ENCYCLOPÆDIA;
OR, A
DICTIONARY
OF
ARTS, SCIENCES,
AND
MISCELLANEOUS LITERATURE;
Constructed on a Plan,
BY WHICH
THE DIFFERENT SCIENCES AND ARTS.
Are digested into the Form of distinct
TREATISES OR SYSTEMS,
COMPREHENDING
THE HISTORY, THEORY, and PRACTICE, of each,
According to the Latest Discoveries and Improvements;
AND FULL EXPLANATIONS GIVEN OF THE
VARIOUS DETACHED PARTS OF KNOWLEDGE,
WHETHER RELATING TO
NATURAL and Artificial Objects, or to Matters Ecclesiastical,
Civil, Military, Commercial, &c.
Including ELUCIDATIONS of the most important Topics relative to RELIGION, MORALS, MANNERS,
and the Oeconomy of Life.
TOGETHER WITH
A Description of all the Countries, Cities, principal Mountains, Seas, Rivers, &c.
throughout the World;
A General History, Ancient and Modern, of the different Empires, Kingdoms, and States;
And
An Account of the Lives of the most Eminent Persons in every Nation,
from the earliest ages down to the present times.

Compiled from the writings of the best authors in several languages; the most approved Dictionaries, as well of general science as of its particular branches; the Transactions, Journals, and Memoirs, of various Learned Societies, the MS. Lectures of Eminent Professors on different sciences; and a variety of Original Materials, furnished by an Extensive Correspondence.

THE FIRST AMERICAN EDITION, IN EIGHTEEN VOLUMES, GREATLY IMPROVED.

ILLUSTRATED WITH FIVE HUNDRED AND FORTY-TWO COPPERPLATES.

VOL. XI. MED—MID

INDICI DISCANT, ET AMEN MEMINISE PERITI.

PHILADELPHIA:
PRINTED BY THOMAS DOBSON, AT THE STONE-HOUSE, NO 41, SOUTH SECOND-STREET.
M. DCC. XCIII.

[Copy-Right secured according to law.]
MEDALS.

MEDAL, denotes a piece of metal in the form of coin, such as was either current money among the ancients, or struck on any particular occasion, in order to preserve to posterity the portrait of some great person, or the memory of some illustrious action. Scaliger derives the word medal from the Arabic metalla; a sort of coin with a human head upon it. But the opinion of Vossius is generally received; viz. that it comes from metalla, "metal," of which subsistance medals are commonly made.

SECT. I. Utility of Medals in History, and various other Sciences.

There are few studies of more importance to history than that of medals: the sole evidence we can have of the veracity of an historian being only such collateral documents as are evident to every body, and cannot be falsified. In modern times, these are found in public memoirs, instructions to ambassadors, and plate papers of various kinds. Such memorials, however, are subject to various accidents, and besides commonly remain in the countries where they are first published, and cannot therefore give to the world at large that perfect and entire satisfaction which ought to be derived from genuine history; so that more durable and widely diffused monuments are still to be wished for. Such are public buildings, institutions, and statutes; but these, excepting a few instances of the two last, are always confined to particular countries: so that medals alone remain as infallible documents of truth, capable of being diffused over all countries in the world, and of remaining through the latest ages.

The first who showed the importance of medals in ascertaining the dates of events, in ancient history by means of medals, was Vaillant, in his History of the Kings of Syria, printed at Paris in 1681. By medals alone, he has been enabled to fix the chronology and important events of history, in the three most ancient kingdoms of the world, viz. Egypt, Syria, and Persia. Many coins have been discovered since his time, which confirm the accounts he has given. He was followed in this method by Father Hardouin, though with less success. Hardouin's best work is his Hierothesia, or Series of Successors to Herof king of Judaea. The same plan was pursued by Noris, in his learned Treatise on the Syro-Macedonian princes, and by Bayer in his History of Othoene, as well as by Frolich, in a work entitled Anales Regum et Rerum Syria, Vien. 1754, and another named Kevenhullers Regum veterum &c., Numismata Anecdotata auctore Perrara, Vien. 1752, 4to, of which Frolich was properly the author. Corbin and Cary likewise published works of a similar nature; the former in 1744, De Minisari, a torumque Armeia Regum, Nummis, &c.; the latter 1753, Histoires des Rois de Thessalie, et du Bosphore Commelin, eclaircie par les Medailles.

The study of the Greek coins does not show the dates of events, though it illustrates the chronology Greece of reigns. This defect, however, is abundantly supplied by those of Rome, which commonly mark the dates of the prince's consulship, the year of his tribunician power; giving also upon the reverse, the representation or poetical symbol of some grand event. The year of the tribunician power is sometimes imagined by antiquaries to be synonymous with that of the emperor's reign: but this is not the case; and Mr. Pinkerton is at some pains to set them right in this respect. He finds fault with Julius Caesar, when he assumed the sovereign authority, for taking upon himself the title of Perpetual Dictator, as being synonymous with that of king or absolute governor, which the Romans abhorred. "He ought," says our author, "under the disguise of some supreme magistrate of annual election, to have lured the people with a dream, that they might terminate his power when they pleased; or that he himself would resign it, when the necessities of state which had required his temporary elevation had subsided." To this error Mr. Pinkerton ascribes the abuse of the power, and commends the policy of Augustus, who, with fair inferior abilities, continued in possession of the most absolute authority as long as he lived. The tribune ship was an office of his annual election; and if put into the hands of any others than plebeians, must have been the supreme power of the state, as it belonged to that office to put a negative upon every public measure whatever. Augustus, being of senatorial rank, could not abuse this office; but he invested himself with the tribunician power, which had the advantage of appearing to be only a temporary supremacy, though in truth it was continued during his whole lifetime. Towards the end of his reign, he frequently assumed his defined succession, Tiberius, for his colleague, though in the beginning he had enjoyed it alone. This, with his artifice of resigning his power every ten years, and

Method used by Augustus to secure his power.

Various writers on medals.

Vol. X.
re-assuming it at the desire, as was pretended, of the Senate; secured his sovereignty as long as he lived.—His example was followed by his successors; so that most of them have the inscription Tribunicia Potestate upon their medals, with the date affixed to it thus. Tr. Ps. VII. Yet though this date generally implies the year of the emperor's reign, it sometimes happens that the emperor, by special favour from a former prince, had been endowed with this title before he came to the throne, as being the successor to that prince, of which we have already given an instance in Tiberius. Besides the tribunician power, the emperors very frequently enjoyed that of the consuls; and the date of their consulship is frequently re-affumed in their coins.

The office of Pontifex Maximus was likewise assumed by the Roman emperors in order to secure themselves in their authority; which, Mr Pinkerton observes, was one of the most efficacious arts by which they could have fallen upon. In the Greek heroic times (says he), king and priest were carefully united in one person; and when sovereigns arose in Denmark and Sweden, the same plan was followed, as appears from Snorro, and other writers. Nothing could lend more security to the person of the monarch than an office of supreme sanctity, which also confirmed his power by all the terrors of superstition. Even the Roman Catholic clergy, according to Mr Addison, are chiefly impressed with the idea of their ruins being now existing; so that the uses of them to the architect are very considerable. To the connoisseur they are absolutely necessary; because in the fine arts, by them alone he is enabled to ascribe ancient buildings and statues to their proper persons, with multitudes of other points of knowledge which cannot be otherwise determined. The elucidations of obscure passages in ancient authors by means of medals, are so numerous and well known, that it is needless to insist upon them.

Mr Addison has treated the connexion between medals and poetry at considerable length; but Mr Pinkerton finds fault with him for preferring the Latin to the Greek poets. He observes also, that the knowledge of Greek medals is most necessary for a sculptor, and perhaps an architect; but an acquaintance with Latin ones is preferable for a poet, or perhaps a painter. The reason of this difference is, that the former generally have on the obverse the head of some god, god of gods, or goddess, of exquisite relief and workmanship; but the reverse seldom affords much fancy of symbol in the early Greek coins; and in the imperial Greek coins, is chiefly impressed with the temples of their deities. To a person of poetical imagination, however, the Roman coins afford the greatest entertainment, from the fine personifications and symbols to be found on their reverses; of which our author gives the following instances.

"Capitolinus (says he), in his life of Maximinus the Minor, is quite puzzled to know if Maximinus and Pulienus were two emperors, or two names for the same. Had he happened on any of those coins which bear M. CL. PULIENUS MAXIMUS AUG. he would have seen at once that Maximus was only another name for Pulienus."

Medals are useful in other sciences besides history. Use of medals in geography. In geography, we find the situation of towns determined by their vicinity to some noted river, mountain, &c. Thus, MAINITAN XIPHIA shows that Magnesia was situated near Mount Sipylos. In like manner, it is shown from a medal, that Ephesus stood on the river Cayster; and there is extant a medal, bearing an inscription, which signifies Alexandria on the Scamander; a name given to Troy by Alexander the Great. The reverse has upon it the famous Apollo Smintheus of Homer. In natural history, also, medals are useful chiefly from the coins struck on the celebration of the secular games, in which the figures of various animals are preferred; and thus it may very often be determined whether any animal be known to the ancients or not. On many of the Greek medals are several uncommon plants and animals. Thus, on most of the medals of Cyrene is the figure of the celebrated Sphinx; and on those of Tyre, the shell-fish from which the famous Tyrian purple was procured. By means of medals, also, the exact delineations of ancient noble edifices are preferred, though not even a tincture of vestige of their ruins be now existing; so that the uses of them to the architect are very considerable. To the connoisseur they are absolutely necessary; because in the fine arts they enable him to ascribe ancient buildings and statues to their proper persons, with multitudes of other points of knowledge which cannot be otherwise determined. The elucidations of obscure passages in ancient authors by means of medals, are so numerous and well known, that it is needless to insist upon them.

Mr Addison has treated the connexion between medals and poetry at considerable length; but Mr Pinkerton finds fault with him for preferring the Latin to the Greek poets. He observes also, that the knowledge of Greek medals is most necessary for a sculptor, and perhaps an architect; but an acquaintance with Latin ones is preferable for a poet, or perhaps a painter. The reason of this difference is, that the former generally have on the obverse the head of some god, god of gods, or godess, of exquisite relief and workmanship; but the reverse seldom affords much fancy of symbol in the early Greek coins; and in the imperial Greek coins, is chiefly impressed with the temples of their deities. To a person of poetical imagination, however, the Roman coins afford the greatest entertainment, from the fine personifications and symbols to be found on their reverses; of which our author gives the following instances.

"Happiness has sometimes the caduceus, or wand of Mercury, which Cicero, 1. Offic. tells us was thought of by the Romans to procure every wish. She has in a gold coin of Severus heads of poppy, to express that our prime bles are in oblivion of misfortune."

"Hope is represented as a sprightly girl, walking quickly, and looking straight forward. With her left hand..."
M E D A L S.

SeCT. II.

Utility of them in History, &c.

Medals are useful as emblems of Patience and not of Hope. This perfonification, with some others, must have been very familiar to the ancients; for often in this and in a few more instances, no name, as Sals Aug., or the like, is inferred in the legend.

"Abundance is imagined as a fadate matron, with a cornucopia in her hands, of which she fatter the fruits, and does not hold up her cornucopia however, mean to supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"Security finds leaning upon a pillar, indicative of her being free from all designs and purfuits; and the polifhed cornucopia in her left hand, held upright, to indicate that she does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"The emperor Titus, having caufe to import a great supply of corn during a fcarcity at Rome, that supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"The emperor Titus, having caufe to import a great supply of corn during a fcarcity at Rome, that supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"The emperor Titus, having caufe to import a great supply of corn during a fcarcity at Rome, that supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"The emperor Titus, having caufe to import a great supply of corn during a fcarcity at Rome, that supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.

"The emperor Titus, having caufe to import a great supply of corn during a fcarcity at Rome, that supply, or the Annona, is finely represented as a fadate lady, with a fiifed cornucopia. In her left hand, which she holds upright, to indicate that the does not, however, mean to fatter it, as Abundance has a title to do, but to give it to Equity to deal out. This laft particular is known by her holding a little image of Equity, known by her features and bofa pura, or pointless spear, in her right hand, over a fallet filled with wheat. Behind the Annona is the prow of a ship decked with flowers, to imply that the corn was brought by tea (from Africa), and that the fhips had had a prosperous voyage. The beef poet in the world would not have given us a finer train of imagery; the beef painter would have been puzzled to express so much matter in so fmall a compaff.
Entertainment arising from the study of Medals.

Besides the purposes which the study of medals answers in the useful arts, a great variety of sources of entertainment are to be found in it. Mr Pinkerton observes, that the most barbarous nations are more pleased with the rudest efforts of art, than with the most admirable works of nature; and that in proportion as the powers of the mind are large and various, such are also the pleasures which it receives from those superlative productions of art, which can only be the offspring of vast genius. Hence works of art are agreeable both to the enlightened and to the ignorant.

The chief amusement, therefore, which attends the kind of personal acquaintance with the persons of whom played in the execution of them. It besides gives a fondness to such an object either in art or nature which is not represented upon some of them: and to the satisfaction arising from a view of these, we may likewise add that of beholding, in a lively manner, the history of manners; which, though very particular, may afford the little intercourse at that time carried on betwixt the different provinces also, greatly impeded any communication of knowledge to those who wrote histories; so that it is no wonder to find any small collections that might then have existed altogether unnoticed by them.

Almost as soon as any communication was opened between the Greeks and Romans, the latter treated the arts of the Greeks with all due respect and applause. Their coins were imitated by the Romans, and preferred in cabinets by the senators among their choicest treasures. Suetonius informs us, that on solemn occasions Augustus was accustomed to present his friends with medals of foreign states and princes, along with other valuable testimonies of his friendship. In a more advanced period of the Roman empire, however, individuals would undoubtedly form collections of coins peculiar to their own state; for Dr Stukely, in his Medallic History of Carausius, informs us, that a complete series of silver coins was lately found in Britain, containing all the emperors down to Carausius inclusively. From Banduri we also know, that certain Greek coins were specially preferred by the Romans; and it appears from their code, that ancient gold and silver coins were made use of instead of gems; to which distinction those of Sicily were particularly intituled. From the decline of the Roman empire till towards the end of the 5th centu-
History, almost all branches of literature were involved in darkness, and the medallic science among the rest. While the Christian dominion of Constantinople failed, indeed, almost all the arts and sciences may be said to have been kept within its own boundaries; though the Arabs and eastern nations had some arts and sciences of their own; but after the destruction of the imperial city by the Turks, the Greeks were once more compelled to become fathers to the European Science. Even before this time, indeed, some vestiges of a revival of the arts of Italy were observable. About the beginning of the 16th century, Hubertus Goltzius, a printer and engraver, travelled over most countries in Europe, searching for coins and medals, in order to publish books concerning them. From one of these works it appears, that there were then in the low countries 200 cabinets of medals; 175 in Germany, upwards of 300 in Italy, and 200 in France. It is probable, however, that there are now four times as many as in these countries, besides 500 in Britain; but we are not to imagine that all these were grand collections, for there are not above a dozen even in Italy; most of those just mentioned were of the class named collections of medals, containing from 100 to 1000 or 2000.

There are few countries, Italy excepted, in which a greater number of coins have been found than in Britain; though we are by no means well acquainted with the time when the study of them commenced. Mr Pinkerton supposes that Cambden was one of the first, if not the very first, British author who produced medals in his works, and who must have had a small collection. Speed's Chronicle, published in the 17th century, was illustrated with coins from Sir Robert Cotton's cabinet. Goulston's collection was purchased by Henry prince of Wales, brother to Charles I, to whom it left at his death. According to Joseph Scaliger, it consisted of 30,000 coins and medals. A collection 3500 coins was purchased by Archbishop Laud for £500, and given to the Bodleian library. Thomas earl of Arundel, earl-marshall of England, well known from the Arundelian table and other antiquities which he imported from Greece and Italy into Britain, had a rich cabinet of medals collected by Daniel Nillam. The dukes of Buckingham and Hamilton, Sir William Pagton, Sir Thomas Fantham of Wark, Sir Thomas Hammer, Ralph Sheldon, Esq; Mr Selden, &c. are enumerated by Evelyn as collectors of medals. Sir Robert Cotton, as well as his historian the earl of Clarendon, were also collectors. The king had a very fine cabinet; which, however, were dissolved and lost during the civil commotions. Oliver Cromwell had a small collection; and the cabinet of Charles II. is mentioned by Vaillant in the preface to his treatise intitled "Numism in Collect," &c. This branch of magnificence has not been much attended to by succeeding British monarchs; though his present majesty has a very good collection of ancient gold coins.

A great number of fine cabinets have been formed in Britain since the time of Evelyn. About the year 1750 Haym makes mention of those of the duke of Devonshire, the earls of Pembroke and Warwick,

16. The first among the moderns who began to study the medallic science was Petrarch. Being directed by the Emperor Charles IV. to compose a book containing the lives of eminent men, and to place him in the list, he replied, that he would do so whenever the emperor's life and conduct deserved it. In consequence of this conversation he afterwards sent the emperor a collection of gold and silver coins bearing the representations of eminent men, with an address suitable to his former declaration. A collection of coins was made in the next age by Alphonso king of Aragon; but though this monarch collected all that could be found throughout Italy, we know that there could not have been very many, as the whole were contained in an ivory cabinet, and carried always with him. A very considerable collection was made by Anthony Cardinal St Mark, nephew to Eugene IV. who ascended the pontifical chair in 1431; and soon after the grand museum at Florence was begun by Colimo de Medici, where a collection of ancient coins and medals had a place among other curiosities. Corvinus king of Hungary about the same time formed a noble collection of coins along with ancient manuscripts and other valuable relics of antiquity.

Mr Pinkerton considers Agnolo Polizziano, more commonly known by the name of Angelus Polizzianus as the first writer who added medals as vouchers of ancient orthography and customs. He cites different coins of the Medicean collection in his Medallae written about the year 1499. By means of a cabinet of medals collected by Maximilian I. emperor of Germany, Johannes Henschenius was enabled to publish a book of the lives of the emperors, enriched with their portraits, delineated from ancient coins. It is generally supposed that this book, which appeared in 1525, was the first work of the kind; but Labbe, in his Difficile de Numismatia, mentions another named Iudiciarum Imagines, by one Andreas Fulsius, printed in 1517, in which most of the portraits seem to be from medals. About the year 1512 also, Guillaume Duode, a French author, had written his treatise De Ajf, though it was not printed till many years afterwards. M. Grollier, treasurer of the French armies in Italy, during part of the 16th century, had a great collection of coins of different kinds of metals. After his death, his brass medals were sent to Provence, and were about to be sent into Italy; when the king of France, having got information of the transaction, gave orders to stop them, and purchase the whole at a very high price for his own cabinet of antiquities. M. Grollier had an al
MEDALS

Medals are formed of gold, silver, and the various modifications of copper. The gold usually made use in coinage is about the fineness of 22 carats; and as the art of purifying this metal was very much unknown in former times, the most ancient medals are for this reason much more impure than the modern coins. Gold is never found in its native state above 22 carats fine; and the very ancient medals are much under that standard. Many of them are composed of a mixture of gold and silver, called by the ancients elec trum. The gold medals were made of much finer metal after Philip of Macedon became possessed of the gold mines of Philippi in Thrace, and the medals of his son Alexander the Great are equally fine; as well as those of some other princes of that age. Those of the Egyptian Ptolemies are of the fineness of 23 carats three grains, with only one grain of alloy. The Roman coins are very pure even from the earliest times; the art of refining gold being well known before any was coined at Rome. Some authors are of opinion, that the Roman coins begin to take place till the time of the Emperor Severus; and even then only in a very few instances. Most of the Roman gold was brought from Dalmatia and Dacia, where that metal is still to be met with. A very remarkable circumstance is observed in the eastern part of Hungary, which belonged to the ancient Dacia: It germinates in the vines of Tokay, and is found in their stems; as it is elsewhere in the straw of corn.

Metal called elec trum. Pliny informs us, and indeed it is generally known, that gold and silver are found mixed together in the earth. When the silver amounted to one-fifth part of the gold, the metal was called elec trum; but sometimes the quantity of silver was added artificially. The gold was in those days as well as at present refined by means of mercury; and the ancient artists had certainly attained to great perfection in this branch of metallurgy; as Bodin tells us, that the goldsmiths of Paris upon melting one of Vespasian's gold coins found only 777 part of alloy.

Most of the ancient silver, particularly that of Greece, is less pure than that of succeeding times; even the Roman silver is rather inferior to the present standard, and that from the very beginning; but in the time of Severus, the silver appears very bad, and continues so until the time of Diocletian. Many writers upon this subject have mistaken the denarius argenteus, "coins of brass washed with silver," for silver currency. Silver coins are extremely scarce from the time of Claudius Gothicus to that of Diocletian, or from the year 270 to 284; in which short space no fewer than eight emperors reigned. Silver at that time was found mostly in Spain and the commerce with that country was disturbed by the usurpers who arose in Gaul: and such were the troubles of the times, that not only the silver, but also the gold coins of those eight emperors, are extremely scarce. There is still, however, some silver extant of these eight emperors; and it is certain, that copper was never used as silver currency, but was entirely a distinct coinage. Occasional deprivations of silver had taken place long before; as Pliny tells us, that Mark Anthony mixed iron with his silver denarius; and Mr Pinkerton informs us, that he had seen a denarius of Anthony, which was attracted by a magnet.

The ancient brass coins consist of two kinds: the Ancient red or Cyprian, which indeed is no other than copper; brass, and the common yellow brasses. Our author observes, that in the Roman coinage brasses was of double the value of copper, and he is of opinion, that it was the same among the Greeks; and the latter is the metal most commonly made use of in the Greek coinage. The Roman sesteri were always of brass: the middling-sized kind are partly copper and partly brass; the former being double the value of the latter, which are of the aed.

Mr Pinkerton next proceeds to give an account of the mixed metals used among the Romans. In Britain, all kinds of coins made of mixed metal are without hesitation alleged to be forgeries; although it is certain that the variety of mixed metals used in coinage was very considerable. The most valuable mixture was that of gold or silver already mentioned, named elec trum; the silver commonly amounting to one-fifth part of the gold made use of, or perhaps more. Of this mixture are many of the early coins of Lydia, and some other Asiatic states; also those of the kings of the Bosphorus Cimmerius, during the imperial ages of Rome. Next to the elec trum were the coins of Corinthian brasses; but Mr Pinkerton informs us, that these brasses, not a single coin was ever struck of this metal by the ancients; it having been constantly employed only in the fabrication of vases or toys. It was in use at any rate only for a very short time; being altogether unknown in the days of Pliny the Elder. Our author therefore ridicules those who pretend not only to find out imperial coins of this metal, but to discover three kinds of it: one, in which the gold predominates, another in which the silver prevails, and a third where the brass is most conspicuous. He gives Aeneas Vico, one of the most ancient writers on medals, as the author of this idea; but whole opinions were confuted by one Savot, a writer in the 17th century. Vico mentions a coin of this kind struck under Augustus, another of Livia, and a third of Claudius. The mistake, he is of opinion, arose from the circumstance of the first propagator not being able to account for the various
M E D A L S.

Ancient
Money.

knowledge
of an cient
money.

various mixtures and modifications of brass observable in ancient coins of the large size; and which in so common a metal appear very odd to the moderns.

Besides the authority of Pliny and other antiquaries of more modern date, who all declare that they never saw a single medal of Corinthian brass, or of that metal mixed with silver and gold, our author adds another evidence which he looks upon to be superior to either; viz., that those who have given into this supposition, imagine, that the large pieces called sifertius, and others called dupondiiarius, worth about twopence or a penny, are said to have been composed of this precious metal. It is unreasonable to think, that any proportion of gold or silver could have been made use of in these. The coins said to have been struck upon Corinthian brass are only done upon a modification of common brass; of which we know, that in proportion to the quantity of zinc made use of in conjunction with the copper, the metal assumes a variety of hues. On the authority of Pliny he informs us, that the coins mistaken for Corinthian brass were no other than prince's pot-metal; and after the time of Gallienus and Severus the emperor, the case was different; and the ignorance of medals is increased by some authors. The latter professes his love of medals, but quotes a curious coin with the head of Cicero; and looks upon one of the 30 pieces of silver, the reward of the treachery of Judas, and which was said to be preferred among some relics at Paris, to be worthy of reference and commemoration. Arbuthnot, if we may judge from his book, had never seen any ancient coins; and Cancer, it is well known, was quite ignorant of them. The latter, with all his labours, seems to have known nothing of the theoretic part of the real ancient money. Indeed Dr Mead's catalogue seems to have been almost the only book on medals which had undergone his perusal. On the other hand, the ignorance of medallists on this score is no less profound. To this day they look upon the drachmae of Ægina, so celebrated in antiquity, as drachmae of Ægium; and upon the early obolus as a brass coin. In the Roman clas the large brass is esteemed the æs, while it shall be proved that it is the sifertius, and worth four aedii. The denarius is reckoned at ten aedii even in the imperial times; whereas it only went at that rate for the first 50 years after the coinage of silver at Rome. The denarius æsæ is taken for silver currency; with other mistakes which evince that medallists are as ignorant of the theory as the authors are of the practice."

In his account of the ancient Greek money, Mr Money finds, that the light of science, like that of the sun, has proceeded from east to west. "It is most probable (says he), that the first invention of money arose like the other arts and sciences; and spread from thence into the western parts of the world. In its first shape it appeared as mere pieces of metal in some without any flattened form or impression; in lieu of rude state, which, it was regulated by weight. Even down to the Saxon government in England, large sums were regulated by weight; and in our own times every sidge piece is weighed in gold; though with regard to silver this nicety is not minded, nor indeed does it seem practicable. Among the ancients, whose commercial transactions were large and important and extensive to those of the moderns, silver was weighed as well as gold; and even brass, in some cases. In Greece, large sums were determined by mnae or Greek money; and the most capital sums by talents. In every one, the country the mna is supposed to have contained 100 drachmae or small silver coins, of that country, and the talent 60 mnae. The mna is supposed to be a pound weight of the country to which it belonged. The Attic pound, according to Dr Arbuthnot contained..."
MEDALS.

Ancient Money.

Ancient opinions.

The former could adopt a coinage, and it is the Drachm.

The mina of Athens is at first 75 drachms; but by order is fixed at 100. The ancient drachm weighed the same which it does at present in medical weight, viz. the eight part of an ounce. The mina or pound of 12 ounces had consequently 96 of these drachms; but four of them were given to the round sum to supply defects in the alloy; and indeed (says our author), in consequence of a common practice in all ages and all countries, of giving some addition to a large weight. Thus the pound in weight had but 96 drachms in fact, while the pound in tale had 100; as the Roman libra in weight had but 84 denarii; in tale 100; and as our pound in tale, by an inverter progress, is not a third of our pound in common weight.

Notwithstanding the very severe criticism on Dr Arbuthnot just mentioned, however, we find our author adopting his account of the drachm. Hence it is.

Of the ancient talents.

The Syrian talent had 55 Attic mina.

Ptolemaic - 20
Antiochian - 60
Babylonian - 60
Egyptian - 80
Rhodian - 100

Notwithstanding the concession made here by Mr Pinkerton to the Doctor, he tells us, that he very much questions this lift of talents, and that many ancient writers are little to be relied upon. Writers on this subject contend, that the numbers in all ancient manuscripts are the parts most subject to error, as being almost always contracted. They ought to allow that the authors themselves must often be liable to wrong information.

Herodotus mentions, that King Darius ordered gold to be paid into his treasury by the Euboic talent, and silver by the Babylonian. The Euboic is reckoned the same with that called afterwards the Attic: and as we estimate gold by carats, so it is natural to suppose, that the most precious metal would be regulated by the most minute weight. But I confess, I take the Babylonian talent to be the same with that of Eginia. Mr Raper has proved the first coins of Macedonia to be upon the standard of Eginia. Now the early Persian coins are upon that very scale, the largest tetradrachms weighing from 430 to 440 grains. Hence it follows, that the Persian silver coins were of the Eginian standard, and the payment was certainly to be made according to the standard of the money. The larger Attic talent was of 80 letter mina; because the larger Attic mina was of 16 ounces. The Alexandrian talent, according to Ptolemy, consisted of 12,000 denarii, being the same with that used by the Egyptian kings in their coins; and is shown by Mr Raper to have been the same with the talent of Eginia. Perhaps the whole of the ancient coinage of Asia, Africa, Greece, Magna Grecia, and Sicily, are reducible to three talents or standards.

1. That of Eginia, used in most of the ancient silver coinages; as would seem in even the latest Egypt, Carthage, Cyrene, &c.

2. The Attic (being the Attic gold standard, afterwards used by Phidias king of Argos in estimating gold, and called Euboic from Euboia), was used in Athens and the greater part of the world as the standard both of gold and silver.

3. The Doric or Sicilian talent of 24 minimi, each worth an obolus and an half; whence the talent is estimated at six Attic drachms or three dirhams. These weights continued to be the standard of money after it began to be distinguished by impressions; nay, to the fall of Greece and prevalence of the Roman empire.

Coinage, according to Herodotus, was first invented by the Lydians, from whom the Greeks quickly received it. The former could not have received it from the Persians, whose empire did not begin till 570 B.C. though our author supposes that it might have proceeded from the Syrians, who carried on commerce in very ancient times. The most ancient Greek coins of gold and silver have an indented mark upon one side, and a torse upon the other; and those of greatest antiquity have no letters upon them. Those of later date have the letters marked upon them, which medallists interpret of Attilia in Achaia; being led into that supposition by the tortoise, which they look upon as the sure mark of the Peloponnesus. But though our author agrees that the tortoise was so, he thinks that they are otherwise very far wrong in their conclusions. Aegium in Achaia was a place of no consequence till the times of Aratus and the Achaean league; but there are 11 of these coins in Dr Hunter's cabinet, which show that they must have been struck in times of the most remote antiquity, and that the place where they were struck was rich and flourishing at the time. The coins which we speak of are not uncommon; but those which have the name AEGIUM at full length, and which make perhaps belong to Aegium in Achaia, are extremely scarce; infomuch that in all Dr. Hunter's vast collection there are not above one or two. They are likewise constructed upon a scale quite different from all other Greek money; being of 8, 13, 15½, 90, and about 186 grains: The Greek drachma at an average is 66 grains; Mr Pinkerton thinks it would have been of the same, if pieces had been struck of eight-tenths of an obolus, of an obolus and an half, or of a drachma and an half. Aegium being originally an obscure village, could not be the first which coined money; so that Mr Pinkerton supposes the name AEGIUM to have fixed for Aegius, the ancient name of Sicily, a wealthy and powerful city; or rather Aegium, the mint of which was much celebrated, and perhaps the most ancient in Greece.

Other arguments in favour of these coins being derived from Aegium, are drawn from their weight as well as their workmanship, which are quite different from those bearing the name of Aegium at full length. The coinage of Aegium is known to have been different from that of the rest of Greece; infomuch that its drachma was worth 10 Attic oboli, while the Attic drachma was valued only at 5. Hence the drachma...
The general denomination of the Greek money is the drachm, which is divided into oboli, hemidrachms, and tetradrachms. The obolus was worth about 1 grain of silver, and the hemidrachm was worth about 44 grains. The tetradrachm, which was the most valuable coin, was worth about 240 grains.

Many different names have been imposed on the coins belonging to the different states of Greece. The tetradrachm of Athens was called a stater, and the tetradrachm of Corinth was called a stater also. The tetradrachm of Rhodes was called a tetradrachm, and the tetradrachm of Ephesus was called a tetradrachm.

The tetradrachm was the most valuable coin, and was used for transactions of importance. The obolus was the least valuable coin, and was used for petty transactions.

Many different names have been imposed on the coins belonging to the different states of Greece, and the tetradrachm is the most valuable. The tetradrachm was worth about 240 grains, and was used for transactions of importance. The obolus was the least valuable coin, and was used for petty transactions.
magistrates inscribed upon them. Some of these bear the name of Mithridates; and few are older than the era of that prince; who, it is well known, took the city of Athens in his war with the Romans. I suppose (says Mr. Pinkerton) that no Athenian coins of silver are posterior to Sylia's infamous destruction of that city; an event the more remarkable, as Sallust tells us, that Sylia was learned in Greek. Indeed Caligula, Nero, and most of the petty states of society, have been learned men, in spite of a noted axiom of Ovid, sed ingenios dulce flecte artes. Eamque, n.e. juxta efi forma.

It is still more remarkable, that the fabric of Athenian coins is almost universally very rude: a singular circumstance, if we reflect how much the arts flourished there. It can only be accounted for from the excellence of their artists being such as to occasion all the good ones to be called into other countries, and none but the bad left at home. In like manner, the coins struck at Rome in the imperial times are excellent, as being done by the best Greek artists; while those of Greece, though famous at that time for producing miraculous artists, are during that period commonly of very mean execution. The opulence of Athens in her days of glory was very great; owing in an eminent degree to her rich commerce with the kingdoms of the Euxine sea; carried on chiefly from Delos, which belonged to Athens, and was the grand centre of that trade. Hence it has become matter of surprise to Neumann, that when there are so many coins of Mycene, an island even proverbially poor, there should be none of Delos. But Mr. Pinkerton accounts for this from Mycene's being a free state, and Delos subject to Athens. "It may be well supposed (says he), that Athens had a mint at Delos; and such Athenian coins as have symbols of Apollo, Diana, or Latona, were struck in this island."

The copper money of the Greeks is next in antiquity to the silver. Mr. Pinkerton is of opinion, that it was not used at Athens till the 226th year of the Peleponnesian war; about 404 years before Christ, and 300 after silver was first coined there. The first copper coins were those of Celo of Syracuse, about 450 years since. The chalcus of brafs, of which eight went to the silver obolus, seems to have been the first kind of Greek coin. At first it was looked upon as of no little consequence, that it became proverbial; and to say that a thing was not worth a chalcus, was equivalent to saying that it was worth nothing. As the Greeks became poor, however, even this diminitive coin was subdivided into two, four, nay eight lepta or small coins; but our author censures very severely those who have given an account of those divisions. "Pol lus and Suidas, copying from him (says he), tells us, that there were seven lepta to one chalcus; a number the most unlike that can be, from indivisibility and incapacity of proportion. "Pollux lived in the time of Commodus; so was too late to be of the smallest authority: Suidas is four or five centuries later, and out of the question." Pliny tells us, that there were ten chalices to the obolus; Diodorus and Cleopatra that there were six; Liddorus says there were four; and if such writers differ about the larger denomination, we may well imagine that the smaller equally varied in different states; an idea supported by these undeniable witnesses the coins which remain. Most of the Greek copper-coins which has reached our times consists of Chalices; the lepta being so small as to be much more liable to be lost." In Dr. Hunter's cabinet, however, there are several of the dileptos of Athens; and from being flamped with the representation of two owls, seem to be the same with the silver diobolus; "a circumstance (says Mr. Pinkerton) of itself sufficient to confute Pollux; for a dileptos can form no part of seven; a number indeed which never appeared in any coinage of the same metals, and is contradictory to common sense. It may be observed, that the whole brafs coins of Athens published by Dr. Combe are reducible to four sizes, which may be the lepton, dilepton, tetradixer or hemichelos, and lepton. The first is not above the size of one of king James I's farthing tokens; the last about that of our farthing. The lepton was also called hemichelos, as being change for the poor. The Xaikos, perhaps so called from the figure of a wolf upon it, was the coin of a particular state, and if of brafs must have weighed three chalices. The other names of the copper-coins of Greece are but little known. Lycurgus ordered iron money to be coined at Sparta; but so perishable is this metal; that none of kind of money has reached our times.

