hang down on the horse's under lip, so that it may not ride and press his jaw, till the reins of the bridle are moderately pulled.

If your horse has been used to stand still when he is mounted, there will be no occasion for a groom to hold him: but if he does, suffer him not to touch the reins, but that part of the bridle which comes down under the check of the horse. He cannot then interfere with the management of the reins, which belongs to the rider only; and holding a horse by the curb (which is ever painful to him) is evidently improper when he is to stand still.

Another thing to be remembered is, not to ride with your arms and elbows as high as your shoulders; nor let them shake up and down with the motion of the horse. The posture is unbecoming, and the weight of the arms (and of the body too if the rider does not sit still) acts in continual jerks on the jaw of the horse, which must give him pain, and make him unquiet, if he has a tender mouth or any spirit.

Farther riders wonder why horses are gentle as soon as they are mounted by skillful ones, tho' their skill seems unemployed; the reason is, the horse goes at his ease, yet finds all his motions watched; which he has fagacity enough to discover. Such a rider hides his whip, if he finds his horse is afraid of it; and keeps his legs from his sides, if he finds he dreads the spur.

Avoid the ungraceful custom of letting your legs shake against the sides of the horse: and as you are not to keep your arms and elbows high, and in motion; so you are not to rivet them to your sides, but let them fall easy. One may, at a distance, dashing with a gentle horsemam from an awkward one; the first sits still, and appears of a piece with his horse; the latter seems flying off at all points.

It is often said with emphasis, that such a one has no seat on horseback; and it means, not only that he does not ride well, but that he does not sit on the right part of the horse. To have a good seat, is to sit on that part of the horse, which, as he springs, is the centre of motion; and from which, of course, any weight would be with most difficulty shaken. As in the riding and falling of a board placed in equilibrio, the centre will be always moist at rest; the true seat will be found in that part of your saddle, into which your weight would naturally glide, if you rode without stirrups; and is only to be preferred by a proper poise of the body, though the generality of writers imagine it is to be done by the grasp of the thighs and knees. The rider should consider himself as united to his horse in this point; and when shaken from it, endeavour to restore the balance.

Perhaps the mention of the two extremes of a bad seat may help to describe the true one. The one is, when the rider sits very far back on the saddle, so that his weight presses the loins of the horse; the other, when his body hangs forward over the pommel of the saddle. The first may be seen practised by grooms, when they ride with their stirrup affectedly short; the latter, by fearful horsemam on the least flatter of the horse. Every good rider has, even on the hunting saddle, as determined a place for his thighs, as can be determined for him by the bars of a demi-peak. Indeed there is no difference between the seat of either: only, as in the first you ride with shorter stirrups, your body will be consequently more behind your knees.

To have a good seat yourself, your saddle must fit well. To fix a precise rule might be difficult: it may be a direction, to have your saddle press as nearly as possible on that part which we have described as the point of union between the man and horse; however, so as not to obstruct the motion of the horse's shoulders. Place yourself in the middle or lowest part of it; fit good; but with as little constraint as in your ordinary fitting. The case of action marks the gentleman: you may repose yourself, but not lounge. The set and studied celerity acquired in the riding, horse by those whose department is not easy, appears ungentle and unnatural.

If your horse stops short, or endeavours by rising and kicking to unseat you, bend not your body forward, as many do in those circumstances: that motion throws the breach backward, and you off your fork or stirrup; and out of your seat: whereas, the advancing the lower part of your body, and bending back the upper part and shoulders, is the method both to keep your seat, and to recover it when lost. The bending your body back, and that in a great degree, is the greatest security in flying leaps; it is a security too, when your horse leaps standing. The horse's riding does not try the rider's seat; the fall of his hind leg is what ought chiefly to be guarded against; and is best done by the body's being greatly inclined back. Shift not your legs or thighs; and let your body be pliable in the joints, like the coachman's on his box. This loose manner of sitting will elude every rough motion of the horse; whereas the fixtutre of the knees, so commonly laid a fire's on will, in great shocks conduce to the violence of the fall.

Was the cricket-player, when the ball is struck with the greatest velocity, to hold his hand firm and fixed when he receives it, the hand would be bashed, or perhaps the bones fractured by the resistance. To obviate this accident, he therefore gradually yields his hand to the motion of the ball for a certain distance; and thus by a due mixture of opposition and obedience catches it without sustaining the least injury. The case is exactly the same in riding: the skilful horsemam

Vol. VIII.
When you want your horse to move forward, raise his head a little, and touch him gently with your whip; or else, press the calves of your legs against his sides.

If he does not move far enough, press them with more force, and to till the spur just touches him. By this practice he will (if he has any spirit) move upon the least pressure of the leg. Never spur him by a kick; but if it be necessary to spur him briskly, keep your heels close to his sides, and slacken their force as he becomes obedient.

When your horse attempts to be vicious, take each rein separate, one in each hand, and advancing your arms forward, hold him very short. In this case, it is common for the rider to pull him hard, with his arms low. But the horse by this means having his head low too, has it more in his power to throw out his heels; whereas, if his head be raised very high, and his nose thrown out a little, which is consequent, he can neither rise before nor behind; because he can give himself neither of those motions, without having his head at liberty. A plank placed in equilibrio, cannot rise at one end unless it sinks at the other.

If your horse is headstrong, pull not with one continued pull, but stop, and back him often, just shaking the reins, and making little repeated pulls till he obeys. Horses are so accustomed to bear on the bit when they go forward, that they are discouraged if the rider will not let them do so.

If a horse is loose-necked, he will throw up his head at a continued pull; in which situation, the rider, seeing the front of his face, can have no power over him. When your horse does thus, drop your hand and give the bridle play, and he will of course drop his head again into its proper place: while it is coming down, make a second gentle pull, and you will find his mouth. With a little practice, this is done almost instantaneously; and this method will stop, in the distance of a few yards, a horse, which will run away with those who pull at him with all their might. Almost every one must have observed, that when a horse feels himself pulled by the bridle, even when he is going gently, he often mistakes what is designed to stop him, as a direction to bear on the bit and go faster.

Keep your horse's head high, that he may raise his neck and crest; play a little with the rein, and move the bit in his mouth, that he may not press on it in one constant and continued manner: be not afraid of raising his head too high; he will naturally be too ready to bring it down, and tire your arms with its weight, on the least abatement of his metal. When you feel him heavy, stop him, and make him go back a few paces: thus you break by degrees his propensity to press on his bridle.

You ought not to be pleased (though many are) with a round neck, and a head drawn in towards his breast: let your horse carry his head bridling in, provided he carries it high, and his neck arching upwards; but if his neck bends downwards, his figure is bad, his sight is too near his toes, he leans on the bridle, and you have no command over him. If he goes pressing but lightly on the bridle, he is the more sure-footed, and goes pleasanter; as your writ may only guide him. If he hangs down his head, and makes you support the weight of that and his neck with your arms bearing...
Horsemen.

Plain, for bad Horsemens.

If your horse is heavy upon the bit, tie him every day, for an hour to two, with his tail to the manger, and his head as high as you can make him lift it, by a rein on each pole of the fall, tied to each ring of the snaffle bit.

Horse-breakers and grooms have a great propensity to bring a horse's head down, and seem to have no faith without a strong hold by the bridle. They know indeed, that the head should yield to the reins, and the neck form an arch; but do not take the proper pains to make it an arch upright. A temporary effect of attempting to raise a horse's head, may perhaps be making him pull out his nose. They will here tell you, that his head is too high already; whereas it is not the distance from his nose, but from the top of his head to the ground, which determines the head to be high or low. Besides, although the fault is said to be in the manner of carrying the head, it should rather be said to be in that of the neck: for if the neck was raised, the head would be more in the position of one set on a well formed neck.

The design therefore of lifting up the head, is to raise the neck, and thereby bring in the head; for even while the bridle makes the same line from the rider's hand to the bit, the horse's nose may be either drawn in, or thrust out, according as his neck is raised or depressed. Instead of what has been here recommended, we usually see colts broke with their heads contorted very low, their necks stiff, and not in the leaf suppose. When the breaking-tack is left off, and they are mounted for the road, having more food and rest, they frequently plunge, and a second breaking becomes necessary. Then, as few gentlemen can manage their own horses, they are put into the hands of grooms, from whom they learn a variety of bad habits.

If, on the other hand, your horse carries his head (or rather his nose) too high, he generally makes some amends by moving his shoulders lightly, and going freely. Attend to the cause of this fault. Some horses have their necks set low on their shoulders, that they bend first down, then upwards, like a flag's. Some have the upper line of their necks, from their ears to their withers, too short. A head of this sort cannot possibly bend inwards and form an arch, because the vertebrae (or neck bones) are too short to admit of flexure; for in long and short necked horses the number of the vertebrae is the same. In some, the jaw is so thick, that it meets the neck, and the head by this means has not room to bend. On the other hand, some have the under line from the jaw to the breath so short, that the neck cannot rise.

In all these cases you may gain a little by a nice hand with an easy bit; but no curb, martingale, or other forcible method, will teach a horse to carry his head or neck in a posture which nature has made uneasy to him. By trying to pull in his nose farther than he can bear, you will add a bad habit to nature. You could not indeed correct a more effectual method to make him continually toss his nose up, and throw his foam over you.

The rule already given to ride a loose-necked horse, will be a proper one for all light-mouthed horses: one caution being added, which is, always to search whether his saddle or girths may not in some way pinch him; and whether the bit may not hurt his lip by being too high in his mouth: because, whenever he frets from either of these causes, his head will not be steady. It is a common custom to be always pulling at the bridle, as if to set off to advantage the spirited the horse, or the skill of the rider. Our horses therefore are taught to hold their heads low, and pull so, as to bear up the rider from the saddle, standing in his stirrups, even in the gentlest gallop: how very improper this is, we are experimentally convinced, when we happen to meet with a horse which gallops otherwise. We immediately say, he cannot excellently, and find the ease and pleasure of his motion. When horses are designed for the race, and swifness is the only thing considered, the method may be a good one.

It is not to be wondered that dealers are always pulling at their horses; that they have the spur constantly in their sides, and are at the same time continually watching the reins, that they frequently plunge, and a second time or more, by this means they make them bound, and champ the bit, while their rage has the appearance of spirit. These people ride with their arms spread, and very low on the shoulders of their horses: this method makes them stretch their necks, and gives the better appearance to their fore-heads; it conceals also the thick jaw, which, if the head was up, would prevent its yielding to the bit; it hides likewise the eae-neck, which would otherwise show itself. Indeed, if you have a horse unready to the bit, formed with a natural heavy head, or one which carries his nose obliquely in the air, you must find his mouth where you can, and make the best of him.

Many horses are taught to start by whipping them for straling. How is it possible they can know it is designed as a punishment? In the riding-houfe, you teach your horse to rise up before, and to spring and lath out his hinder legs, by whipping him when tied between two pillars, with his head a little at liberty. If he understand this to be a punishment for doing so, he would not by that method learn to do it. He seems to be in the same manner taught to spring and fly when he is frightened. Most horses would perfectly past an object they were beginning to fly from, if their riders, instead of gathering up their bridles, and showing themselves so ready, should throw the reins loose upon their necks.

When a horse starts at any thing on one side, most riders turn him out of the road, to make him go up to what he starts at: if he does get the better of his fear, or readily comply, he generally goes past the object, making with his hinder parts, or croup, a great circle of the road; whereas, he should learn to keep straight on, without minding objects on either side.

If he starts at any thing on the left, hold his head high, and keep it straight in the road, pulling it from looking at the thing he starts at, and keeping your right leg hard pressed against his side, towards his flank: he will then go straight along the road. By this method, and by turning his head a little more, he may be forced with his croup close up to what frightened him: for as his head is pulled one way, his croup necessarily turns the other. Always avoid a quiet
HORSEMANSHIP. Sect. VIII.

Plain Rules for bad Horsemen.

...quarrel with your horse, if you can: if he is apt to start, you will find occasions enough to exercise his obedience, when what he starts at lies directly in his way, and you must make him pass; if he is not subject to start, you should not quarrel with him about a trifle.

It must be observed, therefore, that this rule in going past an object may perhaps be a little irregular in a managed horse, which will always obey the leg: but even such a horse, if he is really afraid, and not retive, it may not be suitable to make him look another way; unless the object be something you would particularly accustom him to the sight of.

The cafe will also be different with a horse whose fear is owing to his being not used to objects; but such a one is not to be rode by any horseman to whom those rules are directed: the starting here meant arises merely from the horse's being pamper'd, and springing through liveliness.

The notion of the necessity of making a horse go immediately up to every thing he is afraid of, and not troubling him to become matter of his rider, seems to be in general carried too far. It is an approved and good method to conquer a horse's fear of the found of a drum, by beating one near him at the time of feeding him: this not only familiarizes the noise to him, but makes it pleasurable, as a sure-runner to whom this rule is applied. Whereas, if he was whipped up to it, he might perhaps start at it as long as he lived. Night not this be applied to his starting at other things, and show that it would be better to suffer him (provided he does not turn back) to go a little from and avoid an object he has a dislike to, and to accustom him to it by degrees, convincing him, as it were, that it will not hurt him: than to punish him, quarrel with him, and perhaps induce to his will at last, while you insist on his overcoming his fear in an infant; if he fees a like object again, it is probable he will recollect his deed, and arm himself to be disobedient.

We are apt to suppose that a horse fears nothing so much as his rider: but may he not in many circumstances, be afraid of instant destruction? of being crushed for being drowned? of falling down a precipice! Is it a wonder that a horse should be afraid of a loaded waggon? may not the hanging load seem to threaten the falling on him? there cannot be a rule more general, than, in such a case, to show him there is room for him to pass. This is done by turning his head a very little from the carriage, and pressing your leg, which is distant from it, against his side.

A horse is not to stop without a sign from his rider. — Is it not then probable, that when driven up to a carriage he starts at it, he conceives himself obliged either to attack or run against it? Can he understand the rider's spurring him with his face directed to it, as a sign for him to pass it? That a horse is easily alarmed for his face and eyes (he will even catch back his head from a hand going to caress him); that he will not go with any force, face to face, even to another horse (if in his power to fling); and that he feels perfectly sideways, may be useful hints for the treatment of horses with regard to starting.

Though you ought not to whip a horse for starting, there can be no good effect from clapping his neck with your hand to encourage him. If one took any notice of his starting, it should be rather with some plain rules of voice which he usually understand as an expression of dislike to what he is doing; for there is opposition mixed with his starting, and a horse will ever repeat what he finds has filled his rider.

Notwithstanding the directions above given, of not pressing a horse up to a carriage he starts at; yet if once you apprehend will frighten him needs you at a narrow part of the road, when you have once let him know he is to pass it, he live you remain determined and press him on. Do this more especially when part of the carriage has already passed you for it, when he is frightened, he is accustomed to go back, and turn round; he will certainly do it if he finds, by your hand slackening, and legs not pressing, that you are irresolute; and this at the most dangerous point of time, when the wheels of the carriage take him as he turns. Remember not to touch the curb rein at this time; it will certainly check him. It is not known to every one, that the person who would lead a horse by the bridle, should not turn his face to him when he refuses to follow him; if, besides this, he raises his arms, shows his whip, or pulls the bridle with jerks, he frightens the horse, instead of persuading him to follow; which a little patience may bring about.

Ride with a snaffle; and use your curb, if you have one, only occasionally. Choose your snaffle full and thick in the mouth, especially at the ends to which the reins are fastened. Moit of them are made too small and long; they cut the horse's mouth, and bend back over the bors of his jaw, working like pincers.

The management of the curb is too nice a matter to enter on here, farther than to prefer the greatest caution in the use of it: a turn of the wrist, rather than the weight of your arm, should be applied to it. The elasticity of a rod, when it has hooked a fish, may give you some idea of the proper play of a horse's head on his bridle; his spirit and his pliableness are both marked by it.

A horse should never be put to do any thing in a curb which he is not ready at: you may force him, or pull his head any way with a snaffle; but a curb acts only in a straight line. It is true, that a horse will be turned out of one track into another by a curb, but it is because he knows it as a sign: When he is put to draw a chair, and does not understand the necessity, he is then under of taking a larger sweep when he turns, you frequently see him retine, as it is then called: but put him on a snaffle, or buckle the rein to that part of the bit which does not curb him; and the horse submits to be pulled about, till he understands what is desired of him. These directions suppose your horse to have spirit, and a good mouth: if he has not, you must take him as he is, and ride him with such a bit as you find most easy to yourself.

When you ride a journey, he not so attentive to your horse's nice carriage of himself, as to your encouragement of him, and keeping him in good humour. Raise his head; but if he flags, you may indulge him with bearing a little more upon the bit than you would suffer in an airing. If a horse is lame, tender-footed, or tired, he naturally hangs upon his bridle.
Plain Rules. On a journey, therefore, his mouth will depend greatly for bad on his strength and the goodnature of his feet. Be then Horsemanship.

very careful about his feet, and let not a farrier spoil them. You will be enabled to keep him from danger, by the directions given under the article Faaeting, p. 167.

Very few, although practised in riding, know they have any power over a horse but by the bridle; or any tie for the spur, except to make him go forward. A little experience will teach them a better use. If the left spur touches him (and he is at the same time prevented from going forward), he has a sign, which he will soon understand, to move sideways to the right. In the same manner to the left, if the right spur is closed to him: he afterwards, through fear of the spur, obeys a touch of the leg; in the same manner as a horse moves his croup from one side of the flail to the other, when any one strikes him with his hand. In short, his croup is guided by the leg, as his head is by the bridle. He will never disobey the leg, unless he becomes retive. By this means you will have a far greater power over him: he will move sideways, if you clove one leg to him; and straight forward, if both: even when he stands still, your legs held near him will keep him on the watch; and with the slightest, uneven motion of the bridle upwards, he will raise his head, and show his forehead to advantage.

On this use of the legs of the rider, and guidance of the croup of the horse, are founded all the airs (as the riding-masters express themselves) which are taught in the manage; the passage, or side-motion of troopers to clove or open their files, and indeed all their evolutions. But the consequence of some degree of this discipline for common use is the reason of mentioning it here. It is useful if a horse is apt to stumble or flart. If to the first, by pressing your legs to his flanks, and keeping up his head, he is made to go light on his fore-legs, which is aiding and supporting him; and the same if he does actually stumble, by helping him at the very instant to exert himself, while as yet any part of him remains not irrecov- erably impelled with the precipitate motion. Hence his use of the hand and legs of the rider is called giving aids to a horse: for, as the holding up of the weight of a heavy inactive horse, by mere pulling, it is as impossible as to recover him when falling down a precipice.

A horse is supported and helped by the hands and legs of his rider in every action they require of him; hence he is said to perform his airs by the aids from his rider. Sec. VIII. HORSEMANSHIP.

The same manner is useful if a horse starts. For if Plain Rules when he is beginning to fly to one side, you leg on for bad the side he is flying to, he drops his spring immediately. He gets pull what he started as, keeping straight on, or as you choose to direct him; and he will not fly back from any thing if you press him with both legs. You keep his hitches under him, going down a hill; help him on the side of a bank; more easily avoid the wheel of a carriage; and approach more gracefully and nearer to the side of a coach or horsemanship. When a panpered horse curvets irregularly, and twits his body to and fro, turn his head either to the right or left, or both alternately (but without letting him move out of the track), and press your leg to the opposite side: your horse cannot then spring on his hind-legs to one side, because your leg prevents him; nor to the other, because his head looks that way, and a horse does not start and spring to the side on which he looks. Here it may not be amiss to observe the impropriety of the habit which many riders have, of letting their legs shake against the sides of the horse: if a horse is taught, they are then continually pressing him to violent action; and if he is not, they render him insensible and inanable of being taught. The fretting of a hot horse will hence be excessive, as it can no otherwise be moderated than by the utmost strictness of the fear, hands, and legs of the rider.

Colts at first are taught to bear a bit, and by degrees to pull at it. If they did not prefer it, they could not be guided by it. By degrees they find their necks stronger than the arms of a man; and that they are capable of making great opposition, and often of foiling their riders. Then is the time to make them supple and pliant in every part. The part which of all others requires most this pliancy is the neck. Hence the metaphor of stiff necked for disobedient. A horse cannot move his head but with the muscles of his neck: this may he called his helm; it guides his course, changes and directs his motion.

The use of this pliancy in the different parts and limbs of a horse has been already shown in a former section. The present section being directed to the unexperienced horsemanship, it may suffice to add, that his idea of supplenees need only be, that of an ability and readiness in a horse to move every limb, on a sign given by the hands or legs of his rider; as also, to bend his body, and move in a short compass, quick and collected within himself, so as instantly to be able to perform any other motion.

HORSHAM, a town of Sussex, seated near St. Leonard's forell, 53 miles from London. It has its name from Horf, brother to Hengist the Saxon; and is one of the largest towns in the county. It has sent members to parliament ever since the 30th of Edward I. and is the place where the county-goul is held, and often the alizes. It is a borough by prescription, with the title of two bailiffs and burgage holders within and without the borough, &c. who elect the members of parliament, and they are returned by the bailiffs chose yearly by a court-leet of the lord of the manor, who return four candidates to the steward, and he nomi- nates two of them for the office. Here is a very fine church, and a well endowed free-school. Great store of poultry is bought up for London at its market on Saturday, and it has a patent also for a monthly market.

HORSTIUS (James), professof of medicine in the university.
HORUS [678]

Horstius

defined by Dr Hill, in his

HORIZHOR

university of Helmfiadt, in the 16th century. He

joined devotion with the knowledge and practice of

physic. He carefully prayed to God to bless his pre-
scriptions, and published a form of prayer upon this
subject. He also wrote, 1. A treatise on the quali-
ties of a good physician. 2. Another on the quali-
ties of a good apothecary. 3. A treatise on the plague,
in German. 4. A commentary

Horstius (Gregory), nephew of the former, called
the Euscilapius of Germany, published several books,
which are esteemed.

Hortagilers, in the grand signiour's court,
upholiters, or tapestry-hangers. The grand signiour
has constantly 400 in his retinue when he is in the
camp: these go always a day's journey before him, to
fix upon a proper place for his tent, which they pre-
pare first; and afterwards those of the officers, accord-
ing to their rank.

Hortensius (Quintus), a celebrated Roman
orator, the contemporary of Cicero, pleaded with
universal applause at 19 years of age, and continued
the same profession during 48 years. But being at last
eclipsed by Cicero, he quitted the bar, and embraced
a military life; became a military tribune, praetor,
and afterwards consul, about 70 B.C. Cicero speaks
of him in such a manner as makes us regret the los of
his orations. Hortensius had a wonderful memory,
and he ordered his orations without writing down a
single word, or forgetting one particular that had been
advanced by his adversaries. He died very rich, a
little before the civil war, which he had endeavoured
by all possible means to prevent.

Hortus Siccus, a dry garden; an appella-
tion given to a collection of specimens of plants, care-
fully dried and preferred.

The value of such a collection is very evident,
since 1000 minutes may be preferred in the well
dried specimens of plants, which the most accurate engraver will overlook. We shall therefore give two
methods of drying and preserving a hortus focus: the
first by Sir Robert Southwell in Philosophical Tran-
sactions, n° 237; and the other by Dr Hill, in his re-
view of the works of the Royal Society, with his ob-
jections to Sir Robert's method.

According to the former gentleman, the plants are
to be laid flat between papers, and then put between
two smooth plates of iron, screwed together at the
corners; and in this condition committed to a baker's
oven for two hours. When taken out, they are to be
rubbed over with a mixture of equal parts of aquafortis
and brandy; and after this to be fastened down on
paper with a solution of the quantity of a walnut of
gum tragacanth dissolved in a pint of water. See
Hennel.

To this the Doctor objects, that the heat of an oven
is much too uncertain to be employed in so nice an
operation; and that the space of time ordered for con-
tinuing the plants in it is of no information, unless
the degree of heat, and even the different nature of
the plant as to its succulency and the firm-
ness of its fibres, be attended to; there
being scarcely any two plants alike in these particulars:
consequently the degree and duration of heat sufficient
for one plant would destroy another. Besides which,
the acid used desdrops the colour of many plants; and
never recovers that of others lost in the drying;
and frequently after the plant is fixed down on the
paper it is fixed to, and that which falls over it. Dr
Hill's method is as follows. Take a specimen of a
plant in flower, and with it one of its bot tom leaves if
it have any; bruise the stalk if too rigid, or slit it if
too thick: spread out the leaves and flowers upon pa-
per, cover it with more paper, and lay a weight over
all. At the end of 18 hours take out the plants, now
perfectly flattened, and lay them on a bed of dry com-
mon sand; sift more dry sand over them to the depth
of two inches, and thus let them lie about three weeks:
the leaves succulent dry much sooner, but they take no
harm afterward. If the floor of a garret be covered
in spring with sand two inches deep, leaving space for
walking to the several parts, it will receive the col-
lection of a whole summer; the covering of sand being
lifted over every parcel as laid in, they need no
farther care from the time of laying them till they are
taken up to be stuck on paper. The cement used by
the Doctor is thus prepared: early in the spring put
two ounces of camphor into three quarts of water in a
large bottle, shake it from time to time, and when the
first collected plants are ready for the fastening down,
put into a pint of the water, poured off into an earth-
ven vessel that will bear the fire, two ounces of com-
mon glue, such as is used by the carpenters, and the
same quantity of ichthyic or fish oil and brandy; let them
stand 24 hours, then gently boil the whole a few mo-
ments, and strain it off through a coarse cloth; this is
to be warmed over a gentle heat till it is to be used,
and the back of the plants smeared over with a paint-
er's brush: after this lay them on paper, and gently
press them for a few minutes, then expose them to
the air a little; and finally, lay them under a small
weight between quires of paper to be perfectly dried.

It is scarce to be conceived how strongly the water
becomes impregnated with the camphor by this single
proces: a part of it indeed flies off in the making of
the cement and the using of it: but enough remains
with the plants to prevent the breeding of insects in
them. He farther observes, that plants may be dried very
well without sand, by only putting them frequently
into fresh quires of paper, or a few, by only prefilling
them between the leaves of a book: but the sand me-
thod prefers the colour best, and is done with least
trouble.

Another method much better than that of the
oven is the flattening and drying the plant by pasting
a common smoothing iron for linen over the papers
between which it is laid: but for nice things the most
perfect of all methods is that by a common sand heat,
such as is used for chemical purposes. The cold sand
is to be spread smooth upon this occasion, the plant
laid on it carefully flattened, and a thick bed of sand lift-
ed over: the fire is then to be made, and the whole
procès carefully watched until by a very gentle heat
the plant be carefully dried. The colour of the ten-
derest herb may by this manner be preferred; and
flowers, that can no way else be preferred, may be ma-
naged perfectly well thus.

Horus, a renowned deity of ancient Egypt. He
was an emblem of the sun. Plutarch (in his treatise
de Jlude et Ophide) says, 'that virtue which prefigures
over
Horus, whilst he is moving through space, the Egyptians called Horus and the Greeks Apollo. Job also calls Ur or Orus the sun. If I gazed upon the sun (Ur, Orus) when he was radiant, or on (Jarécha) the moon walking in brightness, and my heart hath been secretly enticed (i.e. to worship), or my mouth hath killed my hand: this also were an iniquity to be punished by the judge, for I should have denied the God who is above." Chap. xxxi. ver. 26, 27, 28.

The interpretation left by Hermonap of the hieroglyphics engraved on the obelisk of Heliopolis (according to Ammianus Marcellinus), offers these remarkable words: "Horus is the supreme lord and author of time." These qualities, it is known, were chiefly attributed to Osiris: that they may apply, therefore, to Horus, he must necessarily denote the star of the day in certain circumstances: and this is what is explained to us by the oracle of Apollo of Claros:

Learn that the first of the gods is Jao. He is called invisible in winter, Jupiter in the spring, the sun in summer, and towards the end of autumn the tender Jao.

The star of the day, on attaining the summer solstice, and called per excelléntiam. The sun, is the same as Horus. In fact, the Egyptians represented him borne on lions, which signified his entrance into the sign of the beginning of the year, who presided over the divine institutions, then placed sphynxes at the head of the canals and sacred fountains, to warn the people of the approaching inundation. Macrobius, who informs us why the Greeks gave Horus the name of Apollo, confirms this sentiment: "In their mysteries (says he) they discover as a secret, which ought to be inviolable, that the sun arrived in the upper hemisphere, is called Apollo." These testimonies concur in proving, that the emblematical deity was no other than the star of day, partaking of the dignity of Jao. These lights may lead us to the explication of the sacred fable, which the priests published on the subject of Horus; for they were covered in mystery every point of their religion. Plutarch gives it at length in his treatise of Isis and Osiris: Of which the following are the principal traits. They said that he was the son of Osiris and Isis; that Typhon, after killing his brother Osiris, took possession of the kingdom; that Horus, avenging himself with Isis, avenged the death of his father, expelled the tyrant from his throne without depriving him of life, and reigned gloriously in Egypt. A person who has travelled ever so little in Egypt, easily discovers natural phenomena hid under the veil of fable. In the spring, the wind khamfan frequently makes great ravages there. It raises whirlwinds of burning sands, which fascinate travellers, darken the air, and cover the face of the sun in such a manner as to leave the earth in perfect obscurity. Here is the death of Osiris and the reign of Typhon. These hurricanes break loose usually in the months of February, March, and April. When the sun approaches the sign of the lion, he changes the state of the atmosphere, disperses these tempests, and refires the northerly winds, which drive before them the malignant vapours, and preserve in Egypt coolness and salubrity under a burning sky. This is the triumph of Horus over Typhon and his glorious reign. As the natural philosophers acknowledge the influence of the moon over the state of the atmosphere, they united her with this god, to drive the usurper from the throne. The priests considering Osiris as the father of time, might believe the name of his son on Horus, who reigned three months in the year. This, according to Mr Savary, is the natural explication of this allegory. And all enlightened men, he thinks, must have understood this language, which was familiar to them.

The people only, whose feeble fight extends no farther than the exterior, without divining into the true meaning of things, might regard these allegorical personages as real gods, and decree prayers and offerings to them.

Jahoniski, who has interpreted the epitaph of Arurei, which the Egyptians gave to Horus, pretends that it signifies effectus virtutis. These expressions perfectly characterize the phenomena which happened during the reign of this god. It is in summer, in fact, that the sun manifests all its power in Egypt. It is then that he swells the waters of the river with rains, exhaled by him in the air, and driven against the summits of the Abydusian mountains; it is then that the husbandman reckons on the treasures of agriculture. It was thus called, because there was frequent repetitions therein of the word ἀνάψωσαν, or ἀνάπτυξις; i. e. save us now; or, save us, we pray.

There are divers of these hosannas. The Jews call the hosanna, Hosanna, or from the feast of tabernacles, which lasted eight days, because, during the course thereof, they are frequently calling for the assistance of God, the forgiveness of their sins, and his blessing on the new year; and to that purpose they make great use of the hosannah, or prayers abovementioned. The Jews also apply the term Hosanna rabba, or Grand Hosanna, is a name they give to their feast of tabernacles, which lasts eight days; because, during the course thereof, they are frequently calling for the assistance of God, the forgiveness of their sins, and his blessing on the new year; and to that purpose they make great use of the hosannah, or prayers abovementioned. The Jews also apply the term Hosanna, in a more peculiar manner, to the seventh day of the feast of tabernacles; because they apply themselves more immediately on that day to invoke the divine blessing, &c.

Hoschius (Sidonius), a jefuit, who was born at Marke, in the diocese of Ypres, in 1506, and died at Tongres in 1653. He wrote some elegies and other poems in Latin with great purity and elegance. • Hose, from the Saxon Hofo, a flocking. See Stocking.

Hosea, a canonical book of the Old Testament, so called from the prophet of that name, its author, who was the son of Beeri, and the first of the leffer prophets. He lived in the kingdom of Samaria, and delivered his prophesies under the reign of Jeroboam II. and his successors, kings of Israel; and under the reigns of Uzziah, Jotham, Ahaz, and Hezekiah, kings of Judah. His principal design is to publish the great idolatries of the people of Israel and Judah, to denounce the divine vengeance against them, and to foretell the captivity in Assyria.
HOSPITAL (Rodolphus), one of the greatest writers that Switzerland has given birth to. He was born in 1547, at Altorf near Zurich; obtained the freedom of Zurich; and was made provost of the abbey school. Notwithstanding his employment, he undertook a noble work of vast extent, which was a History of the Errors of Popery. Though he could not complete this work according to his plan, he published some considerable parts of it; what he published on the Eucharist, and another work called Concordia Dilecta, exceedingly exasperated the Lutherans. He did not reply to them; but turning his arms against the Jesuits, published Historia Jesuistica, &c. These writings gained him preferment; he being appointed archdeacon of Caroline church, and then minister of the abbey-church. He died in 1626; and there was an edition of his works published at Geneva 1681, in seven volumes in folio.

HOSPITAL, popularly Spittal, a place or building erected, out of charity, for the reception and support of the poor, aged, Infirm, sick, and otherwise helpless. The word is formed of the Latin hospes, "a guest, a stranger." See Host.

In the first ages of the church, the bishop had the immediate charge of all the poor, both found and difeased, as also of widows, orphans, strangers, &c.—When the churches came to have fixed revenues allotted them, it was decreed, that at least one fourth part thereof should go to the relief of the poor; and to provide for the more commodiously, divers houses of charity were built, which are since denominated hospitals. They were governed wholly by the priests and deacons, under the inspection of the bishop. In course of time, separate revenues were assigned for the hospitals; and particular persons, out of motives of piety and charity, gave lands and money for erecting of hospitals. When the church discipline began to relax, the priests, who till then had been the administrators of hospitals, converted them into a sort of benefices, which they held at pleasure, without giving account thereof to any body; retaining the greatest part of the income to their own use; so that the intentions of the founders were frustrated.—To remove this abuse, the council of Vienne expressly prohibited the giving any hospital to secular priests in the way of a benefice; and directed the administration thereof to be given to sufficient and responsible laymen, who should take an oath, like that of tutors, for the faithful discharge thereof, and be accountable to the ordinaries.—This decree was executed and confirmed by the council of Trent.

In Britain, hospitals are buildings properly endowed, or otherwise supported by charitable contributions, for the reception and support of the poor, aged, infirm, sick, or helpless.

A charitable foundation laid thus for the succour and relief of the poor, is to continue for ever. Any person feized of an estate in fee, may, by deed inrolled in chancery, erect and found an hospital, and nominate such heads and governors therein as he shall think fit; and this charitable foundation shall be incorporated, and subject to the inspection and guidance of the heads and visitors nominated by the founder. Likewise such corporations shall have, take, and purport lands, so as to exceed 200 l. a year, provided the same be not held of the king; and to make leases, referring the accustomed yearly rent. See Corporation.

HOSPITAL (Michael de l'), chancellor of France in the 16th century, was one of the greatest men of his age, and had raised himself by degrees. He agreed to an edict much severer against the Protestants than he could have wished, to prevent the introduction of the Inquisition. It was that of Romorantin. The speeches he made, in order to inspire a spirit of toleration, made him much suspected by the Roman Catholics, and extremely odious to the court of Rome. The maxims of state upon which he regulated himself were of great advantage to France, since he formed some disciples who opposed, in proper time, the pernicious attempts of the theologians, and rendered them abortive.—His pacific views being disliked by Catherine de Medicis, who had contributed to his advancement, he was excluded from the council of war, and occasioned his disgrace. He retired, however, of his own accord, in 1568; and spent the rest of his life at his country-seat at Vigniè, where he died in 1575, aged 68. His poems are esteemed. He also published some excellent speeches and memoirs.

HOSPITAL (William-Francis-Antony, marquis of), a great mathematician of France, was born of an ancient family in 1661. He was a geometrical almonist from his infancy; for one day being at the duke of Rohan's, where some able mathematicians were speaking of a problem of Pascal's which appeared to them extremely difficult, he ventured to say, that he believed he could solve it. They were amazed at such presumption in a boy of 15, for he was then no more; nevertheless, in a few days he sent them the solution: He entered early into the army, and was a captain of horse; but being extremely short-sighted, and exposed on that account to perpetual inconveniences and errors, he at length quitted the army, and applied himself entirely to his favourite amusement. He contracted a friendship with Malbranche, and took his opinion upon all occasions. In 1693, he was received an honorary member of the academy of sciences at Paris; and he published a work upon Sir Isaac Newton's calculations, intituled, L'Analyse des infiniments petits. He was the first in France who wrote upon this subject; and on this account was regarded almost as a prodigy. He engaged afterwards in another work of the mathematical kind, in which he included Les Spherical Coniques, les Lieux Geometriques, la Conformation des Equations, et Une Théorie des Corbeaux Mécaniques: but a little before he had finished it, he was seized with a fever, of which he died Feb. 2. 1704, aged 43. It was published after his death.

HOSPITALITY, the practice of entertaining strangers. Dr Robertson, speaking of the middle ages, says, "Among people whose manners are simple, and who are seldom visited by strangers, hospitality is a virtue of the first rank. This duty of hospitality was so necessary in that state of society which took place during the middle ages, that it was not considered as one of those virtues which men may practice or not, according to the temper of their minds and the general policy of their hearts. Hospitality was enforced by statutes, and those who neglected the duty were liable..."
HOS [681] HOS

Hospitality.—The laws of the Slavs ordained that the murder of an inhospitable person should be
condemned, and his house burnt. They were even so
licentious for the entertainment of strangers, that they
permitted the landlord to feal for the support of his
guest.

The hospitality of the ancient Britons particularly
of the great and opulent barons, had been much
adored, and considered as a certain proof of the noble-
ness and generosity of their spirits. The act is well
attested. The castles of the powerful barons were
exquisite palaces, daily crowded with their numerous
retainers, who were always welcome to their plentiful
tables. They had their privy counsellors, their trea-
surers, marshals, constables, stewards, secretaries,
chaplains, heralds, pursuivants, pages, heralds, and kind-
ness to their tenants. The etiquette of their families
was an exact copy of the royal household; and some
of them lived in a degree of pomp and splendor little in-
favor to that of the greatest kings. Richard Neville,
Earl of Warwick, we are told, "was ever had in
great favour of the court, because he left all his
exceeding household which he daily kept in all
countries under his command or neglect, and when he came
to London, he held such an house, that six ozen were
eaten at a feast, and every tavern was full of his
meat." The earls of Douglas in Scotland, before the
fall of that great family, rivalled or rather exceeded
their sovereigns in pomp and profuse hospitality. But
to this manner of living, it is highly probable these
great chefta테s were prompted by a desire of increas-
ing the number and attachment of their retainers, on
which, in those turbulent times, their dignity and
their safety, depended, as much as to the innate
generosity of their tempers. These retainers did not
conflantly reside in the families of their lords; but
they wore their liveries and badges, frequently feal-
ed in their hails, swelled their retinues on all great
solemnities, attended them in their journeys, and
followed them into the field of battle. Some powerful
cheftains had so great a number of these retainers constantly at their command, that they felt the laws of
defiance, were formidable to their sovereigns, and
terrible to their fellow-subiects, and several laws were
made against giving and receiving liveries. But these
laws produced little effect in this period.

Hospitality was not confined to the great and opu-
lent, but was practised rather more than it is at pre-
sent by persons in the middle and lower ranks of life.
But this was owing to necessity, arising from the scar-
city of inns, which obliged travellers and strangers to
apply to private persons for lodging and entertainment;
and those who received them hospitably acquired a
right to a similar reception. This was evidently the
case in Scotland in the first part of this period.

James I. A. D. 1424, procured the following act of
parliament. "It is ordainit, that all burrow townis,
and %rouchfeiris quhair commoun passages ar, that
thair be ordainit hosptalaries and refettis, havand idables
and changiers; and that men find with thame bread
and all, and all uther fude, alswell for horse as men,
for renumbar price." But travellers had been so long
accustomed to lodge in private houses, that these pub-
lic inns were quite neglected; and those who kept
them presented a petition to parliament, complaining,
"That the liegfe travelland in the realm, quhen
they cum to burrowis and %rouchfeiris, herbists hame
not in hosptalaries, but with their acquaintance and
friends." This produced an act prohibiting trav-
ellers to lodge in private houses where there were hos-
ptalaries, under the penalty of 40 s. and subjecting those
who lodged them to the same penalty.

The inhabitants of the Highlands and Western Iles
of Scotland were remarkable for their hospitality
and kindness to strangers, and still retain the same
disposition. See Highlanders.

HOSPITALLERS, HOSPITALES, an order
of religious knights, who built an hospital at Jerusalem, wherein pilgrims were received. To these Pope Clem-
ent V. transferred the effects and revenues of the
Templars; whom by a council held at Vienne, he
suppressed for their many and great misdemeanours.
Their hospitals were otherwise called Knights of
St. John of Jerusalem; and are called the Knights
whom we now call Knights of Malta.

HOSPITUM, a term used in old writers either for
an inn or a monastery, built for the reception of
strangers and travellers. See Inn and Monastery.

HOSPODAR, a title borne by the princes of Wa-
lachia and Moldavia, who receive the investiture of
their principalities from the grand signor. He gives
them a velle and seal; they are under his protec-
tion, and obliged to serve him, and he even sometimes
deposes them; but in other respects they are absolute
sovereigns within their own dominions.

HOST, HOSPI, a term of mutual relation, ap-
piled both to a person who lodges and entertains an-
other, and to the person thus lodged, — The word
is formed of the Latin hospes, which some have
thus called quasi hostium or ophiium potens; for ophiium
was anciently written with an aspirate. — Thus the
inkeeper says, he has a good host, in speaking of
the traveller who lodges with him; and the traveller,
again says, he has a kind host, in speaking of his
landlord.

It must be observed, that it was the custom
among the ancients, when any stranger asked for lodg-
ing, for the master of the house, and the stranger,
each of them to set a foot on their own side of the
threshold, and swear they would neither of them do
any harm to the other. It was this ceremony that
raised so much horror against those who violated the
law or right of hospitality on either side; insomuch as
they were looked on as perjured.

Instead of hospes, the ancient Latins called it hostis;
as Cicero himself informs us: though in course of
time, hostis came to signify an enemy; so much was
the notion of hospitality altered.

Host is also used by way of abbreviation for hostis,
a victim or sacrifice offered to the Deity. In this
sense, hostis is more immediately understood of the
person of the Word incarnate, who was offered up as
host or hostis to the Father on the cross for the sins
of mankind. See Hostia.

Host, in the church of Rome, a name given to the
elements used in the eucharist, or rather to the
consecrated wafer; which they pretend to offer up
every day a new host or sacrifice for the sins of man-
kind. They pay adoration to the host, upon a talle

Vol. VIII.
Hostage

The word is formed from bota, "enemy," it being the custom to offer up a sacrifice before they joined battle, to render the gods propitious; or, after the battle was over, to give them thanks. Some chose to derive the word from botis, q. d. feris, "I strike." Idore on this word remarks, that the name botuis was given to those sacrifices which were offered before they marched to attack an enemy, (antequam ad hostem pergerent;) in contradistinction from vitilus, which were properly those offered after the victory.

Bota also signified the nearer forts of sacrifice, and vitilus the latter. A. Celsus says, that every priest differently, might sacrifice the botuis, but that the vitilus could be offered by none but the conqueror himself. But after all, we find these two words prominently used one for the other by ancient writers.

Were in many kinds of bofies as bofia once, which were pigs or lambs ten days old; bofia praecidantes, sacrifices offered the day before a solemn feast; bofia bidantes, sacrifices of sheep or other animals of two years old; bofia estimae, a sacrifice of the flower of the flock; bofia fecundantes, sacrifices offered after others which had exhibited some illomen; bofia ambatus, victims sacrificed after having been solemnly led round the fields at the ambatus; bofia ambusi, victims slain after the ambatus; bofia canineos or caviar, victims sacrificed every fifth year by the college of pontiffs, in which they offered the part of the tail called caviar; bofia prodigia, sacrifices in which the fire consumed all, and left nothing for the priests; bofia incontinentes, expiatory sacrifices; bofia ambages or ambigues, sacrifices of cows or sheep that had brought forth twins; bofia baratas, victims offered to predict future events from; bofia mediales, black victims offered at noon.

HOSTILITY, the action of an enemy, or a state of warfare. The word is Latin, hostitis, derived from the primitive bota, which signifies "enemy," and which, as we have seen, signifies "enemy." Hence bota, "enemy," botuis, "enemy forts," etc.

HOT-BEDS, in gardening, beds made with fresh horse-dung, or tanner's bark, and covered with glass as to defend them from cold winds.

By the skilful management of hot-beds, we may imitate the temperature of warmer climates; by which means, the seeds of plants brought from any of the countries within the torrid zone may be made to flourish even under the poles.

The hot-beds commonly used in kitchen-gardens, are made with new horse dung mixed with the litter of a stable, a few sea-coal ashes, which last are of service in continuing the heat of the dung. This should remain six or seven days in a heap; and being then turned over, and the parts mixed well together, it should be again cast into a heap; where it may continue five or six days longer, by which time it will have acquired a due heat. These hot-beds are made in the following manner: In some sheltered part of the garden, dig out a trench of a length and width proportionable to the frames you intend it for; and if the ground be dry, about a foot or a foot and a half deep; but if it be wet, not above six inches; then wheel the dung into the opening, observing to fill every part of it with a fork, and to lay it exactly even and smooth on every part of the bed, laying the bottom part of the heap which is commonly free from litter upon the surface of the bed, and if it be designed for a bed to plant out cucumbers to remain for good, you must make a hole in the middle of the place designated for each light about ten inches over, and fix deep, which should be filled with good fresh earth, threading in a stick to show the places where the holes are; then cover the bed all over with the earth that was taken out of the trench, about four inches thick, and put on the frame, letting it remain till the earth be warm, which commonly happens in three or four days after the bed is made, and then the plants may be placed in it. But if your hot-bed be designed for other plants, there need be no holes made in the dung; but after having smoothed the surface with a spade, you should cover the dung about three or four inches thick with good earth, putting on the frames and glass as before. In making these beds, care must be taken to settle the dung close with a fork; and if it be pretty full of large litter, it should be trod down equally on every part. During the first week or ten days after the bed is made, you should cover the glasses but lightly in the night, and in the day-time carefully rake them to let out the steam: but as the heat abates, the covering should be increased; and as the bed grows cold, new hot dung should be added round the sides of it.

The hot-bed made with tanner's bark is, however, much preferable to that described above, especially for all tender exotic plants and fruits, which require an even degree of warmth to be continued for several months, which cannot be effected with horse-dung.

The manner of making them is as follows: Dig a trench about three feet deep, if the ground be dry; but if it be wet, it must be above a foot deep at most, and must be raised two feet above the ground. The length must be proportioned to the frames intended to cover it; but it should never be less than ten or twelve feet, and the width not less than six. The trench should be bricked up round the sides to the above-mentioned height of three feet, and filled in the spring with the fresh tanners bark that has been lately drawn out of their vats and has lain in a round heap, for the moisture to drain out of it, only three or four days: as it is put in, gently beat it down equally with a dung-fork; but it must not be trodden, which would prevent its heating, by letting it too close: then put on the frame, covering it with glasses; and in about ten days or a fortnight it will begin to heat; at which time plunge your pots of plants or seed into it, observing not to tread down the bark in doing it. These beds will continue three or four months in a good temper of heat; and if you stir up the bark pretty deep, and mix a load or two of fresh bark with the old when you find the warmth decline, you will preserve its heat two or three months longer. Many other
The Europeans first became acquainted with this country in the year 1497, when Bartholomew Diaz, a Portuguese admiral, discovered the most southerly point of Africa now called the Cape of Good Hope, and by him Cape dos totos tormentos, or Cape of all Plagues, on account of the forms he met with in the neighbourhood; but John, then king of Portugal, having from the account of Diaz concluded that a passage to the East Indies was now discovered, changed the name to that of the Cape of Good Hope, which it still retains. In 1497, it was circumnavigated by Vasco da Gama, who made a voyage to India that way; however, it remained useless to Europeans till the year 1650, when Van Riebeeck a Dutch surgeon first saw the advantages that would accrue to the East India company in Holland from a settlement at such a convenient distance both from home and from India. The colony which he planted has ever since continued in the hands of the Dutch, has greatly increased in value, and is visited by all the European ships trading to the East Indies. See Good-Hope.

The country now policed by the Dutch is of pretty considerable extent, and comprehends that part of the African coast on the west called Terra de Nata; it is naturally barren and mountainous; but the industry of the Dutch hath overcome all natural difficulties, and it now produces not only a sufficiency of all the necessaries of life for the inhabitants, but also for the refreshment of all the Europeans who pass and repass that way.

The coast abounds in capes, bays, and roads. Thirty leagues to the east of the Cape of Good Hope, in S. Lat. 24° 27', is another Cape which runs beyond 33°, called by the Portuguese, who first doubled it, Cabo dos Aguilhas, or the Cape of Needles, on account of some strange variations in the magnetic needle observed as they came near it. Near this Cape is a flat shore, with plenty of fish; it begins in the west near a fresh-water river, and, extending 15 leagues in the main sea, ends in the east near Fish-bay. Cabo Falso, so called by the Portuguese, who returning from India milks the Cape of Good Hope, lies to the eastward between these two capes, about eight or nine leagues beyond that of Good Hope. Along the coasts, and on both sides of the Cape of Good Hope, are many fine bays. Twenty-seven leagues to the north-west is Seldonha bay, so named from a Portuguese captain shipwrecked on the coast. The largest and most commodious is Table Bay, on the south, and near the mountain of that name, six leagues in circumference, with four fathom water close to the beach. Opposite to this bay is Rethes Eylandt, or the island of Rabbits, in 34° 30' S. Lat. 67 leagues east from the Cape of Good Hope. Peter Both, in 1661, discovered a bay, which he named Uleefth, sheltered only from north winds, in which is a small island, and on the west a rivulet of fresh water extremely convenient for European mariners. Twenty-five or thirty leagues farther east, both discovered Marshal Bay, afterwards named by the Portuguese Senso Foraio. Next to this is Seno de Lago, from its resemblance to a lake. There are several roads in this bay, and an island called Ilha dos Catos. Cabo de S. Francisco, and Cabo dos Senso, are marked upon charts between these two bays. Near the latter of these capes is Cabo de Arceto, and the island Contento; and something more north-east is St Christopher’s river, called San Chirifovo, by the Portuguese, and by the Hotentots Naged. The country beyond this river was called by the Portuguese, who discovered it on the day of our Lord’s nativity, Terra de Natal. Between the Cape of Good Hope and Cabo dos Aguilhas are the Sweet, 4 Q 2, Salt,
The Europeans are at such a distance from Table-mountain, Devil's Tower, Lion's Head, and the Tiger-hills. The three first lie near Table bay, and surround Table-valley, where the Cape town stands. The cloud seems all the while undiminished, informs us, granite, which contains no heterogeneous parts, such as pitted shells, &c. nor any volcanic productions. The ground gradually rises on all sides towards the three mountains which lie round the bottom of the bay, keeping low and level only near the sea-side, and growing somewhat marshy in the Ithmus between False and Table Bays, where a fall rivulet falls into the latter. The marshy part has some verdure, but intermixed with a great deal of sand. The higher grounds, which, from the sea-side, have a patched and dreary appearance, are, however, covered with an immense variety of plants, among which are a prodigious number of shrubs, but scarce one or two species that deserve the name of trees. There are also a few small plantations wherever a little run of water moistens the ground. The ascent of Table-mountain is very steep and difficult, on account of the number of loose stones which roll away under the feet of the traveller. About the middle of the mountain is a bold, grand chasm, whose walls are perpendicular, and often impending rocks piled up in strata. Small rills of water ooze from crevices, or fall from precipices in drops, giving life to hundreds of plants and low shrubs in the chasm. The summit of the mountain is nearly level, very barren, and bare of soil; several cavities, however, are filled with rain water, or contain a small quantity of vegetable earth, from whence a few odoriferous plants draw their nourishment. Some antelopes, bowling baboons, solitary vultures, and toads, are sometimes to be met with on the mountain. The view from thence is very extensive and picturesque. The bay seems a small pond or basin, and the ships in it dwindled to little boats; the town under our feet, and the regular compartments of its gardens, look like the work of children.

Most accounts of this country which have been published mention a surprising phenomenon which is annually to be seen on the top of Table-hill from September to March; namely, a white cloud hovering on its stop, and called by sailors "the Devil's table-cloth." (See the article Cape-Hope.) This cloud is said by some to appear at first no bigger than a barley-corn, then increases to the size of a walnut, and soon after covers the whole top of the mountain. But, according to Mr. Kolben, it is never less, even on its first appearance, than the size of a large ox, often bigger. It hangs in several fleeces over the Table-hill and the Wind or Devil's-hill; which fleeces, at last uniting, form a large cloud that covers the summits of these two hills. After this has reeled for some time without change or motion, the wind bursts out suddenly from it with the utmost fury. The skirts of this cloud are white, but seem much more compact than the matter of common clouds; the upper parts are of a leaden colour. No rain falls from it, but sometimes it diffuses a great deal of humidity; at which times it is of a darker colour, and the wind blowing from it is broken, raging by fits of short continuance. In its usual state, the wind keeps up its first fury unabated for one, two, three, or eight days; and sometimes for a whole month together. The cloud seems all the while undiminished, though little fleeces are from time to time detached from it, and hurried down the sides of the hills, vanishing when they reach the bottom, so that during the form the cloud seems to be supplied with new matter. When the cloud begins to brighten up, these supplies fail, and the wind proportionably abates. At length, the cloud growing transparent, the wind ceases. During the continuance of these south-east winds, the Table-valley is torn by furious whirlwinds. If they blow warm, they are generally of short duration; and in this case the cloud soon disappears. This wind rarely blows till after sunset, and never longer than till towards midnight, though the cloud remains; but then it is thin and clear: but when the wind blows cold, it is a sure sign that it will last for some time, an hour at noon and midnight excepted; when it seems to lie still to recover itself, and then lets loose its fury anew.

The Europeans at the Cape consider the year as divided into two seasons, which they term monsoons. The wet monsoon or winter, and the dry one or summer. The first begins with our spring in March; the latter with September, when our summer ends. In the summer monsoons reign the south-east winds already mentioned; which, though they clear and render the air more healthy, yet make it difficult for ships outward bound to enter Table-bay. In the bad season, the Cape is much subject to fogs; and the north-west winds and rain make the inhabitants stay much at home. But there are frequent intermissions and many clear days till June and July; when it rains almost continually, and from thence till summer. The weather in winter is cold, raw, and unpleasant; but never more rigorous than autumn in Germany. Water never freezes to above the thickness of half a crown; and as soon as the sun appears, the ice is dissolved. The Cape is rarely visited by thunder and lightning, excepting a little near the turn of the seasons, which never does any hurt. During the continuance of the south-east winds which rage in summer, the sky is free of all clouds except that on the Table and Wind Hills already mentioned; but during the north-west winds, the air is thick, and loaded with heavy clouds big with rain. If the south-east winds would cease for any length of time, the air becomes sickly by reason of the sea-weeds driving ashore and rotting; hence the Europeans are at such times afflicted with head aches and other disorders: but, on the other hand, the violence of those winds subjects them to inflammations of their eyes, &c.

The natives of this country are called Hottentots, in their own language; a word of which it is vain to inquire the meaning, since the language of this country can scarce be learned by any other nation. The Hottentot language is indeed said to be a composition of the most simple and difjectable sounds, deemed by many the dexterity of speech, without human sound or articulation, resembling rather the noise of irritated turkeys, the chattering of magpies, hooting of owls, and depending
Hottentots depending on extraordinary vibrations, infections and clashing of the tongue against the palate. — If this account is true, however, it is obvious, that all the relations we have concerning the religion, &c. of the Hottentots derived from themselves, must fail to the ground, as nobody can pretend to understand a language in itself unintelligible. The manners and customs of those people, however, are easily observable, whether they themselves give the relation or not; and if their language is confinable to them, it is no doubt of a nature sufficiently wonderful.

Many accounts have been published concerning the extreme nastiness and filthy customs of the Hottentots; but from the observations of late travellers it appears, that these have either been exaggerated, or that the Hottentots (which is not improbable) have in some measure laid aside their former manners. Dr. Sparrman defcribes them in much less disgustful terms, and M. Vailant seems to have been charmed with their innocence and simplicity. According to the Doctor, these people are as tall as the generality of Europeans, tho' more slender in their persons, which he attributes to their scanty supply of food, and not accustomed to hard labour. The thing like that of an European who has the measure laid very low.

Many accounts have been given in exchange for a lamb: one species of this plant, growing about Goud's-rivier, is said to be so valuable, that no more than a thimble full of its powder is given in exchange for a lamb.

By the ointment of foot and grease stuck full of the powder of buckba, a smell is formed which defends the bodies of the Hottentots in a great measure from the action of the air; so that they require very few clothes, and in fact go almost quite naked. The only covering of the men consists of two leather straps, which generally hang down the back from the chine to the thighs, each of them in the form of an isosceles triangle, their points uppermost, and fastened to a belt which goes round their waste, their bafes not being above three fingers broad, so that the covering they form is extremely trifling. These straps have very little dreeing bestowed upon them, so that they make a rattling noise as the Hottentot runs along; and our author supposes that they may produce an agreeable coolness by fanning him. Besides this, the men have a bag or flap made of skin which hangs down before, and is fastened to the belt already mentioned. The hollow part of this item designed to receive that which with us modesty requires to be concealed; but being only fastened by a small part of its upper end to a narrow belt, in other respects hanging quite loose, it is but a very imperfect concealment; and when the wearer is walking, or otherwise in motion, it is none at all. They call with fat mixed up with a little foot. — "This (says Hottentos our author) is never wiped off; on the contrary, I never saw them use anything to clean their skins, excepting that when in greasing the wheels of their wagons, their hands were besmeared with tar and pitch, they used to get it off very easily with cow-dung, at the same time rubbing their arms into the bargain up to the shoulders with this colnotic; so that as the dust and other filth, together with their foamy ointment, and the sweat of their bodies must necessarily, notwithstanding it is continually wearing off, in some measure adhere to the skin, it contributes not a little to conceal the natural hue of the latter, and at the same time to change it from a brightumber-brown to a brownish-yellow colour, obscured with filth and nastiness." — The Doctor was enabled to discover the natural colour of the Hottentots by means of the nicety of some Dutch farmers wives, who had made their Hottentot girls wash and scour their skins, that they might be less filthy in looking after the children, or doing any other work that required cleanliness. Many of the coloufids, however, are of opinion, that this operation of washing is no improvement to the look of an Hottentot; but that their natural yellow is full as disagreeable as the black or brown colour of the ointment; and that the washed skin of a native of this country seems to be deficient in drefs, like shoes that want blacking. This the Doctor does not pretend to determine; though, whatever may be suppos'd deficient in look we should think, must be made up in cleanliness.

The Hottentots perfume their bodies, bedewing them all over with the powder of an herb, the smell of which is at once rank and aromatic, approaching to that of the poppy mixed with spices. For this purpose they use various species of the damia, called by them buckba, and which they imagine to be very efficacious in the cure of disorders. One species of this plant, growing about Goud's-rivier is said to be so valuable, that no more than a thimble full of its powder is given in exchange for a lamb.
Hottentots call this purè the Dutch name of *jackall*, it being almost always prepared of the skin of that animal, with the hairy side turned outwards.

The women cover themselves much more scrupulously than the men, having always two, and very often three coverings like aprons; though even these seem to be abundantly small for what we would term decency in this country. The outermost of these, which is the largest, measures only from about six inches to a foot in breadth. All of them are made of a skin well prepared and greased, the outermost being adorned with glass beads strung in different figures. The outermost reaches about half-way down the thighs, the middle about a third, or one half, and the third scarcely exceeds the breadth of the hand. The first is laid to be designed for ornament, the second as a defence for modesty, and the third to be useful on certain occasions, which, however, are much less troublesome to the Hottentot than to the European females. Our author, with great probability supposes, that it was the sight of this innermost apron which misled the reverend Jesuit Hackard, who, on his return to Europe, first propagated the stories concerning the natural vails or excrescences of the Hottentots. — A story was likewise commonly believed, that the men in general had but one testicle, and that such as were not naturally formed in this manner were artificially made so. But this our author likewise denies; and though he says that such an operation might have been formerly performed upon the males, yet it is not so now.

The other garments worn by the Hottentots are formed of a sheep's-skin with the woolly side turned inwards; this forming a kind of cloak, which is tied forwards over the breast: though sometimes, instead of a sheep's-skin, some smaller kind of fur is used as a material. In warm weather they let this cloak hang carelessly over their shoulders, so that it reaches down to the calves of the legs, leaving the lower part of the breast, stomach, and fore-part of the legs and thighs bare; but in cold weather they wrap it round them; so that the fore-part of the body is likewise pretty well covered by it as far as the knees: But as one sheep-skin is not sufficient for this purpose, they sew on a piece on the top at each side with a thong or sidegut. In warm weather they sometimes wear the woolly side outwards, but more frequently take off the cloak altogether, and carry it under their arm. This cloak, or *kroeff*, serves them not only for clothes, but bedding also; and in this they lie on the bare ground, drawing up their bodies so close, that the cloak is abundantly sufficient to cover them. — The cloaks used by the women differ little from those already described, excepting only that they have a long peak on them, which they turn up; forming it with a little hood or pouch, with the hairy side inwards. In this they carry their little children, to which the mother's breasts are now and then thrown over the shoulders; a custom common among some other nations, where the breasts of the females, by continual want of support, grow to an enormous length. The men commonly wear no covering on their heads, though our author says he has seen one or two who wore a greatly night-cap made of skin with the hair taken off. Those who live nearest the colonies have taken a liking to the European hats, and wear them flouched all round, or with only one side turned up. The women also frequently go bare-headed; though they sometimes wear a cap made in the shape of a short truncated cone. This appears to be the imitation of some animal's stomach, and is perfectly blacked by foot and fat mixed up together. These caps are frequently prepared in such a manner as to look fraggly; others have the appearance of velvet; and in our author's appearance are not inelegant. Over this they sometimes wear an oval wreath or kind of crown made of a buffaloe's hide, with the hair outermost. It is about four fingers breadth in height, and surrounds the head so as to go a little way down upon the forehead, and the same depth on the neck behind, without covering the upper part of the cap above described. The edges of this wreath, both upper and under are always smooth and even; each of them set with a row of small shells of the *cypera* kind, to the number of more than 30, in such a manner, that being placed quite close to one another, their beautiful white enamel, together with their mouths, are turned outwards. Between two rows of these shells run two others parallel, or else waved and indented in various ways. The Hottentots then adorn their foreheads in the same manner as other savages do: though the latter are sometimes marked with a black streak of foot; at others, though very rarely, with a large spot of red lead; of which latter, on festivals and holidays, they likewise put a little on their cheeks. The necks of the men are bare, but those of the women are ornamented with a thong of undressed leather, upon which are strung eight or ten shells. These, which are about the size of beans, have a white ground, with large black spots of different sizes; but as they are always made use of in a burnished state, the Doctor is uncertain whether they be of that kind which is received in the Systema Naturae under the name of *nerita alida*, or *exuvia*. These shells are sold at an enormous price, no less than a sheep for each; and it is said that they come from the most distant coast of Caffraria. Both men and women are very fond of European beads, particularly the blue and white ones of the size of a pea; of which they tie several rows round the middle, and next to the girdles which hold the coverings above mentioned. Besides their ornaments, they use rings on their arms and legs; most of them made of thick leather straps generally cut in a circular shape; which, by being bent and held over the fire, are rendered tough enough to retain the curvature that is given them. From these rings it has been almost universally believed, that the Hottentots wrap guts about their legs in order to eat them occasionally. The men wear from one to five or six of these rings on the arms just above the wrist, but seldom on their legs. The matrons of a higher rank have frequently a considerable number of them both on their arms and legs, especially on the latter; so that they are covered with them from the feet up to the knees. These rings are of various thicknesses, from that of a goose-quill to two or three times that size. Sometimes they are made of pieces of leather forming one entire ring; so that the arms and feet must be put through them when the wearer wishes to put them on. They are strung upon the legs, small and great, without any nicety; but are so large, that they shake and get twisted when the person walks. Rings of iron or copper, but especially of brass, of the size of a goose
Hottentot goats-quills, are considered as more genteel than those of leather. However, they are sometimes worn, along with the latter, to the number of six or eight at a time, particularly on the arms. The girls are not allowed to use any rings till they are marriageable. The Hottentot seldom wear any shoes; but such as they do make use of are of the same form with those worn by the African peasants, by the Esatohniens, and Livonian, as well as by some Finns; for that it is impossible to deny whether they are the invention of the Dutch or the Hottentots themselves. They are made of undressed leather, with the hairy side outward with out any other preparation than that of being beat and moistened. To be a thick and stout hide, that of a buffaloe, it is kept for some hours in cow-dung, which renders it besides very soft and pliable. Some kind of grease is afterwards used for the same purpose. The shoes are then made in the following manner. They take a piece of leather, of a rectangular form, something longer and broader than the foot of the person for whom the shoes are intended; the two foremost corners are doubled up together, and sewed down, so as to cover the fore-part of the foot; but this seam may be avoided, and the shoes made much nearer at the toes. By fitting immediately over them a cap taken from the membrane in the knee-joint of the hind-leg of some animal. In order to make this piece of skin or leather rise up to the height of an inch on both sides of the foot, and close it in neatly, it is pierced with holes at small distances all round the edge, as far as the hind quarters; and through these holes is passed a thong, by which the rim is drawn up into gaters. In order to make strong hind quarters, the back part of the piece of leather is doubled inward, and then raised up and prefed along the heel. The ends of the thong or gathering string are then threaded on both sides through the upper edge of the hinder-quarters to the height of about two inches; they are then carried forwards, in order to be drawn through two of the abovementioned holes on the inside of each rim. Lastly, they are tied over the instep, or if it be thought necessary to tie the shoe still farther, they are caried crofs-ways over the instep, and so downwards under the thong, which comes out from the hind-quarters then upwards again over the ankle, and even round the leg itself, if the wearer chooses. Shoes of this kind are not without their advantages: they fit as neat upon the foot as a stocking, and at the same time preserve their form. They are easily kept soft and pliable by constantly warming them; or at any time they should become somewhat hard, this is easily remedied by beating and greasing them. They are extremely light and cool, by reason that they do not cover so much of the foot as a common shoe. They wear very well, as they are without any seam, and the toes of the shoes are both tough and yielding. These field shoes, as they are called, being made of almost raw leather, are much more durable than those of tanned leather which are burnt up by the African suns, and slip and roll about in them; being also very ready to be torn in a rocky soil which is not the cafe with the others. The Doctor is of opinion, that these shoes would be particularly useful to sailors.

The Huts of the Hottentots are built exactly alike; and we may readily give credit to our author when he tells us, that they are done in a style of architecture Hottentots which does not a little contribute to keep envy from infiltrating itself under their roofs. Some of these huts are circular, and others of an oblong shape, resembling a round bee-hive or vault; the ground plot being from 18 to 24 feet in diameter. The highest are so low, that it is scarce ever possible for a middle-sized man to stand upright even in the centre of the arch; but our author neither the lowest thereof nor that of the door, which is but just three feet high, can perhaps be considered as any inconvenience to a Hottentot, who finds no difficulty in flopping and crawling upon all fours, and is at any time more inclined to lie down than to stand. The fire-place is in the middle of each hut, by which means the walls are not so much exposed to danger from fire. From this situation of the fire-place also the Hottentots derive this additional advantage, that they can all sit or lie in a circle round it, enjoying equally the warmth of the fire. The door, low as it is, alone lets in day-light, or lets out the smoke; and so much are these people accustomed to live in such smoky mansions, that their eyes are never affected by it in the least, nor even by the megritic vapour of the fuel, which to Europeans would be certain death.

The frame of the arched roof is composed of slender rods or sprays of trees. These being previously bent into a proper form, are laid, either whole or pieced, some parallel to one another, others crosswise; after which they are strengthened by binding others round them in a circular form with withes. All these are taken principally from the Caffart contsiber, which grows plentifully in this country near the rivers. Large mats are then placed very neatly over this lattice work, so as perfectly to cover the whole. The aperture which is left for the door is closed occasionally by a skin or piece of matting. These mats are made of a kind of kane or reed in the following manner. The reeds being laid parallel to one another, are fastened together with sinews or catgut, or some kind of catgut which they have had an opportunity of getting from the Europeans; so that they have it in their power to make them as long as they please, and as broad as the length of the reeds, which is from fix to ten feet. The colomists make use of the same kind of matting, next to the tiles of their waggons, to prevent the fall-cloth from being rubbed and worn, and likewise to help to keep out the rain.