After the conquest of Greece by the Romans, most of the coins of that country diminished very much in their value, the gold coinage being totally discontinued; though some of the barbarous kings who ufed the Greek character were permitted to coin gold, but they ufed the Roman model; and the standard ufed by the few cities in Asia who spoke the Greek language in the times of the emperors is entirely unknown. Copper seems to have been the only metal coined at that time by the Greeks themselves; and that upon the Roman standard, universal through the empire, that there might be no impediment to the circulation of currency. They retained, however, some of their own terms, using them along with those of the Romans. The xarion or xarion of Rome, the name of the diminished as, being 16 to the drachma or denarius, the chalcos was so much diminished in value as to be struck in brafs not much larger than the old chalcos, and valued at between two and three xarions; which was indeed its ancient rate as to the drachma. This appears from the copper coins of Chios, which have their names marked upon them. The brafs obolus, at first equal in signe to the Roman sestertius or large brafs, lefens by degrees to about the signe of a silver drachma. From the badges of the imperial coinage in Greece also, it appears that brafs was very scarce in that country, as well as in all the cities using the Greek characters; being found mostly in the western countries of the Roman empire. The time of this declension in signe of the Greek coins is certainly marked. Mr. Pinkerton has produce these from Attic of the gulus down to Gallienus. He is of opinion however, that the copper obolus, at first above the signe of large brafs, was used in Greece about the time of its first subjection to Rome; and that the lepta ceasing, the chalce came in their room, with the chalcos and the hemichelos of brafs.
With respect to the gold coins of the Greeks, Mr Pinkerton is of opinion that none of that metal was coined before the time of Philip or Macedon, as none have reached our times prior to the reign of that monarch. From a passage in Thucydides our author concludes, that in the beginning of the Peloponnesian war the Athenians had no gold coin. Mentioning the treasure in the Aeropilis or citadel of Athens, at the commencement of that war, the historian mentions silver coin, and gold and silver in bullion: and had any of the gold been in coin, he would certainly have mentioned it. Philip began his reign about 68 years after the beginning of the Peloponnesian war; and we can scarcely suppose that any city would have preceded the elegant and wealthy Athens in the coinage of gold.

Notwithstanding, however, this deficiency of gold coin among the Greeks, it is certain that the coinage of gold had taken place in Sicily long before; as we scarcely occur of the coinage of early in coin among the Greeks, it is certain that any of the gold been in coin, he would certainly eludes, that in the beginning of the gold coins of the Greeks, was of the same weight, as is evident from ancient writings. It was anciently worth about 15s. but valuing gold now at the medium price of 41. per ounce, it is worth about 32s. The

Gold coined early in Sicily.

The Thebans and Athenians probably coined the first gold after Philip had set them the example, and when they were attempting to refil the projects of that enterprising monarch. The Athenians probably coined their gold during the time of their greatest power about a century after Philip, and when they were combating the power of Aratus and the Achæan league. There is (says Mr Pinkerton) but one

In Rome, as well as in Greece, the money was at first estimated by weight; and the first metal coined money. by that people was copper, silver being long unknown in Rome; nor is it certainly known that any silver has ever been found in the Italian mines. In Rome the first valuation of money was by the

The weight made of the native gold, and now worth about 41. sterling. Some even more; but this our author supposes owing to the gold being less pure.

Of the Roman pound.
MEDALS.

Ancient Money.

Whence the Romans derived their coinage.

Ancient Money.

Some coins are found which exceed the as librae in their own weight; and these are supposed to be prior to the ancient time of Servius Tullius. Some of them are met with in Roman coins of 34 and of 53 Roman ounces; having upon one side the figure of a bull rudely impressed, and upon the other the bones of a fish. They are most commonly found at Tuder, or Tudertum in Umbria; but they appear always broken at one end; so that Mr Pinkerton is of opinion that perhaps some might be struck of the decussi form, or weighing ten pounds. These pieces, in our author's opinion, make it evident, that the Romans derived their large brass coins from the Etruscans and the neighbouring states; they are all cast in moulds; and the greater part of them appear much more ancient than the Roman auri, even such as are of the greatest antiquity.

Mr.
Ancient Money.

Mr Pinkerton agrees with Sir Isaac Newton as to the time that Servius Tullius reigned in Rome, which he supposes to be about 460 B.C. His coinage seems to have been confined to the as, or piece of brass having the impress of Junus on one side, and the prow of a ship on the other, because Janus arrived in Italy by sea. Vatru, however, informs us, that the very first coins of Tullius had the figure of a bull, or other cattle upon them, like the Etrurian coins, of which they were imitations. Those with the figure of Janus and the prow of a ship upon them may be supposed first to have appeared about 400 years B.C. but, in a short time, various subdivisions of the as were coined. The semis or half is commonly stamped with the head of Jupiter laureated; the triens or third, having four cyphers, as being originally of four ounces weight, has the head of Minerva; the quadrans or quarter, marked with three cyphers, has the head of Hercules wrapt in the lion's skin; the sextans or sixth, having only two cyphers, is marked with the head of Mercury with a cap and wings; while the unies having only one cypher, is marked with the head of Rome. All these coins appear to have been cast in moulds, by a considerable number at a time; and in the British Museum there are four of them all united together as taken out of the mould in which perhaps dozens were cast together. In process of time, however, the smaller divisions were struck instead of being cast; but the larger still continued to be cast until the as fell to two ounces. Even after this time it was still called libra, and accounted a pound of copper; though there were now larger denominations of it coined, such as the biffas or double as; trifas and quadrifas of three and four ases; may as far as decussi or ten ases, marked X. Olivieri mentions one in his own cabinet weighing upwards of 25 ounces, and cast when the as was about three ounces weight. There is likewise in the Museum Etrurcum a decussi of 40 Roman ounces, cast when the as was at four ounces. There was likewise a curious decussi in the Jefuit's library at Rome, for which an English medalist offered 20l.; but it was seized by the Pope along with every other thing belonging to the society.

Mr Pinkerton contends the opinion of Pliny that the as continued as a pound weight till the end of the first Punic war. His opinion (he says) is confirmed by the coins which still remain; and it appears probable to him that the as decreased gradually in weight; and, from one or two of the pieces which still exist, he seems to think that the decrease was, as from a pound to eleven ounces, then to ten, nine, &c.; but neither the as nor its parts were ever correctly fixed. During the time of the second Punic war, when the Romans were fore prefied by Hannibal, the as was reduced to a single ounce. It is said to have taken place in the 215th year before our era, being about 36 years after the former change. This as libralis, with the face of Janus upon it, is the form most commonly met with previous to its being reduced to two ounces. Our author supposes that the as libralis continued for at least a century and an half after the coinage of Tullius, down to 300 B.C. about the year of Rome 452, between which and the 502d year of Rome a gradual diminution of the as to two ounces must have taken place. The following table of the dates of the Roman coinage is given by Mr Pinkerton.

The libralis, coined with Tullus with the figures of oxen, &c. about 167 years after the building of Rome, according to Sir Isaac Newton, or about the year before Christ 460, as libralis with Janus and the prow of a ship 400. For ten ounces - 300.

Eight - - - - 200.
Six - - - - 175.
Four - - - - 270.
Three - - - - 260.
Two, according to Pliny - 250.
One, according to the same author - 214.

About 175 B.C. also, we are informed by Pliny, that the as was reduced to half an ounce by the Paphian law, at which it continued till the time of Pliny himself, and long after. After the Romans began to have an intercourse with Greece, a variety of elegant figures appear upon the parts of the as, though not on the as itself till after the time of Sylla. Towards the latter end of the republican age, dupondii, or double ases, were coined, together with the sesterii as, which came in place of the quadrifas, when the demers began to be reckoned at 1600. Probably at the time the latter was reduced to half an ounce. In some instances it is to be observed, that the Romans accommodated their coins to the country where their army was stationed; whence we have many coins marked as Roman, which have been coined in Magna Grecia and Sicily, and are evidently upon the Greek scale made as Romans, and not the Roman scale. In the latter part of the republican times, also, the types began to vary; so that we have a brass coin supposed to be struck by Sextus Pompeius in Sicily, having upon it a double head of that warrior, representing a Janus. Mr Pinkerton supposes it to have been a dupondius; which indeed appears to be the case from the double head. This coin is of copper, and still weighs an ounce, notwithstanding its antiquity.

The largest imperial copper coin was the felterius, of the face a piece worth about two-pence Sterling money. Mr Pinkerton confers frequently the opinion of other medalists, all of whom say that the felterius was of silver. "In fact (says he), it would be as rational in any antiquity, a thousand years hence, to confide that the halfpenny and farthing are of silver, because they were so in the reign of Henry VIII." In confirmation of his own opinion, he quotes the following passage from Pliny: "The greatest glory of brass is now due to the Marian, called also that of Cordova. This, after the Livian, most absorbs the lapis calaminaris, and imitates the goodness of native orichalcum in our felterii and dupondii, the ase being contented with their own copper." Gronovius confesses that he does not know what to make of this passage, and that it causes him hesitate in his opinion. The Livian mine mentioned here by Pliny, is supposed to have got its name from Livius, the wife of Augustus; and it is probable that the piece marked with her portrait, intitled Justitia, Salus, Virtus, &c. were dupondii from this very mine, the metal being exceedingly fine, and of the kind named Corianian brass by the ancient medalists. "Perhaps, (says Mr Pinkerton) the mine received its name from this very cir-
No change took place in the Roman coinage from the time that the as fell to half an ounce to the days of Pliny; and Mr. Pinkerton is of opinion, that the dimeritus was added before the time of Julius Caesar; and yellow brasses began to be used, and was always looked upon to be double the value of the silver coin of Cyrenius.

There are but few coins of large brasses immediately before Julius Caesar, or even belonging to that emperor; but from the time of Augustus downward, the large coins are all found of brass, and not one of them copper. The largest of what are called the middle size are all of yellow brasses; and the next size, which is the as, and weighs half an ounce, is universally copper. What the ancients named arzibalam, or what we call brasses, was always looked upon to be of great superiority in value to the as copper. Procopius, speaking of a statue of Justinian, tells us, that the brasses inferior in colour to gold is almost equal in value to silver. The mines of native brasses were very few in number, and were owing entirely to the singular combination of copper and lapis calaminaris in the bowels of the earth, which very seldom occurs, and the ancients were far from being well acquainted with the method of combining these two bodies artificially; so that yellow brasses were always esteemed at double the value of copper; and hence, in the ancient coinages, the brasses and copper pieces were kept as distinct as those of gold and silver.

Mr. Pinkerton challenges himself to the discovery that the imperial sesterius was of brass; and is at considerable pains to bring proofs of it. Besides the testimony of Pliny, which of itself would be decisive, this is supported by the strongest collateral evidence of other authors. From a passage in Julius Africanus, who wrote the epigrams, or Treatise on Medicine, it appears that the nummus, or sesterius, weighed an ounce, and of consequence that it could not be silver but brasses; and all the large imperial Roman coins weigh an ounce. We know not the age in which Julius Africanus lived; but as he makes the denarius to contain 16 asses, he must have been before the age of Gallienus, when it had 60. Cronovius supposes him to have been the same person mentioned by Eusebius. This author speaks of a Julius Africanus who lived in the time of Heliogabulus, and whom Mr. Pinkerton supposes to have been the same person with him abovementioned.

The sesterius underwent no change till the time of Alexander Severus, when it was diminished by one third of its weight. Trajanus Decius was the first who coined double sestertii, or quintarii, of brass; but from the time of Theodosian Gallus to that of Gal
darius, when the first brasses ceased, the sesterius does not weigh above the third part of an ounce: the larger coins are accounted double sestertii; and after the time of Gallienus it totally vanishes. In the time of Valerian and Gallienus, we find a new kind of coinage, mentioned by the name of denarius, or Philip
pus, mentioned in Carcalla; the larger of this coin, of the weight of 24 as., the smaller of four sestertii, of 16 as., and the former word confined to the silver coin of the former word, of which the denarius is the double length of the latter.

The sesterius were used formerly to be struck to such a small size as not to weigh more than 36 grains; though in Caracalla’s time it weighed 56.

After the time of Gordian III. the smaller coin fell into disuse, as breeding confusion. The larger denarius of six sestertii, which had diminished at last to the size of the early denarius, still retained its value of six sestertii, or 24 as., and was called the Philippus aureus, because it came at length in place of the denarius. It was also called denarius aureus; from which we may learn not only their size, but that they were in value ten sestertii as the first denarius. In the reign of Diocletian, the place of the denarius was supplied by the follis, that emperor having restored the silver coin to its purity, and likewise given this form to the copper; but it would seem that this reformation of the coinage only took place towards the end of his reign, though we have but few of his silver coins, and still fewer of the follis, though the denarius aureus continued quite common down to the time of Constantine. The follis of Diocletian seems to have weighed above half an ounce; and Mr. Pinkerton is of opinion, that Diocletian designed this coin to supply the place of the danarius aureus; which of course was worth ten sestertii, and of them we went to the silver denarius. From this time the sestertium diminishes to the size of 30 grains; and soon after the follis appeared, the denarius aureus was entirely dropped, the former having gradually supplanted its place. Some mints appear to have retained the use of the denarius longer than others; and in some the change was preceded, and gradually brought in by washing the follis with silver or tin, as the denarius had formerly been. Pieces of this kind occur in the times of Diocletian, Maximian I. and II. and Constantine I.; that is, for about ten years after the follis made its appearance. Some countries, however, retained the denarius aureus; others the follis; and some had a medium between the two, or the follis washed in imitation of the denarius.

Towards the end of the reign of Constantine I. a new coinage was introduced throughout the whole age of the empire. The follis coined by this prince was of half the weight of the denarius aureus; 24 of them going to the milliarenum, or larger silver coin. The word follis signifies also a purse, in which sense we sometimes find it mentioned in the Byzantine history. The common follis of silver, when it occurs by itself, means a purse of 250 milliarenums, as the sesterius was 250 denarius; and by a law of Constantine I. every man paid to the state a follis, or purse according to his income. The method of counting by purses continues in Turkey to this day.

The dupondius was only half the value of the sesterius, of which the former word was used to denote an ounce weight; 24 of them going to the milliarenum, or larger silver coin. The word follis signifies also a purse, in which sense we sometimes find it mentioned in the Byzantine history. The common follis of silver, when it occurs by itself, means a purse of 250 milliarenums, as the sesterius was 250 denarius; and by a law of Constantine I. every man paid to the state a follis, or purse according to his income. The method of counting by purses continues in Turkey to this day.
Medals.

Of the smaller Roman coins.

The imperial, as, or avarium, was worth only an halfpenny. At first it weighed half an ounce, and was always of copper till the time of Gallienus, when it was made of brass, and weighed only the eight part of an ounce. From the time of Gallienus to that of Diocletian, it continued to diminish still more, the size being then twenty to an ounce. This was the same with the lepta, or smallest coins but the sestertius, which weighed only ten grains.

The parts of the as occur but seldom; which may, indeed, be well expected, considering the low value of it; though there still occur some of those called semis, triens, quadrans, sextans, and uncia, coined in the times of Nero and Domitian. There is no small brass from the time of Pertinax to that of Gallienus, excepting that of Trajanus Decius; but in the time of Gallienus it becomes extremely common; and the coins of small brass, as well as the larger, are always marked S. C. such as want it being universally accounted forgeries, and were plated with silver, though the plating be now worn off. The small pieces struck for slaves during the time of the saturnalia must also be distinguished from the parts of the as. The S. C. upon these most probably signifies Saturni Confulto, and were struck in ridicule of the true coins, as the slaves on that occasion had every privilege of irony.

The sestertius diminishes from Pertinax to Gallienus so that no parts of the as are struck, itself being for all time of Trajanus Decius; indeed, coined in pieces, which went for the semis of the time. The small brass coins under Gallienus were called avaria, sixty of which went to the silver denarius. They are about the size of the denarius, and some of them occur of the coinage of Gallus and his family, of half that size, which appear to have been struck during the latter part of his reign, when the avaria was diminished to a still smaller size. It is probable, however, that some of these very small coins had been struck in all ages of the empire, in order to scatter among the people on solemn occasions. Mr Pinkerton is of opinion that they are the mijalla, though most other medallists think that they were medallions. "But if so (says our author), they were certainly called mijalla a non mintendo; for it would be odd if fine medallions were scattered among the mob. It is a common custom just now to strike coins to scatter among the populace on such occasions, which are given to peers of the kingdom; and we may very justly reason from analogy on this occasion."

The avarium or lepton of the Constantiopolitans empire was, as we have already observed, one of the smallest coins known in antiquity, weighing no more than 20 grains; and the numia were the very smallest which have reached our times, being only one-half of the former. By reason of their extreme fineness, they are very scarce; but Mr Pinkerton informs us, that he has in his possession a fine one of Theodosius II, which has on it the emperor's head in profile. Theodosius P. F. A. V.; on the reverse a wreath, having in the centre VOT. XX. M S. XXX.

The principal coin of the lower empire was the follis, which was divided into half and quarter, named sigillaria, and scillium; the latter of which is shown by Du Cange to have been a small brass coin, as the other is supposed to have been by Mr Pinkerton. Besides these, the follis was divided into 8 obols, 16 avaria or lepta, and 32 numia, though in common computation it contained 40 of these last. This coin, notwithstanding so many divisions, was of no more value than an halfpenny.

Mr Pinkerton controverts an opinion, common among medallists, that the largest brass coin or follis of the lower empire had 40 small coins, expressed by the letter M upon it; the next had 30, expressed by the letter A; the half by the letter K; and the quarter marked I, which contained only 10. Mr Pinkerton informs us, that he has three coins of Anastasius, all marked M in large; one of them weighs more than half an ounce; the second 40 grains less; and the third 360 grains, or one-third of an ounce; but the size is so very unequal, that the last, which is very thick, does not appear above half the size of the first. There are pieces of Julianus which weigh a whole ounce; but the size of copper was increased as the silver became scarcer; and the value of the coinage cannot be deduced from the weight of the coins, as it is plain that our own coinage is not of half the value with regard to the metal. A great number of medallions were struck by Constantius II, but there is no other copper larger than the half ounce, excepting that of Anastasius, when the follis began to be struck larger. All medallions allow the others to be medallions. The metal employed in these very small coins, though at first of brass, was always a base and refuse kind; but copper is generally made use of in the parts of the as from the earliest times to the latest; and if brass be sometimes employed, it is never such as appears in the sestertii and dupondii, which is very fine and beautiful, but only the refuse. "Yellow brasses of the right fort (says Mr Pinkerton) seem to have ceased in the Roman coinage with the sestertii, under Gallienus, though a small coin of very bad metal appear under that hue as late as Julianus II."

Silver was coined in Rome only as late as the 43rd Roman year of the city, or 266 B. C. Varro indeed speaks silver, of silver having been coined by Servius Tullius, and the libella having been once in silver; but Pliny's authority must be accounted of more weight than that of his author, as he mistakes the year of Sicily for Roman coins, having been current at Rome during the time of the first Punic war. Even Pliny, according to our author, very frequently mistakes with regard to matters much antecedent to his own time; and
Among the moderns he criticizes severely Eramus and Hume. “Eramus (says he), who had been in England for some time, talks of leaden money being used here. Not even a leaden token was struck in the reign of Henry VIII.; yet his authority has been followed with due deference to so great a name; for how could Eramus, who must have seen the matter with his own eyes, assert a direct falsehood? To give a later instance in a writer of reputation, Mr Hume, in vol. vi. of his history, has these words, in treating of the reign of James I. “It appears that copper halfpence and farthings began to be coined in this reign. Trademen commonly carried on their retail business by lead tokens. The small silver penny was fo small; and at this time was nowhere to be found.” Copper halfpence and farthings were not struck till Charles II. 1672: there were small tokens for farthings struck in copper by James I. but not one for the halfpenny. The silver farthings had ceased with Edward VI. but the silver halfpence continued the sole coins till Charles II. It was by copper tokens that small bunifens was carried on. The silver penny was much used till the end of the reign of George I.; and, so far from being nowhere to be found, is superabundant of every reign since that period, not excepting even the present reign of George III. From these instances the reader may judge how strangely writers of all ages blunder, when treating of a subject of which they are entirely ignorant.

The first silver denarius coined at Rome, are supposed by our author to have been those which are impressed with the ROMA; and he inclines to account those the most ancient which have a double female head on the one side, and on the reverse Jupiter in a car, with Victory holding the reins, and the word ROMA indented in a rude and singular manner. The double female head seems to denote Rome, in imitation of the Janus then upon the as. There are 15 of these in the cabinet of Dr Hunter; one of the largest weighs 984 grains; and the rest, which seem to be of greater antiquity, are of various weights between that of the small denarius and that of the large denarius. But Mr Pinkerton is of opinion, that the large ones are of the very first Roman coinage, and struck during that interval of time between the coinage of the first silver denarius and the as of two ounces. He takes the indentation of the word ROMA to be a mark of great antiquity; such a mode being scarcely known any where else, except in Caulonia, Crotona, and other towns of Italy; all of them allowed to be struck at least 400 B.C. As these large coins are not double denarii, they must have been struck prior to the small ones; and Neumann has given an account of one of them recoiled by Trajan, in which the indentation of ROMA is carefully preserved. The first denarius was in value 10 as, when the as weighed three ounces; and allowing 90 grains at a medium for one of these large denarii, the proportion of copper to silver must have been as 1 to 160; but when as fell to one ounce, the proportion was as 1 to 80: when it fell to half an ounce, so that 16 as went to the denarius, the proportion was as 1 to 64, at which it remained. Copper with us, in coinage, is to silver as 1 to 40; but in actual value as 1 to 72.

At Rome the denarius was worth 8d.; the quinaria 4d.; and the sesterius, whether silver or brass, 2d. The denarius is the coin from which our penny is derived, and was the chief silver coin in Rome for 600 years. According to Celsus, seven denarii went to the Roman ounce, which in metals did not exceed the denarius 430 grains; but as all the denarii hitherto met with weigh at a medium only 60 grains, this would seem to make the Roman ounce only 420 grains; though perhaps this deficiency may be accounted for from the unavoidable waste of metal even in the best preferred of their coins. According to this proportion the Roman pound contained 84 denarii; but in tale there was a very considerable excess; for no fewer than 100 denarii went to the Roman pound. The Greek ounce appears to have been considerably larger than that of Rome, containing about 428 grains; yet notwithstanding this apparently great odds, the difference in the coins was so small, that the Greek money went current in Rome, and the Roman in Greece. The denarius at first was for 10 ases, and was marked X.; it was afterwards raised to 16; which Mr Pinkerton supposes to have been about 175 B.C. Some are met with bearing the number XVI. near, with every number up to CCCCLXXVI. These large numbers are supposed to have been mint-marks of some kind or other. After being raised to 16 ases, it continued at the same value till the time of Gallius: so that till that time we had to look upon its constituent parts to be 16 as or sestertii, eight dupondii, four braccia sesterii, and two silver quinarii. Under the emperor Severus, however, or his successor Caracalla, denarii were struck of two fizes, one of them a third heavier than the common; which we must of course supposes to have borne a third more value. This large piece obtained the name of argenteus, and argenteus Philippus, or the “silver Philip;” the name of Philip having become common to almost every coin. The common denarii now began to be termed minuti and argenti Philippiani minuti, &c. to express their being smaller than the sestertius. Some have imagined that the large denarii were of the same value with the small; but Mr Pinkerton observes, that among the few which have any difference of metal, the smallest are always the worth. The first mention of the minuti is in the time of Alexander Severus, who reduced the price of pork from eight minuti at Rome to two and to one. The minuti argenteus of that age was about 40 grains; and from the badness of the metal was not worth above 4d. of our money. Thus the price of meat was by this prince reduced to 8d. and then to 4d.

According to Zosimus and other writers, the present value of the Roman coin was restored by Aurelian, on the notion of the but Mr Pinkerton controverts this opinion; thinking it improbable, that he only made the attempt without success; or that his resolution might be entirely confined to gold, on which there is an evident change after the time of this emperor. His successor Tactitus is said to have allowed no braccia to be mixed with silver upon any account; yet the few coins of this emperor are very much alloyed. We are certain, however, that the emperor Dioclesian restored the silver to its ancient purity; the denarius struck in his reign being very small indeed, but of as fine silver as the most ancient coins of the empire. After Gordian...
Sect. V. M E D A L S.

Ancient Money.

Dian III. the small denarius entirely vanished, while the large one was so much diminished, that it resembled the minuta, or small one of Caracalla in size. Gallienus introduced the denarius aureus instead of the sesterius. The argenteus, though reduced more than one third in size, contained six denarii aurei, the old standard of sesterii. According to the writers of this period, and some time afterwards, the denarius or argenteus contained 60 sesterii; whereas it follows, that each denarius aurei had 10; and from this it probably had its name. The sesterii are of the size of the argenteus already mentioned, and show the copper to have retained nearly its old proportion of value to the silver, viz. 1 to 60.

A larger silver coin was introduced by Constantine I, who accommodated the new money to the pound of gold in such a manner, that 1000 of the former in tale were equal to the latter in value; so that this new piece from whence obtained the name of the milliarensis or "thousander." Its weight at a medium is 70 grains, or 70 to the pound of silver: but Mr Pinkerton is of opinion, that it might have contained 72 grains, of which two have now perished by the softness of the silver; that the pound contained 72; or that two of the number might be allowed for coinage; while the alloy alone would pay for coining gold. The code says, that 60 went to the pound; but the numbers of this are quite corrupt. The milliarensis was worth about a shilling sterling. The argenteus or denarius aureus was equal to the latter in value; so that the current milliarensis of the succeeding emperors from 20, or the time of Juliius had its name. The argenteus or denarius aureus, therefore, was the common regulation of accounts in the Eastern empire. The sesterius met with in ancient authors, according to Mr Pinkerton, was merely an improper name for the milliarensis; when, on account of the scarcity of silver, the denarius was reduced, and no milliarensis coined: so that the current milliarensis of former reigns happened to be double to the denarius or centenionales. The quinarius diminishes in size along with the other coins; those of Augustus weighing 30 grains, of Severus 25, of Constantine I, 20, of Julian 12, and of Heraclius only 5. A new silver coinage seems to have taken place after the days of this emperor; as the little we then meet with, which in the best cabinets scarcely exceeds a dozen of coins, consists entirely of large unhapely pieces of coarse metal.

2. The confular denarius had also four silver sesterii, till the as fell to half an ounce, when it was thought the denom­ proper to coin the sesterii in brafs, as it continued rius.

Deduction of the small silver coin by Con­stantine.

66 Account of the small Roman coins.

The smaller silver coins of Rome were, 1. The quinarius, at first called victorius, from the image of Victory on its reverse; and which it continued to bear from first to last. Its original value was five alae, but it was afterwards raised to eight, when the value of the denarius increased to 16. According to Pliny, it was first coined in consequence of the fire of Clodius, about the 525th year of Rome. Some are of opinion, that it was called victorius under the Constantinopolitan empire, because it was worth a theure of gold, 14 of which went to the ounce; but this is denied by Mr Pinkerton, because at the time that the word seiss was under the Constantinopolitan empire, because it was worth a theure of gold, 14 of which went to the ounce; but this is denied by Mr Pinkerton, because at the time that the word sesterius appears in history, the denarius did not weigh above 30 grains; and of consequence, as 25 must have gone to the gold solidus, of which there were six in the ounce, 150 denarii must have gone to the ounce of gold. He is therefore of opinion, that the word sesterius was only another name for the denarius when much reduced in size; probably owing to the great scarcity of silver in Constantinople, though in the fame city there was plenty of gold; and of consequence, the gold solidus was never diminished. "For Montef­ quieu (says our author) has well observed, that gold musl be common where silver was rare. Hence gold was the common regulation of accounts in the Eastern empire." The victorius is of the same kind, but double, marked xxxx; and its triple, marked xxxx; the 4 being the old numeral character for 50." Mr Pinkerton, the discoverer of this, treats other medals with great aperity. Savot and Hardouin are mentioned by name; the latter (he says) is "ignorant of common sense!" and neither he nor Savot could explain it but by reading
the rich city of Palmyra, and thus became master of the treasures of the east, obtained such a profusion of gold, that he looked upon it to be produced by nature in greater plenty than silver. It is remarkable, that during this emperor's reign there was a rebellion among the money-coiners, which could not be quelled but by the destruction of several thousands; which Mr Pinkerton ascribes to his having ordered the gold to be refurled to its former size, but to go for no more silver than it formerly did. "So very little silver (says he) occurs of this period, that it is plain no alteration in the silver produced the war with the moneys: and in the brass he made no change; or if he had, it were strange that such commotions should arise about so trifling a metal. But if, as appears from the coins, he ordered the aureus, which had fallen to 80 denariis, to be raised to about 100, it is no wonder that the contractors should be in an uproar; for a whole quarter of their coinage, amounting as would seem to all their profits, was lost. Aurelian judged, that when he found gold so common in the east, it was equally so in the west; and that the moneys must have made a most exorbitant profit; but his ideas on this subject were partial and unjust: and after his short reign, which did not exceed five months after the alteration, the gold returned to its former course; though a few pieces occur of Aurelian's standard, struck, as would seem, in the commencement of the reign of Probus his successor.

From this time to that of Constatine I. the aureus weighed between 70 and 80 grains; but in his reign it was changed for the foliis, of which fix went to the ounce of gold, which went for 14 milliareus, and 25 denariis as before; the value of silver being now to gold as 14 to 1. This new coin continued of the same value to the final downfall of the Constantinopolitan empire; gold being always very plentiful in that city, though silver became more and more scarce. The foliis was worth 12s. 4d. flerling. Here again our author must severely criticise Mr Clarke and Mr Raper: the former (he says) with respect to the value of gold in the time of Constatine I. "has left all his senses behind him. In page 267, he ably asserts, that 20 denariis went to the foliis in the time of Theodosius I. and proceeds with this deplorable error to the end of his work. He then tells us, that only 14 denariis went to the foliis under Constatine I. &c."

To Mr Raper, however, he is a little more merciful, as he owns, that "though he (Mr Raper) has strangely confounded the milliareus with the denariis, he has yet kept common sense for his guide." Mr Pinkerton argues, indeed with great probability, "that had any change in the coinage taken place between the time of Constatine and Theodosius I. that is, in less than 50 years, the laws of that period, which are all in the Theodosian code, must have noticed it." To this and other arguments upon the subject, Mr Pinkerton adds the following observation upon the value of gold and silver: "As a late advances to its height, gold increases in value; and as a late declines, it decreases, providing the metals are kept on a par as to purity. Hence we may argue, that gold decreased in its relation to silver perhaps four or five centuries, furnished most European kingdoms with gold in coin, which otherwise would, from their want of arts, and
of intercourse with the sae, then the grand seminary of that metal, have almost been ignorant of what gold was. These gold coins were called Besants in Europe, because sent from Byzantium or Constantinople; and were solidi of the old scale, fix to the ounce. In Byzantine writers, the solidus is also called nomisma, or "the coin" ergynus, because of gold; hyperperos, from its being refined with fire, or from its being of bright gold flaming like fire. The solidi also, as the aurei formerly, received names from the princes whose portraits they bore; as Michaelis, Manuelis. Solidus is a term used also for the aureus by Apuleius, who lived in the time of Antoninus the Philosopher; nay, as early as in the Procerian edicts of the time of Trajan, it was then a distinction from the semissi or half.

In the time of Valerian, when aurei of different weights were found of Valerian and his son Gallienus, and weigh about 30 grains. Thos. of Salonina the wife of Gallienus, and weigh about 30 grains. Thos. of Salonina the wife of Gallienus, and weigh about 33 grains. Under the Constantinopolitans, the semissi again make their appearance; and from the time of Valentinian downwards, the third is the most common coin of gold, being worth about 4 s. sterl. The semissi is likewise mentioned, but none occur earlier than the time of Balsificus. The gold semissi was the pattern of the French and Spanish gold coins. The silver semissi, in its diminished state, was of the Gothic and Saxon penny.

We shall close this account of the Roman money with some remarks concerning the mint, and method of coinage. This at first seems to have been under the direction of the quaestor. About the time that silver was first coined in Rome, vis. about 256 B.C. the triumviri monetales were created. They were at first of senatorial rank, but were Augustal like Chosen from among the equestrians; and the title of triumviri was continued till after the time of Caracalla; but under Aurelian there was probably but one master of the mint called Rationalis; and Mr Pinkerton is of opinion that the change took place under Gallienus. He seems to have permitted the provincial cities to coin gold and silver, as well as to have altered the form of the mints in the capital, and to have ordered them all to strike money with Latin legends, and of the same forms; as in his time we first meet with coins with mint-marks of cities and offices. The violent insurrection which took place in his reign has already been mentioned, as well as its probable cause; and Mr Gibbon has shown, that the concealed enemies of Aurelian took such advantage of this insurrection, that it cost 7000 of his reb troops before it could be quelled. About this time the procurator monete seems to have succeeded the rationalis as director of the mint. In the colonies, the direction of the mint seems to have been given to the decurio, whose names frequently occur on colonial coins; "which (says Mr Pinkerton), though generally of rude invention, and ruder execution, are yet often interesting and important."

The engraving of the ancient dyes used in coinage was a work of much genius and labour; and at Rome Greek artists were generally employed in it; but it has been thought a matter of great surprize, that scarce any two ancient coins are to be found exactly the same. Hence some antiquaries have imagined, that only a single coin was thrown off from each dye. M. Beaulieu informs us, that the only two Roman imperial coins of the first times which he had seen perfectly alike were those of the emperor Galba. It is, however, the opinion of the best judges, that a perfect similarity between two medals is a very great reason for supposing one of them to be forged. "It cannot be observed (says Mr Pinkerton), that the differences in coins, apparently from the same dye, are often so minute as to escape an eye not used to macroscopic observations of this sort. But it would be surprising if any two ancient coins were now found struck with the same dye; for out of each million coined, not above one has reached us. Dyes soon give way by the violence of the work; and the ancients had no punchers nor matrices, but were forced to engrave many dyes for the same coin. Even in our mint, upon sending for a shilling's worth of new halfpence, it will appear that three or four dyes have been used. Sometimes the obverse of the dye gives way, sometimes the reverse; but among us it is renewed by punchers, though with variations in the lettering or other minute strokes, while the ancients were forced to recur to another dye differently engraved. The engravers of the dye were called castraiores; other officers employed in the mint were the spectatores spectatores, or numismatists. The melters were styled futilarii, futilarii, and flacteriai; those who adjusted the weight were called equatores monetarum; those who put the pieces into the dye futilitores, and those who struck them molentores. At the head of each office was an officer named privi­ rius, and the foreman was named opitio et exictus."

In order to affit the high relief on the coins, the metal, after being melted and refined, was cast into bullets, as appears from the ancient coins not being cut or filed on the edges, but often cracked, and always rough and unequal. These bullets were then put into the dye, and received the impression by repeated strokes of the hammer, though sometimes a machine appears to have been used for this purpose; for Boerius informs us, that there was a picture of the Roman mintage in a grotto near Baise, where a machine was represented holding up a large stone as if to let it fall suddenly, and strike the coin at once. None of the ancient money was cast in moulds, excepting...
MEDALS.

Sect. VI.

Of the Preservation of Medals.

We now come to consider what is that distinguishes one medal from another, and why some are so highly prized more than others. This, in general, besides its genuineness, consists in the high degree of preservation in which it is. This, by Mr. Pinkerton, is called preservation of medals, and is by him regarded as good and as perfect. In this, he says that a true judge is so nice, that he will reject even the rarest coins if they appear defaced either in the figures or legend. Some, however, are obliged to content themselves with those which are a little rubbed, while those of superior taste and abilities have in their cabinets only such as are in the very state in which they came from the mint; and such he says, are the cabinets of Sir Robert Anlins, and Mr. Walpole of Roman silver at Strawberryhill. It is absolutely necessary, however, that a coin be in what is called good preservation; which in the Greek or Roman emperors, and the colonial coins, is supposed to be when the legends can be read with some difficulty; but when the preservation is perfect, and the coin just as it came from the mint, even the most common coins are valuable.

The fine ruft, like varnish, which covers the surface of brass and copper coins, is found to be the best preserver of them; and is brought on by laying in a foil impregnated with iron; but silver is susceptible of various kinds of rust, principally green and red; both of which yield to vinegar. In gold and silver coins the rust must be removed, as being prejudicial; but in brass and copper it is preservative and ornamental; a circumstance taken notice of by the ancients. "This fine rust (says Mr. Pinkerton), which is indeed a natural varnish not imitable by the art of man, is sometimes a delicate blue, like that of a turquoise; sometimes of a bronze brown, equal to that observable in ancient statues of bronze, and so highly prized; and sometimes of an exquisite green, a little on the azure hue, which last is the most beautiful of all. It is also found of a fine purple, of olive, and of a cream colour or pale yellow; which last is exquisitely, and shows the impression to as much advantage as paper of cream colour, used in all great foreign presses, does copperplates and printing. The Neapolitan patina (the rust in question) is of a light green; and when free from excrescence or blemish is very beautiful. Sometimes the purple patina gleams through an upper coat of another colour, with as fine effect as a variegated silk or gem. In a few instances a rust of a deeper green is found: and it is sometimes spotted with the red or bronze shade, which gives it quite the appearance of the East Indian stone called the blood-stone. These rufts are all, when the real product of time, as hard as the metal itself, and preserve it much better than any artificial varnish could have done; concealing at the same time not the most minute particle of the impression of the coin."

The value of medals is lowered when any of the letters of the legend are misplaced; as a suspicion of forgery is thus induced. Such is the case with many of those of Claudius Gothicus. The same, or even greater, diminution in value takes place in such coins as have not been well fixed in the dye, which has occasioned their slipping under the strokes of the hammer, and thus made a double or triple image. Many coins of this kind are found in which the one side is perfectly well-formed, but the other blundered in the manner just mentioned. Another blemish, but of smaller moment, and which to some may be rather a recommendation, is when the workmen through inattention have put another coin into the dye without taking out the former. Thus the coin is convex on one side, and concave on the other, having the same figure upon both its sides.

The medals said by the judges in this science to be countermarked are very rare, and highly valued. They marked a small stamp impressed upon them, in some an medal, head, in others a few letters, such as AUG.; N. PROBUS, &c., which marks are supposed to imply an alteration in the value of the coin; as was the case with the countermarked coins of Henry VIII. and Queen Mary of Scotland. Some have a small hole through them; sometimes with a little ring fastened in it, having been used as ornaments; but this makes no alteration in their value. Neither is it any diminution in the value of a coin that it is split at the edges; for coins of undoubted antiquity have often been found in this state, the cause of which has already been explained. On the contrary, this cracking is generally considered as a great merit; but Mr. Pinkerton supposes that one of these cracked coins has given rise to an error with respect to the wife of Carausius who reigned for some time in Britain. The inscription is read ORIUMA AUG.; and there is a crack in the medal just before the O of oriuma. Without this crack Mr. Pinkerton supposes that it would have been read FORTUNA AUG.

Some particular foils have the property of giving silver and silver a yellow colour as if it had been gilt. It naturally acquires a black colour through time, which any tarnished sulphureous vapour will bring on in a few minutes. From its being so susceptible of injuries, it was always mixed by the ancients with much alloy, in order to harden it. Hence the impressions of the ancient silver coins remain perfect to this day, while those of modern coins are obliterated in a few years. On this ac-
account Mr Pinkerton expresses a wish, that modern states would allow a much greater proportion of alloy in their silver coin than they usually do. As gold admits of no rust except that from iron abovementioned, the coins of this metal are generally in perfect conservation, and fresh as from the mint.

To clean old gold coins from this rust, it is best to steep them in aquafortis, which, though a very powerful solvent of other metals, has no effect upon gold, silver may be cleaned, by steeping for a day or two in vinegar, but more effectually by boiling in water with three parts of tartar and one of sea-fust; on both these metals, however, the rust is always in spots, and never forms an entire incrustation as on brass or copper. The coins of these two metals must never be cleaned, as they would thus be rendered full of small holes eaten by the rust. Sometimes, however, they are found so totally obscured with rust, that nothing can be discovered upon them; in which case it is best to clear them with a graver; but it may also be done by boiling them for 24 hours in water with three parts of tartar and one of alum; not sea-salt as in silver coins.

The high state of preservation in which ancient coins are usually found, is thus accounted for by Mr Hancarville. He observes, that the chief reason is the custom of the ancients always to bury one or more coins with their dead, in order to pay for their funeral over the river Styx. "From Phidias of Argos (says he) to Constantine I. are 36 generations: and from Magna Graecia to the Ephrups, from Cyrene to the Euxine Sea, Graecian arts prevailed, and the inhabitants amounted to about 30,000,000. There died therefore, in that time and region, not less than ten thousand millions of people, all of whom had coins of one sort or other buried with them. The tombs were sacred and untouched; and afterwards neglected, till modern curiosity or chance began to disclose them. The urn of Flavia Valentina, in Mr Trowley's capital collection, contained seven brass coins of Antoninus Pius and Elegabalis. Such are generally black, from being burnt with the dead. The best and finest coins were used on these occasions from respect to the dead; and hence their fine conservation. At Syracusa a skeleton was found in a tomb, with a beautiful gold coin in its mouth; and innumerable other instances might be given, for hardly is a funeral urn found without coins. Other incidents also conspire to furnish us with numbers of ancient coins, though the above-quoted circumstance is the chief cause of perfect conservation. In Sicily, the silver coins with the head of Proserpine were found in such numbers as to weigh 600 French livres or pounds. In the 16th century, 60,000 Roman coins were found at Modena, thought to be a military chest hid after the battle of Bedriacum, when Otho was defeated by Vitellius. Near Brefl, in the year 1760, between 20 and 30,000 Roman coins were found. A treasure of gold coins of Lyfimachus was found at Deva on the Marus; and Scarbo, lib. vii. and Paulus in Attic. tell that Pherennius was defeated by the Gete; at which time this treasure seems to have fallen into their hands.

Thus Mr Pinkerton, from the authority of Mr Hancarvilles and others; but considering these vast numbers of coins found in various places, it seems surprising how so few should now remain in the cabinets of the curious, as the same author informs us that the whole of the different ancient coins known to us amount only to about 80,000, though he owns that the whole cannot be esteemed accurate.

The most difficult and the most important thing in the whole science of medals is the method of distinguishing the true from the counterfeit. The value put upon ancient coins made the forgery of them almost coeval with the science itself; and as no laws inflict a punishment upon such forgers, men of great genius and abilities have undertaken the trade; but whether to the real detriment of the science or not, is a matter of some doubt; for if only exact copies of genuine medals are sold for the originals, the imposition may be deemed trifling; but the cafe must be accounted very different, if people take it upon them to forge medals which never existed. At first the forgeries were extremely gross; and medals were forged of Priam, of Ariloto, Artemisia, Hannibal, and most of the other illusrious personages of antiquity. Most of these were done in such a manner, that the fraud could easily be discovered; but others have imposed even upon very learned men. Mr Pinkerton mentions a remarkable medal of the emperor Heraclius, representing him in a chariot on the reverse, with Greek and Latin inscriptions, which Joseph Scaliger and Lipsius imagine to have been struck in his own time, but which was certainly issued in Italy in the 15th century. "Other learned men (says our author) have been strangely misled when speaking of coins; for to be learned in one subject excludes not gross ignorance in others. Budaes, de Asse, quotes a denarius of Cicero, m. tert. Eraclius, in one of his Epistles, tells us with great gravity, that the gold coin of Brutus' struck in Thrace, Rosam, bears the patriarch Noah coming out of the ark with his two sons, and takes the Roman eagle for the dove with the olive branch. Winkelmann, in his letters, informs us, that the small brass piece with Virgil's head, Reverse spo, is undoubtedly ancient Roman; and adds, that no knowledge of coins can be had out of Rome: but Winkelmann, so convenient in staters, knew nothing of coins. It is from other artists and other productions that any danger of deceit arises. And there is no wonder that even the skilful are misled by such artists as have used this trade; for among them appear the names of Victor Cambello, Giovanni del Cavino, called the Paduan, and his son Alessandro Baffiano engaged by excellent artists.
were Dervict of Florence who confined himself to medallions, and Cogornier who gave coins of the 50 tyrants in small brases. The chief part of the forgeries of Greek medals which have come to my knowledge are of the first mentioned, and a very great kind, representing persons who could never appear upon coin, such as P trium, Æneas, Plato, Alcibiades, Artemis, and others. The real Greek coins were very little known or valued till the works of Goltzius appeared, which were happily posterior to the era of the grand forgers. Why later forgers have seldom thought of counterfeitting them cannot easily be accounted for, if it is not owing to the masterly workmanship of the originals, which sets all imitation at defiance. Forgeries however, of most ancient coins may be met with, and of the Greek among the rest.

"The forgeries are more conspicuous among the Roman medals than any other kind of coins: but we are not to look upon all these as the work of modern artists. On the contrary, we are assured that many of them were fabricated in the times of the Romans themselves, some of them being even held in more estimation than the genuine coins themselves on account of their being plated, and otherwise executed in a manner to which modern forgers could never attain. Even the ancients held some of these counterfeits in such estimation, that Pliny informs us there were frequently many true denarii given for one false one." Caracalla is said to have coined money of copper and lead plated with silver; and plated coins, the work of ancient forgers often occur of many Greek cities and princes; nay, there are even forgeries of barbaric coins. Some Roman coins (says Mr Pinkerton) are found of iron or lead plated with brases, perhaps trials of the skill of the forger. Iron is the most common; but one decurio of Nero is known of lead plated with copper. Neumann judiciously observes, that no historic faith can be put in plated coins, and that the counterfeits are always exactly circular, which is not the case with ancient medals, especially after the time of Trajan.

The Paduan forgeries may be distinguished from those of inferior artists by the following marks: 1. The former are seldom thinner than the ancient. 2. They are very seldom appear as worn or damaged, but the others very frequently, especially in the reverse, and legend of the reverse, which sometimes, as in forged Othos, appear as half consumed by time. 3. The letters in moulds taken from the antique coins have the rudenes of antiquity. 4. False varnish is commonly light green or black, and shines too much or too little. 5. The sides of forged coins are frequently quite smooth, and undistinguishable from the ancient, though to accomplish this requires but little art. 6. Counterfeit medals are frequently as irregular in their form as the genuine; but the Paduan are generally circular, though false coins have often little pieces cut off, in perfect imitation of the genuine. 7. In cast coins the letters do not go sharp down into the metal, and have no fixed outline; their minute angles, as well as those of the draperies, are commonly filled up, and have not the sharpness of the genuine kind. Where the letters or figures are faint, the coin is greatly to be suspected.

The letters form the great criterion of medals: the letters of the ancient being very rude, but the modern otherwise; principal the reason of which, according to Cenini, is, that the ancients engraved all their matrices with the graver on the reverse side of the coin, while the modern forgers strike theirs with a punch. According to Vico, the false patina is green, black, Vico's ac-ruffet, brown, grey, and iron-colour. The green is count of made from verdigris, the black is the smoke of sulphur, the grey is made of chalk steeped in urine, the coin being left for some days in the mixture. The ruffet is next to the natural, by reason of its being a kind of froth which the fire forces from ancient coins; but when false it shines too much. To make it they frequently took the large brases coins of the Poelmies, which were often corroded, and made them red hot in the fire; put the coins upon them, and a fine patina adhered. Our author does not say in what manner the iron-covered patina was made. "Sometimes (adds he) they take an old defaced coin, covered with real patina, and damp it anew; but the patina is then too bright in the cavities, and too dull in the protuberances. The trial of brases coins with the true medals is as hard as the metal itself. Instead of the greasy black varnish above mentioned, indeed, they have sometimes a light green one, fp:ted with a kind of iron marks, and is composed of sulphur, verdigris, and vinegar. It may frequently be distinguished by the hairstrokes of the pencil with which it was laid on being visible upon it. 5. The sides are either filed or too much smoothed by art, or bear the marks of a small hammer. 6. The counterfeits are always exactly circular, which is not the case with ancient medals, especially after the time of Trajan.

Mr Pinkerton informs us, that all medallions from Julius Caesar to Adrian are much to be suspected of forgery; the true medals of the first 14 emperors being

M E D A L I S.

Sect. VII.
Medals cast from the Paduan forgeries.

Sect. VII.

How to distinguish true from counterfeit medals.

I. The second class of counterfeit medals contains those cast from moulds taken from the Paduan forgeries, and others done by eminent masters. There are sometimes more difficult to be discovered than the former, because calling them they can give any degree of thickness they please; and, filling the small hollows with matter, they retouch the letters with a graver, and cover over the whole with varnish. The instructions already given for the former class, however, are also useful for those of the second, with this addition, that medals of this class are generally lighter than the genuine, because fire rareifies the metal in some degree, while that which is struck is rather condensed by the blows. In gold and silver medals there cannot be any deception of this kind; because these metals admit not of patching, and consequently the varnish betrays the imposition. The marks on the file on the margin of those of the second class are a certain sign of forgery; though these do not always indicate the forgery to be of modern date, because the Romans often filed the edges of coins to accommodate them to the length of their pockets, as quarter guineas are sometimes put into the bottom of punch ladders. It is common to imitate the holes of medals made by time by means of aqua-fortis; but this destroys the sides of a coin more effectually than if it had been eaten into naturally. The fraud, however, is not easily distinguished.

III. Medals cast in moulds from an antique.—In this mode some forgers, as Beauvais informs us, have been so very careful, that they would melt a common medal of the emperor whom they meant to counterfeit, left the quality of the metal should betray them. This (says Mr Pinkerton) has been done in the silver Septimius Severus, with the reverse of a triumphal arch, for which a common coin of the same prince has been melted; and in other instances. Putting metals in the fire or upon hot iron to cleanse them, gives them an appearance of being cast; for some part of the metal being softer than the other will run, which makes this one of the worst methods of cleaning medals.

The directions given for discovering the two former deceptions hold good also in this.

IV. Ancient medals retouched and altered.—This is a class of counterfeits more difficult to be discovered than any other. The art (says Mr Pinkerton) is exercised in this class is astonishing; and a connoisseur is the least apt to suspect it, because the coins themselves are in fact ancient. The acute minds of the Italian artificers exercised themselves in this way, when the other forgeries became common and known. With graving tools they alter the portraits, the reverses, and the inscriptions themselves, in a surprising manner. Of a Claudius struck at Antioch they make an Otho; of a Faustina, a Titania; of a Julia Severa, a Didia Clarice; of a Maximiainus, a Pefcinus, &c. Give them a Marcus Aurelius, he starts up a Pertinax, by thickening the beard a little, and enlarging the nose. In short, wherever there is the least resemblance in portraits, reverses, or legends, an artist may from a trivial medal generate a most scarce and valuable one. This fraud is indistinguishable by the false varnish which sometimes marks it; but, above all, by the letters of the legend, which are always altered. Though this be sometimes done with an artifice almost miraculous, yet most commonly the characters struggle, are dismantled, and not in a line.

In counterfeits of this kind sometimes the obverse is not touched, but the reverse made hollow, and filled with matter coloured like the coin, and engraven with such devices and legends as was most likely to bring a great price; others are only retouched in some minute parts, by which, however, the value of the coin is much diminished. Against all these arts (says Mr Pinkerton), severe scrutiny must be made by the purchaser upon the medal itself; and the investigation and opinion of eminent antiquaries had upon its being altered, or genuine as it is issued from the mint.

V. Medals impressed with new devices, or folded.—Medals in the first article of this class the reverses have been totally filed off, and new ones impressed with a dye and hammer. This is done by putting the face or obverse, which ever is not touched, upon different folds of pasteboard, afterwards applying the dye and striking it with a hammer. The forgery in this class is very easily discovered, as the devices and inscriptions on the coins but are known not to exist on true medals: as the Pons Aelius on the reverse of Adrian; the Expeditio Judaica of the same emperor, &c. The difference of fabrication in the face or reverse will be discovered at the first glance by any person of skill.

The folded medals consist of two halves belonging to different medals, sawed through the middle and then joined with folder. This mode of counterfeiting is common in silver and brass coins. They will take an Antoninus, for example, and saw off the reverse, then folder to the obverse which they have treated in the same manner. This makes a medal, which from an unknowing purchaser, will bring an hundred times the price of the two coins which compose it. When the deceit is used in brass coins, they take care that the metals be of one hue; though indeed some pretenders in this way sometimes folder copper and brass together, which at once reveals the deceit. Medals which have a portrait on each side, and which are generally valuable, are the most liable to a spurious of this fraud. To a very nice eye the minute ring of folder is always visible; and upon inferring a graver, the fabrication falls into halves.

In the same manner reverses are sometimes foldered to faces not originally belonging to them, as one mentioned by Petre Jobert of Domitian with an amphitheatre, a reverse of Titus joined to it. Another art is sometimes made use of in this kind of counterfeits, of which there is an instance of the temple of Janus upon Nero's medals; where the middle brass is taken off, and infused in a cavity made in the middle of a large coin of that prince. In the coins of the lower empire, however, the reverses of medals are sometimes so connected with their obverses, that a suspicion of forgery sometimes occurs without any foundation. They are met with most commonly after the time of Gallienus, when such a number of usurpers arose, that it was difficult to obtain an exact portrait of their features; the coiners had not time, therefore, to strike a medal for thee as they could have done for other emperors who reigned longer. Hence, on the reverse
MEDALS.

VI. Plated medals, or those which have clefts. — It has been already remarked, that many true medals are cracked in the edges; owing to the repeated strokes of the hammer, and the little degree of ductility which the metal possesses. This the forgers attempt to imitate by a file; but it is easy to distinguish between the natural and artificial cleft by means of a small needle. The natural cleft is wide at the extremity, and appears to have a kind of almost imperceptible filmaments; the edges of the crack corresponding with each other in a manner which no art can imitate.

The plated medals which have been forged in ancient times were long supposed to be capable of refiling every effort of modern imitation; but of late years, some ingenious rogue (says Mr. Pinkerton) thought of piercing the medals of silver with a red hot needle, which gave a blackness to the inside of the coin, and made it appear plated to an injudicious eye. This fraud is easily distinguished by scraping the inside of the metal. It is, however, very difficult to distinguish the forgeries of rude money when not cast; and our author gives no other direction than to consult a skilful medallist. Indeed, notwithstanding all the directions already given, this seems to be a resource which cannot by any means with safety be neglected. A real and practical knowledge of medals "is only to be acquired (says he) by seeing a great number, and comparing the forged with the genuine. It cannot therefore be too much recommended to the young collector, who wishes to acquire some knowledge in this way, to visit all the sales and cabinets he can, and to look upon all ancient medals with a very microscopic eye. By these means only is to be acquired that ready knowledge which enables at first glance to pronounce upon a forgery, however ingenious. Nor let the science of medals be from this concluded to be uncertain; for no knowledge is more certain and immediate, when it is properly studied by examination of the real objects. A man who buys coins, trusting merely to his theoretical knowledge of medallic books, will find himself woefully mistaken. He ought to study coins first, where only they can be studied, in themselves. Nor can it be matter of wonder or implication of caprice, that a medal of skill should at one preception pronounce upon the veracity or falsehood of a medal; for the powers of the human eye, employed in certain lines of science, are amazing. Hence a student can distinguish a book among a thousand similar, and quite alike to every other eye; hence a shepherd can discern, &c.: hence the medallist can say in an infant, "this is a true coin, and this is a false;" though to other people no distinction be perceptible."

Forgeries of modern coins and medals, Mr. Pinkerton observes, are almost as numerous as of the ancient. The satyric coin of Louis XII. PerdiP Babylons nomem, is a remarkable instance; the false coin is larger than the true, and bears date 1512. The rude coins of the middle ages are very early forged, and forgeries have accordingly become common. Forged coins of Alfred and other early princes of England have appeared, some of which have been done with great art. "The two noted English pennies of Rich. I. says our author, are of this stamp; and yet have imposed upon Meffrs. Folkes and Snelling, who have published them as genuine in the two books upon English coins. But they were fabricated by the late Mr. White of Newgate-street, a noted collector, who contaminated an otherwise fair character by such practices. Such forgeries, though easy, require a skill in the history and coining of the time which luckily can hardly fall to the lot of a common Jew or mechanic forger. But the practice is detectable, were no gain propounded: and they who floup to it must suppose, that to embarras the path of any science with forgery and futility, implies no infancy. In forgeries of ancient coin, the fiction is perhaps sufficiently stoned for by the want skill required; and the artifié may plausibly allege, that his attention was not to deceive, but to excite his utmoft powers, by an attempt to rival the ancient masters. But no possible apology can be made for forging the rude money of more modern times. The crime is certainly greater than that which leads the common coiner to the galloways; inasmuch as it is committed with more ease, and the profit is incomparably larger."

Sect. VIII. Of the Value of Medals.

All ancient coins and medals, though equally genuine, are not equally valuable. In medals, as well as in every thing else, the scarcity of a coin flamps a value upon it which cannot be otherwise derived from its intrinsic worth. There are four or five degrees of rarity reckoned up; the highest of which is called unique. The cause is generally ascribed to the fewness of number thrown off originally, or to their having been called in, and recasted in another form. To the former cause Mr. Pinkerton ascribes the scarcity of the copper of Otho and the gold of Pescennius Niger; to the latter that of the coinage of Caligula; "though this last (says he) is not of singular rarity; which flows that even the power of the Roman senate could not annihilate an established money; and that the first cause of rarity, arising from the small quantity originally struck, ought to be regarded as the principal."

In the ancient cities Mr. Pinkerton ascribes the scarcity of coin to the poverty or smallness of the state; the scarcity but the scarcity of ancient regal and imperial coins of medals in ancient cities, Causes of

93 Forgeries of modern coins.

94 Sometimes the rarest coins lose their value, and become common. This our author ascribes to the high price given for them, which tempts the poseffors to bring them to market; but chiefly to the discovering of hoards of them. The former cause took place with Queen Anne's farthings, some of which formerly sold at five guineas; nay, if we could believe the newspaper,
Sect. IX.

M. F. D. A. L. S.

Value.

Rare coins sometimes become common, and vice versa.

Silver coins in what cases most esteemed.

Greek copper coins.

Roman confular coins.

Value.

pens, one of them was some years ago sold for 560 l., the latter with the coins of Cunna, the Danish king of England: which were very rare till a had of them was discovered in the Orfordays. As discoveries of this kind, however, produce a temporary plenty, so when they are dispersed the former scarcity returns; while on the other hand some of the common coins become rare through the mere circumstance of neglect.

As double the number of copper-coins of Greek cities are to be met with that there are of silver, the latter are of consequence much more esteemed; but the reverse is the case with those of the Greek princes. All the Greek coin of silver are very rare except those of Athens, Corinth, Melfina, Dyrrachium, Maecilla, Syracuse, and some others. Of the Greek monarchical coins the most rare are the tetradrachms of the kings of Syria, the Ptolemaics, the sovereigns of Macedon and Ethiopia, excepting those of Alexander the Great and Lydiamachus. Those of the kings of Cappadocia are of a smaller size, and scarce to be met with. Of those of Numidia and Mauritania, the coins of Juba the father are common: but those of the son and nephew Ptolemy scarce. Coins of the kings of Sicily, Parthia, and Judea, are rare; the last very much so. We meet with no coins of the kings of Arabia and Comagene except in bronzes; those of the kings of Bohorus are in electrum, and a few in bronzes, but all of them rare; as are likewise those of Philetanis king of Pergamus and of the kings of Pontus. In the year 1775, a coin of Mithridates sold for 12s. 6d. Didrachms of all kings and cities are scarce excepting those of Corinth and her colonies; but the gold coins of Philip of Macedon, Alexander the Great and Lydiamachus, as has already been observed, are common. The silver tetradrachms of all kings bear a very high price. The didrachm of Alexander the Great is one of the rarest of the smaller Greek silver coins; some of the other princes are not uncommon.

In most cases that money of the Greek monarchs is scarce; but that of Hiero I. of Syracuse is uncommonly plenty, as well as that of several of the Ptolemaics.

The most rare of the confular Roman coins are those reformed by Trajan: of the others the gold confular coins are the most rare, and the silver the most common; excepting the coin of Brutus with the cap of Liberty already mentioned, with some others. Some of the Roman imperial coins are very scarce, particularly those of Otho in bronzes: nor indeed does he occur at all on any coin struck at Rome: but the reason of this may with great probability be supposed to have been the shortness of his reign. His portrait upon the bronzes coins of Egypt and Antioch is very bad; as well as almost all the other imperial coins of Greek cities. The best likeness is on his gold and silver coins; the latter of which are very common. The Greek and Egyptian coins are all of small or middling size, and have reverses of various kinds; those of Antioch have Latin legends, as well as most of the other imperial coins of Antioch. They have no other reverse but the SC in a wreath, excepting in one instance or two of the large and middle bronzes, where the inscriptions are in Greek. Latin coins of Otho in bronzes, with figures on the reverse, are certainly fake; though in the cabinet of D’Ennery at Paris there was an Otho in middle bronzes restored by Titus, which was esteemed genuine by connoisseurs.

The lead coins of Rome are very scarce: Most leaden Roman coins are pieces struck or cast on occasion of the Saturnalia: other are tickets for festivals and exhibitions, both private and public. The common tickets for theatres were made of lead, as were the contornacci; perpetual tickets, like the English silver tickets for the opera. Leaden medallions are also found below the foundations of pillars and other public buildings, in order to perpetuate the memory of the founders. From the time of Augustus also we find that leaden seals were used. The work of Ticorini upon this subject, intitled Pisoni Antiochis, is much recommended by Mr Pinkerton.

The Roman coins, which have been blundered in the manner formerly mentioned, are very rare, and undervalued by the connoisseurs. The blunders in the legends of the coins, which in all probability are the mere effects of accident, have been so far imitated by some medallists, that they have given rise to imaginary emperors who never existed. A coin of Faustina, which on the reverse boueci., e puzzled all the German antiquaries, till at last Klotz gave it the following facetious interpretation: =ine omni utilitate Jeflamini tantas ineptias.

The heptarchic coins of England are generally rare except those call flycre, which are very common, as well as those of Burgred king of Mercia. The coins of Alfred which bear his bull are scarce, and his money much more so. Those of Haraldknut are so rare, that it was even denied that they had an existence; but Mr Pinkerton informs us, that there are three in the British museum, upon all of which the name harthcanut is quite legible. No English coins of King John are to be met with, tho’ there are some Irish ones; and only French coins of Richard L “Leake (says Mr Pinkerton) made a strange blunder in ascribing coins of different kings with two faces, and otherwise spoiled in the flamping, to this prince; and which, as usual, he has been followed by a milled number.”

Coins of Alexander II. of Scotland are rather scarce, but of Alexander III. are more plentiful. Those of John Balliol are rare, and none of Edward Balliol to be found.

Sect. IX Of the Purchase of Medals.

Medals are to be had at the shops of goldsmiths and silversmiths, with those who deal in curiosities, &c. but in great cities there are professed dealers in them. The best method of purchasing medals, however, is that of buying whole cabinets, which are every year exposed to auction at London. In these the rare medals are fold by themselves, but the common ones are put up in large lots, so that the dealers commonly purchase them. Mr Pinkerton thinks it would be better that medals were sold one by one; because a lot is often valued and purchased for the sake of a single coin; while the others separately would sell for perhaps four times the price of the whole lot. “If any man of common sense and honesty (says Mr Pinkerton)
M E D A L S.

Sect. IX.

Pur- The name of weights given to the ancient Roman aces is, according to our author exceedingly improper; as that people had weights of lead and brass, without the least appearance of a portrait upon them. These denote the weight by a certain number of knobs; and have likewise small fleur-ettes engraved upon them. According to Mr Pinkerton, whenever we meet with a piece of metal flamped on both sides with bulls and figures, we may lay it down as a certain rule that it is a coin; but when slightly ornamented and marked upon one side only, we may with equal certainty conclude it to be a weight.

The ancient Roman aces are worth from 2s. to 2l. Price of the according to the singularity of their devices. Conflar- lar gold coins are worth from 1l. to 5l. Pompey, with his sons 2l. and the two Brutis 2s. The silver coins are universally worth from a shilling to half a crown, excepting that of the cap of Liberty and a few others, which if genuine will bring from 10s. to 5l. The confular copper bears an equal price with the silver, but is more rare; the confular silver coins reftored by Trajan are worth 20s. each.

With regard to the Roman imperial coins, it is to be observed, that some of those which belong to princes whose coins are numerous, may yet be rendered extremely valuable by uncommon reverses. Mr Pinkerton particularly points out that of Augustus, with the legend C. MAURUS TAOVS, which is worth three guinea's, though the silver coins of that prince in general are not worth above a shilling. In like manner, the common gold coins of Trajan are not worth above twenty shilling's, while those with BAVILICA UFA, Forum Trajan, Divi nero et Trajanus, Pater, Divi Neron et Plinna Ang. Profelito Aug. Regina Aflignata, Rex Partibus, and some others, bear from three to 10 bound. The ticket medals belong to the Roman Senate, and are worth from three to ten shilling's. The forged coins and medallions of the Pudian fell from one to three shilling's each.

Of the coins of other nations, those of Hilderic the Barbaric king of the Vandals are in silver, and worth 10s. each. The small brass of Atharanic, 5s.; the gold of Theodoric 2l.; the second brass of Theodahat 5s.; the second brass of Badueta rare, and worth 10s.; the third brass, 3s. The British coins are very rare, and worth from ten shilling's to two guinea's each, sometimes much more. Medals with unknown characters are always scarce and dear. Saxon pennies of the heptarchy are rare, and worth from ten shilling's to ten pounds, according to their scarcity and preservation. The coins of the English kings are common; those of Edward the Confessor, in particular; others are rare and worth from ten shilling's to two guinea's, while two of Hardynkute are worth no less than ten guinea's. The gold medals of Henry, in 1545, and the coronation of Edward, are worth 20l. each; the Mary of Trezzo, 3l.; Simon's head of Thurloe in gold is worth 12l.; his oval medal in gold upon Blake's naval victory at sea is worth 30l.; and his trial piece, if brought to a sale, would, in Mr Pinkerton's opinion, bring a still higher price. The medals of Queen Anne, which are intrinsically worth above two guinea's and a half, fell for about 3l. each; the silver, of the size of a crown piece, fell for 10s. and the copper from five to ten shilling's. Daffier's copper pieces fell from two to five shilling's, and a few bear a higher price.

The Scottish gold coins fell higher than the Eng-
Medals.

Arrangement, &c.

Medals are divided into two classes: those which are made to commemorate events, and those which are made to commemorate persons. The first class includes such medals as are given to celebrate the accession of a new sovereign, or the conclusion of a treaty, or the peace of a war. The second class includes such medals as are given to commemorate the death of a ruler, or the captivity of a prince.

The arrangements of these medals are generally based on the principles of symmetry and harmony. The design is usually divided into two or more parts, each part representing a different aspect of the event or person being commemorated. The use of a radiating or Portland-crown medallion is typical of this style.

The use of medals as a form of visual representation of historical events or persons is a very common practice. The use of such medals is not limited to the time of Alexander the Great, but rather it continues to the present day.

The laurel wreath is a common symbol on medals, representing victory and honor. It is often found on medals that commemorate military victories.

The use of symbols and inscriptions on medals is also common. These can include the name of the ruler, the date of the event, or the name of the city or province where the event occurred.

In conclusion, the use of medals as a form of visual representation of historical events or persons is a very common practice. The use of such medals is not limited to the time of Alexander the Great, but rather it continues to the present day. The use of symbols and inscriptions on medals is also common.
guftpup, the augurs having a particular kind of gown
called lana, with which they covered their heads when
observing an omen. In latter times this implies only
consecration, and is common in coins of emperors.
It is first met with on the coins of Claudius Gothicus
as the mark of consecration of an emperor. The
nimbus, or glory, now appropriated to saints, has been
already mentioned. It is as ancient as Augustus, but
is not to be met with on many of the imperial medals,
even after it began to be appropriated by them. There
is a curious coin, which has upon the reverse of
the common piece with the head of Rome Urbs Roma,
in large brafs, Contantine I. sitting amidst victories
and genii, with a triple crown upon his head for Eu-
rope, Asia, and Africa, with the legend Securitas
Roma.

In general only the bust is given upon medals,
though sometimes half the body or more; in which
latter case the hands often appear with emblems of ma-
jesty in them; such as the globe said to have been
introduced by Augustus as a symbol of universal domi-
nion; the sceptre sometimes confounded with the con-
sular staff, a roll of parchment, the symbol of legis-
lative power, and an handkerchief expressive of the power
over the public games, where the emperor gave the
signal. Some princes hold a thunderbolt, showing that
their power on earth was equal to that of Jupiter in
Heaven; while others hold an image of Victory.

Medals likewise afford a good number of portraits
of illustrious men; but they cannot easily be arranged
in chronological order, so that a series of them is not
to be expected. It is likewise vain to attempt the
formation of a series of gods and goddesses to be found
on ancient coins. Mr Pinkerton thinks it much bet-
ter to arrange them under the several cities or kings
whose names they bear. A collection of the portraits
of illustrious men may likewise be formed from medals
of modern date.

The reverse of ancient Greek and Roman coins
afford an infinite variety of instruction and amusement.
They contain figures of deities at full length, with
their attributes and symbols, public symbols and diver-
fions, plants, animals, &c. &c. and in short almost
every object of nature or art. Some have the portrait
of the queen, son, or daughter of the prince
whose image appears on the face or obverse; and these
are esteemed highly by antiquaries, not only because
every coin stamped with portraits on both sides is ac-
counted valuable, but because they render it certain
that the person represented on the reverse was the
wife, son, or daughter of him who appears on the
obverse; by which means they assist greatly in the ad-
justing of a series. Some, however, with two portraits
are common, as Augustus, the reverse of Caligula;
and Marcus Aurelius, reverse of Antoninus Pius.