In a croud, or Hottentot village, the huts are most commonly disposed in a circle, with the doors inwards: by which means a kind of court-yard is formed, where the cattle are kept at nights. The milk, as soon as taken from the cow, is put to other milk which is curdled, and kept in a leather sack with the hairy side inwards as being the more cleanly; so that thus the milk is never drunk sweet. In some northern districts, where the land is dry and parched, both Hottentots and colonists are shepherds. When an Hottentot has a mind to shelter his dwelling, he lays all the mats, skins, and rods, of which it is composed, on the backs of his cattle, which, to a stranger, makes a monstrous, unwieldy, and even ridiculous appearance. There is a species of Hottentotnattifh or ftriftifmen who dwell in the woody and montaintious parts, and subjeft entire bv plunder. They are poisoned arows,
The Hottentots rows which they shoot from bows about a yard long and an inch in thickness in the middle, very much pointed at both ends. Dr. Sprarman does not know the wood of which they are made, but thinks that it is not very elastic. The firings were made, some of fisews, and others of a kind of hemp, or the inner bark of some vegetable: but most of them in a very doughty manner. The arrows are about a foot and an half long, headed with bone, and a triangular bit of iron; having also a piece of quill bound on very strongly with fisews, about an inch and an half from the top, in order to prevent it from being easily drawn out of the fleth. The whole is lasty covered over with a very deadly poison of the confidence of an expert. Their quivers are two feet long and four inches in diameter; and are tipped by our author to be made of the branch of a tree hollowed out, or more probably of the bark of one of the branches taken off whole, the bottom and cover being made of leather. It is daubed on the outside with an uncouth substance which grows hard when dry, and is lined about the aperture with the skin of the yellow serpent, tipped to be the most deadly in all that part of the world. The poison they make use of is taken from the most venemous serpents; and, ignorant as the Hottentots are, they all know that the poison of serpents may be swallowed with safety. See the article Boshiemen.

In the year 1779, Lieutenant William Paterson, who took a long and dangerous excursion, from the Cape along the easterf side of the continent, discoered a new tribe of Hottentots, whole living, he says is in the highest degree wretched, and who are apparently the dirtieft of all the Hottentot tribes. Their drefs is compos'd of the skins of seals and jackals the fleth of which animals they feed uppon. If a grampus happen to be cast ashore, they remove their huts to the place, and feed upon the carcases as long as it lasts, though perhaps it may be half rotten by the heat of the weather. They besmear their skins with the oil; by which means they smell fo exceedingly rank that their approach may be thus perceived before they come in sight. Their huts, however, are much superior to thofe of the southern Hottentots already describ'd; being higher, thatched with gras, and furnished with ftools made of the back-bones of the grampus. They dry their fish in the fun; as the lieutenant found feveral kinds of fish near their huts fupended from poles, for this purpofe. He found also feveral aromatic plants which they had been drying.

With refpeft to the refligion of the Hottentots, it does not appear that they have any. On being question'd on the fubject of a Creator and Governor of the universe, they anfwer that they know nothing of the matter; nor do they feem willing to receive any infuffion. All of them, however, have the moft firm belief in the powers of magic; from whence it might be inferred that they believe in an evil being analogous to what we call the devil; but they pay no religious worship to him, though from this source they derive all the evil that happens, and among thofe evils they reckon cold, rain, and thunder. So monoftrously ignorant are they, that many of the colonifl's affifed Dr. Sprarman, that their Bohirfmen would abuse the thunder with many opprobrious epithets and threaten Hottentots to affult the flashes of lightning with old shoes, or anything that comes first to hand. Even the moft intel- ligent among them could not be convinced by all the arguments our author could use, that rain was not always an evil, and that it would be an unhappy circum- fance if it were never to rain. "A maxim (fays he), from a race of men in other refpects really endowed with fonnefens, and frequently with no small degree of penetration and cunning, ought, methinks, to be considered as an infelible religious or fuperflitious notion entertained by them from their infancy, rather than as an idea taken up on due deliberation and confulent conviction." As the Hottentots have so strong a belief in the powers of magic, it is no wonder that they have abundance of witches and conjurers among them. These will readily undertake any thing, even to put a ftop to thunder and rain, provided they be well paid for their pains; and if it happen to thunder or rain longer than the time they promised, they have always for an excuse, that a more powerful conjurer has put a ftop to their incantations. Many of the Hottentots believe that all disorders incident to the human body are cured by magic. The wizards are fond of encouraging this idea; but at the fame time take care to employ both external and internal remedies. Among the former may be reckoned a cure performed upon Captain Cook in some of the South Sea islands, viz. that of pinching, cutting, and kneading the whole body of the patient. To this, however, the Hottentot physicians add that of pretending to fuck out a bone from some part of the patient's body. After this it sometimes happens that the fick person is relieved, and sometimes not. In the latter cafe the operation is repeated; and if he dies, his friends lament that he was bewitched beyond the power of any one to affilt him. These conjurers appear to be poifon'd of considerable flight of hand. Our author was informed by a colonifl, that when he was a child, and playing with abone of an ox which he drew as a cat, it appeared to his great affo- nishment to be sucked out of a fick person's back by a wizard; and as far as he could remember, the patient recovered foon after. These pretentions of the wizards sometimes render them liable to perfeotions; and there is an infufiance of a chief named Falos, who ordered a general massacre among them, in hopes of cutting off the person who he believed had bewitched himself, and afflicted him with fere eyes.

The superflition of the Hottentots never operates in the way of making them afraid in the dark. They feem, however, to have fonie ideas of a future fate, as they reproach their friends, when dead with leaving them fo soon; at the fame time admonifhing them from henceforth to demean themselves properly: by which they mean, that their deceased friends should not come back again and haunt them, nor allow themselves to be made ufe of by wizards to bring any mischief on thofe who survive them.

There is a genus of infects (the mantir) which, it has been generally thought, the Hottentots worship; but our author is fo far from being of this opinion that he tells us they have more than once catch'd several of them for him, affilting him in flicking pins through
through them as he did through other insects. "There is (says he), however, a diminutive species of this insect, which some think it would be a crime, as well as very dangerous, to do any harm to: but this we have no more reason to look upon as any kind of religious worship, than we have to consider in the same light a certain superstitious notion prevalent among many of the more simple people in our own country (Sweden), who imagine that their fins will be forgiven them, if they set a cock-chafer on its feet that has happened to fall on its back. The moon, according to Kolbe, receives a kind of adoration from the Hottentots; but the fact is, that they merely take the opportunity of her beams, and at the same timeshipping them, if they set a cock-chafer on its feet that has
have no many of the more simple people in our own country
and parading on the
cing; and
happened
fect,
 our author, are generally freethinkers, who
have neither religion nor superstition of any kind.
Lieutenant Paterson has given the following account of the Caffires, a nation whom no European but himself has ever seen, and who inhabit the country to the northeast of the Cape as far down as 31° South Latitude.
The men are from five feet ten inches to six feet high, and well proportioned; and in general manifest great courage in attacking lions or other wild beasts. The nation, at the time he visited them, was divided into two parties; one to the northward, commanded by a chief named Ghatha Bea, or Tambahthie, which latter appellation he had obtained from his mother, a woman of an Hottentot tribe named Tambukis. This man was the son of a chief named Pharao, who died about three years before, and left two sons Cha Cha Bea, and another named Djirika, who claimed the supreme authority on account of his mother being of the Caffire nation. This occasioned a contest between the two brothers, in the course of which Cha Cha Bea was driven out of his territories with a great number of his party: after which he took up his residence at a place named Khouts, where he had an opportunity of entering into an alliance with the Bohlies-men.—The Caffires are of a jet black colour, their eyes large, and their teeth as white as ivory. The clothing of both sexes is nearly the same: consisting entirely of the hides of oxen, which are made as pliant as cloth. The men wear tails of different animals tied round their thighs, pieces of brafs in their hair, and large rings of ivory on their arms: they are likewise adorned with the hair of lions, feathers fastened on their heads, &c. They use the ceremony of circumcission, which is usually performed upon them when they are nine years of age. They are very fond of dogs, which they exchange for cattle, and still exchange two bullocks in exchange for one dog which pleases them. They are expert in throwing lances, and in time of war use shields made of the hides of oxen. Throughout the day the men occupy themselves in hunting, fighting, or dancing; the women being employed in the cultivation of their gardens and corn. They feem not to be deficient of the knowledge of agriculture, as they cultivate several vegetables which do not natural-
Hottentots and sometimes become great favourites with their masters, who give them very good clothing, but oblige them to wear neither shoes nor stockings, referring these articles to themselves. The slaves are chiefly brought from Madagascar, and a little tradeflax annually goes from the Cape thither on that trade; there are, however, besides them, a number of Malays and Bengalese, and some negroes. The colonists themselves are for the greatest part Germans, with some families of Dutch, and some of French Protestants. The character of the inhabitants of the town is mixed. They are industrious, but fond of good living, hospitable, and sociable; though accustomed to hire their apartments to strangers for the time they touch at this settlement, and used to be complimented with rich presents of stuffs, &c. by the officers of merchant ships. They have no great opportunities of acquiring knowledge; there being no public schools of note at the Cape; their young men are therefore commonly sent to Holland for improvement, and their female education is too much neglected. A kind of dislike to reading, and the want of public amusements, make their conversation uninteresting, and too frequently turn it upon scandal, which is commonly carried to a degree of inveteracy peculiar to little towns. The French, English, Portuguese, and Malay languages, are very commonly spoken, and many of the ladies have acquired them. This circumstance, together with the accomplishments of singing, dancing, and playing a tune on the lute, frequently united in an agreeable person, make amends for the want of refined manners and delicacy of sentiment. There are, however, among the principal inhabitants persons of both sexes, whose whole deportment, extensive reading, and well-cultivated understanding, would be admired and distinguished even in Europe. Their circumstances are in general easy, and very often affluent, on account of the cheap rate at which the necessaries of life are to be procured; but they seldom amass such prodigious riches here as at Batavia; and I was told the greatest private fortune at the Cape did not exceed 100,000 dollars, or about 22,500 l. sterling.

"The farmers in the country are very plain hospitable people; but those who dwell in the remotest settlements seldom come to town, and are said to be very ignorant: This may be easily conceived, because, they have no better company than Hottentots, their dwellings being often several days journey aunder, which must in a great measure prejudice all intercourse. The vine is cultivated in plantations within the compass of a few days journey from the town; which were established by the first colonists, and of which the ground was given in perpetual property to them and their heirs. The company at present never part with the property of the ground, but let the surface to the farmer for an annual rent, which, though extremely moderate, being only 25 dollars for 60 acres, yet does not give sufficient encouragement to plant vineyards. The ditfants, therefore chiefly raise corn and rear cattle; many, of the settlers entirely follow the latter branch of rude employment, and some have very numerous flocks. We were told there were two farmers who had each 5000 sheep, and oxen in proportion; and several who possessed 6000 or 8000 sheep, of which they drive great droves to town every year: but lions and buffaloes, and the fatigue of the journey, destroy numbers of their cattle before they can bring them so far. They commonly take their families with them in large waggons covered with linen or leather, spread over hoops, and drawn by 8, 10, and sometimes 12 pair of oxen. They bring butter, mutton-tallow, the skin and skins of sea-cows (hippopotamus), together with lion and rhinoceros' skins to sell. They have several foveaux, and commonly engage in their service several Hottentots of the poorer sort, and (as we were told) of the tribe called Boshiesmen, Boschehens, or Boshmen, who have no cattle of their own, but commonly subsist by hunting, or by committing depredations on their neighbours. The opulent farmers set up young beginners by intrusting to his care a flock of 400 or 500 sheep, which he leads to a distant spot, where he finds plenty of good grass and water; the one-half of all the lambs which are yeamed fall to his share, by which means he soon becomes as rich as his benefactor.

"Though the Dutch company seem evidently to discourage all new settlers, by granting no lands in private property; yet the products of the country have of late years sufficed not only to supply the islands of France and Bourbon with corn, but likewise to furnish the mother-country with several ship-loads. These exports would certainly be made at an earlier rate than at present, if the settlements did not extend so far into the country, from whence the produce must be brought to the Table-bay by land-carriage, on roads which are almost impassable. The intermediate spaces of uncultivated land between the different settlements are very extensive, and contain many spots fit for agriculture; but one of the chief reasons why the colonists are so much divided and scattered throughout the country, is to be met with in another regulation of the company, which forbids every new settler to establish himself within a mile of another. It is evident, that if this settlement were in the hands of the commonwealth, it would have attained to a great extent; and, a degree of opulence and splendour of which it has not the least hopes at present: but a private company of East-India merchants find their account much better in keeping all the landed property to themselves, and tying down the colonists, left he should become too great and powerful.

"The wines made at the Cape are of the greatest variety possible. The best, which is made at M. Vander Spy's plantation of Constanlia, is spoken of in Europe more by report than from real knowledge; 300 leagues (or pipes) at the utmost are annually railed of this kind, and each league falls for about 50 l. on the spot. The wines from which this is made were originally brought from Shiraz in Persia. Several other forts grow in the neighbourhood of that plantation, which produce a sweet rich wine, that generally pales for genuine Constantia in Europe. French plants of burgundy, mulcace, and Frontignac, have likewise been tried, and have succeeded extremely well, sometimes producing wines superior to those of the original soil. An excellent dry wine, which has a slight agreeable tannins, is commonly drank in the principal families, and is made of Madeira vines transplanted to the Cape. Several low forts, not entirely disagreeable, are raised in great plenty, and sold at a very cheap rate; so that the
HOTTINGER (John Henry), born at Zurich in Switzerland in 1620, professed the Oriental languages at Leyden, and was esteemed by all his learned colleagues. He was drowned, with part of his family, in the river Lemi, in the year 1667. He wrote a prodigious number of works; the principal of which are, 1. Exercitationes Anti-Marianae de Pentateuche, Samaritano, 4to; in which he defends the Hebrew text against father Murin. 2. Historia Orientalis, 4to. 3. Bibliothecarum quattuorpartitum. 4. Thesaurus Philologiae Sacrae et Scripturarum, 4to. 5. Historia Ecclesiastica. 6. Promptuarium, sive Bibliotheca Orientalis, 4to. 7. Differtationes miscellaneous, &c.

HOTTOMIA, water-violet: A genus of the monogynia order, belonging to the pentandria class of plants; and in the natural method ranking under the 21st order, Precie. The corolla is salver-shaped; the stamens are placed in the tube of the corolla; and the capsule is unilocular. There is but one species, viz. the palustris, with a naked flask. It grows naturally in the standing waters in many parts of England. The leaves, which are for the most part immersed in water, are finely winged and flat like most of the sea-plants; and at the bottom have two or three whorls of purplish flowers. It may be propagated in deep standing waters in many directions to be seated between two branches of the river Tamar, and found in the works of Buffon, Edelink, and Drevet: it is to be taken into the pack. That the pack may not, however, be disturbed, they will soon propagate themselves in great abundance.

HOUSWORTHY, a large town of Devonshire, feated between two branches of the river Tamar, having a good market town for corn and provisions. W. Long. 4. 42. N. Lat. 50. 50. 30.

HOUND. See CANIS, BLOOD-HOUND, or GREY-HOUND.

Training of Hounds. Before we speak of the methods proper to be used for this purpose, it will be necessary to point out the qualities which sportsmen desire to meet with in these animals. It is generally understood, that hounds of the middle size are the most proper, it being remarked, that all animals of that description are stronger than either of smaller size; and at very large. The shape of the hound ought to be particularly attended to; for if he be not well proportioned, he can neither run fast nor do much work. His legs ought to be straight, his feet round, and not very large; his shoulders back; his breast rather wide than narrow; his chest deep, his back broad, his head small, his neck thin; his tail thick and bushy, and if he carry it well so much the better. None of those young hounds which are out at the elbows, or such as are weak from the knee to the foot, should ever be taken into the pack. That the pack may look well, it is proper that the hounds should be as much as possible of a size; and if the animals be handsome at the same time, the pack will then be perfect. It must not, however, be thought, that this contributes any thing to the goodness of a pack; for very unhandome packs, consisting of hounds entirely different in size and colour, have been known to afford very good sport. It is only necessary that they should run well together; to which indeed an uniformity in
Hound.

size and shape would seem to contribute in some degree. The pack that can run ten miles, or any other considerable space, in the shortest time, may be said to go fastest, though the hounds taken separately might be considerably inferior to others in swiftness. A pack of hounds, considered in a collective body, go fast in proportion to the excellence of their noses and the head they carry. Packs which are composed of hounds of various kinds famed run well. When the packs are very large, the hounds are famed sufficiently hunted to be good; twenty or thirty couple therefore, or at most forty, will be abundantly sufficient for the keenest sportman in the country, as thus he may be enabled to hunt three or even four times a week. The number of hounds to be kept, must, however, in a considerable degree, depend on the strength of the pack and the country in which you hunt. They should be left at home as famed as possible; and too many old hounds should not be kept. None ought to be kept above five or six feasons, though this also is somewhat uncertain, as we have no rule for judging how long a pack will last.

In breeding of hounds, considerable attention ought to be paid to the dog from whom you breed. All such are to be rejected as have a tender nose, as are babbler or fritters. An old dog should never be put to an old bitch; nor should any attempts be made to cross the breed unless in a proper and judicious manner. Mr. Beckford informs us that he has seen fox-hounds bred out of a Newfoundland dog and fox-hound bitch; the whelps were monstrously ugly, and had other bad qualities besides. The cross must likely be of service to a fox-hound is the beagle. The reason of crossing the breeds sometimes is, that the imperfections of one may sometimes be remedied by another. The months of January, February, and March, are the best for breeding; late puppies seldom thrive. After the females begin to grow big with young, it will not be proper to let them hunt any more, or indeed to remain for a much longer time in the kennel. Sometimes these animals will have an extraordinary number of whelps. Mr. Beckford informs us that he has known a bitch have 15 puppies at a litter; and he affures us, that a friend of his informs him that a hound has bred 21, all of them alive. In these cases it is proper to put some of the puppies to another bitch, if you want to keep them all; but if any are destroyed, the best coloured ought to be kept. The bitches should not only have plenty of flesh, but milk also; and the puppies should not be taken from them till they are able to take care of themselves: their mothers will be relieved when they learn to lap milk, which they will do in a short time. After the puppies are taken away from their mothers, the litter should have three purging balls given them, one every other morning, and plenty of whey the intermediate day. If a bitch bring only one or two puppies, and you have another that will take them, by putting the puppies to her, the former will soon be fit to hunt again. She should, however, be first physic’d, and it will also be of service to anoint her dogs with brandy and water.

Whelps are very liable to the distemper to which dogs in general are subject, and which frequently makes great havoc among them at their walks; and this is supposed by Mr. Beckford to be owing to the little care that is taken of them. "If the distemper (fays he) once get among them, they must all have it: yet notwithstanding that, as they will be constantly well fed, and will live warm (in a kennel built on purpose), I am confident it would be the saving of many lives. If you should adopt this method, you must remember to use them early to go in couples: and when they become of a proper age, they must be walked out often; for should they remain confined, they would neither have the health, shape, or understanding, which they ought to have. When I kept hounds, I bred up some of the puppies at a distant kennel; but having no servants there to exercise them properly, I found them much inferior to such of their brethren as had the luck to survive the many difficulties and dangers they had undergone at their walks; these were afterwards equal to any thing, and afraid of nothing; whilst those that had been nursed with so much care, were weakly, timid, and had every disadvantage attending private education. I have often heard as an excuse for hounds not hunting a cold front, that they were too ill-bred; this is not what that means: but this I know, that hounds are frequently too ill-bred to be of any service. It is judgment in the breeder, and patience afterwards in the huntsman, that makes them hunt.

"When young hounds are first taken in, they should be kept separate from the pack; and as it will happen at a time of the year when there is little or no hunting, you may easily give them up one of the kennels and graze court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done. "When young hounds are first taken in, they should be kept separate from the pack; and as it will happen at a time of the year when there is little or no hunting, you may easily give them up one of the kennels and graze court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done. Dogs must not be rounded at the time they have to eat, they are not necessary to them for the meat and grass court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done. Dogs must not be rounded at the time they have to eat, they are not necessary to them for the meat and grass court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done. Dogs must not be rounded at the time they have to eat, they are not necessary to them for the meat and grass court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done. Dogs must not be rounded at the time they have to eat, they are not necessary to them for the meat and grass court adjoining. Their play frequently ends in a battle; it therefore is left dangerous where all are equally matched.—If you find that they take to it, that is done.

When a feeder hears the hounds quarrel in the kennel, he halloos to them to stop them; he then goes in among them, and takes every hound he can come near. How much more reasonable, as well as efficacious, would it be, were he to see which were the combatants before he speaks to them. Punishment would then fall, as it ought, on the guilty only. In all packs there are some hounds more quarrelsome than the rest; and it is to them we owe all the mischief that is done. If you find that a hound has the luck to be with those that have the misfortune to be quarrelsome, it may be prudent to break their holders; for since they are not necessary to them for the meat they have to eat, they are not likely to serve them in any good purpose. Young hounds should be fed twice a day, as they seldom take kindly to the kennel meat at first, and the distemper is most apt to seize them at this time. It is better not to round them till they are thoroughly settled; nor should it be put off till the hot weather, for then they would blerd too much. It may be better perhaps to round them at their quarters, when about six months old; should it be done sooner, it would make their ears suck up. The tailing of them is usually done before they are put out; it might be better, perhaps, to leave it till they are taken in. Dogs must not be rounded at the time they have the distemper upon them, as the loss of blood would weaken them too much.
Hound. are always in better order; besides it is absolutely necessary if you hunt late in the fall, or your pack will be very short for its first operation, however does not always succeed; it will be necessary therefore to employ a skillful person, and one on whom you can depend; for if it be ill done, though they cannot have puppies, they will go to heat notwithstanding. They should be kept low for several days before the operation is performed, and must be fed on thin meat for some time after.

It is impossible to determine how many young hounds ought to be bred in order to keep up the pack, as this depends altogether on contingencies. The number of one year must be supplied by the next; but it is probable, that from 30 to 35 couple of old hounds and from eight to twelve couple of young ones, will answer the purpose where no more than 40 couple are to be kept. A considerable number, however, ought always to be bred; for it is undoubtedly, and from eight to twelve, hounds ought to have their couples left; but this is very dangerous for both parties. the fake of consistence, coupled together when you can avoid it. As young Beckford you have plenty of foxes, and they should be uncoupled by a few at a time, and pleased with a ram in the nature of the young ones; and two dogs as are particularly blooded though the time is uncertain, as it depends on the nature of the country in which they are. In corn countries hunting may not be practicable till the corn is cut down; but you may begin sooner in woods, and at any time in woodlands. If (says Mr Beckford) you have plenty of foxes, and can afford to make a sacrifice of some of them for the sake of making your young hounds steady, take them first where you have least riot, putting some of the steadfastness of old hounds among them. If in such a place you are fortunate enough to find a litter of foxes, you may assure yourself you will have but little trouble with your young hounds afterwards.—If, owing to a scarcity of foxes, you should find your hounds at harve., let them by no means have the blood of her; nor, for the sake of constancy, give them much encouragement. Hare-hunting has one advantage; hounds are chiefly in open ground, where you can easily command them, but notwithstanding all these good things, if foxes are not to be had, should be rather recommended to you than not. Frequently halloowing is of use with young hounds, it keeps them forward, prevents the dogs from falling into mischief, and hinders them from hunting after the rest. The observer therefore that a fox is seen and halloowed, the better. By no means, however, approve of much halloowing to old hounds; though it is true that there is a time when halloowing is of use, a time when it does hurt, and a time when it is perfectly indifferent: but long practice and great attention to hunting can only teach the application.

Hounds at their first entrance cannot be encouraged too much. When they are become handy, love a scent, and begin to know what is right, it will then be soon enough to chasse them for what is wrong; in which case one severe beating will have a great deal of trouble. When a hound is flagged, the whipper-in should make use of his voice as well as his whip. If any be very unsteady, it will not be amiss to send them out by themselves when men go out to exercise their horses. If you have hares in plenty, let some be found sitting and turned out before them; you will find that the most ristous will not run after them. If you
tend them to be steady from deer, they should often see deer, and then they will not regard them; and it after a probation of this kind you turn out a cub before them with some old hounds to lead them on, you may assure yourself they will not be unsteady long.

It is proper to put young hounds into the pack when they flop to a scent, become handy, know a rate, and flop easily. A few only are to be put to the pack at a time; and it is not advisable even to begin this till the pack have been out a few times by them selves, and “are gotten well in blood.” They should be well in flesh when you begin to hunt; the ground being generally hard at that time, so that they are liable to be shaken.—By hounds being handy, our author means their being ready to do whatever is required of them; and particularly, when eafit, to turn eafily which way the huntman pleases.

Mr. Beckford begins to hunt with his young hounds in August. The huntman in the preceding months keeps his old hounds healthy by giving them proper exercise, and gets his young hounds forward; and for this purpose nothing answers so well as taking them frequently out. The huntman should go along with them, get frequently off his horse, and encourage them to come to him; too much restraint will frequently incline the hounds to be riotous. Our author frequently walks out his hounds among sheep, hares, and deer. Sometimes he turns down a cat before them, which they kill; and when the time of hunting approaches he turns out young foxes or badgers; taking out some of the most steady of his old hounds to lead on the young ones. Small covers and furze-brakes are drawn with them to ufe them to a helio, and to teach them obedience. If they find improper game and hunt it, they are stopped and brought back; and as long as they will flop at a rate, they are not to be chastized. At such times as they are taken out to air, the huntman leads them into the country in which they are designed to hunt; by which means they acquire a knowledge of the country, and cannot mis their way home at any time afterwards. When they begin to hunt, they are first brought into a larger cover of his own which has many ridings cut in it; and where young foxes are turned out every year on purpose for them. After they have been hunted for some days in this manner, they are sent to more distant covers, and more old hounds added to them. There they continue to hunt till they are taken into the pack, which is seldom later than the beginning of September; for by that time they will have learned what is required of them, and seldom give much trouble afterwards. In September he begins to hunt in earnest; and after the old hounds having killed a few foxes, the young ones are put into the pack, two or three couples at a time, till all have hunted. They are then divided; and as he seldom has occasion to take in more than nine or ten couples, one half are taken out one day, and the other the next, till they are steady.

To render fox-hunting complete, no young hounds should be taken into the pack the first season;—it is requisite too expensive for most sportsmen. The pack should consist of about 40 couples of hounds, that have hunted one, two, three, four, or five seasons. The young pack should consist of about 20 couples of young hounds, and an equal number of old ones. They should have a separate establishment, and the two kennels should not be too near one another. When the season is over the bulk of the young hounds should be taken into the pack, and the draught of old ones exchanged for them. Many must be bred to enable a sportsman to take in a couple of young hounds every season. It will always be easy to keep up the number of old hounds; for when your own draft is not sufficient, drafts from other packs may be obtained, and at a small expense. When young hounds are hunted together for the first season, and have not a sufficient number of old ones along with them, it does more harm than good.

Kennel for Hounds. See Kennel.

HOUNSLOW, a town of Middlesex, 10 miles from London. It is situated on a heath of the same name; and belongs to two parishes, the north side of the street to Heston, and the south side to Felworth. It is situated on the edge of a heath of the same name, and near it are powder-mills. It has fairs on Trinity-Monday, and Monday after September 29. Here is a charity-school and a chapel. In this place was formerly a convent of mendicant friars, who by their institution, were to beg alms for the ransom of captives taken by the infidels.—The heath is noted for robberies and horse-races.

HOU-QUANG, a province of China, occupying nearly the centre of the empire; the river Yang-tse-kiang traverses it from west to east, and divides it into two parts, the northern and southern. This province (the greater part of which is level, and watered by lakes, canals, and rivers) is celebrated for its fertility; the Chinese call it the store house of the empire; and it is a common saying among them, that “the abundance of Kiang-it could furnish all China with a breakfast; but the province of Hou-quang alone could supply enough to maintain all its inhabitants.” Some princes of the race of Hong-vion formerly resided in this province; but this family was entirely destroyed by the Tartars when they conquered China. The people here boil much of their cotton cloths, dimples, gold-mines, wax, and paper made of the bamboo-reed. The northern part of the province contains eight fu, or cities, of the first class, and sixty of the second and third. The southern comprehends seven of the first class, and fifty-four of the second and third, exclusive of all towns and villages, which are every where to be found.

Hour, in chronology, an aliquot part of a natural day, usually a 24th, but sometimes a 12th. The origin of the word hora, or urina, comes according to some authors, from a surname of the fun, the father of hours, whom the Egyptians called Hora. Others derive it from the Greek ὄρα, to terminate, dißegieth, &c. Others from the word ὅρα, time; holding, that Trismegistus was the first that divided the division of hours, which he did from observation of an animal consecrated to Serapis, named cynocephalus, which makes water 12 times a day, and as of ten in the night, at equal intervals.

An hour, with us, is a measure of quantity of time, equal to a 24th part of the natural day, or myriahmeron; or the duration of the 24th part of the earth’s diurnal rotation. Fifteen degrees of the equator answer to an hour; though not precisely, but near enough for common use. It is divided into 60 minutes; the minute into 60 seconds, &c.
The division of the day into hours is very ancient: as is shown by Kircher, *Gedicht Egypt.* Tom. II. P. II. cl. VII. c. 8.: though the passages he quotes from Scripture do not prove it. The most ancient hour is that of the 12th part of the day. Herodotus, lib. ii. observes, that the Greeks learnt from the Egyptians, among other things, the method of dividing the day into twelve parts. The astronomers of Callisto, &c. bishop Beveridge observes, still retain this division. They call the hour *chag,* and to each chag give a peculiar name, taken from some animal: The first is called *zeth,* "mouse;" the second, *chius,* "bull;" the third, *zem,* "leopard;" the fourth, *maz,* "hare;" the fifth, *chins,* "crocodile," &c.

The division of the day into 24 hours, was not known to the Romans before the first Punic war. Till that time they only regulated their days by the rising and setting of the sun. They divided the 12 hours of their day into four, viz. *prime,* which commenced at six o'clock; *third,* at nine; *sixth,* at twelve; and *nones,* at three. They also divided the night into four watches, each containing three hours.

HOURS. Horse, in the ancient mythology, were certain goddesses, the daughters of Jupiter and Themis; at first only three in number, Eunomia, Dice, and Irene; to which were afterwards added two more, Carpea and Thalure. Homer makes them the doorkeepers of heaven. Ovid allows them the employment of harnessing the sun: *Jugere equos Titan veloxibus imperiali Horti.* And speaks of them as standing, at equal distances, about the throne of Sol: *Electri fatis pulchrum equilibrum.*

The poets represent them as drested in fine coloured or embroidered robes, and gliding on with a quick and easy motion.

HOURS. Horse, in the Romish church, are certain prayers performed at fixed times of the day: as matins, vespers, lauds, &c. The lesser hours are *prime,* *three,* *sixth,* and *nones.* They are called *hours* or *canonical hours,* as being to be rechanted at certain hours prescribed by the canons of that church, in commemoration of the mysteries accomplished at those hours. These hours were anciently also called corty, *cortus.* F. Mabillon has a dissertation on them, intitled, *De Cortu Gallicano.*

The first constitution enjoining the observance of the canonical hours, is of the ninth century, being found in a capitular of Heito bishop of Bafil directed to his curates, importing that the priests shall never be absent at the canonical hours either by day or night. *Hour-Glafis,* a popular kind of chronometer or cleyfylar, serving to measure the flux of time by the descent or running of sand out of one glass vessel into another. The first and last hours are those which, instead of sand, have egg-shells well dried in the oven, then beaten fine and sifted. *Hour-glassers* are much used at sea for reckoning, &c.

HOURS, in modern history, is a name given by the Mahometans to those females that are designated for the faithful in paradise. These are not the same with whom they have lived on earth, but formed for that purpose with singular beauty and undecaying charms.

HOUSE, a habitation, or place built with conveniences for dwelling in. See Architecture.

Houses, amongst the Jews, Greeks, and Romans, were flat on the top for them to walk upon, and had usuall stairs on the outside, by which they might ascend and descend without coming into the house. Each house, in fact, was so laid out, that it included a quadrangular area or court. This court was exposed to the weather, and being open to the sky, gave light to the house. This was the place where company was received, and for that purpose it was furnisned with mats or carpets for their better accommodation. It was paved with marble or other materials, according to the owner's ability, and provided with an umbrella of vellum to shelter them from the heat and inclemencies of the weather. This part of their houses, called by the Romans *impluvium,* or *casa aedum,* was provided with channels to carry off the water into the common sewers. The top of the house was level, and covered with a strong plater by way of terrace. Hither, especially amongst the Jews, it was customary to retire for meditation, private converse, devotion, or the enjoyment of the evening breezes.

The Grecian houses were usually divided into two parts, in which the men and women had distinct mansions alligned. The part assigned to the men was towards the gate, and called *Aedemnis* the apartment of the women was the farthest part of the house, and called *vivarium.* Jews, Greeks, and Romans, furnished their houses to be polluted by dead bodies, and to stand in need of purification.

HOUSE is also used for one of the estates of the kingdom of Britain assembled in parliament. Thus we say, the house of lords, the house of commons, &c. See Peers, Commons, &c.

House is also used for a noble family, or a race of illustrious persons illustred from the same stock. In this sense we say, the house of family of the Stuarts, the Bourbons, the house of Hanover, of Austria, of Lorraine, of Savoy, &c.

Cheap, easy, and expeditious Method of confruing Houses, which have been found to be very useful hospitals for the recovery of the sick, and therefore may probably make very wholesome places of residence for the healthy. The first thing to be done is to choose a dry and airy situation, on a gravelly or chalky soil if possible; upon this lay down the plan of your building, make one end of it face that quarter from whence the purest and healthiest winds may be expected to blow, of a breadth that can be conveniently roofed. Then, if boarding does not come at cheap, drive flakes, at about six feet distance: from each other, into the ground, so as to stand about six feet above it; and, interlacing them with wattles, coat the wattle on the side next the weather with fresh straw; and make the roof in the same manner, but thicker, or of thatch, in the usual way, with a hole at the very top of it, to open occasionally. Let the end of the building facing the wholesome quarter lie open some feet back, so as to form a porch, where the convalescents may take the air without danger of any injury from the weather. A large chimney and kitchen grate may be erected at the other end. If the soil happens to be chalky or gravelly, you may hollow it four or five feet deep, within a foot or eighteen inches of the walls; but let the steps into this hollow lie far enough within the porch, that no water may get into it, and, if of chalk, the steps may not grow slippery in wet weather. From time to time open the vent-hole at the roof; by means
of which all the unwholesome infectious air, as being warmer, and consequently lighter, than that which is pure and wholesome, will be driven out by the rushing in of the fresh air: a purpose, which the little openings, that may be left in the sides and roofs of such rude and hasty buildings, will, even of themselves, answer so well, as sufficiently to compensate any cold they may let in, even in the coldest months. Let the floor likewise be scraped three or four inches deep every five or six days, and what comes off removed to some distance. Halls of this kind, 50 feet long and 20 broad, cold but a trifle to build; yet, with these precautions (even without the addition of clean receptacles; beds), proved of infinitely more advantage in the recovery of sick soldiers, than the low-roofed rooms of the farm-houses of the life of Wight, or even the better accommodations of Caribrooke castle in the same island, in which there perished four times the number of sick that there did in these temporary receptacles; which were first thought of by doctor Brockleby on occasion of some terrible infections from confined animal effluvia.

Is it not surprising, that we have not availed ourselves more of the above discovery in natural history, being, perhaps, the most important the moderns can boast of, in the most useful science, viz. the superior lightness of unwholesome and infectious air! The upper stories in most houses, even of those who pretend to some knowledge in these matters, are generally immutable, by means of which no part of the foul air above the level of the lowest rail of the other's house's greatest rife can escape by the window; and, if it escapes by the doors, it is generally for want of a vent in the highest part of the roof, merely to accumulate in the upper story of the house, and add to the infection, which the great quantities of old furniture usually stored up there are of themselves but too apt to create, when care is not frequently taken to open the windows of it. Thus, the chief benefit to be expected from empty rooms is in a great measure lost. Whereas, were the upper stories contrived to come down, all the air might be easily changed, and that almost infamibly, by letting them down an inch or two. Nay, the upper half might be often let entirely down, with less danger or inconvenience from cold, than the lower thrown up the tenth part of an inch, though the doing of the former would be attended with infinitely more advantage to the health of the inhabitants than the latter. It is, perhaps, on this principle, that we are to account for the good health enjoyed by the poor who live crowded in damp cellars, and often with great numbers of rabbits, poultry, and even swine about them. These cellars are open to the street, with doors reaching from the floor to the very ceiling, but never so close at bottom or at top as to prevent a free circulation of air; in consequence of which, that all vivifying fluid, as fast as it is spoiled by passing through the lungs of the inhabitants and their flock, or is infected by their insensible perspiration, excrements, &c. is driven out and replaced by the fresh air.

House, in astrology, denotes the twelfth part of the heavens.

The division of the heavens into houses, is founded upon the pretended influence of the stars, when meeting in them, on all sbluminary bodies. These influences are supposed to be good or bad; and to each of these houses particular virtues are ascribed, on which astrologers prepare and form a judgment of their horoscopes. The horizon and meridian are two circles of the celestial houses, which divide the heavens into four equal parts, each containing three houses; six of which are above the horizon and six below it; and six of these are called eastern and western houses.

A scheme or figure of the heavens is composed of 12 triangles, all called houses, in which is marked the stars, signs, and planets, so included in each of these circles. Every planet has likewise two particular houses, in which it is pretended that they exert their influence in the strongest manner; but the sun and moon have only one, the house of the former being Leo, and that of the latter Cancer.

The houses in astrology have also names given them according to their qualities. The first is the house of life: this is the ascendant, which extends five degrees above the horizon, and the rest below it. The second is the house of riches: the third, the house of brothers: the fourth, in the lowest part of the heavens is, the house of relations, and the angle of the earth; the fifth, the house of children: the sixth, the house of health: the seventh, the house of marriage, and the angle of the world: the eighth, the house of death: the ninth, the house of piety: the tenth, the house of offices: the eleventh, the house of friends: and the twelfth, the house of enemies.

Country-House, is the villa of the ancient Romans the quintas of the Spaniards and Portugese, the celle:eria and caffino of the French, and the vigna of the Italians.

It ought always to have wood and water near it; these being the principal beauties of a rural seat. The trees make a fairer defence than walls, as they yield a cooling and healthy air, shade during the heat of summer, and very much break the severities of the winter season. It should not be situated too low, on account of the moisture of the air; and, on the other hand, those built on places exposed to the winds, are expensive to keep in repair. In houses not above two stories high, and upon a good foundation, the length of two bricks, or 18 inches, for the heading course, will be sufficient for the ground-work of any common structure; and for even courses above the earth, to a water-table, where the thickness of the walls are abated or taken in, on either side the thickness of a brick, viz. two inches and a quarter. But for large and high houses of three, four, or five stories, with garrets, their walls ought to be three heading courses of bricks, or 28 inches at least, from the foundation to the first water-table; and at every story a water-table, or taking in, on the inside, for the fummers, girders, and joists to rest upon, laid into the middle, or one quarter of the wall at least, for the better bond. But as for the partition-wall, a brick and half will be sufficiently thick; and for the upper stories, a brick length or nine inch brick will suffice.

HOT-HOUSE See STOVE and HYPOCAUST.
House-Breaking, or Robbing, is the breaking into and robbing a house in the day-time; the same crime being termed BURGLARY when done by night: both are felony without benefit of clergy.

HOUSEHOLD, the whole of a family considered collectively, including the mistrels, children, and servants. But the household of a sovereign prince includes only the officers and domestics belonging to his palace.

The principal officers of his Britannic majesty’s household are, the lord steward, lord chamberlain of the household, the groom of the stole, the master of the great wardrobe, and the master of the horse.

The civil government of the king’s household is under the care of the lord steward of the king’s household; who, being the chief officer, all his commands are observed and obeyed. His authority extends over all the other officers and servants, except those of his majesty’s chapel, chamber, and stable, and he is the judge of all crimes committed either within the court or the verge.

Under him are the treasurer of the household, the comptroller, cofferer, the master of the household, the clerks of the green-cloth, and the officers and servants belonging to the accounting-house, the marshallsea, the verge, the king’s kitchen, the household kitchen, the acastery, bake-house, pantry, buttery, cellar, pastry, &c. Next to the lord steward is the lord chamberlain of the household, who has under him the vice-chamberlain, the treasurer, and comptroller of the chamber; 48 gentlemen of the privy chamber, 12 of whom wait quarterly, and two of them lie every night in the privy-chamber; the gentleman usher, the grooms of the great chamber, the pages of the presence-chamber; the mace-bearers, cup-bearers, carvers, musicians, &c. See Lord Chamberlain of the Household.

The groom of the stole has under him the 11 other lords of the bed-chamber, who wait weekly in the bed-chamber, and by turns lie there nine nights on a pallet-bed; and also the grooms of the bed-chamber, the pages of the bed-chamber and back-flairs, &c. See Groom of the Stole.

The master or keeper of the great wardrobe has under him a deputy, comptroller, clerk of the robes, chamber, &c. and a number of tradesmen and artificers, who are all sworn servants to the king.

The master of the horse has under his command the equerries, pages, footmen, grooms, coachmen, farriers, saddlers, and all the other officers and tradesmen employed in his majesty’s stables.

Next to the civil lift of the king’s court, is the military, consisting of the band of gentlemen pensioners, the yeomen of the guard, and the troops of the household; of which the two first guard the king above stairs.

When the king dines in public, he is waited upon at table by his majesty’s cup-bearers, carvers, and gentlemen fewers; the musicians playing all the time. The dinner is brought up by the yeomen of the guard, and the gentlemen fewers set the dishes in order. The carvers cut for the king, and the cup-bearers serve him the drink with one knee on the ground, after he has first tasted it in the cover.

House and Window Duty, a branch of the king’s extraordinary revenue.* — As early as the conquest mention is made in a mediæval book of fumage or fuel.
HOWARD [698]

HOWARD (Henry), earl of Surrey, a soldier and a poet, the son and grandson of two lord treasurers, barons of Norfolk, was born probably about the year 1520, and educated at Windsor castle, with young Fitzroy, earl of Richmond, natural son to King Hen. VIII. Wood says, from tradition, that he was born at a time a student at Cardinal College, Oxford. In his youth he became enamoured of the fair Geraldine, whom his fomnents have immortalized. In 1532, Howard with his companion Richmond was at Paris, where they remained some time. The latter died in 1536; after which our young hero made a tour to Italy, and at Florence, like a true enamorata, published a challenge against all comers, whether Christians, Jews, Saracens, Turks, or cannibals, in defence of the beauty of his fair Geraldine, and was victorious in the tournament instituted by the grand duke of the occasion. The duke, we are told, was so charmed with his gallant exploits, that he would gladly have retained him at his court; but he rejected the invitation, being determined to maintain the superlative beauty of his Geraldine in all the principal cities in Italy. This romantic resolution was however frustrated by the command of his sovereign, Henry VIII. to return to England.

In 1540, he signalized himself in a tournament at Wetsminster, against Sir John Dudley, Sir Thomas Seymour, and others. In 1542, he marched, under the command of his father, against the Scots; and in the same year was confined at Windsor castle for eating flesh in Lent, contrary to the king's proclamation. In 1544, on the expedition to Boulogne in France, he was appointed field-marshal of the English army; and after the taking of that town, in 1546, made captain-general of the king's forces in France. He was at this time knight of the garter. In the same year, attempting to intercept a convoy, he was defeated by the French, and soon after superseded in his command by the earl of Hertford.

Surrey, after his return to England, conscious of his former services, and pecuniary under his disgraces, could not help reflecting on the king and council. This was his first step towards destruction. He had married Frances, the daughter of John earl of Oxford; and, after her death, is said to have made love to the princess Mary. For this the Seymours, rivals of the Norfolk family, and now in favour with the king, accused him of aspiring to the crown; adding, that he already preferred to quarter part of the royal arms with his own; but, whatever might be the pretence, the cause of his ruin was the jealousy and power of his enemies. In short, the destruction of the Howards being determined, Surrey, and his father the duke of Norfolk, were committed to the Tower, in December 1546; and on the 13th of January following, Surrey was tried at Guild-hall by a common jury, and beheaded on Tower-hill on the 19th day of the same month, nine days before the death of the king; who thus, that the measure of his crimes might be full, finished his life with the murder of his best subject. The accusations brought against this amiable and innocent young nobleman on his trial, were so extremely ridiculous, that Howard—\\n
one is astonished at how it was possible, even in the most despotical reigns, to find a judge and jury to pullulantly villainous as to carry on the face of justice on the occasion. The British boast of their excellent constitution, and their trial by juries; but this example may teach them, that their constitution and their juries are not incompatible with despotical monarchy. He was first interred in the church of All-hallows, Barkin, near Tower-hill; and afterwards, in the reign of king James I. removed to Farmingham in Suffolk, by his son Henry earl of Northampton.

As to the character of this unfortunate earl, all the British poets have sung his praise. Mr. Walpole begins his anecdotes of Surrey with these words: "We now emerge from the twilight of learning to an almost classic author, that ornament of a boisterous, yet not unpolished court, the earl of Surrey, celebrated by Dryton, Dryden, Fenton, Pope, illustrated by his own muse, and lamented for his unhappy death; a man (as Sir Walter Raleigh says) no less valiant than learned, and of excellent hopes." Leland calls him the consistent heir of Sir Thomas Wyatt, the elder, in his learning and other excellent qualities; and the author of The Art of English Poetry lays, that the earl of Surrey, and Sir Thomas Wyatt, may be justly called the reformers of our poetry and style. His poems were published in 1557, 1565, 1574, 1585, 1587, 8vo. Several of the sonnets are by Sir Thomas Wyatt and others.

Howard (Charles), an able statesman and experienced seaman, was the son of lord William Howard, baron of Effingham, and born in 1526. He served under his father, who was lord high admiral of England, till the accession of queen Elizabeth. In January 1573, he succeeded his father in his title and estate; after which he successively became chamberlain of the household and knight of the garter; and in 1585 was made lord high admiral, at that critical juncture when the Spaniards were sending their Armada, in their opinion, to the assured conquest of that kingdom. When he received intelligence of the approach of the Spanish fleet, and saw the prodigious consequence it was to get out the few ships that were ready at Plymouth, he not only gave orders in every thing himself, but wrought also with his own hands, and the first night left the port with fix ships. The next morning, though he had only 30 sail, and those the smallest of the fleet, he attacked the Spanish navy; but first dispatched his brother-in-law, Sir Edward Hobly, to the queen to desire her to make the proper disposition of her land-forces for the security of the coast, and to hasten as many ships as possible to his assistance. His valor was conspicuously displayed in his repeated attacks of a superior enemy. The coolness of his temper was no less conspicuous; and it was owing to his magnanimity and prudence that the victory was so great. The queen expressed her sense of his merit in the most honourable terms; and granted him a pension for life. In 1596, he commanded in chief at sea, as Essex did by land, the forces sent against Spain, when his prudence and moderation were among the principal causes of the success the English met with in that great and glorious enterprise; so that, upon his return the next year, he was advanced to the dignity of earl of Nottingham. the
Howard. The next eminent service in which his lordship was engaged was in 1599, when the Spaniards seemed to meditate a new invasion. Her majesty, who always placed her safety in being too quick for her enemies, drew together, in a fortnight's time, such a fleet, and such an army, as took away all appearance of success from her foreign and domestic enemies; and the gave the earl the sole and supreme command of both the fleet and army, with the title of lord lieutenant general of all England, an office unknown in succeeding times. When age and infirmity had unhitted him for action, he resigned his office, and spent the remaining part of his life in ease and retirement, till the time of his decease, which happened in 1624, in the 87th year of his age.

Howard (John), Esq., a man of singular and transcendent humanity was the son of a reputable tradesman in St Paul's church-yard. He was born about the year 1725 or 1726; and at a proper age was put an apprentice to Mr Nathaniel Neown, whole-grocer in Water-ling street. His father died, leaving only his son and a daughter, to both of whom he bequeathed handsome handosome fortunes; and by his will directed that his son should not consider himself of age till he was five and twenty.

His constitution was thought very weak, and his health appeared to have been injured by the necessary duties of his apprenticeship; and therefore at the expiration of it, he took an apartment in a lodging-house in Church-street, Stoke Newington, Middlesex; but not meeting with the tenderest treatment there, he removed to another lodging-house in the same street, which was kept by a widow lady Mrs Sarah Lardeo, a worthy sensible woman, but an invalid. Here he was nurfed with so much care and attention, that he resolved to marry his landlady out of gratitude for her kindnese.

In vain the expostulated with him upon the extravagance of such a proceeding, he being about 28 and the about 51 years of age, and 20 years older in constitution: but nothing could alter his resolution, and they were privately married about the year 1752. She was poiseffed of a small fortune, which he preferred to her offer. During his residence at Newington, the minister of the dissenting meeting-house there resigned his office and a successor was elected; and Mr Howard, who was bred a dissenter, and steadfastly adhered all his life to that profession, proposed to purchase the lease of a house near the meeting-house, and to appropriate it as a parsonage-house for the use of the minister for the time being, and contributed 500l. for that purpose. His wife died November 10, 1755, aged 54; and he was a sincere and affectionate mourner for her death. About this time, it is believed, he was elected F.R.S. In the year 1756 he had the fortune to experience one of the evils which it afterwards became the business of his life to redress. He embarked that year in a Lisbon packet, the Hanover, in order to make the tour of Portugal; when the vessel was taken by a French privateer. Before we reached Breit (says he) I suffered the extremity of thirst, not having for above 40 hours one drop of water, nor hardly a morsel of food. In the castle at Breit I lay six nights upon straw; and observing how cruelly my countrymen were used there and Morlaix, whether I was carried next, during the two months I was at Carhaix upon parole, I corresponded with the English prisoners at Breit, Morlaix, and Din-
The sphere in which he had hitherto moved was too narrow for his enlarged mind. Being named in 1773 to the office of sheriff of Bedfordshire, from that time his scene of usefulness was extended. His office, as he himself observed, brought the direst of prisoners more immediately under his notice. A sense of duty induced him personally to visit the county jail, where he observed such abuses, and such scenes of calamity, as he had before no conception of; and he soon exerted himself in order to a reform. With a view to obtain precedents for certain regulations which he purposed, he went to inspect the prisons in some neighbouring counties. But finding them equal room for complaint and commiseration, he determined to visit the principal prisons in England. The farther he proceeded, the more shocking were the scenes presented to his view: which induced him to resolve upon exerting himself to the utmost, in order to a general reform in these horrid places of confinement; considering it as of the highest importance not only to the wretched objects themselves, but to the community at large. Upon this subject he was examined in the house of commons in March 1774, when he had the honour of their thanks. This encouraged him to proceed in his design. He revisited all the prisons in the kingdom, together with the principal houses of correction. He also in 1775 enlarged his circuit by going into Wales, Scotland, and Ireland, where he found the same need of reformation.

One grand object which he had in view was, to put a stop to that shocking distemper called the jail-fever; which raged so dreadfully in many of the prisons, as to render them to the last degree offensive and dangerous. A distemper, by which many had been taken off by the hands of the executioner; and which, in several instances, had been communicated from the prisoners into the courts of justice, and had proved fatal to the magistrates and judges, and to multitudes of persons who attended the trials, as well as to the families of discharged felons and debtors. Another end he proposed was, to procure the immediate release of prisoners, who, upon trial were acquitted, but who often continued long to be unjustly detained for want of being able to pay the accrued fees: as also to abolish many other absurd and cruel usages which had long prevailed. But the great object of all was, to introduce a thorough reform of morals into the prisons; where he had found the most flagrant vices to prevail in such a degree that they were become fœminaries of wickedness and villany, and the most formidable nuisances to the community; in confluence of the promiscuous intercourse of prisoners of both sexes; and all abuses and descriptions; whereby the young and less experienced were initiated, by old and hardened sinners, into all the arts of villainy and the mysteries of iniquity; so that, instead of being reformed by their confinement (which should be the chief end of punishment), those that were discharged became more injurious to society than before.

In order to the attainment of these great objects, Mr Howard spared no pains nor expense, and cheerfully exposed himself to much inconvenience and hazard; particularly from that malignant distemper, of which he saw many dying in the most loathsome dungeons into which none, who were not obliged, besides himself, would venture. "I have been frequently (says Mr Howard) asked what precautions I used to preserve myself from infection in the prisons and hospitals which I visit. I here answer, next to the free good-will and mercy of the Author of my being, temperature and cleanliness are my preservatives. Trusting in divine Providence, and believing myself in the way of my duty, I visit the most noxious cells; and while thus employed, I fear no evil. I never enter an hospital or prison before breakfast; and in an offensive room, I seldom carry on any business, and by no means indulge in any food."

His laudable endeavours he had the pleasure to see, in some instances, crowned with success; particularly in regard to the healthinesfs of prisons, some of which were rebuilt under his inspection. Through his interposition also, better provision has been made for the instruction of prisoners, by the introduction of bibles and other pious books into their cells, and a more constant attendance of clergymen. The gaoler likewise, have, by act of parliament, been rendered incapable of selling strong liquors, which had been the source of much drunkenness and disorder. But a minute detail of particulars is not to be expected here; for the reader is referred to Mr Howard's publications, which show that much is yet wanting.

But in order to a more general and happy regulation, and the reformation of criminals, he determined to visit other countries, to see the plans there adopted; and to hope of collecting some information which might be useful in his own country. For this purpose he travelled into France, Flanders, Holland, Germany, and Switzerland. Afterwards through the Prussian and Austrian dominions. He visited also the capitals of Denmark, Sweden, Russia, and Poland, and some cities in Portugal and Spain. In all these expensive and hazardous journeys, he denied himself the usual gratifications of travellers, and declined the honours which were offered him by personages of the first distinction, applying himself solely to his own grand object. To him the inspection of a jail, or hospital, was more grateful than all the entertainments of a palace. With what astonishment and gratitude he was received by their miserable inhabitants may easily be imagined, since while he made observations on their situation, he mediated their relief; and many distressed prisoners abroad as well as at home, partook of his bounty, and some were liberated by it; for he considered all of every nation, and people, and tongue as brethren. Nor was he sparing of advice, or of reproof, as he saw occasion to persons of rank and influence, whereby the miseries of their countrymen might be removed. As he coursed, he savour of none, neither did he shun the frowns of any; but, with a manly freedom and a Christian fortitude, spoke his mind to crowned heads.
Howard, (particularly the late emperor of Germany) in a manner to which they were not accustomed; which, however, in a person of such disinterested views, procured him reverence and esteem, and in some instances proved effectual for relieving the miserable and oppressed. On his return, he published in 1777, “The State of the Prisons in England and Wales, with Preliminary Observations and an Account of some foreign Prisons.” 460. And in 1779 he took a third journey through the Prussian and Austrian dominions, and the free cities of Germany, and likewise extended his tour through Italy, and revisited some of the countries he had before seen. The observations he made in this tour were published in an appendix, 1780; containing also some remarks respecting the management of prisoners of war, and the查看下一页...
Howard
d
Lord Howe's Island; a small island in the neighbourhood of New South Wales, discovered on February 17, 1788, S. Lat. 31° 36'. E. Long. 159° 04'. It is of an arched figure, lying from north-west to south-east, the two extremities including a space of about six miles, though, by reason of the curved figure of the island itself, it is near seven in length. It is deeply indentated on the middle of the eastern part by a bay named Rolf's Bay, and on the opposite and western part has another named Prince William Henry's Bay; so that the whole has the appearance of two islands joined together by an isthmus, which in some places is not above half a mile broad. On the southern part of that division which lies most to the northward are two considerable bays, named Callam's and Hunter's Bay; and on the south-western part of the other are two high mountains, the most southerly named Mount Gower, and the other Mount Lidgbird. The convex part of the island lying towards the north-east, and the concave side towards the opposite quarter, is terminated by two points named Point King and Point Philip. No fresh water was found on the island; but it abounds with cabbage palms, mangrove, and manchineel trees, even up to the summits of the mountains. There are plenty of ganets, and a land fowl of a dusky brown colour, with a bill about four inches long, and feet like those of a chicken. These were found to be remarkably fine meat, and were very fat. There are many large pigeons, and the white birds found in Norfolk Island were also met with in this place. The bill of this bird is red, and very strong, thick, and sharp pointed. Great numbers of fine turtle frequent this island in summer, but go to the northward in winter. These, it was imagined, would prove of great service to the colony at Port Jackson; but, from some cause or other, it appears they have hitherto been disappointed. Plenty of fish were caught by a hook and line. At the distance of about four leagues from Lord Howe's Island is a very remarkable and high rock, to which the name of Ball's Pyramid has been given. This island may be approached without danger; but about four miles from the south-west part of the pyramid there is a very dangerous rock, which shows itself above the surface of the water, and appears not to be larger than a boat. The southern part of the island is lined with a sandy beach, which is guarded against the sea by a reef of coral rock, at the distance of half a mile from the beach, through which there are several small openings for boats; but there is nowhere a greater depth of water within the reef than four feet. By the account of Mr Watts, who visited this island in his return from Port Jackson, the isthmus which joins the two parts has evidently been overflowed, and the island disjoined, as in the very centre the men saw large beds of coral rocks and great quantities of shells; and on the east, which feems in general to be the weather-side, the sea has thrown up a bank of sand from 25 to 30 feet high, which serves as a barrier against future inundations. The island also appears to have suffered by volcanic eruptions, as great quantities of pumice-stones and other matters of that kind were found upon it. Mr Aftin also found the whole reef which shelters the well bay a burnt-up mafs. The time he visited the island was that of the incubation of the ganets, of which there were then prodigious
It would be very difficult to describe, precisely, the
marks of distinction between this vessel and others
of the same size, which are also rigg'd in the same
manner; because what is called a hoy in one place,
would assume the name of a floop or smack in another;
and even the people who navigate these vessels, have,
upon examination, very vague ideas of the marks by
which they are distinguished from those above mentioned.
In Holland, the hoy has two masts; in England, it has but
one, where the main-sail is sometimes extended by a
boom, and sometimes without it. Upon the whole, it
may be defined a small vessel, usually rigg'd as a floop,
and employed for carrying passengers and luggage from
one place to another, particularly on the sea-coast.

Hoy, an island of Scotland, and one of the Orcades.
It is about 10 miles long; and that part called Waes
is fruitful and pretty populous, and is a good place for
fishing.

HOYE, a town of Germany, in Westphalia, and
capital of a county of the same name. It is seated
on the river Weter, and is subject to the elector of
Hanover. E. Long. 9°. N. Lat. 53° 5'.

HUAIN, one of the Society Islands, in the
South Sea, situated in S. Lat. 16° 43', W. Long. 150°
52', and is about seven or eight leagues in compass.
Its surface is hilly and uneven, and it has a safe and
convenient harbour. It was first discovered by captain
Cook in 1769. It is divided by a deep inlet into two
peninsulas connected by an isthmus, which is entirely
overflowed at high water. From the appearance of its
hills it may be concluded, that the country has at some
period or other been the seat of a volcano. The
summit of one of them had much the appearance of a crater,
and a black spongy earth was seen upon one of its
sides, which seemed to be lava; and the rocks and clay
every where had a burnt appearance. The island is
plentifully supplied with water by many rivulets
which descend from the mountains and broken rocks.
The inhabitants are nearly as fair as Europeans;
and their conduct is bolder than that of the inhabitants
of the other Society Islands. They are a stout large made
people, some of the tallest being six feet three inches
in height; they are extremely indolent, and seem to
have but little curiosity as fear. The dogs are in great
favour with all their women, who could not have
castrated them (says Mr Forster) with a more ridiculous
affectation, if they had been European ladies of fashion.

Here was seen a middle-aged woman, whose breasts
were full of milk, offering them to a little puppy who
had been trained up to suck them. The fight disfigured
those who saw it so much, that they could not forbear
expressing their dislike to it; but the woman
ministered, and told them she allowed young pigs to do the
same. It appeared afterwards that this woman had lost
her child. Some of the gentlemen were present at a
dramatic entertainment on this island: the piece
represented a girl running away from her parents; and it
ended to be levelled at a female passenger who had come
captain Cook's ship from Otaheite, and who happened
to be present at the representation. It made
such an impression on the girl, that the gentlemen could
scarcely prevail upon her to see the piece out, or to
refrain from tears while it was acting. It concluded
with the reception she was supposed to meet with from
her,
HUBER (Ulric), one of the greatest civilizers in the 17th century was born at Dusseldorf in 1636. He became professor of law at Franeker and wrote: 1. A treatise De juris civilis. 2. Jurisprudentia Crisica. 3. Specimen philosophie civilis. 4. Institutiones historiae civilis; and several other works which are esteemed. He died in 1694.

HUBERT (St), a town of the Netherlands, on the confines of Liege, with a very fine abbey, where they bring those that are bit by mad animals to be cured. E. Long. 5. 25. N. Lat. 34. 32.

HUBNER (John), a learned geographer of Germany, taught geography at Leipizig and Hamburg with extraordinary reputation; and died at Hamburg in 1722, aged 63. His principal work is A Geographical treatise, printed at Baisin in 1746, in 6 vols 12mo.

HUDSON (Jeffrey). See DWARF.

Hudson (Henry), an eminent English navigator, who, about the beginning of the last century, undertook to find out a passage by the north-east or north-west to Japan and China. For this purpose he was four times fitted out: he returned three times unsuccessful; but in the last voyage, in 1610, being persuaded that the great bay to which his name has been since given, must lead to the passage he sought, he wintered there, to prosecute his discovery in the spring. But their difficulties during the winter producing a mutiny among his men, when the spring arrived, they turned him, with his son and seven tink men, adrift in his own shallop, and proceeded home with the ship. As Hudson and his unhappy companions were never heard of afterward, it is to be supposed they all perished.

Hudson (John), a very learned English critic, born in 1662. He distinguished himself by several valuable editions of Greek and Latin authors; and, in 1701, was elected head keeper of the Bodleian library at Oxford. In 1712, he was appointed principal of St Mary's Hall, through the interest of the famous Dr Sherlock, and it is said that the university of Oxford is indebted for the most ample benefactions of that physician to Dr Hudson's solicitations. He died in 1719, while he was preparing for publication a catalogue of the Bodleian library, which he had canvased to be fairly transcribed in six folio volumes.

Hudson's Bay, a large bay of North-America, lying between 51 and 69 degrees of latitude, discovered in 1610 by Henry Hudson. This intrepid mariner, in searching after a north-west passage to the South-seas, discovered three fairstraits, through which he hoped to find out a new way to Asia by America. He had made two voyages before on the same adventure; the first in 1607, and the second in 1608. In his third and last, 1610, he entered the strait that lead into this new sea, the strait was, the bay known by his name; confided a great part of it; and penetrated to eighty degrees and an half into the heart of the frozen zone. His ardour for the discovery not being abated by the difficulties he struggled with in this empire of winter, and

world of frost and snow, he stood here until the enfin-}

ing spring, and prepared in the beginning of 1611 to pursue his discoveries; but his crew, who suffered equal hardships, without the same spirit to support them, mutinied, seized upon him and seven of those who were most faithful to him, and committed them to the fury of the icy seas in an open boat. Hudson and his companions were either swallowed up by the waves, or gaining the inhospitable coast were destroyed by the savages; but the ship and the rest of the men returned home. Other attempts towards a discovery were made in 1612 and 1627; and a patent for planting the country, with a charter for a company, was obtained in the year 1670. In 1746 Captain Ellis wintered as far north as 57 degrees and a half, and Captain Christopher attempted farther discoveries in 1761. But besides these and the late voyages, which satisfy us that we must not look for a passage on this side of the latitude 67 degrees north, we are indebted to the Hudson's Bay Company for a journey by land; which throws much additional light on this matter, by affording what may be called demonstration, how much farther north, at least in some parts of their voyage, ships must go, before they can pass from one side of America to the other. The northern Indians, who came down to the company's factories to trade, had brought to the knowledge of our people a river, which on account of much copper being found near it, had obtained the name of the Copper-mine river. The company being desirous of examining into this matter with precision, directed Mr Hearne, a young gentleman in their service, and who having been brought up for the navy and served in the war before last, was extremely well qualified for the purpose, to proceed over land under the convoy of those Indians, for that river, which he had orders to survey if possible quite down to its exit into the sea; to make observations for fixing the latitudes and longitudes; and to bring home maps and drawings both of it and the countries through which he should pass. Accordingly Mr Hearne set out from the Prince of Wales's Fort, on Churchill river, latitude 58° 47' North, and longitude 94° 7' West from Greenwich, on the 7th of December 1770. On the 13th of June he reached the Copper-mine river, and found it all the way, even to its exit into the sea, encumbered with foals and falls, and emptying itself into it over a dry flat or shoal, the tide being then out, which seemed by the edges of the ice to rise about 12 or 14 feet. This river, on account of the falls, will carry it but a very small way within the river's mouth, so that the water in it had not the least brackish taste. Mr Hearne was nevertheless sure of the place it emptied itself into being the sea, or a branch of it, by the quantity of whalebone and seal skins which the Esquimaux had at their tents; and also by the number of seals which he saw upon the ice. The sea at the river's mouth was full of islands and foals as far as he could see by the assistance of a pocket telescope; and the ice was not yet (July 17th) broken up, but thawed away only for about three quarters of a mile from the flat or shoal, a little way round the islands and foals which lay off the river's mouth. But he had the most extensive view of the sea when he was about eight miles up the river; from which station the extreme parts of it bore N. W. by
The country lying round Hudfon's Bay is called New Britain, or the country of the Esquimaux; comprehending Labrador, now North and South Wales. The name of Labrador has been given to the north Cape Farewell and Davis's Straits, is between Resolution isles on the north, and Bottn's isles on the Labrador coast to the south, forming the eastern extremity of the straits distinguished by the name of its great discoverer. The coasts are very high, rocky, and rugged at top; in some places precipitous, but sometimes exhibit large beaches. The isles of Salisbury, Nottingham, and Cigges, are also very lofty and naked. The depth of water in the middle of the bay is a hundred and forty fathoms. From Cape Churchill the first few miles, and regular soundings; near the shore shallow, with muddy or sandy bottom. To the north of Churchill the soundings are irregular, the bottom rocky, and in some parts the rocks appear above the surface at low water. From Moofe river or the bottom of the bay to Cape Churchill the land is flat, marshy, and wooded with pines, birch, larch, and willows. From Cape Churchill to Wager's Water the coasts are all high and rocky to the very sea, and woodless, except the mouths of Pockerelkeko and Seal rivers. The hills on their back are naked nor are there any trees for a great distance inland.

The mouths of all the rivers are filled with shoals; except that of Churchill, in which the largest ships may lie; but ten miles higher, the channel is obstructed with sand-banks; and all their rivers, as far as has been navigated, are full of rapids and cataracts from ten to sixty feet perpendicular. Down these rivers the Indian traders find a quick passage; but their return is a labour of many months. As far inland as the company have settlements, which is fix hundred miles to the west, at a place called Hudfon Howe, lat. 53° long. 106. 27. from London, is a flat country; nor is it known how far to the eastward the great chain seen by our navigators from the Pacific Ocean branches off.

The climate even about Haye's river, in only lat. 57°, is during winter excessively cold. The snow begins to fall in October, and continues falling by intervals the whole winter; and when the frost is most rigorous, in form of the finest sand. The ice on the rivers is eight feet thick. Port-wise freezes into a solid mass; brandy coagulates. The very breath of this air is cold, and ita beds in the form of a hoar frost, and the bed-cloathes were frozen to the wall. The fun rifes in the shortest day at five minutes past nine and sets five minutes before three. In the longest day the fun rifes at three, and sets about nine. The sun begins to disappear in May, and hot weather commences about the middle of June, which at times is so violent as to force the face of the hunters. Thunder is not frequent but very violent. But there must be great difference of heat and cold in this vast extent, which reaches from lat. 50° 40' to lat. 65° north. During winter the air is so cold that it exterminates all things. Mock faws and halos are not unfrequent; they are very bright and richly tinged with all the colours of the rainbow. The fun rifes and sets with a large cone of yellowish light. The night is enlivened with the Aurora Borealis which spreads a thousand different lights and colours over the whole concave of the sky, not to be defaced even by the splendour of the full moon; and the stars are of a fiery redness.

The eastern boundary of the bay is Terra di Labrador, the northern part having a straight coast facing the bay, guarded with a line of isles innumerable. A vast bay, called the Archipinnny Sea, lies within it, and opens into Hudfon's Bay by means of Gulp Hazard, through which the Beluga whales dart in great numbers. Here the company had a settlement for the sake of the fishery, and for trading with the Esquimaux; but deferred it as unprofitable about the year 1758 or 1759. The easteren coast is barren past the efforts of cultivation. The surface is everywhere uneven, and covered with mafles of stone of an amazing size. It is a country of fruitless valleys and frightful mountains, some of an astonishing height: the first watered by a chain of lakes, formed not from springs but rain and snow, so chilly as to be productive of only a few small trout. The mountains have here and there a blighted shrub or a little moss. The valleys are full of crooked small trees, pines, fir, birch, and cedars, or rather a species of Juniper. In lat. 60° on this coast, vegetation ceases. The whole shore, like that on the west, is faced with islands at some distance from land. The inhabitants among the mountains are Indians; along the coasts Esquimaux. The dogs of the former are very small; of the latter large, and headed like a fox. Notwithstanding they have rein deer, they never train them for the sledge; but apply the dogs to that use. Walruses visit a place called Nachvünk, in lat. 60°, during winter; from thence the natives purchase the teeth with which they head their darts. Davis suspected that he had found a passage on this coast, in 1586, to the Western Ocean; but it proves no more than a deep bay.