We find more art and design in the reverse of the
Roman medals than of the Greek: but, on the other
hand, the latter have more exquisite relief and work-
manship. The very ancient coins have no reverses,
excepting a rude mark struck into the metal remi-
bling that of an instrument with four blunt points on
which the coin was struck, and was owing to its ha-
vings been fixed by such an instrument on that side
to receive the impression upon the other. To this
succeeds the image of a dolphin, or some small animal,
in one of the departments of the rude mark, or in an
hollow square; and this again is succeeded by a more
perfect image, without any mark of the hollow square.

Some of the Greek coins are hollow in the reverse, as
those of Caelonia, Crotona, Metapontum, and some
other ancient cities of Magna Grecia. About 500
B.C. perfect reverses appear on the Greek coins, of
exquisite relief and workmanship. The very muf-
cles of men and animals (says Mr Pinkerton) are seen,
and will bear inspection with the largest magnifier as
ancient gems. The ancients certainly had not eyes
different from ours; and it is clear that they must have
magnified objects. A drop of water forms a micro-
scope; and it is probable this was the only one of the
ancients. To Greek artists we are indebted for the
beauty of the Roman imperial coins; and these are
so highly finished, that on some reverses, as that of
Nero's decurion, the adventus and progression of vari-
ous emperors, the fundator paxis of Severus, the fea-
tures of the emperor, riding or walking, are as exact
as on the obverse. But though the best Greek artis-
tes were called to Rome, yet the Greek coins under
the Roman emperors are sometimes well executed,
and always full of variety and curiosity. No Roman
or Etruscan coins have been found of the globular
form, or indented on the reverse like the early Greek.
The first Greek are small pieces of silver, while the
Roman are larger masts of copper. The former are
fruck; the latter cast in moulds. The reverses of the
Roman coins are very uniform, the prow of a ship, a
car, or the like, till about the year 100 B.C. when
various reverses appear on their consular coins in all
metals. The variety and beauty of the Roman im-
perial reverses are well known. The medallist much va-
lues those which have a number of figures; as the
Pudica Faustina, of Faustina, a gold coin no larger
than a fiscence, which has 12 figures: that of Trajan,
regna aeternata, has four; the congiarium of Nerva
five; the allocation of Trajan seven; of Hadrian 10; of
Probus 12. Some Roman medals have small figures
on both sides, as the Apollo Danilo of Julian II.
Such have not received any peculiar name among the
medalists. Others have only a reverse, as the noted
Spitiatri,
which have numerals I. II. &c. on the
obverse.

The names of the deities represented on the rever-
se of the de-

The principal symbols of the divine attributes to
be met with on the Greek medals are as follow:
1. Jupiter is known on the coins of Alexander the
Great by his eagle and thunderbolts; but when the
figure occurs only on the obverse of coins, he is dis-
tinguished by a laurel crown, and plaid bearded coun-
tenance. Jupiter Ammon is known by the ram's-
horn twisting round his ear; a symbol of power and
strength, assumed by some of the successors of Alex-
ander the Great, particularly by Lycurgus.
2. Neptune is known by his trident, dolphin, or being drawn by sea-horses; but he is seldom met with on the Grecian coins.

3. Apollo is distinguished by an harp, branch of laurel, or tripod; and sometimes by a bow and arrows. In the character of the Sun, his head is surrounded with rays; but when the bust only occurs, he has a fair round face, and is crowned with laurel. He is frequent on the coins of the Syrion princes.

4. Mars is distinguished by his armour, and sometimes by a trophy on his shoulders. His head is armed with a helmet, and has a ferocious countenance.

5. Mercury is represented as a youth, with a small cap on his head, wings behind his ears and on his feet. He is known by the cap, which resembles a small hat, and the wings. He appears also with the caduceus, or wand crowned with pomegranates, or purples, which he holds in his hand.

6. Eléphantus is known by his bulk; beard, and his leaning on a club with a serpent twisted round it. He sometimes occurs with his wife Hygeia or Health, with their son Telêphorus or Convalescence between them.

7. Bacchus is known by his crown of ivy or vine, his diadem and horn, with a tyger and satyrs around him.

8. The figure of Hercules is common on the coins of Alexander the Great; and has frequently been mistaken for that of the prince himself. He appears sometimes as a youth and sometimes with a beard. He is known by the club, lion's skin, and remarkable apparent strength; sometimes he has a cup in his hand, and a poplar tree, as a symbol of vigour, is sometimes added to the portrait.

9. The Egyptian Serapis is known by his bulky beard, and a measure upon his head.

10. Apis is delineated in the form of a bull, with a flower of the lotos, the water lily of the Nile, supposing by Macrobius to be a symbol of creation and Jamblichs tells us, that Odris was thought to have his throne in his head.

11. Harpocrates, the god of Silence, appears with his finger on his mouth; sometimes with the sistrum in his left hand; a symbol common to most of the Egyptian deities.

12. Canopus, another Egyptian deity, appears in the shape of a human head placed on a kind of pitcher. “This deified pitcher (says Mr Pinkerton) seems to refer to an anecdote of ancient superstition, which, I believe, is recorded by Plutarch. It seems some Persian and Egyptian priests had a contract of which their deities had the superintendency. The Egyptian said, that a single vase, sacred to Serapis, would extinguish the whole power of the Persian deity of fire. The experiment was tried; and the wily Egyptian, boring holes in the vase and flooding them with wax, afterwards filled the vase with water; which, gushing through the holes as the wax melted, extinguished the Persian deity. Hence the vase was deified.”

13. The Holy Senate and Holy People, appear frequently on Greek imperial coins, sometimes represented as old men with beards, at others as youths.

The deities represented on medals are:

1. Juno, represented by a beautiful young woman, sometimes with a diadem, sometimes without any badge, which is reckoned a sufficient distinction, as the other goddesses all wear badges. Sometimes she appears as the goddess of marriage; and is then veiled to the middle and sometimes to the toes. She is known by the peacock, a bird sacred to her from the fable of Argus.

2. Minerva is very common on the coins of Alexander the Great; and her bust has been mistaken by the celebrated painter Le Brun for the hero himself. She is very easily distinguished by the helmet. Her symbols are, her armour; the spear in her right hand, and the aegis, with a Medusa's head, in her left; an owl commonly standing by her.

3. Diana of Ephesus is commonly represented on the Greek imperial coins; and appears with a great number of breasts, supposing to denote universal nature. She is supported by two deer, and carries a panier of fruit upon her head. The bust of this goddess is known by the crescent on her brow, and sometimes by the bow and quiver at her side.

4. Venus is known by an apple, the prize of beauty, in her hand. Sometimes she is distinguished only by her total want of drefs; but is always to be known by her extraordinary beauty, and is sometimes adorned with pearls about her neck.

5. Cupid is sometimes met with on the Syrian coins, and is known by his infancy and wings.

6. Cybele is known by a turreted crown and lion; or is seen in a chariot drawn by lions.

7. Ceres is known by her garland of wheat, and is common on the Sicilian coins; that land being remarkable for its fertility. Sometimes she has two serpents by her, and is sometimes drawn in a chariot by them. She carries in her hands the torches with which she is said to have gone in search of her daughter Proserpine.

8. Proserpine herself is sometimes met with on coins with the name of Atis or the girl.

9. The Egyptian Isis has a bud or flower on her head; a symbol of the perpetual bloom of the inhabitants of heaven. She carries also a sistrum in her hand.

10. The Sidonian Astarte appears on a globe supported on a chariot with two wheels, and drawn by two horses.

There are the deities most commonly represented on the Greek coins. The more uncommon are, Saturn with his fcythe, or with a hook on the Heraclean coins; Vulcan with his tongs, on the reverse of a coin of Thyatira, repreented at work in the presence of Minerva. Adr anus, a Sicilian god, is sometimes represented on coins with a dog. Anubis, an Egyptian deity, has a dog's head. Aatis is known by his Phrygian bonnet; Caltor and Pollux by a star on the head of each; Dis, by his old face, dishevelled hair and beard, and a hook; Flora by her crown of flowers; Nemesis by her wheel, and Pan by his horns and ears belonging to some kind of beast.

There are likewise to be found on medals many Table of different symbols by themselves; of the most remarkable, Symbols, able of which we shall give the following table, with their significations:

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vases</td>
<td>Solemn games</td>
</tr>
<tr>
<td>Small</td>
<td></td>
</tr>
</tbody>
</table>
MEDALS.

Signification.
- Mystic rites of Bacchus.
- Coin struck at Antioch, where an anchor was dug up.
- Fort and gate.
- Tribulus, a kind of Chevaux de Frise.
- Altar or tripod.
- Dolphin.
- Leftifterna.
- Mituus, or twisted wand.
- A river.
- Bacchus.
- Ceres and Proserpine.
- Ceres.
- Minerva.
- Venus.
- Diana, Ceres, or Proserpine.
- The fun, Belus, or Venus.

Symbols.
- 35. Globe on an altar with three stars.
- 36. Fort and gate.
- 37. Tribulus, a kind of Chevaux de Frise.
- 38. Altar or tripod.
- 40. Leftifterna.
- 41. Mituus, or twisted wand.
- 42. Apex, or cap with flyings.
- 43. Thetis, or chariot employed to carry images.
- 44. Peacock.
- 45. Eagle.

The legends put upon medals are designed as ex-Legends of plannations of them; but as the compass of even the Medals, largest coins do not admit of any great length of inscription, it has always been found necessary to use abbreviations; and in readily deciphering these lies a considerable part of the difficulty of the science. This, however, is greater in the Roman than in the Greek medals; for the Greeks commonly insert as much of the word as is sufficient to enable us easily to understand its meaning; but it is common for those who attempt to explain letters that do not often occur, to fall into very ridiculous errors. Of this Mr Pinkerton gives a most remarkable instance in Fortunius Lictor, a learned man, who finding upon a coin of Augustus, the letters \textit{Lictor} signifying the 14th year of that emperor's reign, imagined that they signified \textit{Lucernae inventi Delta}; \textit{\textquotedblright}Delta invented lanthorns;\textquotedblright; and others supposed to be a river. Accolony drawn from one legion. Apis, strength or securitie. Peace and concord. Abundance. Priestshood. Baton of command.

Symbols.
- 14. Mudnis, or conic stone.

Symbols of Countries, &c.
- 16. Owl.
- 17. Pegasus.
- 18. Wolf's head.
- 20. Minotaur's head and labyrinth.
- 21. Horse's head.
- 22. Lion.
- 23. Tortoise.
- 25. Three legs joined, as in the Isle of Man-money.
- 26. Horse.
- 27. The crescent.
- 29. Ensign, with the letters col.
- 32. Cornucopia.
- 33. Pontificial hat.
- 34. Parazonium.

Sect. XI.

Besides the ordinary coins of the ancients, which passed in common circulation through the country, there were others of a larger size, which are now termed medallions. These were struck on the commencement of the reign of a new emperor and other solemn occasions: frequently also, by the Greeks in particular, as monuments of gratitude or of flattery. Sometimes they were mere trial or pattern pieces; and those abound after the time of Maximian with the words \textit{Tres Moneta} on the reverse. The common opinion

\textit{Arrangement, &c.}

2. Small chef or hamper, with a serpent leaping out.

3. Anchor on Selucian medals.

4. Apollo on Syrian coins, on an inverted hamper.

5. Bee.

7. Reed.

8. Ivy and grapes.

10. Corn.

11. Owl and olive.

12. Dove.

14. Mudnis, or conic stone.

15. Pomegranate flowers.

16. Owl.

17. Pegasus.

18. Wolf's head.

20. Minotaur's head and labyrinth.

21. Horse's head.

22. Lion.

23. Tortoise.

24. Sphinx.

25. Three legs joined, as in the Isle of Man-money.

26. Horse.

27. The crescent.

29. Ensign, with the letters col.

31. Caduceus.

32. Cornucopia.

33. Pontificial hat.

34. Parazonium.

35. Globe on an altar with three stars.

36. Fort and gate.

37. Tribulus, a kind of Chevaux de Frise.

38. Altar or tripod.

39. Dolphin.

40. Leftifterna.

41. Mituus, or twisted wand.

42. Apex, or cap with flyings.

43. Thetis, or chariot employed to carry images.

44. Peacock.

45. Eagle.

The world preserved, &c.
is, that all the Roman pieces of gold exceeding the
denarius aureus, all in silver exceeding the
denarius, and all in brasses exceeding the
electrum, went under the
denomination of medalliones: but Mr Pinkerton
thinks that many of these large pieces went in
circulation, though not very commonly, as the five and
two guinea pieces, silver crowns, &c. do in Britain.
The finest medalliones were presented by the mint-masters
to the emperor, and by the emperor to his friends,
as specimens of fine workmanship. The belt we have
at present are of brass, and many of them composed
of two sorts of metal; the centre being copper, with
a ring of brass around it, or the contrary: and the
inscription is sometimes confined to one of the metals,
sometimes not. There is a remarkable difference be-
tween the Greek and Roman medalliones in point of
thickness; the latter being frequently three or four
lines thick, while the other seldom exceed one. Very
few medalliones, however, were struck by the Greeks
before the time of the Roman emperors; but the Greek
medalliones of the emperors are more numerous than
those of the Romans themselves. All these pieces,
however, are of such high price that few private
persons are able to purchase them. In the last century
Christina queen of Sweden procured about 3000.
In the king of France's collection there are 1200; a num-
ber formerly supposed not to exist; and Dr Hun-
ter's collection contains about 400, exclusive of the
Egyptian.

Besides these large pieces, there are smaller ones of
a size somewhat larger than half-crowns; and by
Italian medalliones are called medalliones civil, or small
medalliones. They are still scarcer than the large
kind.

There is still a third kind, which have almost elpa-
ced the notice of medalliones, viz. the small coins or
spintriati, scattered among the people on solemn occa-
sions; such as those struck for the slaves on account of
the Saturnalia; counters for gaming; tickets for
baths and feasts; tokens in copper and in lead; &c.
These are distinguished by Mr Pinkerton by the name
of medalliones. Many, or perhaps almost all, of those
struck for the Saturnalia, were satirical; as the slaves
had then a licence to ridicule not only their masters
but any person whatever. Mr Pinkerton mentions
one of the most common pieces of this kind, which
has on the obverse the head of an old woman veiled,
with a laurel crown; the reverse only s. c. within a
wreath. Baudelot is of opinion that it is the head of
Acca Laurentia, the nurse of Romulus, to whom a
sacrifice was ordained. "Perhaps (says Mr Pinkerton),
it was struck in ridicule of Julius Cæsar; for the man-
er of the laurel crown, and its high appearance over
the head, perfectly resemble that of Julius on his coins."
Some have a slip upon one side; on the reverse T, or
a crook, which was the image of Priapus; and oc-
casioned many false invectives against the first Chi-
ristians, who paid such respect to the crooks. Some pieces
have the heads of the emperors upon one side; on
the reverse only numerals III. IV. V. &c. and the
noted spintriati of Tacitus. Both these kinds appear to be
tickets for the baths, as the number seems to denote the
particular bath. Some have the head of a girl, with
a veil used at the baths in her hand. The spintriati
are so inmodest, that few will bear mention. But
some are merely ludicrous; as one which has an as
with a bell about his neck, and a soldier riding him;
another with two figures hoisting a woman in a basket
into the air. Of those that will just bear mention, is
a man with titles around him, as chief of the games;
and a woman in ridicule of the modest bath-girl above-
mentioned. There is also one marked xix, on which
appears an emperor triumphant in a car; this car is
placed on the back of a camel; and behind the em-
peror is a monkey mimicking him.

A fourth class of medals are called contorniati from of the con-
the Italian contorniati, "encircled," because of the
hollow circle which commonly runs around them.
They are distinguished from medalliones by their thin-
ers, faint relief, reverses sometimes in relief, some-
times hollow; and in general by the inferiority in
their workmanship. The opinions of medalliones con-
cerning these pieces are very various; some suppose
that they have been struck by Gallienus to the memory
of illustrious men and celebrated athletes, at the time
that he caused all the consecrated coins of his pre-
deceivers to be restored; others attribute their inven-
tion to Greece, &c. but Mr Pinkerton is of opinion that
they were only tickets for places at public games.

Many of them, notwithstanding their inferior work-
manship, are very valuable on account of their pre-
serving the portraits of some illustrious authors of an-
tiquity, no where else to be found. Much depend-
ance, however, cannot be put on the portraits of
Greek authors and eminent men found upon some
of them; for though we know that the busts of Sallust,
Horus, &c. must have been struck when their per-
sions were fresh in the memory of the artists, yet it
was otherwise with Homer, Solor, Pythagoras, &c.
which are to be found in some of them. Even these,
however, are valuable, as being ancient and perhaps
traditional portraits of these great men. The last
whole portraits are supposed to have been delineated
in this way, are Apollonius Tyaneus who flourished
in the time of Domitian, and Apuleius in that of
Marcus Antoninus. Mr Pinkerton thinks it a con-
firma tion of his opinion concerning these medals, that
the reverses always contain some device alluding to
public games, as that of a charioteer driving a char-
riot, &c.

Sect. XII. Directions for Making Cabinets

We must now proceed to the last part of our sub-
ject, viz. that of giving directions for the formation
of cabinets. As we have already seen that the forma-
tion of any one must be attended with very consider-
able expense, it is necessary for every one who at-
tempts this to proportion the cabinet to his own cir-
cumstances. There are, properly speaking, three kinds
of cabinets. I. Those meant to contain a coin of
every fort that has been issued from the mint in every
age and country; but this, which may be called the
large and complete cabinet, is not to be purchased by
private persons. That of Dr Hunter already men-
tioned is perhaps one of the best private cabinets ever
known; and cost 23,000l. but as many duplicates
were sold as cost 2000l. by which means the expense
was reduced to 21,000. The vast collection made by
the king of France cost upwards of 100,000. The-

MEDALS.

Sect. XII.

Directions for making smaller cabinet may be supposed to consist only of middle and small Roman brass, English pennies, groats, &c. with a few medals of the more valuable kind, and may be supposed to incur an expense of from 200 to 1000. The smallest kind is called a casket of medals and does not consist of above a thousand at most of various kinds; and consequently the expense must depend on the pleasure of the proprietor.

In the formation of the grand cabinet, it must be observed that the Greek medals of every denomination do not admit of any arrangement by the metals like the Roman; not any regular series of this kind being met with even in the most opulent cabinets. Hence in all collections the civic coins are ranged according to an alphabetical order; and the monarchic in a chronological one. The same rule is to be observed in the Roman consulary medals; they are ranged, like the coins of the Greek cities, in the alphabetical series of the families. The Roman imperial coins are only those capable of being arranged according to sizes and metals. Even from this must be excepted the minimi, or very smallest coins; which are so scarce, that the only regular series of them in the world is that belonging to the king of Spain, which was formed by a most skilful French medallist, and consists of all the metals. The arrangement of a grand cabinet, according to Mr Pinkerton, is as follows.

I. The coins of cities and of free states in alphabetical order; whether using Greek, Roman, Punic, Etruscan, or Spanish characters.

II. Kings in chronological series, both as to foundation and seniority of reign.

III. Heroes, heroines, founders of empires, and cities.

IV. Other illustrious persons.

V. Roman ales.

VI. Coins of families, commonly called consulary.

VII. Imperial medallions.

VIII. Imperial gold.

IX. Imperial minimi of all metals.

X. Imperial silver.

XI. Imperial first brass.

XII. Second brasses.

XIII. Third brasses.

XIV. Colonial coins, which are all of brass.

XV. Greek cities under the emperors, of all metals and sizes. In a smaller cabinet they may be put with the Roman, according to their metal and size. Those without the emperor's head go to classes I. though struck in Roman times.

XVI. Egyptian coins struck under the Roman emperors, of all metals and sizes. They are mostly of a base metal called by the French pain; it is a kind of pot metal or brittle brass.

XVII. Cornorniati, or ticket medals.

XVIII. Coins of Gothic princes, &c. inscribed with Roman characters.

XIX. Coins of southern nations using uncommon alphabets; as the Perian, Punic, Etruscan, and Spanish.

XX. Coins of northern nations using uncommon characters, as the Punic and German.

In the modern part no series can be formed of copper that will go back above two centuries; but seq-

quences (chronological series) of gold and silver may be arranged of all the different empires, kingdoms, and states, as far as their several coinages will allow. Those of England and France will be the most perfect. Modern silver is commonly arranged in three series; the dollar, the groat, and the penny sizes. The medals of each modern country ought of course to be separated; though it is best to arrange each set in chronological order, let their size of metal be what they will. It may be remarked here, that modern medals, of the size of a tea-saucer, are only so many monuments of barbarism. The ancient medallions are almost universally but little larger than our crown-piece, though three or four of them may extend to about two inches diameter, but very many modern medals to four inches and more. A large medal always declares an ignorant prince or an ignorant artist. Into the size of a crown-piece the ancients threw more miracles in this way than will ever appear in these monstrous productions.

These directions will likewise apply to the formation of a cabinet of the second kind; but if the collector means to form a series of large Roman brasses, he will find the coins of four or five emperors so scarce as not to be attainable in that series, even at any price. He must therefore supply their places with middle brasses, as is allowed with regard to Otho; even in the best cabinets, there not being above three coins of that emperor in large brass known in the world; whereas the middle brasses, two or three hundred may exist. For this reason Mr Pinkerton concludes, that in cabinets of the second class, the collector may mingle the large and second brasses together as he thinks proper, in order to save expense; though it would not do so well to unite such disproportionate sizes as the large and small. In the small series, however (says he), there can be no harm in his mixing gold, silver, and brasses, as chance or curiosity may lead him to purchase any of these metals. And though your starched bigotted medallist may sneer because such a sequence would controvert his formal and narrow way of thinking, common sense will authorize us to laugh at the pedant in our turn, and to pronounce such a series more various, rich, and interesting, than if the collector had arranged only one metal, and rejected a curious article because he did not collect gold or silver. In like manner, if, in the modern part of the smaller cabinet, any coin of a series is of high price, or of bad impression, there can be no impropriety in putting another of the same reign, which is cheaper, or better executed, though of a different denomination or of a little larger size. In short, the collector has no rules but in the Greek cities and Roman families, to observe alphabetical order and chronology in every thing else.

TABLES OF ANCIENT COINS.

The most ancient coins, according to Froelich, are distinguished by the following marks, which he accounts infallible. 1. Their oval circumference, and globulous swelling shape. 2. Antiquity of alphabet. 3. The characters being retrograde, or the first division of the legend in the common style, while the next is retrograde. 4. The indented square already described. 5. The simple structure of the mintage. 6. Some
Tables.

<table>
<thead>
<tr>
<th>M E D A L S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancient coins. of the very old coins are hollowed on the reverse, with the image impressed on the front. 7. The darts, symbols, &c. frequently of the rudest design and execution.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table I. Ancient Greek Coins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thoric without impression.</td>
</tr>
<tr>
<td>2. With one or more hollow indented marks on one side, and an impression in relief on the other.—Of Chalcis on the Hellepont, Lesbos, Abdera, in Thrace, Acarnis in Macedon, those said to belong to Eginum in Achaea. This class continues from about 900 to 700 B.C.</td>
</tr>
<tr>
<td>3. With an indented square divided into segments, having a small figure in one of them; the rest blank, with a figure in relief on the obverse.—Of Syracuse and other places adjacent.—Continue from 700 to 600 B.C.</td>
</tr>
<tr>
<td>4. Coins hollow on the reverse, with figures in relief on the obverse.—Of Caulon, Crotoma, Metapontum, &c. Supposed by some to be a local coinage of Magna Grecia; but probably of equal antiquity with the former.</td>
</tr>
<tr>
<td>5. Coins in which a square dye is used on one or both sides.—Of Athens, Cyrene, Argos, &c.—Of Alexander I. and Archelaus I. of Macedon. Difused in the reign of the latter about 430 B.C.</td>
</tr>
<tr>
<td>6. Complete coins, both in obverse and reverse, occur first in Sicily in the time of Gelo, about 491 B.C.</td>
</tr>
<tr>
<td>7. Coins of Alexander the Great and his successors. About the time of this hero the Greek coins began to attain to perfection, and were struck of uncommon beauty. It is remarkable, that on the coins of this monarch his own image seldom occurs. The only one yet found of Alexander with his portrait upon it, and struck during his reign, is a silver hemidrachm in Dr. Hunter's cabinet, which is represented Plate CCXCI. No. 3. After his death many coins bear his portrait. Trebellius Pollio informs us, that some coins, particularly those of Alexander, used to be worn as amulets; and many medals are met with in cabinets bore evidently for that intention.</td>
</tr>
<tr>
<td>8. Coins of the successors of Alexander.—Those of the Syrian monarchs almost equal the coins of Alexander himself in beauty. Those of Antiochus VI. are supposed to be the most perfect patterns of malebeauty to be met with anywhere. The Egyptian Ptolemies are somewhat inferior.</td>
</tr>
<tr>
<td>9. The coins of the Aralidae of Parthia done by Greek workmen.</td>
</tr>
<tr>
<td>10. The Greek imperial coins, being such as have the head of an emperor or empress; such as have not these impressions being chiselled with the civic coins, though struck under the Roman power. None of the imperial coins occur in gold. Of silver there are those of Antioch, Tyre, Sidon, Tarshis, Berythus, Caphare. Egyptian silver coins of base metal. Syrian silver coins, which sometimes bear on the reverse the club of Hercules, or the Tyrian shell-fish. Thae of Sidon bear the image of the goddess Astarte, or her chariot. Those of Caphare in Cappadoxia of better work than the Syrian. Lycian coins of good workmanship; on the reverse two harps and an owl sitting upon them. Silver coins of Gelo in Sarmatia resembling the Syrian. The situation of this town is very much unknown. It seems to have been situated on the north of the Euxine sea where some Sarmatic or Slavonic tribes were mingled with the Scythians or Goths. The Greek imperial brass coins are very numerous. A series of almost all the emperors may be had from those of Antioch, with a Latin legend on the obverse, and Greek on the reverse. Those of Bithynia and Phrygia remarkable for good workmanship. Those of Tauris remarkable for their curious views of objects, almost in perspective. The Egyptian coins, from the time of Augustus to Nero are worked out than afterwards. From Nero to Commodus they decline, and are lost after the reign of Constantius I. The Egyptian brass coins of the Roman period are like wise in excellent workmanship, especially in the time of Antoninus Pius.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table II. Roman Coins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. The consular coins, called also the coins of families, and arranged alphabetically in cabinets, according to the names of the families which appear on them. They are, 1. Dracon coins.—These consist chiefly of large pieces of rude workmanship, without any interesting imagery. In cabinets they are generally kept in boxes apart by themselves. The as bears the head of Janus; the semis of Jupiter with S; the triens of Minerva with four paws. In all these pieces the prow of a ship is constantly the figure on the reverse, with very few exceptions. Sometimes, indeed, they have a shell, two heads of barley, a frog, an anchor, or a dog, on the reverse. About the time of Julius Cesar both the obverses and the reverses of the coins began to be altered. 2. Silver. Of this the denarius was the first and principal coin. It was stamped originally with X, denoting that the value was ten aces. On the reverse was Caesar and Pollarus, or a chariot of victory. Afterwards the busts of various deities make their appearance; and in the seventh century of Rome the portraits of illustrious personages deceased are met with: but till the time of Julius Cesar no figure of any living person is to be met with; Julius himself being the first who assumed that honour. The workmanship on the best and worst silver is much the same. The reverses are very curious, and point out many remarkable events in Roman history; but none of these occur till about a century before the Christian era. The large denarius, with ROMA, are the most ancient; and some of these bear the Pelopig A, not the Roman. The silver sesterii have a head of Mercury, with a caduceus on the reverse. The quinarii have always a head of Jupiter, with a victory on the reverse. 3. Gold. Most of these are of great value. The number of these exceeds not 100; those of brass 200; and of silver 2000. The aureus is the general gold coin; but two or three gold emblems of families likewise occur.</td>
</tr>
</tbody>
</table>

| E II. |
Ancient coins.

1. Brafs.—This is of three sizes, large, middle, and small. The first forms a most beautiful series, but very expensive. The various colours of the plating have the finest effect. It is the most important of all the Roman coins, and exceeds even the gold in value.

The middle brafs is next in value to the former; and in it are many rare and curious coins, particularly interesting to Britons, as elucidating the history of the island. Of these are the triumphal arch of Claudius; the reverse Britannicus of Adrian; the coins of Antoninus Pius, Commodus, Severus, with a Victory, Victoria Britann.; but especially those personifying the country Britannia. The number of Roman coins relating to Britain (says Mr Pinkerton) is remarkable, more than 20 having been struck at various times; while those personifying himself had of gold, Gaul, Spain, and other regions of the empire, exceed not four or fix at most for each country. Only one country vies with Britain, and that is Dacia on the extreme north-east of the empire, as Britain on the extreme north-west. No doubt this circumstance of remoteness in these two countries recommended them to this particular attention, as more expressive of the Roman power.

The small brafs series abounds also with curious coins. They are scarce till the time of Valerian and Galienus, but very common afterwards. Mr Pinkerton recommends, therefore, to form a series in silver as well as brafs; both being the cheapest of all the Roman coins. In this series (says he), it is a common fault to arrange many coins which have been plated with gold or silver, the forgeries are numerous, but which time has worn off either wholly or in part. All real brafs coins have the s. c. till the time of Galienus; as the senator alone had the power of striking brafs, while the emperor himself had that of gold and silver. When the s. c. therefore, is wanting, the coin was certainly once plated; but in general, the different type and fabric, being those of gold and silver, sufficiently show themselves. With Pertinax, A.D. 192, there is a temporary cessation of small brafs; nor after him do any pieces occur in that series till Valerian, A.D. 254, excepting Trajanus Decius, A.D. 250 only. After Valerian the series is continuous and common. The brafs coinage gradually declined in size from the time of Severus; so that parts of the as could not be struck, or at least it was held unnecessary to strike them. Trajanus Decius attempted in vain to restore the coinage; and Valerian and Galienus were forced to issue denarii ære and small auras. The size of large and of middle brafs are of two fixed and known sizes; the former about that of the crown, the latter of the half crown; though after Severus they gradually lessened. But the small brafs takes in all parts of the æs; and every brafs coin not larger than a shilling belongs to this series. The minima, indeed, or very small, it is proper to keep apart. The coins of Julius Cæsar in this size are of peculiar fine workmanship. They bear his portrait reversed of Augustus or the reverse has a crocodile Egypto Cæsura. There are several with Mark Anthony, and one with Cleopatra; but the more common pieces are those with only numerals on the obverse, which go the length of XIII; perhaps tickets for the baths. A great many occur in the time of Nero; of which Mr Pinkerton particularly one which has "on the reverse a tablet ornamented with griffins and other devices. Upon it is placed a wreath of laurel; and a beautiful vase, of which the embossed human figures are 10 minute, and finished so surpassingly, as to have these coins the most exquisite productions of the ancient mint." From the time of Nero to that of Vespasian no small brafs occurs; but there are many of this emperor and of his son Titus; while Domitian has as many as Nero, and Domitia his wife has almost as many. Succeeding emperors to the time of Pertinax have also many brafs coins; but from his time to that of Valerian there are no real small brafs, excepting those of Trajanus Decius. After Gallienus there are a great many coins of this kind; and Mr Pinkerton mentions one in Dr Hunter's cabinet, of an unknown person named Nigrianus. The coin seems to have been struck at Carthage; and our author concludes that he was an African Usurper, father to Nigerius.

2. Silver.—This series is very complete, and the cheapest of any; especially as the small brafs becomes a fine supplement to it; the latter being had in plenty when the silver becomes scarce, and the silver being plentiful when the brafs was scarce.

3. Gold.—The Roman imperial gold coins form a series of great beauty and perfection; but on account of their great price they are beyond the purchase of private persons.

4. The colonial coins occur only in brafs, none, excepting that of Nemausus, having a right to coin silver. They begin in Spain with Julius Cæsar and Anthony, and cease with Calpugna, who took away the privilege of coinage from the Spanish colonies. The most beautiful are those of Corinth. The other remarkable colonial coins are those of Emeita, Illice, Terraco, Caffandria, Babbia, Berytus, Cæsarea, Patra, Emilia, Heliopolis, or Dalbec, Prolemata, Sidon, Tyre, Deulon, Dios, Tros, Rehaim, Neapolis of Samaria, which bears a representation of Mount Gerizim with the temple on it, Hippo in Africa, &c. On many of these coins we meet with fine representations of temples, triumphal arches, gods, goddesses, and illustrious persons. But coins with these representations are by no means common; the colonial coins till the time of Trajan bearing only a plough, or some other simple badge of a colony. Camelodunum is the only colony in Britain of which we have any coins.

5. The minima.—This includes the smallest coins of all denominations most of which do not exceed the size of a silver penny. They are the most curious of all; but no series of them was ever formed by any person except the abbe Rothelin, whose collection formed of all metals passed to the queen of Spain. The reason of the scarcity of these small coins is probably their diminutive size; by reason of which they are mostly lost. It is surprising that numbers of Roman coins are found through all countries once subjected to that powerful people. Some have been met with in the Orkneys.
Ancient Coins.

The Lydians appear to have invented coinage; though, perhaps, this honour may be disputed with them by the Greeks.

1. The Lydians invented gold coins, of which the ancient Lydian coin has a gnomonic figure, with indented marks on one face, and on the other a human figure, with a shield on the contrary side. These coins are of considerable value, having been coined by the famous Lydian kings, and are still esteemed in Asia Minor.

2. The Phoenicians, Medes, Babyloniens, Phenicians, and Egyptians, had no coins. In the mouths of the mummies are only thin, unburnt, and round pieces of gold to pay Charon's fare.

3. No Indian or Chinese coins are to be met with till a very late period; and even then they were scarce. Voltaire mentions a collection of ancient Chinese and Indian coins made by the emperor of China in 1715; but Mr. Pinkerton supposes it to have consisted only of the Greek and Roman money which had been introduced into those countries.

4. The Lydian coins have no legends; so that mere conjecture only determines the ancient coins of electrum and silver found in Asia, and different from the Persian, to belong to Lydia. Creatus coined gold into a form which he called "flaters"; and Mr. Pinkerton mentions a very ancient gold coin in Dr. Hunter's cabinet, which he supposes to have been one of these. It has a globous figure, with indented marks on one side, and on the other a man kneeling, with a shield held out in the left hand, and a sword depending in the right. It weighs four drams; which Josephus tells us was the weight of the Lydian gold coins. In the same collection are other gold coins little inferior in antiquity; the most ancient of which, our author supposes, may have been coined by the cities of Asia Minor, as coinage passed through them to Greece. They are of admirable workmanship, and as much superior to the best Sicilian coins, as the latter are to all the rest in the world. These gold coins are all extremely pale; owing to the want of knowledge in refining gold.

5. Persian coins. These were first struck by Darius Hyphates, whence they had the name of "Darics." They are of gold, and generally have the figure of an archer: they weigh about four drachms; and some occur with the indented mark on one side, while others have figures upon both. The silver coins have generally a king in a chariot of two horses, with a charioteer, and sometimes another figure on foot behind on the obverse; while the reverse presents a ship, sometimes a ram, bull, or other animal. The gold coins, which only had the title of "Darics," are extremely scarce, having been melted down, as is supposed, and recoin'd by Alexander the Great on his conquest of Asia.

There is a second series of Persian coins beginning with Artaxares, or Artaxerxes, who overthrew the Parthian monarchy about the year 210. These are large and thin, with the king's bust on one side and the altar of Mithras on the other; generally with a human figure on each side. These coins continue till the year 636, when Persia was conquered by the Saracens. These have only Persian letters upon them, which have never been explained by any antiquaries. Mr. Pinkerton says that they seem to partake of the ancient Greek, Gothic, and Alanic.

6. The Hebrew shekels, originally didrachms, but after the time of the Maccabees tetradrachms, are almost all forgery from modern Jews, as well as the brass coins with Samaritan characters upon them. They have all a spring upon one side and a valve on the other. Mr. Pinkerton says, that the admission of one of them into a cabinet would almost be a disgrace to it.

7. Phoenician and Punic coins are very interesting on account of the great power and wealth of these nations. The alphabets have been cleared by their relation to the Hebrew and Syrian languages.

8. The coins of Palmyra come under the same denomination with the former, Palmyra being a Syrian city.

9. The Etruscan coins have the characters of that nation, which have been explained by their affinity to the Pelasgic, or oldest Greek and Latin.

10. The Spanish coins are inscribed with two or three alphabets allied to the old Greek and Punic; but the inscriptions have not been sufficiently explained.

11. Gaulish coins. These are numerous; but the most ancient have no legends; and even after the Greek letters were introduced into Gaul by a colony at Marseille, the legends are very difficult to be explained.

12. British coins. From a passage in Caesar's commentaries, it has been inferred that the Britons used some kind of coins even in his time. Mr. Pinkerton informs us, that some rude coins of copper very much mingled with tin are frequently found in England; which, he supposes, may be some of the ancient British money. They are of the size of a didracma, the common form of the nummus aureus among the ancients. After the time of Caesar, coinage increased among the Britons; and there are many found of Carthaginian mentioned in the Roman history. Most of these have on one side "CUNO," with an ear of wheat, a horse, a kind of head of Janus, or other symbol; and have frequently also the letters "CANT," supposed to mean Camelodunum. Sometimes the word "TASCA" occurs; the meaning of which has not yet been explained.

13. Gothic coins of France, Italy, and Spain, to the time of Charles the Great. These have the Roman characters upon them. The Italian coins are mostly of the size of small brass; and in this way we meet with coins of Athalaric, Theodosius, Vitigez and other Gothic princes. Many others occur, the inscriptions of which, though meant for Roman, are so perverted as to be illegible.

Table IV. Modern Coins.

1. Of Japan. These are thin plates of gold and silver, of an oval figure, with small marks or figures impressed on them.

2. China. These are only copper, about the size of a farthing, with a square hole in the middle to put them on strings. The inscriptions on them do not express the name of the sovereign, but the year of his reign; as the happy year, the illustrious year, &c.

3. The Tartarian coins are rude, having only inscriptions upon them; and they are all posterior to the time of Jenghis Khan.

4. Coins of Thibet, Persia, and Siam, are much the same.
MEDALS.

first coin of the family of Vitconti occurs in 1330 under Azo. The set finishes with Louis XII.

Naples. Coinage begins in 840 and 880, with Duke Sergius and Bishop Athanasius. The next coins are of Roger of Sicily, and Roger II. in 1130, William I. II. and Tancred. Naples and Sicily were subdued in 1194 by the emperor of Germany; in 1255 Manfred appears; in 1266 Charles of Provence; and others till Joan in 1414: after which follow the house of Arragon, and later kings.

Venice begins in the 10th century. The first coins are silver pennies marked VENECI. Then follow the coins of Henrico Dandulo in 1192, of Ziani in 1202, &c. Gold was first coined at Venice in 1280, and copper in 1471; but the silver groats are as old as 1192.

Florence. Silver was coined here in the 12th century, or before; but in 1252 the first gold coins struck in Europe after the 8th century made their appearance, and were named forins from the flower of the lily upon them. They were imitated by the popes, by France, and England. They have on one side St John the Baptist standing, on the other a large fleur de lis, and it is not doubted that the French fleur de lis took their origin from these coins. They weigh about 75 c., and are no less than 24 carats fine according to Italian writers, and are worth about 12 florins Sterling.

Geneva first began to coin money in 1129, under the government of Conrad. Those of the dukes of Savoy began in the same century.

Aguilas. Coins were issued from this city by the patriarchs from 1204 to 1440.

Ferrara. Coins of the marquises from 1340.

11. French coins. During the race of Clovis, from 490 till 751, the coins are chiefly gold trinets, with some solidi and sesterti. The former are of good workmanship, with the heads of kings. The reverse has a crofs, with the name of the town where they were struck.

The coins of the second race begin with Pepin in 751, and continue till Hugh Capet in 987. The coins of the first race are elegant, but those of the second entirely the reverse, being almost all silver pennies, and seldom bearing the portrait of the king. Those of Charlemagne have only Carolus in the field; while the reverse bears s. p. or some such inscription; though one piece struck at Rome has a rude bust of him. The coins of Louis le Debonnaire are better done.

The third race begins with Hugh Capet in 987, and extends to this time. The coinage did not begin to improve till 1226 under St Louis, when the groat appears. Its name in Italian is griffa, in French gréf, in English groat, or great coin; so called from its size in comparison with the penny; and it passed from Italy to France, to Germany, and to England. After the conquest of France by the English, base coins of many kinds were introduced; and in the year 1574, in the time of Henry III. copper was first introduced into the French coinage. Besides these, the other remarkable coins of France are, the blancs or billet gros, first issued in 1348; the ecus a la couronne, or crowns of gold, so called from the crown on one side.

MILAN. Coinage began with Charlemagne. The

5. India. Some old coins have been found in the neighbourhood of Calcutta, of gold, silver, copper, and tin, all mixed together. They are thus, presenting only inscriptions without any figures. They are of late date.

6. Perlia. The Peric coins since its conquest by the Arabs continue on the Arabic model.

7. Arabia. Some coins of the petty princes of Arabia are met with as old as the imperial ages of Rome; but till the time of Haroun Alrachid, no regular coinage appears in the vast empire of the Saracens. Even then the reverse has only an inscription, and the obverse is copied from any Greek or Syrian coin which happened to fall in the money's way. The later Arabian coins are mostly silver, with the name and titles of the prince on one side, and some inscription from the Koran on the other. The more modern coins of this country are in the shape of a fish-hook, with Arabic inscriptions.

8. Turkey. No regular coinage was formed by the Turks till they became masters of Constantinople. They resemble those of Perlia and Arabia, having merely inscriptions on both sides.

9. The coins of the African states, at least such as profess the Mohammedan religion, have merely inscriptions without any figures; those of the internal parts are unknown; and no coinage was used among the Mexicans and Peruvians, the only civilized nations in America; but La Hontan mentions an American bivage who had a square medal of copper depending from his neck. Mr Pinkerton supposes it to have come from Japan.

10. Modern Italian coins. Besides the Gothic princes mentioned in the former table, the exarchs of Ravenna coined money with the inscription Felix Ravenna, &c. The Lombards issued no coins, but there are some still extant of Charlemagne. The following list shows the origin of the coinage in various Italian states.

Rome. Papal coinage originates with Hadrian I. Size of silver pennies, with the Pope's name on one side, and Scoz Peter on the other. No coins appear from 925 to 1099, excepting of Leo IX. In 1303 appear pennies of the senates and people of Rome, with Peter on the one side and Paul on the other. There are groats of Clement V. with his portrait three quarters length; but the side-head begins with Sixtus V. in 1470. Gold was first coined by John XXII. in 1316. The coins of Alexander VI. Julius II. and Leo X. are remarkable for beauty and elegance.

Milan. Coinage began with Charlemagne. The
12. Spanish coins. The most early series of these consist almost entirely of tritennials, finely done. On one side they have the head of the king with his name, and on the other a cross, with the name of the town, commonly in Bética, or the south part of Spain, where there were a great many Roman colonies, and which was fertile to a proverb. The Moorish coins of Spain, like those of the Mohammedan states, present us only with insipid inscriptions on both sides. Indeed the Mohammedan religion, by its absolute refusal to allow the representation of any living creature, has prevented the progress of coinage in any degree throughout those regions which it has overthrown. The inscriptions on the ancient Spanish coins are in the Cufic or old Arabic characters.

13. Portugal. No description of the coins of this kingdom has yet appeared.

14. Germany. No account of the German coins has been published; though it is well known that not only the emperors, but many of the cities, particularly those called Hansvorderen, issued money; and many of the coins issued by the cities were superior in elegance even to those issued by the emperors.

15. Denmark. Here the coinage begins with Canute the Great in 1014. The pieces are at first extremely rude, ornamented only with rings and runic characters. These are succeeded by copper pieces, some of which have a cross, others a pastoral staff on one side, with the letter A on the other. Later coins have strokes 1111, &c. all round them; but those of Harold, Hardicanute, and Magnus Bonus, in 1041, are of neat workmanship, and have the portraits of the princes at half length. The coins of Nicolas or Nel, as he is called by the Danes, are rude, as well as those of Waldemar I. and the celebrated Margaret. In 1376 Olaf caused money to be struck with a grinning full face, with a crowned O upon the other side. "The Swedes (says Mr Pinkerton) took these coins extremely ill, as they thought they grinned at them." Silver was first coined in Denmark by Philippa queen of Eric, and daughter to Henry IV. of England.

16. Sweden. The coinage of this kingdom began in 1018 under Birorno, on the plan of Charlemagne. The coins are marked with a cross. Next follow those of Olaf in 1019; which Mr Pinkerton supposes to have been the first true Swedish coins; and that the art of coinage first passed from England into Denmark in the time of Canute the Great, and from Denmark into Sweden. These coins were struck on the English model. During the time that Sweden was subject to Denmark, or miserably harassed by the Danes, the coins of both kingdoms were the same but after the time of Gustavus Adolphus many elegant pieces appear. In 1644, dollars were coined with the modern portrait of Gustavus Adolphus, who was killed two years before. On the reverse they have the arms of Sweden, with the chemical marks of mercury and sulphur. In 1716, 1717, and 1718, Charles XII. being in extreme want of money, issued small copper coins with Satan, Jupiter, Mars, &c. upon them, to go for dollars; and on account of this scheme, Baron Goertz, the forger of it, was brought to the block.

17. Norway. The coins of this country begin with Olaf 1066; after which there are various coins of other princes; but copper was not coined till the year 1343.

Besides the coins already mentioned, there are ecclesiastical coins of France, Germany, Denmark, Sweden, Norway, &c. Thoese of Denmark and Sweden are numerous, but the Norwegian coins of this denomination are rare. Mr Pinkerton describes a silver one in his possession as having arms and a mitre, with the inscription on one side SANCTUS OLAWS REX NORVEGIE; on the reverse OLAVS DEI GRAARCEP.; NIDEN, meaning NIDROSIENIS, or archbishop of Nidaros, now Drontheim.

18. Bohemia. The coinage of this kingdom appears at a very early date, viz. in the year 929, under Duke Boleslaus I. These coins are followed by others of Boleslaus II. and Emma his wife in 970; of Boleslaus III. in 1002; Jaromir in 1020; Udalrich in 1030, and other princes. The bratilsko money of Otocar I. was coined in 1197.

19. Poland. The coinage of this country is nearly as ancient as that of Bohemia. The coins are on the German model, but no particular account of them has been published.

20. Russia. None of the Russian money appears to be more ancient than the 13th century. The first are the kopists or silver pennies, which have upon them rude figures of animals upon one side, and a man fumbling with a bow or spear upon the other. There are likewise coins of Moscow struck by Architeles the architect in 1487. The roubles or dollars and their halfs. There are some of the impoliter Demetrius in 1653, which are very scarce.

21. Prussia. The first Prussian coins were struck at Culm by the Teutonic knights in 1230. They were silver pennies, and upon the German plan. In the next century were struck shillings, groats, and shutes; the last were the largest, and are extremely rare. They have the Prussian shield, an eagle surmounting a cross, with a rose-shaped border, money doinorum Prussiae; on the reverse is a cross fleury, within a border of a similar kind, having the inscription HONOR MAGISTRI, JUSTITIAM REGIT. Gold coins were struck in the same century. In the time of Copericus the money was in debased, that 12 or 13 marks were worth but one of pure silver.

22. England. The English coins are of various kinds.

18. Hiberniae. These are only of two sorts, viz. the cent or penny of silver, and the fola or penny of copper. Few of the pennies appear till after the year 700; though some are met with which bear the name of Ethelbert I. king of Kent, as old as 560. At first they had only rude figures of serpents but in latter times
M E D A L S.

From the year 1601 to the present time the coins of England remain the same.

Gold was coined in England by Henry III. in 1257; the piece was called a "groat" or "penny," and was larger than the silver one; and the execution is by no means bad for the time. The series of gold coinage, however, commences properly from Edward III. In 1344 this monarch first struck florins, in imitation of those in Italy; and it is remarkable, that though these coins at the time they were first issued bore only six shillings value, they are now intrinsically worth 12s.; so much has the value of gold increased since that time. The half and quarter florin were struck at the same time, but only the half has been found. The florin, however, being found inconvenient, gave place to the noble of 6s. 8d. value, and exactly half a mark. The latter had its name from being a limited sum in accounts; and was eight ounces in weight, two-thirds of the money pound. It is sometimes also called "feather," as being one half of the commercial pound of 16 ounces. The noble had its name from the nobility of the metal; the gold of which it was coined being of the finest fort. Sometimes it is called "Rye Noble," from both sides being impaled in an undulating circle. It continued with the half and quarter noble to be the only gold piece till the reign of Edward IV. appeared in 1465. These had their name from being stampped with the image of Michael and the dragon. The angelines of 5s. 4d. value were substituted in their place.

In 1527 Henry VIII. added to the gold coins the crown and half-crown at their present value; and the same year he gave sovereigns of 22s. 6d. and ryal of 11s. 3d. angels at 7s. 6d. and nobles at their old value of 6s. 8d. In 1546 he caused sovereigns to be coined of the value of 20s. and half sovereigns in proportion. His gold coin is about the size of the shilling, and the half-crown of sixpence, but thin. All his coins, however gold as well as silver, are much debased; and it was not without much labour and trouble that Edward VI. brought it back to its former standard. On the union of the two crowns, James gave the sovereign the name of "unite"; the value continuing of 20s. before. He coined also rye-rays of 30s. value four-rays of 15s. angels of 10s. and angelets of 5s. Under the commonwealth, the sovereign got the name of the "twenty-shilling piece," and continued current till the coinage of guineas. These were so called from their being stampped of Guinea gold, and were at first only to go for 20s. though by an universal but tacit consent they always passed for 21s. Half-guineas, double guineas, and five guinea pieces, were also coined during the same reign; which still continue, though the two latter are not in common circulation. Quarter guineas were coined by George I. and likewise by his present majesty; but they were found so troublesome on account of their small size, that they were stopped within a year or two when received at the bank of England; and thus are not to be met with at present. A few pieces of 75s. value have likewise been coined, and are known by the lion above the helmet; but none have been issued. In 1688 the guinea rose to 21s. 6d. and continued to increase in value till 1696, when it was as high as 30s.; but after the recoinage in 1697 and 1698 it fell by degrees, and in 1717 was at its old standard of 21s. and at that time silver...
Tables.

MEDALS. 39

Modern coins.

was fixed at its present standard value, viz. as 1 to 15½
in weight.

Though the first money coined in Britain, as we
have already observed, was copper, yet, excepting
the Northumbrian tyes, no copper coin was found in
England from the time of the Saxon conquest till the
year 1672. An aversion to a copper coinage it seems
was prevalent throughout the nation; and Queen Eliz-
beth, who without hesitation used base money for
Ireland, yet scrupled at coining copper for England.
This want of small coin occasioned such an increase of
private tokens for halfpennies and farthings, that it be-
came a serious object to government; and in 1594 a cop-
ner coinage was seriously thought of. This year a small
copper coin was struck about the size of a silver two-
pence, with the queen's monogram on one side, and a
rose on the other; the running legend on both sides
being THE PLEDGE OF A HALFPENNY. Of this there are
patterns both in copper and silver, but both of them
soon fell into disuse. On the 20th of May 1613, King
James by royal proclamation issued farthing to-
kens. They are generally of the same size with the
two pence, with two scepters in fidalier-surmounted
with a crown, and the harp upon the other; with an
intention, as it would seem, that if they were refused
in England they might pass in Ireland. In inten-
tion, as it would seem, that if they were re-

King James by royal proclamation

and by the king's death

ship

private tokens began again to circulate, till put a fto-

were

er

23. Scotland.

from Propertius DAT

Scottish conque-

of the Engli-

of copper in the centre, and incribed round the
circle T. E. BRITANNIA UNDER A PORTAL. The
other half-

piece, with the rofe

in England, they might pass in Ireland. In 1655
Charles I. coined these with the rofe instead of the
harp; but the circulation of these was entirely stopped
by the vast number of counterfeits which appeared,
and by the king's death in 1648. After this the pri-

halfpence, with the queen on one
side, and the

the motto from Propertius DAT

of the Engli-

of which

of that metal.

tin coinage

In 1685 halfpence of the same kind

An aver-

were

were

commonly called

the

E.

was destroyed.

or one side and the arms of France and

Scotland on the other. The silver crown was first

from the figure of that

sculptured

the

of a

In 1687 halfpence of the same kind

were

and the

t was L. the

f

and was accordingly marked XL.; in 1597 the mark

the Scottish money being then only one-tenth of the
English; the mark was IX in 1601, the value being then
reduced to one-twelfth, at which it has ever since
continued. In the time of Charles I. half

marks, 40 and 20 penny-pieces, were coined. In
1675 the Scottish dollars first appeared, in value 56 s.
Scots, with halves and quarters of proportional value.
In 1686, James VII. coined 60, 40, 20, 10, and 5 s.
pieces; but only those of 40 and 10 s. are known,
with these numbers under the bull. At the Union of
the kingdoms, all the Scottish coins were called in,
and recoined at Edinburgh, with the mark £ under
the bull to distinguish it; since which there has been
no coinage in Scotland. The Scottish silver coins are
in general equal, if not superior, in the workmanship
to the English.

GOLD was first issued by Robert II. about 30 years
after Edward III. of England had coined the same
metal in that country. The pieces were at first called
St. Andrew's from the figure of that tutelar Saint
upon
Modern Coins.

The copper coinage of Scotland is of more early date than that of England. It was preceded by money of bilIon, or copper washed with silver, called black money. James III. first coined black halfpence in 1465; and this is recorded by historians as one of his greatest faults. This kind of coinage, however, continued as late as the reign of James VI. In his time the true copper coinage began; but as the value of Scotch money was now declined almost to the utmost, the pieces suddenly assumed a form almost resembling that of the French coins. The bodis, so called from bothwell the mintmaster, being equal in size to the franc, and worth two pennies Scottish, was struck. The bilIon, formerly called bas-pieces, and worth six pennies Scots, was now coined in copper, and termed the bas-bee. Thus it corresponded with the French half sol and English halfpenny, the Scots penny being now equivalent to the French denier. Some pieces named Atkinson were coined by James VI. in 1582, when the Scotch money was to the English as 1 to 8; but on its being still farther reduced they went for 8 pennies, a third more than the value of the bas-bee. Besides these there were the hardie and plack, the former being worth three and the latter four pennies Scots. This coinage continued through the reigns of Charles I. and II. but Scotch coins of the former are, perhaps, the scarcest of any.

24. Ireland. The first coins introduced into this kingdom seem to have been those of the Danes, and which have only a number of strokes around them instead of letters. In the tenth century, however, this coinage had been considerably improved; and in 920 and 924 there are pennies struck in Dublin, with the inscription DVFIL or DVFIL, Duffin or Duffin, being the Danish name of that city. There are likewise coins of the Irish princes themselves, and of the English monarchs, struck in Ireland as early as the ninth century; and it is ascertained by some that Ireland even in those days was conquered by England; of which, indeed, these coins seem to be a proof. None of the Irish coins of Henry II. are to be met with, but we have some of the coins of John; and from his time to that of Henry V. the Irish coins are known by a triangle inclosing the king's head, which appears also upon the coins of other nations at this period. The harp does not appear upon the Irish coins till the time of Henry VIII. Till the time of this monarch, the English and Irish coins are the same; but the name denoting the basement of the coin which at that time took place in England extended also to Ireland; but in 1601 copper halfpence and farthings were coined also for this kingdom. They were in circulation in Ireland when James VI. assumed his farthing-tokens of copper, the latter being of two sizes, that if they failed in England they might be sent to Ireland as pennies and halfpence. In 1635 a mint was established in Dublin by Charles I. but it was stopped by the Irish massacre, and the many disturbances which followed; since which time the scheme has not been resumed. After the massacre, St. Patrick's halfpence and farthings were coined by the Parliaments, bearing the legends Florinat Rex; on the reverses Eccles REX; on the farthing Quietat Pleris. Copper-tokens were struck by towns and tradesmen, as in England and Scotland. In 1680, halfpence and farthings were issued by authority, with the harp and date. In 1689, James II. having invaded Ireland, instituted a mint, and coined shillings and half-crowns of all the refuse metal he could find, particularly some brassy guns were employed, whence the coinage is commonly called gun-money. Even this metal, however, soon became so scarce, that a diminution in its size is quite apparent from June 1689 to July 1690; and as the month of their mintage is marked upon them, this decrease is easily perceived. In March 1690, pennies of lead mixed with tin were issued; and on the 15th of June the same year, crowns of white metal were coined; but these are now very scarce. In 1732, the patent for coinage halfpence and farthings was given to William Wood, which excited such discontent in Ireland. From the small size allowed by the patent to these pieces, it was supposed that the patentee would have gained 60,000l. but as he caused them to be struck of a size still smaller, his gains were estimated at 100,000l. The coins, however, are of admirable workmanship, and very fine copper, bearing the bust portrait of king George I. to be found any where. Sir Isaac Newton, at that time at the head of the mint, declared that they were superior to the English coins in every thing except the size. In 1757 the Irish halfpence and farthings, with the harp on the reverse, were coined, and continue to the present time. In 1760, there was such a scarcity of copper coin, that some private persons applied for leave to coin halfpence, which appeared with a very bad portrait of George II. and the words VOTs Po-Puli around it. No gold or silver has been coined in Ireland since the massacre of 1641.

Table V. Modern Medals, properly so called.

1. Scotch medals. These take the lead in the present article, the first modern medals of gold being those of David II. struck between the years 1330 and 1370. Only two of them now exist; one in the collection of Mr. Barker of Birmingham, and the other in that of Dr. Hunter. In 1478, there is a medal of James III. sent to the shrines of St. Ambrose in France. It is described as of two inches and a third in diameter: the weight near two ounces; having on the obverse a bearded king, with long hair, sitting on a throne, holding in one hand a naked sword; in the other a shield, with the Scottish arms. On the borders of the canopy above the throne is an inscription in Gothic letters, in mi Deffen, being corrupt French.
French for *In my defense*; a common motto in the Scottish arms. Above the canopy is *Villa Berwick*: the reverse bears St. Andrew and his cross, *Salvum fac populum tuum Dominie*. There is also a medal of James IV. in the collar of St. Michael, having on the reverse a Doric pillar surmounted by a young James, standing on a hill, beyond which is the sea, and land on either side. This, however, is by some suspected to be a forgery.

The most remarkable Scottish medals are those of the unfortunate Mary. The first is properly French, having been inflicted at her coronation as queen of France, along with her husband, King Francis II. On the obverse of this piece, there are portraits of Francis and Mary, face to face, with three legends around them, the outermost containing their titles; the middle one the following sentence: *Hora nona Domini juxta hortus claramus*; the innermost the name of the city (Paris). On the reverse are the arms of France and Scotland. Fine telfoons were also coined upon the same plan, and are now so rare that Dr. Hunter gave ten guineas for one he has in his collection. The same portraits appear on the fine crown of Mary and Henry, in 1555, which is so rare as to be esteemed a medal of the highest value; and Mr. Pinkerton imagines, that if brought to market, it would bring 40 or 50 guineas.

Another remarkable medal of Mary represents her full face, and weeping, with the inscription, *O God grant patience to that I suffer wrong*. The reverse has in the centre, QWNO CAN COMPARE WITH ME IN GRIEVE, I DRE AND DARE NOT SELL MY LIST; with this legend around, HOURS NOT THE (figure of a heart) QUAIN JOY Thou ART. There are also many counters of this unfortunate princess, being thin silver-pieces of the size of a thilling. "They all appear (says Mr. Pinkerton) to have been done in France by Mary's direction, who was fond of devices. Her cruel captivity could not debar her from intercourse with her friends in France, who must with pleasure have executed her orders, as affording her a little consolation."

The coronation medal of Charles I. struck at Edinburgh for his inauguration, June 18, 1603, is remarkable as being the only one ever coined of Scottish gold, and the first in Britain struck with a legend on the edge. With respect to the workmanship, it is inferior to Simon's. Of these medals only three are known to exist, of which one is in the Museum. It is not uncommon in silver; in which case it sometimes wants the legend on the edge.

2. Italian medals. These appear in the 15th century, and from that time successively in most European countries. Vittore Pisano, a painter of Verona, is celebrated as the refoter of the art, but it remains to be accounted for how the medals of King David already mentioned came to exist so long before. Mr. Pinkerton considers this artist rather as an inventor than a refoter, his medals having no resemblance to the ancient coins, as being large, and all cast. They were first modelled in wax, then a mould taken from the model in fine sand, and other ingredients. After a good cast was procured, it was touched up, and made a model for the pel. These medals of Pisano are almost always inscribed *Oraz Pifani Pistorius*. The portraits of a great number of illustrious men were done by him in this manner; and in the British Museum is a large brass medal of Sancho by himself. Other artists were Della, Morellotto, Matthias de Padua, Sperande, Maidalone, &c. Towards the end of the century, however, the medals began to assume a more elegant appearance; and the papal ones are not only the most elegant but the most ancient series of all the modern medals. The improvement began in the reign of Alexander VI. so famous for his own crimes, and those of his nephew Cæsar Borgia. His successors, Julius II. Leo X. Hadrian VI. and Clement VII. had many of their medals designed by Raphael, Julio Romano, and other eminent painters, and the engraving executed by artists of equal merit. Among these were the celebrated Cellini, and the noted Paduan forgers of Roman coins, Cavino and Baffiano. In 1644 Gormanni, a medallistic artist, was imprisoned on account of a piece which represented the Pope upon one side, and Olympia Maidalchines, the relation of his holiness, on the other. The unfortunate Gormanni poisoned himself. About this time the family of the Hapsburgs, originally from Germany, began to engrave the papal medals; which they did with surpassing merit for several generations. Each of the daughters did a fine medal, as we are informed by Venuti.

Besides the papal medals, there are many issued by the various states of Italy. There are medals of Frederic II. of Sicily in 1501, of several Venetian generals in 1509, of Alfonso duke of Ferrara in 1511, and of the celebrated Andrew Doria in 1528.

3. French medals. Till the reign of Louis XIV. the medals of this country are neither fine nor numerous; but this monarch exceeds all modern princes in this way. Many of his pieces are well designed and executed, though objectionable on account of their falsehood.

5. Swedish medals. These begin with Gustavus Vasa; and several of Christiana are likewise to be met with. There are also some curious ones of Charles XII.

6. Dutch medals. These begin in 1566; and many of them are remarkable for maps and plans, which must be very interesting to potters. "Had the Greeks and Romans (says Mr. Pinkerton) given us maps and plans, what a fine sytem of ancient geography and topography a cabinet of medals must have been!"

7. Medals of Spain, Portugal, and Germany. The Spanish medals began with Gonzalo in 1503, many of which are curious and interesting. Under Charles V. there are many curious Spanish medals; but those of Germany begin with Frederic in 1453. They are extremely numerous; as we may easily supposse from the greatness of the empire, and the various states which compose it. There is a famous medal of Sebastian king of Portugal, famous for his unfortunate expedition into Africa in 1578; with his bust, full face, and three quarters in length. On the reverse is a shell-shaped in the sea, with the moon and seven stars, bearing the inscription *Serena Caæsa Fævent*. There is also a curious lozenge-shaped coin of the same with the arms of Portugal, and the king's name and title; On the
MEDALS.

To this account of modern coins and medals we must add that of another set called siege pieces, and which were issued during the time of a siege in cafes of urgent neediness. They were formed of any kind of metal; sometimes of no metal; and Patin mentions a remarkable one struck at Leyden in 1574, when the place was beleaguered by the Spaniards. It was of thick paper or pasteboard, having a lion rampant, with this inscription, PVNIO PRO PATRIA, 1574; and on the reverse, SVVGDVM SYAVATVR.

There are various siege pieces of Charles I. both in gold and silver, some of the latter being of the value of 20 shillings.

The nummi bracteati are a species of modern coins somewhat between counters and money; and have their name from the word bractea, a spangle or thin bit of metal. They are commonly little thin plates of silver, stamped as would seem with wooden dies upon one side only, with the rude impression of various figures and inscriptions. Most of them are ecclesiastic, and were struck in Germany, Switzerland, Denmark, Sweden, Norway, and a few in Poland. They continued to be in use in Germany till the end of the 15th century; and some are still used in Switzerland at this day.

Table of Abbreviations used in the Legends of Medals; from Mr Pinkerton.

<table>
<thead>
<tr>
<th>Greek Coins</th>
<th>English Coins</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Athens, Argos, Aulis</td>
<td>A. Apollonia</td>
</tr>
<tr>
<td>A. Aegina</td>
<td>A. Apulonia</td>
</tr>
</tbody>
</table>

Abbreviations

| A. Athens, Argos, Aulis | A. Apollonia |
| A. Aegina | A. Apulonia |
Tables.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Greek Names</th>
<th>Latin Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΒΛ-ΜΒΙΑ</td>
<td>Rhodos</td>
<td>Rhodes</td>
</tr>
<tr>
<td>ΤΑΒΟΙ</td>
<td>Bitonum</td>
<td>Biton</td>
</tr>
<tr>
<td>ΒΟΙ-ΒΟΤΙΑ</td>
<td>Bitontium</td>
<td>Bitonia</td>
</tr>
<tr>
<td>ΒΡΥΤΝ.</td>
<td>Brundisium</td>
<td>Brundusium</td>
</tr>
<tr>
<td>ΒΥ.</td>
<td>Byzantium</td>
<td>Byzantium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Π.Ρ.Γ.Ρ.</th>
<th>Grammaticus</th>
<th>Grammaticus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π.Ρ.Γ.Ρ.</td>
<td>Grammaticus</td>
<td>Grammaticus</td>
</tr>
<tr>
<td>Π.Ρ.Δ.</td>
<td>Grammaticus</td>
<td>Grammaticus</td>
</tr>
<tr>
<td>Π.Ρ.Γ.Ρ.</td>
<td>Grammaticus</td>
<td>Grammaticus</td>
</tr>
</tbody>
</table>

MEDALS.

Ι.Λ.	Ilum	Μ.Μ.	Mamertina
Ι.Υ.	Julia	Μ.Α.	Masilia
Ι.Ο.	Julia	Μ.Α.	Mazara
Ι.Ο.	Julia	Μ.Ε.	Menelais, on Syrian
Ι.Ο.	Julia	ΤΗΛ.	tetrad coins
Π.Ρ.	Irene Inf. Pellerin.	ΜΕ.Ν.	Menocrates
Ι.Σ.	Ilia, Ilithia	Μ.Ε.	Megara, Megalopolis, Melite
Η.Κ.	Caesar	Μ.Ε.	Megapontum
Κ.Κ.	Caesar	Μ.Π.	Metropolis
Κ.Κ.	Caesar	Μ.Ι.	Miletus
Κ.Κ.	Caesar	Μ.Χ.	Mazaka of Cappadocia, on coins of Mithridates VI
Κ.Ρ.Π.	Cappadocia	Μ.Ρ.	Morganti
Κ.Ρ.Π.	Cappadocia	Μ.Ψ.	Mycena
Κ.Ρ.Π.	Cappadocia	ΜΥ.	Mykle
Κ.Ρ.Π.	Cappadocia	ΜΥΤ.	Mytilene
Κ.Ρ.Π.	Cappadocia	Ν.	Naupactus
Κ.Ρ.Π.	Cappadocia	ΝΑΣ.	Naxos
Κ.Ρ.Π.	Cappadocia	ΝΑΤΑΡ.ΝΕΩΝΕΧΩΝ, enjoying a sea-port.	
Κ.Ρ.Π.	Cappadocia	ΝΕ.	Nemea
Κ.Ρ.Π.	Cappadocia	ΝΕΩ.	Neocoroi
Κ.Ρ.Π.	Cappadocia	ΝΕΩΙ.	Neapolis
Κ.Ρ.Π.	Cappadocia	ΝΕΡ.	Nerva
Κ.Ρ.Π.	Cappadocia	ΝΙΚ.	Nicea, Nicomedia
Κ.Ρ.Π.	Cappadocia	ΝΤΕ.	Nyse, on coins of Scythopolis, Pella
Κ.Ρ.Π.	Cappadocia	ΝΤΟ.	Octae
Κ.Ρ.Π.	Cappadocia	ΟΝ.	Orestis, being
Κ.Ρ.Π.	Cappadocia	ΟΤΕΑ.	Opelius
Κ.Ρ.Π.	Cappadocia	ΟΠ.	Opus
Κ.Ρ.Π.	Cappadocia	ΟΡΤ.	Orycias
Κ.Ρ.Π.	Cappadocia	ΟΡΧ.	Orchomenus
Κ.Ρ.Π.	Cappadocia	ΟΤΙΣΛ.	Osiris, Osiris, Tyrannid Conful
Κ.Ρ.Π.	Cappadocia	ΟΤΕΒ.	Verus
Κ.Ρ.Π.	Cappadocia	ΟΥ.	Verus
Κ.Ρ.Π.	Cappadocia	ΟΥΕΝ.	Valentinianus
Κ.Ρ.Π.	Cappadocia	ΟΤΙΣΕ.	Vitellius
Κ.Ρ.Π.	Cappadocia	ΟΡΦ.	Ophrynos
Κ.Ρ.Π.	Cappadocia	Υ.	Tyrex (monogram)

Abbreviations.