The landable zeal of the Moravian clergy induced them to fend, in the year 1732, missionaries from the
Greenland to this country. They fixed on Nibert’s harbour for their settlement; but the first party was partly killed, partly driven away. In 1744, under the protection of the government, another attempt was made. The missionaries were well received by the Esquimaux, and the mission goes on with success.

The animals of these countries are, the moose deer, flags, rein-deer, bears, tygers, buffaloes, wolves, foxes, beavers, otters, lynxes, martins, ermins, erents, wild cats, and hares. The rein-deer pass in vast herds towards the north in October, seeking the extreme cold. The male polar bears rove out at sea, on the floating ice, till March; when they come abroad with their twin cubs, and bend their course to search of their comforts. Several are killed in their passage; and those which are wounded fly vast fury, roar hideously, and bite and throw up into the air even their own progeny. The females and the young, when by their consorts, with the cubs, by that time of a month, have entirely changed their coat and acquired a colour of the snow; every thing animate and inanimate is, as it were, hidden under a most surprising, and what is indeed a most striking thing, that draw the most attentive to an admiration of the wisdom and goodness of Providence, is, that the dogs and cats from Great Britain have been entirely changed their appearance, and acquired a much longer, softer, and thicker coat of hair than they had originally.

Hudson’s Bay Company. See Company.

Hudson’s Bay, a large river of North America, which rises on the east of Lake Ontario, and running by Albany, and on the back of the south part of New-England through part of New-York, falls into the bay of the sea beyond the west end of Long-Island, and below the City of New-York.

Hudsonia, in botany; a genus of the monogyna order, belonging to the dodecaandria class of plants. There is no corolla; the calyx is pentaphyllous and tubular; there are 15 filaments; the capsule is unilocular, trivalvular, and trispernum.

HUE and CRY, in law, the pursuit of a person who has committed felony on the high-way.—Of this custom, which is of British origin, the following deduction is given by Mr. Whitaker. "When it was requisite for the Britons to call out their warriors into the field, they used a method that was particularly marked by its expeditiousness and decisiveness and remains partially among us to this moment. They raised a cry, which was immediately caught up by others, and in an instant transmitted from mouth to mouth through all the region. And as the notice passed along, the warriors flocked their arms, and hurried away to the rendezvous. We have a remarkable description of the fact in Caesar, and there see the alarm propagated in 16 or 17 hours through 260 miles in a line. And the same practice has been retained by the Highlanders to our own time. When the lord of a clan received intelligence of an enemy’s approach, he immediately killed a goat with his own sword, dipped the end of a half-burnt stick in the blood, and then gave it and the notice of the rendezvous to be carried to the next hamlet. The former symbolically threatened fire and sword to all his followers that did not instantly repair to the latter. The notice was dispatched from hamlet to hamlet with the utmost expedition. And in three or four hours the whole clan was in arms, and assembled at the place appointed. This was within the few years the ordinary mode by which the chiefs all the clans assembled their followers for war. The first person that received the notice, set out with it at full speed, delivered it to the next that he met, who instantly set out on the same speed, and handed it to a third. And, in the late rebellion of 1745, it was sent by an unknown hand through the region of Breadalbane; and, flying as expeditiously as the Gallic signal in Caesar, traversed a tract of 32 miles in three hours. This quick method of giving a diffusive alarm is even preserved among ourselves to the present day; but is applied, as it seems from Caesar’s account above to have been equally applied among the Celts, to the better purposes of civil policy. The butesium and clamour of our laws, and the hue and cry of our own times, is a well-known and powerful procès for spreading the notice and continuing the pursuit of any fugitive felons. The cry, like the clamour of the Goths or the formidable of the Highlanders, is taken from town to town and from county to county; and a chain of communication is speedily carried from one end of the kingdom to the other."

Huer, a name given to certain fountains in Iceland, of a most extraordinary nature; forming at times jets d’eaux of scaling water ninety-four feet high and thirty in diameter, creating the most magnificent gerbes that can be imagined, especially when backed by the setting sun. They arise out of cylindrical tubes of unknown depths: near the surface they expand into apertures of funnel shape, and the mouths spread into large extents of talachetical matter, formed of successive scaly concentric undulations. The playing of these stupendous sprouts is foretold by noisies roaring like the cataracts of Niagara. The cylinder
Mt. Erie. Beding Fountain.

Hippopotamus.
HUE

Huesca

Huet.

Plate exxrv.

begins to fill: it rises gradually to the surface, and gradually increases its height, smokning amazingly, and fling up great flones. After attaining its greatest height it gradually sinks till it totally disappears. Boiling jets d'eau and boiling springs are frequent in most parts of the island. In many places they are applied to the culinary uses of the natives. The most capital is that which is called Geyer or Geyser, in a plain rising into small hills, and in the midst of an amphitheatre, bounded by the most magnificent and various-shaped icy mountains; among which the three-headed Hecla boars pre-eminent. See Iceland, No. 4. —— These heters are not confined to the land; they rise in the very sea, and form scalding fountains amid the waves. Their distance from the land is unknown; but the new volcanic isle, twelve miles off the point of Reickenes, emitting fire and smoke, proves that the subterraneous fires and waters extend to that space; for those awful effects arise from the united fury of these two elements.

HUESCA, an ancient and considerable town of Spain, in the kingdom of Aragon, with a bishop's see and an university. It is fested on the Ilienla, in a foil producing excellent wine, in W. Long. 0. 13. N. Lat. 40. 2.

HUECAR, or GUESCAR, a town of Spain, in the kingdom of Granada, seated on a plain in W. Long. 1. 45. N. Lat. 37. 32.

HUENSE, or HUENA, a small island in the Baltic Sea, in the Sound, where was the famous observatory of Tycho Brahe. E. Long. 13. 5. N. Lat. 55. 54.

HUEET (Peter Daniel), a very learned French writer, born at Caen in Normandy, on the 8th of February 1630. He discovered, from his infancy, a great inclination to the study of polite literature and the sciences, and at first applied himself to the law; but Descartes's principles, and Bochart's sacred geography, made him change his studies for those of philosophy, mathematics, the languages, and antiquities. His admiration for Bochart made him desirous of knowing him. He contracted a very strict friendship with him, and accompanied that learned man to Sweden. Here Christina would have engaged him in her service; but he, sensible of her inconstant temper, returned to France. All he brought with him was a copy of a MS. of Origen, which he transcribed at Stockholm. He refused several offers from Christina after she abdicated and went to Rome, and from Gualvas her successor. In 1670, Mr Bolfiet being 42 pointed by the king preceptor to the dauphin, his majesty chose Mr Hueet for his colleague, with the title of sub preceptor to the prince. It was he that formed the plan of the commentaries in Jamui Delphi, and directed the execution. His sentiments of piety determined him to enter into holy orders, which he did at the age of 49. Soon after this, he was presented by the king to the abbey of Auinay; and in 1685 was nominated to the bishopric of Seiffons, which he exchanged for the fee of Avranches. After governing that dioceze ten years, he resigned, and was made abbot of Pontenay near Caen. His love to his native place determined him to fix there. But lawsuits coming upon him, he retired to Paris, and lodged among the Jesuits in the Nuijon Prelofes, whom he had made heirs to his library. A severe dittereper weakened his body extremely, but not the vivacity of his genius; he wrote his own life in a very elegant style; and died in 1721, aged 97. He was a man of very agreeable conversation; and of great probity, as well as immense erudition. —The following are the titles of his principal works. 1. Declaris interpretibus, et de optimo generi interpretando. 2. An edition of Origen's commentaries on the holy Scriptures, in Greek and Latin. 3. A treatise on the origin of the Romans. 4. Demonstratio evangeli, folio. 5. Questions Albinae de concordia rationum et fidel. 6. Of the situation of the terrestrial paradise, in French. 7. A history of the commerce and navigation of the ancients, which has been translated into English. 8. Commentarius de rebus ad eas pverientibus. 9. Huetiana. 10. Latin and Greek verses, &c.

HUGHES (John), an ingenious and polite writer, was born in 1677. In the earliest parts of his youth, he cultivated the litter-arts, poetry, drawing, and music, in each of which he by turns made a considerable progress; but followed those and his other studies only as agreeable amusements, under frequent confinement on account of his ill state of health. The lord Chancellor Cowper made him secretary for the commisions of the peace without his knowledge, and distinguished him with singular marks of his esteem. He continued in the same employment under the earl of Macclesfield, and held it to the day of his death; which happened in 1719, the very night in which his tragedy, intitled The Siege of Damascus, was first acted. He was then 42. He translated Fontenelle's dialogues of the dead, Verrot's revolutions of Portugal, and the letters of Abeland and Elobio. He gave a very accurate edition of Spencer's works, with his life, a glossary, and remarks, and wrote several papers, in the Tatler, Specator, and Guardian. Mr Duncombe, who married his sister, collected his poems and essays in 2 vols 12mo, in 1733.

HUGHLY, a town of Aria, in the kingdom of Bengal, seated on the most weftcrn branch of the river Ganges. It is of large extent, reaching about two miles along the river-side, and drives a great trade in all the commodities of that country; affording rich cargoes for 50 or 60 ships annually, besides what is brought on carriages to the neighbouring towns. Saltpetre is brought hither from Patna in vessels above 50 yards long and five broad. The inhabitants are chiefly Indians; but there are also Portuguese, English, and other Europeans. E. Long. 87. 55. N. Lat. 22. 0.

HUGO CAPET, chief of the third race of the kings of France, being count of Paris and Orleans: he was raised to the throne for his military valour and public virtues in 987. See FRANCE, No. 28.

HUGONIA, in botany: A genus of the decandria order, belonging to the monadelphia class of plants; and in the naval method ranking with those of which the order is doubtful. The corolla is pentapetalous; the fruit is a plum with a stinted kernel.

HUGUENOTS, an appellation given by way of contempt to the reformed or Protestant Calvinists of France.

The name had its first rise in 1560; but authors are not
Hull, or vessels of burthen, of the ancient Greeks.

Hull, in the sea-language, is the main body of a ship, without either masts, yards, sails, or rigging. Thus to strike a Hull in a storm, is to take in her falls, and to lath the helm on the lee-side of the ship; and a Hull, or lie a Hull, is said of a ship whose falls are thus taken in, and helm lath'd alee.

Hull, a river in Yorkshire, which falls into the Humber at Kingston upon Hull. See Kingston.

HUMAN, in general, is an appellation given to whatever relates to mankind: thus we say, the human soul, human body, human laws, &c.

HUMANITY, the peculiar nature of man, whereby he is distinguished from all other beings.

Humanities, in the plural, signify grammar, rhetoric, and poetry, known by the name of litterae, humaniores; for teaching of which, there are professors in the universities of Scotland, called humanists.

Humber, a river formed by the Trent, Ouse, Derwent, and several other streams. By the late inland navigation, it has a communication with the rivers Mersey, Dee, Ribble, Severn, Thames, Avon &c. which navigation, including its windings, extends above 500 miles, in the counties of Lincoln, Nottingham, York, Lancaster, Welfomere, Chester, Stafford, Warwick, Leicester, Oxford, Worcestershire. It divides Yorkshire from Lincolnshire, and falls into the German ocean near Holderness.

Hume (David, Esq.) a late celebrated philosopher and historian, was born in the south part of Scotland on the 26th of April O.S. in the year 1711. Being the younger son of a country gentleman of good family, but no great fortune, his patrimony was of consequence insufficient to support him. For this reason he was destined for the bar, and passed through his academical course in the university of Edinburgh; but being more inclined to studies of a different nature, he never put on the gown, nor even took the introductory steps necessary for that purpose. The writings of Locke and Berkley had directed the attention of the generality of learned men towards metaphysics; and Mr Hume having early applied himself to studies of this kind, published in 1739 the two first volumes of his Treatise of human nature, and the third the following year. He had the mortification, however, to find his book generally decreed; and to perceive, that the taste for systematic writing was now on the decline. He therefore divided this treatise into separate Essays and Observations, which he afterwards published at different times with alterations and improvements.

In 1742, Mr Hume published two small volumes, consisting of Essays moral, political, and literary. These were better received than his former publication; but contributed little to his reputation as an author; and still left to his profit; and his small patrimony being now almost spent, he accepted an invitation from the marquis of Annandale to come and live with him in England. With this nobleman he lived a twelve-month, during which time his small fortune was considerably increased. He then received an invitation from General St Clair, to attend him as a secretary on his expedition, which was at first meant against Canada,
Hume was entrusted with the sole management of the business of the State till the arrival of the Duke of Richmond towards the latter end of the year. In 1767, he returned to Edinburgh, with a much larger income, procured to him by the Earl of Hertford, than he formerly had; and now formed the same design he had formerly entertained, namely, of burying himself in his philosophical retreat. In this, however, he was again disappointed, by receiving an invitation from General Conway to be under secretary; and this invitation he was prevented from declining both by the character of the person and his connection with it, by the Earl. In 1769 he returned to Edinburgh, possessed of £1,000 a-year, healthy, and though somewhatrikeen in years, yet having a profec of long enjoying his cafe, and of seeing the increase of his reputation. Of his last illness and character, he himself gives the following account. "In spring 1775, I was struck with a disorder in my bowels; which at first gave me no alarm, but has since, as I apprehend it, become mortal and incurable. I now reckon upon a speedy dissolution. I have suffered very little pain from my disorder; and what is more strange, have, notwithstanding the great decline of my period, never suffered a moment's abatement of my spirits; in no much, that I should most choose to pass over again, I might be tempted to point to this latter period. I pollute the name of good as ever in study, and the fame gaiety in company. I consider, besides, that a man of a strong, five, by dying, cuts off only a few years of infirmities; and though I see many symptoms of my literary reputation breaking out at last, I know that I could have but few years to enjoy it. It is difficult to be more detached from life than I am at present.

"To conclude, historically, with my own character, I am, or rather was for that is the style I must now use in speaking of myself, which emboldens me the more to speak my sentiments; I was, I say, a man of mild dispositions, of command of temper, of an open, social, and cheerful humour, capable of attachment, but little susceptible of enmity, and of great moderation in all my passions. Even my love of literary fame, my ruling passion, never foured my temper, notwithstanding my frequent disappointments. My company was not unacceptable to the young and careless, as well as to the studious and literary; and as I took a particular pleasure in the company of modest women, I had no reason to be displeased with the reception I met with from them. In a word, though men any wise eminent have found reason to complain of calumnies, I never was touched, or even attacked, by her baleful tooth; and though I wantonly exposed myself to the rage of both civil and religious factions, they seemed to be disarmed in my behalf by their wounded fury. My friends never had occasion to vindicate any one circumstance of my character and conduct: not but that the zelots, we may well suppose, would have been glad to invent and propagate any story to my disadvantage, but they could never find any which they thought would wear the face of probability. I cannot say there is no vanity in making this funeral oration of myself, but I hope it is not misplaced."
Humectation, formed of humour, moisture, moistening, in pharmacy, the preparing of a medicine, by steeping it a while in water, in order to soften and moisten it when too dry; or to cleanse it, or prevent its subtle parts from being dilipated in grinding, or the like.

Humectation is also used for the application of moistening remedies.

In this sense we say, embrocations, emplasters,unctions, humectations, fermentations, &c.

Humerus, or Os Humeri, in anatomy, the uppermost bone of the arm, popularly called the shoulder-bone; extending from the scapula, or shoulder-blade, to the upper end of the cubitus, or elbow. See Anatomy, No. 47.

Humidity, that quality in bodies whereby they are capable of wetting other bodies. This differs very much from fluidity; and seems to be merely a relative thing, depending on the concretion of the component particles of the liquor to the pores of such particular bodies as it is capable of adhering to, penetrating a little into, or wetting. Thus, for instance, quicksilver is not a moist thing with regard to our hands or clothes; but may be called so in reference to gold, tin, or lead, to whose surfaces it will perfectly adhere, and render them soft and moist.

Humiliati, a congregation of religious in the church of Rome, established by some Milanese gentlemen on their release from prison, where they had been confined under the emperor Conrad, of, as others say, under Frederick I. in the year 1162. This order, which acquired great wealth, and had no less than 90 monasteries, was abolished by pope Pius V. in 1570, and their houses given to the Dominicans and Cordeliers for their luxury and cruelty.

Humiliation, the act of humbling, i.e. of abating a person's pride, and bringing him lower in his opinion.

In this sense, humiliation stands distinguished from mortification; humiliation brings down the mind; mortification subdues the flesh.

Humility, in ethics, is a virtue consisting in the moderate value which a person puts upon himself, and every thing relating to him. Or, more particularly, it consists in not attributing to ourselves any excellence or good which we have not; in not over-rating any thing which we have or do; in not taking an improper delight in one's self; in not assuming more of the praise of a quality or action than belongs to us; and in a low and humble acknowledgment of all our imperfections, errors, and sins. This virtue expresses itself in the modesty of our appearance, of our pursuits, and of our behaviour towards other men. It is distinguished from affectation, bashfulness, and meanenes.

Humming-bird. See Trochilus.

Humour, from the Latin humor, in its original signification, stands for moisture in general; from whence it has been restrained to signify the moisture of animal bodies, or those fluids which circulate through them.

It is distinguished from moisture in general in this, that humours properly express the fluids of the body; when, in a vitiated state, it would not be improper to say, that the fluids of such a person's body were full of humours.

The only fluids of the body, which, in their natural and healthful state, are called humours, are those in the eye; we talk of the aqueous humour, the crystalline humour, without meaning any thing that is morbid or diseased; yet, when we say, in general, that such a person has got a humour in his eye, we understand it in the usual sense of a vitiated fluid.

As the temper of the mind is supposed to depend upon the state of the fluids in the body, humour has come to be synonymous with temper and disposition.

A person's humour, however, is different from his disposition, in this, that humour seems to be the disease of a disposition: it would be proper to say that persons of a serious temper or disposition of mind, were subject to melancholy humours; that those of a delicate and tender disposition, were subject to peevish humours.

Humour may be agreeable or disagreeable; but it is still humour; something that is whimsical, capricious, and not to be depended upon. An ill-natured man may have fits of good-humour, which seem to come upon him accidentally, without any regard to the common moral causes of happiness or misery.

A fit of cheerfulnesfs constitutes the whole of good-humour; and a man who has many such fits, is a good-humoured man: yet he may not be good-natured, which is a character that supposes something more constant, equable, and uniform, than what was requisite to constitute good humour.

Humour is often made use of to express the quality of the imagination, which bears a considerable resemblance to wit.

Wit expresses something that is more designed, concerted, regular, and artificial; humour, something that is more wild, loose, extravagant, and fantastical; something which comes upon a man by fits, which he can neither command or restrain, and which is not perfectly consistent with true politeness. Humour, it has been said, is often more diverting than wit; yet a man of wit is as much above a man of humour, as a gentleman is above a buffoon; a buffoon, however, will often divert more than a gentleman. The duke of Buckingham, however, makes humour to be all in all: wit, according to him, should never be used, but to add an agreeableness to some proper and just sentiment, which without some such turn might pass without its effect. See Wit.

Humphrey (Dr Lawrence), a very learned English divine in the 16th century, who during the persecution under queen Mary, reired with other Protestant-refugees to Zurich. He returned on the accession of queen Elizabeth; and was made president of Magdalene college, Oxford, dean of Gloucester, and then dean of Winchester. He was a great and general scholar, an able linguist, and a deep divine; and published, 1. De religionibus confirmatione et reformatione, duae primarum regum. 2. De ratione interpretandi alibi. 3. Optimatis sive de nobilitate, falsae origine. 4. Sermones, and other works. He died in 1592.
HUN

HUMULUS, the hop: a genus of the pentandria order, belonging to the dicotyledons of plants; and in the natural method ranking under the 53rd order, Scabridae. The male calyx is pentaphyllous; there is no corolla; the female calyx is monophyllous, patent obliquely, and entire, there is no corolla; but two styles; and one seed within the calyx, the latter containing an large leaf. There is only one species, viz. he lupulus, which is sometimes found wild in hedges near houles and gardens, but probably is not indigenous. The stalk is weak and climbing; it creeps up the support in the spiral, ascending always from the right hand to the left. The stalk and the leaves are rough to the touch; the upper leaves are heart shaped, the lower ones divided into three lobes serrated on the edges, and grow in pairs on long footstalks. The male flowers grow on a distinct plant on branched peduncles; the females on peduncles in the form of a friobulis or cone, composed of large imbricated calyces containing each one or two feeds. For the culture and uses of hops, see the articles Hop and Husbandry.

HUNDRED, HUNDREDUM, or Centuria, a part or division of a county; which was annually so called from its containing an hundred families, or from its furnishing an hundred able men for the king's wars. After king Alfred's dividing England into counties, and giving the government of each county to a sheriff, these counties were divided into hundreds, of which the constable was the chief officer. The grants of hundreds were at first made by the king to particular persons; but they are not now held by grant or prescription, their jurisdiction being devolved to the county-court; a few of them only excepted that have been by privilege annexed to the crown, or granted to some great subjects, and still remain in the nature of a franchise.

Hundred-Court. This is only a larger Court-Baron, being held for all the inhabitants of a particular hundred instead of a manor. The freemen, tutors, and farmers are here also the judges, and the steward the register as in the case of a court-baron. It is likewise no court of record; resembling the former in all points, except that in point of territory it is of a greater jurisdiction. This is said by Sir Edward Coke to have been derived out of the county-court for the ease of the people, that they might have justice done them at their own doors, without any charge or loss of time; but its institution was probably coeval with that of hundreds themselves, which were formerly observed to have been introduced though not invented by Alfred, being derived from the policy of the ancient Germans.

The courts held for the county, called courts of record; resembling the former in all points, except that in point of territory it is of a greater jurisdiction. This is said by Sir Edward Coke to have been derived out of the county-court for the ease of the people, that they might have justice done them at their own doors, without any charge or loss of time; but its institution was probably coeval with that of hundreds themselves, which were formerly observed to have been introduced though not invented by Alfred, being derived from the policy of the ancient Germans.

The courts held for the county, called courts of record; resembling the former in all points, except that in point of territory it is of a greater jurisdiction. This is said by Sir Edward Coke to have been derived out of the county-court for the ease of the people, that they might have justice done them at their own doors, without any charge or loss of time; but its institution was probably coeval with that of hundreds themselves, which were formerly observed to have been introduced though not invented by Alfred, being derived from the policy of the ancient Germans.
Hungary. but probably the name as those we called graphi. The Hungarians are said to be of a languine choleric temper, and somewhat fierce, cruel, proud, and revengeful. They have been always reputed good followers, being great lovers of ardent exercises, and hunting, than to arts, learning, trade, or agriculture. The nobility affect great pomp and magnificence, and are much addicted to feasting and carousing. The men in general are strong and well proportioned. They shave their beards but leave whiflers on the upper lip; wearing fur caps on their heads, a close-bodied coat girl with a falch, with a short cloak or mantle over all, so contrived as to be buckled under their arm, and leave the right hand at liberty. Their horse are called hussars, and their foot hussars. The former wear a broad-forded, or fymeter, and carry a hatcher or battle-axe. Their h:yi;kes. being much liberty. Their veils. There are eleven the reformation men, when they go abroad, wear Gary in the ninth and tenth centuries. alfo and Calvinifts verities fur the Roman-catholics. The Lutherans the ftares colleges are alfo it, with it, with a respectful inclination to any of the failure of heirs-male, it is reputed on their the court-judge; the ban or viceroy of Daltina, Croatia, and Scavonia; the ftaresholder of Transylvania; the great treasurer, the great cup-bearer, the steward of the household, the master of the horse, the lord chamberlain, the captain of the yeomen of the guards, and the grand-marshall of the courts who are filled the great barons, together with the inferior bans or counts and barons. To the third class belong the gentry, some of whom have noble mansions, and others only the privileges of nobles. To the fourth class belong the royal free cities, which are not subje9 to the counts, but hold immediately of the king. The gentry also, who hold of the archbishops, and bishops, have the fame privileges as the Hungarian nobility. The common people are valls of the lords, on whose lands they live, whether these lands belong to the crown, the clergy, nobility, or gentry.

The ordinary revenue of this kingdom is said to exceed a million Sterling, arising from the mines, duties on cattle, royal demeines, salt-works, contributions, customs, &c. The fortifications and garrisons commonly maintained on the frontiers against the Turks, are a great expense to the government. Hungary can easily bring into the field 100,000 men, regulars and militia; for there are 50,000 in actual pay, and the provinces furnish the other 50,000 when they are wanted.

Hungary. Water, a distilled water prepared from the tops of flowers of rosemery; so denominated from a queen of Hungary, for whose use it was first made. See Pharmacy.

HUNGER, an uneasy sensation occasioned by long abstinence from food when the body is in a healthy state.—See Abstinence; Fasting; and Anatomy, n° 1 02.

The following useful observations upon hunger or famine are extracted from a paper by Dr Percival in the second volume of the Manchester Transactions. In famine, life may be protracted (the Doctor observes) with lefs pain and misery, by a moderate allowance of water. For the acrimony and purification of the humours are obviated by such dilution, the small vessels are kept permeable, and the lungs are furnished with that moisture which is essential to the performance of their functions. Fontanus, a writer of respectable authority in the estimation of Morgagni, relates the history of a woman who obstinately refused to take any subsistence, except
Hunger, twice, during the space of 50 days, at the end of which period he died. But he adds, that the used water by way of drink, though in small quantity, Redi, who made many experiments (cruel and unjustifiable in my opinion), to ascertain the effects of fasting on fowls, observed, that none were able to support life beyond the ninth day to whom drink was denied; whereas one indulged with water lived more than 20 days.

Hippocrates has observed, that children are more affected by abstinence than young persons; and the two following days, he perceived only a faintness when he attempted either bodily or mental exertion: A sense of coldness during the whole period, the latter part of the sufferer. There are decisive instances which do not suffer much pain from the calls of hunger. Dr Percival was informed by a young physician from Geneva, that when he was a student at Montpellier, he fasted three nights and four days, with no other refreshment than a pint of water daily. His hunger was keen, but not painful, during the first and second days of his abstinence; and the two following days, he perceived only a faintness when he attempted either bodily or mental exertion: A sense of coldness was diffused over his whole frame, but more particularly the extremities. His mind was in a very unusual state of paucilimnancy; and he experienced a great tendency to tears whenever he recollected the circumstances which had been the occasion of his fasting. During the whole period, the avine excretions were suppressed, but not those by the kidneys: and at the close of it, his body became tinged with a shade of yellow. The whole took a veal broth, which had something of an intoxicating effect, producing a glow of warmth, and raising his spirits, so as to render him abashed of his dejection. Perhaps in the cafe of Sextius Bucalus, as recorded in the commentaries of Caesar, the extraordinary courage and prowes which heuddenly exerted, might be aided by the exhilarating effects of suffutness, which, under such circumstances, it is probable he would no longer decline. The fact, however, evinces, that neither his sickness nor the fermentations of hunger, had been so violent as much as to impair his strength of body or vigour of mind. Pomponius Atticus, the celebrated friend of Cicero, who put a voluntary end to his life in the 77th year of his age by refusing all food, appears to have experienced ease from his disorder, rather than any acute sufferings by famine. "Si cum biduo cibo fe abstinuisset, subito frisus decessit, leviorque morbus effe cæptit: tamen propitium nihil fecus perigit. Itaque die quinti, postquam id confilium inierat, decessit." (Corn. Nepos in Vit. Pomp. Attic.) From the former circumstance it has been conjectured, that he did not wholly deny himself the use of water, or of some other diluent. But though a few examples of this kind may be adduced, we have the evidence of numerous melancholy facts to show, that the preface of want is agonizing to the human frame. "I have talked (says an ingenious writer), with the captain of a ship who was one of six that endured it in its extremity, and who was the only person that had not lost his senses when they received accidental relief. He affirmed me his pains at first were so great, as to be often tempted to eat a part of one of the men who died, and which the rest of his crew actually for some time lived upon; he said, that during the continuance of this paroxysm, he found his pains insupportable, and was desirous at one time of anticipating that death which he thought inevitable: But his pains, he said, gradually decreased after the sixth day (for they had water in the ship, which kept them alive so long), and then he was in a state rather of languor than desire; nor did he much with food, except when he saw others eating; and that for a while revived his appetite, though with diminished impertinency. The latter part of the time, when his health was almost destroyed, a thousand frightful images rose upon his mind; and every one of his senses began to bring him wrong information. The most fragrant perfumes appeared to him to have a fetid smell; and every thing he looked at took a greenish hue, and sometimes a yellow. When he was presented with food by the ship's company that took him and his men up, four of whom died shortly after, he could not help looking upon it with loathing instead of desire; and it was not till after four days that his stomach was brought to its natural tone; when the violence of his appetite returned with a torrent of canine eagerness."

To those who by their occupations are exposed to such dreadful calamities, it is of serious importance to be instructed in the means of alleviating them. The American Indians are said to use a composition of the juice of tobacco, and the shells of snails, cockles, and oysters calcined, whenever they undertake a long journey, and are likely to be deficit of provisions. It is probable the shells are not burnt into quicklime, but only to destroy their tenacity, and to render them fit for levigation. The mass is dried, and formed into pills, of a proper size to be held between the gum and lip, which, being gradually dissolved and swallowed, obviate the sufferings of both hunger and thirst. Tobacco, by its narcotic quality, seems well adapted to counteract the uneasy impressions which the gastric juice makes on the nerves of the stomach when it is empty; and the combination of ;eftaceous powders with it may tend to correct the secretion that is supposed to be the chief agent in digestion, and which, if not acid, is always in a state of fermentation. Certain at least it is, that their operation is both grateful and fortunate for we find the luxurious inhabitants of the East Indies mix them with the betel nut, to the chewing of which they are universally and immoderately addicted. Perhaps such absorbents may be usefully applied, both to divide the dozes and to moderate the virulence of the tobacco. For, in the internal exhibition of this plant, much caution is required, as it produces sickness, vertigo, cold clammy sweats, and a train of other formidable symptoms, when taken in too large a quantity. During the time of war, the impressed soldiery frequently bring on these maladies, that they may be admitted into the hospitals, and released from servitude. It would be an easy and safe experiment to ascertain the efficacy, and to adjust the ingredients, of the Indian composition mentioned. And there is reason to believe, that the trial would be in some degree successful: for it is known that smoking tobacco gives relief in those habitual pains of the stomach which appear to arise from the irritation of the gastric secretions. The like effect is sometimes produced by increasing the flow of saliva, and swallowing what is thus discharged. And Dr Percival has related the
the case of a gentleman, who used to malate, many hours daily, a piece of lead, which being neither hard, friable, nor offensive to the palate, suited his purpose, as he thought, better than any other substance. He continued the custom many years, deriving great ease from it, and suffering no sensible injury from the poisonous quality of the metal. On mentioning this fact to a navy surgeon, the Doctor was told, that the sailors, when in hot climates, are wont to mitigate thirst by rolling a bullet in their mouths. A more innocent use, the Doctor observes, might be devised; but the efficacy of this evinces, that the salivary glands are for a while capable of furnishing a sublimated fluid for drink. When a scarcity of water occurs at sea, Dr. Franklin has advised, that the mariners should bathe themselves in tubs of salt-water: For, in pursuing the amusement of swimming, he observed, that, however thirsty he was before immersion, he never continued for afterwards; and that, though he soaked himself several hours in the day, and several days successively in salt-water, he perceived not, in consequence of it, the least taint of saltiness in his mouth. He also further suggests, that the fame good effect might perhaps be derived from dipping the sailors' apparel in the sea; and expresses a confidence that no danger of catching cold would ensue.

To prevent the calamity of famine at sea, it has been proposed by Dr. Lind, that the powder of falep should constitute part of the provisions of every ship's company. This powder and portable soup, dissolved in boiling water, form a rich thick jelly; and an ounce of each of these articles furnishes one day's subsistence to a healthy full grown man. Indeed, from Dr. Percival's experiments it appears, that falep contains more nutritious matter, in proportion to its bulk, than any other vegetable production now used as food. It has the property also of concealing the nauseous taste of salt-water; and consequently may be of great advantage at sea, when the flock of fresh water is so far confined, that the mariners are put upon short allowance. By the common masticating of it, it serves the offensive fumes, and even, in some measure, corrects the acrimony of falted and putrefied meats. But, as a preservative against hunger, falep would be more efficacious combined with an equal weight of beef fuet. By swallowing little balls of this lubricating compound at proper intervals, the coats of the stomack would be defended from irritation: and as oils and mucilages are highly nutritious, of slow digestion, and indispensible to pass off by perpiration, they are peculiarly well adapted to support life in small quantities. This composition is superior in simplicity, and perhaps equal in efficacy, to the following one, so much extolled by Dr. Lind, the celebrated Arabian physician; to whom we are indebted for the introduction of rhubarb, cassia, tamarinds, and fenna, into the materia medica. “Take sweet almonds and beef fuet, of each one pound; of the oil of violets two ounces; and of the roots of marsh mallows one ounce: bray these ingredients together in a mortar, and form the mass into boluses, about the size of a common nut.” Animal fat is singularly powerful in assuaging the most acute fevers and thirst, as appears from the narrative of the sufferings experienced by those who were confined in the black hole at Calcutta. A hundred and forty-six persons, exhausted by fatigue and military duty, were thus thrust together into a chamber of 18 cubic feet, having only two windows strongly barred with iron, from which, in a close, sultry night, and in such a climate as that of Bengal, little or no circulation of fresh air could be enjoyed. In a few minutes, these unhappy wretches fell into so prostrate a perspiration, that an idea can hardly be formed of it; and this was succeeded by a raging thirst, which increased in proportion as the body was drained of its moisture. Water! Water! became the universal cry; and an old soldier on the outside, through pity, furnished them with a few sinfuls of it. But these scanty supplies, like sprinklings on the fire, served only to feed and increase the flame. From this experience of its effects, Mr. Howel, their chief, determined to drink no more; and kept his mouth moist by licking the perpiration out of his shirt sleeves, and catching the drops as they fell from his head and face.

“You cannot imagine (says he) how unhappy I was if any of them escaped me.” He came into the prison without his cost, the seafon being too hot to bear it; and one of his miserable companions, observing the expeditious mode of relief, he had attempted, in an ungovernable fit of thirst, to drink his own urine: but it was so intensely bitter, that a second tincture could not be endured; whereas, he assures us, no Brish water could be more soft and pleasant than his perpiration. And this, we may presume, confifted chiefly of animal fat, melted by excessive heat, and exuding from the cellular membrane through the pores of the skin.

Persons who have been accustomed to animal food, are soon reduced when supplied only with the farina. Several years ago, to determine the comparative nutritive powers of different articles, a vigorous young physician, as Dr. Percival informs us, made a variety of experiments on himself, to which he unfortunately fell a sacrifice. He lived a month upon bread and water; and under this regimen of diet he every day diminished much in his weight. But in 1784, a student of physic at Edinburgh confined himself for a longer space of time to a pint of milk and half a pound of white bread daily: And he assailed our author, that he passed through the usual labours of study and exercise, without feeing any decay of health or strength, and without any trifling loss of bulk. The cutaneous, urinary, and alvine evacuations, were very scanty during the whole period; and the discharge of feaces occurred only once in a week. In this case the oily and coagulable parts of the milk probably furnished a larger proportion of aliment, and at the same time contributed to check the waste by perspiration and other discharges; for oelaginous substances are retained long in the body by their viscosity. Dr. Ruffel, in his Natural History of Aleppo, relates, that in those seasons when oil abounds, the inhabitants, by indulgence in it, are disposed to fever, and affected with inflammations of the lungs; maladies which indicate both retention and obstruction. Milk has been fos-
HUN

Hunger. — Inspected by some of producing similar effects, though in a lighter degree; and the free use of it has been on this account forbidden to allmatics.

Gum arabic might be a good substitute for falep in the composition already recommended, and as it will give such firmness to the mafs, as to require manudation, the saliva, by this means separated and carried into the stomach, would further contribute to affluge the sensations both of hunger and of thirst. See Gum Arabica. This gum, combined with sugar and the whites of eggs, has been lately extolled in France, under the name of patiguma, a remedy for catarrhal dilutions. Dr Percival has seen cakes made of these ingredients, and thinks they might very well be applied to the purpose of obviating hunger. They are not profitable in the hottest climates, may be carried about the person with convenience, and though very tough are pleasant to the taste. In the formula by which they are made, the proportion of sugar is too large, and that of gum arabic too small, if the mafs be intended to affluge the cravings of appetite. According to our author's information, the receipt is as follows: — Take of fine sugar four ounces, and of gum arabic one ounce: Levigate them well together; and add half an ounce of rose water, and of the white of eggs a sufficient quantity.

In our attempts to recover those who have suffered under the calamities of famine, great circumspection is required. Warmth, cordials, and food, are the means to be employed; and it is evident that these may prove too powerful in their operation, if not administered with caution and judgment. For the body, by long fasting, is reduced to a state of more than infantile debility; the minuter veifts of the brain, and of the other organs, collapse for want of fluids to distend them; the stomach and intestines shrink in their capacity; and the heart languidly vibrates, having scarcely sufficient energy to propel the scanty current of blood. Under such circumstances, a proper application of heat seems an essential measure, and may be effected by placing on each side a healthy man in contact with the patient. Pediluvia or fomentations may also be used with advantage. The temperature of these should be lower than that of the human body, and gradually increased according to the effects of their stimulus. New milk, weak broth, or water gruel, ought to be employed both for the one and the other; as nutriment may be conveyed into the system this way, by passages probably the most pervious in a state of fasting, if not too long protracted. — A lad at New-market, a few years ago, having been almost starved in order that he might be reduced to a proper weight for riding a match, was weighed at nine o'clock in the morning, and again at ten; and he was found to have gained near thirty ounces in weight in the course of an hour, though he had only drank half a glass of wine in the interval. The wine probably stimulated the action of the nervous system, and incited nature, exhausted by atmitence, to open the absorbent pores of the whole body, in order to suck in some nourishment from the air. But no such abstinence as this can be expected in a state of extreme weakness and emaciation gradually induced; because the lymphatics must partake of the general want of tone and energy. And notwithstanding the salutary effects of wine in the case of the jockey, who, it is likely, had been reduced by sweating as well by abstinence, such a stimulant might prove dangerous, and even fatal in other cases. It appears safer therefore to advise the exhibition of cordials in very small doses, and at first considerably diluted. Should wine-whey will perhaps best answer this purpose; and afford, at the same time, an easy and pleasant nourishment. When the stomach has been a little strengthened, an egg may be mixed with the whey, or administered under some other agreeable form. The yolks of one was, to Cornaro, sufficient for a meal; and the narrative of this noble Venetian, in whom a fever was excited by the addition of only two ounces of food to his daily allowance, shows, that the return to a full diet should be conducted with great caution, and by very slow gradations.

HUNNS, a fierce and savage nation, who formerly inhabited that part of Sarmatia bordering on the Pautus Moiris and the Tanais, the ancient boundary between Europe and Asia. Their country, as described by Procopius, lay north of mount Caucasus, which, extending from the Euxine to the Caffian seas, parts Asiatic Sarmatia from Colchis, Iberia, and Albania; lying on the isthmus between the two seas abovementioned. Here they refided, unknown to other nations, and themselves ignorant of other countries, till the year 376. At this time, an hind purued by the hunters, or, according to some authors, an ox flung by a gad-fly, having paffed the marsh, was followed by some Hunns to the other side, where they discovered a country much more agreeable than their own. On their return, having acquainted their countrymen with what they had seen, the whole nation palled the marsh, and, falling upon the Alans who dwelt on the banks of the Tanais, almost exterminated them. They next fell upon the Othrogoths, whom they drove out of their country, and forced to retire to the plains between the anthus and the Tanais, now known by the name of Podolica. Then attacking the Viichtigis, they obliged them to shelter themselves in the woof mountainous parts of their country; till at last the Gothic nations, finding it impossible to withstand such an inubation of barbarians, obtained leave from the emperor Valens to settle in Thrace.

The Hunns thus became masters of all the country between the Tanais and Danube in 376, where they continued quietly till the year 388, when great numbers of them were taken into the pay of Theodosius I. But, in the mean time, a party of them, called the Nephthali or White Hunns, who had continued in Asia, over-ras all Meeopotamia, and even laid siege to Edessa, where they were repulsed with great slaughter by the Romans. The European Hunns frequently passed the Danube, committing the greatest ravages in the western empire; sometimes they fell upon the eastern provinces, where they put all to fire and sword. They were often defeated and repulsed by the Romans, but the empire was now too weak to subdue or confine them from making excursions; so that they continued to make daily encroachments, and became day by day more formidable than before. In 441, the Hunns, under Attilla, threatened the western empire with total destruction. This monarch, having made himself master of all the northern countries from the confines of Persia to the banks of the Rhine, invaded Masia,
The Hunnes.

Hunns: the race, and illyricum, where he made such progress, that the emperor, not thinking himself safe in Constan-
tinople, withdrew into Asia. Attila then broke into Gaul, where he took and destroyed several cities, massacring the inhabitants with the greatest cruelty. About the year 452 or 453 Attila died, and his kingdom was immediately split into a number of small ones by his numerous children, who waged perpetual war with each other. The Hunnes then ceased to be formidable, and became daily less able to cope with the other barbarous nations whom Attila had kept in subjection. Still, however, their dominion was considerable, and in the time of Charles the Great they were masters of Transylvania, Wallachia, Servia, Carniola, Carinthia, and the greater part of Austria, together with Bohemia, Slovakia, and that part of Hungary which lies beyond the Danube. In the year 776, while Charles was in Saxony, two princes of the Hunnes, Caganus and Jugunus, sent ambassadors to him, desiring his friendship and alliance. Charles received them with extraordinary marks of friendship, and readily complied with their request. However, they entered, not long after, into an alliance with Tassila duke of Bavaria, who had revolted from Charles, and raised great disturbances in Germany. Charles dis-sembled his resentment till he had entirely reduced Bavaria, and then resolved, not of any aversion to the Hunnes for those favours they had underhand given to his enemy. Accordingly, he ordered levies to be made throughout his dominions; and having by that means assembled a very numerous army, he divided it into two bodies, one of which he commanded himself, and the other he committed to the care of his generals. The two armies entered the country of the Hunnes at different places, ravaged their country far and near, burnt their villages, and took all their strongholds. This he continued for eight years, till the people were almost totally extirpated; nor did the Hunnes ever afterwards recover themselves, or appear as a formidable nation.

There were two different nations that went by the name of Hunni; the Nephthalite or White Hunns, and the Sarmatian or Scythian Hunns. The former inhabited a rich country, bordering to the north on Persia, and at a great distance from the Sarmatian or Scythian Hunns, with whom they had no intercourse nor the least resemblance either in their persons or manners. They were a powerful nation, and often served against the Romans in the Persian armies; but in the reign of the emperor Zeno, being provoked by Perzicz, king of Persia, laying claim to part of their country, they defeated the Persians in two pitched battles, slew their king, overran all Persia, and held it in subjection for the space of two years, obliged Cadabes, the son and successor of Perzicz, to pay them a yearly tribute. These Hunns, called by the writers of those times the white Hunnis, did not wander, like the others, from place to place; but, contented with their own country, which supplied them with all necessaries, they lived under a regular government, subject to one prince, and seldom made inroads, unless provoked either into the Persian or Roman territories.

They lived according to their own laws, and dealt uprightly with one another, as well as with the neighboring people. Each of their great men used to choose two or more companions to enjoy with him his wealth, and partake of all his divestments; but, upon his decease, they were all buried with him in the same grave. This custom favours of barbarity; but in every other respect, the Nephthalite or White Hunns were a far more civilized nation than the Scythian Hunns, who, breaking into the empire, filled most of the provinces of Europe with blood and slaughter.

The latter were, according to Ammianus Marcellinus, a savage people, exceeding in cruelty the most barbarous nations. They began to practice their cruelty, says Jornandes, upon their own children the very first day they come into the world, cutting and mangling the cheeks of their males, to prevent the growth of hair, which they must have looked upon, contrary to the sentiments of other nations, as unbecoming and unmanly. They had, perhaps, in this practice another view, which Jornandes seems to intimate elsewhere, viz. to strike terror into the enemy with their countenances, thus deformed and covered.

They had no other food but roots and raw meat, being quite unacquainted with the use of fire, and no housetes at all, not even huts; but lived, constantly exposed to the air in the woods, and on the mountains, where, from their infancy, they were inured to hunger, thirst, and all manner of hardships: nay, they went about armed to the teeth; and wherever they camped, they said the sepulchres of the living, that, when they went into other countries, they could hardly be prevailed upon to come within the walls of any house, not thinking themselves safe when shut up and covered. They used to eat and sleep on horseback, scarcely ever dismounting; which, in all likelihood, induced Zosimus to write, that the Hunnis could not walk. They covered their nakedness with goatskins, or the skins of a sort of mice fewed together. Day and night were indifferent to them, as to buying, selling, eating, and drinking: they had no law, nor any kind of friendship; nor did they keep faith. They were quite indifferent to their soldiers, preferring them to the most ignorant of their nation; and authors observe, that they never attacked the enemy's camp. They were a faithless nation, and thought themselves no longer bound by the most solemn treaties, than they found their advantage in observing them. Hence we often find them, upon the least prospect of obtaining more advantageous conditions, breaking into the Roman empire, in defiance of the most solemn oaths and engagements. Several corps of Hunnis, after their coming into Europe, served in the Roman armies against the Goths and other barbarous nations; nay, they were ready, for hire, to fight against each other, being blind to every other regard and consideration.

HUNGERFORD, a town of Berkshire in England, seated on the river Kennet, in a low and watery foil. It is a great thoroughfare in the Bath and Bri-
A horse intended for a hunter should be this: The ears should be small, open, and pricked; or though they be somewhat long, yet if they stand up erect and bold like those of a fox, it is a sign of touchiness or hardiness. The forehead should be long and broad, not flat; or, as it is usually termed, mare-faced, but rising in the middle like that of a hare; the feather should be placed above the eye, the contrary being thought by some to threaten blindness. The eyes should be full, large, and bright; the nostrils not only large, but looking red and fresh within; for an open and fresh nostril is always esteemed a sign of a good wind. The mouth should be large, but deep in the cheeks, and hairy. The wind-pipe should be large, and appear straight when hebridges his head; for, on the contrary, it bends like a bow on his bridling, it is not formed for a free passage of the breath. This defect in a horse is expressed among the dealers by the phrase cock throppled. The head should be set on to the neck, that a space may be felt between the neck and the chine; when there is no such space, the horse is said to be bull-necked; and this is not only a blemish in the beauty of the horse, but it also occasions his wind not to be so good. The crest should be strong, firm, and well-set; the neck should be straight and firm, not hove and pliant; the breast should be strong and broad, the ribs round like barrels, the fillets large, the buttocks rather oval than broad, the loins clean, flat, and straight; and, finally, the mane and tail ought to be long and thin, not short and bready, the last being cotted a mark of dullness. When a hunter is thus chosen, and has been taught such obedience, that he will readily answer to the rider's signals both of the bridle and hand, the voice, the calf of the leg, and the spur: that he knows how to make his way forward, and has gained a true temper of mouth, and a right placing of his head, and has learned to stop, and to turn readily, if his age be sufficiently advanced, he is ready for the field. It is a rule with all true sportsmen, that no horse should be used in hunting till he is full five years old; some will hunt them at four, but the horse at this time is not come up to his true strength and courage, and will not only fail at every tough trial, but will be subject to strains and accidents of that kind, much more than if he were to be kept another year firft, when his strength would be more confirmed.

When the horse is five years old, he may be put to grafs from the middle of May, till Bartholomew-tide: for the weather between these is hot, that it will be very proper to spare him from work. At Bartholomew-tide, the strength of the grafs beginning to be nipped by frosts and cold dews, so that it is apt to engender crudities in the horse, he should be taken up while his coat is yet smooth and sleek and put into the stable. When he is first brought home; he should be put in some close and spacious place, where he may evacuate his body by degrees, and be brought not at once to the warm keeping; the next night he may be flabled up. It is a general rule with many masters not to clothe and flable up their horses till two or three days after they are taken from grafs, and others who put them in the stable after the first night, yet will not clothe and clothe them till three or four days afterward; but all this, except the keeping the horse one day in a large and cold place, is needless caution.

There is a general practice among the grooms, in many places, of giving their hunters wheat-straw as soon as they take them up from grafs. They say they do this to take up their bellies; but there seems much reason to disapprove of this. The change is very violent, and the nature of the straw so heating and drying, that there seems good reason to fear that the astringent nature of it would be prejudicial, more than is at first perceived. It is always found that the dung is hard after this food, and is voided with pain and difficulty, which is in general very wrong for this sort of horse. It is better therefore to avoid this straw feeding, and to depend upon moderate airing, warm clothing, and good old hay, and old corn, than to have recourse to any thing of this kind.

When the horse has evacuated all his grafs, and has been properly flody, and the shoes have had time to
The advantages of these airings are very evident; they purify the blood, teach the creature how to make his breathing agree with the rest of the motions of his body, and give him an appetite to his food, which hunters and racers that are kept stalled up are otherwise very apt to lose. On returning from airing, the litter of the stable should be fresh, by stirring this and whiffling, he will be brought to flate. Then he is to be led to his flall, and tied up, and again carefully rubbed down; then he should be covered with a linen cloth next his body, and a canvas one over that, made to fit him, and reaching down to his legs. Thus, as the duke of Newcastle observes, is a custom which we learned of the Turks, who are of all people the most nice and careful of their horses. Over this covering there should be put a body-cloth of six or eight strips; this keeps his belly in shape, and does not hurt him. This clothing will be sufficient while the weather is not very sharp but in severe seasons, when the hair begins to rise and flart in the uncovered parts, a woollen cloth is to be added, and this will always prove fully sufficient.

Different horses and different seasons, make variety of the degree of clothing necessary; but there always is an obvious rule to point out the necessary changes, the roughness of the coat being a mark of the want of clothing, and the smoothness of it a proof that the clothing is sufficient. Therefore if at any time the hair is found to flart, it is a notice that some farther clothing is to be added.

If the horse sweat much in the night, it is a sign that he is over fed and wants exercise; this therefore is easily remedied. An hour or more after the horse is come in from his airing, the grom should give him a wisp of clean hay, making him eat it out of his hand; after this let the manger be well cleaned out, and a quartern of oats clean stirred be given him. If the eats up this with an appetite, he should have more given him; but if he is slow and indifferent about it, he must have no more. The business is to give him enough, but not to cloy him with food.

If the horse gets fresh too fast on this home feeding, he is not to be stinted to prevent it, but only his exercise increased; this will take down his flesh, and at the same time give him strength and wind. After the feeding in the morning is over, the flables is to be shut up, only leaving him a little hay on his litter. He need be no more looked at till one o' clock, and then only rubbed down, and left again till the time of his evening watering, which is four o'clock in the summer and three in the winter. When he has been watered, he must be kept out an hour or two, or more if necessary, and then taken home and rubbed as after the morning watering. Then he is to have a feed of corn at six o'clock, and another at nine at night; and being then cleaned, and his litter put in order, and hay enough left for the night, he is to be left till morning. This is the direction for one day, and in this manner he is to be treated every day for a fortnight; at the end of which time his flesh will be so hardened, his wind so improved, and his mouth so quickened, and his gallop brought to so good a stroke, that he will be
Hunter, fit to be put to moderate hunting. During the time that he is used to hunting, he must be ordered on his days of rest exactly as he is directed for the fortnight when he is in preparation; but as his exercise is now greatly increased, he must be allowed more strengthening food, mixing some old split beans at every feeding with his oats.

And if this is not found to be sufficient, the following bread must be given: let two pecks of old beans and one peck of wheat be ground together, and made into an indifferently fine meal; then knead it into dough with some warm water and a good quantity of yeast; let it lie a time that it may rise and swell, which will make the bread lighter; then make it into loaves of a peck each, and let it be baked in a flow oven, that it may be thoroughly done without being burnt; when it is taken out of the oven, it must be set bottom upwards to cool: when it is one day old the crust is to be chipped off, and the crumbs given for food. When this is ready, he should have some of it at least once in the day; but it is not to be made the only food, but some fruits to be of oaks alone, some of oats and this bread, and some of oats and beans mixed together. The making a variety in this manner being the best of all methods of keeping up the appetite, which is often apt to fail.

The day before the horse is to hunt, he must have no beans, because they are hard of digestion, but only some oats with his bread; or if he will be brought to eat the bread alone, that will be best of all. His evening feed should on this day be somewhat earlier than usual; and after this he may have a slice of hay out of the groom's hand.

HUNTER (Dr William), a celebrated anatomist and physician, was born on the 23d of May 1718, at Kilbride in the county of Lanark in Scotland. He was the seventh of ten children of John and Agnes Hunter, who resided on a small estate in that parish called Long Calderwood, which had been long in the possession of his family. His great grandfather by his father's side, was a younger son of Hunter of Hunterston, of the same name. At the age of fourteen his father sent him to the college of Glasgow. In this seminary he passed five years; and by his prudent behaviour and diligence acquired the esteem of the professors, and the reputation of being a good scholar. His master had designed him for the church; but the idea of subscribing to articles of faith was so repugnant to the liberal mode of thinking he had always adopted, that he felt an insuperable aversion to his theological pursuits. In this state of mind he happened to become acquainted with Dr Cullen, the late celebrated professor at Edinburgh, who was then just established in practice at Hamilton under the patronage of the duke of Hamilton. Dr Cullen's conversation soon determined him to lay aside all thoughts of the church, and to devote himself to the profession of physic. His father's consent having been previously obtained, Mr Hunter in 1737 went to reside with Dr Cullen. In the family of this excellent friend and preceptor he passed nearly three years; and there, as he has been often heard to acknowledge, were the happiest years of his life. It was then agreed, that he should go and prosecute his medical studies at Edinburgh and London, and afterwards return to settle at Hamilton in partnership with Dr Cullen. He accordingly set out for Edinburgh in November 1740; and continued there till the following spring, attending the lectures of the medical professors, and amongst others those of the late Dr Alexander Monro, who many years afterwards, in allusion to this circumstance, styled himself his old master.

Mr Hunter arrived in London in the summer of 1741, and took up his residence at Mr. afterwards Dr Smellie's, who was at that time an apothecary in Pall Mall. He brought with him a letter of recommendation to his countryman Dr James Douglas, from Mr Foulis printer at Glasgow, who had been useful to the Doctor in collecting for him different editions of Horace. Dr Douglas was then intent on a great anatomical work on the bones, which he did not live to complete, and was looking out for a young man of abilities and industry whom he might employ as a dffector. This induced him to pay particular attention to Mr Hunter; and finding him acute and sensible, he desired him to remain with him, but him another visit. A second conversation confirmed the doctor in the good opinion he had formed of Mr Hunter; and without any further hesitation he invited him into his family and to assist in his dissections and to superintend the education of his son.—Mr Hunter having accepted Dr Douglas's invitation, was by his friendly affability enabled to enter himself as a surgeon's pupil at St George's Hospital under Mr James Wilkie, and as a dissecting pupil under Dr Frank Nichols who at that time taught anatomy. In the spring Dr Douglas attended a course of lectures on experimental philosophy by Dr De Faguliers. Of these means of improvement he did not fail to make a proper use. He soon became expert in dissection, and Dr Douglas was at the expense of having several of his preparations engraved. But before many months had elapsed, he had the misfortune to lose this excellent friend.—The death of Dr Douglas, however, made no change in the situation of our author. He continued to reside with the Doctor's family, and to pursue his studies with the same diligence as before.

In 1743 he communicated to the Royal Society an essay on the Structure and Diseases of articulating Cartilages. This ingenious paper, on a subject which till then had not been sufficiently investigated, affords a striking testimony of the rapid progress he had made in his anatomical inquiries. As he had it in contemplation to teach anatomy, his attention was directed principally to this object; and it deserves to be mentioned as an additional mark of his prudence, that he did not precipitately engage in this attempt, but passed several years in acquiring such a degree of knowledge and such a collection of preparations, as might influence his success. Dr Nichols, to whom he communicated his scheme, and who declined giving lectures about that time in favour of the late Dr Lawrence, did not give him much encouragement to prosecute it. But at length an opportunity presented itself for the display of his abilities as a teacher. A society of naval surgeons had an apartment in Covent Garden, where they engaged the late Mr Samuel Sharpe to deliver a course of lectures on the operations of surgery. Mr Sharpe continued to repeat this course,
In 1755, on the resignation of Dr Layard, one of the physicians of the British Lying-in hospital, we find the governors of that institution voting their 'thanks to Dr Hunter for the services he had done the hospital, and for his continuing in it as one of the physicians:' so that he seems to have been established in this office without the usual form of an election. The year following he was admitted a licentiate of the Royal College of physicians. Soon afterwards he was elected a member of the Medical Society; and to the Observations and Inquiries published by that society, he at different periods contributed several valuable papers.

In 1762, we find him warmly engaged in controversy, supporting his claim to different anatomical discoveries, in a work entitled Medical Commentaries, the style of which is correct and spirited. As an excuse for the tardiness with which he brought forth this work, he observes in his introduction, that it required a good deal of time, and he had little to spare; that the subject was unpleasant, and therefore he was very seldom in the humour to take it up. In this publication he confined himself chiefly to a dispute with the present learned professor of anatomy at Edinburgh, concerning injections of the teftille, the ducts of the lacrymal gland, the origin and use of the lymphatic vessels, and absorption by veins. He likewise defended himself against a reproach thrown upon him by professor Monro senior, by giving a concise account of a controversy he was involved in with Mr Pott concerning the discovery of the Hernia Congenita. It was not long before Mr Pott took occasion to give the public his account of the dispute; and, in reply, Dr Hunter added a supplement to his commentaries. No man was ever more tenacious than Dr Hunter of what he conceived to be his anatomical rights. This was particularly evinced in the year 1780, when his brother communicated to the Royal Society a discovery he had made 25 years before, relative to the structure of the placenta, the communication between it and the uterus, and the vascularity of the spongy chorion. At the next meeting of the society, a letter was read, in which Dr Hunter put in his claim to the discovery in question. This letter was followed by a reply from Mr John Hunter, and here the dispute ended.

In 1762, when the queen became pregnant, Dr Hunter was consulted: and two years afterwards he had the honour to be appointed physician extraordinary to her majesty.

About this time his avocations were so numerous, that he became desirous of lessening his fatigue; and having noticed the ingenuity and assiduous application of the late Mr William Hewson, F. R. S. who was then one of his pupils, he engaged him first as an assistant, and afterwards as a partner, in his lectures. This connection continued till the year 1770; when some disputes happened, which terminated in a separation. Mr Hewson was succeeded in the partnership by Mr Cruikshank, whose anatomical abilities are deservedly respected.

In 1767, Dr Hunter was elected a fellow of the Royal Society: and in the year following communicated to that learned body observations on the bones, commonly supposed to be elephants bones, which have been found near the river Ohio in America. This was
Hunter was not the only subject of natural history on which our author employed his pen; for in a subsequent volume of the Philosophical Transactions, we find him offering his remarks on some bones found in the rock of Gibraltar, and which he proved to have belonged to some quadruped. In the same work, likewise, he published an account of the nyl-gata, an Indian animal not described before. In 1768, Dr Hunter became a fellow of the Society of Antiquaries; and the same year at the inauguration of a Royal Academy of Arts, he was appointed by his majesty to the office of professor of anatomy. This appointment opened a new field for his abilities; and he engaged in it as he did in every other pursuit of his life, with unabating zeal. He now adapted his anatomical knowledge to the objects of painting and sculpture, and the novelty and justness of his observations proved at once the readiness and extent of his genius. In January 1781, he was unanimously elected to succeed the late Dr John Fothergill as president of the Medical Society. As his name and talents were known and respected in every part of Europe, so the honours conferred on him were not limited to his own country. In 1780 the Royal Medical Society at Paris elected him one of their foreign associates; and in 1782, he received a similar mark of distinction from the Royal Academy of Sciences in that city.

The most splendid of Dr Hunter's medical publications was the Anatomy of the Human Gravid Uterus. The appearance of this work, which had been begun so early as the year 1751, (at which time 10 of the 34 plates it contains were completed), was retarded till the year 1775, only by the author's desire of finding it into the world with fewer imperfections. This great work is dedicated to the king. In his preface to it, we find the author very candidly acknowledging, that in most of the dissections he had been assisted by his brother Mr John Hunter, "whose accuracy (he adds) in anatomical researches is so well known that to omit this opportunity of thanking him for that assistance which is in some measure to disregard the future reputation of the work itself." He likewise confesses his obligations to the ingenious artists who made the drawings and engravings; "but particularly to Mr Strange, not only for having by his hand secured a sort of immortality to two of the plates, but for having given his advice and assistance in every part with a steady and disinterested friendship. An anatomical description of the gravid uterus was a work which Dr Hunter had in contemplation to give the public. He had likewise been employed in collecting and arranging materials for a history of the various concretions that are formed in the human body. Amongst Dr Hunter's papers have been found two introductory lectures, which are written out so fairly, and with such accuracy, that he probably intended no farther correction of them before they should be given to the world. In these lectures Dr Hunter traces the history of anatomy from the earliest to the present times, along with the general progress of science and the arts. He considers the great utility of anatomy in the practice of physic and surgery; gives the ancient divisions of the different substances composing the human body; which for a long time prevailed in anatomy; points out the most advantageous mode of cultivating this branch of natural knowledge; and concludes with explaining the particular plan of his own lectures. Besides these manufactures, he has also left behind him a considerable number of cases of dissection, mostly relating to pregnant women.

The same year in which the Tables of the Gravid Uterus made their appearance, Dr Hunter communicated to the Royal Society an Essay on the Origin of the Venereal Disease. In this paper he attempted to prove, that this dreadful malady was not brought from America to Europe by the crew of Columbus, as had been commonly supposed; although it made its first appearance about that period. After this paper had been read to the Royal Society, Dr Hunter, in a conversation with the late Dr Mulgrave, was convinced that the testimony on which he placed his chief dependence was of less weight that he had at first imagined, as many of Martyr's letters afford the most convincing proofs of their having been written a considerable time after the period of their dates. He therefore properly laid aside his intention of giving his essay to the public. In the year 1777 Dr Hunter joined with Mr Watson in presenting to the Royal Society a short account of the late Dr Matty's illness, and of the appearances on dissection; and the year following he published his Reflections, on the Section of the Sympysis Pubis.

We must now go back a little into the order of time to describe the origin and progress of Dr Hunter's museum, without some account of which the history of his life would be very incomplete. When he began to practise midwifery, he was desirous of acquiring a fortune sufficient to place him in easy and independent circumstances. Before many years had elapsed, he found himself in possession of a sum adequate to his wishes in this respect; and this he set apart as a resource of which he might avail himself whenever age or infirmities should require that he should retire from business. After he had obtained this competency, as his wealth continued to accumulate, he formed a landable design of engaging in some scheme of public utility, and at first had it in contemplation to found an anatomical school in Edinburgh. For this purpose, about the year 1765, during the administration of Mr Grenville, he presented a memorial to that minister, in which he requested the grant of a piece of ground in the Mews, for the site of an anatomical theatre. Dr Hunter undertook to expend £7000 on the building, and to endow a professorship of anatomy in perpetuity. This scheme did not meet with the reception it deserved. In a conversation on this subject soon afterwards with the earl of Shelburne, his lordship expressed a wish that the plan might be carried into execution by subscription, and very generously requested to have his name set down for a thousand guineas. Dr Hunter's delicacy would not allow him to adopt this proposal. He chose rather to execute it at his own expense; and accordingly purchased a spot of ground in Great Windmill-street, where he erected a spacious house, to which he removed from Jermyn-street in 1770. In this building, besides a handsome amphitheatre, and other convenient apartments for his lectures and dissections, there was one magnificent room, fitted up with great elegance and propriety as a museum. Of the magnitude and value of his anatomical collection some idea
HUNTER, may be formed, when we consider the great length of years he employed in the making of anatomical preparations and in the dissection of morbid bodies, added to the cagerneys with which he proceeded additions from the collections of Sandys, Henson, Falconer, Balfour and others, that were at different times offered for sale in the metropolis. His specimens of rare diseases were likewise frequently increased by presents from his medical friends and pupils; who, when any thing of this sort occurred to them, very justly thought they could not dispose of it more properly than by placing it in Mr Hunter's museum. Speaking of an acquisition in this way in one of his publications, he says, "I look upon every thing of this kind which is given to me, as a present to the public; and consider myself as thereby called upon to serve the public with more diligence."

Before his removal to Windmill-street, he had confined his collection chiefly to specimens of human and comparative anatomy and of diseasés; but now he extended his views to fossils, and likewise to the promotion of polite literature and erudition. In a short space of time he became possessed of "the most magnificent treasure of Greek and Latin books that has been accumulated by any person now living since the days of Mead." A cabinet of ancient medals contributed likewise much to the riches of his museum. A description of part of the coins in this collection, figured by the Greek free cities, has lately been published by the Doctor's learned friend Mr Combe. In a classical dedication of this elegant volume to the queen, Dr Hunter acknowledges his obligations to her majesty. In the preface there account is given of the progress of the collection, which has been brought together since the year 1770, with singular taste, and at the expense of upwards of L. 20,000. In 1781, the museum received a valuable addition of shells, corals, and other curious subjects of natural history, which had been collected by the late worthy Dr Forthgill, who gave directions by his will, that his collection should be respited after his death, and that Dr Hunter should have the refusal of it at L. 500 under the valuation. This was accordingly done, and Dr Hunter purchased it for the sum of L. 1200. The fame of this museum spread throughout Europe. Few foreigners distinguished for their rank or learning visited the metropolis without requesting to see it. Men of science in Britain always had easy access to it. Considered in a collective point of view, it is perhaps without a rival.

Dr Hunter, at the head of his profession, honoured with the esteem of his sovereign, and in possession of everything that his reputation and wealth could confer, seemed now to have attained the summit of his wishes. But these sources of gratification were imbibed by a disposition to the gout, which harassed him frequently during the latter part of his life, notwithstanding his very abstemious manner of living. On Saturday the 15th of March 1783, after having for several days experienced a return of a wandering gout, he complained of a great head-ache and nausea. In this state he went to bed, and for several days felt more pain than usual both in his stomach and limbs. On the Thursday following he found himself so much recovered, that he determined to give the introductory lecture to the operations of surgery. It was to no purpose that his friends urged him on the imprudence of such an attempt. He was determined to make the experiment, and accordingly delivered the lecture; but towards the conclusion his strength was so exhausted that he fainted away, and was obliged to be carried to bed. The following night and day his symptoms were such as indicated danger, and on Saturday morning Mr Combe, who made him an early visit, was alarmed on being told by Dr Hunter himself that during the night he had certainly had a paralytic stroke. As neither his speech nor his pulse were affected, and he was able to raise himself in bed, Mr Combe encouraged him to hope that he was mistaken. But the event proved the doctor's idea of his complaint to be too well founded; for from that time till his death, which happened on Sunday the 30th of March, he voided no urine without the assistance of the catheter, which was occasionally introduced by his brother, and purgative medicines were administered repeatedly without procuring a passage by stool. These circumstances, and the absence of pain, seemed to show that the intestines and urinary bladder had lost their sensibility and power of contraction; and it was reasonable to presume that a partial paralysis had affected the nerves distributed to those parts.

By his will, the use of his museum, under the direction of trustees, devolves to his nephew Matthew Balfour, B. A. and in case of his death to Mr Cruikshank for the term of thirty years, at the end of which period the whole collection is bequeathed to the university of Glasgow. The sum of eight thousand pounds sterling is left as a fund for the support and augmentation of the collection.

Dr Hunter was regularly shaped, but of a slender make, and rather below a middle stature. His manner of living was extremely simple and frugal, and the quantity of his food was small as well as plain. He was an early riser; and when business was over, was constantly engaged in his anatomical pursuits, or in his museum. There was something very engaging in his manner and address; and he had such an appearance of attention to his patients, when he was making his inquiries, as could hardly fail to conciliate their confidence and esteem. In consultation with his medical brethren, he delivered his opinions with decision and candour. In familiar conversation he was cheerful and unassuming. As a teacher of anatomy he has been long and deservedly celebrated. He was a good orator; and having a clear and accurate conception of what he taught, he knew how to place in distinct and intelligible points of view the most abstruse subjects of anatomy and physiology. Among other methods of explaining and illustrating his doctrines, he used frequently to introduce some apposite story or anecdote that had occurred to him in practice; and few men had acquired a more interesting fund of anecdotes of this kind, or related them in a more agreeable manner.

HUNTING, the exercise or diversion of pursuing four-footed beasts of game. See the article Game.

Four-footed beasts are hunted in the fields, woods, and thickets, and that both with guns and hounds.

Birds, on the contrary, are either shot in the air, or
Hunting, or taken with nets and other devices, which exercise is called fowling; or they are pursued and taken by birds of prey, which is called hunting. See the articles Fowling, Hawking, Falconry, Shooting, Bird-Catching, and Decoy.

F. de Launay, professor of the French laws, has an express treatise of hunting. From those words of God to Adam, Gen. i. 26, and 28. and to Noah, Gen. ix. 2, 3, hunting was considered as a right devolved or made over to man; and the following ages appear to have been of the same sentiment. Accordingly we find, that among the more civilized nations it made one of their diversions; and as the wilder and more barbarous tribes were used with more savage necessity. The Roman jurisprudence, which was formed on the manners of the first ages, made a law of it, and established it as a maxim, that as the natural right of things which have no matter belongs to the first possessor, wild beasts, birds, and fishes, are the property of whosoever can take them first.