ΠΡΑΞ.	Praef.	Π.	Prusa, Prusae, Prusias
Π.ΠΡ.	Praef.	ΠΡ.	Porsennae, Legate
ΓΡΟ.	Proconneus	ΠΡΟ.	Procoineus
ΠΡΟΑ.	Praevius, Curator	ΠΡΟΣ.	Proseus, First
Π.Π.	Ptolemais	ΠΥ.	Pylos
Τ.	Rhodes	Χ.	Xanthi
Τ.Σ.	Salamis, Samos, Sardis		
ΣΑ.	Samos		
ΣΑΛ.	Salapia		
ΖΑ.	Sardis		
ΣΕ.	Sestos, Sestia		
ΣΕΦ.	Sestos, Sestia		
ΣΕΥ.	Sestos, Sestia		
ΣΙ.	Sestos, Sestia		
ΣΙΠ.	Sestos, Sestia		
ΣΙΝ.	Sestos, Sestia		
ΣΜ.	Smyrna		
ΣΤΡ.	Syrakusae, Syracusae		
ΣΤΥ.	Syrakusae, Syracusae		
ΣΟΛ.	Sola		
Τ.	Titus		
ΤΑΒΑ.	Tabula, Tabula		
ΤΑ.	Tana		
ΤΑΝ.	Tana		
ΤΑΡ.	Tarantum, Taras		
ΤΑΥ.	Tauromenium		
ΤΕ.	Teneis		
ΤΕΡ.	Terina		
ΤΗ.	Tenos		
ΤΙ.	Tiberius		
ΤΡΑ.	Tralleis		
ΤΡΙ.	Tripolis		
ΤΡΟ.	Troizen		
ΤΥΑΝ.	Tyana		
ΤΥ.	Tyndaris		
ΤΥΡ.	Tyre		
Υ.	Vedia		
ΥΠ.	Videae, Videae, Conful		
Φ.	Philip		
ΦΕ.	Phelus, Philanthium		
ΦΑ.	Phaelis		
ΦΑΡ.	Pharsalus		
ΦΙ.	Philibius, Philipopolis		
ΦΙΝ.	Philon		
ΦΛ.	Flavus		
ΦΩ.	Phocaeum		
ΦΩΤ.	Fulvia		
ΦΥ.	Phocas in Cyrene		

Χ.	Chios
ΧΑ.	Chalbis
ΧΕΡ.	Cheroneus
ΧΙ.	Chytri
ΧΥ.	Chytri

Notes.

1. I. ΕΡ. | Sacred |
| ΙΕΡ.ΑΙΤ. | Hyereaptytha |
| ΙΚΑΡ. | Hicara |
MEDALS.

Greek Numerals.

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 200 | 300 | 400 | 500 | 600 |

Examples. 1 is 10; add A or B, and 1A makes 11: fo

A. Aulus: in the exergue it implies the first mint, as ANT. A. coined at Antioch in the first mint.

A. or AN. Annuus.

A. A. Apollo Augusti.

ABN. Abnepos.

ACT. Aediles Curieus.

ADV. Adventus.

AED. Aediles.

AED. F. Aedilitia potestate.

AED. S. Aedes sacrae.

AED. C. Aediles Curules.

AED. P. Aediles Plebis.

AEI. Elius.

ÆM. Or Aemil. Æmilius.

ÆTY. Eternitas.

ÆFR. Africa, or Africanus.

ALB. Albinus.

ALIM. Ital. Alimenta Italic.

ANN. AVG. Annona Augusti.

A. N. F. F. Annum Novum Faustum Felicem.

ANIC. Anicius.

ANN. DCCCCLXXI. Nat.

VFR. P. Cir. Con. Anno 864 Nat. Urbius Pompei Ceciendenses constitut.

ANT. AVG. Antonius Augustus.

ANT. Antonius, or Antoninus.

AP. Appius.

A. P. F. Argento Publico Feriundo.

A. POP. Frvyg. AC. A Popolo Fruges Accipere.

AQ. Or AGL. Aquilus.

AQA. MAR. Aquae Martia.

AAB. ADR. Arabica Aedilitia.

ARR. Augustus.

AVG. Augustus, Augustus.

AVG. Divus Augustus.

AVGG. T. Two Augusti.

AVG. Three Augusti.

AVER. Or AVRE. Aurelius.

B. The mark of the second mint in any city.

BON. Eventus. Bonus Eventus.

B. F. Nat. Bono Reipublica Nato.

BRT. Britannicus.

BRVT. Brutus.

C. Caius, Colonia.

CAE. Carthaginensis.

C. CAE. OF CAES. Caesar.

C. Carth. Carthage.

CEN. Centum.

CENS. F. Censio Perpetuus.

CEST. Celsius, or Celtianus.

CIR. CON. Circum Conditur, or Circens Concellit.

CIVIB. ET SIGNIS MILIT. A.

FABR. RECVP. Civilibus.

Fouriers for Fuius.

FL. Flavius.

FLAM. Flamen.

FORT. RED. Fortune Reduci.

FRI. Frotorius for Furius.

FONT. Fonteius.

FUGIF. Frugifer (Cerei).

FUL. Fulvius.

FULG. Fulgurator.

G. Genuis, Genius, Gauinium.

GA. Gaditanus.

G. D. Germanicus Augustus.

GEN. Genius.

GERM. Germanicus.

GL. E. R. Gloria Excitatus Romani.

GL. F. R. Gloria Populi Romani.

GOTH. Gothicus.

G. F. R. Genio Populi Romani.

G. T. A. Genius Tuellaris Egypti, or Africa.

H. HEL. Helvius.

HEL. Helopolis.

HER. Herennius, or Hebrew.

HON. Honos.

HS. Sefuttius.

I. IMPERATOR, Jovi, Julius.

I. AN. CIV. Janum clusit for clauat.

IMP. Imperator.

IMPF. Imperatores.

I. S. M. E. Juno Sorpita, Mater or Magna Regina.

IT. Italia, Iterum.

ITE. Iterum.

IVL. Julius or Julia.

IVL. Juv. Julius.

I. G. M. SACI. Jovi Optimo, Maximo, Sacrum.

I. VIR. Duumvir.

I. VIR. R. P. C. Tumvir Reipublica Constituendar.

I. VIR. A. F. P. Quatuorviri, or Quatuorviri, Auro, or Argento, or Aureum, or Feriundo.

JUNIO. Junior.

L. L. Lucius.

LAT. Latinus.

LEG. PROPR. Legatus Propratoris.

LEG. I. &C. Legio Prima.

LEP. Lepadus.

LENT. CIVR. X. F. Lenticus Curavit Denum Fiaciendum.

LIBER. LIBERAT. Liberty Publica.

LIC. Licinius.

L. S. DEN. Lucius Sicinius Dentatus.

LVC. Lucilera.

LVD. LVD. L. Ludi Circenses.

LVD. LVD. Equil. Equil.

LVD. SARC. P. Ludus Secularis Fecit.
Tables.

Abbr.	Meaning
M | Marcus, or Marzus
MAR. | Marcellus
M. F. | Marcus Filius
M. OT. | Marci Otacil
MAG. OR MAG. | Magnus
MAC. | Macellum
MAX. | Maximus
MAR. AQUA | Martia (aqua)
MAR. VET. | Marti Ultor
MES. | Medius
MET. | Metallum
MIN. | Minus
MN. | Minerva
M. M. V. | Municipes Municipalii Juli Uticensis
MON. | Moneta
N | Nepos or nofer
N. C. | Nobilissimum Cæsar
NAT. | Natalis Urbis
NEP. | Nepos
NEP. RED. | Nepo Reduci
O | Optimo
OB. | Ob Cives Servata
OC. | Officina
OPEL. | Opelius
ORB. TERR. | Orbis Terræ
P | Poteitate
P. O. P. | Pacatorum
PAC. ORB. TERR. | Orbis Terræ
PAP. | Papius or Papius
PARD. | Particulus
PER. | Perpetuus
FERT. OR PERT. | Pertinax
PESCE. | Pescennius
P. F. | Pius Felix
PLART. | Platonius
P. L. N. | Pecunia Londini Nota
P. LON. S. | Pecunia Londini Signata
P. M. | Postumus Maximus
POMP. | Pompeius
P. P. | Pater Patrice
P. PET. | Pretor
P. R. | Populus Romanus
PRAEF. CLAS. ET OR. | Prefectus Classis et Oris Maritimar
PRINC. | Invent. Princeps
PRIV. | Privernum
PROC. | Procul
PRON. | Pronoepos
PROP. | Proprator
PROQ. | Præfectus

MEDALS.

Prov. | Providentia Decurium
PVFLIM. | Papienus
Q | Quintus, or Quætor
Q. C. | Q. C. Q. C. Quintus Cæcilius Fabius Pius Imperator
Q. DEC. | Quætor Decimus
Q. F. | Quætor Praetorius
Q. P. | Quætor provincialis
R | R. Rome, Restituit
RECP. | Receptis, or Receptus
REST. | Restituit
ROM. ET AVG. | Rome et Augustus
R. F. | Republica
S | Saecl. Av. Saeclum Aureum
Saecl. Fel. | Seculi Felicitas
SAL. | Salus
SALL. | Sallustius
SAR. | Sarmaticus
S. C. | Centius Consul
SCIP. ASIA | Scipio Africanus
SEC. ORS. | Securitas Orbis
SEC. PERF. | Securitas Persica
SEC. TEMP. | Securitas Temporalis
SEN. | Senior
SEPT. | Septimius
SER. | Servius
SER. SEVERUS | Severus
SER. SEXTUS | Sextus

Abbreviations on the Exergue; from Bendaui and Monaldi, Pinkerton.

A. Officina Prima
A. L. | Alexandria
AMB. | Antoninius Moneta Seunda Officinæ
ANT. | Antonia
ANT. | Antiochiae
ANT. | Antoniae
A. IO ANH. | Antonie Othavia Officinæ
A. P. L. | Prima perulis Luguduni
AQ. AQ. | Aquilia
AQ. O. B. F. | Aquileiae Officinæ Secundæ Fabricæ
AQ. F. S. | Aquileiae Pecunia Signata
AQ. S. | Aquileiae Signata
A. AR. | Aureliae
A. ABOR. | Aurelia
A. SESC. | Prima (in officina)
SICER.
B. SIR. | Secunda Sirmii
B. S. L. C. | Secunda Signata Lugudunii

SIG. V. SIC. X. | Signti Quinquennallia, sic Decennalia
SIG. | Signis
S. M. | Signata Moneta
S. F. | S. F. Q. C. Senatus Populique Romanus
STABIL. | Stabilita (terra)
SYL. | Sulla
T | Titus, Tribunus
TREB. | Terentius, or Tertium
TEMP. | Temporum
TIBER. | Tiberius
TR. | Tribunus
TR. TREB. | Trebonianus
TR. M. | Tribunus Militaris
TR. A. | Trib. Pot. Tribu. buncia Poteitate
V | Quintum
V. C. | Vir Clarissimus
VESEP. | Vespasianus
VIB. | Vibius
VICT. | Victor
VIR. | Vir
VIR. EPL. | Septimius Epulonum
VIR. PVB. | Villa Publica
VIR. VIR. | Vir Viri
VIR. VEN. | Verevansegasus Memoriae
VOT. XI. MVT. XX. | Votis Decennaliis Multiplicatis Vincenaliis
X | Decem
XV | Decem
VIR. SACR. | Facies

A Life of Roman Colonies and Moneys in Spain, and Abbreviations on their Coins.

Abdera in Spain.
Acca in Spain.
Achilla in Africa.
Aelia Capitolina in Judæa.
Agrrippina in Germany.
Antiochia in Paphia.
in Syria.
Apamea in Bithynia.
Arma in Thessaly.
Asifi in Spain.
Babia in Mauritania Tingita.
Berytus in Phœnicia.
Bilbilis in Spain.
MEDALS.

Plate CCXCH.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>MEDALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL. AVR. KAR. COMM. P. F.</td>
<td>COLO. P. I. A.</td>
</tr>
<tr>
<td>Colonia Aurelia Karrhae</td>
<td>Colonia Romani Julia Felix Sinope.</td>
</tr>
<tr>
<td>Commodiana Pia Felix, or Carneatun Commagene,</td>
<td>Colonia Togata Tarraco.</td>
</tr>
<tr>
<td>or Carthae in Asia.</td>
<td>Colonia Violix Illice, Elche in Spain.</td>
</tr>
<tr>
<td>Col. CL. PTOLE. Colonia Claudia Ptolemais, Acre in</td>
<td>M. m. v. Municipiulii Julii Ulicenensis.</td>
</tr>
<tr>
<td>Pia, Barcino or Barcelona.</td>
<td>Mvn. FANE. EL. Municipium Fanefre Aelium. Fano.</td>
</tr>
<tr>
<td>Col. FL. PAC. DEVLT. Colonia Flavia Pacensis Deul-</td>
<td>Mvn. STOB. Municipium Stebenfis, Sohi in Macedon.</td>
</tr>
<tr>
<td>Col. H. M. T. Colonia Hadriana Mercurialis Thea-</td>
<td>N. Tr. Alexandrianae Col. BOST. Neris Trojane</td>
</tr>
<tr>
<td>niana, Mercuriali, Ferno in Italy, and Themes in Africa.</td>
<td>Alexandriane Colonie Boffre, in Palatine.</td>
</tr>
<tr>
<td>Col. H. (or HEL.) LEG. H. Colonia Heliopolis Legio</td>
<td>Sep. COL. Layd. Septimia Coloniz Ludaclo, or La-</td>
</tr>
<tr>
<td>Heliopilatana.</td>
<td>dica.</td>
</tr>
<tr>
<td>COL. HEL. I. O. M. H. Colonia Heliopolis Jovi Optimo</td>
<td>Sep. TTR. MET. Septima Trrys Metropolis.</td>
</tr>
<tr>
<td>Maximo Heliopolitana.</td>
<td></td>
</tr>
<tr>
<td>Col. IIVL. AVG. C. I. F. COMAN. Colonia Julia Augula</td>
<td>Explanadon of the Plates.</td>
</tr>
<tr>
<td>Concordia Invicta Felix Comarolanum, drawn from</td>
<td>Fig. 1. A Peritian Daric.</td>
</tr>
<tr>
<td>Concordia in Italy, and sent to Comuna in Cappadocia.</td>
<td>2. A drachm of Egina.</td>
</tr>
<tr>
<td>Col. IIVL. AVG. FEL. CREMMA. Colonia Julia Augula Felix</td>
<td>3. A silver hemidrachm of Alexander the Great.</td>
</tr>
<tr>
<td>Cremma, in Pamphylia.</td>
<td>4. Tigranes the younger of Armenia, with his filter.</td>
</tr>
<tr>
<td>Col. IIVL. CER. SAC. AVG. FEL. CAP. OCTVM. I.xE. HEL.</td>
<td>One of the coins of the Arfacidæ of Parthia.</td>
</tr>
<tr>
<td>itolium Oecumenicum Iscaebalicum Heliopolitum.</td>
<td>7. Denarius of Cneius Pompey from Mr Pinkerton,</td>
</tr>
<tr>
<td>Col. IVL. Conc. APAM. AVG. D. D. Colonia Julia Con-</td>
<td>reverfe. Received by Spain.</td>
</tr>
<tr>
<td>Col. IVL. PATER. NAR. Colonia Julia Paterna Narbonenfis.</td>
<td>9. Pefenniers Niger. Struck at Antioch; unique. In Dr Hunter's cabinet; published by Mr Pinkerton.</td>
</tr>
<tr>
<td>Col. NEM. Colonia Nemaufus.</td>
<td>10. A silver coin of Carausius.</td>
</tr>
<tr>
<td>Col. NICEPF. COND. Colonia Nicephorium Condita, in</td>
<td>11. Revere of Claudius in firft brafs.</td>
</tr>
<tr>
<td>Col. PATR. Colonia Patrensis or Patricia Patrae in</td>
<td>13. Of Antoninus Pius.</td>
</tr>
<tr>
<td>Col. F. FL. AVG. Cezr. METROP. PS. F. fane as above,</td>
<td>17. A Saxon ifyca.</td>
</tr>
<tr>
<td>P. S. F. is Provincia Syrie Palatine.</td>
<td>18. An Ancient pennies, supposed to be Scottifh.</td>
</tr>
<tr>
<td>Aug. Flavia Cazarea Metropolis. The fame.</td>
<td>23. The gold penny of Henry III.</td>
</tr>
<tr>
<td>Col. ROM. Colonia Romulea, or Seviile.</td>
<td>24. The large noble of the firft coinage of Edward III.</td>
</tr>
<tr>
<td>Col. ROM. LYG. Colonia Romana Lugdunum.</td>
<td>25. The gold noble of David II. of Scotland.</td>
</tr>
<tr>
<td>Col. RVS. LEG. VI. Colonia Rufcino Legio Sexta, Rouf-</td>
<td>26. The royal of Queen Mary of Scotland.</td>
</tr>
<tr>
<td>fillon in France.</td>
<td>27. Letters on Anglo-Saxon coins.</td>
</tr>
<tr>
<td>Col. SABAR. Colonia Saburiae.</td>
<td>28. Abbreviations on ditto.</td>
</tr>
<tr>
<td>Col. SABAS. Szabale in Palatine.</td>
<td>29. Monemurarius.</td>
</tr>
</tbody>
</table>
MEDALLION, or Medallion, is a medal of an extraordinary size supposed to be anciently struck by the emperors for their friends, and for foreign princes and ambassadors. But that the smallness of their number might not endanger the loss of the devices they bore, the Romans generally took care to stamp the subject of them upon their ordinary coins.

Medallions, in respect of the other coins, were the same as modern medals in respect of the modern money; they were exempted from all commerce, and had no other value than what was set upon them by the fancy of the owner. Medallions are so scarce, that there cannot be any set made of them, even though the metals and sizes should be mixed promiscuously.

MEDEA (Joseph), a very learned English divine of the 17th century, was educated at Cambridge, and soon distinguished himself to great advantage; for by the time he had taken the degree of master of arts in 1610, he had made an uncommon progress in all academic studies. His first appearance as a writer was by an address to Dr. Andrews, then bishop of Ely, in a Latin tract De Sanctorum Reliquiis, which was highly approved of by that prelate, who desired him to be his domestic chaplain. This Mr. Mede very civilly refused; valuing the liberty of his studies above all other value than what was set upon them by the fancy of the owner. He allowed himself little hopes of preferment, and estimating that freedom which he possessed (as) a matter serviceable to his purpose. He allowed him self little attention which Dr. Mede. very civilly refused; valuing the liberty of his studies above all other value than what was set upon them by the fancy of the owner. He allowed himself little hopes of preferment, and estimating that freedom which he possessed (as) a matter serviceable to his purpose. He allowed him self little attention which Dr. Mede. very civilly refused; valuing the liberty of his studies above all other value than what was set upon them by the fancy of the owner. He allowed himself little hopes of preferment, and estimating that freedom which he possessed (as) a matter serviceable to his purpose.

MEDEA, in fabulous history, a celebrated sorceress, daughter of Eetes king of Colchis. Her mother's name, according to the more received opinion of Hefiod and Hyginus, was Leuia, or, according to others, Ephyre, Hecate, Alterodia, Antiope, and Neaea. She was the niece of Circe. When Jason came to Colchis in quest of the golden fleece, Medea became enamoured of him, and it was to her well-directed labours that the Argonauts owed their preservation. Medea had an interview with her lover in the temple of Hecate; when they bound themselves by the most solemn oaths to eternal fidelity.

Mr. Mede was a curious inquirer into the most arduous parts of learning, and endeavoured after the knowledge of those things which were more remote from the vulgar track. Among other things, he spent no small pains and time in founding the depths of astrology, and blotted much paper in calculating the activities of his near relations and fellow-students; but he was in his younger years, and he afterwards discovered the vanity and weakness of this fanciful art. He applied himself to the more useful study of history and antiquities; particularly to those mysterious sciences which made the ancient Chaldeans, Egyptians, and other nations, so famous; tracing them as far as he could have any light to guide him in their oriental schemes and figurative expressions, as likewise in their hieroglyphics, not forgetting to inquire also into the oneirocritics of the ancients; which he did the rather, because of that affinity he conceived they might have with the language of the prophets. He was a curious and laborious searcher of antiquities relating to religion, ethnic, Jewish, Christian, and Mahometan; to which he added other attendants, necessary for understanding the more difficult parts of Scripture.

In 1620, he refused the provostship of Trinity college, Dublin, into which he had been elected at the recommendation of archbishop Usher, who was his particular friend; as he did also when it was offered to him a second time, in 1620. The height of his ambition was, only to have had some small donative fine cure added to his fellowship, or to have been thrown into some place of quiet; where, retired from the noise and tumults of the world, and possessed of a competency of fortune, he might have been entirely at leisure for study and acts of piety. In the mean time, although his circumstances were scanty, for he had nothing but his fellowship and a college lection, his charity was diffusive and uncommon; and, strange as it may now seem, he devoted the tenth of his income to pious and charitable uses. But his frugality and temperance always afforded him plenty. His prudence or moderation, either in declaring or defending his private opinions, was very remarkable; as was also his freedom from partiality, prejudice or prepossession, pride, anger, selfishness, flattery, and ambition. He was meek, patient, equally remote from superfluous and licentiousness of thinking; and, in short possessed every virtue. This great and good man died in 1630, in his 52d year, having spent above two-thirds of his time in college.

Mede.
MEDEA, Greek. To stop the pursuit of her father, the tore
pieces her brother Abiyturus, and left his mangled
limbs in the way through which Medea was to pass.
This act of barbarity, some have attributed to Jafon,
and not to her. When Jafon reached Iolchos his na-
tive country, the return and victories of the Argos-
naurs were celebrated with universal rejoicings; but
Eion the father of Jafon was unable to assist at the
solemnity on account of the infirmities of his age.
Medea, at her husband's request, removed the weak-
ness of Eion; and by drawing away the blood from
his veins, and filling them again with the juice of cer-
tain herbs, she restored him to the vigour and spright-
liness of youth. This sudden change in Medea aston-
i shed the inhabitants of Iolchos; and the daughters
of Pelias were determined to see their father restored
by the same power to the vigour of youth. Medea,
willing to revenge the injuries which her husband's fa-
mily had suffered from Pelias, increased their cru-
rité; and betrayed them into the murder of their fa-
ther as preparatory to his rejuvenescence, which she
afterwards refused to accomplish. This action greatly
irritated the people of Iolchos; and Medea with her
husband fled to Corinth to avoid their retribution. Here
they lived for 10 years with mutual attachment, when
the love of Jafon for Glauce the king's daughter inter-
rupted their harmony, and Medea was divorced. Me-
dea avenge the infidelity of Jafon, by causing the death
of Glauce, and the destruction of her family. She
also killed two of her children in their father's presence;
and when Jafon attempted to punish the barbarity of
the mother, she fled through the air upon a chariot drawn
by winged dragons. From Corinth Medea came
to Athens, where, after she had undergone the neces-
sary purification of her murder, the married king Agaeus,
or (according to others) lived in an adulterous manner
with him. From her conduct with Agaeus, Medea had
a son who was called Medus. Soon after, when The-
feus wished to make himself known to his father, Me-
dea, jealous of his fame and fearful of his power,
attempted to poison him at a feast which had been pre-
pared for his entertainment. Her attempts, however,
failed of success, and the sight of the sword which The-
feus wore by his side convinced Agaeus that the stran-
ger against whom the line had so safety confined was his
own son. The father and the son were reconciled; and
Medea, to avoid the punishment which her wickedness's
defended, mounted her fiery chariot and disappeared
through the air. She came to Colchis; where according
to some, she was reconciled to Jafon, while had fought
her in her native country after her sudden departure
from Corinth. She died at Colchis, as Justin mentions,
when she had been restored to the confidence of her
family. After death the married Achilles in the Elyrian
fields, according to the traditions mentioned by Simo-
nides. The murder of Mimerus and Pheres, the young-
eft of Jafon's children by Medea, is not to be attributed
to the mother, according to Elian; but to the Corin-
thians, who affiliated them in the temple of Juno Ac-
crea. To avoid the retribution of the gods, and to de-
liver themselves from the petulence which visited their
country after so horrid a massacre, they engaged the poet Eupriptes for five talents to write a tragedy, which
exposed them of the murder, and represented Medea as
the cruel assassin of her own children. And besides, that
this opinion might be the better credited, festivals were
appointed, in which the mother was represented with all
the barbarity of a fury murdering her own sons.

MEDUSA, climbing African asparagus, in
botany: A genus of the helianthus order, belong-
ing to the trigynia class of plants; and in the natural
method ranking under the 11th order, Solanaceous.
There is no calyx; the corolla is sepitate and revolu-
ted; the berry trifliform. Its characters are these:
The flower has no pistil; it has six oblong oval
petals, and six awl-shaped flaminia terminated by in-
cumbent summates; and three oromera germina termi-
nating the style; the gernina afterward turn to a roundish trifl berry with three cells, each contain-
ing one heart-shaped seed. There are two species.

MEDIA, now the province of Gilian in Persia, once
the seat of a potent empire, was bounded according
to Ptolemy, on the north by part of the Caspian Sea;
on the south by Parthia and Hyrcania; and on the west
by Armenia Minor. It was anciently divided into seve-
ral provinces, viz. Tropatene, Charomithrene, Darites, Parthia,
Armarioce, and Syro-Media. By a later division, how-
ever, all these were reduced to two; the one called Me-
dia Magna, the other Media Atropatene, or simple Atro-
patene. Media Magna was bounded by Persis, Parthia,
Hyrcania, the Hyrcanian Sea, at Atropatene, and
contained the cities of Ecbatan, Laodicea, Apamea,
Raga, Raelia or Rages, &c. Atropatene lay between
the Caspian mountains and the Caspian Sea.

This country originally took its name from Madai,
the third son of Jupitier; as is plain from Scripture,
where the Medes are constantly called Medini. Among
prophets authors, some derive the name Medini, from on-
Medus the son of Jafon and Medea; others from a city
called Medini. Sextus Rufus tells us that in his time it
was called Medilen, and from others we learn that it was
also called Arin. The most probable history of the Me-
des is as follows.

This people lived in subjection to the Assyrians till
the reign of Senacherib, when they threw off the yoke,
and lived for some time in a state of anarchy. But at
last, rapine and violence, the natural consequences of
such a situation, prevailed so much that they were con-
strained to have recourse to some kind of government,
that they might be enabled to live in safety. Accord-
ingly, about 699 B. C. one Dejoces having procured
himself to be chosen king, united the scattered tribes
into which the Medes were at that time divided; and
having applied himself as much as possible to the civi-
ization of his barbarous subjects, left the throne to his
son Phraortes, after a reign of 53 years.

The new king, who was of a warlike and enterprising
disposition, subdued almost all the Upper Asia lying be-
 tween Mount Tauros and the river Halys which runs
through Cappadocia into the Euxine Sea. Elated with
this good success, he invaded Assyria, the empire of
which was now much declined, and greatly weakened
by the revolt of many nations which had greatly followed
the example of the Medes. Nebuchadnezer or Chalidadiu,
however, the reigning prince, having assembled what
forces he could, engaged Phraortes, defeated, took him
prisoner, and put him to death; after which, entering
Media, he laid waste the country, took the metropolis
of Ecbatan itself, and levelled it with the ground.
MED

On the death of Phraortes, his son Cyaxares was placed on the throne. He was no less valiant and enterprising than his father, and had better success against the Assyrians. With the remains of that army which had been defeated under his father, he not only drove the conquerors out of Media, but obliged Chrysiladan to shut himself up in Nineveh. To this place he immediately laid close siege; but was obliged to give over the enterprise on account of an irritation of the Scythians into his own country. Cyaxares engaged these new enemies with great resolution; but was utterly defeated; and the conquerors over-ran not only all Media, but the greatest part of Upper Asia, extending their conquests into Syria, and as far as the confines of Egypt. They continued masters of all this vast tract of country for 28 years, till at last Media was delivered from their yoke by a general massacre at the instigation of Cyaxares.

After this deliverance, the Medes soon repopulated the territories which they had lost; and once more extended their frontiers to the river Halys, their ancient boundary to the westward. After this we find the Medes engaged in a war with the Lydians; which, however, ended without any remarkable transaction; but on the conclusion of it, Cyaxares having entered into a strict alliance with Nebuchadnezzar king of Babylon, returned in conjunction with the Babylonians before Nineveh; which they took and levelled with the ground, putting most of the inhabitants to the sword.

After this victory the Babylonian and Median empires seem to have been united; however, after, the death of Nebuchadnezzar, or rather in his lifetime, a war ensued, which was not extinguished but by the dissolution of the Babylonian empire. The Medes, under Alytages the son of Cyaxares I. withstood the power of the Babylonian monarchs; and under Cyrus and Cyaxares II. utterly destroyed their empire by the taking of Babylon, as is related under that article. After the death of Cyaxares, the kingdom fell to Cyrus, by whom the seat of the empire was transferred to Persia,

under which article the history of Media now falls to be considered, as also the manners, &c. of the inhabitants.

MEDIANA, the name of a vein or little vessel made by the union of the cephalic and basilic, in the bend of the elbow.

MEDIASTINUM, in anatomy, a double membrane, formed by a duplicature of the pleura; serving to divide the thorax and the lungs into two parts, and to sustain the vifera, and prevent their falling from one side of the thorax to the other. See Anatomy, n. 117.

MEDIATE, or INTERMEDIATE, something that stands betwixt and connects two or more terms considered as extremes; in which fence it stands opposed to immediate.

MEDIATOR, a person that manages or transacts between two parties at variance in order to reconcile them.

The word, in Scripture, is applied.

1. To Jesu Christ, who is the only intercessor and peace-maker between God and man, (1. Tim. ii. 5.) 2. To Moses, who interposed between the Lord and his people, to declare unto them his word; (Deut. v. 5. iii. 19.)

MEDITAGO, SNAIL-TREFOIL, in botany: A genus of the decandria order, belonging to the diadelpia class of plants, and in the natural method ranking under the 32d order, Papilionaceae. The legumen is compressed and screwed; the carina of the corolla luring down from the verillum. There are nine species, though only five are commonly cultivated in Britain. They are low trailing plants, adorned with small yellow flowers, succeeded by small, round, snail-shaped fruit, which are downy, and armed with a few short spines. They are all easily propagated by seeds. For the properties and culture of Lucern, a species of this genus, see Agriculture, n. 185.

MEDICINAL, any thing belonging to medicine.

MEDICAGO, a general name for any fountain, the waters of which are of use for removing certain disorders. They are commonly either chalybeate or sulphureous. See Springs and Water.

MEDINE.

MEDICINE is the art of preventing, curing, or alleviating, those diseases to which the human species are subjected.

History of Medicine.

The most ancient history of the ancients derives this art immediately from their gods; and, even among the moderns, some are of opinion that it may justly be considered as of divine revelation. But without adopting any supposition of which no probable evidence can be given, we may conclude that mankind were naturally led to it from casual observations on the diseases to which they found themselves subjected; and that therefore, in one sense at least, it is as ancient as the human race. But at what period it began to be professed as an art, by particular individuals following it as a profession, is not known. The most ancient physicians we read of were those who embalmed the patriarch Jacob by order of his son Joseph. The sacred writer styles these physicians Servants to Joseph; whence we may be assured that they were not priests, as the first physicians are generally supposed to have been; for in that age we know the Egyptian priests were in such high favour, that they retained their liberty, when, through a public calamity, all the rest of the people were made slaves to the prince.

It is not probable, therefore, that among the Egyptians religion and medicine were originally conjoined; and if we suppose the Jews not to have invented the art, but received it from some other nation, it is as little probable that the priests of that nation were their physicians as those of Egypt.

That the Jewish physicians were absolutely distinct from their priests, is very certain. Yet as the Jews resided for such a long time in Egypt, it is probable they would retain many of the Egyptian customs, from which it would be very difficult to free them.

We read, however, that when king Ahas was diseased...
in his feet, "he fought not to the Lord, but to the physicians." Hence we may conclude, that among the Jews the medicinal art was looked upon as a mere human invention; and it was thought that the Deity never cured diseases by making people acquainted with the virtues of this or that herb, but only by his miraculous power. That the same opinion prevailed among the heathens who were neighbours to the Jews, is also probable from what we read of Ahaziah king of Judah, who having sent messengers to inquire of Baal-seub god of Ekron concerning his disease, he did not derive any remedy from him or his priests, but simply to know whether he should recover or not.

What seems most probable on this subject therefore is, that religion and medicine came to be mixed together in consequence of that degeneracy into ignorance and superstition which took place among all nations. The Egyptians, we know, came at last to use emetics, and the herb verdigris, in their collection of cathartics, even pernicious. All of them, however, for all the heroes of antiquity are supposed to have discovered the use of verdigris in the cure of wounds, fractures, &c. Hence Hermes and his pupils Chiron, Macheon, and Podalirius, are mentioned as among all modern barbarians their priests or conjurors kept in the temples. The Egyptians, we are very certain; and indeed it seems to have been no less expert than in feats of arms. Several of them were transcribed by Agathodemon, or the second Mercury, the father of Tat, who is said to have composed books of them, that were kept in the most sacred places of the Egyptian temples. The existence of such a person, however, is very dubious, and many of the books ascribed to him were accounted forgeries as long ago as the days of Joseph; and very certain it is, that religion and barbarism to combine religion with physic, as it is for a civilized and enlightened people to keep them separate. Hence we see, that among all modern barbarians their priests or conjurors are their only physicians.

We are so little acquainted with the state of physic among the Egyptians, that it is needless to say much concerning them. They attributed the invention of medicine, as they did also of many other arts, to Thoth, the Hermes or Mercury of the Greeks. He is said to have written many things in hieroglyphic characters upon certain pillars, in order to perpetuate his knowledge, and render it useful to others. These were transcribed by Agathodemon, or the second Mercury, the father of Tat, who is said to have composed books of them, that were kept in the most sacred places of the Egyptian temples. The existence of such a person, however, is very dubious, and many of the books ascribed to him were accounted forgeries as long ago as the days of Joseph; and very certain it is, that religion and barbarism to combine religion with physic, as it is for a civilized and enlightened people to keep them separate. Hence we see, that among all modern barbarians their priests or conjurors are their only physicians.

After all, the Egyptian physic appears to have been little else than a collection of absurd superstitions. Origin informs us, that they believed there were 36 demons, or gods of the air, who divided the human body among them; that they had names for all of them; and that by invoking them according to the part affected, the patient was cured. Of natural medicines we hear of none recommended by the father of Egyptian physic; except the herb mulie, which he gave to Ulysses in order to cure him from the enchantments of Circe; and the herb mercury, of which he first discovered the use. His successors made use of venefication, cathartics, emetics, and Clysters. There is no proof, however, that this practice was established by Hermes: on the contrary the Egyptians themselves pretend that the origin of the art of physic was taken from some observations on brute animals. Veneration was taught them by the hippopotamus, which is said to perform this operation upon itself. On these occasions, he comes out of the river, and strikes his leg against a sharp pointed reed. As he takes care to direct the stroke against a vein, the consequence must be a considerable effusion of blood; and this being suffered to run as long as the creature thinks proper, he at last stops up the orifice with mud. The hint of clysters was taken from the ibis, a bird which is said to give itself clysters with its bill, &c. They used venefication, however, but very little, probably on account of the warmth of the climate; and the exhibition of the remedies above-mentioned, joined with abstinence, formed the most of their practice.