But the northern nations of barbarians who over-ran the Roman empire, bringing with them a stronger taste for the diversion, and the people being now possessed of other and more easy means of subsistence from the lands and possessions of those they had vanquished, their chiefs and leaders began to appropriate the right of hunting, and, instead of a natural right, to make it a royal one. Thus it continues to this day; the right of hunting, in Britain, belonging only to the king, and those who derive it from him.

The hunting used by the ancients was much like that now practised for the rein-deer: which is seldom hunted at force, or with hounds; but only drawn with a blood-hound, and foretalled with nets and engines. The ancients were much accustomed to this morning and agility, and making them presentsoftheir

The Sicilian way of hunting had something in it very extraordinary. The nobility or gentry being informed which way a herd of deer passed, gave notice to one another, and appointed a meeting; every one bringing with him a crofs bow or a long-bow, and a bundle of flaves fhozd iron, the heads bored, with a cord passing through them all; thus provided, they came to the herd, and casting themselves about in a large ring, surrounded the deer. Then, each taking his fland, unbound his faggot, set up his flake, and tied the end of the cord to that of his next neighbour, at the distance of ten feet from one another. Then taking feathers, died in crimfon, and fainted on a thread, they tied them to the cord; so that with the leaft breath of wind they would whirt round.

Which done, the perffons who kept the flands withdrew, and hid themselves in the next covert. Then the chief ranger entering within the line with hounds to draw after the herd, roufed the game with their cry; which flying towards the line, were turned off, and, still gazing on the flaking and shining feathers, wandered about as if kept in with a real wall or pale. The ranger still pursued, and calling every perfon by name as he pasied by their fland, commanded him to stroke the first, third, or sixth, as he pleased; and if any of them missed, or singled out another than that assignd him, it was counted a grievous disgrace. By such means, as they passed by the several flations, the whole herd was killed, and many ftelving hands. Hier. Hieroglyphic. lib. vii. cap. 6.

Hunting formed the greatest part of the employment of the ancient Germans, and probably of the Britons also, when they were not engaged in war. We arc informed by some ancient historians, that this was the cafe even as late as the third century with the unconquered Britons who lived beyond Adrian's wall; nay, that they harboured chieflly by the prey they took in this way. The great attachment shown by all the Celtic nations to hunting, however, proceeded most probably from its being a kind of apprenticeship to war. Thus the youth acquired that courage, strength, swiftness, and dexterity in handling their arms, which made them so formidable in time of war to their enemies. Thus also they freed the country from many mischievous animals which abounded in the forests, furnishing themselves also with materials for thefe seats which seem to have conftituted their greatest pleafure.

The young cheftfains had thus likewise an opportunity of paying court to their mistresses, by displaifying their skills in catching and pursuing their game; nay, for strong and universal was the passion for hunting among the ancient Britons, that young ladies of the highest quality and greatest beauty spent much of their time in the chase. They employed much the fame weapons in hunting that they did in war, viz. long flears, javelins, and bows and arrows; having also great numbers of dogs to affift them in finding and purifying their game. These dogs, we are also told, were much admired among other nations, on account of their swiftness, strength, ferocity, and exquifite fents of smelling. They were of several different kinds, called by different names, and formed a conftiderable article of commerce. They are highly valued by all the Celtic nations, inforrnich that some very comical penalties were inflicted upon those who were convicted of stealing them (a). From the poems of Ollian also it appears, that the Britons were not unacquainted with the art of catching birds with hawks trained for that purpose; but they seem to have been absolutely ignorant of the method of catching fish; for there is not a single allusion to this art in all the works of that venerable bard. Their ignorance of this art is both confirmed and accounted for by Dio Niccus, who affures us, that the ancient Britons never tasted fish, though they had innumerable multitudes in their seas, rivers, and lakes. "By the by (says Dr. Henry), we may

(a) Si quis canum veltraum aut segutium vel petruncum, presumferit involare, jubemus ut convicitus, co-rum omni populo, polliceris ipius oculutur.
Hunting. may observe that this agreement between the poems of Offian and the Greek historian, in a circumstance so singular, is at once a proof of the genuine antiquity of these poems, and that the Greek and Roman writers were not so ill informed about the affairs and manners of the ancient Britons as some have imagined.

The Mexicans, whatever imbecility may be imputed to them in other respects, were very dexterous in hunting. They used bows and arrows, darts, nets, snares, and a kind of tubes named carbotas, through which they shot by blowing out little balls at birds. Thole which the kings and great men made use of were curiously carved and painted, and likewise adorned with gold and silver. Besides the exercise of the chase which private individuals took either for amusement or to provide food for themselves, there were general hunting-matches, sometimes appointed by the king; at others, undertaken with a view to provide plenty of victims for sacrifices. A large wood, generally that of Zacatepec, not far distant from the capital, was pitched upon as the scene of those grand hunting-matches. Here they chose the place best adapted for setting a great number of snares and nets. The wood was inclosed by some thousands of hunters, forming a circle of six, seven, or eight miles, according to the number of animals they intended to take. Fire was then set to the grass in a great number of places, and a terrible noise made with drums, horns, shouting, and whistling. The hunters gradually contracted their circle, continuing the noise till the game were inclosed in a very small space. They were then killed or taken in snares, or with the hands of the hunters. The number of animals taken or destroyed on these occasions was so great, that the first Spanish viceroy of Mexico would not believe it without making the experiment himself. The place chosen for his hunting-match was a great plain in the country of the Otomies, lying between the villages of Xilotepec and S. Giovani del Rio; the Indians being ordered to proceed according to their usual custom in the times of their paganism. The viceroy, attended by a vast retinue of Spaniards, repaired to the place appointed, where accommodations were prepared for them in houses of wood erected for the purpose. A circle of more than 15 miles was formed by 10,000 Otomies, who started such a quantity of game on the plain, that the viceroy was quite astonished, and commanded the greater part of them to be set at liberty, which was accordingly done. The number retained, however, was still incredibly great, were it not attacked by a witness of the highest credit. On this occasion upwards of 600 deer and wild goats, 100 cajetes, with a surprising number of hares, rabbits, and other smaller animals. The plain still retains the Spanish name Casadera, which signifies the "place of the chase."

The Mexicans, besides the usual methods of the chase, had particular contrivances for catching certain animals. Thus, to catch young ailes, they made a small fire in the woods, putting among the burning coals a particular kind of stone named caocoloti "raven or black stone," which burns with a loud noise when heated. The fire was covered with earth, a little maize laid around it. The ailes quickly assembled with their young, in order to feed upon the maize; but while they were thus employed, the stone burst, and scared away the old ones by the explosion, while the young ones, unable to fly, were carried off by the hunters. Serpents were taken even by the hands, seizing them intrepidity by the neck with one hand, and pinning up their mouths with the other. This method is still practiced. They showed the greatest dexterity in tracing the steps of wild beasts, even when an European could not have discerned the smallest print of their feet. The Indian method, however, was by observing sometimes the herbs or leaves broken down by their feet; sometimes the drops of blood which fell from them when wounded. It is said that some of the American Indians show still greater dexterity in discovering the tracks of their enemies, which to an European would be altogether imperceptible.

Hunting was a favourite diversion of the great and bloody conqueror Jenghiz Khan, if indeed we can apply the word diversion to a monster whose mind was set upon the destruction of his own species, and who only endeavoured to make the murder of brutes subservient to that of men, by keeping his soldiers in a kind of warfare with the beasts when they had no human enemies to contend with. His expeditions were conducted on a plan similar to that of the Mexicans already mentioned; and were no doubt attended with still greater success, as his numerous army could include a much greater space than all the Indians whom the Spanish viceroy could muster. The East Indian princes still show the same inclination to the chase; and Mr. Blane, who attended the hunting excursions of Afoph Ul Dowlah vifir of the Mogul empire and nabob of Oude in 1785 and 1786, gives the following account of the method practiced on this occasion.

The time chosen for the hunting party is about the beginning of December; and the diversion is continued till the beats, which commence about the beginning of March, oblige them to stop. During this time a circuit of between 400 and 600 miles is generally made, the hunters bending their course towards the skirts of the northern mountains, where the country is wild and uncultivated. The vifir takes along with him not only his court and feragli, but a great part of the inhabitants of his capital. His immediate attendants may amount to about 2000; but besides these he is also followed by 500 or 600 horse, and several battalions of regular levies with their field pieces. Four or five hundred elephants are also carried along with him; of which none are used for riding, others for fighting, and some for clearing the jungles and forests of the game. About as many Damper horses of the beautiful Persian and Arabian breeds are carried along with him. A great many wheel carriages drawn by bullocks likewise attend, which are used chiefly for the convenience of the women; sometimes also he has an English chaise or two, and sometimes a chariot; but all these as well as the horses are merely for show, the vifir himself never using any other conveyance than an elephant, or sometimes when fatigued or indisposed a palanquin. The animals used in the sport are principally gre-hounds, of which there may be about 300; he has also about 200 hawks, and a few trained leopards for hunting deer. There are a great number of marksmen, whose profession it is to shoot deer with many fowlers, who provide game; as none of the natives of India know how to shoot game with small
The objects of pursuit in these excursions are wild elephants, buffaloes, rhinoceroses. Our author was present at the hunting of a wild elephant of vast size and strength. The elephants were then brought up, and the tinters of Prussia expressed only with difficulty. He twice turned and attacked the elephant obliquely on which the chase was opened, and then attacked him upon his side, but then pausing on not suffering further injury. It left he fell dead, after having received as was supposed upwards of 1000 bullets into his body.

Notwithstanding the general passion amongst most nations for hunting, however, it has by many been deemed an exerciese inconsistent with the principles of humanity. The last king of Prussia expressed himself on this subject in the following manner. "The chase is one of the most sensual of pleasures, by which the powers of the body are strongly exerted, but those of the mind are unemployed. It is an exerciese which makes the limbs strong, active, and pliable; but leaves the head without improvement. It consists in a violent desire in the pursuit, and the indulgence of a cruel pleasure in the death of the game. I am convinced, that man is more cruel and savage than any beast of prey: We exercise the dominion given us over the fellow-creatures in the most tyrannical manner. If we pretend to any superiority over the beasts, it ought certainly to consist in reason; but we commonly find that the most passionate lovers of the chase recognize this privilege, and converse only with their dogs, horses, and other irrational animals. This renders them wild and unfeeling; and it is probable that they cannot be very mercifull to the human species. For
Hunting. For a man who can in cold blood torture a poor innocent animal, cannot feel much compassion for the difficulties of his own species. And, besides, can the chance be a proper employment for a thinking mind?"

The arguments used by his majesty against hunting seem indeed to be much confirmed by considering the various nations who have most addicted themselves to it. These, as must be seen, from what has already been said, were all barbarous; and it is remarkable, that Nimrod, the first great hunter of whom we have any account, was likewise the first who oppressed and enslaved his own species. As nations advanced in civilization, it always became necessary to restrain by law the inclination of the people for hunting. This was done by the wise legislator Solon, left the Athenians should neglect the mechanic arts on its account. The Lacedemonians, on the contrary, indulged themselves in this diversion without control; but they were barbarous, and most cruelly oppressed those whom they had in their power, as is evident from their treatment of the Helots. The like may be said of the Egyptians, Persians, and Scythians; all of whom delighted in war, and oppressed their own species. The Romans on the other hand, who were somehow more civilized, were left addicted to hunting. Even they, however, were exceedingly barbarous, and found it necessary to make death and slaughter familiar to their citizens from their infancy. Hence their diversions of the amphitheatre and circus, where the hunting of wild beasts was shown in the most magnificent and cruel manner; not to mention their still more cruel sports of gladiators, &c.

In two cases only does it seem possible to reconcile the practice of hunting with humanity: viz. either when an uncultivated country is over-run with noxious animals; or when it is necessary to kill wild animals for food. In the former case, the noxious animals are killed because they themselves would do so if they were allowed to live; but if we kill even a lion or a tiger merely for the pleasure of killing him, we are undoubtedly chargeable with cruelty. In like manner, our modern fox-hunters expressly kill foxes, not in order to destroy the breed of these noxious animals, but for the pleasure of seeing them exert all their power and cunning to evade their lives, and then beholding them torn in pieces after being half dead with fatigue. This refinement in cruelty, it seems, is its favourite diversion; and it is accounted a crime for any person to destroy these animals in self-defence, as appears from the following passage in Mr. Beckford's treatise on hunting. "Besides the digging of foxes, by which method many young ones are taken and old ones destroyed, traps, &c. are too often fatal to them. Farmers for their lambs (which, by the bye, few foxes ever kill), gentlemen for their game, and old women for their poultry, are their invertebrate enemies. In the country where I live, most of the gentlemen are sport-men; and even those who are not, shew every kind of attention to those who are. I am sorry it is otherwise with you; and that your old gouty neighbour should destroy your foxes, I must own concerns me. I know some gentlemen, who, when a neighbour has destroyed all their foxes, and thereby prevented them from partaking a favourite amusement, load a cart with pheasants, and went altogether and destroyed his pheasants. I think they might have called this very properly "excellent sport;" and it had the desired effect; for as the gentleman did not think it prudent to fling them all, he took the other method, he made peace with them. He gave an order that no more foxes should be destroyed, and they never afterwards killed any of his pheasants."

In the first volume of the Manchester Transactons we have a dissertation upon the diversion of hunting, fishing, &c. as compatible with the principles of humanity. One argument used by the author is, that death is no positive evil to brutes. "It would perhaps (says he) be too halfly an affront to affirm, that death is no evil to brutes. We are not competent to determine whether their existence, like our own, may not extend to some future mode of being, or whether the present limited sphere is all in which they are interested. On so speculative a question little can be advanced with precision; nor is it necessary for the investigation of the subject before us. If we may be allowed to reason from what we know, it is very readily conjectured, that death to brutes is no positive evil: we have no reason to believe they are endowed with foresight; and therefore, even admitting that with them the pleasures of life exceed its pains and cares, in terminating their existence, they only suffer a privation of pleasure."

On this extraordinary piece of reasoning we may observe, that it would hold much more against the human species than against the brutes. There are few amongst us willing to allow that the pleasures we enjoy are equivalent to our pains and cares; death therefore must be to us a relief from pain and misery, while to the brutes it is a privation of pleasure. Hence, if it be no positive evil for a brute to suffer death, to a man it must be a positive good: add to which, that a man lives in hope of endless and glorious life, while a brute has not the same hope; so that, if to kill a brute, on our author's principles be no cruelty, to kill a man must be an act of tenderness and mercy!

Another argument, no less inconclusive, is our author's supposition that death from disease is much more to be dreaded in a brute than a violent death. Were brutes naturally in as helpless a state as man, no doubt their want of support from society in cases where they are attacked by sickness, would be very deplorable; but it must be considered that the parallel between the two species is in this respect by no means fair. A brute has every where its food at hand, and is naturally capable of distilling the inclemencies of the weather; but man has not only a natural inability to procure food for himself in the way that the brutes do, but is, besides, very tender and incapable of distilling the inclemency of the air. Hence, a man unsatisfied by society must very soon perish; and, no doubt, it would be much more merciful for people to kill one another at once, than to deprive them of the benefits of society, as is too frequently done in various ways needless to be mentioned at present. A brute, however, has nothing to fear. As long as its stomach can receive food, nature offers an abundant supply. One that feeds upon grubs has it always within reach; and a carnivorous one will content itself with worms or insects, which, as long as it is able to crawl it can still make its shift to provide; but for totally helpless is man when left to himself in a state of weakness, that many barbarous.
Hunting.

barbarous nations have looked upon the spoiling of their old and infirm people to be an act of mercy.

Equally unhappy is our author in his other arguments, that the quick transition from a state of perfect health to death mitigates the severity. The transition is not quick. The sportmen estimate their diversion by the length of the chase, and during all that time the creature must undergo the frightful agonies of terror; and what portion of humanity is there who must not feel for an animal in this situation? All this is attested to by our author, who says, "Hard is the heart who does not commiserate the sufferer." Is not this an acknowledgement on his part, that before a person can become a thorough sportman, he must harden his heart, and stifle those amiable sensations of compassion, which on all occasions ought to be encouraged towards every creature, unless in cases of necessity. But in the present case no necessity is or can be pretended. If a gentleman chooses to injure himself by running any kind, he may breed animals for the purpose. We call David crucial, because he took pleasure in catching flies, and stabbing them with a bodkin. A butcher is excluded from sitting on a jury on account of his being accustomed to sights which are deemed inhuman; but whether it is more inhuman to knock down an ox at once with an ax, or to tear him in pieces with dogs (for they would accomplish the purpose if properly trained), must be left to the sportmen to determine.

Lastly, the great argument in favour of hunting, that it contributes to the health of the body and exhilaration of the spirits, seems equally fallacious with the rest. It cannot be proved that hunters are more healthy or long lived than other people. That exercise will contribute to the preservation of health, as well as to the exhilaration of the mind, is undoubtedly; but many other kinds of exercise will do this as well as hunting. A man may ride from morning to midnight, and amuse himself with viewing and making remarks on the country through which he travels; and surely there is no peril that this exercise will tend to impair his health or sink his spirits. A man may amuse and exercise himself not only with pleasure, but profit also, in many different ways, and yet not accustom himself to behold the death of animals with indifference. It is this that constitutes the cruelty of hunting; because we thus willfully extinguish in part that principle naturally implanted in our nature, which if totally eradicated would set us not only on a level with the most ferocious wild beasts, but perhaps considerably below them; and it must always be remembered, that whatever pleasure terminates in death is cruel, let us use as many palliatives as we please to hide that cruelty from the eyes of others, or even from our own. The gentlemen and masters of the sport have invented a host of terms which may be called the hunting-language. The principal are those which follow:

1. For beasts as they are in company.—They say, a herd of harts, and all manner of deer. A herd of roes. A hound of swine. A roost of wolves. A richess of martens. A brace or couple of bucks, foxes, or hares.

2. For their lodging.—A hart is said to have his hark. A buck lodge. A roe bed. A hare's fold or form. Hunting a coyne fits. A fox-holes. A marten's nest. An otter's watches. A badger earth. A boar's couch. Hence, to express their dislodging, they say Uphold and remove the hart. Roof the buck. Start the hare. Bolt the hound. Unmake the fox. Unset the marten. Hunt the otter. Dig the badger. Rest the boar.

4. For their copulation.—A buck or hart goes to rut. A roe goes to turn. A boar goes to bring. A hare or coney goes to buck. A fox goes to flickering. A wolf goes to match or make. An otter husteth for his kind.

5. For the footing and running.—Of a hart, we say the fitch. Of a buck, and all fallow-deer, the view. Of all deer, if on the grass and scarce visible, the feeding. Of a fox, the pricking up, the like vermin, the footing. Of an otter, the marks. Of a boar, the track. The hare, when in open field, is said to fore: when the winds about to deceive the hounds, the double; when they beat on the hard highway, and her footing comes to be perceived, the pricking: in snow, it is called the trace of a hare.

6. The tail of a hart, buck, or other deer is called the fingle. That of a boar, the wreathe. Of a fox, the bristles or drag; and the top at the end, the shaft. Of a wolf, the Jewels. Of a hare and coney, the foot.

7. The ordure or excrement of a hart and all deer, is called snowmen or snowflinging. Of a hare, crypts, or crotting. Of a boar, lefles. Of a fox, the billing. And of the like vermin, the Josants. Of an otter the spraints.

8. As to the attire of deer, or parts thereof, those of a flag, if perfect, are the burr, the pearls, the little knobs on it, the beam, the gutters, the gutter, the fur-cutter, royal, far-royal, and all at top the croches. Of the buck, the burr, beam, bill, billing, and other the like vermin; the spraints. If the crotches grow in the form of a man's hand, it is called a palmed head. Head bearing not above three or four, and the croches placed aloft, all of one height, are called crowned heads. Heads having double croches, are called forked heads, because the croches are planted on the top of the beam like forks.

9. They say, a litter of cubs, a nest of rabbits, a squirrel's drays.

10. The terms used in respect of the dogs, &c., are as follow.—Of gre-hounds, two make a brace; of hounds, a couple. Of gre hounds, three make a kngth; of hounds a couple and half. They say, let slip a gre-hound, and call of a hound. The firing wherein a gre-hound is led, is called a leash; and that of a hound, a byrme. The gre-hound has his collar, and the hound his couples. We say a kennel of hounds, and a pack of beagles.

Hunting, as practised among us is chiefly performed with dogs: of which we have various kinds, accommodated to the different kinds of game, as hounds, gre-hounds, blood-hounds, terriers, &c. See Canis, Hound, &c.
In the kennels or packs they generally rank them under the heads of enterers, drivers, flyers, etc.; &c.

On some occasions, nets, spears, and instruments for digging the ground, are also required; nor is the hunting-horn to be omitted.

The usual chases among us are, the hunt, buck, roe, hare, fox, badger, and other. We shall here give something of what relates to each thereof, first proposing an explanation of some general terms and phrases, more immediately used in the progress of the sport itself; what belongs to the several forts of game in particular being reserved for the respective articles.

When the hounds, then, being cast off, and finding the scent of some game, begin to open and cry; they are said to challenge. When they are too busy to the scent be good, they are said to babble. When too busy where the scent is good, to howl. When they run endwise orderly, holding in together merrily, and making it good, they are said to be in full cry. When they run along without opening at all, it is called running mute.

When the packs in the firing, or a gre-hound in the course, are said to be. When beagles cry and bark at their prey, they are said to yearn.

When the hounds hit the scent the contrary way, they are said to draw off.

When they take fresh scent, and quit the former chase for a new one, it is called hunting change.

When they howl the game by the hcci or track, they are said to hant counter.

When the chase goes off, and returns again, traversing the same ground, it is called hunting the field.

When the dogs run at a whole herd of deer, instead of a single one, it is called running riot.

Dogs set in readiness where the game is expected to come by, and cast off after the other hounds are passed, are called a relay. If they be cast off o other dogs be come up, it is called maunder.

When, finding where the chase has been, they make a nearer enter, but return, it is called a bisou.

A lesson on the horn to encourage the hounds, is named a call, or a reheat. That blown at the death of a deer, is called a mort. The part belonging to the dogs of any chase they have killed, is the reward.

They say, take off a deer’s skin; strip or cafe a hare, fox, and all sorts of vermin; which is done by beginning at the foot, and turning the skin over the ears down to the tail.

Hunting is practiced in a different manner, and with different apparatus, according to the nature of the beasts which are hunted, a description of whom may be found under their respective articles, infra.

With regard to the hounds, that for hart and back-hunting begins a fortnight after midsummer, and lafts till Holy-day; that for the hind and doe, begins on Holy-day, and lafts till Candlemas; that for fox hunting begins at Christmas, and goes till Lady-day; that for hent hunting begins at Michaelmas, and ends at Christmas; hare-hunting commences at Michaelmas, and lasts till the end of February; and where the wolf and boar are hunted, the season for each begins at Christmas, the first ending at Lady-day, and the latter at the Purification.

When the sportsmen have provided themselves with nets, spears, and a hunting-borne to hold the dogs together, and likewise with instruments for digging the ground, the following directions will be of use to them in the pursuit of each fort of game.

Badger-Hunting. In doing this you must seek the earths and burrows where he lies, and in a clear moonshine night go and stop all the burrows, except one or two, and therein place some sacks, fastened with drawing firings, which may shut him in as soon as he straiten the bag. Some use no more than to set a hoop in the mouth of the sack, and to put it into the hole; and as soon as the badger is in the sack and straiten it, the sack will fall off the hoop and follows him to the earth, so he lies tumbling therein till he is taken.

These sacks or bags being thus set, cast off the hounds, beating about the woods, coppices, hedges, and tusks round about, for the compass, of a mile or two; and what badgers are abroad, being alarmed by the hounds, will soon betake themselves to their burrows; and, observe that he who is placed to watch the sacks, must stand close and upon a clear wind; otherwise the badger will discover him and will immediately fly some other way into his burrow. But if the hounds can encounter him, before he can take his sanctuary, he will then stand at bay like a boar, and make good sport, grievously biting and clawing the dogs, for the manner of their fighting is lying on their backs, using both teeth and nails, and by blowing up their skins defend themselves against all bites of the dogs, and blows of the men upon their backs. And for the better preservation of your dogs, it is good to put broad collars about their necks made of grey skins.

When the badger perceives his terriers to begin to yearn him in his burrow, he will hop the hole between him and the terriers, and if they still continue yearing he will remove his couch into another chamber or part of the burrow, and from one to another, barricading the way before them, as they retreat until they can go no farther. If you intend to dig the badger out of his burrow, you must be provided with the same tools as for digging out a fox; and besides, you should have a pail of water to refresh the terriers, when they come out of the earth to take breath and cool themselves. It will also be necessary to put collars of bells upon the necks of your terriers, which making a noise may cause the badger to bolt out. The tools used for digging out the badger, being troublesome to be carried on men’s backs, may be brought in a cart. In digging, you must consider the situation of the ground, by which you may judge where the chief angles are; for else, instead of advancing the work, you will hinder it. In this order you may be steady in their hold, or courses; and may break their platforms and parapets, calements, and work to them with mines and countermines until you have overcome them.

Having taken a live and lusty badger, if you would make sport, carry him home in a sack and turn him out in your court-yard, or some other inclosed place, and there let him be hunted and worried to death by your hounds.

There are the following profits and advantages which accrue by killing this animal. Their flesh, blood, and grease, though they are not good food, yet are very useful for physicians and apothecaries for oils, ointments,
Hunting. ments, cloves, and powders for shortness of breath, the
cough of the lungs; for the stone, sprain, fits, colicaches, &c. and the skin being well dried, is very
warm and good for old people who are troubled with
paralytic distempers.

Boar-Hunting. See Boar

Buck-Hunting. Here the same hounds and methods
are used as in running the flag; and, indeed,
he that can hunt a hart or flag well, will not hunt a
buck ill.

In order to facilitate the chase, the game-keeper
commonly selects a fat buck out of the herd, which
he shoots in order to maim him, and then he is run down
by the hounds.

As to the method of hunting the buck. The com-
pany generally go out very early for the benefit of the
morning. Sometimes they have a deer ready lodged;
if not, the covers are drawn till one is routed; or
sometimes in a park a deer is pitched upon, and for-
ced from the herd, then more hounds are laid on to
run the chase. If you cannot the old
flauchon hounds are only to be relied upon till you re-
cover him again: if he be funk, and the hounds thrust
him up, it is called an imprima, and the company all
found a recheat; when he is run down, every one
strives to get in to prevent his being torn by the hounds,
sallow-deer seldom or never standing at bay.

He that first gets in, cries hoo-up, to give notice
that he is down, and blows a death. When the company
are all come in, they pauch him, and reward the
hounds; and generally the chief person of quality
amongst them takes say, that is, cuts his belly open,
to see how far he is. When this is done, every one
has a chop at his neck; and the head being cut off,
is wheed to the hounds, to encourage them to run only
at male deer, which they see by the horns, and to
make them to hire only at the head: then the com-
pany all standing in a ring, one blows a single death;
which being done, all blow a double recheat, and so
conclude the chase with a general hallow of hoo-up,
and depart the field to their several homes, or to the
place of meeting; and the huntsman, or some other,
hath the deer call cross the buttonets of his horse, and
for carries him home.

Fox-Hunting makes a very pleasant exercise, and is
either above or below ground.

1. Above-ground. To hunt a fox with hounds,
you must draw about groves, thickets, and bushes near
villages. When you find one, it will be nec-
}essary to stop up his earth the night before you design to hunt,
and that about midnight; at which time he is gone
out to prey: this may be done by laying two white
flicks across in his way, which he will imagine to be
bone gin or trap laid for him; or else they may be
flapped up with black thorns and earth mixed together.

Mr. Beckford is of opinion that for fox-hunting the
pack should consist of 25 couple. The hour most fa-
vourable for the diversion is an early one; and he thinks
that the hounds should be at the cover at fun-rising.
The huntsman should then throw in his hounds as
quietly as he can, and let the two whippers in keep
wide of him on either hand; so that a single hound
may not escape them; let them be attentive to his
hallow, and let the sportman be ready to encourage
or raise as that directs. The fox ought on no account
to be hallowed too soon, as in that case he would most
certainly turn back again, and spoil all the sport.

Two things our author particularly recommends, viz.
the making all the hounds steady, and making them
all draw. "Many huntsmen (they he) are fond of
having them at their horse's heels; but they never can
got so well or so soon together as when they spread
the cover; besides, I have often known, when there
have been only a few finders, that they have found
their fox gone down the wind, and been heard of no
more that day. Much depends upon the first finding
of your fox; for I look upon a fox well found to be
half killed. I think people are generally in too great
a hurry on this occasion. There are but few instances
where sportsmen are not too noisy, and too fond of
eouraging their hounds, which seldom do their busi-
ness as well as when little is said to them. The hun-
tman ought certainly to begin with his foremost hounds;
and I should wish him to keep as close to them as he
conveniently can; nor can any harm arise from it, un-
less he should not have common sense. He that
flain down the wind and get out of his hearing;
he will also see how far they carry the scent, a neces-
sary requisite; for without it he never can make a ca-
f with any certainty. You will find it not less neces-
ary for your huntsman to be active in pressing his hounds
forward when the scent is good, than to be prudent in
not hurrying them beyond it when it is bad. It is his
business to be ready at all times to lend them that affini-
ance which they so frequently need, and which when
they are first at a fault is then most critical. A fox-
hound at that time will exert himself most; he after-
wards cools and becomes more indifferent about his
game. Those huntsmen who do not get forward enough
to take advantage of this eagerness and impetuosity,
and direct it properly, seldom know enough of hunt-
ing to be of much use to them afterwards. Though
a huntsman cannot be too fond of hunting, a whipper-
in easily may. His business will seldom allow him to
be forward enough with the hounds to see much of the
sport. His only thought therefore should be to keep
the hounds together, and to contribute as much as he
can to the killing of the fox, keeping the hounds togeth-
er is the fairest means to make the hounds steady. When
left to themselves they seldom refuse any blood they
can get: they become looking; learn to tie upon the
scent; and besides this they frequently get a trick
of hunting by themselves, and are seldom good for
much afterwards.

"Every country is soon known; and nine foxes out
ten, with the wind in the same quarter, will follow
the same track. It is easy therefore for the whipper-
in to cut short, and catch the hounds again. With a
high scent you cannot pull on hounds too much.
Screams keep the fox forward, at the same time that
they keep the hounds together, or let in the tail-
hounds: they also enliven the sport; and, if differently
used, are always of service; but in cover they should
be given with the greatest caution. Halloos seldom
do any hurt when you are running up the wind, for
then none but the tail-hounds can hear you; when you
are running down the wind, you should hallow no more
than may be necessary to bring the tail-hounds for-
ward; for a hound that knows his business seldom
wants encouragement when he is upon a scent."—Moit

Vol. VIII.
Hunting.

fox-hunters with to see their hounds run in a good style.

I confess myself am one of those; I hate to see a string of them; nor can I bear to see them creep where they can leap. A pack of harriers, if they have time, may kill a fox; but I defy them to kill him in the style in which he ought to be killed; they must hunt him down. If you intend to tire him out you must expect to be tired also yourself; I never with a chance to be less than one hour, or to exceed two; it is sufficiently long if properly followed: it will seldom be longer unless there be a fault somewhere; either in the day, the huntsman, or the hounds.

"Changing from the hunted fox to a fresh one is as bad an accident as can happen to a pack of fox-hounds, and requires all the ingenuity and observation that man is capable of to guard against it. Could a fox-hound distinguish a hunted fox as the deer-hound does the deer that is blown, fox-hunting would then be perfect. A huntsman should always listen to his hounds while they are hunting in cover; he should be particularly attentive to the headmost hounds, and he should be constantly on his guard against a skirter; for if there be two scents, he must be wrong. Generally speaking, the best scent is least likely to be that of the hunted fox: and as a fox seldom suffers hounds to run up to him as long as he is able to prevent it: so, nine times out of ten, when foxes are hallowed early in the day, they are all fresh foxes. The hounds most likely to be right are the hard running line-hunting ones; or such as the huntsman knows had the lead before there arose any doubt of changing. With regard to the fox, if he break over an open country, it is no sign that he is hunted; for if they are hunting at any time will do that unless they are a great way before the hounds. Also if they run up the wind;—they seldom or never do that when they have been long hunted and grow weak; and when they run their tail, that also may direct him. All this requires a good ear and nice observation; and indeed in that consists the chief excellence of a huntsman.

"When the hounds divide and are in two parts, the whippers-in, in flopping, must attend the huntsman and wait for his halloo, before he attempts to stop either: for want of proper management in this respect I have known the hounds stopped at both places, and both lost. If they have it, if they halt at any time will do that unless they are a great way before the hounds. Also if they run up the wind;—they seldom or never do that when they have been long hunted and grow weak; and when they run their tail, that also may direct him. All this requires a good ear and nice observation; and indeed in that consists the chief excellence of a huntsman.

"When the hounds divide and are in two parts, the whippers-in, in slopping, must attend the huntsman and wait for his halloo, before he attempts to stop either; for want of proper management in this respect I have known the hounds flopped at both places, and both lost. If they have it, if they halt at any time will do that unless they are a great way before the hounds. Also if they run up the wind;—they seldom or never do that when they have been long hunted and grow weak; and when they run their tail, that also may direct him. All this requires a good ear and nice observation; and indeed in that consists the chief excellence of a huntsman.

"When the hounds divide and are in two parts, the whippers-in, in slopping, must attend the huntsman and wait for his halloo, before he attempts to stop either; for want of proper management in this respect I have known the hounds slopped at both places, and both lost. If they have it, if they halt at any time will do that unless they are a great way before the hounds. Also if they run up the wind;—they seldom or never do that when they have been long hunted and grow weak; and when they run their tail, that also may direct him. All this requires a good ear and nice observation; and indeed in that consists the chief excellence of a huntsman.
HUNTING.

Hunting. ought to keep behind the hounds till they are well settled to the scent; and when the hounds are catching him, he may either with his or with his wife to be as silent as possible; and likewise to eat him easterly after he is caught. In some places they have a method of taking him; that is, throwing him across the branch of a tree, and suffering the hounds to bay at him for some minutes before he is thrown among them; the intention of which is to make them more eager, and to let in the tail-hounds; during this interval also they recover their wind, and are apt to eat him more readily. Our author, however, advises not to keep him too long, as he supposes that the hounds have not any appetite to eat him longer than while they are angry with him.

2. Under ground. In case a fox does so far escape as to earth, countrymen must get together with shovels, spades, mattocks, pickaxes, &c. to dig him out, if they think the earth not too great. They make their earths as near as they can in ground that is hard to dig, as in clay, flinty ground, or amongst the roots of trees; and their earths have commonly but one hole, and that is straight a long way in before you come at their couch. Sometimes craftily they take possession of a hagden's old burrow, which hath a variety of chambers, holes, and angles.

Now to facilitate this way of hunting the fox, the huntsman must be provided with one or two terriers to put into the earth after him, that is, to fix him into an angle; for the earth often consists of many angles: the use of the terrier is to know where he lies; for so soon as he finds him, he continues baying or barking, so that which way the noise is heard that way dig to him. Your terriers must be garnished with bells hung in collars, to make the fox bolt the sooner; besides, the collars will be some small defence to the terriers.

The instruments to dig withal are these: a sharp-pointed spade, which serves to begin the trench where the ground is hardest and broader tools will not so well enter; the round hollowed spade, which is useful to dig amongst roots, having very sharp edges; the broad flat spade to dig withal, when the trench has been pretty well opened, and the ground fever; mattocks and pickaxes to dig in hard ground, where a spade will do but little service; the coal-rake to cleanse the hole, and to keep it from stopping up; clamps, wherewith you may take either fox or badger out alive to make sport with afterwards. And it would be very convenient to have a pail of water to refresh your terriers with; after they are come out of the earth to take breath.

HARE-HUNTING. As, of all chases, the hare makes the greatest pastime, so it gives no little pleasure to see the craft of this small animal for her self-preservation. If it be rainy, the hare usually takes to the high-ways; and if she come to the side of a young grove, or spring, she seldom enters, but squats down till the hounds have over-shot her; and then she will return the very way she came, for fear of the wet and dew that hangs on the boughs. In this case, the huntsman ought to play an hundred paces before he comes to the wood-side, by which means he will perceive whether she return as aforesaid; which if she do, he must hallow in his hounds; and call them back; and that prefently, that the hounds may not think it the counter she came first.

The next thing that is to be observed, is the place where the hare sits, and upon what wind she makes her form, either upon the north or south wind: she will not willingly run into the wind, but run upon a-side, or down the wind; but if she form in the water, it is a sign she is foul and meadled: if you hunt such a one, have a special regard all the day to the brooksides; for there, and near plashes, she will make all her crossings, doublings, &c.

Some hares have been so crafty, that as soon as they have heard the sound of a horn, they would instantly start out of their form, though it was at the distance of a quarter of a mile, and go and swim in some pool, and rest upon some rush-bed in the midst of it; and would not return thence till they have heard the sound of the horn again, and then have started out again, swimming to land, and have stood up before the hounds four hours before they could kill them, swimming and using all subtleties and crossings in the water. Nay, such is the natural craft and subtilty of a hare, that sometimes after she has been hunted three hours, she will start a fresh hare, and squat in the same form. Others having been hunted a considerable time, will creep under the door of a sheep-cot, and hide themselves among the sheep; or, when they have been hard hunted, will run in amongst a flock of sheep, and will by no means be gotten out from among them till the hounds are coupled up, and the sheep driven into their pens. Some of them (and that seems somewhat strange), will take the ground like a coney, and that is called going to the vault. Some hares will go up one side of the hedge and come down the other, the thickness of the hedge being the only distance between the courses. A hare that has been forely hunted, has got upon a quickset-hedge, and ran a good way upon the top thereof, and then leapt off upon the ground. And they will frequently betake themselves to far off bushes, and will leap from one to the other, whereby the hounds are frequently in default.

Having found where a hare hath relieved in some pasture or corn field, you must then consider the season of the year, and what weather it is: for if it be in the spring-time or summer, a hare will not then set in bushes, because they are frequently infested with pimires, snakes, and adders; but will set in corn-fields, and open places. In the winter-time, they set near towns and villages, in tufts of thorns and brambles, especially when the wind is northerly or southerly. According to the season and nature of the place where the hare is accustomed to fit, there beat with your hounds, and flirt her; which is much better sport than trailing of her from her relief to her form.

After the hare has been started and is on foot, then step in where you saw her pafs, and hallow in your hounds, until they have all undertaken it and go on with it in full cry: then reheat to them with your horn, following fair and softly at first, making not too much noise either with horn or voice; for at the first, hounds are apt to overlook the chase through too much heat. But when they have run the space of an hour, and you see the hounds are well in with it, and stick well upon it, then you may come in nearer with the hounds, because by that time their heat will be cooled, and they will hunt more soberly. But above all things, mark the first doubling, which must be your direction for the whole day; for all the doublings.
Hunting. that the shall make afterwards will be like the former; and according to the policies that you shall see her use, and the place where you hunt, you must make your companions great or little, long or short, to help the defaults, always seeking the moiftest and most commodious places for the hounds to scent in.

To conclude: Those who delight in hunting the hare must rise early, lest they be deprived of the scent of the foot-steps.

Hart or Stag Hunting. Gesner, speaking of hart-hunting, observes, that this wild, deceitful, and subtle beast, frequently deceives his hunter by windings and turnings. Wherefore the prudent hunter must train his dogs with words of art, that he may be able to let them on and take them off again at pleasure.

First of all, he should encompass the beast in her own layer, and so unharbour in the view of the dogs, that so they may never lose her foot or footing. Neither must he set upon every one, either of the herd or those that wander solitarily alone, or a little one; but partly by flight, and partly by their footing and slumet, make a judgment of the game, and also observe the largeness of his layer.

The hunter, having made these discoveries in order to the chase, takes off the couplings of the dogs; and some on horseback, others on foot, follow the cry, with the greatest art, observation, and speed; remembering and intercepting him in his subtle turnings and headings; with all agility leaping hedges, gates, pales, ditches; neither fearing thorns, down hills, nor woods, but mounting fresh horde if the first tire. Follow the largest head of the whole herd, which must be singled out of the chase; which the dogs pursuing, must follow: not following any other. The dogs are animated to the sport by the winding of horns, and the voices of the hunter. But sometimes the crafty beast sends forth his little squire to be sacrificed to the dogs and hunters, instead of himself, lying close the mean time. In this case, the hunter must then find out a retreat, break off the dogs, and take them in, that is, learn them again, until they be brought to the fairer game, which fleeth with fear, yet full with flesh by flight until he be wearied and over-whelmed. The nobles call the beast a wife hart, to avoid all his enemies, runneth into the greatest herds, and so brings a cloud of error on their forelegs, the person who takes say, the next place, he is to present the same person who took say, with a drawn hanger, to cut off the head of the deer. Which being done, and the hounds rewarded, the concluding ceremony is, if it be a flag, to blow a triple mort; and if a buck, a double one; and then all who have horns, blow a reheat in concert, and immediately a general whoop, whoop.

Otter Hunting is performed with dogs, and also with a sort of instruments called otter-lapers; with which, when they find themselves wounded, they make to land, and fight with the dogs, and that most furiously, as if they were sensible that cold water would annoy their green wounds.

There is indeed craft to be used in hunting them; but they may be caught in fnares under water, and by river-sides: but great care must be taken, for they
Hunting. bite sorely and venomously; and if they happen to remain long in the snare, they will not fail to get them at last free by their teeth.

In hunting them, one must be on one side of the river, and another on the other, both baiting the banks with dogs; and the beast not being able to endure the water long, you will soon discover if there be an otter or not in that quarter; for he must move out to make his spraints, and in the night sometimes to feed on grases and herbs.

If any of the hounds finding out an otter, then view the soft grounds and moist places, to find out which way he bent his head: if you cannot discover this by the marks, you may partly perceive it by the spraints; and then follow the hounds, and lodge him as a hart or deer. But if you do not find him quickly, you may imagine he is gone to couch somewhere farther off from the river; for sometimes they will go to feed a considerable way from the place of their rest, choosing rather to go up the river than down it. The persons that go a-hunting otters, must carry their spears, to watch his vents, that being the chief advantage; and if they perceive him swimming under water, they must endeavour to strike him with their spears, and if they miss, must pursue him with the hounds, which, if they be good and perfectly entered, will go hunting and trailing along by the river-side, and will beat every root of a tree, and ober-bed, and tuft of mussels; nay, they will sometimes take water, and bait the beast, like a spaniel, by which means he will hardly escape.

Roe-buck Hunting is performed divers ways, and very easily in the woods.

When chased, they usually run against the wind, because the coolness of the air refreshes them in their course; therefore the hunters place their dogs with the wind; they usually, when hunted, first take a large ring, and afterwards hunt the hounds. They are also often taken by counterfeiting their voice, which a skilful huntsman knows how to do by means of a leaf in his mouth. When they are hunted, they turn much and often, and come back upon the dogs directly; and when they can no longer endure, they take foil, as the hart does, and will hang by a bough and come up his body, and they will suffer the dogs to come just upon them before they will stir.

THE VENISON OF A Roe-buck is never out of season, being never fat, and therefore they are hunted at any time; only that some favour ought to be shown the doe while she is big with fawn, and afterwards till her fawn is able to shift for himself; but some redoes have been killed with five fawns in their bellies.

He is not called, by the skilful in the art of hunting, a great roe-buck, but a fair roe-buck; the herd of them is called a bevy; and if he hath not bevy-grease upon his tail, when he is broken up, he is more fit to be dog's meat than man's meat. The hounds must be rewarded with the bowels, the blood, and feet slit afunder, and boiled altogether; this is more properly called a dye that is a reward.

Hunting-Match. The first thing that is to be considered by one who designs to match his horse for his own advantage, and his horse's credit, is not to flatter himself with the opinion of his horse, by fancying that he is a swift, when he is but a slow galloper; and that he is a whole-running-horse, that is, that he will run four miles without a sob at the height of his speed, when he is not able to run two or three.

Very probably some gentlemen are led into this error, by their being mistaken in the speed of their hounds, who, for want of trying them against other dogs that have been really fleet, have supposed their own to be just so, when in reality they are but of a middling speed; and because their horse, when trained, was able to follow them all day, and upon any hour, to command them upon deep as well as light earths, have therefore made a false conclusion, that their horse is as swift as the best: but, upon trial against a horse that has been rightly trained after hounds that were truly fleet, have bought their experience perhaps full dear.

Therefore it is advisable for all lovers of hunting to procure two or three couple of tried hounds, and once, or twice a week to follow after them at train-scent; and when he is able to keep them on all sorts of earth, and to endure heats and colds stoutly, then he may better rely on his speed and toughness.

That horse which is able to perform a hare-chase of five or six miles briskly and courageously, till his body be as it were bathed in sweat; and then, after the hare has been killed, in a piping frosty morning, can endure to stand till the sweat be frozen on his back, so that he can endure to be pierced with the cold as well as the heat; and then, even in that extremity of cold, to ride another chase as briskly, and with as much courage as he did the former; that horse which can thus endure heats and colds is most valued by sportsmen. Therefore, in order to make a judgment of the goodness of a horse, observe him after the death of the first hare, if the chase has been anything brisk; if, when he is cold, he shrinks up his body, and draws his legs up together, it is an infallible sign of want of vigour and courage; the like may be done by the flackening of his girth after the first chase, and from the dulness of his teeth, and the dulness of his countenance, all which are true tokens of faintness and being tired; and such a horse is not to be relied on in case of a wager.

Here it will not be improper to take notice of the way of making matches in former times, and the modern way of deciding wagers. The old way of trial was, by running so many train-scents after hounds, as was agreed upon between the parties concerned, and a bell-course, this being found not so certain, but more durable than hare hunting; and the advantage consisted in having the trains led on earth most suitable to the qualifications of the horses. But now others choose to hunt the hare till such an hour, and then to run this wild-goose chase; a method of racing that takes its name from the manner of the flight of wild-geese, which is generally one after another; so the two horses, after running of twelve score yards, had liberty, which horse ever so would get the leading, to ride what ground he pleased, the hindmost horse being bound to follow him, within a certain distance agreed on by articles, or else to be whipped up by the triers or judges which rode by; and which ever horse could distance the other won the match.

But this chase, in itself very inhuman, was soon found to be very destructive to good horses, especially when two good horses were matched; for neither being able
The county of this county is in most parts pleasant and wholesome, except among the towns and villages, though they are not so bad as the hundreds of Kent and Essex. The soil is fruitful, and produces great crops of corn, and the hilly parts afford a fit pasture for sheep. They have great numbers of cattle; and plenty of waterfowl, fish, and turf for firing; which last is of great service to the inhabitants, there being but little wood, though the whole country was a forest in the time of Henry II. The only river besides the Ouse is the Nene, which runs through Whittlesey Mere.

The HUN, [734] HUN

The HUR-QUANG, a province of the kingdom of China, in Asia, which has a great river called YANG, and T'IE-chiang, which runs across it from east to west. It is divided into the north and south parts, the former of which contains eight cities of the first rank, and 60 of the second and third; and the latter seven of the first rank, and five of the second rank. It is a flat, open country, watered everywhere with brooks, lakes, and rivers, in which there are great numbers of fish. Here is plenty of wild-fowls; the fields nourish cattle without number, and the soil produces corn, and various kinds of fruits. There is gold found in the sands of the rivers; and in the mines they have iron, tin, &c. In short, there is such a variety of all sorts of commodities, that it is called the magazins of the empire.

The HURAL, in botany: A genus of the monadelphia order, belonging to the monocia class of plants, and in the natural method ranking under the 38th order, Triticaceae. The amplitude of the male is imbricated, the perianthium truncated: there is no corolla; the filaments are cylindrical, peltated at top, and surrounded with numerous or double antheræ. The female has neither calyx nor corolla, the stile is funnel-shaped; the stigma cleft in twelve parts; the capule is tw节cellular, with a seed in each cell. There is but one species, viz., the crepitas, a native of the West-Indies. It rises with a foift ligneous stem to the height of 24 feet, dividing into many branches, which abound with a milky juice, and have a caustic in their bark where the leaves have fallen off. The male flowers come out between the leaves upon foot-stalks three inches long; and are formed into a close spike of corn, like the scales of fish. The female flowers are sown at a distance from them; and have a long funnel-shaped tube spreading at the top, where it is cut into 12 reflected parts. After the flower, the german falls, and becomes around compressed ligneous capule, having 12 deep furrows, each being an indefinite cell, containing one large round compressed seed. When the pods are ripe, they burst with violence, and throw out their seeds to a considerable distance. It is propagated by seeds raised on a hot-bed; and the plants must be constantly kept in a vase. The kernels are said to be purgative, and sometimes emetic.

The HURDLE, is the name of a sledge used to draw numbers to the place of execution.

The HURDLES, in fortification, are made of twigs of willows or other interwoven close together, sustained by long stakes. They are made in the figure of a square, the length being 5 or 6 feet, and the breadth three and an half. The closer they are wattled together, the better. They serve to render the batteries firm, to cover traverses and lodgments for the defence of the workmen against fire-works or stones thrown against them.
The Romans had a kind of military execution for mutineers called putting to death over the hurdle. The manner of it was this: The criminal was laid at his length in a shallow water, under an hurdle, upon which was heaped stones, and so pressed down till he was drowned.

Hurdles, in husbandry, certain frames made either of split timber, or of hazel-rods wattled together, to serve for gates in inclosures, or to make sheepfolds, &c.

HURDS, or HORDS, of flax or hemp; the coarser parts separated in the dressings from the near, or fine fluff. See Flax.

HURD-BORE, in a horse, a bone near the middle of the butock, very apt to go out of its sockets with a hurt or strain.

HURDERS, a number of large stones, set in a kind of square figure near St Clere in Cornwall, so called from an old opinion held by the common people, that they are so many men petrifed, or changed into stones, for profaning the sabbath-day by hurling the ball, an exercife for which the people of that country have been always famous.

The hurters are oblong, rude, and unhewn. Many authors suppose them to have been trophies erected in memory of some battle; others take them for boundaries to distinguish lands. Lastly, others, with more probability, hold them to have been sepulchral monuments.

HURLY-BURLY, in vulgar language, denotes confusion or tumult, and is said to owe its origin to two neighbouring families, Hurleigh and Burleigh, which filled their part of the kingdom with content and violence.

HURON, a vaft lake of North-America, situated between 84° and 89° W. Long. and between 43° and 46° of N. Lat. from whence the country contiguous to it is called the country of the Hurons: whole language is spoken over a great extent in the northern parts of America.

HURRICANE, a general name for any violent storm of wind; but which is commonly applied to those storms which happen in the warmer climates, and which greatly exceed the most violent storms known in this country. The ruin and destruction accompanying a hurricane (says Dr Mofely) cannot be described.

Like fire, its irresistible force consumes everything in its track, in the most terrible and rapid manner. It is generally preceded by an awful fullness of the elements, and clofeness and mistiness in the atmosphere, which makes the sun appear red, and the flars larger. But a dreadful reverse succeeding—The sky is suddenly overspread with wild—The sea rifes at once from a profound calm into mountains—The wind rages and roars like the noise of cannon—The rain descends in deluges—

A diurnal obscurity envelopes the earth with darkness—Hurricane.

The superior regions appear rent with lightning and thunder—The earth often does and always seems to tremble—Terror and confusion diſtract all nature—Birds are carried from the woods into the ocean; and tho' whose element is the sea, seek for refuge on land—The frightened animals in the field assemble together, and are almost suffocated by the impetuosity of the wind in searching for shelter; which, when found, serves them only for destruction—The roofs of houses are carried to vast distances from their walls, which are beat to the ground, burying their inhabitants under them—Large trees are torn up by the roots, and huge branches hivered off, and driven through the air in every direction, with immense velocity—Every tree and shrub that withstands the shock, is stripp'd of its boughs and foliage—Plants and grafs are laid flat on the earth—Luxuriant spring is changed in a moment to dreary winter—This direful tragedy ended, when it happens, in a town, the devastation is surveyed with accumulated horror: the harbour is covered with wrecks of boats and vessels; and the shore has not a vestige of its former state remaining. Mounds of rubbish and rafters in one place, heaps of earth and trunks of trees in another, deep gulles from torrents of water, and the dead and dying bodies of men, women, and children, half buried, and scattered about, where streets but a few hours before were, present the miserable survivors with a shocking conclusion of a spectacle to be followed by famine, and when accompanied by an earthquake, by mortal diseases.

These destructive phenomena are now thought to arise from electricity, though the manner in which it acts in this case is by no means known. It seems probable, indeed, that not only hurricanes, but even the most gentle gales of wind, are produced by the action of the electrical fluid; for which see the article Wind, Whirlwind, &c.

HURST, Hyst, or Herst, are derived from the Saxon hyrst, i.e. a wood, or grove of trees. There are many places in Kent, Suffolk, and Hampshire, in England, which begin and end with this syllable; and the reason may be, because the great wood called Anderwood extended through those counties.

Hurst-Castle, a fortress of Hampshire in England, not far from Lymington. It is seated on the extreme point of a neck of land which flows into the sea, towards the isle of Wight, from which it is distant two miles.

HUSBAND, a man joined or contracted with a woman in marriage. See Marriage.

Husbandry, a term used in Scotland for a portion of land containing fix acres of fock and fytthe land; that is, of land that may be tilled with a plough, and mown with a fytthe.

The business of a farmer, or one who lives by cultivating the ground. In this view it includes not only agriculture, but several other branches connected with it, such as the rearing of cattle, the management of the dairy, making butter, cheese, raising flax, timber, &c. the management of bees, and number of other articles which it is difficult to enumerate particularly.

Agriculture, properly so called, treats only of the cultivation of different soifts, and preparing them for yielding the largest crop of any kind of vegetables, but it belongs to husbandry to make choice of the soil most proper
Husbandry.

It is the interest of a husbandman to render provisions as cheap as possible.

The inhabitants of a country are enabled to live; whence it ought to be a consideration with him to cultivate the ground in such a manner, as may enable him to afford the produce at the lowest price. Thus he will also consult his own interest; for cheapness of provisions is the only true means by which the population of any country can be advanced; and the greater is the number of inhabitants, the greater will the husbandman have for his goods. Indeed, by a certain mode of arguing, it may be imagined, that it would be more advantageous to keep up provisions at as high a price as possible, rather than to lower them: but however this may apply to manufactures of various kinds, it never can apply to husbandry; for by raising the price of provisions, the price of every other thing is also raised, and it becomes more difficult for the husbandman himself to live, as well as others.

Thus the business of the husbandman is not only extremely complicated and difficult, but important also; inasmuch, that societies have been lately instituted in many different parts of Europe for its advancement, and premiums offered to those who excelled in any particular branch. Some of these premiums are held out for raising the greatest quantity of particular kinds of vegetables; others for gaining the greatest extent of ground from the fear some for improving wale ground; others for the invention of the most useful machines for harrowing, sowing, and various operations in agriculture. But though the intention of these societies is undoubtedly laudable and patriotic, and though the invention of man has in a manner been exhausted to accomplish the purposes for which they were instituted; it remains yet a matter of great doubt and uncertainty whether they have really been productive of any public good or not. It does not appear, that the means of subsistence are rendered more generally easy, or that the lives of mankind are more happy and comfortable, than before any societies were instituted, or before any considerable improvements in husbandry were made. On the contrary, provisions of all kinds, instead of becoming cheaper, have gradually become dearer, and their price on the whole is sensibly augmented every four or five years. Hence it is impossible to avoid concluding, that, not withstanding the apparent improvements which have been made in such numbers, there is not any real one in the whole art. Something of this kind has been taken notice of even by the members of these societies themselves; and on this subject Mr. Wimpey expresses himself as follows: "It is certainly clear from the average prices of corn p. 171. and provisions of all kinds for 20 years past, that there is not too much land in cultivation. Prices have advanced considerablly above what has been deemed, and that justly too, the medium standard. As a manufacturing and commercial country, it is properly the duty of the legislature to provide, as far as may be consistently with the liberty of the subject, that the price of provisions may be kept as near as possible to their medium value. This is conceived to be very practicable, even so as to be a convenience to the grower as well as the consumer. Some writers (Locke, Montesquieu, &c.) have supposed, that the advance of commodities in price is rather apparent and nominal than real. Things are not so much, if at all (say they), advanced in price, as it is imagined. The precious metals are exceedingly increased in quantity, and proportionally fallen in value. Possibly there may be some truth in this observation; if we go back some hundreds of years; and if taken upon a scale that comprehends all Europe: but for the term of 40 or 50 years, or even from the time that Mr. Locke wrote to the present hour, there is little difference in the value of gold and silver; and an ounce of either being much the same value now as then. The frequent and sudden changes that take place in the price of corn and other commodities, which are sometimes at double the price one year they were the foregoing, must be owing to some other cause than that abovementioned, which operates slowly, if at all, and is not perceptible in less than a century. "If the quantity of corn and provisions at market always has borne the same proportion to the demand there is for them, the price would be always invariably and unchangeably the same. The variation of the prices, therefore, is governed by the variation of the said proportion. If the demand be greater and the quantity the same, the price must necessarily fall; and vice versa, if the quantity should increase, and the demand remain the same, the price must as necessarily fall; and it is not in the power of man to make it otherwise. But though this immutable relation is beyond our power to alter, we can by art and industry augment the quantity, and thereby lower the price; cheapness being an infallible consequence of plenty, which is the direct object of an improving cultivation. This is a matter of great consequence to the poor labourer, the manufacturer, and the merchant; and no disadvantage to the grower; because, what he would lose by the fall of price, he would gain by the increased consumpt. It is not easy to conceive how many and how great the improvements are which have been made in this most important of all arts in the course of the present century. A patriotic spirit of uncommon ardour hath gone forth; and the nobility and gentry, like the senators of Rome, have set, as it were, their hands to the plough, and excited their tenants and neighbours to the practices of which they had no idea before. Yes, they service to have done more; they have instituted societies, and the county made them receptacles and distributors of useful knowledge; they have raised subscriptions, and added marks of honour and pecuniary advantages to the rewards which naturally result from the attention and industry of
of the ingenious art. But it must be allowed, that
though much has been done, there still remains much
more to be done. Experimenters have not always
(especially but seldom) entered into the views, and ably
seconded the intentions, of those valuable institutions.
Animated with the hope of obtaining the premiums
held out by dint of extraordinary exertions, expensive
manures, and a concurrence of fortunate circumstances,
more the effect of chance than of design, they
often have been the successful adventurers, though
at the same time entirely ignorant to what causes they
owed their success. We too often indeed attribute
effects to causes which are no way connected with them.
The practice of such men is more like the nostrums
of quacks, than the recipes of a regular physician.
The medicine may be good; but being ignorant of
principles, they know not how to accommodate it as
circumstances may require.

Confiderations of this kind must certainly lead us to
suppose, that most, if not all, the improvements in
husbandry for a long time past, are too expensive;
and that, though by their means larger crops are now
obtained than formerly, the profits are more than
swallowed up by the enormous sums required to produce
them. Hence we have as yet obtained only larger or
more elegantly formed drafts of different kinds; and
whether this acquisition is ultimately to be considered
as profitable, remains yet to be determined. Unfortunat­
ely this sentiment seems to be confirmed by taking a
review of the agricultural improvements made during
the last half-century. These are:

1. Improvements in the Art of Tillage. Improvements
of this kind consist in more perfectly breaking and pulveri­
izing the soil, and keeping it more free from weeds
than formerly. Mr Jethro Tull was the author of these,
and showed the advantages thence arising. By fre­
quent turning over and pulverizing the soil, we not
only destroy the weeds very effectually, but likewise
grubs, beetles, worms, and maggots of many different
kinds. "Nothing (says Mr Wimppey) so effectually
prevents the ravages of the several tribes of subterrane­
ous insects as the frequent tilling and crumbling the
ground: I have had large patches of several poles square in a field of beans destroyed by the grub of the
cockchafer, and many hundreds of cabbage-plants
by a grey grub of smaller size. Both these execute
their mischief under-ground. The farmer eat the
roots of the beans even when in kid, and then they
wither, fall, and die; the latter bites off the stem of
the plant just under the surface, and does infinite mischief: but I have always found tilling, duly performed,
capable of destroying the whole race.

2. Invention of new Implements of Husbandry, or im­
provements of the old. This class includes all the new
invented ploughs, harrows, hoes and hand hoes, &c.
by means of which it is generally supposed that the
work of tillage can be performed at much less ex­
pense, as well as more effectually than formerly.

3. Saving a great quantity of food in sowing, and the
production of better crops, by the more regular distribu­
tion of what is sown. This improvement chiefly consists in
drilling instead of sowing in the broad-cast way as
formerly. The gain is here evident; and Sir Wimppey
calculates it at a tenth or twelfth part of the whole
produce: and if the community are not yet sensible of
any advantage from such a considerable saving, it must
be because the drifling husbandry has not yet become
very general.

4. Suiting the Crop to the Nature and Condition of the
Soil. The farmer is now enabled to do this better than
formerly, by the introduction of a number of new ve­
tables formerly unknown. Thus, as there are many
kinds of produce, the drifling husbandry has not yet become
very general.

5. The Rotation of Crops. Thus a very considerable
addition is made to the produce of the ground by keep­
ing it perpetually fertile; whereas formerly it was
often worn out and rendered barren by too frequent
cropping, when a proper rotation was not known.

6. The Introduction of new Manures. These are
principally lime and marl; of the action of which
an account is given under the article Agriculture,
no. 10.

7. The Introduction of new Articles into Field-Culture.
These, whatever profit they may yield to the farmer,
consist principally of provender for cattle. They
ought, however, to have a considerable effect on
producing plentiful harvests, as hereby the cattle may
be furnished to do their work more perfectly, and to be
maintained at least expense than before.

8. The Application of these to the rearing and fattening
of Cattle. The good effects of this ought to be felt in
the manner mentioned in the former article, and
partly in lowering the price of flesh-meat, and con­
sequently of all other kinds of provisions.

Thus we see, that in the course of half a century, Little ad­
methods have been found of eradicting weeds, destroy­
ing insects, faving vast quantities of fixed-corn, of suit­
ing the crops to the soil, of using new manures, raising
new plants; and all this, together with multitudes of
new machines in performing all the offices of agriculture,
has apparently amounted to more than nothing.
The price of provisions seems to have begun to rise with the improvements, and to be continually ad­
vancing. It is by no means in our power to point out
particularly the causes of this disagreeable event. In con­
cerning the causes.

4. Z. Improv­
improvement in husbandry originated principally among the landholders; whose principal view, we may suppose, was an augmentation of rent. The tenants were obliged to attempt improvements in order to pay the advance, as well as by the express order of their landlords. Hence they were induced to keep a great number of horses, that their lands might be tilled with sufficient expedition, and in a more perfect manner than before. The oxen, formerly made use of, and which anwvered the purposes both of provision and labour, were discarded, and a great number of expensive animals, usefull except for the purposes of labour or pleasure, introduced in their stead. A vast quantity of grain, which ought to have sustained the human species, was thus bestowed on the brute creation: and though this might in some measure tend to the cultivation, by which he lays out seven to procure nine. Nay, though by his new method he should procure 91. 10s. by laying out 71. it would still be evidently for the good of the community that the farmer method were followed. The reason of this is, enrich that every expense of the husbandman, as well as of himself, is evidently that it has not answered the general expectation; since we may say, that the farmers have not been able to pay one penny of advanced rent without advancing all the price of their grain.

With regard to the rearing of cattle, the cafe is equally doubtful. The most extravagant prices have been given for the heft breeds as they are called; but it remains yet to be proved, that these breeds are really more useful to the country than the smaller ones. The expense of keeping them is undoubtedly greater, and this expense is enhanced by the large cattle being generally less hardy than the smaller. It seems, besides, impossible that one large horse, for an expense which the increase of produce can by no means balance. By a total product of grain, which ought to be deposited on the human fpecies, was thus bestowed on the public, to increase the produce of the soil, and to be able to exact an augmentation of rent ad infinitum, we will certainly be deceived; for thus the price of provisions must be infinitely increased also. Thus, indeed the produce of the ground will be somewhat increased, but the farmer will ultimate be a loser; so that, to save himself from ruin, he must at last burthen the public both with his advanced rent and the expense of most of his improvements, by advancing the price of grain and of all kinds of provisions.

Such seems in general the reasons why the country has reaped little advantage by the improvements made of late in the affairs of agriculture and husbandry. If experiments are now to be made, it is plain that they ought to be with a view to determine the medium of culture which the ground can bear with the greatest profit, comparing the expense and produce of the two different modes together; and that mode which is the least expensive ought undoubtedly to be chosen, even though attended with more profit than that which is executed at a greater expense. Thus, if a farmer, by laying out 91. can produce a crop equivalent to one large horse, with a view to cultivation by which he lays out seven to procure nine. Nay, though by his new method he should procure 91. 10s. by laying out 71. it would still be evidently for the good of the community that the farmer method were followed. The reason of this is, enrich that every expense of the husbandman, as well as of itself, is evidently that it has not answered the general expectation; since we may say, that the farmers have not been able to pay one penny of advanced rent without advancing all the price of their grain.

With regard to the rearing of cattle, the cafe is equally doubtful. The most extravagant prices have been given for the heft breeds as they are called; but it remains yet to be proved, that these breeds are really more useful to the country than the smaller ones. The expense of keeping them is undoubtedly greater, and this expense is enhanced by the large cattle being generally less hardy than the smaller. It seems, besides, impossible that one large horse, for an expense which the increase of produce can by no means balance. By a total product of grain, which ought to be deposited on the human fpecies, was thus bestowed on the public, to increase the produce of the soil, and to be able to exact an augmentation of rent ad infinitum, we will certainly be deceived; for thus the price of provisions must be infinitely increased also. Thus, indeed the produce of the ground will be somewhat increased, but the farmer will ultimate be a loser; so that, to save himself from ruin, he must at last burthen the public both with his advanced rent and the expense of most of his improvements, by advancing the price of grain and of all kinds of provisions.

Such seems in general the reasons why the country has reaped little advantage by the improvements made of late in the affairs of agriculture and husbandry. If experiments are now to be made, it is plain that they ought to be with a view to determine the medium of culture which the ground can bear with the greatest profit, comparing the expense and produce of the two different modes together; and that mode which is the least expensive ought undoubtedly to be chosen, even though attended with no more profit than that which is executed at a greater expense. Thus, if a farmer, by laying out 91. can produce a crop equivalent to one large horse, with a view to cultivation by which he lays out seven to procure nine. Nay, though by his new method he should procure 91. 10s. by laying out 71. it would still be evidently for the good of the community that the farmer method were followed. The reason of this is, enrich that every expense of the husbandman, as well as of himself, is evidently that it has not answered the general expectation; since we may say, that the farmers have not been able to pay one penny of advanced rent without advancing all the price of their grain.

With regard to the rearing of cattle, the case is equally doubtful. The most extravagant prices have been given for the best breeds as they are called; but it remains yet to be proved, that these breeds are really more useful to the country than the smaller ones. The expense of keeping them is undoubtedly greater, and this expense is enhanced by the large cattle being generally less hardy than the smaller. It seems, besides, impossible that one large horse, for an expense which the increase of produce can by no means balance. By a total product of grain, which ought to be deposited on the human species, was thus bestowed on the public, to increase the produce of the soil, and to be able to exact an augmentation of rent ad infinitum, we will certainly be deceived; for thus the price of provisions must be infinitely increased also. Thus, indeed the produce of the ground will be somewhat increased, but the farmer will ultimately be a loser; so that, to save himself from ruin, he must at last burden the public both with his advanced rent and the expense of most of his improvements, by advancing the price of grain and of all kinds of provisions.

Such seems in general the reasons why the country has reaped little advantage by the improvements made of late in the affairs of agriculture and husbandry. If experiments are now to be made, it is plain that they ought to be with a view to determine the medium of culture which the ground can bear with the greatest profit, comparing the expense and produce of the two different modes together; and that mode which is the least expensive ought undoubtedly to be chosen, even though attended with no more profit than that which is executed at a greater expense. Thus, if a farmer, by laying out 91. can produce a crop equivalent to one large horse, with a view to cultivation by which he lays out seven to procure nine. Nay, though by his new method he should procure 91. 10s. by laying out 71. it would still be evidently for the good of the community that the farmer method were followed. The reason of this is, enrich that every expense of the husbandman, as well as of himself, is evidently that it has not answered the general expectation; since we may say, that the farmers have not been able to pay one penny of advanced rent without advancing all the price of their grain.

With regard to the rearing of cattle, the case is equally doubtful. The most extravagant prices have been given for the best breeds as they are called; but it remains yet to be proved, that these breeds are really more useful to the country than the smaller ones. The expense of keeping them is undoubtedly greater, and this expense is enhanced by the large cattle being generally less hardy than the smaller. It seems, besides, impossible that one large horse, for an expense which the increase of produce can by no means balance. By a total product of grain, which ought to be deposited on the human species, was thus bestowed on the public, to increase the produce of the soil, and to be able to exact an augmentation of rent ad infinitum, we will certainly be deceived; for thus the price of provisions must be infinitely increased also. Thus, indeed the produce of the ground will be somewhat increased, but the farmer will ultimately be a loser; so that, to save himself from ruin, he must at last burden the public both with his advanced rent and the expense of most of his improvements, by advancing the price of grain and of all kinds of provisions.

Such seems in general the reasons why the country has reaped little advantage by the improvements made of late in the affairs of agriculture and husbandry. If experiments are now to be made, it is plain that they ought to be with a view to determine the medium of culture which the ground can bear with the greatest profit, comparing the expense and produce of the two different modes together; and that mode which is the least expensive ought undoubtedly to be chosen, even though attended with no more profit than that which is executed at a greater expense. Thus, if a farmer, by laying out 91. can produce a crop equivalent to one large horse, with a view to cultivation by which he lays out seven to procure nine. Nay, though by his new method he should procure 91. 10s. by laying out 71. it would still be evidently for the good of the community that the farmer method were followed. The reason of this is, enrich that every expense of the husbandman, as well as of himself, is evidently that it has not answered the general expectation; since we may say, that the farmers have not been able to pay one penny of advanced rent without advancing all the price of their grain.

With regard to the rearing of cattle, the case is equally doubtful. The most extravagant prices have been given for the best breeds as they are called; but it remains yet to be proved, that these breeds are really more useful to the country than the smaller ones. The expense of keeping them is undoubtedly greater, and this expense is enhanced by the large cattle being generally less hardy than the smaller. It seems, besides, impossible that one large horse, for an expense which the increase of produce can by no means balance. By a total product of grain, which ought to be deposited on the human species, was thus bestowed on the public, to increase the produce of the soil, and to be able to exact an augmentation of rent ad infinitum, we will certainly be deceived; for thus the price of provisions must be infinitely increased also. Thus, indeed the produce of the ground will be somewhat increased, but the farmer will ultimately be a loser; so that, to save himself from ruin, he must at last burden the public both with his advanced rent and the expense of most of his improvements, by advancing the price of grain and of all kinds of provisions.
HUSBANDRY.

PART I. Of the Vegetables most proper to be raised for the use of the Human Species, or as Food for Cattle.

Among those raised for the use of mankind, wheats has universally been opposed to hold the first place, and other kinds of grain to be the next to it; but in modern times, an author of no mean reputation has arisen, who endeavours to prove that wheat ought not to be cultivated, nor bread eaten. This is M. Lingnet, who has written a treatise expressly upon the subject; and, ridiculous as the assertion may seem, has been thought worthy of a small place, for large crops of all sorts can only be expected from lands naturally rich or strongly matured. Thus the poverty of the inhabitants is only owing to their possessing an ungrateful soil.—What proves evidently that it is the natural soil which is in the fault, and not the corn which impoverishes is, that there is meadow and arable land, the price of the meadow-land is much more considerable than that of the arable. In most parts of this country the proportion is nearly ten to one; and there are even some meadows, for one part of which they would give 50l. of field-lands; and four of vines, for which 100l. of arable would be given. Those districts where the soil will produce nothing but corn, are poor; but in those which furnish fodder, and also fine crops of grain, the inhabitants are wealthy and happy, unless they are oppressed by taxes.

M. Lingnet draws another objection from the length of time required to cultivate wheat; but Tilfot, by another calculation, shows, that 48 days work throughout the year would cultivate more wheat than is sufficient for a family of six persons. The time necessary for cultivation of arable land also does not increase in proportion to its extent; but in case more is cultivated than is requisite for the subsistence of the family, a trade is formed, which might be increased to an unlimited extent. He then compares the time requisite for the cultivation of vines which are recommended by M. Lingnet, and finds it to be much longer than that required for wheat. "I know very well (says he) that the one requires cattle, and the other does not: but these cattle, far from being expensive, will, if properly managed, increase the gain of the farmer; therefore they must not be looked upon as an expense. Corn is subject to many accidents, but vines are subject to many more: those which the vines suffer, sometimes spoil the vintage for several years; whereas those which happen to arable land, only spoil the crop for the season; and as the expense of cultivating vines, for which only manual labour can be employed, is much more considerable; therefore the vignerons (or persons who cultivate vines), who engages more largely than the farmer, will consequently be a much greater loser if unsuccessful.—Hay is also subject to frequent and very disagreeable accidents; the securing it is sometimes very difficult; and, when it is badly made, it is very hurtful to cattle.—A single fact will be sufficient to prove the falsities to which hay is subject; viz. that it varies in price as much as bread, would be formidable to an unskilful housekeeper. But the most extraordinary argument perhaps ever thought of on this subject is M. Lingnet's objection, that the use of wheat, or bread made from it, is detrimental to population, and that the countries where this grain is cultivated are poor and thinly inhabited, whereas those which abound with vineyards and pasture-lands are rich and populous. But this, in Dr Tilfot's opinion, shows only that one soil is more rich than another, and that a fertile soil will maintain more inhabitants. "No perfon (says he) is more capable of ascribing the cause of the subjection of the Roman empire to the northern powers, than M. Lingnet; but he cannot surely be serious when he says, that they were enabled to conquer them because those northern countries produced no corn, and that population decreased since the introduction of grain. I shall make three observations on this passage; First, the armies of Gustavus Adolphus, Charles XII. and the king of Prussia, whose food was bread, would be formidable against the Italians of those times, who eat less than we were eaten in the days of Scipio, as their ancestors were 1400 years ago against the Romans: and M. Lingnet must certainly know, that those Greeks who subsisted on bread, those Romans who eat nothing but bread and vegetables in potage, subdued all the known world, among whom were many nations who ate less bread than themselves. A Roman soldier's allowance of bread was much greater than what foldiers have at present; and by the use of this food they had much more strength than our modern soldiers can boast of. The allowance to a Roman soldier was 64 pounds of wheat per month; and this he was strictly forbidden to eat either
either to sell or exchange. Their soldiers had very seldom any cheese, bacon, or pulse; so that wheat was almost their only food, and the proportion was double of what is allowed soldiers in our days. They ate it in bread, in flour-milk, and in thin cakes; and they were not subject to epidemic or puerile disorders, which is too much the case with our modern armies. We may easily judge from the weight of their accoutrements, that the Roman soldiers were not burdened with less personal strength than those which compose the armies at this day; they were not less brave, nor did their food render them in any way unhealthy: on the contrary, where there is such difficulty in providing a sufficiency of good animal food to an army, as is often the case in modern times, it is probable that reducing them to the simple diet of a Roman soldier would be the most proper method of preventing epidemic diseases among them. Secondly, it is very doubtful whether those countries were more populous formerly than they are at this time; it is even probable that they were less so. Lastly, the people of these northern countries were not without wheat; it was the basis of their food and drink; without quoting other authors who attest it, suffice it to say, that Tacitus affirms it. "

In this light particular, however, our author appears to be mistaken; but whatever may be in this, we apprehend that few of our readers will entertain any doubt concerning the whole meagre of wheat, or the propriety of making it into bread after once it is cultivated. The truly important matter is to determine, whether it be a profitable crop or not for the person whocultivates it? In this respect indeed it has been condemned by the generality of farmers, and dairy-farms are universally supposed to be more profitable than such as produce corn. The vast superiority of the former is set forth by Thomas Davis, Eqq. of Longlevet, in the following words. "Experience sufficiently evinces the extreme difficulty of persuading tenants that they get more (generally speaking) by feeding their lands, than by ploughing them; yet it requires very few arguments to convince a landlord, that in cold wet lands especially, the less ploughed land you have, the less you put in, in a tenant's power to ruin your estate. That a tenant of 60 l. per annum on a dairy farm will get money, while a corn farm of the same size will starve its occupiers (though perhaps the former gives 15 s. per acre for his land, and the latter only 10 s.,) is self-evident. The plough is a friend of every body's, though its advantages are very far from being particularly and locally felt; corn being an article that will bear keeping till the whim or caprice, or supposition of advantage of its possessor, call it forth. But the produce of the cow is far otherwise. Cheese must necessarily be sold at a certain period: it is a ponderous article; and one-twelfth, or at least one-twentieth, of its value, is often paid for carrying it a fair 50 miles off; and the butter and skimmed milk find their way no great distance from home, as is evident by the price of butter varying frequently one-third in 20 or 30 miles. Every inhabitant of Bath must be tolerable, that butter and cheese have risen one-third or more in price within 20 years. Is not this owing to the great encouragement given to the plough and grazing, at a time when, on account of the increased demand for milk, cream, butter, and cheese, every exertion on behalf of the dairy should have been encouraged?" &c.

In some remarks on this letter by Mr. Billingey, the same superiority of dairy-farms to the arable kind is asserted in the most positive terms. "Perhaps (says he) there cannot be a stronger proof of the inferiority of the plough with respect to profit, than the superior punctuality of the dairy-farmer in the payment of his rent. This observation, I believe, most strewards who superintend manors devoted partly to corn and partly to dairy-farms, will verify: at least I have never met with one who contures it. But perhaps the advocate for the plough will define me not to confound the abufe of a thing with its intrinsic excellence; and say, that the generality of corn farmers are most egregious loaves; that lands devoted to the plough are not confined to such a mediocrity of profit as 10 s. per acre; that the produce of artificial grasses (without which a well managed arable farm cannot exist), far exceeds that of natural grass both in respect of quantity and situation; that the straw-yard is a most convenient receptacle for the cow when freed from the pail. These, and many other reasons, may be adduced to show the propriety of walking in the middle path, and of judiciously blending arable with pasture, in the proportion perhaps of three of the latter to one of the former."

On these letters we shall only remark, that for the good of mankind, we hope the opinions they contain will never come into general practice; as thus the price of bread must be raised so high, that the lower classes of people would be entirely deprived of it. In the Bath Papers, vol. v. p. 43. we have a method proposed by Mr. Wimpney of improving small arable farms in such a manner as to make them yield as much milk, butter, and cheese, as those which are kept continually in pasture. He agrees with the maxim already mentioned, that small arable farms do not afford the occupier so good a maintenance as dairy farms of the same value; and that the possessor of a dairy farm will do well and save money, while the former, with much toil and trouble, is starving himself and family. Notwithstanding this, he maintains, that there is an essential difference between ground that is naturally arable, and such as is by nature adapted for pasture. Land which is naturally arable, according to him, can by no means be converted into pasture of any duration. "Such as, from a wild state of nature, over-run with furze, fern, bushes and brambles, has been rendered fertile by means of the plough, must be kept in that improved state by its frequent use; otherwise it would go on revert to that wild barren state which was its original condition. A farm, therefore, which consists wholly, or almost so, of land that is properly arable, must ever continue arable; for it is not practicable to render it in any degree fertile but by means of the plough, or to keep it long in that state when it is made so." He is of opinion, however, that by raising crops proper for feeding cattle, the possessor of an arable farm may raise such a number of horned cattle as one who has a pasture farm; the only question is, Whether he can be reimbursed for his expenses by the produce? "To ascertain this fact (says
Part I.

HUSBANDRY.

We must inquire what may be the average expenses of keeping a milch-cow on a dairy-farm for any given time. It is said, upon very good authority, that the expense is generally from 31. to 31. 10s. per annum. Two acres and an half of pasture fit for this use is sufficient to keep a cow the whole year through, and such land is valued at from 25s. to 30s. per acre. At 25s. the keeping of each cow would amount to 31. 2s. 6d. per annum. A dairy-farm, therefore, containing of 48 acres, at 25s. per annum, would amount to 60l. rent; and the number of cows that might be kept on such a farm would be about 20.

In the next place, with regard to the expense of keeping a cow upon food raised in arable land as a succedaneum for grasks, we are assured by unquestionable authority, that a bushel of potatoes given half a night and half in the morning, with a small allowance of hay is sufficient to keep three cows a day; by which allowance their milk will be as rich and as good as in the winter months when the cows are in pasture. An acre of land properly cultivated with potatoes, will yield 537 bushels; and the total expense of cultivation, rent, and tithe included, will not exceed 61. 13s. If three cows eat seven bushels per week, then they would eat 764 bushels in a year; and 20 cows would consume 1433 bushels. So that, according to this calculation, seven acres and a quarter would nearly maintain as many cows as on the arable farm could be maintained by 48 acres. If then the cultivation of one acre of ground costs 61. 13s. the cultivation of seven acres a quarter will cost about 48l. We have seen, however, that the rent of a dairy-farm capable of maintaining 20 milk-cows, is not less than 69l. So that the calculation is thus entirely in favour of the arable farm; seven or eight acres of the arable farm being superior by 19l. in value, when cultivated with potatoes, to 48 acres of meadow or pasture-ground. It must indeed be observed (adds our author), that in this statement no allowance is made for the small quantity of hay given to the cows with the potatoes. It must be noted also, that the account of cultivation is charged with 40s. an acre for manuring, and that the expense for ploughing, which is right and chargeable to the crop of wheat that is to follow. Now, if we deduct 40s. an acre from the expense of cultivating the potatoes, it reduces the farm to 41. 13s. and the whole expense upon seven acres and a quarter is thus less than 34l. and consequently the keeping of 20 cows is little more than half to the occupier of the arable farm what it is to the occupier of the grazing farm. If this conclusion be fairly drawn, and the calculation free from errors, it is matter of the greatest importance, especially to the little arable farmer. It plainly raises him from a state of acknowledged inferiority to one greatly superior.

Objection answered from an experiment of Mr Vagg.

Our author next proceeds to obviate an objection, "that the whole of his reasoning must be indecisive, as relating only to potatoes." In opposition to this, he adduces an experiment made on a pretty large scale by Mr Vagg; from which it appears, that cabbages, when raised upon arable ground, are nearly as much superior to a natural crop of potatoes as Twelve acres were employed in this experiment, and those of an indifferent quality. The rent was 30s. per acre, and the whole expense of culture and carrying off the crop amounted only to 1l. 14s. so that all the cost of the Twelve acres was 38l. 9s. From the produce were fed 45 oxen and upwards of 60 sheep; and he was assured that they improved as fast upon it as they did in the best pasture months, May, June, and July. "Now (says Mr Whimpey), if instead of 60 sheep we reckon 15 oxen, or that four sheep are equal to about one ox, in which we cannot err much; then 60 oxen were kept for three months, or, which is the same thing, 15 for a whole year, for 38l. 9s.; and consequently 20 oxen would cost 51. 5s. 4d. which is not quite 31. more than the keeping of 20 cows would cost in potatoes. Turnips, turnip-rooted cabbage, carrots, parsnips, and some other articles, by many experiments often repeated, have been found quite adequate to the same valuable purposes; at least so far as to be more lucrative than meadow or pasture. Clover and rye-grasses are omitted, as having been long in general practice; but are in common very short of the advantages which may be derived from the cultivation of the other articles recommended."

Sainfoin is greatly recommended; but our author acknowledges that it makes but a miserable appearance the first year, though afterwards he is of opinion that one acre of sainfoin is equal to two of middling pasture-ground; for which reason he accuces the farmer of intolerable violence who does not cultivate so useful a plant.

On this subject, however, we must remember, that the culture of sainfoin is clogged with the loss of one if not two crops; which may sometimes be inconvenient, though afterwards it remains in perfection for no less than 20 years. The most advantageous method of raising it he fupposes to be after potatoes. Thus it will thrive even upon very poor ground; as the culture and manure necessary for the potatoes both preserve the soil and enrich it to a sufficient degree.

From these experiments and observations, therefore, Great Britain may appear very probable at least, that it is by no means quantities of grain against the interest of a farmer to cultivate large quantities of grain; and that he may even do this in a considerable manner, and many cattle as he can have occasion for. Some grounds, no doubt are naturally fitted for pasture, that it would be too expensive to force them into arable ground; but wherever this can be done, it seems proper always to have as much arable as possible, instead of as little, which Messrs Davis and Billingsley advise. Grain of different kinds, therefore, and particularly wheat, ought to be cultivated by a farmer to as great an extent as possible; though these different kinds can be determined only from the nature of the soil, and certain circumstances arising from the situation of the place, for which no particular rules can be given. A view of the general practice of some of the principal counties in England, however, may perhaps be of some use to furnish general directions for the farmer.

Sec. I. Of the Cultivation of Wheat.

There is perhaps no part of Great Britain where this culture of species of grain is cultivated to more perfection than in Norfolk and Suffolk. Mr Marshall informs us, that the species raised in that country is called the Norfolk red, and weighs...
When wheat is cultivated after the first year's lay, the feed is generally sown upon the flag or furrow turned over. After pasture, one or two plowings are given; the other parts of the management being the same with that after the second year's lay already mentioned. After buck harvested he seldom gives more than two, and sometimes but one, plowing. In the former case he spreds his manure on the stubble, and plows it in with a shallow furrow; harrows, rolls, fows, and gathers up the soil into narrow work. The manure is in like manner spread on the stubble after once plowing, and the feed is then sown among the manure: the whole plowed in together, and the soil gathered up into narrow ridges, as if it had undergone the operations of a fallow. An inconvenience attending this practice is, that the buck which is necessarily sied in harvelling springs up among the wheat, and becomes a weed to it, at the same time that the rooks, if numerous, pull up both buck and wheat, leaving several patches quite bare. This is obviated in a great measure by first plowing in the manure and self-lown buck with a shallow furrow; in consequence of which the buck vegetables before the wheat.

It is likewise a favourite practice with the Norfolk farmers to raise wheat after buck plowed under. They plow under the buck by means of a broom made of rough bulrushes fixed to the fore tackle of the plow between the wheels, which bears down the plant without lifting the wheels from the ground. Sometimes when the buck is strong, they first break it down with a roller going the same way that the plough is intended to go; afterwards a good plowman will cover it so effectually that a flake can be seen. Sometimes the surface of the ground is left rough, but it is more eligible to harrow and roll it. The practice of summer-fallowing seldom occurs in Norfolk; though sometimes, when the soil has been much worn down by cropping, and over run by weeds, it is esteemed a judicious practice by many excellent husbandmen, and the practice seems to be daily gaining ground. After turnips the soil is plowed to a moderate depth, and the feed sown over the first plowing: but if the turnips be got in early, the weeds are sometimes first plowed in with a shallow furrow, and the feed plowed under with a second plowing, gathering the soil into narrow ridges.

With regard to the manuring of the ground for Manuring wheat in Norfolk, that which has been recently plowed the ground or marled is supposed to need no other preparation, any more than that which has received 15 or 20 loads of dung and mould for turnips; and the first year's lay having been well chased in autumn, and the second fed off. Where the soil is good, and the wheat apt to run too much to straw, it is the practice of some judicious farmers to let their manure upon the young clover, thereby depriving the wheat in some degree of its rankness; but it is most common to spread it upon the broken ground; or if the feed be sown upon the turned furrow, to spread it on the turf and plow it under; or to spread it on the plowed surface, and harrow it in with the feed as a top-dressing. A smaller quantity of manure is generally made use of for wheat than for turnips. From eight to ten cart-loads (as much as three horses can conveniently draw) are reckoned sufficient for an acre; three or four
Husbandry.

Part I.

Wheat.

23. Time of sowing.

In this county they never begin to sow wheat till after the 17th of October, and continue till the beginning of December, sometimes even till Christmas. They give as a reason for this late sowing, that the wheat treated in this manner is less apt to run to straw than when sown earlier. The seed is generally prepared with brine, candied in the usual manner with lime. The following method of preparing it is said to be effectual in preventing the fruit.

"The seed is dissolved in a very small quantity of water, barely sufficient for the purpose. The lime is dissolved with this solution, and the seed candied with it in its hottest state, having been previously moistened with pure water." According to our author's observation, the crops of those farmers who use this preparation are in general more free from smut than those who make use of any other.

The practice of dibbling or setting of wheat has not as yet become general throughout Norfolk, the common broad-cult method being usually followed, except on the Suffolk side of the county. Some few make use of dibbling and fluting rollers; but dibbling is almost entirely unknown, notwithstanding the great aptitude of foils for the purpose. Plowing in the seed under furrow is the favourite mode of the Norfolk farmers, and is performed in the following manner: "the land having been harrowed down level, and the surface rendered smooth by the roller, the head-plowman (if at leisure) marks out the whole piece in narrow slips of about a fathom in width. This he does by hanging up the plough in such a manner, that no part of it except the heel touches the ground; and this makes a furrow mark for the seedman, which he cannot by any means mistake. In case the ploughs are all employed, the seedman himself marks the ground, by drawing a piece of wood or other heavy body behind him." Mr. Marshall prefers this to the Kentish method of setting up sticks in the form of a lance as being less liable to produce mistakes.

In those places where wheat is dibbled they make use of iron instruments for the purpose. The dibbler is somewhat larger than a pigeon's egg; the smaller end is the point of the dibble, the larger having a rod of iron riling from it about half an inch square, and two feet and an half long, the head being received into a crook piece of wood resembling the crutch of a spade or shovel, which form the handle. The dibbler uses two of these instruments, one in each hand; and, bending over them, works back and forward upon the turned furrows, making two rows of holes in each of them. These rows are usually made at the distance of four inches from each other; the holes being two and an half or three inches distant, viz, four in each length of the foot of the dibbler. The great art in making these lies in leaving them firm and smooth in the sides, so that the loose mould may not run in to fill them up before the seeds are deposited. This is done by a circular motion of the hand and wrist, making a semi-revolution every stroke; the circular motion beginning as the bit enters, and continuing until it is entirely disengaged from the mould. The operation is perfect unless the dibbles come out clean and wear bright. It is somewhat difficult to make the holes at equal distances; but more especially to keep the two straight and parallel to each other, some practice being required to guide the instrument in such a manner as to correspond exactly with each other; but though couples have been invented to remedy this inconvenience to keep them at a proper distance, the other method is still found to be preferable. A middling workman will make four holes in a second. One dibbler is sufficient for three droppers whence one man and three children are called a set. The dibbler carries on three flags or sticks, going on some yards upon one of the outside furrows, and returning upon the other, after which he takes the middle one; and thus keeps his three dibblers constantly employed, and at the same time is in no danger of filling up the holes with his feet. The droppers put in two or three grains of wheat into each hole; but much time and patience is necessary to teach them to perform the business properly and quickly. An expert dibbler will half an acre in a day; though one third of an acre is usually reckoned a good day's work. The seed is covered by means of a bull-harrow; and from one bushel to six pecks is the usual quantity for an acre. Notwithstanding the advantages of saving feed as well as some others which are generally reckoned undeniable, it is averted by some very judicious farmers, that dibbling of wheat on the whole is not a really profitable practice. It is particularly fit to be productive of weeds unless dibbled very thick which indeed may probably be the case, as the weeds are thus allowed a greater space to vegetate in. Mr. Marshall himself is of opinion, that the dibbled wheat appears to be peculiarly adapted to rich, deep soils, on which three or four pecks dibbled early may spread sufficiently for a full crop; whereas light, weak, shallow soils, which have lain two or three years, and have become grassy, require an additional quantity of feed, and consequently an addition of labour, otherwise the plants are not able to reach each other, and the grates of course find their way up between them, by which means the crop is injured and the soil rendered foul.

The same author has likewise given an account of Culture of wheat in the manner of cultivation wheat practiced in other English counties. In the midland district, including part of Staffordshire, Derbyshire, Warwick, and Leicestershire, we are informed that the species usually sown is that called Red lammas, the ordinary red wheat of the kingdom; but of late a species named the Essex dur, similar to the Kentish white coes of Norfolk and the Hertfordshire brown of Yorkshire, have been coming into vogue. Conwheat, formerly in use in this district, is now out of fashion. Spring wheat is cultivated with remarkable succs, owing principally to the time of sowing; viz. the cloae of April. Our author was informed by an excellent farmer in these parts, that by sowing early, as in the beginning of March, the grain was liable to be shrivelled, and the straw to be blighted; while that which was sown towards the end of April, or even in the beginning of May, produced clean plum corn. At the time he visited this country, however, it seemed to be falling into disuse;
Wheat. p°te; though he looks upon it, in some situations, especially in a turnip-country, to be eligible. In the ordinary succession in that part of the kingdom, wheat comes after oats: and there is perhaps nine tenths of the wheat in this district sown upon oat stubble. Our author has also seen a few examples of wheat being sown upon turf of six or seven year's laying; and several others on clover ley once plowed, as well as some after turnips. The best crops, however, produced in this, or perhaps in any other district, are after summer fallow. The time of sowing is the month of October, little being sown before Michaelmas; and in a favourable season, little after the close of the month. Much seed is sown here without preparation. When any is made use of, it is the common one of brine condited with time. The produce is very great, the medium being full three quarters per acre, sometimes four or five; and one farmer, in the year 1784, had, on 50 acres of land together, no less than 45 bushels per acre.

In the Vale of Gloucester, the coarse wheat, a variety of the triticum turgidum, is cultivated, as well as the lammas and spring wheats. It is not, however, the true coarse wheat which is cultivated here, the ears being nearly cylindrical; but our author met with the true species in North Wiltshire. Beans in this country are the common predecessors of wheat, and sometimes peas; but here the farmers cultivate wheat upon every species of soil. The time of sowing is in November and December, and the seed is thought to be sown in sufficient time if it is done before Christmas. In this county it is thought that late sown crops always produce better than those which are sown early; but Mr. Marshal accounts for this by the vast quantity of weeds the latter have to encounter, and which the late sown crops escape by reason of the weakness of vegetation at that time of the year. The produce, however, throughout the vale of Gloucester, is but very indifferent. — Setting of wheat is not practiced, but hoeing universally. — In harvesting, Mr. Marshall observes that the grain is allowed to stand until it be unreasonably ripe, and that it is bound up into very small sheaves. The practice of making double bands is unknown in this district; so that the sheaves are no bigger than can be contained in the length of a single straw. The inconveniences of this method are, that the crop requires more time to flock, load and unload, and stack; the advantages are, that the trouble of making bands is avoided: and that if rainy weather happens to intervene, the small sheaves dry much sooner than the large ones. Here the crop is cut very high, the stubble and weeds being mown off in swaths for litter soon after the crop is cut; and sometimes told as high as 6, per acre. — Mr. Marshall is at a loss to account for the little quantity produced in this country; it being hardly possible to derive it from the nature of the soil, almost all of it being proper for the cultivation of the grain, the feed-time and harvest of wheat coincide. If in the consequence of this early sowing the blade becomes rank in autumn, it is supposed to be proper to eat it down by putting a large flock of sheep upon it at once. Eating it in spring is considered as puerile. It is usually weeded with food-hooks; not hoed, as in the Vale. One instance, however, is mentioned by our author, in which a very thin crop full of weed-weeds was hoed in autumn with uncommon success, occurred in the practice of a superior manager in this district; as well as others in which wheat has been weeded in autumn with great advantage. He also met with another well authenticated instance of the good effect of cutting middledew wheat while very green. "A fine piece of cutting middledew wheat very green," Mr. Marshall says, "was cut, though still in a perfectly green state, namely, about three weeks before the usual time of cutting. It lay spread abroad upon the stubble until it became dry enough to prevent its caking in the sheaf; when it was bound and let up in shocks. The result of this treatment was that the grain, though small, was of a fine colour, and the heaviest wheat which grew upon the same farm that season; owing, no doubt, to the thinness of its skin. What appears much more remarkable, the straw was perfectly bright, not a speck upon it — in this part of the country, the produce of wheat is superior to that in the Vale; but Mr. Marshall is of opinion, that the soil is much more fit for barley than wheat."

In Yorkshire, though generally a grain-land country, and where of consequence corn is only a secondary concern, yet several kinds of wheat are cultivated, particularly Zeeland, Doxey Kent, Common White, Hertfordshire Brown, Yelloe Kent, Common Red. All these are varieties of winter wheat; besides which they cultivate also the spring or summer wheat. Here our author makes several curious observations concerning the raising of varieties of plants. "It is probable (says he), that time has the same effect upon the varieties of wheat and other grains as it has on those of cultivated fruits, potatoes, and other vegetable productions. Thus, to produce an early pea, the gardener marks the plants which open into blossom among the most early kind he has in cultivation. Next year he sows the produce of these plants, and goes over the coming crop in the manner he had done the preceding year, marking the earlier of this early kind. In a similar manner new varieties of apples are raised, by choosing the hardest leaved plants among a bed of seedlings rising promiscuously from pipkins. Husbandmen, it is probable, have heretofore been equally industrious in producing fresh varieties of corn; or whence the endless variety of winter wheats? If they be naturally one species, as LINNAEUS has deemed them, they must have been produced by climature, soil, or industry; for although nature sports with individuals, the industry of man is requisite to raise, establish, and continue a permanent variety. The only instance in which I have had an opportunity of tracing the variety down to the parent individual, has occurred to me in this district. — A man of acute observation, having, in a piece of wheat, perceived a plant of uncommon strength and luxuriance, dividing its branches on every side, and setting its closely-surrounding neighbours
HUSBANDRY.

The county of Norfolk, according to Mr. Marshall, Cultivation is peculiarly adapted to the cultivation of this grain, and the preparation of barley is the strongest soil not being too heavy, and the lightest being able to bear it; and so well versed are the Norfolk farmers in the cultivation of it, that the barley of this county is destined for feed throughout the whole kingdom. It is here sown after wheat or turnips; and in some very light lands it is sown after the second year's lay. After wheat, the feed time of the latter being finished, and the stubble trampled down with bullocks, the land is ploughed with a shallow furrow for a winter-fallow for barley. In the beginning of March the land is harrowed and cross-ploughed; but fit by fit, the ridges are reversed. In April it receives another ploughing lengthways; and at feed time it is harrowed, rolled, sowed, and the surface rendered as smooth and level as possible. After turnips the soil is broken up as fast as the turnips are taken off; if early in winter by rice-balking, a practice already explained; but if late, by a plain ploughing. It is common, if time will permit, to plough three times; the first shallow, the second full, and the third a mean depth; with which the feed is ploughed in. Sometimes, however, the ground is ploughed only once, and the feed sown above, but more frequently in three ploughings, though perhaps the farmer has not above a week to perform them in. After lay, the turf is generally broken by a winter-fallow, and the foil treated as after wheat.

This grain is seldom manured for, except when sown after lay, when it is treated as wheat. No manure is requisite after turnips or wheat, if the latter has been manured for. If not, the turnip-crop following immediately, the barley is left to take its chance, unless the opportunity be embraced for winter-marlimg.

Little barley is sown by the Norfolk farmers before the middle of April, and the feed time generally continues till the middle of May; though this must in some measure depend on the season; which (says Mr. Marshall) is more attended to in Norfolk than perhaps in all the world beside. In the very backward spring of 1782, barley was sown in June with success. No preparation is used. It is all sown broad-cast, and almost all under furrow; that is, the surface having been smoothed by the harrow and roller, the seed is

Vol. VIII.
In the Midland district they cultivate two species of barley, viz. the *azeretin* or common long-eared, and the *dilficbon* or *sfrat* barley; the latter not being of more than 50 years standing, but the former of much older date. The *sfrat* is the more hardy, and requires to be more early sown; but the long-ears yield the better produce. It succeeds wheat and turnips; but on the strong lands of this district, the crop after wheat is much less productive, as well as less certain, than after turnips; which circumstance is likewise observed in Norfolk. It is sometimes sown with success upon turf. When sown after wheat, the foil is winter-followed by three ploughings; the first lengthways in November; the second across in March; the last, which is the feed-ploughing, lengthways. Between the two last ploughings the foil is harrowed, and the witch shaken out with forks; after which it is left loose and left to die upon the surface, without being either burnt or carried off. After turnips the soil has commonly three ploughings; the reason of which is, that the turnips being commonly folded off with sheep, the soil, naturally of a close texture, receives a still greater degree of compactness, which is proper to break down, and render it porous. The feed-time is the two last weeks of April and the first of May; from two bushels and a half to three bushels an acre, sometimes even as much as four bushels; the produce very great, sometimes as high as seven or even eight quarters an acre; but the medium may be reckoned from four to four and a half quarters. Mr Marshall remarks, that the culture of barley is extremely difficult. "Something (says he) depends on the nature of the foil, much on the preparation, much on the season of sowing, and much on harvesting. Upon the whole, it may be deemed, of corn crops, the most difficult to be cultivated with certainty."

In Yorkshire there are four kinds of barley cultivated, viz. the *azeretin* or long-eared; the *dilficbon* or *sfrat*; the *wutgare*, big, four-rowed or spring-barley; and the *hexafficbon*, six-rowed or spring-barley. The first and third sorts are principally cultivated; the winter-barley is as yet new to the district. The half-grain barley is much less common, but is now almost entirely difused. Mr Marshall observes, that less than a century ago, barley was not calculate until it was malted; there were neither maltsters nor public houses, but every farmer malted his own grain, or sold it to a neighbour who had a malt-kiln. Brakes cut from the neighouring commons were the fat commonly ufed upon this occasion, and a certain day for cutting them was fixed, in order to prevent any one from taking more than his share. The cafe is now totally revered; even public malt-houses being unknown, and the business of making entirely performed by maltsters, who buy the barley from the farmers, and sell him what malt he may want for his family.

Sect. III.

In Norfolk this kind of grain is much less cultivated than barley; and the only species observed by culture—MrMarshall is a kind of white oat, which grows quick-ly, and seems to be of Dutch extration. They are cultivated occasionally on all kinds of soils; but more especially on cold heavy land, or on very light, unproductive,
Oats. ductive, heathy, soils. They most frequently succeed wheat or lay-ground barley: "but (says our author) there are no established rules respecting any part of the culture of this time-erving crop." The culture of the ground is usually the same with that of barley; the ground generally undergoing a winter fallow of three or four ploughings, though sometimes they are tawn after one ploughing. They are more commonly tawn above furrow than barley. The feed-time is made subjacent to that of barley, being sometimes sooner and sometimes later than barley feed-time: and Mr. Marshall observes, that he has sometimes seen them tawn in June; it being observable, that oats tawn late ripen earlier than barley tawn at the same time. The quantity of feed in Norfolk is from four to five bushels per acre; but he does not acquaint us with the produce. He mentions a very singular method of culture sometimes practiced in this county, viz. ploughing down the oats after they begin to vegetate, but before they have got above ground; which is attended with great success, even though the ground is turned over with a full furrow. By this method weeds of every kind are destroyed, or at least checked in such a manner as to give the crop an opportunity of getting above them; and the porosity communicated to the soil is excellently well adapted to the infant-plants of barley; which probably might frequently receive benefit from this operation.

In the Vale of Gloucester, Mr. Marshall observes, that the wild oats is a very troublesome weed, as well as in Yorkshire; and he is of opinion, that it is as truly a native of Great Britain as any other arable weed, and is perhaps the most difficult to be extinguished. It will lie a century in the soil without losing its vegetative quality. Ground which has lain in a state of grass time immemorial, both in Gloucester and York, has produced it in abundance on being broken up. It is also endowed with the same feemingly instinctive choice of feasons and state of the soil as other feeds of weeds appear to have. Hence it is excessively difficult to be overcome; for as it ripens before any crop of grain, it feeds its feed on the soil, where the roughness of its coat probably secures it from birds. The only methods of extinguishing this plant are following, hoeing, and handweeding, where the laft is practicable, after it has got its panicle.

No oats are cultivated in the Vale of Gloucester; though the wild oats grows everywhere as everywhere said. Mr. Marshall is of opinion that it is better adapted to oats than to barley. The reason he assigns for the preference given to the latter is, that in this part of the county the monks were formerly very numerous, who probably preferred ale to oat cakes. —He now, however, recommends a trial of the grain on the strong- est cold lands in the area of the Vale, as they seldom can be got sufficiently fine for barley. The fodder from oats he accounts much more valuable than that from barley to a dairy country; and the grain would more than balance in quantity the comparative difference in price.

In the midland district the Poland oat, which was formerly in vogue, has now given place to the Dutch or Friesland kind. It is constantly tawn after turf; one ploughing being given in February, March, or April. The feed-time is the latter end of March and beginning of April, from four to seven bushels an acre; the produce is in proportion to the feed, the medium being about six quarters.

In Yorkshire the Friesland oats are likewise pre- ferred to the Poland, as affording more straw, and being thinner skinned than the latter. The Siberian, or Tartarian oat, a species unnoticed by Linnaeus, is likewise cultivated in this country: the seed oat is known, but has not yet come into any great estimation. The grain is light, and the straw too ready to be affected by cattle.

Oats are particularly cultivated in the western division of the Vale of Yorkshire; where the soil is chiefly a rich sandy loam, unproductive of wheat. Five or six bushels, or even a quarter of oats, are sometimes sown upon an acre; the produce from seven to ten quarters. - In this country they are tawn in the open air, and frequently even upon the bare ground, method of without even the ceremony of interposing a clothe. The threshing, reasons assigned for this seemingly strange practice is, that if pigs and poultry be employed to eat up the grain which escapes the broom, there will be little or no waste. Here the market is always very great for new oats, the manufacturing parts of West Yorkshire using principally oat-bread. The only objection to this practice is the chance of bad weather; but there is always plenty of straw to cover up the threshed corn, and it is found that a little rain upon the straw does not make it less agreeable to cattle.

In an experiment made by Mr. Bartley near Bristol, upon black oats, we are informed that he had the pro­ digious increase of 64 bushels, Winchester bushels from four on the acre: the land was a deep, mellow, sandy loam. He had carried potatoes the former year, and received one ploughing for a winter fallow. Another ploughing was given it in February, and the seed was sown on the 27th and 28th of the month. The success of the experiment was suppos'd to be owing partly to the early sowing and partly to a good deep tillage.

In the Bath Papers, vol. iv. p. 288, Experiment on black oats.

Oats not cultivated in the Vale of Gloucester.

In the Bath Papers, vol. i. p. 148, we have an account of the success of an experiment by Mr. Pavier near Taunton, on sowing peas in drills, a method mentioned under the article Agriculture, n° 150. The scale on which this experiment was made, however, being so small, it would perhaps be rash to infer from it what might be the event of planting a large piece of ground in the same manner. The space was only 16 square yards, but the produce so great, that by calculating from it, a statute acre would yield 600, or at the least 500 pecks of green pease at the first gathering; which, at the high price they bore at that time in the county about Taunton, viz. 16d. per peck, would have amounted to 33l. 6s. 8d. On this the Society observe, that though they doubt not the truth of the calculation, they are of opinion, that such a quantity as 500 or 600 pecks of green pease would immediately reduce the price in any country market. "If the above mentioned crop (say they were told only at nine pence per peck, the farmer would be well paid for his trouble." In a letter on the drill husbandry by Mr. Whitmore, for which the thanks of the society were returned, he informs us, that drilled peas must not
husbandry.

Potatoes.

these, next to the different kinds of grain, may be looked upon as the crop most generally useful for the husbandman; affording not only a most excellent food for cattle, but for the human species also; and are perhaps the only substitute that could be used for bread with any probability of success. In the answer by Dr Tilloot to M. Linguet already mentioned, the former objects to the constant use of them as food; not because they are peneiculous to the body, but because they hurt the faculties of the mind. He owes, that those who eat maize, potatoes or even millet, may grow tall and acquire a large size; but doubts if any such ever produced a literary work of merit. It does not, however, by any means appear, that the very general use of potatoes in Britain has at all impaired either the health of body or vigour of mind of its inhabitants. The question then, as they have already been shown to be an excellent food for cattle, comes to be merely with regard to the profit of cultivating them; and this seems already to be so well determined by innumerable experiments, as well as by the general practice of the country, that no room appears left for doubt. In the Treatise on the Encouragement of Arts, a number of experiments are related by Mr Young on that kind called the clufhier or hog potato, which he strongly recommends as food for the poor, in preference to the kidney or other more expensive kinds. The following is the result of the most remarkable of his experiments.

In the first week of March 1780, 110 acres and a quarter of barley bubble were sown with the clufhier potato, which appeared on the 23d of May. A sharp frost on the 7th of June turned them as black as they usually are by the frosts of November and December. In time, however, they recovered; and by the end of October produced 876 bushels from the 21 acres; which cleaned were reduced to 550 bushels per acre; thus affording, when valued only at 6d. per bushel, a clear profit of 7l. 14s. 4d. per acre. This experiment, however, in his opinion, would have been still more profitable, had it not been for the following circumstances. 1. The soil was not altogether proper. 2. The crop was grievously injured by the frost already mentioned, which, in our author’s opinion, retarded the growth about six weeks. 3. The dung was not of his own raising, but purchased; which cannot but be suppos’d to make a great difference, not only on account of the price, but likewise of the quality, as happened to be the case at present. He is of opinion, however, that potatoes, at least this kind of them, are an exhausting crop. Having sown the field after this large crop of potatoes with wheat, his neighbours were of opinion that it would be too rank; but far was this from being the case, that the wheat showed not the least sign of luxuriance, nor the least superiority over the parts adjacent which were sown without dung. He was willing to account for this by the poverty of the dung, and the severe cropping which the ground had undergone while in the possession of the former tenant. In another experiment, however, in which the ground had been likewise exhausted by severe cropping, the succeeding crop of wheat showed no luxuriance; for that the former infusion of the exhausting quality of the clufhier potato was rather confirmed. The ground was a fine turnip loam: but though the produce was even greater than in the former case, viz. 356 bushels from an acre, the profit was much less, &c. 4l. 15s. 6d. An acre of ley-ground was sown at the same time with the turnip-loam, but the produce from it was only 200 bushels. Mr Young supposes that the produce would have been greater if the potatoes had been planted with an iron dibble, as the turf, in ploughing, lay too heavy upon the feed. A few rows of other potatoes, planted along with the clufhier kind, did not vegetate at all; which shows that the latter have a powerful vegetative faculty.

Having succeeded so well with his experiments on this kind of potato hitherto, Mr Young determined to try feed.
try the culture of them upon a larger scale; and therefore, in the year 1782, sowed 11 acres: but being obliged to commit the care of them to an ignorant labourer, his unskillfulness, together with the excessive cold and moisture of that season, so diminished the produce, that he had only a single acre out of the whole. This produced 180 bushels, which yielded of clear profit 4l. 2s. 6d. From this experiment he draws the following conclusions: 1. "That the poor land, on which these potatoes were sown, will yield a crop of clutter-potatoes, though not of any other kind. 2. That the manure for potatoes ought to be carted and spread upon all soils inclinable to wet before the planting season, either in autumn preceding, or else during a hard frost." In 1782 he succeeded still worse; for having that year sown three acres and a half, the profit did not exceed 1s. 4d. per acre. The produce was about 224 bushels per acre. He gives two reasons for the failure of this crop: 1. The cluttered-potato thrives best in wet years; but the summer of 1783 was dry and hot. 2. The spring frost, by interrupting the hoeing, not only greatly raised the expenses, but very much hurt the crop by encouraging the growth of weeds. Barley was sown after the last crop, and produced well: so that our author thinks the potatoes seem to be a better preparation for spring corn than wheat. His experiment in 1784 produced a clear profit of 2l. os. 4d.; the produce being 250 bushels per acre. Still however, an error was committed, by employing an old man and woman to cut the fets; by which means many great gaps among the potatoes as they came up; so that, on the whole, he reckons that he thus lost from 500 to 800 bushels.

On the cultivation of this kind.

Mr. Marshall, in his Rural Economy of Yorkshire, has several very interesting remarks upon the potato. Its varieties, he says, are endless and transitory. The rough-skinne'd: Kufha potato, which was long a favourite of the Yorkshire farmers, he is of opinion, has now no longer an existence more than many others which flourished for a time. "There is some reason to believe (says he) that the disease which has of late years been fatal to the potato-crop in this and in other districts, under the name of Curled tops, has arisen from too long a continuance of declining varieties. Be this as it may, it appears to be an established opinion here, that fresh varieties, raised from seed, are not liable to that disease." Our author, however, does not look upon this to be a fact absolutely established; though one instance fell under his observation, in which its removal was in all probability owing to the introduction of new varieties. It made its appearance between 40 and 50 years ago, and spread in some degree over the whole kingdom. In some places it continued but a short time, so that its effects are almost forgotten. It is seldom observed at the first coming up of the plant, but attacks them as they increase in size; the entire top becoming dawd and shrivelled as if affected by drought or loaded with infects: they neverthe-

Method of raising varieties from seed. In Yorkshire, some intelligent husbandmen are acquainted with the method of raising potatoes from raising varieties; which is as follows. "In autumn, when the apples are beginning to fall spontaneouly, they are gathered by hand, and preserved among sand until the spring, when they are mailed among the sand or among fresh mould; separating the seeds and mixing them evenly with the mould. As soon as the spring frosts are judged to be over, they are sown in fine garden mould; and as fast as the plants get into rough leaf, and are strong enough to be handled without injury, they are transplanted into another bed of rich mould in rows, which are kept clean during summer. In autumn, bunches of small potatoes are found at the roots of these plants; varying in size, from the first year from a hazel-nut to that of a crab. These being planted next spring, produce potatoes of the middle-size; but they do not arrive at their fullest bulk until the third or fourth year. Where the use of the frove or the garden frame can be had, this process may be shortened. The seeds being sown within either of these early in the spring, the plants will be fit to be planted out as soon as the frosts are gone, by which means the size of the roots will be much increased the first year, and will in the second rise early to perfection." In the 4th volume of the Bath Papers, Dr. Anderson relates some experiments made on potatoes raised from seed. The first year they were of different sizes, from rimes, a pigeon's egg to that of a small pea. On planting these next year, it was invariably found, that the largest potatoes yielded the largest crop; and the fame happened the third, when a few showed blossom; but not even these had bulbs equal to what would have been produced by very large potatoes. Whence he concludes, that it is impossible to assign any time in which these seedling potatoes will arrive at what is called perfection; but that it must depend very much, on the nature of the soil and the culture bestowed upon them. From the practice of the Yorkshire farmers, however, and even from the experiments of the Doctor himself, it is evident, that potatoes raised in this.
Whether potatoes degenerate.

Husbandry.

This way will at last grow to the usual size, as during the three years in which his experiments were continued they constantly increased in bulk. Dr. Anderson likewise contends, that there is no reason for supposing that potatoes raised from bulbs in the ordinary way degenerate, or require to be renewed by female varieties; and he states the universal practice of Britain and Ireland for a great number of years past. But this may be accounted for from an observation of Mr. Marshall’s that varieties of potatoes, like those of corn, are partial to particular soils and situations. Hence, by transplanting all the different varieties of potatoes into all possible soils and situations, as has been done within this last century in the islands of Britain and Ireland, these varieties have continued for a much longer time than they would otherwise have done. In Yorkshire, Mr. Marshall tells us, that “the old favorite sorts were driven until some of the individual plants barely produced their seed again.” It is evident, therefore, that there is a necessity from time to time of renewing them from seed; though it deserves well to be considered whether it would not be more eligible to choose the seed from a plant in full vigour than from that which is so far degenerated that it cannot produce its seed. “Potatoes raised from seed (says Mr. Marshall) are a miscellany of endless varieties. Sometimes these varieties are planted miscellaneous; sometimes particular varieties are selected. In selecting varieties from seedling potatoes, two things are to be attended to; the intrinsic quality of the potato, and its productiveness. If these two desirable properties can be found in one plant, the choice is determined. To this species of attention and industry we are indebted for the many valuable kinds which we have now and are distributed throughout the island.

It is observable, however, the varieties of potatoes, like those of corn, are partial to particular soils and situations. Hence the propriety of husbandmen raising potatoes from seed; as by this means they obtain, with a degree of moral certainty, a crop adapted to their own particular soils and situations. Whoever has attended closely to the work of taking up potatoes, must have observed the great inequality in the productiveness of individual plants. The difference in the produce of adjoining roots, where no disparity of soil can influence, is often three or four fold. Hence it is evident, that each variety has its sub-varieties; through whose means it can hardly be doubted the parent variety may be improved, and its continuance be prolonged. Thus the farmer has another mean in his power of improving the quality and productiveness of his potato-crop, by improving varieties; or, in other words, selecting sub-varieties, superiorly adapted to his soil and situation.”

With regard to the proper mode of cultivating this valuable root, it is so fully explained under the article Agriculture, No. 158 &c. that nothing farther seems requisite to be said upon it in this place. We shall therefore proceed to Sect. VI. Of Carrots.

These have been greatly recommended as food for cattle, and in this respect bid fair to rival the potato; though, with regard to the human species they are far inferior. The profit attending the cultivation of them, however, appears to be much more doubtful than that of potatoes. Mr. Arthur Young informs us, that from Norden’s Surveyor’s Dialogue, published in 1600, it appears, that carrots were commonly cultivated at that time about Orford in Suffolk, and Norwich in Norfolk; and he remarks, that the tract of land between Orford, Woodbridge, and Saxmundham, has probably more carrots in it than all the rest of the kingdom put together.” In 1779, few farmers in these parts had less than five or six acres: many from 10 to 20; and one had 36 acres; the straight, handsome, and clean roots were sent at 6d. per bushel to London; the rest being used at home, principally as food for horses. In other counties, he observes, the culture of carrots has not extended itself; for some have begun to cultivate them in place of turnips, but have soon desisted; so that the culture seems in a manner still confined to the county of Suffolk, where it first began. In attempting to investigate the cause of this general neglect, he observes, that “the charge of cultivation is not so great as is commonly imagined, when managed with an eye to an extensive culture, and not confined one for one or two particular objects.” Two acres which our author had in carrots cost L. 3: 17: 6 per acre, including every expense; but had not the summer been dry, he observes, that his expenses might have been much higher; and when he tried the experiment five years before, his expenses, through inadvertence, ran much higher. His difficulty this year arose chiefly from the polygonum viviparum, the predominant weed, which is so tough that scarcely any hoe can cut it. Some acres of turnips which he cultivated along with the carrots were all eaten by the fly; but had they succeeded, the expense of the crop would have been 18s. 5d. lesper acre than the carrots. “But (adds our author) if we call the superiority of expense 20s. an acre, I believe we shall be very near the truth: and it must at once be apparent that the expense of 20s. per acre cannot be the cause of the culture spreading so little; for, to answer this expense, there are favourable circumstances, which must not be forgotten. 1. They (the carrots) are much more impenicentable to fruit, which frequently destroys of carrots; 2. They are not subject to the diflempers and to turnips, accidents which frequently affect turnips; and they sown at a season when none can be affected by drought, which frequently affo destroy turnips. 3. They last to April, when flode, and especially sheep-farmers are so delighted, that they know not what resource to provide. 4. The culture requisite for turnips on a sandy soil, in order to destroy the weeds, destroys also its tenacity, so that the crop cannot thrive; but with carrots the case is otherwise.—Hence it appears, that the reason why the cultivation of carrots is still so limited, does not arise from the expense, but because the value is not ascertained. In places where these roots can be difficulty sent to London, or sold at a good price, the 10s. being of affered as food for cattle, there is not the least doubt that raising the they are profitable; and therefore in such places they price, and so generally cultivated: but from the experiment yet laid before the public, a satisfactory decisive knowledge of the value is not to be gained. The most confiderable practice, and the only one of common farmers upon a large scale, is that of the sand of Woodbridge; but here they have the benefit of a London market, as already
already mentioned. Amongst those whose experiments are published, Mr Billingsley ranks foremost. Here again the value of carrots is rather depreciated than advanced; for he raised great crops, had repeated experience upon a large scale of their excellence in fattening oxen and sheep, feeding cows, hogs, and horses; and keeping ewes and lambs in a very superior manner, late in the spring, after turnips were gone: but notwithstanding these great advantages, he gave the culture up: from which we may conclude a deficiency in value. \(^8\) In several experiments (though not altogether determinate), I found the value, upon an average of all applications, to be 13d. a bushel, heaped measure; estimating which at 70lb. weight, the ton is L. 1, 14s.\(^{1}\) The following are the valuations of several gentlemen of the value of carrots in the way of fattening cattle,

Mr Mellilh of Blyth 2 general valuation of
horses, cows, and hogs,

Mr Stovin of Doncaster, hogs bought lean, fattened, and sold off,

Mr Moody of Radford, oxen fattened, and the
account accurate,

Mr Taylor of Bifrons, saving of hay and
corn in feeding hores,

Mr Le Grand of Ath, fattening wethers,

Sir John Hoby Mill of Bifham, fattening
hogs,

Mr Billingsley, for fattening hogs,

Some other gentlemen whom our author consulted, could not make their carrots worth any thing: \(\ldots\) That, on the whole, it appears a matter of the utmost doubt, fo contradictory are the accounts whether the culture of carrots be really attended with any profit or not. Thus Sir John Mill, by fattening hogs, makes L. 1, 6s. and Mr Stovin L. 4; but others could not fatten hogs upon them at all: and none of Mr Young's neighbours told him, that carrots were good for nothing except to feed hogs to death. The experiment of Mr Le Grand upon wethers appeared to be made with the greatest accuracy; yet two circumstances seem to militate against it. 1. The sheep were put lean to them; whereas it is a fact well known, that if they are not half fat when put to turnips no profit will result; and it is possible that the cafe may be the fame with carrots. 2. He gave them also as much fine hay as they would eat.

In this uncertain state of the matter, the only thing that can be done is to make a number of experiments with as much accuracy as possible, in order to ascertain the real value per ton; and our author endeavours to show, that there is no danger of losing much by experiments of this kind. \(a\) I have shewn (says he), that they are to be cultivated for L. 4 per acre, left on the ground for sheep. Suppose the crop only; two bushels at 70lb. each, \(\ldots\) or ten tons; it will readily be agreed, that such a produce is very low to calculate upon, since 20 tons are common among carrot cultivators. It appears from Mr Le Grand's experiments, that a wether worth L. 2, 5s. eats 16lb. of carrots, and four pounds of hay per day: dropping the hay, and calculating for sheep of lefs that half that size (which are much more common), it will be perhaps an ample allowance to allow them 12lb. of carrots a day. If they are, as they ought to be, half fat when put up, they will be completely fattened in 100 days. At this rate, 10 wethers will, in 100 days, eat 11 tons, or very little more than one moderate acre. Now, let it be remembered, that it is a good acre of turnips which will fatten eight fuch wethers, the common Norfolk calculation: from which it appears, that one acre of carrots are, for this purpose, of more value than two of turnips. Further, let us suppose hores fed with them instead of oats: to top, cart, and pack up, 10 tons of carrots, I know may be done for 20s.—an acre, therefore (other expences included) costs L. 5. Fifty pounds weight of carrots are an ample allowance for a horse a day: ten tons, at that rate, cost three hores for five months. But this L. 5 laid out in oats at 10s. per quarter, will purchase little more than six quarters; which will last three hores, at two bushels each per week, no more than two months; a most enormous inferiority to the carrots.

In the fame volume, p. 187, Mr Young gives an account of another experiment made by himself on feeding lambs with carrots. The quantities they eat varied exceedingly at different times; thirty-six of them consumed from five to ten bushels per day; but on an average, he rates them at four bushels of 76 pounds per day. In all they conffumed 407 bushels from November to April, when they were fed and killed fat. At putting upon the carrots, the lambs were valued only at L. 18, but were sold in April at L. 25, 4s.; so that the value of the carrots was exactly L. 7, 4s. or about 4d. per bushel. This price he supposes to be sufficient to induce anyone to attempt the culture of carrots, as thus he would have a clear profit of 40s. per acre; which (says he) is greater than can attend the best wheat crops in this kingdom. The land on which the carrots grew was sown next year with barley, and produced the cleanest in the parish; which contradicts an affidavit our author had heard, that carrots make land foul. The drafs upon which the sheep were fed with the carrots, and which amounted to about an acre, was very little improved for the crop of hay in \(1781\), owing to the dryness of the season: but in \(1782\) was greatly inferior to the rest of the field, and more improved in quantity: \(\ldots\) For, instead of an indifferent vegetation, scattered thick with the centaurus sebaloca, filago, rhinauthus, eritha gallis, and linen catharticum, with other plants of little value, it encouraged a very beautiful sheet of the best plants that can appear in a meadow, viz., the lathyrus pratensis, achillea millefolium, trifolium repens, trifolium ochroleucrum, trifolium alpefd, and the plantago lanceolata.

In the fame volume of the Bath Papers, p. 227, Mr Carrots Billingsley gives an account of the comparative profit compared of carrots and cabbages. Of the former, however, he was not only found to produce 15 cwt. per acre, the cabbages produced 36 tons: nevertheless, according to him, the profit of the former was L. 3, 5s.; of the latter, only L. 2, 11s. In a paper on the culture of carrots by Mr Kirby of Ipswich, vol. 3. p. 84., informs us, that he never determined the weight of an acre, but reckons the produce from 200 to 500 bushels; which, at 56 lb. to the bushel, is from five to ten tons and a half. In the same volume, p. 320, the Rev. Mr Onley seems to prefer the culture of carrots to potatoes. \(\ldots\) However valuable (says he) from the ease of culture, and great utility of produce to the poor, especially in all small

\(7\) Culture of Carrots-preferable to potatoes.
Husbandry.

Turnips.

75 Their culture generally is spread for potatoes, yet the latter pays that dung, all other expenses, and leaves a profit sometimes considerable. I admit that turnips fed upon the land will prepare better for corn, but that is by no means the question. Would not the dung raised in the yard be of the consumption of the potatoes, suppose it spread on the potato acre, make the produce more than the turnip one? I have no doubt but it would give a superiority. But turnips are liable to great failures, and cannot be relied on late in the spring; potatoes may; and are applicable to uses to which the other root cannot be applied."—In the second volume of the Bath Papers, p. 101, we have a comparative account of the value of turnips, turnip-rooted cabbage, and lucerne, as food for cattle. The result of this writer's observations is, that "when sheep are allowed as many turnips as they can eat (which should always be the case when they are fattening), they will, on an average, eat near 20 pounds each in 24 hours. An acre of turnips twice hoed, will, if the land be good, produce about 50 tons; which, on the above calculation, maintain 100 sheep 52 days. The sheep mentioned weighed 20 pounds per quarter. An acre of turnip-rooted cabbage will maintain 100 sheep for a month, and sometimes five weeks; but an acre of Scots cabbages will maintain 200 sheep a full month." The number fed by lucerne is not determined.

76 The fly, which sometimes destroys them completely, is a great inconvenience in turnip culture. The greatest disadvantage which attends a crop of turnips, is their being so ready to be damaged by the fly, which sometimes destroys them completely, that they must be sown over again two or three times the same feason, and even this without any certainty of success. Innumerable methods of avoiding this evil have been projected, which may all be reduced to the following classes: 1. Steeping the feed in certain liquids. 2. Fumigation of the fields with the smoke of certain herbs. 3. Rolling. 4. Spraying. 5. Substituting certain other plants. 6. Plowing again. 7. Varying the hoeing. 8. Making a preventative, which is the subject of this paper. The preservation of the crop is ascribed to the use of some preventative, whether it be really efficacious or not. The virtues of the feed seem to have been fully ascertained by Mr Winter Charlton near Bristol, of whose experiments an account is given in the Transactions of the Society for Encouraging Arts, vol. 5, p. 125. He used 12 inches of the batch kind, fowed on beds in the kitchen-garden in drills, 2 inches apart, and a half deep, on the 11th of May 1786. The beds had been prepared with rotten dung in May 1785, and afterwards sown with cabbages. The quality of the turnips is exhibited in the following table; the best being marked †; and those of inferior quality, 2, 3, &c. The observations were taken on the 26th of June.

Seed without any preparation, — — — I
steeped in train-oil, flourished extremely, steeped in linseed-oil, somewhat inferior, 1

Sect. VII. Turnips.

These have long been in such general use as food for cattle, that the profit on raising them might be reasonably thought to be altogether certain; nevertheless, Mr Young, in the paper already quoted, informs us, that "turnips dunged for are universally a lodging crop: for if they are flatted from 50s. to 40s. an acre their value does not amount to the dung alone which is spread for potatoes; yet the latter pays that dung, all their expenses, and leaves a profit sometimes considerable. I admit that turnips fed upon the land will prepare better for corn; but that is by no means the question. Would not the dung raised in the yard be of the consumption of the potatoes, suppose it spread on the potato acre, make the produce more than the turnip one? I have no doubt but it would give a superiority. But turnips are liable to great failures, and cannot be relied on late in the spring; potatoes may; and are applicable to uses to which the other root cannot be applied."—In the second volume of the Bath Papers, p. 101, we have a comparative account of the value of turnips, turnip-rooted cabbage, and lucerne, as food for cattle. The result of this writer's observations is, that "when sheep are allowed as many turnips as they can eat (which should always be the case when they are fattening), they will, on an average, eat near 20 pounds each in 24 hours. An acre of turnips twice hoed, will, if the land be good, produce about 50 tons; which, on the above calculation, maintain 100 sheep 52 days. The sheep mentioned weighed 20 pounds per quarter. An acre of turnip-rooted cabbage will maintain 100 sheep for a month, and sometimes five weeks; but an acre of Scots cabbages will maintain 200 sheep a full month." The number fed by lucerne is not determined.

The greatest disadvantage which attends a crop of turnips, is their being so ready to be damaged by the fly, which sometimes destroys them completely, that they must be sown over again two or three times the same season, and even this without any certainty of success. Innumerable methods of avoiding this evil have been projected, which may all be reduced to the following classes: 1. Steeping the feed in certain liquids. 2. Fumigation of the fields with the smoke of certain herbs. 3. Rolling. 4. Spraying. 5. Substituting certain other plants. 6. Plowing again. 7. Varying the hoeing. 8. Making a preventative, which is the subject of this paper. The preservation of the crop is ascribed to the use of some preventative, whether it be really efficacious or not. The virtues of the feed seem to have been fully ascertained by Mr Winter Charlton near Bristol, of whose experiments an account is given in the Transactions of the Society for Encouraging Arts, vol. 5, p. 125. He used 12 inches of the batch kind, fowed on beds in the kitchen-garden in drills, 2 inches apart, and a half deep, on the 11th of May 1786. The beds had been prepared with rotten dung in May 1785, and afterwards sown with cabbages. The quality of the turnips is exhibited in the following table; the best being marked †; and those of inferior quality, 2, 3, &c. The observations were taken on the 26th of June.

Seed without any preparation, — — — I
steeped in train-oil, flourished extremely, steeped in linseed-oil, somewhat inferior, 1

T
Another set of experiments was made with the green Norfolk turnip, drilled an inch and a half deep, the rows one foot distant, on beds six feet three inches long, and two feet wide; half a drachm of seed allowed for each bed, steeped and mixed with various substances like the former. The seeds were drilled upon unmanured ground on the 20th of June 1786, and the observation made on the 17th of July. None of the beds were found free from the ravages of the fly; but the seeds which had been steeped in train-oil and limed-oil were much more free from this injury than the others. The limed-oil, as in the former experiment, was found inferior to the train-oil, which was supposed to have been owing to its being kept in a bottle that had formerly held oil of turpentine. The leaves of the steeped seeds were of a much darker green than the others, appeared twice as thick in bulk and luxuriancy, and the plants were considerably larger than those of the other kinds. The substances mixed with the rest were foaper’s ashes, wood-ashes, pounded gun-power, brimstone, flacked lime, foot, barn-draining; sometimes mixed together in various proportions, and sometimes with the addition of a portion of fillet mud.

These experiments show, that no dependence can be had on steep or mixtures of any kind with the turnip-feed; though the train-oil and limed oil seem greatly to have forwarded the vegetation of the plant. It does not appear that fumigation has ever been tried; nor indeed does it seem easy to try in such a manner as might ensure success. — In the fourth volume of the Bath Papers, Mr Gullet of Devonshire gives such directions for performing the operation as he thinks would be productive of success. — In a preceding paper he had explained the good effects of fumigating orchards; but the cause with these must be very considerably different from a field of turnips. The trees in an orchard are elevated above the ground, and the smoke naturally ascends, and is blown along their tops; but in fumigating a large field of turnips, it must creep along the ground in such a manner as is by no means agreeable to its nature; and without an excessive degree of labour, as well as a vast quantity of burning materials, there cannot be the least hope of success. Mr Gullet’s directions are as follows: “If the turnip-ground be spaded and burnt, or the weeds &c. burnt without fumigating, the fumigation thereby may suffice to chase such of the winged tribe from thence as are present there; but in all cases, when the field is ploughed and ready for sowing, let heaps be made at different places and intervals round by the hedges and boundaries of the turnip-ground, and from few scattered through the field; then, as soon as the feed is sown, let the heaps on the windward side and the scattered ones be lighted and kept fumigating during the continuance of the wind in that quarter; the left fire, and the more the smoke, the better. Should the wind happen to shift, these heaps on the quarter it shifts to must then be lighted and kept fumigating in like manner; so that, during the growth of the tender turnip leaf, and until it becomes rough and out of all danger, this fumigation and smoke, over and above the field, must be continued from one quarter to the other; which, I venture to think, will effectually deter and prevent any winged insect-tribe from approaching the turnip-ground; nay more, if there already, it would most completely drive them from thence as such delicately formed insects (which can only feed on the most tender leaf) would be ill able to continue long in such a fumister of fire and smoke. The consequence is obvious and certain, that if the fly be kept from approaching the field, the turnip-crop is safe; and few, I believe, will disagree with me, that prevention is better than remedy.”

Our author does not say that he has ever tried this method with turnips; but lays great stress upon his successes in a similar experiment with cabbages, in order to prefer them from the caterpillar. To make the matter more fore, however, he recommends the trailing of a batch of elder over the turnip field at the time of sowing or bruishing in the feed; but this remedy has by numerous experiments been found insignificant, and by those above related seems even to be pernicious; so that whatever good effects we can expect from this method, must depend on the fumigation alone; and even this is attended with very great uncertainties; as has already been observed.

Rolling promises to be of service when the young turnips are attacked by snails, which frequently destroy them; but it cannot be supposed to have much effect in destroying flies, these being too numerous and too minute to be effectually crushed by the roller; and indeed, though this has been frequently recommended, we have no decisive proofs of its having ever been attended with any good effect.

The sowing of foot, lime, ashes, &c. upon the ground, have been determined ineffectual by the experiments already related, at least when applied before the turnips come up; and there seems to be little hope of their proving more effectual even when applied after the crop has appeared above-ground. We may argue indeed a priori about the taste or smell of foot, lime, &c. being disagreeable to insects; but of this we have no proof; and even though this were the case, the leaf soon emerges from under this covering, or the insects will feed on the under part of the leaves, where these substances cannot lie. It is evident, therefore, that very little
754

HUSBANDRY.

Part I.

Turnips.

little can be expected from any of the methods hitherto proposed, either by way of cure or prevention. The more probable methods are:

1. To sow the turnips at such a season of the year, that they may be well grown before the fly makes its appearance. In the Bath Papers, vol. iv. p. 132. Mr Wimpey observes, that, in order to procure food for their cattle in the spring before the grass is grown, farmers are obliged to postpone the sowing of turnips beyond the natural time of vegetation; but were turnips to be sown in April, as soon as the faeon would permit, it is very probable that there would be as great a crop of them as of other vegetables usually sown in these months. On account of the delay in sowing, however, for reason already mentioned, the success of the farmer becomes exceedingly precarious, unless he is so fortunate as to have a few rainy days, or cloudy weather and frequent showers, soon after the feed is sown; and this our author supposes to be the true reason why the turnip is a more uncertain article than any other. But though speculations of this kind have a great show of probability, there is not any experiment hitherto published, even by our author himself, by which the truth of them can be absolutely ascertained. Our author, however, is of opinion, that none of the common methods proposed can answer any good purpose, farther than as means of them the vegetation of the plant may be invigorated. Mr Wimpey recommends ashes, foot, or a rich compost of lime and dung, used in sufficient quantities; but the method of using them is, either to sow them with the feed, or rather by themselves immediately before, and to harrow them well in, that they may be completely incorporated with the soil. This for the most part would invigorate and encourage the growth of the plants, as to be an overmatch for the most vigorous attacks of the fly.

2. Another method proposed for securing turnips from the fly, is by sowing such a quantity of feed as will be more than sufficient for the consumption of the insects. This we find recommended in a letter to the Bath Society by a gentleman-farmer in Essex, vol. ii. p. 238. His method is to make the land clean and fine as soon as the faeon will permit, and to sow four plints per acre. It may be objected, that if the fly does not take them, the plants will stand so thick that they cannot easily be hoed; but this may be obviated by harrowing them first, which will make them fit for the hoe. There can be no expectation of a crop if the fly takes them when only a pint of feed is sow per acre; but this gentleman remarks, that he has not in any one instance missed of a crop when he sowed four plints; because, though the fly has sometimes destroyed more than one half, and much damaged the other, still there was a sufficient number left behind. He also agrees with other of the Society's correspondents, that the ground should be well dunged and manured previous to the sowing of turnips, as this makes them grow vigorously, so that they quickly get into the rough leaf, in which the fly will not touch them.

In the same volume, a gentleman of Norfolk remarks, that manuring the ground in autumn for turnips is preferable to the doing so in spring. This discovery he made in consequence of the following accident. — "A neighbouring farmer, not having a sufficient quantity of manure for all his turnip land, was under the necessity of sowing four acres unmanured. The effect was, that the turnips of the manured part of the land were mostly eaten off by the fly, while four acres unmanured escaped without injury." In consequence of having observed this, the gentleman made a similar experiment, by manuring five acres well for turnips, and tilling three acres and an half in the usual way without any manure. The manured crops were almost all destroyed by the fly, so that he was obliged to sow most of the land over again. The three acres and an half which had no manure were entirely free from injury, though the plants were much smaller than those of the manured ground which came up. Not content with this trial, however, he repeated the experiment, by manuring six acres of wheat stubble in autumn, ploughing it in immediately, and leaving it to incorporate with the earth during the winter; the turnips which grew upon this were as large as if the ground had been manured in the spring. This experiment was repeated with furpriling success in two succeeding years; whence he infers, that the fly is either engendered in the new dung or enticed by it. But when the manure is laid on in autumn it loses its noxious qualities, though it still retains its nutritive ones. — This conclusion, however, does not appear to be well founded; for it is certain from undoubted experience, that turnips which have been well manured in the common way, have sometimes escaped any injury; while others, which have got no manure at all, have been almost totally destroyed. Another material advantage, however, which this correspondent observes is to be derived from manuring in autumn, is, that all the feeds contained in the manure, and which are of course carried on the land with it, vegetate almost immediately, and are mostly killed by the cold of the succeeding winter, while the few that remain can scarce escape destruction from the ploughshare.