The Greeks too had several persons to whom they attributed the invention of physic, particularly Prometheus, Apollo or Pean, and Eucleapius; which last was the most celebrated of any. But here we must observe, that as the Greeks were a very warlike people, their physic seems to have been little else than what is now called surgery, or the cure of wounds, fractures, &c. Hence Eucleapius, and his pupils Chiron, Macheon, and Podalirius, are celebrated by Homer only for their skill in curing their, without any mention of their attempting the cures of internal diseases. We are not, however, to suppose that they confined themselves entirely to surgery. They no doubt would occasionally prescribe for internal disorders; but as they were most frequently conversant with wounds, we may naturally suppose the greatest part of their skill to have consisted in knowing how to cure those. If we may believe the poets, indeed, the knowledge of medicine seems to have been very generally diffused. Almost all the heroes of antiquity are reported to have been physicians as well as warriors. Most of them were taught physic by the centaur Chiron. From him Hercules received instructions in the medical art, in which he is said to have been no less expert than in feats of arms. Several plants were called by his name; whence some think it probable that he found out their virtues, though others are of opinion that they bore the name of this renowned hero on account of their great efficacy in removing diseases. Arisaenus king of Arcadia was also one of Chiron's scholars; and is supposed to have discovered the use of the drug called jophium, by some thought to be aphisita. Theseus, Talamon, Jason, Peleus, and his son Achilles, were all renowned for their knowledge in the art of physic. The last is said to have discovered the use of verdigris in cleansing foul ulcers. All of them, however, seem to have been inferior in knowledge to Palamades, who hindered the plague from coming into the Grecian camp after it had ravaged most of the cities of Hellas, and even Troy itself. His method was to confine his soldiers to a sparrow diet, and obligate them to use much exercise.

The practice of these ancient Greek physicians, notwithstanding the praises bestowed on them by their poets, seems to have been very limited, and in form-cures even pernicious. All the external remedies applied to Homer's wounded heroes were concoctions; while inwardly their physicians gave them wine, sometimes mingled
migled with others scraped down. A great deal of their physic also consisted in charms, incantations, amulets, &c., which, as they are common to all superstitious and ignorant nations, is superfluous to take any farther notice.

In this way the art of medicine continued among the Greeks for many ages. As its first professors knew nothing of the animal economy, and as little of the theory of diseases, it is plain, that whatever they did must have been in consequence of mere random trials, or empiricism, in the most rigid and proper sense of the word. Indeed, it is evidently impossible that this or almost any other art could originate from another source than trials of this kind. Accordingly, we find, that some ancient nations were accustomed to expose their sick in temples, and by the sides of highways, that they might receive the advice of every one who passed. Among the Greeks, however, Aesculapius was reckoned the most eminent practitioner of his time, and his name continued to be revered after his death. He was ranked amongst the gods; and the principal knowledge of the medical art remained with his family to the time of Hippocrates, who reckoned himself the seventeenth in a lineal descent from Aesculapius, and who was truly the first who treated of medicine in a regular and rational manner.

Hippocrates, who is supposed to have lived 400 years before the birth of Chriss, is the most ancient author whose writings expressly on the subject of the medical art are preserved; and he is therefore justly considered as the father of phyic. All the accounts which we have prior to this time, if not evidently fallacious, are at the utmost highly conjectural. Even the medical knowledge of Pythagoras, so much celebrated as a philosopher, can hardly be considered as resting on any other foundation. But from the time of Hippocrates, medicine, separated from philosophy and religion, seems to have assumed the form of a science, and to have been practiced as a profession. It may not, therefore, be improper to give a particular account of the state of medical knowledge as transmitted to us in his writings. The writings of Hippocrates, however, it may be remarked, are even more than preferred. Nor is it wonderful that attempts should have been made to increase the value of manuscripts, by attributing them to a name of such eminence. But although what are transmitted to us under the title of his works may have been written by different hands, yet the presumption is, that most, if not all of them, are of nearly as early a date, and contain the prevailing opinions of those times.

According to the most authentic accounts, Hippocrates was a native of the island of Cos, and born in the beginning of the 88th Olympiad. In the writings transmitted to us as his, we find a general principle adopted, to which he gives the name of Nature. To this principle he ascribes a mighty power. "Nature (says he) is of itself sufficient to every animal. She performs every thing that is necessary to them, without needing the least interposition from any one how to do it. Upon this footing, as if nature had been a principle endowed with knowledge, she gives her the name of God; and ascribes virtues or powers to her, which are her servants, and by means of which she performs all her operations in the bodies of animals; and distributes the blood, spirits, and heat, through all parts of the body, which by these means receive life and renovation. And in other places he tells us, that it is this faculty which gives nourishment, preservation, and growth, to all things.

The manner in which nature acts, or commands her processes, is by attracting what is good and agreeable to each species, and by retaining, preparing, and changing it; and on the other side in rejecting whatever is superfluous or hurtful, after she has separated it from the good. This is the foundation of the doctrine of depuration, concoction, and crises in fevers, so much inflicted upon by Hippocrates and most other physicians. He supposed also, that every thing has an inclination to be joined to what agrees with it, and to remove from every thing contrary to it; and likewise that there is an affinity between the several parts of the body, by which they mutually sympathize with each other. When he comes to explain what this principle called nature is, he is obliged to resolve it into boat, which, he says, appears to have something immortal in it.

As far as he attempts to explain the causes of disease, he refers much to the humours of the body, particularly to the blood and the bile. He treats also of the effects of sleep, watchings, exercise, and rest, and all the benefit or mischief we may receive from them. Of all the causes of diseases, however, mentioned by Hippocrates, the most general are diet and air. On the subject of diet he has composed several books, and in the choice of this he was exactly careful; and the more so, as his practice turned almost wholly upon it. He also considered the air very much; he examined what winds blew ordinarily or extraordinarily; he considered the irregularity of the seasons, the rising and setting of stars, or the time of certain constellations; also the time of the solstices, and of the equinoxes; those days, in his opinion, producing great alterations in certain distempers.

He does not, however, pretend to explain how, his divinities from these causes, that variety of distempers arises which is daily to be observed. All that can be gathered from him with regard to this is, that the different causes abovementioned, when applied to the different parts of the body, produce a great variety of distempers. Some of those distempers he accounted mortal, others dangerous, and the rest easily curable, according to the cause from whence they spring and the part on which they fall. In several places also he distinguishes diseases from the time of their duration, into acute or short, and chronic or long. He likewise distinguishes diseases by the particular places where they prevail, whether ordinary or extraordinary. The first, that is, those that are frequent and familiar to certain places, he called endemic diseases; and the latter, which ravaged extraordinarily sometimes in one place, sometimes in another, which feized great numbers at certain times, he called epidemic, that is, popular diseases; and of this kind the most terrible is the plague. He likewise mentions a third kind, the opposite of the former; and these he calls sporadic, or struggling diseases, that is, to include all the different sorts of distempers which invade at any one season, which are sometimes of one sort and sometimes of another.
Hippocrates remarked four stages in diseasements; viz. the beginning of the disease, its augmentation, its state or height, and its declination. In such diseases as terminate fatally, death comes in place of the declaration. In the third stage, therefore, the change is most considerable, as it determines the fate of the sick person; and this is most commonly done by means of a crisis. By this word he understood any sudden change in sickness, whether for the better or for the worse, whether health or death succeed immediately. Such a change, he says, is made at that time by nature, either aboliing or condemning the patient. Hence we may conclude, that Hippocrates imagined diseases to be only a disturbance of the animal economy, with which Nature was perpetually at variance, and using her utmost endeavours to expel the offending cause. Her manner of acting on these occasions is to reduce to their natural offences, either aboliing or condemning the patient. Hence we may conclude, that Hippocrates imagined diseases to be only a disturbance of the animal economy, with which Nature was perpetually at variance, and using her utmost endeavours to expel the offending cause.

Hippocrates remarks that nature has digested to fruits come to the market, and frequently the sick person is expected. He further says, "The fevers that come out upon the 3d, 5th, 7th, 9th, 11th, 14th, 17th, 21st, 27th, 31st, or 34th days, are beneficial; but those that come out upon other days signify that the sick shall be brought low, that his disease shall be very tedious, and that he shall subject to relapses." He further says, "That the fever which leaves the sick upon any odd day is usually apt to relapse." Sometimes, however, he contends that it is otherwise; and he gives an instance of a bilious crisis happening on the fifth day. But these are very rare instances, and therefore cannot, in his opinion, overthrow the general rule.

Besides the crisis, however, or the change which determines the fate of the patient, Hippocrates often speaks of another, which only changes the species of the disease, without restoring the patient to health; as when a vertigo is turned to an epilepsy, a tertian fever to a quartan, or to a continual.

But what has chiefly contributed to procure the vast respect generally paid to Hippocrates is his industry in observing the most minute circumstances of diseases, and his exactness in describing every thing that happened before, and every accident that appeared at the same time with them; and likewise what appeared to give ease, and what to increase the malady: which is what we call writing the history of a disease.—Thus he not only distinguished one disease from another by the signs which properly belonged to each; but by comparing the same sort of disorders which happened to several persons, and the accidents which usually appeared before and after, he could often detect a disease before it came, and afterwards give a right judgment of the event of it. By this way of prognosticating, he came to be exceedingly admired.
admiréd: and this he carried to such a height, that it may be justly be said to be his master-piece; and Celsius, who lived after him, remarks, that succeeding physicians, though they found out several new things relating to the management of diseases, yet were obliged to the writings of Hippocrates for all that they knew of signs.

The first thing Hippocrates considered, when called to a patient, was his looks.—It was a good sign with him to have a village resembling that of a perfom in health, and the fame with what the sick man had before he was attacked by the disease. As it varied from this, so much the greater danger was apprehended. The following is the description which he gives of the looks of a dying man. "When a patient (says he) has his nose sharp, his eyes funk, his temples hollow, his ears cold and contracted, the skin of his forehead tense and dry, and the colour of his face tending to a pale-green, or lead colour, one may give out for certain that death is very near at hand; unless the strength of the patient has been exhausted all at once by long watchings, or by a looseness, or being a long time without eating." This observation has been confirmed by those of succeeding physicians, who have, from him, denominated it the Hippocratic face. The lips hanging relaxed and cold, are likewise looked upon by this author as a confirmation of the foregoing prognostic. He took also his signs from the disposition of the eyes in particular. When a patient cannot bear the light, or that he sheds tears involuntarily; when, in sleeping, some part of the white of the eye is seen, unless he usually sleeps after that manner, or has a looseness upon him: these signs, as well as the foregoing ones, prognosticate danger. The eyes deadened, as it were with a mist spread over them, or their brightness loft, likewise signifies death, or great weakness. The eyes sparkling, fierce, and fixed, denote the patient to be delirious, or that he soon will be feized with a frenzy. When the patient fees any thing red, and like sparks of fire and lightning pafs before his eyes, you may expect an haemorrhagy; and this often happens before those crises which are to be attended by a lots of blood.

The condition of the patient is also shown by his polliure in bed. If you find him lying on one fide, his body, neck, legs, and arms, a little contracted, which is the polliure of a man in health, it is a good sign: on the contrary, if he lies on his back, his arms stretched out, and his legs hanging down, it is a sign of great weakness: and particularly when the patient di these or lets himself fall down towards the feet, it denotes the approach of death. When a patient in a burning fever is continually feeling about with his hands and fingers, and moves them up before his face and eyes as if he was going to take away something that paffed before them; or on his bed-covering, as if he was picking or seeking for little laws, or taking away some fift, or drawing out little flocks of wool; all this is a sign that he is delirious, and that he will die. Among the other signs of a present or approaching delirium he also adds this: When a patient who naturally speaks little begins to talk more than he used to do, or when one that talks much becomes silent, this change is to be reckoned a fort of delirium, or is a sign that the patient will soon fall into one.
of a consumption of the flesh and solid parts. The making of a great quantity of urine is the sign of a crisis, and sometimes the quality of it shows how the bladder is affected. We must also observe, that Hippocrates compared the state of the tongue with the urine; that is to say, when the tongue was yellow, and charged with bile, the urine he knew must of course be of the same colour; and when the tongue was red and moist, the urine was of its natural colour.

Hippocrates observed the excretions by stool are as follow. Those that are soft, yellowish, of some consistence, and not of an extraordinary ill smell, that answer to the quantity of what is taken inwardly, and that are voided at the usual hours, are the best of all. They ought also to be of a thicker consistence when the distemper is near the crisis; and it ought to be taken for a good prognostic, when some worms, round and long, are evacuated at the same time with them.

The prognostics, however, may still be favourable, though the matter excreted be thin and liquid, provided it ought always to be soft and even, as well on the right side as on the left. They are indispensible. That which is blackish, or of a lute hue, is the most pernicious. That which is pure black, and nothing else but a discharge of black bile, always prognosticates very ill; this humour, from what place never it comes, showing the ill disposition of the intestines. The matter that is of several different colours, denotes the length of the distemper; and, at the same time, that it may be of dangerous consequence. At Athens places in the fame clafs the matter that is bilious or yellow, and mixed with blood, or green and black, or like the dregs or scrapings of the guts. The stools that consist of pure bile, or entirely of phlegm, he also looks upon to be very bad.

Matter cast up by vomiting ought to be mixed with bile and phlegm; where one of these humours only is observed, it is worse. That which is black, livid, green, or of the colour of a leek, indicates alarming consequences. The fame is to be paid of that which smells very ill; and if at the same time it be livid, death is not far off. The vomiting of blood is very often mortal.

The spittings which give cause in diseases of the lungs and pleurisies, are those that come up readily and without difficulty; and it is good if they be mixed at the beginning with much yellow; but if they appear of the same colour, or are red, a great while after the beginning of the distemper, are falt and acrimonious, and cause violent coughings, they are not good. Spittings purely yellow are bad; and those that are white, vivid, and trothy, give no cause. Whitening is a good sign of conception in regard to spittings; but they ought not at all to be vicious, nor too thick, nor too clear. We may make the same judgment of the excrements of the nose according to their complexion and crudity. Spittings that are black, green, and red, are of very bad consequence. In inflammations of the lungs, tho' those that are mixed with bile and blood profuse well if they appear at the beginning, but are bad if they were not about the seventh day. But the worst sign in these distempers is, when there is no expectoration at all, and the too great quantity of matter that is ready to be discharged this way makes a rattling in the breast. After spitting of blood, the discharge of purulent matter often follows, which brings on a consumption, and at last death.

A kind good sweat is that which arises on the day of the crisis, and is discharged in abundance over all the body, and at the same time from all parts of the body, and thus carries off the fever. A cold sweat is alarming, especially in acute fevers, for in others it is only a sign of long continuance. When the patient sweats no where but on the head and neck, it is a sign that the disease will be long and dangerous. A gentle sweat in some particular part, of the head and breast, for instance, gives no relief, but denotes the heat of the distemper, or the weakness of the part. This kind of sweat was called by Hippocrates epistrophe.

The hypochondria, or the abdomen in general, ought always to be soft and even, as well on the right side as on the left. When there is any hardness or unevenness in those parts, or heat and swellings, or when the patient cannot endure to have it touched, it is a sign the intestines are indisposed.

Hippocrates also inquired into the state of the pulse, from the beating of the arteries. The most ancient physucians, however, and even Hippocrates himself, for a long time, by this word understood the violent pulsation that is felt in that inflamed part, without putting the fingers to it. It is observed by Galen, and other physicians, that Hippocrates touches on the subject of the pulse more slightly than any other on which he treats. But that our celebrated physician understood something even on this subject, is easily gathered from several passages in his writings; as when he observes, that in acute fevers the pulse is very quick and very great; and when he makes mention, in the same place, of trembling pulses, and those that beat slowly; when he observes, that in some diseases incident to women, when the pulse strikes the finger faintly, and in a languishing manner, it is a sign of approaching death. He remarks also, in the Cane Practitioner, that whose pulse is, that is to say, whole artery of the elbow, beats, is just going to run mad, or else that the person is at that time very much under the influence of anger.

From this account of Hippocrates, it will appear, that he was not near so much taken up with reasoning on the phenomena of diseases, as with reporting them. He was content to observe their phenomena accurately, to discern diseases by them, and judged of the event by comparing them exactly together. For his skill in prognostics he was indeed very remarkable, as we have already mentioned, from much that he and his pupils were looked upon by the vulgar as prophets. What adds very much to his reputation is, that he lived in an age when physic was altogether buried in superstitition, and yet he did not suffer himself to be carried away by it; on the contrary, on many occasions, he exposes his abhorrence of it.

Having thus seen in what Hippocrates makes the difference between health and sickness to consist, and likewise the most remarkable signs from whence he drew his prognostics, we must now consider the means he prescribed for the preservation of health, and the cure of diseases. One of his principal maxims was this,
MEDICINE.

Hippocrates.

Humaxims we ought by no means to forget:

1. This, that, to preserve health, we ought not to overcharge ourselves with too much eating, nor neglect the use of exercise and labour. In the next place, That which they struck forward with both their hands.

2. With regard to these things which ought to be

 Excretions.

 **Hippocrates observes, that people ought to take care not to load themselves with excrements, or keep them in too long; and besides the exercise abovementioned, which carries off one part of them, and which he prescribed chiefly on this account, he advises people to excite and route up nature when she flagged, and did not endeavour to expel the reft, or take care of the impediments by which she was resifted. For this reason he prescribed meats proper for loofening the belly; and when these were not sufficient, he directed the use of eylifiers and suppositories. For thin and emaciated persons he directed eylifiers composed only of milk and oily emulous substances which they mixed with a decoction of chick-pea; but for such as were plethoric, they only made use of salt or sea-water.

As preservative against distempers, Hippocrates also advised the use of vomits, which he directed to be taken once or twice a month during the time of winter and spring. The most simple of these were made of a decoction of hyfop, with an addition of a little vinegar and salt. He made those that were of a strong and vigorous constitution take this liquor in a morning fafting; but such as were thin and weakly took it after supper.—Venery, in his opinion, is wholesome, provided people consult their strength, and do not pursue it to excess; which he finds fault with on all occasions, and would have excess avoid ed also in relation to sleep and watching. In his writings are likewise to be found several remarks concerning good and bad air; and he makes it appear that the good or bad disposition of this element does not depend solely on the difference of the climate, but on the situation of every place in particular. He speaks also of the good and bad effects of the passions, and recommends moderation in regard to them.

From what we have already related concerning the opinions of Hippocrates, it may naturally be concluded, that for the most part he would be contented with observing what the strength of nature is able to accomplish without being affifted by the physician. That this was really the cafe, may be easily perceived from a perufal of his books entitled, "Of epidemical distempers;" which are, as it were, journals of the practice of Hippocrates; for there were find him often doing nothing more than describing the symptoms of a distemper, and informing us what has happened to the patient day after day, even to his death or recovery, without speaking a word of any kind of remedy. Sometimes, however, he did indeed make use of remedies; but these were exceedingly simple and few, in comparison of what have been given by succeeding practitioners. These remedies we shall presently consider after we have given an abridgment of the principal maxims on which his practice is founded.

Hist.

**Hippocrates observed in the first place, That contraries, or opposites, are the remedies for each other; and this maxim he explains by an aphorism in which he says, that evacuations cure those distempers which come from repletion, and repletion those that are caused..."
MEDICINE.

Hippocrates.

Medicine, as he first and principal, and often the only remedy made use of by this great physician to answer the greatest part of the intentions abovementioned: by means of it he opposed moist to dry, hot to cold, &c. and what he looked upon to be the most considerate point was, that thus he supported nature, and assisted her to overcome the malady. The dietetic part of medicine was so much the invention of Hippocrates himself, that he was very desirous to be accounted the author of it; and the better to make it appear that it was a new remedy in his days, he says expressly, that the ancients had wrote almost nothing concerning the diet of the sick, having omitted this point, though it was one of the most essential parts of the art.

The diet prescribed by Hippocrates for patients labouring under acute distempers, differed from that which he ordered for those afflicted with chronic ones. In the former, which require a more particular exactness in relation to diet, he preferred liquid food to that which was solid, especially in fevers. For these he used a sort of broth made of cleaned barley; and to this he gave the name of pífan. The manner in which the ancients prepared a pífan was as follows: They first steeped the barley in water till it was plumped up; and afterwards they dried it in the sun, and beat it to take off the husk. They next ground it; and having let the flour boil a long time in the water, they put it out into the sun, and when it was dry they pressed it close. It is properly this flour so prepared that is called pífan. They did almost the same thing with wheat, rice, lentils, and other grain: but they gave these ptisans the name of the grain from whence they were extracted, as pífan of kettle, rice, &c. whereas the ptisan of barley was called simply pífan, on account of the excellency of it. When they wanted to use it, they boiled one part of it in 10 or 15 of water; and when it began to grow plump in boiling, they added a little vinegar, and a very small quantity of anise or leek, to keep it from clogging or filling the stomach with wind. Hippocrates prescribes this broth for women that have pains in delivery. "Boil some of this pífan (says he), with some leek, and the fat of a goat, and give it to the woman in bed." This will not be thought very singular, if we reflect on what has been hinted above concerning the indiscriminate manner of living in those times. He preferred the ptisan to all other food in fevers, because it softened and moistened much, and was besides of easy digestion. If he was concerned in a continual fever, he would have the patient begin with a ptisan of a pretty thick constilution, and go on by little and little, leisening the quantity of barley-flour as the height of the distemper approached; so that he did not feed the patient but with what he called the juice of the pífan; that is, the ptisan strained, where there was but very little of the flour remaining, in order that nature being discharged in part from the care of digesting the aliments, they might more easily boil out to the end, and overcome the distemper, or the cause of it. With regard to the quantity, he caused the ptisan to be taken twice a-day by such patients as in health used to take two meals a-day, not thinking it convenient that those who were sick would eat oftener than when they were well. He also would not allow eating twice a-day to those who eat but once in that time when in health. In the paroxysm of a
MEDICINE.

Hippocrates, where there are exacerbations, he forbade nourishment while the exacerbations continued. He let children eat more; but those who were grown up to man’s estate, or were of an advanced age, less; making allowance, however, for the custom of each particular perion, or for that of the country.

But though he was of opinion that too much food ought not to be allowed to the sick, he was not of the mind of some physicians who prescribed long abstinence, especially in the beginning of fevers. The reason he gave for this was, that the contrary practice weakened the patients too much during the first days of the distemper, by which means their physicians were obliged to allow them more food when the illness was at its height, which in his opinion was improper. Besides, in acute distempers, and particularly in fevers, Hippocrates made choice of refreshing and moistening nourishment; and amongst other things prescribed orange, melon, spinach, gourd, and dock. This fort of food he gave to those that were in a condition to eat, or could take something more than a pittance.

The drink he commonly gave to his patients was made of eight parts of water and one of honey. In some distempers they added a little vinegar; but besides these, they had another fort named *exmidon*, or mixture. One prescription of this fort we find intended for a convulsive perfon; it consisted of rue, anise, coriander, juice of pomegranate, the roughest red wine, water, flour of wheat, and barley, with old cheese made of goats milk. Hippocrates did not approve of giving plain water to the sick; but though he generally prescribed the drinks abovementioned, he did not absolutely forbid the use of wine, even in acute distempers and fevers, provided the patients were not delirious nor had pains in their head. Besides, he took care to dilute the wines proper in these cases; preferring to all other forts white wine that is clear and has a great deal of water, with neither yellow milk, nor flavour.

There are the most remarkable particulars concerning the diet prescribed by Hippocrates in acute distempers; in chronic ones he made very much use of milk and whey; though we are not certain whether this was done on account of the nourishment expected from them, or that he accounted them medicines.

There were many dilecuses for which he judged the bath was a proper remedy; and he takes notice of all the circumstances that are necessary in order to cause the patient receive benefit from it, among which the following are the principal. The patient that bathes himself must remain full and quiet in his place without speaking while the officiants throw water over his head or are wiping him dry; for which last purpose he advised them to keep sponges, instead of that instrument called by the ancients *fregil*, which served to rub off from the skin the dirt and mafsines left upon it by unguents and oils with which they anointed themselves. He must also take care not to catch cold; and must not bathe immediately after eating and drinking, nor eat or drink immediately after coming out of the bath. Regard must also be had whether the patient has been accustomed to bathe while in health, and whether he has been benefited or hurt by it. Lastly, he must abstain from the bath when the body is too open, or too colivse, or when he is too weak; or if he has an inclination to vomit, a great loss of appetite, or bleeds at the nofe. The advantage of the bath, according to Hippocrates, consists in moistening and refreshing, taking away weariness, making the skin soft and the joints pliant; in provoking urine, making the nostrils open, and opening the other excretories. He allows two baths in a day to those who have been accustomed to it in health.

In chronic distempers Hippocrates approved very much of exercise, though he did not allow it in acute ones: but even in these he did not think that a patient ought always to lie a-bed; but tells us, that “we must sometimes pulse the timorous out of bed, and roufe up the lazy.”

When he found that diet and exercise were not sufficient to ease nature of a burden of corrupted humours, he was obliged to make use of other means, of purgation, which purgation was one. By this word he understood all the contrivances that are made use of to discharge the stomach and bowels; though it commonly signifies only the evacuation by the belly by stool. This evacuation he imagined to be occasioned by the purgative medicines attracting the humours to themselves. When first taken into the body, he thought they attracted that humour which was most similar to them, and then the others, one after another. — Most of the purgatives used in his time were emetics also, or at least were very violent in their operation downwards. These were the white and black hellebore; the first of which is now reckoned among the poisons. He caused also the Cnidian berries, which are nothing else but the seeds of thymelea or chamaelea; eunoroum peplium, which is a fort of milk-thistle; thapias; the juice of hippochae, a fort of rhamnus; elaterium, or juice of the wild cucumber; flowers of brais, coloquintida, scammony, the magneian stone, &c.

As these purgatives were all very strong, Hippocrates was extremely cautious in their exhibition. He did not prescribe them in the dog-days; nor did he prescribe long abstinence, or in children or old people. He principally used purgatives in chronic distempers; but was much more wary in acute ones. In his book entitled “Of Epidemical Distempers,” there are very few patients mentioned to whom he gave purgative medicines. He also takes notice expressly, that these medicines having been given in cases of the distempers of which he was treating, had produced very bad effects. We are not, however, from this to conclude, that Hippocrates absolutely condemned purging in acute distempers; for in some places he expressly mentions his having given them with success. He was of opinion, for instance, that purging was good in a pleurisy when the pain was seated below the diaphragm; and in this case he gave black hellebore, or some peplium mixed with the juice of *herpitiutum*, which is supposed to have been our aafetida.

The principal rule Hippocrates gives with relation to purging is, that we ought only to purge off the humours that are concocted, and not those that are yet crude, taking particular care not to do it at the beginning of the distemper, lest the humours should be...
be disturbed or stirred up, which happens pretty often
He was not, however, the first who remarked that
it would be of ill consequence to stir the humours in
the beginning of an acute distemper. The Egyptian
physicians had before observed the same thing. By
the beginning of a distemper, Hippocrates understood all
the time from the first day to the fourth complete.

Hippocrates imagined that each purgative medicine
was adapted to the carrying off some particular hu-
mour; and hence the division of purgatives into hy-
drogogue, cholagogue, &c. which is now justly explo-
ded. In consequence of this notion, which prevailed
long after his time, he pretended that we knew if a pur-
gative had drawn from the body what was fit to be eva-
cuated according as we found ourselves well or ill upon it.
If we found ourselves well, it was a sign that the
medicine had effectually expelled the offending humour.
On the contrary, if we were ill, he imagined, whatever
quantity of humour came away, that the humour which
caused the illness still remained; not judging of the
goodness or badness of a purge by the quantity of
matters that were voided by it, but by their quality
and the effect that followed after it.

Vomits were also pretty much used as medicines by
Hippocrates. We have already seen what those were
which he prescribed to people in health by way of pre-
ventatives. With regard to the sick, he sometimes ad-
vised them to the same, when his intentions were only
to cleanse the stomach. But when he had a mind to
recall the humours, as he termed it, from the immodi-
ately recedes of the body, he made use of brisker remedies.
Among these was white hellebore; and this indeed he
moft frequently used to excite vomiting. He gave
this root particularly to melancholy and mad people; to make them
vomit, and to draw the phlegm from the
vifed them to the same, when his intentions were only per-
s. For that purpofe he made ufe of the juices of

On these occasions Hippocrates proposed to purge
the head alone. This practice he employed, after pur-
ging the rest of the body, in an apoplexy, inveterate
pains of the head, a certain fort of jaundice, a con-
sumption, and the greatest part of chronic distem-
pers.

For that purpose he made ufe of the juices of
several plants, as cery; to which he sometimes added
aromatic drugs, making the patients snuff up this
mixture into their noftils. He ufed also powders com-
pounded of myrrh, the flowers of brafs, and white
hellebore, which he caufed them put up into the nofe,
to make them fneeze, and to draw the phlegm from
the brain.

Vomit was alfo pretty much ufed as
by the head alone. This
medicine was adapted to the carrying off hy-
drogogue, cholagogue, &c. which is now
justly exploded. In consequence of this

He commanded the patient to draw in
his breath, and in other chronical disor-
ders. lungs a liquor that irritated the part, which, ra-
iving a

But we do not find that he made ufe of it in acute di-
tempers, except in the cholera morbus, where he says
he prescribed it with benefit. Some took this medi-
cine failing; but molt took it after supper, as was com-
monly practifed with regard to vomits taken by way of
prevention. The reason why he gave this thing, which
Hippocrates and other ancient physicians, the phrase
to have need of hellebore, became a proverbial expre-
sion for being out of one's fenes. He gave it also in de-
fusions, which come, according to him, from the
brain, and throw themselves on the noftils or ears, or
fill the mouth with saliva, or that caufe stubborn pains
in the head, and a wearinefs or an extraordinary hea-
matter in the

Among thefe
to recall the courfe

As to the

Vessels that were

caufed them put up into the nofe,
to make them fneeze, and to draw the phlegm from
the brain.

For the fame purpose alfo he ufed what
he calls tetragonon, that is, "something having four
gles," but what this was, is now altogether un-
known, and was fo even in the days of Galen. The
latter physician, however, conjectures it to be antimo-
y, or certain flakes found in it.

In the diftemper called onypema (or a collection of
matter in the breast), he made ufe of a very rough me-
dicine. He commanded the patient to draw in his
tongue as much as he was able; and when that was
done, he endeavoured to put into the hollow of the
lungs a liquor that irritated the part, which, raising a
violent cough, forced the lungs to discharge the puru-
 lent matter contained in them. The materials that he
used for this purpose were of different forts; sometimes
he took the root of arum, which he ordered to be boil-
ted with a little falt, in a sufficient quantity of water
and oil; diluting a little hone with it. At other times,
when he intended to purge more strongly, he took the
flowers of copper and hellebore; after that he shook
the patient violently by the shouldcrs, the better to
loosen the pus.

This remedy, according to Galen,
he received from the Cnidian physicians; and it has
never been ufed by the succeeding ones, probably be-
cause the patients could notuffer it.

Blood-letting was another method of evacuation
pretty much ufed by Hippocrates. Another aim he re-
peating had in this, besides the mere evacuation, was to divert
blood
or to recall the courfe of the blood when he imagined it

ting

was going where it ought not.

A third end of bleed-
ing was to procure a free motion of the blood and pus,
Hippocrates had also a fourth intention for bleeding, and this was reinforcement. So in the iliac paffage, he ordered bleeding in the arm and in the head; to the end, says he, that the superior venter, or the breast, may cease to be overheated. With regard to this evacuation, his conduct was much the fame as to purging, in respect of time and perfon. We ought, says he, to let blood in acute diseases, when they are violent, if the party be lusty and in the flower of his age. We ought also to have regard to the time, both in respect to the disease and to the feafon in which we let blood. He also informs us, that blood ought to be let in great pangs, and particularly in inflammations. Among thefe he reckons such as fall upon the principal viscera, as the liver, lungs, and spleen, as also the quinsy and pleurisy. In the pain of the latter he above the dia­phragm. In thofe cases he would have the patients bled until they faint, especiaily if the pain be very acute; or rather he advifes that the orifice fhould not be closed till the colour of the blood alters, fo that from livid it turn red, or from red livid. In a quinsy he bled in both arms at once. Difficulty of breathing he also reckons among the diftempers that require bleeding; and he mentions another fort of inflammation of the lungs, which he calls a swelling or tumor of the lungs arifing from heat; in which cafe he advifes to bled in all parts of the body; and directs particularly to the arms, tongue, and noftrils. To make bleeding the more ufeful in all pangs, he directed to open the vein nearest the part affected; in a pleurisy he directs to take blood from the arm of the side affected; and for the fame reafon, in pangs of the head, he directs the veins of the nose and forehead to be opened. When the pain was not urgent, and bleeding was advifed by way of prevention, he directed the blood to be taken from the parts furthest off, with a defign to divert the blood infintly from the fear of pain. The highest burning fevers, which flow with fears of inflammation nor pain, he does not rank among thofe diftempers that require bleeding. On the contrary, he maintains that a fever itelf is in fome cafes a reafon againft bleeding. If any one, says he, has an ulcer in the head, he must bleed, unlefs he has a fever. He fays further, thofe that lose their speech from a sudden muff be bled, unlefs they have a fever. Perhaps he was afraid of bleeding in fevers, becaufe he fuppofed that they were produced by the bile and pituita, which grew hot, and afterwards heated the whole body, which is, fays he, what we call fever, and which, in his opinion, cannot well be evacuated by bleeding. In other places also he looks upon the prefeuce or abundance of bile to be an objeGion to bleeding; and he orders to forbear venéction even in a pleurisy, if there be bile. To this we must add, that Hippocrates di­stinguished very particularly between a fever which followed no other diftemper, but was itself the original malady, and a fever which came upon inflammation. In the early ages of phyfic, the firft were only properly called fevers: the others took their names from the parts affected; as pleurisy, perigemumany, hepatisitis, no­phritis, &c., which names signify that the pleura, the lungs, the liver, or the kidneys, are difeafed, but do not injufite the fever which accompanies the diftempe. In this latter fort of fever Hippocrates connantly ordered bleeding, but not in the former. Hence in his books Of Epidemical Diftempers, we find but few direc­tions for bleeding in the acute diftempers, and particular­ly in the great number of continual and burning fevers there treated of. In the firft and third book we find but one fingle infance of bleeding, and that in a pleurisy; in which, too, he flaid till the eighth day of the diftemper. Galen, however, and molt other commentators on Hippocrates, are of opinion that he generally bled his patients plentifully in the beginning of acute disorders, though he takes no notice of it in his writings. But had this been the cafe, he would not perhaps have had the opportunity of feeing fo many fevers terminate by crises, or natural evacuations, which happen of themfelves on certain days. Hippocrates, in fad, laid fo much weight upon the influance of nature and the method of diet, which was his favourite medicine, that he thought if they took care to diet the patients before mentioned, according to rule, they might leave the refi to nature. These are his principles, from which he never deviates; fo that his pieces Of Epidemical Diseases fefm to have been compafled only with an intention to leave to po­fterity an exact model of management in purfuance of thefe principles.

With regard to the rules laid down by Hippocrates for bleeding, we must further take notice, that in all diftempers which had their seat above the liver, he bled in the arm, or in fome of the upper parts of the body; but for thofe that were fittuated below it he directed the veins of the foot, ankle, or harm. If the belly was too laxative, and bleeding was at the fame time thought necessary, he ordered the leofensid to be stopped before bleeding.