Mr Wimpey is also of opinion, that it is proper to sow a large quantity of feed; but thinks two pounds per acre sufficient for an acre. A few ounces indeed would be sufficient to flock the land; but as the article is so precarious, he thinks it by far the safest way to allow a very good seed, and thus to have feed in plenty, and reduce the plants afterwards by harrowing. He observes also, that it is of great consequence to have feed both good in quality and of the bell species. He prefers the large and green toped, as being the most sweet and juicy; others give the preference to the red or purple-topped, as being harder: but at any rate, the feed from the largest and finest transplanted turnips, of whatever sort, is greatly to be preferred, even though it should cost double or treble the price. Such as is sold by the feedsmen in the feed.

London he found generally of a mixed kind, and often in great part not worth cultivating. "Whether plants from new or old feed are most secure from the depredations of the fly (says he), is perhaps a question which cannot be easily determined even by experiment; for concomitant circumstances are frequently so much more operative and powerful, as to render the difference between them, if there be any, imperceptible. It is, however, known to every practical man, that new feed or sprouts, or vegetables of several days before old, and I think more vigorously; and it is equally well known, that the healthy and vigorous plants escape the fly, when the slightest and sickly seldom or never escape them.

89

Sowing a

large

quantity

of feed.

88

Manuring

in autumn;

preferable

to spring

manure.

86

Sowing a

great quantity

of feed.

84

Early sowing

recommended.
Turnips.

It should seem then, that new feed, <i>erucis paribus</i>, is more fecure from the fly than old; and for my own use I would always prefer it."

3. The sowing of turnips along with other grain.

—This, of all others, seems to be the most eligible and efficacious. In the second volume of Bath Papers, p. 210, an Hertfordshire correspondent gives an account of the success of an experiment of drilling turnips with wheat. A small field of spring-wheat was drilled in rows two feet apart; and in the month of May turnips were fown by hand in the interstices.

They came up very well, and were thinned once by the hoe. The crop of wheat turned out better than another field of the same foil sown broadcast in autumn, though it ripened somewhat later. The turnips were no other way injured by cutting it, than having some of the large leaves trodden down by the reapers. After harvest the weeds were cut up round the turnips with a hand-hoe, and they grew very large and vigorous. They were of the purple and white long kind, and the crop proved nearly as good as the same land produced in common. An excellent crop of barley and clover was got from the same field afterwards.

In the third volume of the same work we find an account of several successful experiments in sowing turnips between rows of wheat. The advantages of this method are strongly set forth by R. P. Anderson, Esq., who made some of the experiments, and are as follows:

1. You may have a crop of beans and turnips on the same field the same year. 2. The bean crop being well hoed and neither ploughed or wanted for turnips, for which the best Norfolk farmers give five ploughings. 3. It is hoed cheaper, more effectually, and consequently more profitably, than in any other way. 4. The ground is kept clean from weeds. 5. It is in order for a Lent crop the succeeding year with one entry. 6. The ground is kept in heart, if not improved, by following your alleles. 7. It brings the plant to perfection in poor ground, where it would not become if otherwise. 8. It doubles the crop in any ground which Mr Anderson has had experience of.

You have the crops more within your own power in this than in any other method, let the feasons turn out as they will. 10. You may have on the same ground a bean and turnip crop annually, if the land be suitable, and you think proper. 11. The clay farmer, by this mode, renders land which is naturally unfit for turnips, so free and open by reasonable horse-hoeings, that it will bring this useful plant to great perfection.

On this paper the society made some remarks, and stated the following objections: 1. The same field cannot be proper for both crops. Scotch cabbages are more adapted for a bean foil, and they would him to repeat the experiment with cabbages instead of turnips betwixt his beans. 2. The Norfolk farmers rarely use more than three ploughings for turnips, instead of five, as Mr Anderson represents, unless the ground be full of couch-grass. 3. They think him too fanguine in his expectations of having double crops on the same field. 4. Nothing renders a clay soil so free and open as to have it exposed to frosts and snow by being laid up in high ridges in January and February; but, on Mr Anderson's plan, this cannot be done, unless the turnips are leavened in value by being fed off in autumn.

These criticisms were sent to Mr Anderson before the papers were printed, but did not make any alteration in his opinion; and he replied to the following purpose:

1. The same soil cannot be proper for beans and turnips, &c.—Granted. But had Mr Anderson adhered rigourously to this rule, he would have sowed no turnips at all, not having on his farm any foil altogether proper for that crop; "but (says he) while I can get in single rows, four feet asunder or more, from half a dozen to a score tons of turnips per acre, after, or rather between, a crop of beans in my heavy lands, I shall feel that produce here more beneficial than to drop the mode. I believe the medium of the two, so far as I can judge by the eye or get information, to be superior to the average produce of prepared fallow turnip crops in 10 miles round me."—On this the society make the following remarks: "The question here is, Whether, if instead of turnips, Mr Anderson had planted his beans two feet asunder only, the extra produce of his crop would not have exceeded in value that of his turnips? We think they would, as these intervals would freely admit his horse-hoe between the beans."

Mr Anderson then proceeds to acquaint the committee, that he had tried the experiment as they wished with Scotch cabbages instead of turnips betwixt the rows of beans; but the crop of the turnips was so much preferable, that he found himself inclined to support the cabbage would not go to so great perfection there as to be profitably introduced on a large scale, for want of the great quantity of dung necessary for that crop, and which could not be procured in that part of the country. He further remarks in favour of turnips, that they have an abundance of very small lateral fibrous roots, which run so far in search of food, and feed as ravenously wherever they can penetrate, as though of almost any other vegetable; and the plant certainly derives more nourishment from those than from its tap-root (a). Those fine fibrous roots, almost imperceptible to the eye, illude chiefly from the apple or body of the turnip, and get into the richest part of the foil near the surface, and will bring the plants to a considerable magnitude in heavy lands adapted to beans, when mellowed by the horse-hoe. Some of his turnips weighed ten pounds each: and if he could have only two such turnips on every square yard, it would be at the rate of 43 tons per acre.

2. The Committee doubt of the possibility of doubling the crop. Mr Anderson gives the following explanation, "I have made many comparative trials on turnips between this mode and broad-cast sowing, and always found on my ground the horse-hoe crops the best. But here, in denoting the benefits of the horse-hoe by its doubling a crop, I wish to be understood, that if, in folk like mines, a crop be drilled, leaving proper interval..."
Turnips. intervals for horse-hoeing; and one part be horse-hoed the other not, the horse-hoed part will double the other in product."

Mr Anderdon, in the course of his reply to the committee, gives an account of another experiment he made in consequence of being deficient in winter fodder for his cattle. By this necessity he was induced to sow turnips wherever he could; and on the 18th of July drilled a single row between his drilled wheat. On the 20th and 22d of August he drilled four rows of winter vetches in each interval between the turnips, at the rate of less than one peck and three quarters of seed to an acre. "The turnip crop (says he) is very acceptable, and my vetches succeeded beyond my warmest expectation; are thick enough, and give me the pleasing prospect and hope, that I shall not, when my dry meat is gone, want a reasonable supply of early green fodder that will last me till my lucerne comes on."

This subject is further considered in the same volume by Mr Pavier, who viewed Mr Anderdon’s turnips, and gave in a report of them to the Committee. He found the crop of beans drilled in single rows at four feet distance, and the turnips drilled in the intervals, according to Mr Anderdon’s method, there will then be four rows of 17 feet in length to make a square perch; whereas Mr Anderdon’s rows were only 15 feet 8 inches in length; and this disparity in length will make a difference of weight on a perch from 230 to 249 pounds, and on an acre from 16 tons 8 cwt. 2 qrs. 8 lb. Mr Anderdon’s produce, to 17 tons 15 cwt. 2 qrs. 24 lb.—Each turnip at this distance (viz. four feet from row to row, and nine inches in the rows) must occupy a space of three square feet; consequently the greatest number produced on an acre must be 14,520; but if sown in breadth, twice hoed, and the distance on an average 15 inches, each turnip will then occupy little more than one foot and a half; and the number produced on an acre may be about 27,920, an excess which may reasonably be supposed to overbalance the value of the beans, let us suppose the crop as great as we can reasonably do. Thus far the argument seems to lie against this method of cultivating beans and turnips together; but on the other hand, Mr Pavier considers it probable that the expense of drilling and horse-hoeing the beans, together with drilling the turnips in the manner Mr Anderdon did, must be considerably less than that of following and preparing the ground, and fowing the turnips in broad-cast; to which we must likewise add the facility of hoeing the drills in comparison of the broad-cast. But besides these, the great advantage arising from this method, and which, if certain, gives it a decided superiority, is, "the great chance, if not an almost certainty, of preserving the turnips from the depredations of the fly." Mr Pavier was inclined to think that this must be the case, as Mr Anderdon had such crops repeatedly without any damage of that kind; but the committee differ from him, and think that this must have proceeded from some other cause; though they do not assign any reason for this opinion. "The principal point (says Mr Pavier), in determining this question, seems to me to be this: if the crop of beans drilled as above, after deducting the feed, and some additional expense in taking the crop off the ground without injuring the turnips, can be, one year with another, supposed to be as valuable as the quantity of turnips that might be reasonably expected in the broad-cast method more than in the other, I should not hesitate to declare in favour of drilling between the beans."

Thus far the argument seems to be carried on priori. Mr Wimpey, in the letter already quoted, inclines to the practice of bowing turnips between beans planted in rows. "It exactly corresponds (says he) with all my observations on the successful vegetation of that root. A considerable degree of moisture is necessary to the rapid vegetation of that very juicy root, and nothing retains moisture equal to flade; and flade can be obtained and secured by no means so effectually on a large scale as in the intervals of tall growing plants, as beans or wheat planted in drills." The success of Mr Bult of Kingston near Taunton, leaves little room to doubt of the propriety of the method, and its success in preventing the fly. The beans were planted in drills not quite two feet asunder, on two ploughings, horse hoed three times, and the turnips sown in the intervals at the last hoing. The field measured six acres and a quarter, and was on a very good clayey soil, but had not been manured, nor had any Dressing laid upon it for six years before. It produced this year three quarters of beans per acre, and 37 tons 5 cwt. of turnips. This field was also viewed by Mr Pavier, who makes the following observations upon it. 1. The turnips were sown promiscuously among the beans at the last hoing, which was given about midsummer; from which time nothing was done but drawing off the beans and carrying them off the land. 2. The crop of beans was believed to be considerably above 20 bushels per acre, which is much more than were produced by any other method that season in the neighbouring part of the country; and as Mr Pavier had this account before he saw the turnip crop, he did not expect anything considerable from the latter; but as it turned out, the produce must be accounted highly profitable, when we consider that there was no crop lost, no preparation, dressling, nor any expense whatever, excepting the price of the seed and fowing it. 4. This he considers as one of the strongest recommendations of the drill husbandry, he ever knew or heard of; but he is of opinion that it never can answer except where the ground is perfectly clean and free from weeds, by the crops having been horse-hoed for a few years before. 5. He thinks the beans ought to have been planted at wider intervals, by which the sun and air would be more admitted, and the plants would also be less damaged by the operation of the hoe. Mr Pavier: likewise informs the Society of two other experiments on a similar plan; but with this difference, that the turnips were sown among the beans at the second horse-hoeing. The turnip crops were very good, and the beans more than double the value of those raised in the usual mode of husbandry. "I think it is very evident (says he), that the beans prefer the turnips from the fly; and as no expense or trouble attends the practice, I apprehend it will soon become more general." The Society own, that the uncommon success of Bult’s experiment seems to militate at least against what they laid on Mr Anderdon’s letter; but they insist that the cases are by no means similar. "Though the land (say they), in both instances, is called a heavy

Husbandry. Part I.
In another letter, Mr Pavier gives a more particular account of the two other crops of beans and turnips raised upon Mr Bul's plan. The beans were drilled in rows about 22 inches distant, twice horse-hoeing, and the produce from about 25 to 30 bushels the computed acre, or from 30 to 36 bushels the natural acre. The preceding summer had been very unfavourable to beans, and the produce per acre in the common husbandry did not, on an average, equal a third part of this quantity. One of these crops was superior to that of Mr Bul: they were sown upon a field of nine computed acres on the roth of June, after the second horse-hoeing; but whether the second hoeing was performed too soon, the ground not clean, or whatever might be the cause, the beans were weeded twice by hand afterwards; and he is of opinion, that the turnips were somewhat benefited by it. Mr Pavier was assured by a very intelligent farmer, that this was the best crop of turnips he had ever seen. The turnip-seed in the other crop was put in between the rows of beans by a hand-drill; but the work was badly performed, the plants coming up in some places vastly too thick, and in others as much too thin; but wherever they happened to be of a proper thickness, the farmer told him it was one of the most profitable crops he ever had. The soil was wet, heavy, and not very favourable for turnips. Hence Mr Pavier deduces the following conclusions. 1. That with respect to beans in particular, the drilling and horse-hoeing is vastly superior to the common mode of husbandry. 2. That the beans are undoubtedly a good preservative of the turnips from the depredations of the fly. 3. That as by this method no crop is lost, and consequently no rent, but a mere trifle of expense (if any) chargeable to the turnip crop, it must be one of the most profitable as well as the most certain method of propagating that useful root ever yet practis'd. He still insists, however, that if he had an opportunity of trying this method, he would drill the beans in rows at a greater distance, that the turnips might be hand-hoed easily; and that he should prefer the London tick-bean to any other, by reason of their shortness and being such bearers; that he should also take off their tops as soon as the under blossoms began to decay; which, he supposes, would be of great service.

We shall close this dissertation upon the uses and culture of turnips with an account of an instrument used in Norfolk for transplanting them, and thus filling up the gaps which frequently happen in fields from the failure of the plants in particular spots. It is represented on the margin; and the construction and mode of using it is obvious from the figure. — When the turnips are to be transplanted, the workman holds the long handle with the left hand, and the short one with the right hand drawn up. The instrument then over the plant that is to be taken up, and with your foot force it into the ground; then give it a twist round, and by drawing it gently up, the earth will adhere to the roots of the plant in a solid body; then with another instrument take the earth out where the plant is to be put, and bringing the instrument with the plant in it, put it into the hole which has been made by the other; then keep your right hand steady, and draw up your left, and the earth and plant will be left in the hole with the roots undisturbed. In this operation two men must be employed, each of them having an instrument of the form represented on the margin. One man takes up a plant while the other fills his instrument with earth only, thereby making room for the deposition of the plant; so that the hole which is made by taking up the plant is filled with the earth taken out where the plant is to be put; which being deposited, he takes up another plant, and returns to the place he first set out from, the former man at the same time returning with the earth only; so that each man is alternately the planter, and each being employed both ways, the work goes on briskly. — This instrument was the invention of Mr Cubitt Gray of Southrepps, Norfolk.

Turnips being the grand basis of the Norfolk husbandry, Mr Marshall gives a very particular account of their culture in that county. — The species cultivated are, 1. The common white stalk, called, in many places, the Norfolk turnip. 2. The purple stalk is similar to the former, but its root is of a dark red or purple colour; its size in general smaller, and its texture firmer and closer than that of the common white-stalk; it also stands the winter better, and is more succulent in the spring, but it is not so well relished by cattle as the former; whence it is less generally cultivated. 3. The pudding stalk, the rankard-turnip of the Midland counties, is in shape perfectly different from the common sort, that it might be ranked as a distinct species. It rise in a cylindrical form, eight, ten, or twelve inches high, standing in a manner wholly above ground; generally taking a rough irregular outline, and a somewhat reclining posture. It very much resembles the common turnip, and is by much its most formidable rival. In many respects it seems to be superior, particularly in being readily drawn, and eaten off by sheep with much less waste than the common turnip. — The disadvantage is, that they are liable to the attacks of froth, by reason of their standing so high above the surface of the ground; so that in the whole, Mr Marshall concludes, that the common white turnip is to be preferred to every other. Turnips are grown upon every species of arable land. Marls is found to be highly beneficial; and by means of this manure, a soil naturally unfit for turnips may be rendered proper for it. They succeed barley rather than any other crop; some few are sown on wheat or peas flable after harvest; but this is not a general practice. The manures in greatest reputation for turnips are dung, with a greater or smaller admixture of mould; malt coals are also in good repute, and oil-cake is used by a few individuals; but it may be said, that nine acres of ten of the turnips grown in east Norfolk are manured with manure. — The quantity of dung set on for a crop of turnips generally depends on the quantity on hand, and
and the quantity of turnip-ground to be manured. From 10 to 15 cart-loads of manure are considered as a good dressing, and about a ton of oil-cake to three acres, 50 or 60 bushels of malt-coombs, and 40 or 50 bushels of foot, to an acre.

When the turnips are intended for early consumption, the sooner they can be got into the ground the better; but when they are intended to stand the winter, the beginning of July is thought soon enough. The most general rule is to begin sowing about a week before midsummer, and continue till about a fortnight after, viz. from the 17th or 18th of June to the 7th or 8th of July.—Broadcast sowing is universal, in the quantity of two pints to an acre. The seed is covered by two lines of a pair of light harrows drawn backward, in order to prevent the lines, which usually point something forward, from tearing up the cloths, and burying the seed too deep. The horsetails are universally marked one way, and trodden back again in the same place. This is an excellent custom: the quick zig-zag motion of the harrows at once affilting to level the surface, and to distribute the seeds more evenly.—They are universally hoed; and unless they be sown very late, are generally hoed twice. The distance of time between the sowing and the first hoeing depends upon the soil and season; whereas their natural growth, in two or three months, is procumbent, spreading their first leaves on the ground, and taking the form of a rosette.—If the hoe be put in too soon, the plants which are set out are liable to be buried, and their tender roots disturbed in the act of setting out the neighbouring plants. The time for hoeing, as directed by the most judicious husbandmen, is when the plants, as they lie spread upon the ground, are about the size of the palm of the hand: if, however, weeds be numerous and luxuriant, they ought to be checked before the turnips arrive at that size, left by being drawn up tall and slender they should acquire a weak and sickly habit. The proper time is upon the nature of the soil and season, and the size of the plant, such as are sown early, in a rich productive soil, require to be set out wider than those sown late on a soil of a contrary nature. If the soil be at par, the distance ought to be regulated by the time of sowing: if this be at par, the nature or state of the soil should be the regulator.—Mr Marshall complains of the conduct of the Norfolk farmers in general in this respect, who "hack out their turnips 14, 15, or perhaps 18 inches afunder, without any regard to the state of the soil or time of sowing. This practice was established while the Norfolk soil was full of marl, and new to turnips; and when, it is probable, 11 or 12 inches in diameter was uncommon size, with tops proportionately large, and spreading; and 14 or 15 inches might then be a proper distance. But now, when the efficacy of marl is lessened, and the soil no longer the favourite of turnips, which seldom reach more than seven or eight inches in diameter, it is ruinous and absurd to continue the practice."

Turnips are cultivated either for feed, for sale, or for consumption. When cultivated for feed, it is supposed in most parts of the kingdom that it ought always to be taken from transplanted roots; but in Norfolk they are frequently raised from such as are untransplanted. "It is a fact (says Mr Marshall) well known by every husbandman here, that if the feed be gathered repeatedly from untransplanted roots, the plants from this feed will become coarse-necked and foul-rooted; and the flesh of the root itself will become rigid and impalatable. On the contrary, if it be gathered year after year from transplanted roots, the necks will become too fine, and the fibres too few; the entire plant acquiring a weak delicate habit, and the produce, though sweet, will be small. For the neck, or os of the leaves, being reduced to the size of the finger (for instance), the number and size of the leaves will be reduced in proportion; and in a similar proportion will the number and size of the fibres be reduced. From a parity of reasoning, it may perhaps be inferred, that when the neck acquires a thickness equal to that of the writh, the size of the root will be in proportion.

"With respect to the fibres or rootlings, this is a just inference; but with respect to the bulb, it is in a great measure erroneous. For a few generations the size of the bulb will keep pace with the increase of leaves and fibres; but after having once reached the limits which nature has set to its magnitude, it begins to revert to its original state of wildness, from which to its present state it has undoubtedly been raised by transplanation. The farmer has therefore two extremes to avoid. The one is discoverable by the thick-nesses and coarseness of the neck, the fealty roughness of the bulb, the thickness of the rind in general, the foulness of its bottom, and the forkedness of its main or tap-root: the other, by the flenderness of the neck, the fineness of the leaf, and the delicacy of the root. The former are unpalatable to cattle, and are therefore creative of waste: the latter are unproductive, are difficult to be drawn, and do not throw out such ample tops in the spring, as do those which are, by constitution or habit, in a middle state between these two extremes. There is not, however, any general rule respecting how many years turnips ought to be transplanted successively, and how often the plant should be suffered to run up from the feed-bed: the soil and situation have, and other circumstances may have, influence on the habit and constitution of vegetables as of animals; and the farmer must attend alone to the state of the turnips themselves. Whenever he judges, that, by repeated transplantation, they have passed the stage of perfection, then it is his duty and interest to let them run up to feed without transplanation. In Norfolk it has been found, by long experience, that transplanting two, three, or four years, and letting the plants run up the third, fourth, or fifth, will keep the stock in the desired state. The time of transplanting is from Old Christmas to Old Candlemas. In the choice of plants, the farmer is not guided by size, but picks the cleanest plants without regard to size; or, more accurately speaking, he makes choice of such as are near, but not at or above, the stage of perfection. In almost every turnip-field there are plants in various states: much judgment, therefore, is requisite in the choice of plants. A piece of good ground near a habitation is generally chosen for this purpose; but the method of planting is various: the plants
Sect. VII.

HUSBANDRY.

Turnips. plants are generally set in rows, at uncertain distances from one another. The distances our author has observed to be 16 or 18 inches, and the distance of the plants in them nine or ten inches; but the practice of a man who, he tells us, is indifferently near the head of his profession, is to place them in rows two feet asunder, the plants in the rows being contiguous. The only culture required, is to keep the intervals clean hoed; but when the seed begins to ripen, much care is requisite to keep it from birds. If the plot be large, it is necessary to employ a boy to scare them; but if it be small, and near the house, Mr. Marshall has known the following expedient used with success. "On a slender post, riling in the midst of the patch of seed, was fixed a bell; from which a line palled to the kitchen; in the most frequented part of this hung the pull. Whoever palled the pull, rang the bell; so that, in a farm-house kitchen, where a mistress and two or three maids were some of them almost always on the foot, an incessant peal was kept up; and the birds, having no reprieve from alarms, forook their prey.

The time of drawing commences about Michaelmas, and continues until the plants be in blow. The process of drawing, he says, "in severe weather, is an employment which nothing but custom could reconcile to those who lot is to go through it; namely, float lads and youths; whose hands are frequently rendered by the moll inured to this circumstance. When the tops will bear it, their method of pulling is very expedient: they pull with both hands at once; and having filled the cart, they go on with the same effect. To make a comparative estimation of the quantity of food yielded by the turnip-rooted cabbage and the common turnip, he selected some of each kind, and having girted them with as much accuracy as possible, he found, that a turnip-rooted cabbage of 18 inches circumference weighed 54 lb. and a common turnip of the same size only 33 lb.; on trying others, the general result was found to be in that proportion. Had they been weighed with the tops, the superiority of the turnip-rooted cabbage would have been greater, the tops of them being remarkably bulky. They were weighed in the month of March; but had this been done at Christmas, as our author is of opinion that the difference would not have been so great; tho' he reckons this very circumstance of their continuing so long to afford a nourishing food, an instance of their excellence above almost every other vegetable whatever.

In the fourth volume of the same work, Sir Thomas Beevor gives an account of another experiment on five acres of turnip-rooted cabbage, four of which were eaten upon the field, the other was pulled up and carried to the stables and ox-hoards. They were down and cultivated as other turnips; the beasts were put to them on the 12th of April, and continued feeding upon them till the 11th of May. The cattle fed for this space of time were, 12 Scotch bullocks weighing 40 stone each; eight homebreds, two years old; fifteen cows full-sized; 40 sheep; 15 horses; besides 40 fowls hogs and pigs, which lived upon the broken pieces and offal without any other allowance for the whole four weeks. The whole produce of the plant, exclusive of the feeding of the pigs, amounted, according to our author's calculation, to L. 18: and he says that the farmers would willingly give this form in the spring for feeding as many cattle, 'because it enables them to save the young growing grass (which is so frequently injured)
injured by the tread of a cattle in the frosty nights) until it gets to such a length and thickness as to be afterwards but little affected by the farmer's drought. Besides this, the tops or leaves are in the spring much more abundant, and much better food than those of the common turnip, as already observed; and they continue in full perfection after all the common turnips are rooted up.

The disadvantages attending the cultivation of turnip-rooted cabbages are, that they require a great deal of time and pains to take them up out of the ground, if they are to be carried off the field; and if fed where they grow, it requires almost an equal labour to take up the pieces left by the cattle. A great deal of earth they are to liver of in man.

The sheep are to be carne after the middle of June, besides this, the tops of the latter is fo obviate up to the pieces left by the cattle. A great deal of earth they make provision for their cattle for about three or four months. Our author reckons rooted cabbages as late.

The draught and carried off the land, is a trend with more for want of some straw, which says he of the very cold weather we have had here, the frost of 1728 without the least injury, though it destroyed three-fourths of all the common turnips in the neighbourhood. On the 21st of April 1789, the average produce of an acre was found to be somewhat more than 244 tons, though the tops had not sprouted above three inches. Considering the preciuousness of turnips and other crops, Sir Thomas is decisively of opinion, that all farmers ought to have as many turnip-rooted cabbages as afford and secure them a full provision for their cattle for about three or four weeks during the latter part of the spring. This quantity he reckon sufficient, as the consumption, particularly when drawn and carried off the land, is attended with more trouble and expense than that of common turnips, especially if the soil be wet and heavy. In another letter, dated May 3, 1790, Sir Thomas Beever once more sets forth the advantages of having a crop of these vegetables during the spring season. In consequence (says he) of the very cold weather we have had here, the grass is but just springing; as the turnips are wholly eaten up, it occasions much dirt among the farmers for want of some green vegetable food for their sheep and cattle; whereas, by the assistance of my turnip-rooted cabbages, I have abundance of the best and most nutritive food that can be found them. He then proceeds to recommend their culture "for the support of almost all live stock for the three last weeks of April, or first week of May, when the grass shoots late."

In the 4th volume of the Transactions of the Society for encouraging Arts, Mr. Robinson, who received a premium for raising the greatest quantity of this plant, informs us, that the soil on which it grew was a flœb braʃs, inclining to sand, not worth more than 10s. per acre; the preparation the same as for turnips. The manure was a compost of earth and dung, which he finds to answer better than dung. The seed was sown about the beginning of April, the ground where it commonly uses an old poulture where the sheep-fold has been in the winter, after taking away the dung, and digging it very shallow; "as the roots of the young plants (says he) might soon reach the dung or falls, which must consequently be left, in order to force them out of the fly's way." These insects, our author observes, are extremely fond of the turnip-rooted cabbage; much more so, he believes, than of common turnips. About the middle of June they should be planted out upon one-bout ridges railed by a double plough made for the purpose. Seven thousand plants are sufficient for one acre; but if only six are used, the roots will be the larger.

To determine how many sheep might be kept upon an acre of turnip-rooted cabbage, our author shut up 300 sheep with their lambs upon a piece of poor pasture, of land of no great extent; the whole not exceeding ten acres. One ton was found sufficient for keeping them in sufficient health for a day. On giving them a larger piece of ground to run over, though it had been eat all winter and late in the spring; yet with this trifling allowance 15 tons of turnip-cabbage were made to serve 18 days; at the end of which the ewes and lambs were found very much improved, which could not have been expected from four acres of turnips in the month of April, the time that these sheep fed; the hardness they would have otherwise arrived at; though, after all, it was necessary to cut the roots in two before the sheep could eat them. When thus cut, the animals eat them greedily, and even preferred them to every other food. The roots continued good for at least a month after the common turnips were unfit for use: some of them weighed from eight to ten pounds, and a few of them more. Other trials have since been made; and it now appears that the plant will thrive very well with the ordinary culture of turnips in the open fields, and in the usual manner of sowing broad-cast. From a comparative trial made by the earl of Fife upon this root with some others, the quantities produced upon 100 square yards of ground were as follows:

<table>
<thead>
<tr>
<th></th>
<th>Stone</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common turnips</td>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>Turnip-rooted cabbage</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>Carrots</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>Root of Scarcity</td>
<td>77</td>
<td>0</td>
</tr>
</tbody>
</table>

The turnip-rooted cabbage was planted in lines 20 inches asunder; the common turnips sown broad-cast, and hand-weeded, so that they came up very thick, being not more than three or four inches asunder when full grown. Two cows were fed for six weeks with the turnips; two with the turnip-rooted cabbage, and two with the root of the common turnips; the one were fed ten weeks; the two fed with turnips gave most milk, and those with the root of scarcity the least. His lordship observes,
HUSBANDRY.

 Sect. IX. Swedish Turnip.

Swedish Turnip.

The rutabaga, or Swedish turnip, is a plant from which great expectations have been formed. It is said to be harder than the common turnip, and of greater sweetness and solidity. It also prefers its freshness and succulence till a very late period of its growth, even after it has produced feed; on account of which property it has been recommended to the notice of farmers as an excellent kind of succulent food for domestic animals in the spring of the year, when common turnips and most other winter crops have failed, and before grasses got up to furnish an abundant bite for feeding beasts. This peculiarity, so valuable, yet so singular as to have led many at first to doubt the fact, seems to be sufficiently ascertained by experiment. Dr J. Anderson,+ in particular informs us, that it "begins to send out its flower-items in the spring, nearly about the same time with the common turnip; but that the root, in consequence of that change of date, suffers very little alteration. I continued to use these turnips at my table every day till towards the middle of May; and had I never gone into the garden myself, I should not even then have suspected, from the taste or appearance of the bulb itself, that it had been sowed at all. The items, however, at the season I gave over using them, were from four to five feet high, and in full flower. I should have continued the experiment longer, had not the quantity I had left for that purpose been wholly insufficient for feed."

"This experiment, however, fully proves, that this kind of turnip may be employed as a succulent food for cattle till the middle of May at least, in an ordinary year; and I have not the smallest doubt but it will continue perfectly good for that purpose till the end of May in any season; at which time grasses and other spring-crops can easily be had for bringing beasts forward in flesh. I can therefore, without hesitation, recommend this plant to the farmer as a most valuable spring-feeding for cattle and sheep; and for this purpose, I think no wise farmer should be without a proportion of this kind of turnip to precede the other sorts after they fail. The profitable method of consuming it, where it is to be kept very late, is, I am convinced, to cut off the tops with a scythe or sickle when from one foot to eighteen inches high, to induce it to send out fresh items, that will continue soft and succulent to the end; whereas, without this process, the items would become gritty and inedible.

I cannot, however, recommend this kind of turnip, from what I have seen, as a general crop; because I think it probable, that, unlike in particular circumstances, the common field-turnips grow to a much larger size, and afford upon the whole a more weighty crop. These, therefore, should still continue to be cultivated for winter use, the other being reserved only for spring consumption.

Experiments are still wanting to ascertain with certainty the peculiar soil and culture that best agree with this plant; but from the few observations I have hitherto had an opportunity of making upon it, it seems to me probable, that it thrives better, and grows to a larger size on damp clayey soil, than on light sandy land. But I would not wish to be understood as here speaking positively; I merely throw it out as a hint for future observation: on spongy soil it prospers.

Though the uses of this as a garden plant are of much smaller consequence than those above-specified, it may not be improper to remark, that its leaves form a very sweet kind of greens at any time; and merely for the sake of the experiment, I caused some of these to be picked off the items of the plants coming to feed, on the 4th of June, the king's birth-day, which, on being realised, were found perfectly sweet, without the smallest tendency to bitterness, which must, if not all other kinds of greens that have been hitherto cultivated are known to acquire after their items are considerably advanced; no family, therefore, can ever be at a loss for greens when they have any of this plant in feed."

"A root of this kind of turnip was taken up this day (June 15th); the feed stalks were firm and woody, the pods full formed, and in some of them the seeds were nearly ripe. The root, however, was as soft and succulent as at any former period of its growth; nor was the skin, as I expected, hard or woody. It was made ready and brought to the table: some persons there thought the taste as good, if not better, than at any former period of its growth; but I myself, perhaps through prejudice, thought it had not quite so high a relish as in winter. At any rate, however, there can be no doubt, that if ever it could be necessary, it might, even now, be employed very properly as a feeding for cattle."

Sect. X. Turnip-Cabbage.

This plant is as yet but little known. The feed is said to have been brought from the Cape of Good Hope by Mr Haslings, where it is very common as well as in Holland. It has also had an existence in Britain for many years, though not generally known. It has a much greater affinity to the cabbage than to the turnip; and is very hardy, bearing the winter as well, if not better, than common brocoli, and may therefore be considered as a valuable acquisition to the kitchen-garden as well as for cattle. The best time for sowing it for the garden is the end of May or beginning of June, though none of the plants have ever been observed to run to feed though sown ever so early. Even though sown in August at the cauliflower season, the greater part found throughout the following summer, and did not feed till the second spring. The plants require nearly the same management with brocoli as to distance, transplanting, &c. and are usually most esteemed when young, and about the size of a moderate garden turnip; those sown in June will continue all winter. The bulb must be trimm'd clean of its thick fibrous rind; after which it may be used as a common turnip. The crown or sprout is very good, but especially in the spring, when they begin to run to feed. Mr Broughton, from whose account in the Bath Papers, vol. v. this article is taken, thinks that the turnip-cabbage is more nutritious than the common turnip. The largest bulb he measured was 23 inches circum-

+ The Betts, vol. iii. p. 497.
CABBAGE has been recommended by long experience as an excellent food for cattle; its use as part of human food is also well known. In a paper already quoted from those of the Bath Society, Scotch cabbages are compared, as to their utility in feeding cattle, with turnips, turnip-rooted cabbage, and carrots. In this trial the cabbages stand next in value to the carrots; and they are recommended as not liable to be affected by frosts, if they be of the true flat-topped firm kind. Fifty-four tons have been raised upon an acre of ground not worth more than 12 shillings. There is likewise an advantage attending the feeding of cattle with cabbages, viz.: that their dung is more in proportion than when fed with turnips or with hay; the former going off more by urine, and the latter having too little moisture. They also impoverish the ground much less than grain. Mr Billingley accounts 46 tons per acre a greater crop than he ever read of; but Mr Vagg, in the 4th volume of Bath Papers, gives an account of a crock for which he received a premium from the Society, which was much superior to that of Mr Billingley. Its extent was 12 acres; the produce of the worst was 42, and of the best 68 tons. They were manured with a compost of lime, weeds, and earth, that lay under the hedges round the field, and a layer of dung, all mixed and turned together. About 25 cart-loads of this were spread upon an acre with the usual ploughing given to a common fummer-fallow; but this, he says, "admitting such a crop to exhaust the manure in some degree by its growth, an ample restoration will be made by its refuse ploughed in, and by the stirring and cleaning of the ground. The whole expense of an acre, exclusive of the rent, according to Mr Vagg's calculation, amounts to L. 1:1:14:1, only four shillings of feed being requisite for an acre. The 12 acres, producing as above mentioned, would feed 45 oxen, and upwards of 60 sheep, for three months; improving them as much as the grass in the best months of the year, May, June, and July. He recommends sowing the feed about the middle of August, and transplanting the young cabbages where they may be sheltered from the frost; and to the neglect of this he ascribes the partial failure, or at least inferiority of one part of his ground in the crop just mentioned, the young plants not being removed till near midsummer, and then in so dry a time, that they were almost scorched up.

In the Farmer's Magazine, vol. ii. p. 217. we have several pertinent remarks upon the culture of this useful plant, particularly with regard to watering. "It is a rule (says this correspondent) never to water the plants, let the season be as dry as it may; insisting that it is entirely useless. If the land is in fine tillage and well dunged, this may be right, as the expense must be considerable; but it is probable, in very dry seasons, when the new set plants have nothing but a burning fun on them, that watering would save vast numbers, and might very well answer the expense, if applied near, and the work done with a water-cart."

Let us notice also of another use of cabbages, which has not met with the attention it merits, viz.: the planting of lands where turnips have failed. A late town crop, of these seldom turns to any account; but cabbages planted on the ground without any ploughing would prove very beneficial for sheep late in the spring, and in all probability (unless on light, sandy, or lime-flaked soils) of greater value than the turnips had they succeeded.

Mr Marshall observes, that in the Midland district, a valuable fort of large green cabbage is propagated, if not raised, by Mr Bakewell, who is not more celebrated for his breed of rams than for his breed of cabbages. Great care is observed here in raising the feed, being careful to suffer no other variety of the brassica tribe to blow near feed-cabbages; by which means they are kept true to their kind. To this end, it is said, some plant them in a piece of wheat; a good method, provided the feed in that situation can be preserved from birds.

The advantage of having large cabbages is, that of distance at being able to plant them wide enough from each other, which they to admit of their being cleaned with the plough, and yet ought to afford a full crop. The proper distance depends in some measure on the natural size of the species and the strength of the soil; the thinner they stand, the larger they will grow; but our author is of opinion, that cabbages, as well as turnips, are frequently set out too thin. Four feet by two and an half, according to Mr Marshall, are a full distance for large cabbages on a rich soil.

Sect. XII. Peafnipt.

These, though little used in Britain, are highly esteemed in France and some of our neighbouring islands as food for cattle. In Brittany particularly, they are thought to be little inferior in this respect to wheat; and cows fed with them are said to give as much milk, and of as good quality, as in the summer. It is also very much commended for swine which rear young pigs, and for fattening the swine themselves. The author of this paper also recommends a method of determining the nutritive qualities of plants by the quantity of manure they contain; which may be known by boiling them in water, and then evaporating the decoction: the parsnip, he supposes, would yield a greater quantity of mucilage than either carrots or potatoes.

"To cultivate this root (says Mr Hazard) fo as to make it advantageous to the farmer, it will be right to sow the feed in the autumn immediately after it is ripe; by which means the plants will appear early the following spring, and get strong before the weeds can rise to injure them. Neither the seeds nor young plants are ever materially injured by frosts, on which account, as well as many others, the autumn is preferable to the spring sowing. The beet-foil for them is a rich deep loam, and next to this sand. They will thrive well in a black gritty soil, but not in stone-braith, gravel, or clay; and they are always largest in the deepest earth. If the soil be proper, they do not require much manure. Mr Hazard obtained a very good
Sect. XII.

HUSBANDRY.

Parfips. a good crop for three years upon the same piece of ground without altering any; but when he laid on about 40 cart loads of food per acre upon a stiff loam, and ploughed it in, he found it answer very well; whence he concludes, that a mixture of foils may be proper for this root. The feed may be sown in drills at about 18 inches distance from one another, that the plants may be the more conveniently hand or horse-hoed; and they will be more luxuriant if they undergo a second hoing, and are carefully earthed, so as not to cover the leaves. Such as have not ground to spare, or cannot get it in proper condition in autumn, may at that time sow a plot in their garden, and transplant from thence in the latter end of April, or early in the month of May following. The plants must be carefully drawn, and the ground well pulverified by harrowing and rolling; after which a furrow should be opened with the plough about six or eight inches deep, in which the plants should be regularly laid at the distance of about ten inches from each other, taking care not to let the root be bent, but for the plant to stand perpendicular after the earth is closed about it, which ought to be done immediately by means of persons who should for this purpose follow the planter with a hoe. Another furrow must be opened about 18 inches from the former, in the same direction, and planted as before; and so on in like manner until all the plants are deposited, or the field be completely cropped: and when the weeds appear, hoing will be necessary, and it will afterwards be proper to earth them; but if the leaves of the plants be covered with earth, the roots will be injured. Parfips ought not to be planted by dibbling, as the ground thus becomes so bound, as seldom to admit the small lateral fibres with which these roots abound to fix in the earth, by which they are prevented from expanding themselves, and never attain a proper size. When circumstancs are properly attended to, there is little doubt that a crop of parfips would answer much better than a crop of carrots.

They are equal if not superior, in fattening pigs, as they make their flesh white, and the animals themselves are more fond of these roots than of carrots. Horses eat them greedily when clean washed and sliced among bran, and thrive very well upon them; and black cattle are said likewife to approve of them.

The foregoing are the principal vegetables which have at least been recommended, or which experience has determined to be proper, to be raised as food for men or for cattle.

One or two other plants may be just noticed, which have lately fallen under the observation of those who study themselves to the study of husbandry, viz. the root of parfips, and what are called mowing cabbages. Of the Concerning the latter, no experiment has yet been mowing made to determine sufficiently their properties and use. They are mentioned in the Bath Papers by Sir John Beevor, who had a small parcel of seed sent him; which he sowed in spring, and several plants were produced. Some of those were cut down three times, and grew into heads again so speedily, "that (says he) I had not to take care to have attended to them, I should not have been able to get the cutting when one had been repeated; but as there is never on my farm any want of fresh vegetable food for cattle in the summer, unless I can find them continue to vegetate in like manner during the winter (which mine have not done) or very early in the spring, I think they will not prove to me, or any one under the like circumstances, an object of much value.—As to the root of parfips, we have no Root of thing to add to what has been said on it under AGRICULTURE, n° 52. Notwithstanding a great number of experiments, it still appears uncertain whether it be possible with the root of perippe to make a profit to the consumer, having within a few years risen from three guineas to fix and fix an half, and the lowest price being five guineas per ton; and even this is lower than it was lately. Hence some individuals have been induced to try the effect of linseed itself boiled to a jelly, and mixed with flour, bran, or chaff with good success; as Mr Marshall, has been informed; and even the oil itself has been tried for the same purpose in Herefordshire. Though this plant is in universal culture over the whole kingdom, yet it appears by the vast quantity imported, that, in too little ground is employed in that way. As Mr Mar. Culture of shall takes notice of its culture only in the county of in Yorkshire, it probably does not make any great part of the husbandry of the other counties of which he treats; and even in Yorkshire, he tells us, that its cultivation is confined to a few districts. The kind cultivated there is that called "blea line," or the blue or lead-coloured flax, and this requires a rich dry soil for its cultivation. A deep, fat, sandy loam is perhaps the only soil on which it can be cultivated with advantage. If sown upon old corn-land, it ought to be well cleaned from weeds, and rendered perfectly friable by a summer-fallow. Manure is seldom or ever set on for a line crop; and the soil proceeds confoids generally of a single plowing. The feed-time is the mouth of May, but much depends on the state of the soil at the time of sowing. "It should neither be wet nor dry; and, the surface ought to be made as fine as that of a garden bed. Not a clod of the size of an egg should re-
Mr. Bartley near Bath, gives an account of the expenses and produce of five acres of flax cultivated on a rich loamy land. The total expense was 421. 13s. 4d.; the produce was 10 packs of flax at 51. 5s. value 52l. 10s. 35 buhles of linseed at 5 s. value 8l. 1s. 5s. the net profit therefore was 11s. 8d. or 4 l. 13s. 4d. per acre.

This gentleman is of opinion that flax-growers ought to make it their staple article, and consider the other parts of their farm as in subervency to it.

In the 2d volume of Bath-Papers, Mr. Bartley near Bath, gives an account somewhat different from that of Mr. Marshall. Instead of exhausting crops, he maintains that they are both ameliorating crops; if cut without feeding; and as the best crops of both are raised from foreign seed, he is of opinion that there is little occasion for raising it in Britain. A crop of hemp, he informs us, prepares the land for flax, and is therefore clear gain to the farmer. "That these plants impoverish the soil," he repeats, "is a mere vulgar notion, devoid of all truth.—The best historical relations, and the verbal accounts of flax and hemp planters, concur in declaring it to be a vain prejudice, unsupported by any authority; and that these crops really mollerate and improve the soil." He is like-"wife of opinion, that the growth of hemp and flax is hemp may not necessarily confined to rich soils, but that they may be cultivated with profit also upon poor sandy ground, if a little expense be laid out in manuring it." Spalding Moor in Lincolnshire is a barren land; and yet, with proper care and culture it produces the best hemp in England, and in large quantities. In the Isle of Atholl, in the county, equal quantities are procured; for the culture and management of it is the principal employ of the inhabitants; and, according to Leland, it was so in the reign of Henry VIII. In Marthland the soil is a clay or strong warp, thrown up by the river Ouze, and of such a quality, that it cracks with the heat of the sun, till a hand may be put into the chinks; yet it if be once covered with the hemp or flax before the heat comes on, the ground will not crack that summer. When the land is sandy, they first sow it with barley, and the following spring they manure the flax with horse or cow dung, and plough it under. Then they plant their hemp or flax, and harrow it in with a light harrow, having short teeth. A good crop destroys all the weeds, and makes it a fine fallow for flax in the spring. As soon as the flax is pulled, they prepare the ground for wheat. Lime, marl, and the mud of ponds, is an excellent compost for hemp-lands."

Our author takes notice of the vast quantity of flax and hemp imported into Britain; and complaints that it is not sufficient to meet the demand of the country. He observes, that the greater part of those rich marshy lands lying to the west of Mendip hills are very proper for the cultivation of hemp and flax; and if laid out in this manner could not fail of turning out highly advantageous both to the landholders and the public at large. "The vast quantities of hemp and flax (says he) which have been raised on lands of the same kind in Lincolnshire marshes, and the fens of the Isle of Ely and Huntingdonshire, are a full proof of the truth of my assertion. Many hundreds of acres in the above mentioned places, which, for pasturage or grazing, were not
not worth more than 20 or 25 shillings per acre, have been readily let at 41. The first year, 31. the second, and 21. the third. The reason of this supposed declining value of land, in proportion to the number of years fown with flax, is, that it is usual with them to feed it for the purpose of making oil, that being the principal cause of the land being impoverished.

Sect. II. Rape or Cole Seed.

This, as well as linseed, is cultivated for the purpose of making oil, and will grow almost any where. Mr. Hazard informs us, that in the north of England the farmers pare and burn their pasture lands, and then sow them with rape after one ploughing; the crop commonly standing for seed, which will bring from 251. to 301. per latch (80 bushels.) Poor clay, or horn-braff land, will frequently produce from 12 to 16 or 18 bushels per acre, and almost any fresh or virgin earth will yield one plentiful crop; so that many in the northern counties have been raised, by cultivating this seed, from poverty to the greatest affluence. The seed is ripe in July or the beginning of August; and the threshing of it out is conducted with the greatest mirth and jollity.

Thetrape being fully ripe, is first cut with sickles, and then laid thin upon the ground to dry; and when in proper condition for threshing, the neighbours are invited, who readily contribute to its sufficiency. The threshing is performed on a large cloth in the middle of the field, and the feed put into sacks and carried home. It does not admit of being carried from the field in order to be threshed at home, and therefore the operation is always performed in the field; and by the number of assistants procured on this occasion, a field of 20 acres is frequently threshed out in one day. The straw is burnt for the sake of its alkali, the ashes being said to equal the best kind of those imported from abroad.

The proper time of sowing rape is the month of June; and the land should, previous to the sowing, be twice well ploughed. About two pounds of seed are sufficient for an acre; and, according to our author, it should be cast upon the ground with only the thumb and two fore fingers; for if it be cast with all the fingers, it will come up in patches. If the plants come up too thick, a pair of light harrows should be drawn along the field length-ways and cross-ways; by which means the plants will be equally thinned; and when the plants which the harrows have pulled up are withered, the ground should be rolled. A few days after the plants may be set out with ahoe, allowing 16 or 18 inches distance betwixt every two plants.

Mr. Hazard strongly recommends the transplanting of rape, having experienced the good effects of it himself. A rood of ground, fown in June, will produce as many plants as are sufficient for 10 acres, which may be planted out upon ground that has previously borne a crop of wheat, provided the wheat be harvested by the middle of August. One ploughing will be sufficient for these plants; the beet of which should be selected from the seed-plot, and planted in rows two feet asunder and 16 inches apart in the rows. A rape is an excellent food for sheep, they may be allowed to feed upon it in the spring; or the leaves might be gathered, and given to oxen or young cattle: fresh leaves would sprout again from the same stalks, which in like manner might be fed off by ewes and lambs in time enough to plough the land for a crop of barley and oats. Planting rape in the beginning of July, however, would be most advantageous for the crop itself, as the leaves might then be fed off in the autumn, and new ones would appear in the spring. Our author disapproves the practice of sowing rape with turnips, as the crops injure one another. "Those who look for an immediate profit (says he), will undoubtedly cultivate rape for seed; but perhaps it may answer better in the end to feed it with sheep: the fat ones might pull it over first, and afterwards the lean or store-sheep might follow them, and be folded thereon: if this is done in autumn feaon, the land will be in good heart to carry a crop of wheat; or where the rape is fed off in the spring, a crop of barley might follow. In either case rape is profitable to the cultivator; and when it is planted and well earthed round the plants, it will endure the severest winter; but the same cannot be advanced in favour of that which is sown broadcast.

Sect. III. Coriander Seed.

This is used in large quantities by distillers, druggists and confectioners, and might be a considerable object to such farmers as live in the neighbourhood of great towns; but the price is very variable, viz. from 15s. to 42s. per cwt. In the 4th volume of Bath Papers, Mr. Bartley gives an account of an experiment made on this seed which proved very successful. Ten perches of good sandy loam were sown with coriander on the 23d of March 1783. Three pounds of seed were sufficient for this spot; and the whole expense amounted only to 5s. 10d. The produce was 67 pounds of seed, which valued at 36. yielded a profit of 15s. 11d. or 151. 18s. 4d. per acre. He afterwards made several experiments on a larger scale; but none of the crops turned out so well though all of them afforded a good profit.

Sect. IV. Canary Seed.

This is cultivated in large quantity in the Isle of Thanet, where it is said they have frequently 20 bushels to an acre. Mr. Bartley, in the month of March 1783, sowed half an acre of ground, the soil a mixture of loam and clay, but had only eight bushels and an half, or 17 bushels per acre. With this produce, however, he had a profit of 4l. 25. 36 per acre.

Sect. V. Woad.

The use of this in dyeing is well known, and the consumption is so great, that the raising of the plant might undoubtedly be an object to the husbandman, provided he could get it properly manufactured for the dyers, and could overcome their prejudices. At present, the growing of this plant is in a manner monopolized by some people in particular places, particularly at Keyham near Bristol in England. Mr. Bartley Woodcafe informs us, that in a conversation he had with these cultivators, the latter asserted, that the growth of woad was peculiar to their soil and situation. The soil about this place is a blackish heavy mould, with a consider-
able proportion of clay; but works freely: that of Brillington, where Mr Bartley resides, an hazel, sandy loam; nevertheless, having sowed half an acre of this soil with wood-feed, it throve so well, that he never saw a better crop at Keynham. Having no apparatus, however, or knowledge of the manufacture, he suffered it to run to seed, learning only from the experiment, that wood is very easily cultivated, and that the only difficulty is the preparing it for the market.

Sect. VI. Hops.

Mr Arthur Young, in a fortnight's tour through Kent and Essex, informs us† that at Castle Hedingham he was told by a Mr Rogers, who had a considerable hop-plantation, that four acres of hop-ground cost him upwards of 120l. and that the usual expenses of laying out an acre of ground in this way amounted to 3s. 6d. By a calculation of the expenses of an acre in Kent, it appeared that the money sunk to plant an acre there amounted to 3s. 6d.; that the annual expense was 23l. and the profit no more than 1s. 8s. 1d. In another place, he was informed by a Mr Potter, who cultivated great quantities of hops, that if it were not for some extraordinary crops which occurred now and then, nobody would plant them. In Essex, the expenses of an hop-plantation are still greater than those we have yet mentioned; an acre many years ago requiring 75l. to lay it out on hops, and now not less than 100l. the annual expense being estimated at 31l. 1s. while the produce commonly does not exceed 23l.

In the neighbourhood of Stow-market in this county, Mr Young informs us, there are about 200 acres planted with hops, but "18 or 20 are grubbed up within two years, owing to the badness of the times." Here they are planted on a black loofe moor, very wet and boggy; and more wet the better for the crop, especially if the gravel which constitutes the bottom, be not more than three feet from the surface. In preparing the ground for hops, it is formed into beds 16 feet wide, separated from each other by trenches. In these beds they make holes six feet寻der, and about 12 inches diameter, three rows upon a bed. Into each hole they put about half a peck of very rotten dung or rich compost; scatter earth upon it, and plant seven jets in each; drawing earth enough to them afterwards to form something of an hillock. A hop garden, Mr Young informs us, "will last almost for ever, by renewing the hills that fall, to the amount of about a score annually; but it is reckoned better to grub up and new-plant it every 20 or 25 years."

In this volume of the annals, Mr Young informs us, that "one profit of hop-land is that of breaking it up. Mr Potter grubbed up one garden, which falling, he ploughed and sowed barley, the crop great; then mazzag beans, two acres of which produced 16 quarters and five bushels. He then sowed it with breaking wheat, which produced 13 quarters and four bushels up hop-land precocious, but since that time the crops have not been greater than common. The same gentleman has had 70 quarters of oats after wheat." In the ninth volume of the same work, however, we have an account of an experiment by Mr Le Blant of Sitting-bourn in Kent, of grubbing up 12 acres of hop-ground which was not attended with any remarkable successes. Part of the hops were grubbed up in the year 1781, and mazzag beans sown in their stead; but by reason of the seed being bad, and the dry summer, the crop turned out very indifferent. Next year the remainder of the hops were grubbed up, and the whole 12 acres sown with wheat; but still the crop turned out very bad, owing to the hot summer of that year. It was next planted with potatoes, which turned out well; and ever since that time the crops have been good. This gentleman informs us, the person who had the hop-ground abovementioned did not lose less by it than 1500l.

The culture of hops seems to be confined in a great part of the southern counties of England; for Mr hops in Norfolk he faws a "tolerably large hop garden." The proprietor informed him, that three or four years before there had been 10 acres of hops, and that the crop was so great the first two years that he sold the seed at 2s.; but the crop there was not above five; and the culture was daily declining, as the crops, owing to the low price of the commodity, did not defray the expense. From all this it appears, that hops are perhaps the most certain and precarious crop on which the husbandman can bellow his labour. Mr Young is of opinion, that some improvement in the culture is necessary; but he does not mention any, excepting that of planting them in epaliers. This method was recommended both by Mr Rogers and Mr Potter abovementioned. The former took the hint from observing, that a plant which had been blown down, and afterwards shot out horizontally, always produced a greater quantity than those which grew upright. He also remarks, that hops which are late picked carry more next year than such as are picked earlier; for which reason he recommends the late picking. The only reason for picking early is, that the hops appear much more beautiful than the others.

Sect. VII. Cultivation of Fruit.

In Herefordshire and Gloucestershire the cultivation of fruit for the purpose of making a liquor from the juice, forms a principal part of their husbandry. In Devonshire also considerable quantities of this kind of liquor are made, though much less than in the two counties abovementioned.

The fruits cultivated in Herefordshire and Gloucestershire are, the apple, the pear, and the cherry. From the twofrith are made the liquors named cider and percy; but though it is probable that a liquor of some value might be made from cherries also, it does not appear...
Part II.

HUSBANDRY.

Cultivation of fruit.

Varieties of fruits entirely artificial.

Varieties cannot be made permanent.

The apple-tree, which, with many varieties, is like wise pretty common. The varieties of these fruits are entirely artificial, being produced not by seed, but by a certain mode of culture; whence it is the business of those who wish to improve fruit, to catch at superior accidental varieties; and having raised them by cultivation to the highest perfection of which they are capable, to keep them in that state by artificial propagation. Mr Marshall, however, observes, that it is impossible to make varieties of fruit altogether permanent, though their duration depends much upon management. "A time arrives (sa he) when they can no longer be propagated with success. All the old fruits which raised the fame of the liquorists of this country are now lost, or to far on the decline as to be deemed irrecoverable. The celebrated Sir-Apple is going off; and the Square-pear, which has probably furnished this country with more champagne than was ever imported into it, can no longer be got to flourish; the stocks canker, and are unproductive. In Yorkshire similar circumstances have taken place; several old fruits which were productive within my own recollection are lost; the stocks canker, and the trees would no longer come to bear."

Our author controverts the common notion among orchardists, that the decline of the old fruits is owing to a want of fresh grafts from abroad, particularly from Normandy, from whence it is supposed that apples were originally imported into this country. Mr Marshall, however, thinks, that the original kinds have been long since lost, and that the numerous varieties of which we are now possessed were raised from seed in this country. He also informs us, that at Lediury he was shown a Normandy apple-tree, which, with many others of the same kind, had been imported immediately from France. He found it, however, to be no other than the Better-fancied, which had been given up, as a neglected wildling in an English hedge.

The process of raising new varieties of apples, according to Mr Marshall, is simple and easy. "Elcect (says he) among the native species individuals of the highest flavour; sow the seeds on a highly enriched seed-bed. When new varieties, or the improvement of old ones, are the objects, it may perhaps be eligible to use a frame or srove; but where the preservation of the ordinary varieties only is wanted, an ordinary loamy soil will be sufficient. At any rate, it ought to be perfectly clean at least from root weeds, and should be double dug from a foot to 18 inches deep.—The surface being levelled and raked fine, the seeds ought to be scattered on about an inch asunder, and covered about half an inch deep with some of the finest mould previously raked off the bed for that purpose. During summer the young plants should be kept perfectly free from weeds, and may be taken up for transplantation the ensuing winter; or if not very thick in this seedbed, they may remain in it till the second winter."

The nursery ground ought also to be enriched, and double dug to the depth of 14 inches at least; though 18 or 20 are preferable. The seedling plants ought to be cuttled agreeably to the strength of their roots, that they may rise evenly together. The top or downright roots should be taken off, and the longer side rootlets shortened. The young trees should then be planted in rows three feet asunder, and from 15 to 18 inches distant in the rows; taking care not to cramp the roots, but to lead them evenly and horizontally among the mould. If they be intended merely for flocks to be grafted, they may remain in this situation until they be large enough to be transplanted; though, in this management, they ought to be re-transplanted two years before their being transferred into the orchard, "in fresh but unmanured double-dug ground, a quinque-cunx four feet apart every way." In this second transplantation, as well as in the first, the branches of the root ought not to be left too long, but to be shortened in such a manner as to induce them to form a globular root, sufficiently small to be removed with the plant; yet sufficiently large to give it firmness and vigour in the plantation.

The process of raising new varieties of apples, according to Mr Marshall, is simple and easy. "Select (says he) among the native species individuals of the highest flavour; sow the seeds on a highly enriched seed-bed. When new varieties, or the improvement of old ones, are the objects, it may perhaps be eligible to use a frame or srove; but where the preservation of the ordinary varieties only is wanted, an ordinary loamy soil will be sufficient. At any rate, it ought to be perfectly clean at least from root weeds, and should be double dug from a foot to 18 inches deep.—The surface being levelled and raked fine, the seeds ought to be scattered on about an inch asunder, and covered about half an inch deep with some of the finest mould previously raked off the bed for that purpose. During summer the young plants should be kept perfectly free from weeds, and may be taken up for transplantation the ensuing winter; or if not very thick in this seedbed, they may remain in it till the second winter."

The nursery ground ought also to be enriched, and double dug to the depth of 14 inches at least; though 18 or 20 are preferable. The seedling plants ought to be cuttled agreeably to the strength of their roots, that they may rise evenly together. The top or downright roots should be taken off, and the longer side rootlets shortened. The young trees should then be planted in rows three feet asunder, and from 15 to 18 inches distant in the rows; taking care not to cramp the roots, but to lead them evenly and horizontally among the mould. If they be intended merely for flocks to be grafted, they may remain in this situation until they be large enough to be transplanted; though, in this management, they ought to be re-transplanted two years before their being transferred into the orchard, "in fresh but unmanured double-dug ground, a quinque-cunx four feet apart every way." In this second transplantation, as well as in the first, the branches of the root ought not to be left too long, but to be shortened in such a manner as to induce them to form a globular root, sufficiently small to be removed with the plant; yet sufficiently large to give it firmness and vigour in the plantation.

The process of raising new varieties of apples, according to Mr Marshall, is simple and easy. "Select (says he) among the native species individuals of the highest flavour; sow the seeds on a highly enriched seed-bed. When new varieties, or the improvement of old ones, are the objects, it may perhaps be eligible to use a frame or srove; but where the preservation of the ordinary varieties only is wanted, an ordinary loamy soil will be sufficient. At any rate, it ought to be perfectly clean at least from root weeds, and should be double dug from a foot to 18 inches deep.—The surface being levelled and raked fine, the seeds ought to be scattered on about an inch asunder, and covered about half an inch deep with some of the finest mould previously raked off the bed for that purpose. During summer the young plants should be kept perfectly free from weeds, and may be taken up for transplantation the ensuing winter; or if not very thick in this seedbed, they may remain in it till the second winter."

The nursery ground ought also to be enriched, and double dug to the depth of 14 inches at least; though 18 or 20 are preferable. The seedling plants ought to be cuttled agreeably to the strength of their roots, that they may rise evenly together. The top or downright roots should be taken off, and the longer side rootlets shortened. The young trees should then be planted in rows three feet asunder, and from 15 to 18 inches distant in the rows; taking care not to cramp the roots, but to lead them evenly and horizontally among the mould. If they be intended merely for flocks to be grafted, they may remain in this situation until they be large enough to be transplanted; though, in this management, they ought to be re-transplanted two years before their being transferred into the orchard, "in fresh but unmanured double-dug ground, a quinque-cunx four feet apart every way." In this second transplantation, as well as in the first, the branches of the root ought not to be left too long, but to be shortened in such a manner as to induce them to form a globular root, sufficiently small to be removed with the plant; yet sufficiently large to give it firmness and vigour in the plantation.

The process of raising new varieties of apples, according to Mr Marshall, is simple and easy. "Select (says he) among the native species individuals of the highest flavour; sow the seeds on a highly enriched seed-bed. When new varieties, or the improvement of old ones, are the objects, it may perhaps be eligible to use a frame or srove; but where the preservation of the ordinary varieties only is wanted, an ordinary loamy soil will be sufficient. At any rate, it ought to be perfectly clean at least from root weeds, and should be double dug from a foot to 18 inches deep.—The surface being levelled and raked fine, the seeds ought to be scattered on about an inch asunder, and covered about half an inch deep with some of the finest mould previously raked off the bed for that purpose. During summer the young plants should be kept perfectly free from weeds, and may be taken up for transplantation the ensuing winter; or if not very thick in this seedbed, they may remain in it till the second winter."

The nursery ground ought also to be enriched, and double dug to the depth of 14 inches at least; though 18 or 20 are preferable. The seedling plants ought to be cuttled agreeably to the strength of their roots, that they may rise evenly together. The top or downright roots should be taken off, and the longer side rootlets shortened. The young trees should then be planted in rows three feet asunder, and from 15 to 18 inches distant in the rows; taking care not to cramp the roots, but to lead them evenly and horizontally among the mould. If they be intended merely for flocks to be grafted, they may remain in this situation until they be large enough to be transplanted; though, in this management, they ought to be re-transplanted two years before their being transferred into the orchard, "in fresh but unmanured double-dug ground, a quinque-cunx four feet apart every way." In this second transplantation, as well as in the first, the branches of the root ought not to be left too long, but to be shortened in such a manner as to induce them to form a globular root, sufficiently small to be removed with the plant; yet sufficiently large to give it firmness and vigour in the plantation.

The process of raising new varieties of apples, according to Mr Marshall, is simple and easy. "Select (says he) among the native species individuals of the highest flavour; sow the seeds on a highly enriched seed-bed. When new varieties, or the improvement of old ones, are the objects, it may perhaps be eligible to use a frame or srove; but where the preservation of the ordinary varieties only is wanted, an ordinary loamy soil will be sufficient. At any rate, it ought to be perfectly clean at least from root weeds, and should be double dug from a foot to 18 inches deep.—The surface being levelled and raked fine, the seeds ought to be scattered on about an inch asunder, and covered about half an inch deep with some of the finest mould previously raked off the bed for that purpose. During summer the young plants should be kept perfectly free from weeds, and may be taken up for transplantation the ensuing winter; or if not very thick in this seedbed, they may remain in it till the second winter."

The nursery ground ought also to be enriched, and double dug to the depth of 14 inches at least; though 18 or 20 are preferable. The seedling plants ought to be cuttled agreeably to the strength of their roots, that they may rise evenly together. The top or downright roots should be taken off, and the longer side rootlets shortened. The young trees should then be planted in rows three feet asunder, and from 15 to 18 inches distant in the rows; taking care not to cramp the roots, but to lead them evenly and horizontally among the mould. If they be intended merely for flocks to be grafted, they may remain in this situation until they be large enough to be transplanted; though, in this management, they ought to be re-transplanted two years before their being transferred into the orchard, "in fresh but unmanured double-dug ground, a quinque-cunx four feet apart every way." In this second transplantation, as well as in the first, the branches of the root ought not to be left too long, but to be shortened in such a manner as to induce them to form a globular root, sufficiently small to be removed with the plant; yet sufficiently large to give it firmness and vigour in the plantation.
planted too near bad neighbours: "Remove them (says he) to a situation where they are not exposed to this inconvenience, and they will immediately recover their former excellency." This theory, however, is not supported by a single experiment.

In this volume also Mr. Richard Samuel expresses his concern at the 'present neglect of orchards, where the old trees are decaying, without proper provision being made for the success of the young'. He attributes the former excellency of the fruit to the care taken to propagate the better trees, and that care should be particularly attended to. If it snow double, the weaker of the contending branches should be taken off; but if the leader be lost, and not easily recoverable, the plant should be cut down to within a hand's breadth of the soil, and a fresh stem trained. The undermost shoots should be taken off by degrees, going over the plants every winter; but taking care to preserve heads of sufficient magnitude not to draw the stems up too tall, which would make them feckle in the lower part. The stems in Herefordshire are trained to six feet high; but our author prefers seven, or even half a rod in height. A tall stemmed tree is much less injurious to what grows below it than a low headed one, which is itself in danger of being hurt, at the same time that it hurts the crop under it. The thickness of the stem ought to be in proportion to its height; for while the stem is long in the nursery than a low one. The usual size at which they are planted out in Herefordshire is from four to six inches girt at three feet high; which size, with proper management, they will reach in seven or eight years. The price of these stocks in Herefordshire is 18d. each. Our author met with one instance of crab-stocks being gathered in the woods with a good prospect of success.

In Herefordshire it is common to have the ground of the orchards in tillage, and in Gloucestershire in grass; which Mr. Marshall supposes to be owing to the difference between the soil of the two counties: that of Herefordshire being generally arable, and Gloucester grass land. Trees, however, are very destructive not only to a crop of corn, but to clover and turnips; though tillage is favourable to fruit-trees in general, especially when young. In grass grounds their progress is comparatively slow, for want of the earth being shirked about them, and being injured by the cattle, especially when low-headed and drooping. After they begin to bear, cattle ought by all means to be kept away from them, as they not only destroy all the fruit within their reach, but the fruit itself is dangerous to the cattle, being apt to stick in their throats and choke them. These inconveniences may be avoided, by cutting the fruit grounds bare before the gathering season, and keeping the houghs out of the way of the cattle: but Mr. Marshall is of opinion, that it is wrong to plant orchards in grass land. 'Let them (says he) lay their old orchards to grass; and if they plant, break up their young orchards to arable. This will be changing the course of husbandry, and be at once beneficial to the land and the trees.'

1. A Redundancy of wood is prejudicial, by reason of Excess of the barren branches depriving those which bear fruit of the nourishment which ought to belong to them. A multitude of branches also give the winds such an additional power over the tree, that it is in perpetual danger of being overthrown by them: trees are likewise thus injured by the damp and want of circulation of air, so that only the outer branches are capable of bringing fruit to maturity. "It is no uncommon sight (says he) to see trees in this district, with two or three tiers of boughs pressing down hard upon one another, with their twigs so intimately interwoven, that even when the leaves are off, a small bird can scarcely creep in among them.

2. The mistletoe in this country is a great enemy to Mistletoe apple-tree. It is easily pulled out with hooks in frothy weather, when, being brittle, it readily breaks off from the branches. It likewise may be applied to a profitable purpose, being the most of its as of ivy.

3. Mols can only be got the better of by industry Mols. in clearing the trees of it; and in Kent there are people who make it their profession to do.

4. Spring frosts, especially when they suddenly succeed rain, are great enemies to fruit-trees; dry frosts only keep back the blossoms for some time, and give no further assistance in this case than to keep the trees in a healthy and vigorous state, so as to enable them to throw out a strength of bud and blossom; and by keeping them thin of wood, to give them an opportunity of dying quickly before the frosts return.

5. Blight is a term, as applied to fruit-trees, which Mr. Marshall thinks is not understood. Two bearing uncertain years he remarks, seldom come together; and he is of term, opinion, that it is the mere exhausting of the trees by the quantity of fruit which they have carried one year, that prevents them from bearing any the next. The only thing therefore that can be done in this case is, to keep the trees in as healthy and vigorous a state as possible.

6. Insects destroy not only the blossoms and leaves, but some of them also the fruit, especially pears. In the year 1753 much fruit was destroyed by wasps. Destroying Mr. Marshall advises to set a price upon the female wasps, in the spring; by which these mischiefous insects would perhaps be exterminated, or at least greatly lessened.

7. An excess of fruit flints the growth of young trees, and renders all in general barren for two or three years; while in many cases the branches are broken fruit.
Sect. VIII.

Husbandry.

Timber-trees.

off by the weight of the fruit; and in one case Mr. Marshall mentions, that an entire tree had sunk under its burthen. To prevent as much as possible the bad effects of an excess of fruit, Mr. Marshall recommends "to graft in the boughs," and when fully grown, to thin the bearing branches; thus, endeavoring like the gardeners, to grow fruit every year.

Though it is impossible to prevent the effects of old age, yet by proper management the natural life of fruit trees may be considerably protracted. The most eligible method is to graft stocks of the native crab in the boughs. The decline of the tree is preceded by a gradual decline of fruitfulness, which long takes place before the tree manifests any sign of decay. During this decline of fruitfulness, there is a certain period when the produce of a tree will no longer pay for the ground it occupies, and beyond this period it ought by no means to be allowed to stand. In the Vale of Gloucester, however, our author saw an instance of some healthy bearing apple-trees, which then had the second tops to the same stems. The former tops having been worn out, were cut off, and the stumps refurbished. Our author observes, that the pear-tree is much longer lived than the apple, and ought never to be planted in the same ground. He concludes with the following general observation: "Thus considering fruit-trees as a crop in husbandry, the general management appears to be this: Plant upon a recently broken-up worn out fward. Keep the soil under a state of arable management, until the trees be well grown; then lay it down to grass, and let it remain in fward until the trees be removed, and their roots decayed; when it will again require a course of arable management."

Sect. VIII. Of Timber-Trees.

The importance and value of these is so well known, that it is superfluous to say anything on that subject at present: notwithstanding this acknowledged value, however, the growth of timber is so slow, and the returns for planting so distant, that it is generally suppos'd for a long time to be a positive loss, or at least to be attended with no profit. This matter, however, when properly considered, will appear in another light. There are four distinct species of woodlands: viz. woods, timber-groves, coppices, and woody waf tes. The woods are a collection of timber-trees and underwood; the timber-groves contain timber-trees without any underwood; and the coppices are collections of underwood alone. All these turn out to advantage sooner or later, according to the quick or slow growth of the trees, and the situation of the place with respect to certain local advantages. Thus in four places underwood of great confluence, as for rails, hoops, stakes, fuel, &c. and by reason of the quickness of its growth it may be counted the most profitable of all plantations. An offer-bed will yield a return of profit in the second or third year, and a coppice in 15 or 20 years; while a plantation of oaks will not arrive at perfection in less than a century. This last period is so long, that it may not unreasonably be supposed likely to deter people for making such plantations of this kind, as few are willing to take any trouble for what they are never to see in perfection. It must be remembered, however, that though the trees themselves do not come to perfection in a shorter time, the value of the ground will always increase in proportion to their age. Thus, says one author upon this subject, if we have some gentleman now living, who during his lifetime has made plantations which in all probability will be worth to his son as much as his whole estate, handsomely as it is. Supposing that those plantations have been made 600 or 60 years, and that in the course of 20 or 30 more they will be worth L. 50,000; may we not say, that at present they are worth some 20,000l. or 30,000l. ? Mr. Pavier, in the 4th volume of Bath Papers, computes the value of 50 acres of oak timber in 100 years to be L. 12,100, which is near 50s. annually per acre; and if we consider that this is continually accumulating without any of that expense or risk to which annual crops are subjected, it is probable that timber-planting may be accounted one of the most profitable articles in husbandry. Evelyn calculates the profit of 1000 acres of oak-land in 150 years, at no less than L. 670,000; but this is most probably an exaggeration. At any rate, however, it would be improper to occupy, especially with timber of such slow growth, the grounds which either in grafts or corn can repay the trouble of cultivation with a good annual crop.

In the 4th volume of the Bath Papers, Mr. Wagstaffe recommends planting as an auxiliary to cultivatio- n. He brings an instance of the success of Sir Wili. Jerringham, who, made trial of the most unpro- fpective ground perhaps that any successful planter has hitherto attempted. His method was to plant beech-trees at proper distances among Scotch firs, upon otherwise barren heaths. "These trees (says Mr. Wagstaffe), in a fior perhaps without clay or loam, with the heathy fod trench'd into its broken frata of sand or gravel, under the protection of the firs, have laid hold, though slowly, of the soil; and accelerated by the superior growth of the firs, have proportionally riven, until they wanted an enlargement of fpace for growth when the firs were cut down." He next proceeds to observe, that when the firs are felled, their roots decay in the ground; and thus furnish by that decay a new fupport to the foil on which the beeches grow; by which means the latter receive an additional vigour, as well as an enlargement of space and freer air; the firs themselves, though cut down before they arrived at their full growth, being also applicable to many valuable purpoifes.

In the 6th volume of the Annals of Agriculture, we find the culture of trees recommended by Mr. Harries: and it informs us, that the larch is the quickest grow- er and the most valuable of all the reinous timber- trees; but unless there be pretty good room allowed for the branches to stretch out on the lower part of the trunk, it will not arrive at any considerable size; and this observation, he says, holds good of all pyramidal trees. Scotch firs may be planted between them, and pulled out after they begin to obstruct the growth of the larch. Some of these larchs he had been plant- ed about 30 years before, which at five feet distance from the ground measured from four feet to five feet six inches in circumference. The molt barren grounds, he says, would answer for thefe trees; but better foil is required for the oaks. In this paper he takes no-
Husbandry.

Part II.

Timber-trees.

164

Increase of

oak-trees

In 1765, and the calculation made on the 15th of August, an average one inch in circumference. "A tree four feet round (says he), that has timber 20 feet in length, gains by this growth a solid foot of timber annually, worth one hilling at least, and pays 5 per cent. for banding. It increases more as the tree gets from five to six feet round. I have a reasonable hope to infer from my inquiry, that I have in my groves 3000 oaks that pay me one hilling each per annum, or L. 150 a year. My poplars have gained in circumference near two inches, and a Worcester and witch elm as much. I have lately been informed, that the smooth cut of a holly-tree, that measures 20 inches and upwards round, is worth to the cabinet-makers 2s. and 6d. per foot.

The following table shows the increase of trees in the Marquis of Landfowlle's plantation begun in the year 1765, and the calculation made on the 15th of July 1786. It is about six acres in extent, the soil partly a swampy meadow upon a gravelly bottom. The measures were taken at five feet above the surface of the ground; the small trees having been occasionally drawn for poles and rails, as well as rafters for cottages; and when peeled oft the bark, will stand well for seven years.

<table>
<thead>
<tr>
<th>Tree Type</th>
<th>Height in Feet</th>
<th>Circumference in Feet. Inch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lombardy poplar</td>
<td>60 to 80</td>
<td>4</td>
</tr>
<tr>
<td>Arbeal</td>
<td>50 to 70</td>
<td>4</td>
</tr>
<tr>
<td>Plane</td>
<td>50 to 60</td>
<td>3</td>
</tr>
<tr>
<td>Acacia</td>
<td>50 to 60</td>
<td>2</td>
</tr>
<tr>
<td>Elm</td>
<td>40 to 60</td>
<td>3</td>
</tr>
<tr>
<td>Chefsot</td>
<td>30 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Weymouth pines</td>
<td>30 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Cloffer ditto</td>
<td>30 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Scotch fir</td>
<td>30 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Spruce ditto</td>
<td>30 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Larch</td>
<td>30 to 60</td>
<td>3</td>
</tr>
</tbody>
</table>

From this table it appears, that planting of timber-trees, where the return can be waited for during the space of 20 years, will undoubtedly repay the original profits of planting, as well as the interest of the money laid out; which is the better worth the attention of a proprietor of land, that the ground on which they grow may be supposed good for very little else. From a comparative table of the growth of oak, ash, and elm timber, given in the 11th volume of the Annals of Agriculture, it appears that the oak is by much the slowest grower of the three.

With respect to the growth of under-wood, which is of great value in some cases, it is to be remarked, that in order to have an annual fall of it, the whole quantity of ground, whatever its extent may be, ought to be divided into annual sowings. The exact number of sowings must be regulated by the uses to which it is intended to be put. Thus if, as in Surrey, stakes, elders, and hoops are saleable, there ought to be eight or ten annual sowings; or if, as in Kent, hoppoles are demanded, 14 or 15 will be required; and if, as in Yorkshire, rails be wanted, or, as in Gloucesthshire, cordwood be most marketable, 18 or 20 sowings will be necessary to produce a succession of annual falls. Thus the business by being divided, will be rendered less burthenome: a certain proportion being every year to be done, a regular set of hands will, in proper season, be employed; and by beginning upon a small scale, the errors of the first year will be corrected in the practice of the second, and those of the second in that of the third. The produce of the intervals will fall into regular course; and when the whole is completed, the falls will follow each other in regular succession. The greatest objection to this method of fowing woodlands is the extraordinary trouble in fencing; but this objection does not hold if the sowings lie at a distance from one another; on the contrary, if they lie together, or in plots, the entire plot may be inclosed at once; and if it contain a number of sowings, some subdivisions will be necessary, and the annual sowings of these subdivisions may be fenced off with hurdles, or some other temporary contrivance; but if the adjoining land be kept under the plough, little temporary fencing will be necessary. It must be observed, however, that in raising a woodland from seeds, it is not only necessary to defend the young plants against cattle and sheep, but against hares and rabbits also: so that a close fence of some kind is absolutely necessary. See the articles Fence and Hedge.

With regard to the preparation of the ground for raising timber, it may be observed, that if the soil be of a stiff clayey nature, it should receive a whole year's fallow as for wheat; if light, a crop of turnips may be taken; but at all events it must be made perfectly clean before the trees be fown, particularly from perennial root weeds; as, after the seeds are sown, the opportunity of performing this necessary business is in a great measure lost. If the situation be moist, the soil should be gathered into wide lands, sufficiently round to let the water run off from the surface, but not high. The time of sowing is either the month of October or March; and the method as follows: "The method of land being in circorder, and the season favourable, the sowing whole should be sowen with corn, or pulse adapted to the seasion of sowing; if in autumn, wheat or rye may be the crop; but if in spring, beans or oats. Which ever of these three species be adopted, the quantity of seed ought to be less than usual, in order to give a free admimion of air, and prevent the crop from lodging. The sowing of the grain being completed, that of the tree-seeds must be immediately set about. These are to be put in drills across the land: as corn and nuts should be dibbled in, but keys and berries scattered in trenches or drills drawn with the corner of a hoe, in the manner that gardeners sow their peas. The distance might be the quarter of a statute rod, or four feet and one inch and an half. A land chain should be used in setting out the drills, as not being liable to be lengthened or shortened by the weather. It is readily divided into rods: and the quarters may be easily marked.

The species of under-wood to be sowen must be determined by the concomit of it in the neighbourhood of the plantation. Thus, if fakes, hoops, &c. be in request, the oak, hazel, and ash, are esteemed as under-wood. Where charcoal is wanted for iron forgges, beech is the prevailing underwood. The oak, box,
Husbandry.

Timber-trees.

Box, beech, &c. are all in request in different countries, and the choice must be determined by the prevailing demand. As the keys of the ash sometimes lie two or even three years in the ground, it will be proper to have the places where they are sown distinguished by some particular marks, to prevent them from being disturbed by the plough after harvest; as a few beans scattered along with them, if the crop be oats; or oats, if the crop be beans. The crop should be reap'd, not mown, at harvest time, and be carried off as fast as possible. Between harvest and winter, a pair of furrows should be laid back to back in the middle of each interval, for meliorating the next year's crop, and laying the feeding plants dry; while the pliable of the unploughed ground on each side of the drills will keep them warm during the winter. The next year's crop may be potatoes, cabbages, turnips, or if the soil be fertile. Between this may be wheat drilled. In the spring with which are free from weeds, the feedling plants dry; while the tops of the plants begin to interfere.

The crops may be continued for several years; and if they only pay for the expenses, they will still be of considerable advantage by keeping the ground sirrered, and preferring the plants from hares and rabbits. Even after the crops are discontinued, the ground ought still to be sirrered, alternately throwing the mould to the roots of the plants, and gathering it into a ridge in the middle of the interval. The best method of doing this is to split the ground at the approach of winter in order to throw it up to the trees on both sides; this will preserve the roots from frost: gather it again in the spring, which, will check the weeds, and give a fresh supply of air: split again at mid-summer, to preserve the plants from drought: gather, if necessary, in autumn, and split as before at the approach of winter. The spring and mid-summer ploughings should be continued as long as a plough can pass between the plants.

Whenever the oaks intended for timber are in danger of being drawn up too tender for their height, it will be necessary to cut off all the rest at the height of about an handbreadth above the ground; and those designed to stand must now be planted at about two rods distant from each other, and as nearly a quincunx as possible. The second cutting must be determined by the demand there is for the underwood; with only this proviso; that the timber stands be not too much crowded by it: for rather than this should be the case, the coppice should be cut, though the wood may not have reached its most profitable state. What is here said of the method of rearing oak-trees in woods, is in a great measure applicable to that of raising other trees in timber-groves. The species most usually raised in these are the ash, elm, beech, larch, spruce fir, Weymouth pine, poplar, willow, alder, chestnut, walnut, and cherry. The three last are used as substitutes for the oak and beech, and these two for the mahogany.

Part III. Of the Cattle proper to be employed in Farm-Work; Rearing and Managing of them. Of Hogs, Poultry, &c. Management of Bees. Of the Dairy. Of Manures.

Sect. I. Of the Cattle proper to be employed.

As great part of the flock of an husbandman must always consist of cattle, and one of his principal expenses in the maintenance of them, this part of his business is certainly to be looked upon as one of the most important of the whole. The cattle belonging to a farm may be divided into two classes, viz. such as are intended for work, and such as are designed for sale. The former are now principally horses, the oxen formerly employed being fallen into disuse, though it does not yet certainly appear that the reasons for the exchange are satisfactory. In the second volume of Bath Papers, we have an account of a comparative experiment of the utility of horses and oxen in husbandry by Mr. Kedington near Bury in Suffolk, in which the preference is decisively given to oxen. He informs us, that at the time he begu the experiment (in 1779), he was almost certain that there was not an ox worked in the whole county; finding, however, the expense of horses very great, he purchased a single pair of oxen, but found much difficulty in breaking them, as the workmen were too much prejudiced against them, that they would not take the proper pains. At last he met with a labourer who undertook the task; and the oxen "soon became as tractable and as handy, both at ploughing and carting, as any horses." On this he determined to part with all his cart horses; and by the time he wrote his letter, which was in 1781, he had not a single horse, nor any more than six oxen; which inconsiderable number performed with ease all the work of his farm (consisting of upwards of 100 acres of arable land and 60 of pasture and wood), besides the fatigue duty on the highways, timber and corn, carting, harrowing, rolling, and every part of rural business. They are constantly shod; their harness is the same as that of horses (excepting the necessary alterations for difference of size and shape); they are driven with bridles and bits in their mouths, answering to the same words of the ploughman and carter as horses will do. A single man holds the plough, and drives a pair of oxen with reins: and our author informs us, that they will plough an acre of ground in less than eight hours time; he is of opinion that they would do it in seven. The intervals of a small plantation, in which the trees are set in rows ten feet asunder, are ploughed by a single ox with a light plough, and he is driven by the man who holds it. The oxen go in a cart either single, or one, two, or three, according to the load. Four oxen will draw 80 bushels of barley or oats in a wagon with ease; and if good
Cattle, being employed.

Reasons for preferring oxen to horses.

1. They are kept at much less expense, never eating meal or corn of any kind. In winter they are fed with straw, turnips, carrots, or cabbages; or instead of the three life, they have each a peck of bran per day while kept constantly at work. In the spring they eat hay; and if working harder than usual in seed-time, they have bran besides. When the vetches are fit for mowing, they get them only in the stable. After the day’s work in summer they have a small bundle of hay, and stand in the stable till they cool; after which they are turned into the pasture. Our author is of opinion, that an ox may be maintained in condition, for the same constant work as a horse, for at least 41 lbs annually.

2. A horse is seven years old, his value declines every year; and when lame, blind, or very old, he is scarce worth anything; but an ox, in any of these situations, may be fattened, and sold for even more than the first purchase; and will always be fat sooner after work than before.

3. Oxen are less liable to diseases than horses.

4. Horses are frequently liable to be spoiled by servants riding them without their master’s knowledge, which is not the case with oxen.

5. A general use of oxen would make beef plentiful, and consequently all other meat; which would be a national benefit.

Mr. Kedington concludes his paper with acknowledging, that there is one inconvenience attending the use of oxen, viz. that it is difficult to shoe them; tho’ even this, he thinks, is owing rather to the underskilledness of the smiths who have not been accustomed to shoe these animals, than to any real difficulty. He confines them in a pound while the operation is performing.

Mr. Marshall, in his Rural Economy of the Midland counties, shows the advantage of employing oxen in preference to horses from the mere article of expence, which, according to his calculation, is enormous on the part of the horses. He begins with estimating the number of square miles contained in the kingdom of England; and this he supposes to be 30,000 of cultivated ground. Supposing the work of husbandry to be done by horses only, and each square mile to employ 20 horses, which is about 3 to 100 acres, the whole number used throughout Britain would be 600,000; from which deducting one fifth for the number of oxen employed at present, the number of horses just now employed will be 500,000. Admitting that each horse works ten years, the number of farm-horses which die annually are no fewer than 50,000; each of which requires full four years keep before he is fit for work. Horses indeed are broke in at three, some at two, years old, but they are, or ought to be, indulged in keep and work till they are fix; so that the cost of rearing and keeping may be laid at full four ordinary years. For all this consumption of vegetable produce he returns not the community a single article of food, clothing, or commerce; even his skin for economical purposes being barely worth the taking off. By working horses in the affairs of husbandry, therefore, “the community is losing annually the amount of 200,000 years keep of a growing horse,” which at cattle to be the low estimate of five pounds a-year, amounts to a million annually. On the contrary, supposing the business of husbandry to be done solely by cattle, and admitting that oxen may be fattened with the same expenditure of vegetable produce as that which old horses require to fit them for full work, and that instead of 50,000 horses dying, 50,000 oxen, of no more than 52 lbs each, are annually slaughtered; it is evident, that a quantity of beef nearly equal to what the city of London consumes would be annually brought into the market; or, in other words, 100,000 additional inhabitants might be supplied with one pound of animal food a-day each; and this without confuming one additional blade of grass.

“I am far from expecting (says Mr. Marshall), that cattle will, in a short space of time, become the universal beasts of draft in husbandry; nor will I contend, that under the present circumstances of the island they ought in strict propriety to be used. But I know that cattle, under proper management, and kept to a proper age, are equal to every work of husbandry, in most if not in all situations: And I am certain, that a much greater proportion than there is at present might be worked with considerable advantage, not to the community only, but to the owners and occupiers of lands. If only one of the 500,000 carcases now lost annually to the community could be reclaimed, the saving would be an object.”

In Norfolk our author informs us that horses are the only beasts of labour; and that there is not perhaps one ox worked throughout the whole county. It is the fame in the Vale of Gloucester, though oxen are used in the adjoining counties. Formerly some oxen were worked in it double; but they were found to poach the land too much, and were therefore given up. Even when worked single, the same objection is made; but, says Mr. Marshall, “in this I suspect there is a spice of obliquity in the old way; a want of a due portion of the spirit of improvement; a kind of indolence. It might not perhaps be too severe to fay of the Vale farmers, that they would rather be eaten up by their horses than step out of the beaten track to avoid them.” Shoeing oxen with whole shoes, in our author’s opinion, might remedy the evil complained of; but “if not, let those (says he) who are advocates for oxen calculate the comparative difference in wear and keep, and those who are their enemies estimate the comparative mischief of trading; and thus decide upon their value as beasts of labour in the Vale.”

In the Cotswold oxen are worked as well as horses; but the latter, our author fears, are fill in the proportion of two to one; he has the satisfaction to find, however, that the former are coming into more general use. They are worked in harness; the collar and harness being used as for horses, not reversed; as in most cafes they are for oxen. “They appear (says our author) to be perfectly handy, and work, either at plough or cart, in a manner which shows, that although horses may be in some cafes convenient, and in most cafes pleasurable to the drivers, they are by no means necessary to husbandry. A convenience used in this country is a moveable harness-box, with a wedge bottom, which is drawn from place to place as occasion may require. This no labour is lost either by the oxen or their drivers.”
Cattle to be employed.

Why the use of oxen is declining in Yorkshire.

In Yorkshire oxen are still used, though in much fewer numbers than formerly; but our author does not imagine this to be any decisive argument against their utility. The Yorkshire plough was formerly of such an unwieldy construction, that four or six oxen, in yokes, led by two horses, were absolutely requisite to draw it; but the improvements in the construction of the plough have of late been so great, that two horses are found to be sufficient for the purpose; so that as Yorkshire has all along been famous for its breed of horses, we are not to wonder at the present dilute of oxen. Even in carriages they are now much disdained; but Mr Marshall affirms as a reason for this, that the roads were formerly deep in winter, and soft to the hoof in summer; but now they are universally a cause-way of hard limestone, which hurts the feet of oxen even when shod. Thus it even appears matter of surprise to our author that so many oxen are employed in this county; and the employment of them at all is to him a convincing argument of their utility as beasts of draught. The timber carriers still continue to use them, even though their employment be solely upon the road. They find them not only able to stand working every day provided their feet do not fail them, but to bear long hours better than horses going in the same pature. An ox in a good pature soon fills his belly, and lies down to rest; but a horse can scarce satisfy his hunger in a short summer's night. Oxen are also considered as much superior at a difficult pull to horses; but this he is willing to suppose arises from their using half-bred hunters in Yorkshire, and not the true breed of cart-horses. "But what (says he) are thorough-bred cart-horses? Why, a species of strong, heavy, stouthearted animals, adapted solely to the purpose of draught; and according to the present law of the country, cannot, without an annual expense, which nobody bestows upon them, be used for any other purpose. This species of beasts of draught cost at four years old from 201. to 301.; they will, with extravagant keep, extraordinary care and attendance, and much good luck, continue to labour eight or ten years; and may then generally be sold for five fillings a-head. If we had no other species of animals adapted to the purposes of draught in the island, oxen would be very valuable, they being much superior to the breed of faddle-horses for the purpose of draught. But it appears evident, that were only a small share of the attention paid to the breeding of draught oxen which is now bestowed on the breeding of cart-horses, animals equally powerful, more active, less coldly, equally adapted to the purposes of husbandry if harnessed with equal judgment, less expensive in keep and attendance, much more durable, and infinitely more valuable after they have finished their labours, might be produced. A finer, like a colt, ought to be familiarized to harness at two or three years old, but should never be subjected to hard labour until he be five years old; from which age, until he be 15 or perhaps 20, he may be considered as in his prime as a beast of draught. An ox which I worked several years in Surrey, might at 17 or 18 years of age have challenged for strength, agility and sagacity, the best bred cart-horse in the kingdom."

Sect. II. Of different Kinds of Horses, and the Methods of Breeding, Rearing, and Feeding them.

The midland counties of England have for some time been celebrated on account of their breed of the black cart-horse; though Mr Marshall is of opinion that this kind are unprofitable as beasts of draught in husbandry. The present improvement in the breed took its rise from six Zealand mares sent over by the late Lord Chesterfield during his embassy at the Hague. These mares being lodged at his lordship's seat at B-- by Derbyshire, the breed of horses thus became improved in that county, and for some time it took the lead for the species of these animals. As the improved breed passed into Leicestershire, however, through some unknown circumstances, it became still more improved, and Leicesteer has for some timetaken the lead. It is now found, however, that the very large horses formerly bred in this district are much less useful than such as are of a smaller size. Mr Marshall describes in magnificent terms one of the largest horses, which, he says, was the handsomest horse he ever saw. "He was (says he) the fancied war-horse of the German painters; who, in the luxuriance of imagination, never perhaps excelled the natural grandeur of this horse. A man of moderate fortune seemed to shrink behind his fore end, which rode to perfectly upright, his ears road (as Mr Bakewell says every horse's ears ought to stand) perpendicularly over his fore feet. It may be said, with little latitude, that in grandeur and symmetry of form, viewed as a picturesque object, he exceeded as far the horse which this superior breeder had the honour of showing to his Majesty, and which was afterwards shown publicly at London, as that horse does the meanest of the breed." A more useful horse, bred also by Mr Bakewell, however, is described as having "a thick carcase, his back short and straight, and his legs short and clean; as strong as an ox, yet active as a poney; equally suitable for a cart or a light carriage."

The fillions in this county are bred either by farmers or by persons whose business it is to breed them, and who therefore have the name of breeders. These last either cover with them themselves, or let them out to others for the feason, or tell them altogether to fillion men who travel about with them to different places. The prices given for them are from 50 to Prices of 200 guineas by purchase; from 40 to 80 or a hundred by the season; or from half a guinea to two guineas by the mare. The mares are mostly kept by the farmers, and are worked until near the times of sealing, and moderately afterwards while they saddle: the best time for sealing is supposed to be the month of March or April; and the time of weaning that of November. The price of foals (says Mr Marshall), for the first ten years, has been from five to ten pounds or guineas; for yearlings, 10 to 15 or 20; for two-year-olds, 15 to 25 or 30; for three-year-olds, from 25 to 40 guineas." Our author acknowledges that this breed of horses, considered abstractly in the light in which they appear here, is evidently a profitable species of live stock, and as far as there is a market for six-year-old horses of this breed, it is profitable to agriculture.

(4) Mr Bakewell distinguishes all his horses, bulls, and rams, by the letters of the alphabet.
HUSBANDRY. Part III.

Different kinds of horses.

But (says he) viewing the business of agriculture in general, not one occupier in ten can partake of the profit; and being kept in agriculture after they have reached that profitable age, they become indisputably one of its heaviest burdens. For besides a cessation of improvement of four or five guineas a year, a decline in value of as much yearly takes place. Even the brood-mares, after they have passed that age, may, unless they be of a very superior quality, be deemed unprofitable to the farmer.

Our author complains that the ancient breed of Norfolk horses is almost entirely worn out. They were small, brown muzzled, and light-boned; but they could endure very heavy work with little food; two of them were found quite equal to the plough in the fell of that county, which is not deep. The present breed is produced by a cross with the large one of Lincolnshire and Leicestershire already mentioned. He approves of the Suffolk breed, which (he says) are a "half-horse half-sow race of animals, but better adapted to the Norfolk husbandry than the Suffolk and Leicestershire breed; their principal fault, is in their presence, a flappiness of the ribs.—In the Vale of Gloucester most farmers rear their own plough-horses, breeding of horses not being practised. They are of a very useful kind, the colour mostly black, inclinable to tan colour, short and thick in the barrel, and low on their legs. The price of a six-year-old horse from 3s. to 3s. Some cart-horses are bred in Cotswold hills; the mares are worked till the time of foaling, when young, they lose their beauty being almost entirely worn out. Mr Marshall supposes that from five to ten thousand horses are annually bred between the eastern Morelands and the Humber.

"Thirty years ago (says Mr Marshall), strong fiddle-horses, fit for the road only, were bred in the Vale; but now the prevailing breed is the fashionable coach-horse, or a tall, strong, and over-sized hunter; and the shows of stallions in 1787 were flat and fiddleless in comparison with those of 1782." The black cart-horse, an object of Mr Marshall's peculiar aversion, is also coming into the Vale.

In the breeding of horses he complains greatly of the negligence of the Yorkshire people, the mares being almost totally neglected; though in the brute creation almost every thing depends upon the female. With regard to the general maintenance of horses, we have already mentioned in this article, and that of agriculture, several kinds of food upon which experiments have been made with a view to determine the most profitable mode of keeping them. Perhaps, however, the most certain method of ascertaining this matter is by observing the practice of those counties where horses are most in use. Mr Marshall recommends the Norfolk management of horses as the cheapest method of feeding them practiced any where; which, however, he seems willing to ascribe in a great measure to the excellence of their breed. In the winter months, when little work is to be done, their only rack-meal is barley-flour: a reserve of clover-hay being usually made against the hurry of feed-time. A bushel of corn in the most busy season is computed to be an ample allowance for each horse, and in more leisure times a much less quantity suffices. Oats and sometimes barley, when the latter is cheap and unfeasable, are given; but in this case the barley is generally malted, i.e. steeped and afterwards spread abroad for a few days, until it begin to vegetate, at which time it is given to the horses, when it is supposed to be less heating than in its natural state. Chaff is universally mixed with horse-corn: the great quantities of corn grown in this country afford in general a sufficiency of natural chaff; so that cut chaff is not much in use: the chaff, or rather the awns of barley, which in some places are thrown as useless to the dung-hill, are here in good esteem as provender. Oat-chaff is deservedly considered as being of much inferior quality.—It may be here remarked, that this method of keeping horses theol which Mr Marshall approves of in the Norfolk farmers, is practised, and probably has been so from time immemorial, in many places of the north of Scotland; as in Scotland and is found abundantly sufficient to enable them to go through the labour required. In summer they are in Norfolk kept out all night, generally in clover leys, and in summer their keep is generally clover only, a few tares excepted.

In the fourth volume of the Annals of Agriculture, Mr Young gives an account of the expense of keeping the horses; which, notwithstanding the small numbers of horses kept in the island, seems still to be very indeterminate, as the informations he received varied so little than from L. 8 to L. 25 a-year. From accounts kept on his own farm of the expense of horses kept for no other purpose than that of agriculture, he estimated them as follows:

<table>
<thead>
<tr>
<th>Horses</th>
<th>L.</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1763</td>
<td>10</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>1764</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>1765</td>
<td>14</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1766</td>
<td>12</td>
<td>18</td>
<td>9</td>
</tr>
</tbody>
</table>

Average on the whole L. 11:12:3.

By accounts received from Northwills in Herefordshire, the expences stood as follows:

<table>
<thead>
<tr>
<th>Horses</th>
<th>L.</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1768</td>
<td>20</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1769</td>
<td>15</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>1770</td>
<td>14</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>1771</td>
<td>15</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>1772</td>
<td>18</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1773</td>
<td>15</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>1774</td>
<td>14</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1775</td>
<td>19</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1776</td>
<td>16</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

Average L. 16:12:1.

On these discordant accounts Mr Young observes, undoubtedly with justice, that many of the extra expences depend on the extravagance of the servants; while some of the apparent savings depend either on their carelessness, or feeding provender to their beasts privately.
HUSBANDRY.

As the milk of cows is always an article of great importance, it becomes an object to the husbandman, if possible, to prevent the waste of that useful fluid, which in the common way of rearing, is unpredicable.

A method of bringing these young animals at less expense is proposed by the Duke of Northumberland. His plan is to make skimmed milk answer the purpose of that which is newly drawn from the teat; and which, he supposes, might answer the purpose at one third of the expense of new milk. The articles to be added to the skimmed milk are treacle and the common linseed oil cake ground very fine, and almost to an impalpable powder, the quantities of each being so small, that to make 32 gallons would cost only 6d. besides the skimmed milk. It mixes very readily and almost intimately with the milk, making it more rich and mucilaginous, without giving it any disagreeable taste. The receipt for making it is as follows.

Take one gallon of skimmed milk, and to about a pint of it add half an ounce of treacle, stirring it until it is well mixed; then take one ounce of linseed oil cake finely pulverized, and with the hand let it fall gradually in very small quantities into the milk, stirring it in the mean time with a spoon or ladle until it be thoroughly incorporated; then let the mixture be put into the other part of the milk, and the whole be made nearly as warm as new milk when it is first taken from the cow, and in that state it is fit for use. The quantity of the oil cake powder may be increased from time to time as occasion requires, and as the calf becomes inured to its flavour. On this subject Mr Young remarks, that in rearing calves, there are two Mr Young's objects of great importance. 1. To bring them up without any milk at all; and 2. To make skimmed milk answer the purpose of such as is newly milked or sucked from the cow.

In consequence of premiums offered by the London Society, many attempts have been made to accomplish these desirable purposes; and Mr Bodel of Wansborough in Surry was rewarded for an account of his method. This was no other than to give the creatures a gruel made of ground barley and oats. Mr Young, however, who tried this method with two calves, affures us that both of them died, though he afterwards put them upon milk when they were found not to thrive. When in Ireland he had an opportunity of purchasing calves at three days old from 20d. to 3s. each; by which he was induced to repeat the experiment many times over. This he did in different ways, having collected various receipts.

In consequence of these he tried hay-tea, bean-meal mixed with wheat-flour, barley and oats ground finely, but not exactly in Mr Bodel's method; but the principal one was flux-feed boiled into a jelly, and mixed with warm water; this being recommended more than all the rest. The result of all these trials was, that out of 30 calves only three or four were reared: these few were brought up with barley and oatmeal, and a very small quantity of flux-feed jelly; one only excepted, which at the desire of his coachman was brought up on a mixture of two-thirds of skimmed milk and one third of water, with a small addition of flux jelly well dissolved.

The second object, viz. that of improving skimmed milk, according to the plan of the Duke of Northumberland, seems to be the more practicable of the two Mr
Rearing calves in Cornwall.

Mr. Young informs us, that it has answered well with him for two seasons; and two farmers to whom he communicated it gave likewise a favourable report.

In the third volume of the same work, we are informed that the Cornwall farmers use the following method in rearing their calves. "They are taken from the cow from the fourth to the sixth day; after which they have raw milk from six to ten or 14 days. After this they feed them with fedled skimmed milk and gruel made of shelled oats, from three quarts to four being given in the morning, and the same in the evening. The common family broth is thought to be as good or better than the gruel, the favour of the falt being sufficed for to strengthen their bowels. The proportion of gruel or broth is about one third of the milk given them. A little hay is fet before them, which they soon begin to eat."

In the fifth volume of Bath Papers, we have an account by Mr. Crook of a remarkably successfull experiment on rearing calves without any milk at all. This gentleman, in 1787, weaned 17 calves; in 1788, 23; and in 1789, 15. In 1787, he bought three sacks of linseed, value £ 2. 5s. which lafted the whole three years. One quart of it was put to fix quarts of water; which, by boiling 10 minutes, was reduced to a jelly: the calves were fed with this mixed with a small quantity of tea, made by steeping the leaves of the tea-tree and becoming surprisingly vigorous. The method of feeding hogs with the dufter-potato and carrots; by which it appeared, that the profit on large hogs was much greater than on small ones; the latter eating almost as much as the former, without yielding a proportionable increase of flesh. The gain was computed by weighing the large and small ones alive; and it was found, that from November 10th to January 5th, they had gained in the following proportion:

20 large hogs, - - - L. 1 3 6
20 small, - - - 0 7 8
2 flag hogs, - - - 1 1 7 8

On being killed with peace, however, it appeared, that there was not any real profit at last; for the accounts stood ultimately as follow:

Dr. Value of hogs at putting up, L. 44 2 0
33 comb peas. - - - 23 2 0
2 do. 2 bushels barley, at 14s. - - - 1 5 0
36 days attendance of one man, at 14d. - - - 3 5 4
56 bushels of carrots, and 598 of potatoes, at 2d. per buhel, - - - 22 15 8.

L. 95 0 0

In some experiments by Mr. Young, related in the same volume, he succeeded still worse; not being able to clear his expences. His first experiment was attended with a loss of one guinea per hog; the second, with a loss of £118. 8d; the third, of only 3s. In these three the hogs were fed with peace; given whole in the two first, but ground into meal in the last. The fourth experiment, in which the hog was fed with Jerusalem artichokes, was attended with no loss; but another, in which peas were again tried, was attended with a loss of 4s. Other experiments were tried with peas, which turning out likewise unfavourable, barley was tried ground along with peas and beans. This was attended with a small profit, counting nothing for the trouble of feeding the animals. The expences on two hogs were L. 14: 15: 16, the value L. 15, 118.
Sect. V. Sheep, § 135. 3d. so that there was a balance in his favour of 17s. 4d. In another experiment, in which the hogs were fed with pease and barley ground, the beans being omitted as useless, there was a profit of 12s. 3d. upon an expense of L. 20 : 15 : 9; which our author supposes was paid the attendance. In this experiment the pease and barley meal were mixed into a liquid like cream, and allowed to remain in that state for three weeks, till it became four. This was attended in two other instances with profit, and in a third with loss: however, Mr Young is of opinion, that the practice will still be found advantageous on account of the quantity of dung raised; and that the farmer can thus use his pease and barley at home without carrying them away.

Mr Marshall remarks, that in the Midland district, oats are preferred to barley as a food both for young pigs and breeding sows. It is also supposed that young pigs require warm meat to make them grow quickly. Barley-meal and potatoes are used in fattening them; beans and pease being generally divided. In this district it is common to keep two or three pigs in the fly along with the old hogs to be fattened. This is done that there may be no waste; as the young pigs look out the trough clean when the old ones are served. Mr Marshall observes, that in a confined place the old ones are apt to "lord it too much over the little ones;" for which reason he would have a separate apartment affixed to them, with a door so small the large swine should not be able to get intro it.

Sect. V. Sheep. See the article Pastorage.

Sect. VI. Rabbits.

In particular situations these animals may be kept to advantage, as they multiply exceedingly, and require no trouble in bringing up. A considerable number of them are kept in Norfolk, where many parts, containing barren hills or heaths, are proper for their reception. They delight in the sides of sandy hills, which are generally unproductive when tilled; but level ground is improper for them. Mr Marshall is of opinion, that there are few sandy or other loose-foiled hills which would not pay better in rabbit warrens than any thing else. "The hide of a bullock (says he) is not worth more than tenth of its carcase; the skin of a sheep may, in full wool, be worth from a sixth to a tenth of its carcase; but the fur of a rabbit is worth twice the whole value of the carcase; therefore supposing a rabbit to consume a quantity of food in proportion to its carcase, it is, on the principle offered a species of flock nearly three times as valuable as either cattle or sheep. Rabbit warrens ought to be inoculated with a stone or sod wall; and at their first flocking, it will be necessary to form burrows to them until they have time to make them to themselves. Boring the ground horizontally with a large auger is perhaps the best method that can be practised. Eagles, kites, and other birds of prey, as well as cats, weasels and pole-cats, are great enemies of rabbits. The Norfolk warreners catch the birds by traps placed on the tops of stumps of trees or artificial hillocks of a conical form, on which they naturally alight. —Traps also seem to be the only method of getting rid of the other enemies; though thus the rabbits themselves are in danger of being caught.

Sect. VII. Poultry. Though these make a part of every husbandman's flock, the keeping of great numbers of them will never be found attended with any advantage; as it is certain they never will pay for the grain necessary to sustain them, if that grain must be bought. On a farm, therefore, they are only useful to pick up what would otherwise be wasted; and even thus we can only count them profitable at certain times of the year; and their number must always be regulated by the fize of the farm.

In Norfolk a great number of turkeys are bred, of a size and quality superior to those in other parts. Mr Greatnum-Marshall accounts for their number in the following manner: "It is understood in general, that to rear kites feared in Norfolk, turkeys with success, it is necessary that a male bird should be kept upon the spot to impregnate the eggs singly; but the good housewives of this country know, that a daily intercourse is unnecessary; and that if the hen be fent to a neighbouring coach previous to the season of exclusion, one act of impregnation is sufficient for one brood. Thus relieved from the expense and disagreeableness of keeping a male bird, miff little farmers, and many cottagers, rear turkeys. This accounts for their number, and the species and the food they are fattened with (which, I believe, is wholly buck) account for their superior size and quality."

In some situations, particularly in the neighbourhood of great towns, it might perhaps be an object to rear not considerable numbers of poultry, even though some part thrive, and even thus we should pay the attendance. In this situation the farm should be cultivated, merely for their sub-sistence. It must however, be remembered, that poultry cannot bear confinement. They are spoiled, not only by being kept in a house, but even in a yard and its environs; for which reason Mr Young informs us that Lord Clarendon constantly shifts his poultry through different parts of the park in which they are kept. In Norfolk it is customary to put young gowlings upon green wheat.

Sect. VIII. Bees.

These may be considered as of considerable importance in husbandry, on account of the unlimited demand there is for honey and wax, and the little expense at which it is obtained. It is not, however, to be expected, than in all situations the honey produced of the quantity will either be in equal quantity or of equal quality, rity and This depends on the quantity and quality of the flowers quality of honey. In the neighbourhood to which the bees have access. Thus the honey of Norfolk is of inferior quality to that produced in other parts owing, as some have supposed, to the bees feeding upon the flowers of buckwheat, which grows in great quantity throughout the country. Mr Marshall, however, ascribes its peculiar taste to the heaths and moorish places in Norfolk, to which the bees resort, and which seems to be a natural product of the Norfolk soil. He does not however assert, that the buck can have no effect upon it; he owns that the buck-flowers are luscious and disagreeable to many people;

Vol. VIII.
people, though those of beans are equally so to others; but wishes that their imparting any bad quality to honey may be doubted, until positive proof be brought to the contrary.

The Morelands and Vale of Yorkshire are remarkable for the quantities of honey they produce; but it is of an inferior quality, owing, as Mr Marshall supposes, to the heat. He observes, that in the hives situated between the heaths and cultivated country, there is a remarkable difference between the vernal and autumnal combs. The former, gathered entirely from the meadows, pasture-lands, trees, and cultivated crops, are in a manner as white as snow; the latter brown, and the honey rather melted rosin than the pure impalpable consistsence of the former. In the winter of 1782, a remarkable mortality took place among the bees of this district. vast numbers of hives perishing gradually, tho' plenty of honey remained. The phenomenon appeared unaccountable; but Mr Marshall explains it with some probability, from a want of what is called bee-bread, and which the bees collect from the farina of the flowers, as they do the honey and wax from the nectarium and pilifarium. The farina cannot be obtained until the anthers are burst by the sun, which, in the very cold rainy season of 1782, could not be expected, as the influence of the sun was not only very small, but the farina, when once collected, was liable to be washed away by the rains. Hence, while the bread which the bees had collected in smal quantity lasted, they continued to live; but when this was exhausted, they gradually perished one after another; for it is now universally allowed, that without bee-bread the life of these insects cannot be sustained, even though they have plenty of honey.

In a paper on the subject of bees by Mr John Keys, the farina is supposed to be useful for nourishing the young brood, and the honey for the support of the old ones: hence, according to the quantity of farina to be procured the flock of bees is limited. In the place where he refided at the time his letter was wrote (near Pembury), not more than eight hives could be kept by a single person with propriety; but at Chelsfield in Kent, where he refided before, he could keep 12 or 14. In his opinion, none but the good first swarms ought to be preserved; the after-swarms should be returned to the flock, by which means the increase of honey would be much greater. An incorporated flock (he says) will gather more honey than three or four single ones. Hives of half a huckel measure ought to weigh 20 pounds at least, and larger hives in proportion; and they ought not to be above two years of age. He laments it as a national loss, that great part of the prime swarms are suffered to escape, from an erroneous opinion about signs and hours of swarming; whereas nothing less than a constant watching from seven to four, can prevent this loss, but which the peafantry will not comply with." Mr Keys has in vain attempted to find an easy method of swarming them artificially. — For the general method of managing bees, see the articles Api and Bee.

Sect. IX. Of the management of the Dairy.

As this includes not only the proper method of preserving milk in a wholesome and uncorrupted state, but the making of butter and cheese from it, it may deserve to be accounted as important a part of husbandry, as any; and accordingly several treatises have been written expressly upon the subject.

In the fifth volume of Bath Papers, the subject seems to be considered in an accurate and scientific manner, by Dr Ander son; and by any person who has treated this subject, Dr Ander son is to be consulted. The requisites for manufacturing this valuable commodity, according to him, are the following:

1. To have cows of a good quality. In this we are to attend more to the quantity of cream which the milk of a cow yields, than to the absolute quantity of milk; and this may commonly be judged from the thickness of the cream. The small Alderney cows (he says) afford the richest milk hitherto known; though there are many individuals of different kinds which afford much richer milk than others; and these ought carefully to be sought after, that a good breed may be established.

2. To make the cows yield a large quantity of milk. For this purpose they must have plenty of food; and of all other kinds the Doctor determines grazis to be the best, and that grass which springs up spontaneously on rich dry soils to be the best of all. He is of opinion, however, that there is no virtue in old pastures, as many fuppose, more than in new ones; and he alleges, that he has seen much richer butter made from the milk of cows fed upon hay from clover and rye-grass in the houfe, than in those that had liberty to range in old pasture. He thinks, however, that the cows should be permitted to pasture at pleasure during the mornings and evenings, but at noon should be taken into a houfe, and supplied with good food. If abundantly fed, they should be milked three times a day; and as great care should be taken that this operation be properly performed, only confidential persons should be employed. He supposes that a cow well fed, will give as much milk each time when milked thrice, as when milked only twice.

3. The qualities of the milk. These are reduced by our author to the following aphorisms. 1. Of the milk drawn from a cow at an hour of the day, at which time butter is always thinnest, and continues to increase in this quality to the very last drop. This, as well as all the preceding ones, are proved by experiment; and so great is the importance of attending to it, that the person who, by bad milking of his cows, loses but half a pint of his milk, loses in fact as much cream as would be afforded by six or eight pints at the beginning, and lothes besides that part of the cream which alone can give richness and high flavour to his butter.

2. When milk throws up cream to the surface, that portion which rises first will be thicker, and of better quality, as well as in greater quantity, than that which rises in a second equal portion of time. 3. Thick milk throws up a smaller quantity of cream to the surface than such as is thinner; but that cream is of a richer quality. If water be added to that thick milk, it will afford a considerable greater quantity of cream than before, but its quality is at the same time greatly debased. 4. Milk when carried in vessels to any distance, so as to undergo considerable agitation, never throws up cream so rich, as in such quantity, as if the same had been put into the milk-pans without any agitation. From these aphorisms, the following corollaries are deductible. 1. The cows ought always to
to be milked as near the dairy as possible. 2. The milk of different cows should be kept by themselves, that the good cows may be distinguished from the bad.

3. For butter of a very fine quality, the first drawn milk ought always to be kept separate from the last.

Our author now commends the method used by the Highlanders of Scotland, where every cow is allowed to suck her own calf. The calves are kept in an enclosure till the time of milking, when they are allowed to come to the door. Each cow is then allowed to flick its dam as long as the milk-maid pleases; when it is driven away, and the woman milks the remainder. Thus they obtain only a small quantity of milk, but of exceeding good quality; and to this practice Dr. Anderson ascribes the richness of the Highland butter, which is usually attributed to the old grals in the remote glens of the Highlands. In places where the practice cannot be economically followed, the doctor recommends to keep the milk which comes first, and that which comes last separate from each other. The former might be sold sweet, or made into cheese. Another use our author mentions, viz.

"Take common skimmed milk when it begins to turn sour, but put it into an upright churn or barrel with one of its ends out, or any other convenient vessel; heat some water, and pour it into a tub that is large enough to contain with ease the vessel in which the milk was put. Set the vessel containing the milk into the hot water, and let it remain there for the space of one night. In the morning it will be found that the milk has separated into two parts; a thick cream like substance which occupies the upper part of the vessel, and a thin, serous, watery part that remains in the bottom: draw off the thin part (called here whey), by opening a stop-cock placed for that purpose close above the bottom, and reserve the cream for use. Not much less than the half the milk is thus converted into a sort of cream, which when well made seems to be as rich and as fat as real cream itself, and is only distinguishable from that by its sourness. It is eaten with sugar, and esteemed a great delicacy; and usually sells at double the price of unskimmed milk."

4. Besides separating the first from the last drawn milk, it will be necessary also to take nothing but the cream first separated from the best milk. The remainder of the milk may be employed either in making cheeses, or allowed to throw up cream for butter of an inferior quality. 5. Hence it is plain, that butter of the very best quality, could be made only in a dairy of considerable extent, as only a small portion of the milk of each cow could be set apart for it. 6. Hence it appears that butter and cheese can be made in a consistency with one another; the best of the milk being set apart for the former, and the worst for the latter. But as perhaps no person would choose to give such a price for the very best butter as would indemnify the farmer for his trouble and expence, it may be sufficient to take only the first drawn half of the milk for cheese, and use the remainder for butter; and the cream of this, even though allowed to stand till it begins to turn sour, will always yield butter of a much superior quality to that produced in the ordinary manner.

Our author now proceeds to enumerate the properties of a dairy. The milk-house ought to be cool in summer and warm in winter; so that an equal temperature may be preserved throughout the year. It ought also to be dry, so as to admit of being kept sweet and clean at all times. A separate building should be erected for the purpose, near a cool spring or running water, where the cows may have easy access to it, and where it is not liable to be contaminated by stagnant water. The apartment where the milk stands should be well thatched, have thick walls, and a ventilator in the top for admitting a free circulation of air. There should also be an apartment with a fire-place and cauldron, for the purpose of feeding and cleaning the vessels. The doctor is of opinion, that the temperature of from 50 to 55 degrees is the most proper for separating the cream from the milk, and by proper means this might easily be kept up, or nearly so, both summer and winter.

The utensils of the dairy should be made of wood, in preference either to lead, copper, or even cast iron. These metals are all very easily soluble in acids; the solutions of the two first highly poisonous; and though the latter is innocent, the taste of it might render the products highly disagreeable. The cream-dishes, when properly cleaned, sweet, and cold, ought to be filled with the milk as soon as it is drawn from the cow, having been first carefully strained through a cloth, or close strainer made of hair or wire: the doctor prefers silver wire to every other. The cream-dishes ought never to exceed three inches in depth; but they may be so broad as to contain a gallon or a gallon and a half; when filled they ought to be put on the shelves of the milk-house, and remain there until the cream be fully separated. If the finest butter be intended, the milk ought not to stand above six or eight hours, but for ordinary butter it may stand twelve hours or more; yet if the dairy be very large, a sufficient quantity of cream will be separated in two, three, or four hours, for making the best butter. It is then to be taken off as nicely as possible by a skimming-dish, without lifting any of the milk; and immediately after put into a vessel by itself, until a proper quantity for churning be collected. A firm, neat, wooden barrel seems well adapted for this purpose, open at one end, and having a lid fitted to close it. A cock or spigot ought to be fixed near the bottom, to draw off any thin or serous part which may drain from the cream; the inside of the opening should be covered with a bit of fine silver wire gauze, in order to keep back the cream while the serum is allowed to pass: and the barrel should be inclined a little on its stand, to allow the whole to run off.

The doctor contradicts the opinion that very fine butter cannot be obtained, except from cream that is not above a day old. On the contrary, he insists that it is only in very few cases that even tolerably good butter can be obtained from cream that is not above one day old. The separation of butter from cream only takes place after the cream has attained a certain degree of acidity. If it be agitated before that acidity has begun to take place, no butter can be obtained, and the agitation must be continued till the time that the four-thirds is produced; after which the butter begins to form. "In summer, while the climate is warm, the heating may be, without very much difficulty, continued until the acidity be produced..."
Husbandry.

Part III.

Management of the Dairy.

Of the churn.

Of the churn. The churn in which butter may be got: but in this case the process is long and tedious; and the butter is for the most part of a soft consistence, and tough and glazy to the touch. If this process be attempted during the cold weather in winter, butter can scarcely be in any way obtained, unless by the application of some degree of heat, which sometimes assists in producing a very inferior kind of butter, white, hard and brittle, and almost unfit for any culinary purpose whatever. The judicious farmer, therefore, will not attempt to imitate this practice, but will allow his cream to remain in the vessel appropriated for keeping it, until it has acquired the proper degree of acidity. There is no rule for determining how long it is to be kept; but our author is of opinion that a very considerable article. In this the same precaution is to be observed as with regard to butter; viz., the milk ought not to be agitated by carrying to any distance nor ought the cows to be violently driven before they are milked, which reduces the milk almost to the same state as if agitated in a barrel or churn. To this cause Mr Twamley, who has written a treatise upon dairy management, attributes the great difficulty sometimes met with in making the milk coagulate; four or five hours being sometimes necessary instead of one (the usual time employed); and even after all, the curd will be of such a soft nature, that the cheese will swell, puff up, and rent in innumerable places without ever coming to that solid consistence which it ought to have. As this frequently happens in consequence of heat, Mr Twamley, advises to mix a little cold spring-water with the milk. It is a bad practice to put in more runnet when the curd appears difficult to be formed; for thus, after having once formed the curd by the use of a certain quantity, will dissolve it again by the addition of more.

Of the churn. Of the churn. The churn in which butter is made likewise admits of considerable diversity; but our author prefers the old-fashioned upright churn to all others, on account of its being more easily cleaned. The labour, when the churn is properly prepared, he thinks very trifling. Much greater nicety, he says, is required in the process of churning than most people are aware of; as a few hasty and irregular strokes will render butter bad, which otherwise would have been of the finest quality. After the process is over, the whole ought to be separated from the milk, and put into a clean dish; the inside of which, if made of wood, ought to be well rubbed with common salt, to prevent the butter from adhering to it. The butter should be pressed and worked with a flat wooden ladle or skimming dish, having a short handle, so as to force out all the milk that was lodged in the cavities of the mas. This operation requires a considerable degree of strength as well as dexterity; but our author condemns the beating up of the butter with the hand as "an indelicate and barbarous practice." In like manner he condemns the employing of cold water in this operation, to wash the butter as it is called. Thus, he says, the quality of it is debased in an astonishing degree. If it is too far, it may be put into small vessels, and there allowed to swim in a tub of cold water; but the water ought never to touch the butter. The beating should be continued till the milk be thoroughly separated, but not till the butter become tough and glazy: and after this is completely done, it is next to be salted. The vessel in which it is to be put must be well seasoned with boiling water several times poured into it; the inside is to be rubbed over with common salt, and a little melted butter poured into the cavity between the bottom and sides, so as to make it even with the bottom; and it is then fit for receiving the butter. Instead of common salt alone, the Doctor recommends the following composition. "Take of sugar one part, of nitre one part, and of the best Spanish great salt two parts. Beat the whole into a fine powder, mix them well together, and put them by for use. One ounce of this to be thoroughly mixed with a pound of butter as soon as it is freed from the milk, and then immediately put into the vessel designed to hold it; after which it must be pressed so close as to leave no air holes; the surface is to be smoothed and covered with a piece of linen, and over that a piece of wet parchment; or in defect of this last, fine linen that has been dipped in melted butter, exactly fitted to the edges of the vessel all round, in order to exclude the air as much as possible. When quite full, the cask is to be covered in like manner, and a little melted butter put round the edges, in order to fill up effectually every cranny, and totally to exclude the air. "If all this (says the Doctor) is carefully done, the butter may be kept perfectly found in this climate for many years. How many years I cannot tell; but I have seen it two years old, and in every respect as sweet and sound as when only a month old. It deserves to be remarked, that butter cured in this manner does not taint well till it has stood at least a fortnight after being salted; but after that period is elapsed, it eats with a rich marrowy taste that no other butter ever acquires; and it takes so little of salt, that a person who has been accustomed to eat butter cured with common salt only, would not imagine it had got one-fourth part of the salt necessary to preserve it." Our author is of opinion, that strong brine may be useful to pour upon the surface during the time it is using, in order the more effectually to preserve it from the air, and to avoid rancidity.

As butter contains a quantity of mucilaginous matter much more putrefiable than the pure oily part, our author recommends the purifying it from this mucilage, by melting in a conical vessel, in which the mucilage will fall to the bottom; the pure oily part swimming at top. This will be useful when butter is to be sent a long voyage to warm climates, as the pure part will keep much better than when mixed with the other. He proposes another method of preserving butter, viz., by mixing it with honey, which is very antiseptic, and mixes intimately with the butter. Thus mixed, it eats very pleasantly, and may perhaps be successfully used with a medicinal intention.

The other grand object of the dairy is cheese-making, which in some counties of England becomes a very considerable article. In this the same precaution is to be observed as with regard to butter; viz., the milk ought not to be agitated by carrying to any distance nor ought the cows to be violently driven before they are milked, which reduces the milk almost to the same state as if agitated in a barrel or churn. To this cause Mr Twamley, who has written a treatise upon dairy management, attributes the great difficulty sometimes met with in making the milk coagulate; four or five hours being sometimes necessary instead of one (the usual time employed); and even after all, the curd will be of such a soft nature, that the cheese will swell, puff up, and rent in innumerable places without ever coming to that solid consistence which it ought to have. As this frequently happens in consequence of heat, Mr Twamley, advises to mix a little cold spring-water with the milk. It is a bad practice to put in more runnet when the curd appears difficult to be formed; for thus, after having once formed the curd by the use of a certain quantity, will dissolve it again by the addition of more.

The most common defects of cheese are its appearance when cut full, of small holes called eyes; its putting defects of up, cracking, and pouring out quantities of thin serum cheese, liquor;
HUSBANDRY.

Section IX.

Management of the Dairy.

liquor; becoming afterwards rotten and full of maggots in those places from which the liquor illused. All this, according to our author, proceeds from the formation of a substance called by him *flip-curd*, a kind of half coagulum, incapable of a thorough union with the true curd, and which when broken into very small bits produces *eyes*; but if in larger pieces, occasions those rents and cracks in the cheese already mentioned: for though this kind of curd retains its coagulated nature for some time, it always boomer or later dissolves into a ferous liquid. This kind of curd may be produced 1. by using the milk too hot. 2. By bad runnet. 3. by not allowing the curd a proper time to form. The first of these is remedied by the use of cold water, which our author says is so far from being detrimental to the quality of the cheese, that it really promotes the action of the runnet upon the milk. The second *viz.* a knowledge of good from bad runnet, can only be acquired by long practice, and no particular directions can be given, farther than that the utmost care must be taken, that it have no putrid tendency, nor any rancidity from too great heat in drying. The only rule that can be given, for its preparation is to take out the maw of a calf which has fed entirely upon milk; after it is cold, fill it a little with water; rub it well with salt; then fill it with the same and afterwards cover it. Some cut them open and spread them in salt, putting them in layers above one another, letting them continue in the brine they produce, sometimes stirring or turning them for four, six, or nine months; after which they are opened to dry, stretched out upon sticks or plinpets. They may be used immediately after being dried, though it is reckoned best to keep them till they be a year old before they are used. The best method of making the runnet from the skins, according to our author, is the following: "Take pure spring-water, in quantity proportioned to the runnet you intend to make: it is thought best by some two skins to a gallon of water; boil the water, which makes it fofter or more pure; make it with salt into brine that will swim an egg; then let it stand till the heat is gone off about the heat of blood-warm; then put your raw-skin in, either cut in pieces or whole; the former I should imagine best or most convenient; letting it steep 24 hours, after which it will be fit for use. Such quantity as is judged necessary must then be put into the milk; about a tea-cup being necessary for ten cows milk; though in this respect very particular directions cannot be given."

In the Bath Papers, Mr Hazard gives the following receipt for making runnet. "When the raw skin is well prepared and fit for the purpose, three pints or two quarts of soft water, clean and sweet, should be mixed with salt, wherein should be put sweet brier, rose-leaves and flowers, cinnamon mace, cloves, mace, and in short almost every sort of spice and aromatic that can be procured; and if these are put into two quarts of water, they must boil gently till the liquor is reduced to three pints, and care should be taken that this liquid is not smoked; it would be strained clear from the spices, &c. and when cold not to be warmer than milk from the cow, it should be poured upon the veil or raw; a lemon may then be sliced into it, when it may remain a day or two; after which it should be strained again and put into a bottle, where if well corked it will keep good for twelve months or more; it will smell like a perfume, and a small quantity of it will turn the milk and give the cheese a pleasing flavour." He adds that if the veil or raw be faulted and dried for a week or two near the fire, it will do for the purpose again almost as well as before.

In the making of cheese, supposing the runnet to be of a good quality, the following particulars must to be oberved: 1. The proper degree of heat. This served to be what is called *milk-warm*, or "a few degrees removed from coolness," according to Mr. Twamley; consideraby below the heat of milk taken from the cow. If too hot, it may be reduced to a proper temperature by cold water, as already mentioned. 2. The time allowed for the runnet to take effect. This our author observes, ought never to be less than an hour and a half. The process may be accelerated, particularly by putting salt to the milk before the runnet is added. Mr Twamley advises two handfulls to ten or twelve cows milk; but he assures us, that no bad consequence can follow from the curd being formed ever so soon; as it then only becomes more solid and fit for making cheese of a proper quality. 3. To prevent any difficulty in separating the curd from the whey, prepare a large cheese knife from lath; one edge being sharpened to cut the curd across from top to bottom in the tub, crossing it with lines checkerwise; by which means the whey rises through the vacancies made by the knife, and the curd links with much more ease. A sieve has also been used with success, in order to separate the whey perfectly from the curd. 4. Having got the curd all firm at the bottom of the tub, take the whey from it; let it stand a quarter of an hour to drain before you put it into the vat to break it. If any bits of flip-curd swim among the whey, pour it all off together rather than put it among the cheese, for the reasons already given. Some dairy-women allow the curd to stand for two hours; by which time it is become of so firm a nature, that no breaking is necessary; they have only to cut it in slices, put it into the vat and work it well by squeezing thoroughly to make it fit close; then put it into the press. Our author, however, approves more of the method of breaking the curd, as 1s apt to make the cheese hard and horny. 5. When the whey is of a white colour, it is a certain sign that the curd has not sufficed; but if the method Joft now laid down be followed, the whey will always be of a green colour; indeed this colour of the whey is always a certain criterion of the curd having been properly managed. 6. The best method of preventing cheese from being too strong, to take care that it be clean, and not tainted; to be certain that the curd is fully come, and not to stir it before the air has had time to escape; a quantity of air being always discharged in this, as in many other chemical processes. 7. Cheese is very apt to split in consequence of being "faulted within," especially when the vat is about half filled. In this case the curd though separated only in a small degree by the fault, never closes or joins as it ought to do. Mr Twamley prefers faulting in the milk greatly to this method. 8. Dry cracks in cheese are
Excellence and perry. 9. Curdly or wrinkle-coated cheese is caused by four milk. Cheese made of cold milk is apt to be hard, or to break and fly before the knife. 10. Such coated cheese is caused by being made too cold, as cheese that is made in winter or late in autumn is apt to be, unless laid in a warm room after it is made. Cheese is of very different quality, according to the milk from which it is made; thus, in Gloucestershire, what is called the second or two-meat cheese, is made from one meal of new milk and one of skimmed or old milk, having the cream taken away. Skimmed cheese or fast milk cheese, is made entirely from skimmed milk the cream having been taken off to make butter. It goes by the name of Suffolk cheese, and is much used at sea; being less liable to be affected by the heat of warm climates than the other kinds. A great deal of difference, however, is to be observed in the quality of it, which our author supposes to arise chiefly from greater care being taken in some places than in others.

Slip coat or soft cheese is made entirely of slip-curd, and dissolves into a kind of creamy liquor which is a demonstration of the nature of this curd as already mentioned. It is commonly computed, that as much milk is required to make one pound of butter as two of cheese; and even more where the land is poor, and the pastures afford but little cream. For further particulars with regard to these two commodities, see the articles Butter and Cheese.

Sect. X. Making of Fruit-Liquors.

These, as objects of British husbandry, are principally two, Cyder and Perry; the manufacturing of which forms a capital branch in the fruit counties, and of which the improvement must be considered as of great importance to the public, but particularly so to the inhabitants of those districts where these liquors constitute their common beverage.

Cyder and Perry, when genuine and in high perfection, are excellent vinous liquors, and are certainly far more wholesome than many others which at present are in much higher estimation. When the must is prepared from the choicest fruits, and undergoes the exact degree of vinous fermentation requisite to its perfection, the acid and the sweet are so admirably blended with the aqueous, oily, and spiritueous principles, and the whole so imbued with the grateful flavour of the rinds, and the agreeable aromatic bitter of the kernels, that it affumes a new character; grows lively, sparkling, and exhilarating; and when completely mellowed by time, the liquor becomes at once highly delicious to the palate, and congenial to the constitution: superior in every respect to most other English wines, and perhaps not inferior to many of the best foreign wines. Such (Leys Dr. Fothergill) is it not for the popular prejudice annexed to it as a cheap home-brewed liquor, and consequently within the reach of the vulgar. To compare such a liquor with the foreign fiery sophisticated mixtures often imported under the name of wines, would be to degrade it; for it certainly surpasses them in flavour and pleasantness, as much as it excels them in wholesomeness and cheapness. But rarely do we meet with Perry or cyder of this superior quality. For what is generally sold by dealers and inn-keepers is a poor, meagre, vapid liquor, prone to the acousts fermentation, and of course very injurious to the constitution. Is it not very mortifying, after the experience of so many centuries, that the art of preparing those ancient British liquors should still be so imperfectly understood as yet to be in its very infancy?—That throughout the principal cyder districts, the practice should still rest on the most vague indeterminate principles, and that the excellence of the liquor should depend rather on a lucky random hit, than on good management! Yet such appears to be really the case even among the most experienced cyder-makers of Herefordshire and Gloucestershire.

Mr. Marshall, that nice observer of rural affairs, in his late tour through those counties (expressly undertaken for the purpose of inquiry on this subject), informs us, that fearfully two of these professional artificers are agreed as to the management of some of the more essential parts of the process. That palpable errors are committed as to the time and manner of gathering the fruit—in laying it up—in neglecting to separate the unformed—and to grind properly the rinds and kernels, &c. That the method of conducting the vinous fermentation, the most critical part of the operation, and which flamps the future value of the liquor, is by no means ascertained: While some promote the fermentation in a spacious open vat, others refer it by inclosing the liquor in a baghead, or strive to prevent it altogether. That no determinate point of temperature is regarded, and that the use of the thermometer is unknown or neglected. That they are as little consistent as to the time of racking off; and whether this ought to be done only once, or five or six times repeated. That for fining down the liquor, many have recourse to that odious article, bullock's blood, when the intention might be much better answered by whites of eggs or flinglafs. And, finally, that the capricious taste of particular customers is generally confulted rather than the real excellence of the liquor; and consequently that a very imperfect liquor is often vended, which tends to reduce the price, to disgrace the vender, and to bring the use of cyder and perry into disrepute.

The art of making vinous liquors is a curious chemical process; and its success chiefly depends on a dexterous management of the vinous fermentation, besides a close attention to sundry minute circumstances, the theory of which is perhaps not yet fully understood by the ablest chemists. Can we longer wonder then that so many errors should be committed by illiterate cyder-makers, totally unversed in the first principles of the chemical art? Some few, indeed, more enlightened than their brethren, and less beguiled to their own opinions, by dint of observation strike out improvements, and produce every now and then a liquor of superior quality, though perhaps far short of excellence, yet still sufficient to show what might possibly be accomplished by a series of new experiments conducted on philosophical principles. This might lead
Sect. X.

HUSSANDRY.

Fruit Liquors.

Meant to success improvements, till at length our English fruit-liquors might be carried to a pitch of perfection hitherto unknown, by which the demand, both at home and abroad, would soon be enlarged, the prices augmented according to the quality, the value of estates increased, and the health and prosperity of these counties proportionably advanced. This might also help to point out a method of correcting the imperfections of these liquors; and of meliorating thole of a weak meagre quality, by safer and more effectual means than are now practised; and though nothing can fully compensate the defect of sunshine in maturing the facetaraine juices in unfavourable seasons, yet probably such liquor might, without the dangerous and expensive method of boiling in a copper vessel, admit of considerable improvement by the addition of barn or other suitable ferment, as yet unknown in the practice of the the cyder districts; or perhaps rather by a portion of rich muf, or some wholesome sweet, as honey, sugar-candy, or even molasses, added in due proportion, previous to the fermentation. In fact, it appears from a late publication, that the Germans are known to melliorate their thin harsh wines by an addition of concentrated manufaetured muf, not by evaporation, but by freezing. By this simple process they are made to emulate good French wines; a practice worthy of imitation, especially in the northern climates.

Cyder, as is well known, is made from apples, and Perry from pears only. The general method of preparing both of these liquors is very much the same; and under the article Cyder a description is given of the way in which these fruits are gathered, ground, and pressed. The mill is not essentially different from that of a common tanner's mill for grinding bark. It consists of a millstone from two and an half to four feet and an half in diameter, running on its edge in a circular stone trough, from nine to twelve inches in thickness, and from one to two tons in weight. The bottom of the trough in which this stone runs is somewhat wider than the thickness of the stone itself; the inner side of the groove rises perpendicularly, but the outer spreads in such a manner as to make the top of the trough fix or eight inches wider than the bottom; by which means there is room for the stone to run freely, and likewise for putting in the fruit, and stirring it up while grinding. The whole diameter of a middle-sized mill is about 9 feet, some 10, and some 12; the whole being composed of two, three, or four stones crammed together, and finished after being crampet in this manner. The best stones are found in the forest of Dean; generally a dark, reddish gritstone, not calcareous; for if it were of a calcareous quality, the acid juice of the fruits would act upon it and spoil the liquor: a clean-grained grindstone grit is the fittest for the purpose. The runner is moved by means of an axle passing through the centre, with a long arm reaching without the bed of the mill, for a horse to draw by; on the other side is a shorter arm passing through the centre of the stone, as represented in the figure. An iron bolt, with a large head, passes through an eye, in the lower part of the fowl, on whiich the stone turns, into the end of the inner arm of the axis; and thus the double motion of it is obtained, and the stone kept perfectly upright. There ought also to be fixed on the inner arm of the axis, about a foot from the runner, a coggled wheel working in a circle of cogs, fixed upon the bed of the mill. The use of these is to prevent the runner from sliding, which it is apt to do when the mill is full; and likewise makes the work more easy for the horse. Thefe wheels ought to be made with great exactness. Mr Marshall observes, that it is an error to make the horse draw by traces: 'The acting point of draught (says he), the horse's shoulder, ought, for various reasons, to be applied immediately at the end of the arm of the axis; not two or three yards before it; perhaps of a small mill, near one fourth of its circumference.' The building in which the mill is placed ought to be of such a size, that the horse may have a path of three feet wide between the mill and the walls; so that a middling-sized mill, with its horse-path, takes up a space of 14 or 15 feet every way. The whole dimensions of the mill-house, according to our author, to render it any way convenient, are 24 feet by 20: it ought to have a floor thrown over it at the height of seven feet; with a door in the middle of the front, and a window opposite, with the mill on one side and the press on the other side of the window. The latter must be as near the mill as convenience will allow, for the more easy conveying the ground fruit from the one to the other. The press, of which the principle will be understood from the figure, has its bed or bottom about five feet square. This ought to be made entirely either of wood or stone; the practice of covering it with lead being now universally known to be pernicious. It has a channel cut a few inches within its outer edges, to catch the liquor as it is expressed, and convey it to a lip formed by a projection on the other side of the bed opposite to the inner, having under it a stone trough or wooden vault, sunk within the ground, when the bed is fixed low, to receive it. The press is worked with levers of different lengths; first a short, and then a moderately long one, both worked by hand; and lastly, a bar or three huge feet long worked by a capstan or windlass. The expense of fitting up a mill-house is not very great. Mr Marshall computes it from 20l. to 25l. and, on a small scale, from 10l. to 15l. though much depends on the distance and carriage of the stone: when once fitted up, it will last many years.

The making of the fruit-liquors under consideration requires an attention to the following particulars. I. The fruit. II. The grinding. III. Pressing. IV. Fermenting. V. Correcting. VI. Laying up. VII. Bottling; each of which heads is subdivided into several others.

1. In the management of the fruit, the following particulars are to be considered.

1. The time of gathering; which varies according to the nature of the fruit. The early pears are fit for the mill in September; but few apples are ready for gathering before Michaelmas; though, by reason of accidental circumstances, they are frequently manufactured before that time. For stale cyder, and keeping drink, they are suffered to hang upon the trees till fully ripe; and the middle of Octo-
Having acquired such a degree of mellowness, and its texture such a degree of tenderness, as to yield to moderate pressure. Thus, when the knuckle or the end of the thumb can with moderate exertion be forced into the pulp of the fruit, it is deemed in a fit state for grinding.

4. Preparation for the mill. The proper management of the fruit is to keep the ripe and unripe fruits separate from each other: but this cannot be done without a considerate degree of labour; for as by numbers accidents the ripe and unripe fruits are frequently confounded together, there cannot be any effectual method of separating them except by hand; and Mr Marshall is of opinion, that this is one of the grand secrets of cyder-making, peculiar to those who excel in the business; and he is surprized that it should not before this time have come into common practice.

5. Mixing fruits for liquor. Our author seems to doubt the propriety of this practice; and informs us, that the finer liquors are made from select fruits; and he hints that it might be more proper to mix liquors after they are made, than to put together the crude fruits.

II. Grinding, and management of the fruit when ground.

1. For the greater convenience of putting the fruit into the mill, every mill-house should have a fruit chamber over it, with a trap-door to lower the fruit down into the mill. The best manner in which this can be accomplished, is to have a valuable over the bed of the mill, and furnished with a cloth, spout or tunnel reaching down to the trough in which the stone moves. No fire is used in the lofts, but sometimes the fruit is turned. In Herefordshire, it is generally believed, that grinding the rind and seeds of the fruit as well as the flesh part to a pulp, is necessary towards the perfection of the cyder; whence it is necessary, that every kind of pains should be taken to perform the grinding in the most perfect manner. Mr Marshall complains, that the cyder-mills are so imperfectly finished by the workmen, that for the first five years they cannot perform their work in a proper manner. Instead of being nicely fitted to one another with the square and chisel, they are hewn over with a rougher tool than such a careless manner, that hofe beans might lie in safety in their cavities. Some even imagine this to be an advantage, as if the fruit was more effectually and completely broken by rough than by smooth stones. Some use fluted rollers of iron; but these will be corroded by the juice, and thus the liquor might be tinged. Smooth rollers will not lay hold of the fruit sufficiently to force it through.

Another improvement requisite in the cyder-mills is to prevent the matter in the trough from rising before the stone in the last stage of grinding, and a method of stirring it up in the trough more effectually than can be done at present. To remedy the former of these defects, it might perhaps be proper to grind the fruit first in the mill to a certain degree, and then put it between two smooth rollers to finish the operation in the most perfect manner. It is an error to grind too much at once; as this clogs up the mill, and prevents it from going easily. The usual quantity for a middle-sized mill is a bag containing four corn bushels; but our author had once an opportunity of seeing a mill
in which only half a bag was put; and thus the work seemed to go on more easily as well as more quickly than when more was put in at once. The quantity put in at one time is to be taken out when ground. The usual quantity of fruit ground in a day is as much as will make three hogheads of perry or two of cyder.

2. Management of the ground-fruit. Here Mr Marshall condemns in very strong terms the practice of pressing the pulp of the fruit as soon as the grinding is finished; because thus neither the rind nor seeds have time to communicate their virtues to the liquor. In order to extract these virtues in the most proper manner, some allow the ground-fruit to lie 24 hours or more after grinding, and even reground it, in order to have in the most perfect manner the flavour and virtues of the seeds and rind.

III. Pressing the fruit, and management of the residuum. This is done by folding up the ground-fruit in pieces of hair cloth, and piling them up above one another in a square frame or mould, and then pulling down the press upon them, which squeezes out the juice, and forms the matter into thin and almost dry cakes. The first runnings come off foul and muddy; but the last, especially in perry, will be as clear and fine as if filtered through paper. It is common to throw away the residuum as useless; sometimes it is made use of when dry as fuel; sometimes the pigs will eat it, especially when not thoroughly squeezed; and sometimes it is ground a second time with water, and squeezed for an inferior kind of liquor used for the family. Mr Marshall advises to continue the pressure as long as a drop can be drawn. "It is found (says he), that even by breaking the cakes of refuse with the hands only gives the press fresh power over it; for though it has been pressed to the last drop, a gallon or more of additional liquor may be got by this means. Regrinding them has a still greater effect: In this state of the materials the mill gains a degree of power over the more rigid parts of the fruit, which in the first grinding it could not reach. If the face of the runner and the bottom of the trough were drenched with a broad chaff, and made true to each other, and a moderate quantity of residuum ground at once, scarcely a kernel could escape unbroken, or a drop of liquor remain undrawn. But though the whole virtue of the fruit cannot be extracted without grinding it very fine, some inconvenience attends this practice, as part of the pulp thus gets through the hair cloth, and may perhaps be injurious to the subsequent fermentation. This, however, may be in a great measure remedied by straining the first runnings through a sieve. The whole should also be allowed to settle in a cafe, and drawn off into a fresh vessel previous to the commencement of the fermentation. The reduced fruit ought to remain some time between the grinding and pressing, that the liquor may have an opportunity of forming an extract with the rind and kernels; but this must not be pushed too far, as in that case the colour of the cyder would be hurt; and the most judicious managers object to the pulp remaining longer than 72 hours without pressure. " Hence (says our author), upon the whole, the most eligible management in this stage of the art appears to be this: Grind one pressful a day; press and reground the residuum in the evening; infuse the reduced matter all night among part of the first runnings; and in the morning re-press while the next pressful is grinding.

IV. Fermentation. The common practice is to have the liquor turned; that is, put into cafes or hops, immediately from the press, and to allow it to be quite full: but it is undoubtedly more proper to leave some space empty to be filled up afterwards. No accurate experiment has been made with regard to the temperature of the air proper to be kept up in the place where the fermentation goes on. Fruit is prejudicial: but when the proceeds usually commences, that is about the middle of October, the liquor is put into airy shades, where the warmth is scarce greater than in the open atmosphere; nay, they are frequently exposed to the open air without any covering farther than a piece of tile or flat stone over the bung-hole, propped up by a wooden pin on one side to cause the rain water run off. In a complete manufacture of fruit-liquors, the fermenting room should be under the same roof with the mill-house; a continuation of the press-room, or at least opening into it, with windows or doors on every side, to give a free admission of air into it; sufficient defences against frosts; fruit-lofts over it, and vault underneath for laying up the liquors after fermentation; with small holes in the crown of the arch to admit a leather pipe, for the purpose of conveying the liquors occasionally from the one to the other.

In making of fruit-liquors, no ferment is used as in making of beer; though, from Mr Marshall's account of the matter, it seems far from being unnecessary. Owing to this omission, the time of the commencement of the fermentation is entirely uncertain. It takes place sometimes in one, two, or three days; sometimes not till a week or month after turning: but it has been observed, that liquor which has been agitated in a carriage, though taken immediately from the press, will sometimes pass almost immediately into a state of fermentation. The continuance of the fermentation is no leéther determined by the nature of the fruit; when it begins, it is generally more proper to leave it to continue for some time without any covering farther than a piece of tile or flat stone over the bung-hole, propped up by a wooden pin on one side to cause the rain water run off. In a complete manufacture of fruit-liquors, the fermenting room should be under the same roof with the mill-house; a continuation of the press-room, or at least opening into it, with windows or doors on every side, to give a free admission of air into it; sufficient defences against frosts; fruit-lofts over it, and vault underneath for laying up the liquors after fermentation; with small holes in the crown of the arch to admit a leather pipe, for the purpose of conveying the liquors occasionally from the one to the other.

In making of fruit-liquors, no ferment is used as in making of beer; though, from Mr Marshall's account of the matter, it seems far from being unnecessary. Owing to this omission, the time of the commencement of the fermentation is entirely uncertain. It takes place sometimes in one, two, or three days; sometimes not till a week or month after turning: but it has been observed, that liquor which has been agitated in a carriage, though taken immediately from the press, will sometimes pass almost immediately into a state of fermentation. The continuance of the fermentation is no leéther determined by the nature of the fruit; when it begins, it is generally more proper to leave it to continue for some time without any covering farther than a piece of tile or flat stone over the bung-hole, propped up by a wooden pin on one side to cause the rain water run off. In a complete manufacture of fruit-liquors, the fermenting room should be under the same roof with the mill-house; a continuation of the press-room, or at least opening into it, with windows or doors on every side, to give a free admission of air into it; sufficient defences against frosts; fruit-lofts over it, and vault underneath for laying up the liquors after fermentation; with small holes in the crown of the arch to admit a leather pipe, for the purpose of conveying the liquors occasionally from the one to the other.

In making of fruit-liquors, no ferment is used as in making of beer; though, from Mr Marshall's account of the matter, it seems far from being unnecessary. Owing to this omission, the time of the commencement of the fermentation is entirely uncertain. It takes place sometimes in one, two, or three days; sometimes not till a week or month after turning: but it has been observed, that liquor which has been agitated in a carriage, though taken immediately from the press, will sometimes pass almost immediately into a state of fermentation. The continuance of the fermentation is no leéther determined by the nature of the fruit; when it begins, it is generally more proper to leave it to continue for some time without any covering farther than a piece of tile or flat stone over the bung-hole, propped up by a wooden pin on one side to cause the rain water run off. In a complete manufacture of fruit-liquors, the fermenting room should be under the same roof with the mill-house; a continuation of the press-room, or at least opening into it, with windows or doors on every side, to give a free admission of air into it; sufficient defences against frosts; fruit-lofts over it, and vault underneath for laying up the liquors after fermentation; with small holes in the crown of the arch to admit a leather pipe, for the purpose of conveying the liquors occasionally from the one to the other.
filtered through a canvas or flannel bag. This filtered liquor differs from the rest in having a higher colour; having no longer any tendency to ferment, but on the contrary checking the fermentation of that which is racked off; and if it loses its brightness, it is no longer safely recovered. A fresh fermentation usually commences after racking; and if it become violent, a fresh racking is necessary in order to check it; in consequence of which the same liquor will perhaps be racked five or six times: but if only a small degree of fermentation takes place, which is called frettling, it is allowed to remain in the same casks; though even here the degree of fermentation which requires racking is by no means determined. Mr. Marshall informs us that the best manufacturers, however, repeat the rackings until the liquor will lie quiet, or nearly so; and if it be found impracticable to accomplish this by the ordinary method of fermentation, recourse must be had to fumigation with sulphur, which is called fuming the casks. For this fumigation, it is necessary to have matches made of thick linen-cloth about ten inches long, and an inch broad, thickly coated with brimstone for about eight inches of their length. The cask is then properly seasoned, and every vent except the bunghole tightly stopped; a match kindled; lowered down into the cask, and held by the end undipped until it be well lighted and the bung be driven in; thus fupending the lighted match within the cask. Having burnt as long as the contained air will supply the fire, the match dies, the bunghole is raised, the remainder of the match drawn out, and the cask suffered to remain before the liquor be put into it for two or three hours, more or less according to the degree of power the sulphur ought to have. The liquor retains a smell of the sulphureous acid; but this goes off in a short time, and no bad effect is ever observed to follow.

In some places the liquor is left to ferment in open casks, where it stands till the first fermentation be pretty well over; after which the froth or yeast collected upon the surface is taken off, it being supposed that this is yeast mixing with the clear liquor which causes it to fret after racking. The fermentation being totally ceased, and the lees subdided, the liquor is racked off into a fresh cask, and the lees filtered as above directed. Our author mentions no fermenting of the already fermented fruit-liquors in broad shallow vats; nor less than five feet in diameter, and little more than two feet deep; each vat containing about two hogheads. In these the liquor remains until it has done riting, or till the fermentation has nearly ceased, when it is racked off without skimming, the critical juncture being caught before the yeast fall, the whole fermenting gradually together as the liquor is drawn off. In this practice the liquor is seldom drawn off a second time, if it be not already sweet, after racking; sometimes before the yeast fall. Cider is made of three different kinds, viz. rough, sweet, and of a middle richness. The first kind being usually designed for servants, is made with very little ceremony. [If it is but cider (says Mr. Marshall), it is likely enough to keep, no matter for the richness and flavour. The rougher it is, the further it will go, and the more acceptable custom has rendered it not only to the workmen but to their masters. A palate accustomed to sweet cider would judge the rough cider of the farm-houses to be a mixture of vinegar and water, with a little dissolved alum to give it roughness.” The method of producing this suftere liquor is to grind them in a crude under-ripe state, and subject the liquor to a full fermentation.—For the sweet liquor, make choice of the sweeter fruits: mature them fully; and check the fermentation of the liquor.—To produce liquors of a middle richness, the nature of the fruit, as well as the season in which it is matured, must be considered. The fruits to be made choice of are such as yield juices capable of affording a sufficiency both of richness and strength, though much depends upon proper management.

Open vats, in our author’s opinion, are preferable to close vessels: but if casks be used at all, they ought to be very large, and not filled; nor ought they to lie upon their sides, but to be set on their ends with their heads out, and to be filled only to such an height as will produce the requisite degree of fermentation: but in whatever way the liquor be put to ferment, Mr. Marshall is of opinion that the operation ought to be allowed to go on freely for the first time; though after being racked off, any second fermentation ought to be prevented as much as possible.

V. Correcting, provincially called doctoring. The imperfections which art attempts to supply in these liquors are, 1. Want of strength; 2. Want of richness; 3. Want of flavour. 4. Want of colour and brightness.

The want of strength is supplied by brandy or any other spirit in sufficient quantity to prevent the accidental fermentation. The want of richness is supplied by what are generally termed sweets, but prepared in a manner which our author says has never fallen under his notice. To supply the want of flavour, an infusion of hops is sometimes added, which is said to communicate an agreeable bitterness, and at the same time a fragrance; whence it becomes a substitute for the juices of the rind and kernels thrown away to the pigs and poultry, or otherwise wasted. The want of colour is sometimes supplied by elder berries, but more generally by burnt sugar, which gives the desired colour, and a degree of bitterness which is very much liked. The sugar is prepared either by burning it on a salamander, and suffering it to drop, as it melts, into water, or by boiling it over the fire (in which case brown sugar is to be used) until it acquire an agreeable bitter: then pouring in boiling water in the proportion of a gallon to two lb. of sugar, and stir until the liquor become uniform. A pint of this preparation will colour a hoghead of cider. Brightness is obtained by a mixture of the blood of bullocks or sheep; that of swine being rejected, though it does not appear to be more unfit for the purpose than either of the other two. The only thing necessary to be done here is to stir the blood well as it is drawn from the animal, to prevent the parts from separating; and it ought to be stirred “both ways; for a quarter of an hour.” The liquor, however is not always in a proper condition for being refined with this ingredient: on which account a little of it ought frequently to be tried in a vial. A quart or less will be sufficient for a hoghead. After the blood is poured in, the liquor should be violently agitated, to mix the whole intimately together. This is done by a stick fit into four, and inserted into the bunghole; working it briskly about in the liquor until the whole be thoroughly mixed. In about 24 hours
HUSBANDRY.

The blood will be fudied, and the liquor ought instantly to be racked off; as by remaining upon the blood even for two or three days, it will not only make the liquor taste not easily to be got rid of. It is remarkable that this refinement with the blood carried down not only the faces, but the colour also; rendering the liquor, though ever so highly coloured before, almost as limpid as water. Flaxflats and eggs are sometimes made ufe of in fining cyder as well as wine.

VI. The laying up or shuffling up the cyder in clofe casks, according to Mr Marshall, is as little understood as any of the rest of the parts; the bungs being commonly put in at some certain time, or in some particular month, without any regard to the flatte the liquor itself is in. "The only criterion (says he) I have met with for judging the critical time of laying up, is when a fine white cream-like matter first begins to form upon the surface. But this may be too late; it is probably a symptom at least of the acetous fermentation, which if it take place in any degree must be injurious. Yet if the casks be bunged tight, some cration is necessary; otherwife, if the visous fermentation have not yet finally ceased, or should recommence, the casks will be endangered, and the liquor injured. Hence, in the practice of the most cautious managers, whose practice I have had an opportunity of observing, the bungs are firt driven in lightly, when the liquor is fine; and the visous fermentation is judged to be over; and some time afterward, when all danger is past, to fill up the casks, and drive the bungs securely with a rag, and rofln them over at top. Most farmers are of opinion, that after the liquor is done fermenting, it ought to have something to feed upon; that is, to prevent it from running into the acetous fermentation. For this purpose some put in parched beans, others egg-shells, bone mutton-fuet, &c. Mr. Marshall does not doubt that something may be ufeul; and thinks that flaxflats may be as proper as any thing that can be got.

VII. Bottling. This depends greatly on the quality of the liquors themselves. Good cyder can seldom be bottled with propriety under a year old; sometimes not till two. The proper time is when it has acquired the utmost degree of richness and flavour in the casks; and this it will preserve for many years in bottles. It ought to be quite fine at the time of bottling; or if not so naturally, ought to be fined artificially with flaxflats and eggs.

The liquor, called cyderkin, purre, or perkin, is made from the juice of apples taken from the press, and boiled, and which being kept three or four years is said to resemble Rheinhof. The method of preparing this wine, as communicated by Dr. Rush of Pennsylvania, where it is much practiced, consists in evaporation in a brewing copper the fresh apple-juice till half of it be conformed. The remainder is then immediately conveyed into a wooden cooler, and afterwards is put into a proper cask, with an addition of yeast, and fermented in the ordinary way. The process is evidently borrowed from what has long been practiced on the recent juice of the grape, under the term of vin eau, or boiled wine, not only in Italy, but also in the islands of the Archipelago, from time immemorial.

This process has lately become an object of imitation in the cyder counties, and particularly in the west of England, where it is reported that many hundred hogsheads of this wine have already been made; and as it is said to betray no sign of an impregnation of copper by the usual chemical tests, it is considered as perfectly wholesome, and is accordingly drunk without apprehension by the common people. Others, however, suspect its innocence; whence it appeared an object of small moment to determine in so doubtful a matter, whether or not the liquor acquires anynoxious quality from the copper in which it is boiled.—With this view Dr. Fothergill made a variety of experiments; and the result seemed to afford a strong presumption that the cyder wine does contain a minute impregnation of copper; not very considerable indeed, but yet sufficient, in the Doctor's opinion, to put the public on their guard concerning a liquor that comes in so very 'questionable a shape.'

It is a curious chemical fact, he obsevres, if it be really true, that acid liquors, while kept boiling in copper vessels, acquire little or no impregnation from the metal, but presently begin to act upon it when left to stand in the cold. Can this be owing to the agitation occasioned by boiling, or the expulsion of the aerial acid? Atmospheric air powerfully corrodes copper, probably through the intervention of the aerial or rather nitrous acid, for both are now acknowledged to be present in the atmosphere. But the latter is doubtfull a much stronger menstruum of copper than the former.

In the present process the liquor is properly directed to be palled into a wooden cooler as soon as the boiling is completed. But as all acids, and even common water, acquire an impregnation and unpleasant taste, from standing in copper vessels in the cold, why may not the acid juice of apples act in some degree on the copper before the boiling commences? Add to this, that brewing coppers, without far more care and attention than is generally bestowed on them in keeping them clean, are extremely apt to contract verdigris, (a rank poison), as appears from the blue or green streaks very visible when the vessels are minutely examined. Should the unfermented juice be thought incapable of acting on the copper either in a cold or boiling state, yet no one will venture to deny its power of washing off or dissolving verdigris already formed on the internal surface of the vessel. Suppose only one-eighth part of a grain of verdigris to be contained in a bottle of this wine, a quantity that may elude the ordinary tests, and that a bottle
Husbandry. Part III.

Of Gypsum as a Manure.

In the eight volume of the Annals of Agriculture, we are informed, that it is commonly used as a manure in Switzerland. In the 10th volume of the same work, Sir Richard Sutton gives some account of an experiment made with it on his estate; but in such an inaccurate manner, that nothing could be determined. "The appearance in general (says he), I think, was rather against the benefit of the plater, though not decidedly so." He tells us, that its virtues were a sub-

jeé of debate in Germany. In America, this substance seems to have met with more success than in any other country. In the fifth volume of Bath Papers, Mr. Kirkpatrick of the Isle of Wight, who had himself visited North America, informs us, that it is much used in the United States, on account of its cheapness and efficacy; though, from what is told in the same place, we must undoubtedly be led to suppose, that its efficacy must be very great before it can be intituled to cheapness.

In the first place, it is brought from the hills in the neighbourhood of Paris to Havre de Grace, and from thence exported to America; which, if itself must occasion a considerable expense, though the plater were originally given gratis. In the next place, it must be powdered in a stamping mill, and the finer it is powdered, so much the better. In the third place, it must be found over the ground to be manured with it. The quantity for grass is six bushels to an acre. It ought to be found on dry ground in a wet day; and its efficacy is said to last from seven to twelve years. It operates entirely as a top dressing.

In the 10th volume of Annals of Agriculture, we have some extracts from a treatise by Mr. Powel, president of the Philadelphia Society for encouraging Agriculture, upon the subject of gypsum as a manure; of the efficacy of which he gives the following instances. 1. In October 1786, plaster of Paris was found on a rainy day upon wheat-flible without any previous culture. The crop of wheat had scarce been worth reaping, and no kind of grass feed had been found upon the ground; nevertheless, in the month of June it was covered with a thick mat of white clover, clean and even, from six to eight inches in height. A piece of ground adjoining to this white clover was also found with gypsum, and exhibited a fine appearance of white and red clover mixed with spear-grass. Some wet ground found at the same time was not in the least improved. —This anecdote represents entirely on the veracity of an anonymous farmer. 2. Eight bushels of plaster of Paris spread upon two acres and an half of wheat-flible ground, which the spring before had been sowed with about two pounds of red clover seed to the acre for pasture, yielded five tons of hay by the middle of June. A small piece of ground of similar quality, but without any plaster, produced only one ton and a half in the same proportion. —Mr. Powel concludes in favour of the effects of the plaster upon arable as well as grass land.

Other accounts to the same purpose have been published; but it does not appear to have been tried in Britain.

With regard to the other kinds of manure commonly used in this country, their efficacy is well known; the common only difficulty is to procure them in sufficient quantity. In such lands as lie near the sea, sea-weeds offer an unlimited quantity of excellent manure, as the neighbourhood of rivers, the weeds with which they abound offer likewise an excellent manure in plenty. Oil-cake, malt-coombs, the refuse of slaughter-houses, &c. are excellent where they can be got; but the situations which afford these are comparatively few; so that in most cases the farmer must depend much on his own ingenuity and industry for raising a sufficient quantity of dung to answer his purposes; and the methods taken for this purpose vary according to the situation of different places, or according to the fancy of the husbandman.
In all countries where chalk, marle, or lime are to be had, they are certainly to be employed in their proper departments; but besides these, dung, properly so called, mixed with earth and putrid animal and vegetable substances, constitutes a principal part of the manure. In Norfolk, Mr Marshall tells us, that the quality of dung is attended to with greater precision than in most other districts. ‘Town-muck, as it is called, is held in most estimation; and the large towns Norwich and Yarmouth supply the neighbouring country. As Yarmouth, however, is a maritime place, and otherwise in a manner surrounded by marshes, straw is of course a scarce and dear article: whence, instead of littering their horses with it, they use sand. As the bed becomes soiled or wet, fresh sand is put on, until the whole is in a manner saturated with urine and dung, when it is cleared away, and reckoned muck of such excellent quality, that it is sent for from a very great distance. With regard to other kinds of dung, that from horses fed upon hay and corn is looked upon to be the best; that of fattening cattle the next; while the dung of lean cattle, particularly of cows, is supposed to be greatly inferior, even though turnips make part of their food. The dung of cattle kept on straw alone is looked upon to be of little or no value; while the muck from trodden straw is by some thought to be better than that from the straw which is eaten by the lean-stock.

Composts of dung with earth or marle are very generally used. In the midland counties of England, Mr Marshall informs, the cores of horns if cut in a mill have been used as manure: though he knows not what for. His only objection is the difficulty of reducing them to powder. Dung is extremely dear in Norfolk; half a guinea being commonly given for a wagon-load driven by five horses. Great quantities of lime and marle are found in this district. With regard to the method of raising dung in general, perhaps the observations of Mr Marshall upon the management of the Yorkshire farmers may be equally satisfactory with any thing that has yet been published on the subject.

“The general practice (says he) is to pile the dung on the highest part of the yard; or, which is still less judicious, to let it lie scattered about on the side of a slope, as it were for the purpose of dissipating its virtues. The urine which does not mix with the dung is almost invariably led off the nearest way to the common sewer, as if it were thought a nuisance to the premises. That which mixes with the dung is of course carried to the middens, and affilts in the general dilution. A yard of dung, nine-tenths of which are straw, will discharge, even in dry weather, some of its more fluid particles; and in rainy weather, is, notwithstanding the straw, liable to be washed away if exposed on a rising ground. But how much more liable to waste is a mixture of dung and urine, with barely a sufficiency of straw to keep them together? In dry weather the natural oozing is considerable; and in a wet season every shower of rain washes it away in quantities.—The Norfolk method of bottoming the dung-yard with mould is here indispensably necessary to common good management. There is no better manure for grass-lands than mould saturated with the oozings of a dung-hill: it gets down quicker among the grass, and has generally a more visible effect than the dung itself. Under this management the arable land would have the self-same dung it now has; while the grass land would have an annual supply of riches, which now run waste in the sewers and rivulets. But before a dung-yard can with propriety be bottomed with mould, the bottom of the yard itself ought to be properly formed. A part of it situated conveniently for carriages to come at, and low enough to receive the entire drainings of the stable, cattle-halls, and hog-rires, should be hollowed out in the manner of an artificial drinking-pool, with a rim somewhat rising, and with covered drains laid into it from the various sources of liquid manure. During the summer months, at leisure times, and embracing opportunities of back-carriage, fill the hollow nearly full with mould; such as the frotherings of ditches, the hollowings of roads, the maiden earth of lanes and waste corners, the coping of stone-quarries, &c. &c. leaving the surface somewhat dished; and within this dill let the dung pile, carefully keeping up a rim of mould round the base of the pile higher than the adjoining surface of the yard: equally to prevent extraneous matter from finding its way into the sewers, and to prevent the escape of that which falls within its circuit.”

In the first volume of the Annals of Agriculture, Mr Young, from a theory that phlogiston is the food of plants, made several experiments upon charcoal as a manure; but the results were not sufficiently favourable to induce a trial of it in the large way. It must be remembered, that though phlogiston is very probably the true vegetable food, yet it is phlogiston volatilized, as in putrid animal and vegetable substances, not in its fixed state as in charcoal, which can have any effect. See Agriculture, Part I. Sect. 1. et seq.

A very advantageous method of manuring grass-lands, when there is an opportunity, is that of overflowing them with water, which is mostly practised with low flat grounds. For an account of the best methods in use for this purpose, see the article MEADOW.
Italian husbandry is, however, much more to the credit of that people, than the retaining the Virgilian scheme is to ours.

Tull, who has established a new method of husbandry, observes, that it is upon the whole so contradictory to this old plan, that it may be called the anti-Virgilian husbandry; and adds, that no practice can be worse than the Virgilian.

HUS, the fame with what botanists call the calyx or cup of a flower. See CALX.

HUSO, in ichthyology. See Accipenser.

HUS (John). See Hussites.

Hussars, are the national cavalry of Hungary and Croatia. Their regiments consist in a rough furred cap, adorned with round metal buttons; and in yellow or red boots: besides, they occasionally wear a short upper waistcoat edged with furs, and five rows of round metal buttons; and in bad weather, a cloak.

Their arms are a sabre, carbin, and pistols. They are irregular troops; hence, before beginning an attack, they lay themselves flat on the necks of their horses, that it is hardly possible to discern their force; but being come within pistol-shot of the enemy, they raise themselves with such surprising quickness, and begin the fight with such vivacity on every side, that, unless the enemy is accustomed to the method of engaging, it is very difficult for troops to preserve their order. When a retreat is necessary, their horses have so much fire, and are so indefatigable, their equipage so light, and themselves such excellent horsemen, applauded.

Hussites, in ecclesiastical history, a party of reformers, the followers of John Huf.

John Hufs, from whom the Hussites take their name, was born in a little village in Bohemia, called Hufi, and lived at Prague in the highest reputation, both on account of the sanctity of his manners and the purity of his doctrine. He was distinguished by his uncommon erudition and eloquence, and performed at the same time the functions of professor of divinity in the university, and of ordinary palfor in the church of that city. He adopted the teniments of Wickliffe, and the Waldenses; and in the year 1407 began openly to oppose and preach against divers errors in doctrine, as well as corruptions in point of discipline, then reigning in the church. Hufs likewise endeavoured to the utmost of his power to withdraw the university of Prague from the jurisdiction of Gregory XII., whom the kingdom of Bohemia had hitherto acknowledged as the true and lawful head of the church. This occasioned a violent quarrel between the incensed archbishop of Prague and the zealous reformer, which latter inflamed and augmented from day to day, by his pathetic exclamations against the court of Rome, and the corruptions that prevailed among the secular clerical order.

There were other circumstances that contributed to inflame the resentment of the clergy against him. He adopted the philosophical opinions of the realists, and vehemently opposed and even perfecuted the nominalists, whose number and influence were considerable in the university of Prague. He also multiplied the number of his enemies in the year 1408, by procuring, through his great credit, a sentence in favour of the Bohemians, who disputed with the Germans concerning the number of suffrages which their respective nations were intitled to in all matters that were carried by election in this university. In consequence of a decree obtained in favour of the former, which restored them to their constitutional right of three suffrages, usurped by the latter, the Germans withdrew from Prague, and, in the year 1409, founded a new academy at Leipzick. This event no sooner happened, than Hufs began to inveigh with greater freedom than he had before done against the vices and corruptions of the clergy, and to recommend, in a public manner, the writings and opinions of Wickliffe, as far as they related to the papal hierarchy, the deftopim of the court of Rome, and the corruption of the clergy. Hence an accusation was brought against him, in the year 1410, before the tribunal of John XXIII., by whom he was solemnly expelled from the communion of the church. Notwithstanding this sentence of excommunication, he proceeded to exprop the Romish church with a fortitude and zeal that were almost universally applauded.

This eminent man, whose piety was equally sincere and fervent, though his zeal was perhaps too violent, and his prudence not always circumspect, was summoned to appear before the council of Constance. Secured, as he apprehended, from the rage of his enemies by the safe conduction granted him by the emperor Sigismund, for his journey to Constance, his residence in that place, and his return to his own country, John Hufs obeyed the order of the council, and appeared before it to demonstrate his innocence, and to prove that the charge of his having defected the church of Rome was entirely groundless. However, his enemies so far prevailed, that by the most scandalous breach of public faith, he was cast into prison, declared a heretic because he refused to plead guilty against the dictates of his conscience, in obedience to the council, and burnt alive in 1415; a punishment which he endured with unparalleled magnanimity and resignation.

The fame unhappy fate was borne by Jerome of Prague, his intimate companion, who attended the council, in order to support his persecuted friend. Jerome, indeed, was terrified into temporary submission; but he afterwards refused his fortitude, and maintained the opinions, which he had for a while deserted through fear, in the flame in which he expired in 1416.

The disciples of Hufs adhered to their master's doctrine after his death with a zeal which broke out into an open war, that was carried on with the most savage and unparalleled barbarity. John Zifka, a Bohemian knight, in 1420, put himself at the head of the Hussites, who were now become a very considerable party,
HUT [791]

Hutchinson, author of the celebrated book De origine maii, held him in great esteem; and the friendship of that prelate was of great use to him in screening him from two several attempts made to prosecute him, for daring to take upon him the education of youth, without having qualified himself by subscribing the ecclesiastical canons, and obtaining a licence from the bishop. He had also a large share in the esteem of the primate Bolter, who through his influence made a donation to the university of Glasgow of a yearly fund for an exhibitor to be bred to any of the learned professions. A few years after his "Inquiry into the Ideas of Beauty and Virtue," his "Treatise on the passions" was published: both these works have been often reprinted; and always admired, both for the sentiment and language, even by those who have not attened to the philosophy of them, nor allowed it to have any foundation in nature. About this time he wrote some philosophical papers, accounting for laughter, in a different way from Hobbes, and more honourable to human nature: which papers were published in the collection called Hiberticius's Letters.

After he had taught in a private academy at Dublin for seven or eight years with great reputation and success, he was called, in the year 1729, to Scotland, to be a professor of philosophy in the university of Glasgow. Several young gentlemen came along with him from the academy, and his high reputation drew many more thither both from England and Ireland. Here he spent the remainder of his life in a manner highly honourable to himself and ornamental to the university of which he was a member. His whole time was divided between his studies and the duties of his office; except what he allotted to friendship and society. A firm constitution and a pretty uniform state of good health, except some few light attacks of the gout, seemed to promise a longer life: yet he did not exceed the 53d year of his age. He was married, soon after his settlement in Dublin, to Mrs Mary Wilson, a gentleman's daughter in the county of Langford; by whom he left behind him one son, Francis Hutchinson, doctor of medicine. By this gentleman was published, from the original manuscript of his father, "a system of Moral Philosophy, in three books," by Francis Hutchinson, L. L. D. at Glasgow, 1755, in two volumes, 4to.

HUTCHINSON (John), a philosophical writer, whose notions have made no inconsiderable noise in the world, was born in 1674. He served the duke of Somerset in the capacity of steward; and in the course of his travels from place to place employed himself in...
Colbert, being informed of his merit, settled a considerable pension upon him to engage him to fix at Paris; to which Mr Huygens consented, and paid there, from the year 1666 to 1681, where he was admitted a member of the academy of Sciences. He loved a quiet and studious manner of life, and frequently retired into the country to avoid interruption, but did not contrive that moroseness which is so frequently the effect of solitude and retirement. He was the first who discovered Saturn's ring, and a third satellite, belonging to that planet, which had hitherto escaped the eyes of astronomers. He discovered the means of rendering clocks exact, by applying the pendulum, and rendering all its vibrations equal by the cycloid. He brought telescopes to perfection, made many other useful discoveries, and died at the Hague in 1695. He was the author of several excellent works. The principal of these are contained in two collections; the first of which was printed at Leyden in 1682, in quarto, under the title of Opera variæ; and the second at Amsterdam in 1728, in two volumes quarto, intituled Opera reliqua.

Huygens, the name of several Dutch painters; the most celebrated of whom was John, whose subjects were flowers, fruit, and landscapes. According to Mr Pilkington, no artist has surpassed all who have ever painted in that style; and his works excite as much surprise by their finishing as they excite admiration by their truth. He was born at Amsterdam in 1682, and was a disciple of Justus van Huysum his father. He set out in his profession with a most commendable principle, not so much to paint for the acquisition of money as of fame; and therefore he did not aim at expedition, but at delicacy, and, if possible, to arrive at perfection in his art. Having attentively studied the pictures of Mignon, and all other artists of distinction who had painted in his own style, he tried which manner would soonest lead him to imitate the lightness and singular beauty of each flower, fruit, or plant, and then fixed on a manner peculiar to himself, which seems almost inimitable. His pictures are finished with inconceivable truth; for he painted every thing after nature, and was so singularly exact, as to watch even the hour of the day in which his model appeared in its greatest perfection. By the judicious he was accounted to paint with greater freedom than Mignon or Brueghel; with more tenderneſs and naturer than Mario da Fiori, Michael Angelo di Campidoglio, or Segers; with more mellowness then De Heem; and greater force of colouring than Bats. His reputation rose to such a height at last, that he fixed immoderate prices on his works, so that none but princes, or those of princely fortunes, could pretend to be his purchasers. Six of his paintings were sold at public sale in Holland for prices that were almost incredible. One of them, a flower piece, for fourteen hundred and fifty guilders; a fruit piece for a thousand and five guilders; and the smaller pictures for nine hundred. The vaft sums which van Huysum received for his works, caused him to redouble his endeavours to excel; no person was admitted into his room while he was painting, not even his brothers; and his method of mixing the tints, and preferring the lute of his colours, was an imperceptible secret, which he never would
HUY [793]

HYACINTH, in natural History, a genus of pellucid gems, whose colour is red with an admixture of yellow.

The hyacinth, though less striking to the eye than any other red gem, is not without its beauty in the finest specimens. It is found of various sizes, from that of a pin's head to the third of an inch in diameter. They are harder than quartz-crystals; transparent, and formed into prisms pointed at both ends. Their points are always regular with regard to the number of facets; being four on each face, but the latter (fellow); the sides of the main body are also very uncertain, in regard both to their number and shape: being found of four, five, six, seven, and sometimes of eight sides; sometimes being so compressed as almost to resemble the face of a spherical facetted garnet. Sometimes they are of a dodecaedral form like the garnet, but with more obtuse angles. The specific gravity of the hyacinth, according to Dutens, is 2.631; but Rome de L'ille says that Briton found it to be 3.6773; and the European hyacinths to be 3.760.

The hyacinth, as well as all other gems, is divided into oriental and occidental; the former being very hard and brilliant, so that they are frequently ranked among the topazes; but when soft, they are supposed to belong to the garnet kind, as mentioned under that article. The hyacinths, however, may generally be distinguished from the garnets by losing their colour in the fire, becoming white, and not melting. The is a kind of a yellow-brown hyacinth, resembling the colour of honey, which is distinguished from the rest by the remarkable property of not being electrical, and being likewise inferior in hardness.

Our jewellers allow all those gems to be hyacinths or jacinths that are of a dull hardness with the mixed colour above-mentioned; and as they are of very different beauty and value in their several degrees and mixture of colours, they divide them into four kinds; three of which they call hyacinths, but the fourth, very improperly, a ruby. 1. When the stone is in its most perfect state, and of a pure and bright flame-colour, neither the red nor the yellow prevailing, in this state they call it hyacinth la belle. 2. When it has an over-proportion of the red, and of that a duller colour than the fine high red in the former, and the yellow that appears in a faint degree in it, is not a fine, bright, and clear, but a dusky brownish yellow, then they call it the faffron hyacinth. 3. Such stones as are of a dead whitish yellow, with a very small proportion of red in them, they call amber-hyacinths. 4. When the stone is of a fine deep red, blended with a dusky and very deep yellow, they call it a rubellite.
A genus of the monogynia order, belonging to the hexandria class of plants; and in the natural method ranking under the 40th order, Cynanthes. The corolla is campanulated, and there are three melleriferous pores at the top of the germen. There are six species; of which the most remarkable is the orientalis, or eastern hyacinth. Of this there are a great number of varieties, amounting to some hundreds, each of which differs from the rest in some respect or other. This plant has a large, purplish, bulbous root, sending up several narrow erect leaves eight or ten inches long; the flower stalk is upright, robust, and succulent, from 10 to 15 inches in height: adorned upward with many large funnel or bell-shaped flowers, swelling at the base, and cut half way into six parts; collected into a large pyramidal spike of different colours in the varieties; flowering in April or May.

These plants are cultivated with the greatest success in Holland, from whence great numbers are annually imported into Britain. Each variety is by the florists distinguished either by the name of the place where first raised, or by the name which they raised them, or the names of illustrious personages, as of kings, generals, poets, and celebrated ancient historians, gods, goddesses, &c. They are sold by all the feed-dealers. The prices arc from three pence per root to five or ten pounds or more; and some varieties are in such high esteem among the florists, that 20l. or 30l. will be given for a single bulb. They are hardy, and will prosper anywhere, though the fine kinds require a little shelter during the winter. They may be propagated either by seeds or off-sets from the roots.

The properties of a good oriental hyacinth are, a stem perfectly upright, of moderate length, and of strong and well-proportioned stem, it will sustain the weight of the flowers without bending: the florets should be large, swelling below, expanded above, and numerous, 10 or 15 at least, but are often 20 or 30 in number; and should be placed equally round the stem, the pedicles on which they grow longer below than above, diminishing gradually in length upward in such a manner as to represent a pyramid, and each pedicle sufficiently strong to support the flower without drooping. The curious in these plants are careful never to plant the fine sorts two years together in the same bed of earth; for by planting them every year in a fresh bed, the beauty of the flowers is greatly improved.

Hyacinthia, in antiquity, feasts held at Sparta, in honour of Apollo, and in commemoration of his favourite Hyacinth.

This Hyacinth was the son of Amyclas king of Sparta, and was beloved both by Apollo and Zephyrus. The youth showing most inclination to the former, his rival grew jealous; and, to be revenged, one day as Apollo was playing at the discus, i.e. quoits, with Hyacinth, Zephyrus turned the direction of a quoit which Apollo had pitched full upon the head of the unhappy Hyacinth, who fell down dead. Apollo then transformed him into a flower of the same name; and as a farther token of respect, they say, commanded this feast. The Hyacinthia lasted three days; the first and third whereof were employed in bewailing the death of Hyacinth, and the second in feasting and rejoicing.

Hyades, in astronomy, are seven stars in the bull's head, famous among the poets for the bringing of rain. Whence their name Thades, from the Greeks von "to rain." The principal of them is in the left eye, by the Arabs called aldebaran.

The poets feign them the daughters of Atlas and Pleione. Their brother Hyas being torn to pieces by a lionsa, they wept his death with such vehemence, that the gods, in compassion to them, translated them into heaven, and placed them in the bull's forehead, where they continue to weep; this constellation being suppos'd to presage rain. Others represent the Hyades as Bacchus's nurses; and the same with the Dode昂ides, who fearing the resentment of Juno, and flying from the cruelty of king Lycurgus, were translated by Jupiter into heaven.

Hyæna, in zoology, see CAINI.

Hyænius, TAPIS, in natural history, the name of a fome laid to be found in the eyes of the hyæna. Pliny tells us, that these creatures were in old times hunted and destroyed for the sake of these stones, and that it was suppos'd they gave a man the gift of prophecy by being put under his tongue.

Hybernaculum, in botany, winter-quarters; defined by Linnaeus to be part of the plant which defends the embryo herb from injuries during the severities of the winter. See BULB and GEMA.

Hybla (anc. geog.) of Megara; which last name it took from the Megareans, who led thither a cow called all hybla Parsa, and Galea. In Strabo's time Megara was extinct, but the name hybla remained on account of its excellent honey made from it. It was situate on the east coast of Sicily, between Syracuse and the Leontines. Galeae, and Megarenses, the names of the people, who were of a prophetic spirit, being the descendants of Galeus the son of Apollo. Hybœus the epithet. The Hybœus colles, small eminences at the springs of the Albus near this place, were famous for their variety of flowers, especially thyme; the honey gathered from which was by the ancients reckoned the best in the world, excepting that of Hymettus in Attica. By the moderns it was called Mal Poffi, for the same reason, namely, on account of its excellent honey, and extraordinary fertility, till it was overwhelmed by the lava of Etna; and having then become totally barren, its name was changed to Mal Paffi. In a second eruption, by a shower of ashes from the mountain, it soon resumed its ancient beauty and fertility, and for many years was called Bel Paffi: and last of all, in the year 1669, it was again laid under an ocean of fire, and reduced to the most wretched sterility; since which time it is again known by
HYDRA, by the appellation of Mai Laeffi. However, the lava in its course over this beautiful country has left several little islands or hillocks, just sufficient to show what it formerly was. These make a singular appearance in all the bough of the most luxuriant vegetation, surrounded and rendered almost inaccessible by large fields of black and rugged lava.

Hydra Major, (anc. geog.), was situated in the track lying between mount Atina and the river Syme-thus. In Paufanias's time defolate.

Hydra Minor, or Heraea, (anc. geog.), an inland town of Sicily, situated between the rivers Oanus and Hermiumis; now Racusa.

HYBRIDA PLANTA, a monstrous production of two different species of plants, analogous to a mule among animals. The seeds of hybrid plants will not propagate.

HYBRISTICA, (of wound injury), in antiquity, a solemn feast held among the Greeks, with sacrifices and other ceremonies; at which the men attended in the apparel of women, and the women in that of men, to do honour to Venus in quality either of a god or a goddess, or both. Or, according to the account given by others, the hybristica was a feast celebrated at Argos, wherein the women being drest like men, inftulted their husbands, and treated them with marks of superiority, in the memory of the Argian dames having aeciently defended their country with singular courage against Cleomenes and Demosthenes.

Plutarch speaks of this feast in his treatise of the great actions of women. The name, he observes, signifies infamy; which is well accommodated to the occasion, wherein the women strutted about in men's clothes, while the men were obliged to dangle in petticoats.

HYDATIDES, in medicine, little transparent vesicles or bladders full of water, sometimes found solitary, and sometimes in clusters, upon the liver and various other parts, especially in hydroptic cases.

HYDATOSCOPIA, called also HYDROMANCY, a kind of divination or method of foretelling future events by water.

HYDE (Edward), earl of Clarendon, and lord high chancellor of England, was defended from an ancient family in Chefield, and born at Dinton near Hindon, in Wilthire, in 1608. He was entered of Magdalenhall, Oxford, where, in 1625, he took the degree of A.B. and afterwards studied the law in the Middle-Temple. In the parliament which began at Welfinister April 10, 1649, he served for Wotton-Baft in Wiltshire. But that parliament being soon after dissolved, he was chosen for Saltrai in Cornwall in the long parliament. His abilities were much taken notice of, and he was employed in several committees to examine into divers grievances; but at last being dissatisfied with the proceedings in the parliament, he retired to the king, and was made chancellor of the exchequer, a privy-councillor, and knight. Upon the declining of the king's cause, he went to France, whereafter the death of king Charles I. he was sworn of the privy council to Charles II. In 1649, he and the lord Cottington were sent ambassadors extraordinary to the king of Spain, and in 1657 he was confirmed lord high chancellor of England. The year before the restoration, the duke of York fell in love with Mrs Anne Hyde, the lord chancellor's eldest daughter, but carefully concealed the amour both from the king and chancellor. As it was by a promise of marriage, however, that he had gained upon her, he was afterwards induced to fulfil his engagement, and the ceremony was performed after the restoration. Upon the restoration, her father was chosen chancellor of the university of Oxford; and soon after created baron Hindon, in Wilthire, viscount Cornbury in Oxfordshire, and earl of Clarendon in Wilthire; and on the death of Henry lord Falkland, was made lord lieutenant of Oxfordshire. He took care neither to load the king's prerogative, nor encroach upon the liberties of the people; and therefore would not yet abide the petition of right, nor endeavour to raise the fars-chamber or high-commission courts again; nor did he attempt to repeal the bill for triennial parliaments; and when he might have obtained two millions for a standing revenue, he asked but one million two hundred thousand pounds per annum, which he thought would still put the king upon the necessity of having recourse to his parliament. In this just conduct he is said to have been influenced by the following incident, which happened some years before. When he first began to grow eminent in the law he went down to visit his father in Wilthire; who, one day as they were walking in the fields together, observed to him, that men of his profession were apt to stretch the prerogative too far, and to injure liberty; but charged him, if ever he came to any eminence in his profession, never to sacrifice the laws and liberty of his country to his own interest or the will of his prince; he repeated his advice twice; and immediately falling into a fit of an apoplexy, died in a few hours: and this circumstance had a lasting influence upon him. In 1662, he opposed a proposal for the king's marriage with the infanta of Portugal, and the sale of Dunkirk; however, the following year, articles of high treason were exhibited against him by the earl of Birtolf; but they were rejected by the house of lords. In 1664, he opposed the war with Holland. In August 1667, he was removed from his post of lord chancellor; and in November following impeached of high treason and other crimes and misdemeanors by the house of commons: upon which he retired into France, when a bill was passed for banishing him from the king's dominions. See BRITAIN, vol. 211, 217. He resided at Rouen in Normandy; and dying there in 1674, his body was brought to England and interred in Weitminister abbey. He wrote, 1. A history of the rebellion, 3 vols folio, and 64th the author; a second part of which was lately bequeathed to the public by his lordship's descendant the late lord Hyde and Cornbury. 2. A letter to the duke of York, and another to the duchess of York, upon occasion of their embracing the Roman religion. 3. An answer to Hobbes's Leviathan. 4. A history of the rebellion and civil wars in Ireland, octavo, and some other works.

The reverend Mr Granger, in his Biographical History of England, observes, that "the virtue of the earl of Clarendon was of too stubborn a nature for the age of Charles II. Could he have been content (says he) to have enslaved millions, he might have been a monarch than an unprincely king. But he did not only look upon himself as the guardian of the laws and liberties of his country, but had also a pride..."
in his nature that was above vice; and chose rather to be a victim himself, than sacrifice his integrity. He had only one part to act, which was that of an honest man. His enemies allowed themselves a much greater latitude; they loaded him with calumnies, blamed him even for their own errors and misfortunes, and helped to ruin him by such buffooneries as he despised. He was a much greater, perhaps a much happier, man, alone in exile, than Charles the Second upon his throne."

And the following character of this nobleman is given by Mr Walpole. "Sir Edward Hyde (says he), who opposed an arbitrary court, and embraced the party of an afflicted one, must be allowed to have acted conscientiously. A better proof was his behaviour on the restoration, when the torrent of an infatuated nation intreated the king and his minister to be absolute. Had Clarendon sought nothing but power, his power had never ceased. A corrupted court and a blinded populace were left the causes of the chancellor's fall, than an ungrateful king, who could not pardon his lordship's having refused to accept for him the slavery of his country. Like justice herself, he held the balance between the necessary power of the supreme magistrate and the interests of the people. This never-dying obligation his contemporaries were taught to overlook and clamour against, till they removed the only man, who, if he could, would have corrected his master's evil government. Almost every virtue of a minister made his character venerable. As an historian, he seems more exceptionable. His majesty and eloquence, his power of painting characters, his knowledge of his subject, rank him in the first class of writers; yet he has both great and little faults. Of the latter, his stories of ghosts and omens are not to be defended. His capital fault is his whole work being a laboured justification of king Charles. If he relates faults, some palliating epithets always glide in; and he has the art of breaking his darkest shades with gleams of light that take off all impression of horror. One may pronounce on my lord Clarendon, in his double capacity of statesman and historian, that he acted for liberty, but wrote for prerogative."

Hyde (Dr Thomas), professor of Arabic at Oxford, and one of the most learned writers of the 17th century, was born in 1626; and studied first at Cambridge, and afterwards at Oxford. Before he was 18 years of age, he was sent from Cambridge to London to assist Mr Brian Walton in the great work of the Polyglot Bible; and about that period undertook to transcribe the Persian Pentateuch out of the Hebrew characters, which archbishop Usher, who well knew the difficulty of the undertaking, pronounced to be an impossible task unless to a native Persian. After he had happily succeeded in this, he assisted in correcting several parts of Mr Walton's work, for which he was perfectly qualified. He was made archdeacon of Gloucester, canon of Christ-church, rector of the Bodleian library, and professor both of Hebrew and Arabic, in the university of Oxford. He was interpreter and secretary of the Oriental languages, during the reigns of Charles II. James II. and William III.; and was perfectly qualified to fill this post, as he could converse in the languages which he understood. There never was an Englishman in his situation of life who made so great a progress; but his mind was so engrossed by his beloved counsels, that he is said to have been but ill qualified to appear to any advantage in common conversation. All his learned works (the very catalogue of which, as observed by Ath. Wood, is a curiosity), his Religio Veneris Perfanum is most celebrated. Dr Gregory Sharpe, the late learned and ingenious master of the Temple, has collected several of his pieces formerly printed, and republished them, with some additional dissertations, and his life prefixed, in two elegant volumes quarto. This great man died on the 18th of February, 1702. Among his other works are, 1. A Latin translation of Ulug Beg's observations on the longitude and latitude of the fixed stars; and, 2. A catalogue of the printed books in the Bodleian library.

Hydnum, in botany: a genus of the natural order of fungi, belonging to the cryptogamia class of plants. The fungus is echinata or prickly on the under side. One of the species, named the Imbricata, is a native of Britain, and is found in woods. It hath a convex hat, tilled, standing on a smooth pillar, of a pale fleck-colour, with white prickles. It is eaten in Italy, and is said to be of a very delicate taste.

Hydra, in fabulous history, a serpent in the marsh of Lerna, in Peloponnesus, represented by the poets with many heads, one of which being cut off, another immediately succeeded in its place, unless the wound was instantly cauterized. Hercules attacked this monster; and having caused Iolaus to hew down wood for flaming brands, as he cut off the heads he applied the brands to the wound, by which means he destroyed the Hydra.

This Hydra with many heads is said to have been only a multitude of serpents, which infested the marshes of Lerna near Mycenae, and which seemed to multiply, as they were destroyed. Hercules, with the assistance of his companions, cleared the country of them, by burning the reeds in which they lodged.

Hydra, in astronomy, a southern constellation, consisting of a number of stars, imagined to represent a water serpent. The stars in Hydra, in Ptolemy's catalogue, are twenty-seven; in Tycho's, nineteen; in Hevelius's, thirty-one.

Hydra, in zoology; a genus of the order of zoophyta, belonging to the class of vermes. There are several species, known by the general name of polypes. See Polyce, and Animalcules, p. 24, &c.

Hydrogogues, among physicians, remedies which evacuate a large quantity of water in droppings. The word is formed of ὑδωρ water, and ἐγγραφαί ἔρωμα axis to draw or lead; but the application of the term proceeds upon a mistaken supposition, that every purgative had some particular humour which it would evacuate, and which could not be evacuated by any other. It is now, however, discovered, that all strong purgatives will prove hydrogogues, if given in large quantity, or in weak compositions. The principal medicines recommended as hydrogogues, are the juice of elder, the root of iris, foldanella, melocus, jaalap, &c.

Hydrangea, in botany; a genus of the digynae order, belonging to the decandria class of plants; and in the natural method ranking under the 15th order, Scutelentae. The capsule is bilocular, bifurcated, and
HYDRASTIS, in botany: A genus of the Polygonaceae order, belonging to the Polygonum class of plants; and in the natural method ranking with those of which the order is doubtful. There is neither calyx nor pomegranate acini.

HYDRASTIS, in surgery: A species of hernia, wherein the intestines descend into the peritoneum, together with a quantity of water.

HYDROCELE, in surgery: Denotes any hernia arising from water; but is particularly used for such a one of the peritoneum, which sometimes grows to the size of one's head, without pain, but exceedingly troublesome to the patient. See Surgery.

HYDROCEPHALUS, a preternatural dilatation of the head to an uncommon size by a stagnation and extravasation of the lymph; which, when collected in the intide of the cranium, is then termed internal; as that collected on the outside is termed external. See (the Index subjoined) Medicine.

HYDROCHARIS, the little water-lily: A genus of the ammoea order, belonging to the diocia class of plants; and in the natural method ranking under the first order, Palmae. The epaule of the male is divided; the calyx triloculate; the corolla trilobulate; the three inferior filaments fllliferous. The female calyx triloculate; the corolla trilobulate; the styles six; the capsule six cells, and is polyspermous inferior. There is only one species, native of Britain, growing in open streams and wet ditches. It hath kidney-shaped leaves, thick, smooth, and of a brownish green colour, with white blossoms. There is a variety with double flowers of a very sweet smell.

HYDROCOTYLE, water-navelwort: A genus of the digynia order, belonging to the pentandria class of plants; and in the natural method ranking under the fourth order, Umbellatae. The umbel is simple; the involucre ternaphyllous; the petals entire; the seeds are half round and compressed. There are several species, none of which are ever cultivated in gardens. One of them, a native of Britain, growing in marshy grounds, is supposed by the farmers to occasion the rot in sheep. The leaves have central leaf-flutes, with about five flowers in a rudicle; the petals are of a reddish white.

HYDROGRAPHY, the art of measuring and describing the sea, rivers, canals, lakes, &c. With regard to the sea, it gives an account of its tides, counter-tides, soundings, bays, gulfs, creeks, &c.; as also of the rocks, islands, sands, flats, promontories, harbours; the distance and bearing of one port from another; with every thing that is remarkable, whether out at sea or on the coast.

HYDROEA, in botany: A genus of the digynia order, belonging to the pentandria class of plants; and in the natural method ranking with those of which the order is doubtful. The calyx is pentaphyllous; the corolla rotaceous; the filaments at the base are cordate; the capsule is bilocular and bivalved.

HYDROMANCY, a method of divination by water, practised by the ancients. See DIVINATION, s. 7.

HYDROMEL, honey diluted in nearly an equal weight of water. When this liquor has not fermented, it is called simple hydromel; and when it has undergone the spirituous fermentation, it is called the vinous hydromel or mead.

Honey, like all saccharine substances, vegetable or animal, is susceptible of fermentation in general, and particularly of the spirituous fermentation. To induce this fermentation, nothing is necessary but to dilute it sufficiently in water, and to leave this liquor exposed to a convenient degree of heat. To make good vinous hydromel or mead, the white, pure, and bated honey must be chosen; and this must be put into a kettle with more than its weight of water: part of this liquor must be evaporated by boiling, and the liquor scummed, till its consistence is such that a fresh egg shall be supported upon its surface without sinking more than half its thickness into the liquor: then the liquor is to be strained and poured through a funnel into a barrel: this barrel, which ought to be nearly full, must be exposed to a heat as equable as is possible, from 20 to 27 or 28 degrees of Mr Reaumur's thermometer, taking care that the bung-hole be slightly covered, but not closed. The phenomena of the spirituous fermentation will appear in this liquor, and will subsist during two or three months, according to the degree of heat; after which they will diminish and cease. During this fermentation, the barrel must be filled up occasionally with more of the same kind of liquor of honey, some of which ought to be kept apart on purpose to replace the liquor which flows out of the barrel in froth. When the fermentation ceases, and the liquor has become very vinous, the barrel is then to be put in a cellar and well closed. A year afterwards the mead will be fit to put into bottles. The vinous hydromel or mead is an agreeable kind of wine; nevertheless, it retains long a taste of honey, which is unpleasing to some persons; but this tinge is said to be entirely by keeping a very long time.

The spirituous fermentation of honey, as also that of sugar, and of the most of vinous liquors, when it is very saccharine, is generally more easily effected, requires more heat, and continues longer than that of ordinary wines made from the juice of grapes; and these vinous liquors always prefer a saccharine taste, which
Hydrometer, an instrument to measure the gravity, density, velocity, force, &c. of water and other fluids. See Hydrostatics, n° 13.

Though this instrument is incapable of determining the specific gravity of liquors with perfect accuracy, yet in the way of public business it has undoubtedly the advantage of every other, on account of the ease and expedition with which it can be used; and for this reason it has been adopted by government, in order to determine the strength of spirituous liquors. Its facility depends on the size of its stem. In the old arceometers the stem was made so large, that the volume of water displaced between its least and greatest immersions was equal to the whole difference of specific gravity between water and alcohol, or perhaps more; whence its scale of divisions must be very small, and could not give the specific gravity with much accuracy. On this account weights were introduced, by means of which the stem could be made smaller; each weight affording a new commencement of its scale; so that the size of the divisions on a given length was doubled, tripled, &c. as one or more weights were employed, the diameter of the stem being lefleded in the subduplicate proportion of the increased length of the divisions. This method, however, in our author’s opinion, has been carried to excess; and the following is recommended as a proper mean between these extremes, to determine the specific gravity of spirituous liquors to three places of decimals.

In this method the weight of water is supposed to be unity, or 1 with any number of cyphers annexed: “the whole compas of numbers, therefore, from rectified spirit to water, at 60 degrees of heat, would be the difference between 825, the weight of rectified spirit, and 1000 the weight of water, which is 175. To make allowance for the lightest spirit and heaviest water, however, at the common temperatures, the difference may be supposed 220. The item might, therefore, twenty of these divisions, and two ten weights would be sufficient for the whole. Hence the inconvenience of shifting the weights, which has always been complained of, would in a great measure be avoided: as people versant in that business would seldom err so far as to the whole amount of the difference previous to making any trial. Hence also the item may be made small enough, and the scale graduated to nicely as to make the instrument sufficiently accurate.

According to this arrangement, it would be proper to have the weights adapted to the hydrometer marked with the different specific gravities which they are intended to indicate. Zero at the top of the item without a weight being supposed to mean 820, and 20 at the bottom to signify 820, which number the first weight would carry; the successive weights being marked, 840, 860, &c. and the division on the stem cut by the fluid under trial, would be a number always to be added to that on the weight; the sum of the two showing the true specific gravity. The weights should undoubtedly be made to apply on the top of the stem, so as never to come in contact with the liquor; and in using the hydrometer, its stem should always be pressed down lower than the place at which it will ultimately rest, that by being wetted it may occasion no resistance to the fluid. The instrument itself should be of as regular a shape and with as few inequalities as possible, that all impediments to its motions may be avoided.

Hydromphalus, in medicine and surgery, a tumor in the navel, arising from a collection of water.

Hydrophanes, Occlus Mundi, or Lapit Mutabilis, a kind of precious stone highly esteemed among the ancients, but little known to the moderns till Mr. Boyle made his observations upon it. Its specific gravity is about 2.048; its colour of an opaque whitish brown; it is not soluble in acids nor affected by alkalis, but is easily cut and polished. Sometimes it gives fire with steel, sometimes not. It is infusible per se; but when urged by a blow-pipe, changes to a brownish brittle sub stance. It is found in beds over the opals in Hungary, Silesia, and Saxony, and over the chaledonies and agates in Iceland. These stones in general are either of a yellowish green, milky grey, or of a yellow like that of amber.

The most remarkable property of this stone is, that it becomes transparent by mere infusion in any aqueous fluid; but gradually returns its opacity when dry. There are three of these stones in the British museum at London; the largest of them about the size of a cherry stone, but of an oval form. It is opaque and coloured like a common yellow pea; it may be scratched, though not without difficulty, by a common knife, notwithstanding which it seems to leave a mark upon glass. It does not ferment with nitrous acid. When it has lain some hours in water, it becomes transparent, and of a yellow amber colour. The change begins soon after the immersion, and at one end in form of a little spot; but in a small one of the same kind, the transparency begins round the edges. By degrees the spot increases, until the whole stone becomes uniformly clear throughout: when out of the water it regains its transparency, first at one end, and then gradually over the remainder, until the whole becomes opaque; which change happens in less time than it takes to become transparent. This change is not entirely peculiar to the hydrophanes. Bergman informs us, that some fritiates produce the same effect; and M. Magellan, that the crust of chaledonies and agates frequently produce the same appearance.

Meffrs. Bruckman and Veltheim were the first who particularly inquired into the nature of this stone, and investigated its properties, many of which were brought to light by their endeavours. Their account is to the following purpose. As soon as the stone is put into water, it exhales a mufly smell, several air-bubbles arise, and it becomes gradually transparent. Some of the stones become so clear as soon as they are thoroughly transparent, others have a more or less deep yellow colour; some acquire a beautiful ruby colour; and, lastly, others gain a fine colour of mother-of-pearl, or of a bluish opal. Whatever be the colour of the liquor in which the hydrophanes is immersed, it gains only its usual degree of transparency with the colour peculiar to it. When we look at it in the moist state,
we perceive a luminous point, varying its situation as the position of the eye is altered. This luminous point is not, according to Mr. Bruckman, the immediate image of the sun, but a reflection of that image reflected in the substance of the stone itself, a phenomenon which probably gave rise to the name of oculus mundi.

Mr. Bruckman left a piece of this stone weighing 35 grains seven hours in water, the space requisite to make it perfectly transparent; and in that time he found that it had gained three grains in weight. The hydrophanes becomes much sooner transparent when put into hot water, and the same happens if it be dipped in a very dilute acid, or rather a very dilute solution of alkali. When dipped in oil of vitriol, it becomes very quickly transparent, and will continue so, on account of the strong action of that acid for moisture, which takes as much from the atmosphere as is necessary to keep the stone transparent; but its opacity will return if it be dipped in an alkaline liquor and afterwards dried.

HYDROPHOBIA, an aversion or dread of water: a terrible symptom of the rabies canina; and which has likewise been found to take place in violent inflammations of the stomach and in hysteric fits. See MEDICINE-INDEX.

HYDROPHYLACIA, a word used by Kircher and some others who have written in the same system, to express those great reservoirs of water which he places in the Alps and other mountains for the supply of rivers which run through the several lower countries. This he makes to be one of the great uses of mountains in the economy of the universe.

HYDROPHYLAX, in botany: A genus of the monogynia order, belonging to the tetrandia class of plants. The calyx is tetra-partite; the corolla funnel-shaped; the fruit two-edged and one seeded.

HYDROPHYLLUM, WATER-LEAF: A genus of the monogynia order, belonging to the pentandria class of plants; and in the natural method ranking with those of which the order is doubtful. The corolla is campanulate, with five melliferous longitudinal striae on the inside; the stigma is bised; the capsule globose and bivalved. There is only one species, viz. the Virginianum, or water-leaf of Morinus. It grows naturally in Canada and many other parts of America on moist spongy ground. The root is composed of many strong sappy fibres, from which arise many leaves with foot-stalks five or six inches long, jagged into three, five, or seven lobes, almost to the midrib, indented on their edges. The flowers are produced in loose clusters hanging downward, are bell-shaped, and of a dirty white colour. It may be propagated by parting the roots; which ought to be done in autumn, that the plants may be well rooted before spring, otherwise they will require a great deal of water.

HYDROPS, in medicine, the same with DROPSY.

HYDROSCOPE, an instrument anciently used for the measuring of time.

The hydroscope was a kind of water-clock, consisting of a cylindrical tube, conical at bottom: the cylinder was graduated, or marked out with divisions, to which the top of the water becoming successively contiguous, as it trickled out at the vertex of the cone, pointed out the hour. See HYDROSTATICS, sect. vi.
DIRECTIONS FOR PLACING THE PLATES OF VOL. VIII.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCXXII to face</td>
<td>30</td>
<td>CCXXXIX to face</td>
<td>448</td>
</tr>
<tr>
<td>CCXXXIII</td>
<td>116</td>
<td>CCXXX</td>
<td>456</td>
</tr>
<tr>
<td>CCXXXIV</td>
<td>202</td>
<td>CCXXXI</td>
<td>460</td>
</tr>
<tr>
<td>CCXXXV</td>
<td>202</td>
<td>CCXXXII</td>
<td>464</td>
</tr>
<tr>
<td>CCXXXVI</td>
<td>318</td>
<td>CCXXXIII</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCXXXIV</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCXXXV</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCXXXVI</td>
<td>706</td>
</tr>
<tr>
<td>CCXXVII</td>
<td>440</td>
<td>CCXXXVII</td>
<td>561</td>
</tr>
<tr>
<td>CCXXVIII</td>
<td>444</td>
<td>(Historical Chart referred to p. 561, col. r.)</td>
<td>600</td>
</tr>
</tbody>
</table>

(In all sixteen Plates.)