Almost all these infances, however, regard fevere any thing but acute diftempers; but we find feveral con-

History.

Hippocrates.

Concerning chronic diseases. "A young man complained of great pain in his belly, with a rumbling while he was fasting, which ceased after eating; this pain and rumbling continuing, his meat did him no good; but, on the contrary, he daily wasted and grew lean. Several medicines, as well purges as vomits, were given him in vain. At length it was resolved to bleed him by intervals, first in one arm and then in the other, till he had scarce any blood left, and by this method he was perfectly cured."

Hippocrates let blood also in a drop by, even in a tympany; and in both cases he prescribes bleeding in the arm. In a disease occasioned by an overgrown spleen, he proposes bleeding several times repeated at a vein of the arm which he calls the spleenetic; and in a kind of jaundice, he proposes bleeding under the tongue. On some occasions he took away great quantities of blood, as appears from what we have already observed. Sometimes he continued the bleeding till the patient fainted; at other times he would bleed in both arms at once; at others, he did it in several places of the body, and at several times. The veins he opened were those of the arm, the hands, the ankles on both sides, the hams, the forehead, behind the head, the tongue, the nose, behind the ears, under the breasts, and those of the arms; besides which, he burnt others, and opened several arteries. He likewise used cupping-vesels, with intent to reac or withdraw the humours which fell upon any part. Sometimes he contended himself with the bare attraction made by the cupping-vesels, but sometimes also he made scarifications.

When bleeding and purging, which were the principal and most general means used by Hippocrates for taking off a plethora, proved insufficient for that purpose, he had recourse to diuretics and sudorifics. The former were of different sorts, according to the constitution of the person: sometimes baths, and sometimes sweet wine, were employed to provoke urine; sometimes the nourishment which we take contributes to it: and amongst those herbs which are commonly eaten, Hippocrates recommends garlic, leeks, onions, cucumbers, melons, gourds, fennel and all other things which have a biting taste and a strong smell. With these he numbers honey, mixed with water or vinegar, and all salt meats. But, on some occasions, he took four cantharides, and pulling off their wings and feet, gave them in wine and honey. These remedies were given in a great number of chronic dis-temperers after purging, when he thought the blood was overcharged with a sort of moisture which he calls kebor; or in impregnations of urine, and when it was made in lesser quantity than it ought. There were also some cafes in which he would force sweat as well as urine, but he neither mentions the diseases in which sudorifics are proper, nor lets us know what medicines are to be used for this purpose, except in one single passage, where he mentions sweating, by pouring upon the head a great quantity of water till the feet sweat; that is, till the sweat diffuses itself over the whole body, running from head to feet. After this he would have them eat boiled meat, and drink pure wine, and being well covered with clothes, lay themselves down to rest. The diseases for which he proposes the above-mentioned remedy is a fever; which is not, according to him, produced by bile or phlegm, but by mere altitude, or some other similar cause; from whence we may conclude that he did not approve of sweating in any other kind of fever.

Other remedies which Hippocrates tells us he made use of were those that purged neither bile nor phlegm, but act by cooling, drying, heating, moilting, or by closing and thickening, resolving and diluting. These medicines, however, he does not particularly mention; and it is probable they were only some particular kinds of food. To these he joined hypnoses, or such things as produce sleep; but these last were used very seldom, and, it is most probable, were only different preparations of poppies.

Lastly, besides the medicines already mentioned, which acted in a sensible manner, Hippocrates made use of others called specific; whose action he did not understand, and for the use of which he could give no reason besides his own experience, or that of other physicians. Thence he had learned from his predecessors the descendants of AEsclapius, who, being empirics, did not trouble themselves about inquiring into the operation of their remedies, provided their patients were cured.

Of the external remedies prescribed by Hippocrates, fomentations were the chief. These were of two kinds. The one was a sort of bath, in which the patient sat in a vessel full of a decocition of simples appropriated to his malady; so that the part affected was soaked in the decoction. This was chiefly used in distempers of the womb, of the arms, the bladder, the reins, and generally all the parts below the diaphragm. The second way of fomenting was to make a hot decoction of warm water and put it into a skin or a bladder, or even into a copper or earthen vessel, and to apply it to the part affected; as, for example, in a pleurisy. They used likewise a large sponge, which they dipped in the water, or other hot liquor, and squeezed out part of the liquor before they applied it. The same use they made of barley, vetches, or bran, which were boiled in some proper liquor, and applied in a linen bag. These are called moist fomentations. The dry ones were made of salt or millet, heated considerably, and applied to the part. Another kind of fomentation was the vapour of fome hot liquor; an infusion of which we find in his third book of Women's Distemperers. He calls, at several times, bits of red-hot iron into urine, and, covering up the patient close, caused her to receive the steam below. His design in these kinds of fomentations was to warm the part, to resolve or dilate, and draw out the pernicious matter, to mollify and affage pain, to open the passages, or even to hum them, according as the fomentations were emollient or astringent.

Fumigations were likewise very often used by Hippocrates. In the quinsy, he burned hyssop with sulphur and pitch, and caused the fume to be drawn into the throat by a funnel; and by this means he brought away abundance of phlegm through the mouth and through the nose. For this purpose he took nitre, marjoram, and cres-fleads, which he boiled in water, vinegar, and oil, and, while it was on the fire, caused the patient to draw in the fume by a pipe. In his works we find a great number of fumigants for the distemperers of women, to promote the menstrual flux.
flux, to check it, to help conception, and to ease pains in the matrix, or the correction of it. On these occasions he used such aromatics as were then known, viz. cinnamon, calamus, myrrh, and several odoriferous plants; likewise some minerals, such as nitre, sulphur, and pitch, and caused them to receive the vapours through a funnel into the uterus.

Gargles, a kind of fomentations for the mouth, were also known to Hippocrates. In the quinine he used a gargle made of marjoram, savoury, celery, mint and nitre, boiled with water and a little vinegar. When this was strained, they added honey to it, and wafted their mouths frequently with it.

Oils and ointments were likewise much used by Hippocrates, with a view to mollify and abate pain, to ripen boils, resolve tumors, refresh after weariness, make the body supple, &c. For this purpose, sometimes pure oil of olives was used; sometimes certain simples were infused in it, as the leaves of myrtle and roses; and the latter kind of oil was in much request among the ancients. There were other sorts of oils sometimes in use, however, which were much more compounded. Hippocrates speaks of one called fulnum, which were made of the flowers of the iris, of some aromatics, and of an ointment of narcissus made with the flowers of narcissus and aromatics infused in oil. But the most compounded of all his ointments was that called neotium, which he made particularly for women; and confituted, according to Hesychius, of a great number of ingredients. Another ointment, to which he gave the name of ceratum, was composed of oil and wax. An ointment which he recommends for the softening of a tumor, and the cleansing of a wound, was made by the following receipt; "Take the quantity of a nut of the marrow or fat of a sheep, of mastice or turpentine the quantity of a bean, and as some ointment, or juice of a plant, to make a solid or the quantity of a nut of the marrow or fat of a

Cataplasm were a sort of remedies less efficient than the two former. They were made of powders or tinctures or boiled in water or some other li­quor, to which sometimes they added oil. They were used with a view to soften or resolve tumors, ripen abscesses, &c. though they had also cooling cataplams made of the leaves of beets or oak, fig or olive-trees, boiled in water.

Collyria. Lastly, to complete the catalogue of the external remedies used by Hippocrates, we shall mention a sort of medicine called collyrium. It was compounded of powders, to which was added a small quantity of some ointment, or juice of a plant, to make a solid or dry mass; the form of which was long and round, which was kept for use. Another composition of much the same nature was composed of a small piece of money, which was burnt upon coals for a perfume, and powdered for particular uses. In his works we find likewise descriptions of powders for several uses, to take off fungous stich, and to blow into the eyes in ophthalmics, &c.

These were almost all the medicines used by Hip­pocrates for external purposes. The compound med­icines given inwardly were either liquid, solid, or lumbative. The liquid ones were prepared either by decoction or infusion in a proper liquor, which, when strained, was kept for use; or by macerating certain powders in such liquors, and so taking them together, or by mixing different kinds of liquors together. The solid medicines consisted of juices infused; of gums, resins, or powders, made up with them or with honey, or something proper to give the necessary consistence to the medicine. These were made up in a form and quantity fit to be swallowed with ease. The lumbative was of a consistence be­tween solid and fluid; and the patients were obliged to keep it for some time to dissolve in the mouth, that they might swallow it leisurely. This remedy was used to take off the acrimony of these humours which sometimes fall upon this part, and provoke coughing and other inconveniences. The basis of this last com­position was honey. It is worth our observation, that the compound medicines of Hippocrates were but very few, and composed only of four or five ingredients at most, and that he not only understood pharmacy, or the art of compounding medicines, but prepared such as he used himself, or caused his servants to prepare them in his house by his directions.

We have thus given some account of the state of medicine as practised and taught by Hippocrates, who, as we have already observed, has for many ages been justly considered as the father of physic. For when we attend to the state in which he found medicine, and the condition in which he left it, we can hardly bestow sufficient admiration on the judgment and accuracy of his observations. After a life spent in un­worned industry, he is said to have died at Larissa, a city in Thessaly, in the toad year of his age, 351 years before the birth of Christ.

After the days of Hippocrates, medicine in ancient Greece gradually derived improvement from the labours of other physicians of eminence. And we may particularly mention three to whom its future pro­gress seems to have been not a little indebted, viz. Praxagoras, Erasistratus, and Herophilus.

The first physician of eminence who differed con­siderably in his practice from Hippocrates was Praxa­goras. Celsus Aurelianus acquaints us, that he made great use of vomits in his practice, in so much as to exhibit them in the biception till the ex­crement were discharged by the mouth. In this dif­temper he also advised, when all other means failed, to open the belly, cut the intesine, take out the contents, and then to few up all again; but this practice has not probably been followed by any subsequent physician.

Erasistratus was a physician of great eminance, and flourished in the time of Seleucus, one of the successors of Alexander the Great. According to Galen, he entirely banished venefication from medicine; though some affirm that he did not totally dis­card it, but only used it less frequently than other physicians. His reasons for disapproving of venec­fication are as follow: It is difficult to succeed in vencefication, because we cannot always see the vein we intend to open, and because we are not sure but we may open an artery instead of a vein. We cannot ascertain the true quantity to be taken. If we take too little, the intention is by no means answered; if we take too much, we run a risk of destroying the patient. The evacuation of the venous blood also is
History.

MEDICINE.

Erasistratus succeeded by that of the spirits, which on that occasion pass from the arteries into the veins. It must likewise be observed, that as the inflammation is formed in the arteries by the blood coagulated in their orifices, venefection must of course be useless and of no effect.

As Erasistratus did not approve of venefection, so neither did he of purgatives, excepting very rarely, but exhibited enemias and vomits; as did also his master Chryippus. He was of opinion, however, that the enemias should be mild; and condemned the large quantity and acrid quality of those used by the ancients. The reason why purgatives were not much used by him was, that he imagined purging and venefection could answer no other purpose than diminishing the fulness of the vessels; and for this purpose he asserted that there were more effectual means than either phlebotomy or purging. He asserted that the humours discharged by cathartics were not the same in the body that they appeared after the discharge; but that the medicines changed their nature, and produced a kind of corruption in them. This opinion has since been embraced by a great number of physicians. He did not believe that purgatives acted by attraction; but substantiated in the place of this principle what Mr Le Clerc imagines to be the same with Aristotle's fuga vocis. The principal remedy substantiated by him in place of purging and venefection was absinence. When this, in conjunction with enemias and vomits, was not sufficient to eradicate the disease, he then had recourse to exercise. All this was done with a view to diminish the plentitude, which, according to him, was the most frequent cause of all diseases. Galen also informs us, that Erasistratus had so great an opinion of the virtues of succory in diseases of the viscerâ and lower belly, and especially in those of the liver, that he took particular pains to describe the method of boiling it, which was, to boil it in water till it was tender; then to put it into boiling water a second time, in order to destroy its bitterness; afterwards to take it out of the water, and preserve it in a vessel with oil; and lastly, when it is to be used, to add a little weak vinegar to it. Nay, so minute and circumstantial was Erasistratus with regard to the preparation of his favourite succory, that he gave orders to tie several of the plants together, because that was the more commodious method of boiling them. The art of Erasistratus's medicines consisted almost entirely of regimen; to which he added some topical remedies, such as cataplasms, fomentations, andunctions. In short, as he could neither endure compounded medicines, nor supurations and fine-pan reaoning, he reduced medicine to a very simple and comprehensible art.

With regard to surgery, Erasistratus appears to have been very bold; and as an anatomist he is said to have been exceedingly cruel, inasmuch as he is represented by some as having dissected criminals while yet alive *. In a fcarious liver, or in tumors of that organ, Celsus Aurelianus observes, that Erasistratus made an incision through the skin and integuments, and having opened the abdomen, he applied medicines immediately to the part afflicted. But tho' he was thus bold in performing operations on the liver, yet he did not approve of the paracentesis or tapping in the dropsy; because (said he) the waters being evacuared, the liver, which is inflamed and become hard like a stone, is more press'd by the adjacent parts which the waters kept at a distance from it; so that by this means the patient dies. He declared also against drawing teeth which were not loose; and used to tell those who talked with him on this operation, That in the temple of Apollo there was to be seen an instrument of lead for drawing teeth; in order to inculcate that we must not attempt the extirpation of any but such as are loose, and call for no greater force for their extirpation than what may be suppos'd in an instrument of lead.

Herophilus, the disciple of Praxagoras, and cotemporary of Erasistratus, followed a less simple practice: he made so great use of medicines both simple and compound, that neither he nor his disciples would undertake the cure of any disorder without them. He seems also to have been the first who treated accurately of the doctrine of purges, of which Hippocrates had but a superficial knowledge. Galen, however, affirms, that on this subject he involved himself in difficulties and advanced absurdities; which indeed we are not greatly to wonder at, considering the time in which he lived. He took notice of a disease at that time pretty rare, and to which he ascribes certain sudden deaths. He calls it a polypus of the heart; and perhaps it may be the same disease with what is now termed the angina pectoris.

According to Celsius, it was about this time that medicine was first divided into three branches, viz. the dietetic, the pharmaceutical, and the chirurgical medicine. The first of these employed a proper regimen in the cure of diseases; the second, medicines; and the third, the operation of the hands; and the same author informs us, that these three branches became now the bufines's of as many different classes of men; so that from this time we may date the origin of the three professions of physicians, apothecaries, and surgeons.—Before this division, those called physicians discharged all the several offices belonging to the three professions; and there were only two kinds of them, viz. one called ἄρτητοι, who only gave their advice to the patients, and directions to those of an inferior class, who were called διαφανται, and worked with their hands either in the performing operations, or in the composition and application of remedies.

The first grand revolution which happened in the Hippocratic medicinal art after the days of Herophilus and Erasistratus was occasioned by the founding of the empire of Alexandria about 284 years before Christ. The division into dogmatists and empirics had indeed subsisted before; but about this time the latter party began to grow strong, and to have champions publicly asserting its cauca. Galen informs us, that Scarpion used Hippocrates very ill in his writings, in which he discovered an excess of pride, self-sufficiency, and contempt for all the physicians that went before him. We have some sketches of his practice in Celsius Aurelianus, from which we may infer that he retained the medicines of Hippocrates and the other physicians who went before him, tho' he rejected their reasoning. We know not what arguments he advanced for the support of his sentiments, since his works are lost, as well as those of the other empirics; and we should know nothing at all of any

* See Anatomy, 63.
The empirics admitted only one general method of obtaining skill in the medical art, which was by experience, called by the Greeks ἀρετή. From this word they took their name, and refused to be called after the founder or any champion of their sect. They defined experience a knowledge derived from the evidence of senses. It was either fortuitous, or acquired by design. For acquiring practical skill they recommended what they called ἀρετή, or one's own observation, and the reading of histories or cures faithfully related by others. Hence they thought that we are enabled to know a disease by its resemblance to others; and, when new diseases occurred, to conclude what was proper to be done from the symptoms which they had in common with others that were before known. They asserted, that observation ought principally to be employed in two different ways; first in discovering what things are salutary, and what are of an indifferent nature; and, secondly, what particular disease is produced by a certain concurrence of symptoms; for they did not call every symptom a disease, but only such a combination of them as from long experience they found to accompany each other, and produced such disorders as began and terminated in the same manner.

On the other hand, the dogmatists affirmed, that there was a necessity for knowing the latent as well as the evident causes of diseases, and that the physician ought to understand the natural actions and functions of the human body, which necessarily presupposes a knowledge of the internal parts. By secret or latent causes they meant such as related to the elements or principles of which our bodies are composed, and which are the origin of a good or bad state of health. They asserted that it was impossible to know how to cure a disease without knowing the cause whence it proceeded; because undoubtedly it behoved them to vary prodigiously in themselves according to the different causes by which they were produced. Thus, the remarkable person in the history of phyle is Aesoppiades, who flourished in the century immediately preceding the birth of Christ. He introduced the philosophy of Democritus and Epicurus into medicine, and ridiculed the doctrines of Hippocrates. He asserted, that matter considered in itself was of an unchangeable nature; and that all perceptible bodies were composed of a number of smaller ones, between which there were interpenetrated an infinity of small places totally void of all matter. He thought that the foul itself was composed of these small bodies. He laughed at the principle called Nature by Hippocrates, and also at the imaginary faculties laid by him to be subservient to lesser and still more at what he called Aceldama. This last principle Aesoppiades denied in every instance, even in that of the loadstone and steel, imagining that this phenomenon proceeded from a concourse of corpuscles, and a particular disposition or modification of their pores. He also maintained, that nothing happened or was produced without some cause; and that what was called nature was in reality no more than matter and motion. From this last principle he inferred that Hippocrates knew not what he said when he spoke of Nature as an intelligent being, and ascribed qualities of different kinds to her. For the same reason he ridiculed the doctrine of Hippocrates with regard to crises; and asserted that the termination of diseases might be as well accounted for from mere matter and motion. He maintained, that we were deceived if we imagined that nature always did good; since it was evident that she often did a great deal of harm. As for the days particularly fixed upon by Hippocrates for crises, or those on which we usually observe a change either for the better or the worse, Aesoppiades denied that such alternations happened on those days rather than on others. Nay, he asserted that the crisis did not happen at any time of its own accord, or by the particular determination of nature for the cure of the disorder, but that it depended rather on the address and dexterity of the physician; that we ought never to wait till a dilemma terminates of its own accord, but that the physician by his care and medicines must hasten on and advance the cure. — According to him, Hippocrates and other ancient physicians attended their patients rather with a view to observe in what manner they died than in order to cure them; and this under pretence that Nature ought to do all herself, without any assistance.

According to Aesoppiades; the particular semblance of the various corpuscles abovementioned, and represented as of different figures, is the reason why there are several pores or interstices within the common mass, formed by these corpuscles; and why these pores are of a different size. This being taken for granted, as these pores are in all the bodies we observe, it must of course follow that the human body has some peculiar to itself, which, as well as those of all other bodies, contain other minute bodies, which pass and repass by those pores that communicate with each other; and as these pores or interstices are larger or smaller, to the corpuscles which pass through them differ proportionably as to largeness and to minuteness. The blood conflicts of the largest of these corpuscles, and the spirits, or the heat, of the smallest.

From these principles he infers, that as long as the corpuscles are freely received by the pores, the body remains in its natural state; and on the contrary, it begins to recede from that state, when the corpuscles find any obstacle to their passage. Health therefore depends on the just proportion between the pores and the corpuscles; they are destined to receive and transmit; as diseases, on the contrary, proceed from a disproportion between these pores and the corpuscles. The most usual obstacle on this occasion proceeds from the corpuscles embracing each other, and being retained in some of their ordinary passages, whether these corpuscles arrive in too large a number, are of irregular figures, move too fast or too slow, &c.

Among the disorders produced by the corpuscles, they drop offing of their own accord, Aesoppiades reckoned phrenies, lethargies, plagues and burning fevers. Pains, in particular, are clatified among the accidents which derive their origin from a stagnation of the largest of all the corpuscles of which the blood consists. Among the disorders produced by the bad state and disposition of the pores, he placed deliquiuums, languors, excretions, leannets, and dropsies. These last disorders he thought proceeded from the pores being too much relaxed and opened; the dropsy in
History.

Medicine.

Aesclepiades, in particular, thinks proceeds for the fist being perforated with various small holes, which convert the nourishment received into them into water. Hunger, and especially that species of it called fumes caninae, proceeds from an opening of the large pores of the stomach and belly; and thirst from an opening of their small ones. Upon the same principles he accounted for intermittent fevers. Quotidian fevers are caused by a retention of the largest corpuscles, those of the tertian kind by a retention of corpuscles somewhat smaller, and quartan fevers are produced by a retention of the smallest corpuscles of all.

The practice of Aesclepiades was suited to remove these imaginary causes of disorders. He composed a book concerning common remedies, which he principally reduced to three, viz. gelatination, friction, and the use of wine. By various exercises he proposed to render the pores more open, and to make the juices and small bodies, which cause feaftes by their retention, pass more freely; and while the former physicians had not recourse to gelatination till towards the end of long continued disorders, and when the patients, tho' entirely free from fever, were yet too weak for any vigorous exercise by walking; Aesclepiades used gelatination from the very beginning of the most burning fevers. He laid it down as a maxim, that one fever was to be cured by another; that the strength of the patient was to be exhausted by making him watch and endure thirst to such a degree, that, for the two first days of the disorder, he would not allow them to cool their mouths with a drop of water. Celsus also observes, that though Aesclepiades treated his patients like a butcher during the first days of the disorder, he induced them so far afterwards as even to give directions for making their beds in thefoleft manner. On several occasions Aesclepiades used frictions to open the pores. The droppy was one of the diitempers in which this remedy was used; but the most singular attempt was, by these means, to lull phrenetic patients to sleep. But though he enjoined patients abstinence to an extreme degree.

The next great revolution which happened in the medicinal art, was brought about by Themison, the disciple of Aesclepiades, who lived not long before the time of Celsus, during the end of the reign of Augustus, or beginning of that of Tiberius. The art founded by him was called methodic, because he endeavoured to find a method of rendering medicine more effectual, than former.

He maintained, that a knowledge of the caufes of these feaftes was not necessary, provided we have a due regard to what feaftes have in common and analogous to one another. In consequence of this principle, he divided all feaftes into two, or at most three, kinds. The fit included feaftes arising from friction; the second, those arising from relaxation; and the third, those of a mixed nature, or such as partook, both of friction and relaxation.

Themison also asserted, that feaftes are sometimes acute, and sometimes chronic; that for a certain time they increase, and at a certain time they are at their height; and that at last they were observed to diminish. Acute feaftes, therefore according to him, must be treated in one way, and chronic ones in another; one method must be followed with such as are in their augmentation, another with such as are at their height, and a third with such as are in their declension. He asserted, that the whole of medicine consisted in the observation of that small number of rules which are founded upon things altogether evident. He said, that all disorders, whatever their nature was, included under any of the kinds above-mentioned, ought to be treated precisely in the same way, in whatever country and with whatever symptoms they happen to arise. Upon these principles, he defined medicine to be a method of conducting to the knowledge of what feaftes have in common with each other, and which at the same time is evident.

Themison was old when he laid the foundation of the Methodic sect; and it was only brought to perfection by Theflalus, who lived under the emperor Nero. Theflalus, Galen and Pliny accuse this physician of intolerable in detail and vanity, and report that he gave himself the air of defpising all other physicians; and so intolerable was his vanity, that he assumed the title of the conqueror of physicians, which he caused to be put up on his tomb in the Appian way. Never was a more remarkable (say Pliny) attended by a greater number of followers than Theflalus had generally about him; and this circumstance is the less to be wondered at, if we consider that he promised to teach the whole art of medicine in less than six months. In reality, the art might be learned much sooner if it comprehended no more than what the methodics thought necessary; for they cut off the examination of the caufes of feaftes followed by the dogmatics; and substituted in the room of the laborious observations of the empirics, indications drawn from the analogy of feaftes, and the mutual resemblance they bear to each other. The most skilful of all the methodics, and he who put the last hand to it, was Soranus. He lived under the emperors Trajan and Adrian, and was a native of Ephesus.
tiquity was Celsus, whom we have already had occasion to mention. Most writers agree that he lived in the time of Tiberius, but his country is uncertain. It is even disputed whether or not he was a professed physician. Certain it is, however, that his books on medicine are the most valuable of all the ancients next to those of Hippocrates. From the latter, indeed, he has taken so much, as to acquire the name of the Latin Hippocrates; but he has not attached himself to him so closely as to reject the affinities of other authors. In many particulars he has preferred Aesculapiades. With him he laughs at the critical days of dogmatic, empiric, methodic, and other feists, had each their abettors. The methods were held in great esteem, and looked upon to be superior to the dogmatism, who were strangely divided among themselves, some of them following Hippocrates, others Erafiratus, and others Aesculapiades. The empirics made the least considerable figure of any. Galen undertook the reformation of medicine, and restored dogmatism. He seems to have been of that sect which was called celestial, from their choosing out of different authors what they esteemed good in them, without being particularly attached to any one more than the rest. This declaration he indeed fets out with; but, notwithstanding this, he follows Hippocrates much more than any of the rest, or rather follows nobody else but him. Though before his time several physicians had commented on the works of Hippocrates, yet Galen pretends that none of them had understood his meaning. His first attempt therefore was to explain the works of Hippocrates; with which view he wrote a great deal, and after this he undertakes the establishment of the science of medicine, and the physician ought to consider as found, as not found, or of a neutral and indifferent nature. These are the body itself, the signs, and the causes. He refuses the human body found, when it is in a good state or habit with regard to the simple parts of which it is composed, and when besides there is a just proportion between the organs formed of these simple parts. On the contrary, the body is reckoned to be unfound, when it recedes from this state, and the just proportion abovementioned. It is in a state of neutrality or indifference, when it is in a medium between soundness and its opposite state. The salutary signs are such as indicate present health, and prognosticate that the man may remain in that state for some time to come. The infalubrious signs, on the contrary, indicate a present disorder, or lay a foundation for suspecting the approach of one. The neutral signs, or such as are of an indifferent nature, denote neither health nor indisposition, either for the present, or for the time to come. In like manner he speaks of causes salutary, infalubrious, and indifferent.

These three dispositions of the human body, that is, soundness, its reverse, and a neutral state, comprehend all the difference between health and disorder or indifference.
HISTORY.

Upon these principles Galen defined a disease to be "such a preternatural disposition or affection of the parts of the body, or faculties of the soul, as is foreign to their natural and proper action." He established three principal kinds of diseases: the first relates to the similar parts; the second, to the organical; and the third is common to both these parts. The first kind of diseases consists in the intemperature of the similar parts; and this is divided into an intemperature without matter, and an intemperature with matter. The first discovers itself when a part has more or less heat or cold than it ought to have without that change of quality in the part being supported and maintained by any matter. Thus, for instance, a person's head may be overheated and indispensible by being exposed to the heat of the sun, without that heat being maintained by the continuance or conception of any hot humour in the part. The second fort of intemperature is when any part is not only rendered hot or cold, but also filled with a hot or cold humour, which are the cauages of the heat or cold felt in the part. Galen also acknowledged a simple intemperature: that is, when one of the original qualities, such as heat or cold, exceeds alone and separately; and a compound intemperature, when two qualities are joined together, such as heat and dryness, or coldness and humidity. He also established an equal and unequal temperature. The former is that which is equally in all the body, or in any particular part of it, and which creates no pain, because it becomes habitual, such as dryness in the hectic constitution. The latter is distinguished from the former, in that it does not equally suffit the whole of the body, or in the whole of a part. Of this kind of intemperature we have examples in certain fevers, where heat and cold, equally, and almost at the same time, attack the same part; or in other fevers, which render the surface of the body cold as ice, while the internal parts burn with heat; or lastly, in cases where the stomach is cold and the liver hot.

The second kind of disorders, relating to the organical parts, results from irregularities of these parts, with respect to the number, bulk, figure, situation, &c.; as when one has six fingers, or only four; when one has any part larger or smaller than it ought to be, &c. The third kind, which is common both to the similar and the organical parts, is a solution of continuity, which happens when any similar or compound part is cut, bruised, or corroded.

Like Hippocrates, Galen distinguished diseases into acute and chronic; and, with respect to their nature and genius, into benign and malignant; also into epidemic, endemic, and sporadic.

After having distinguished the kinds of diseases, Galen comes to explain the causes; which he divides into external and internal. The external causes of diseases, according to him, are six things, which contribute to the preservation of health when they are well disposed and properly used, but produce a contrary effect when they are imprudently used or ill disposed. These six things are, the air, aliments and drinks, motion and rest, sleeping and watching, retention and excretion, and lastly the passions. All these are called the procaartic or beginning causes, because they put the original source or principle of motion in all these faculties, Galen, as well as Hippocrates, defines to be Nature.
M E D I C I N E.

History.

Galen. in motion the internal causes; which are of two kinds, the anteculix and the conjunct. The former is discovered only by reasoning; and consists for the most part in a peculiarity of the humours, either by plentitude or catarachmy, i.e. a bad state of them. When the humours are in too large a quantity, the cafe is called a plethora; but we must observe, that this word equally denotes too large a quantity of all the humours together, or a redundancy of one particular humour which prevails over the rest. According to these principles, there may be a languid, a biliar, a pituitous, or a melancholy plentitude: but there is this difference between the languid and the three other plentitudes, that the blood, which is the matter of the former, may be discharged, whereas, if any of the three last mentioned ones do so, the cafe is no longer called plentitude, but catarachmy because the humours, abounding more than they ought, corrupt the blood. The causes he also divides into such as are manifest and evident, and such as are latent and obscure. The first are such as spontaneously come under the cognizance of our senses when they act or produce their effects; the second are not of themselves perceptible, but may be discovered by reasoning: the third fort, i.e. such as he calls occult or concealed, cannot be discovered at all. Among this last he places the cause of the hydrophobia.

He next proceeds to consider the symptoms of diseases. A symptom he defines to be "a preternatural affection depending upon a disease, or which follows it as a shadow does a body." He acknowledged three kinds of symptoms: the first and most considerable of these is the action of the parts being injured or hindered; the second in a change of the quality of the parts, their actions in the mean time remaining entire; the third related to defects in point of exertion and retention.

After having treated of symptoms, Galen treats of the signs of diseases. These are divided into diagnostic and prognostic. The first are so called because they enable us to know diseases, and distinguish them from each other. They are of two sorts, pathognomonic and adjunct. The first are peculiar to every disease, make known its specific species, and always accompany it, so that they begin and end with it. The second are common to several diseases, and only serve to point out the difference between diseases of the same species. In a pleurisy, for instance, the pathognomonic signs are a cough, a difficulty of breathing, a pain of the side, and a continued fever; the adjunct signs are the various sorts of matter expirated, which are sometimes bloody, sometimes bilius, &c.

The diagnostic signs were drawn from the defective or disordered disposition of the parts, or from the diseases themselves; secondly, from the causes of diseases; thirdly, from their symptoms; and lastly, from the particular dispositions of each body, from things which prove prejudicial and those that do service, and from epidemic diseases. The prognostic signs he gathered from the species, virulence, and peculiar genius of the disease: but as we have already spoken so largely concerning the prognostics of Hippocrates, it is superfluous to be particular on those of Galen.

His method of cure differed little from that of Hippocrates; but from the specimen already given of Galen's method of teaching the medical art, it is evident that his system was little else than a collection of speculations, definitions, and refinements; whereas that of Hippocrates was founded immediately upon facts, which he had either observed himself, or had learned from the observation of others.

The system of Galen, however, notwithstanding its defects and absurdities, remained almost uncontradicted for a very long period. Indeed it may be considered as having been the prevailing system till the inundation of the Goths and Vandals put an almost entire stop to the cultivation of letters in Europe. But during the general prevalence of the system of Galen, there appeared some writers to whom medicine was indebted for improvements, at least in certain particulars. Among the most distinguished of these we may mention Oribasius, Aetius, Alexander, and Paulus.

Oribasius flourished about the year 360, and was physician to the emperor Julian. He speaks very fully of the effects of bleeding by way of scarcification, a thing little taken notice of by former writers; from his own experience he affirms us that he had found it successful in a supputation of the menes, defluxions of the eyes, headach, and fraintness of breathing even when the person was extremely old. He tells his own case particularly, when the plague raged in Asia, and he himself was taken ill, that the second day he scarified his leg, and took away two pounds of blood; by which means he entirely recovered, as did several others who used it. In this author also we find the first description of a surprising and terrible distemper, which he termed lepra locularis, a species of melancholy and madness, which he describes thus. "The persons affected get out of their houses in the night-time, and in every thing imitate wolves, and wander among the sepulchres of the dead till day-break. You may know them by these symptoms: Their looks are pale; their eyes heavy, hollow, dry, without the least moisture of a tear; their tongue exceedingly parched and dry, no spittle in their mouth, extreme thirst; their legs, from the falls and the bruises they receive, full of incurable sores and ulcers."

Aetius lived very near the end of the fifth, or in the beginning of the sixth century. Many passages in his writings serve to show us how much the actual and potential caution were used by the physicians of that age. In the palsy, he says, that he should not at all hesitate to make an etchar either way, and this in several places; one in the nape, where the spinal marrow takes its rise, two on each side of it; three or four on the top of the head, one just in the middle, and three others round it. He adds, that in this case, if the ulcers continue running a good while, he should not doubt of a perfect recovery. He is still more particular when he comes to order this application for an invertebrate asthma, after all other remedies have been tried in vain. One, he says, should be made on each side near the middle of the joining of the clavicle, taking care not to touch the wind-pipe: two other little ones are then to be made near the carotids under the chin, one on each side, so that the cautle may penetrate no further than the skin; two others under the breasts, between the third and fourth ribs; and again, two more backwards towards the fifth and sixth ribs. Besides these there ought to be one in the middle...
middle of the thorax near the beginning of the xiphoid cartilage over the orifice of the stomach; one on each side between the eighth and ninth ribs; and three others in the back, one in the middle, and the other two just below it, on each side of the vertebræ. Those below the neck ought to be pretty large, not very superficial, not very deep: and all these ulcers should be kept open for a very long time.

Aetius takes notice of the worms bred in different parts of the body called dracunculi, which were unknown to Galen. He seems also to be the first Greek writer among the Christians, who gives us any specimen of medicinal spells and charms; such as that of a finger of St Blaffius for removing a bone which sticks between the eighth and ninth ribs; and another in relation to a fistula. He gives a remedy for the gout, which he calls the grand diver; the patient is to use it for a whole year, and observe the following diet each month. "In September, he must eat and drink milk; In October, he must eat garlic; In November, abstain from bathing; In December, he must eat no cabbage; in January, he is to take a glass of pure wine in the morning; in February, to eat no beer; in March, to mix sweet things both in eatables and drinkables; in April, not to eat horseradish, nor in May the fish called polpisus; in June, he is to drink cold water in the morning; in July, to avoid venery; and lastly, in August, to eat no mallow." This may sufficiently show the quackery of those times, and how superfluous was beginning to mix itself with the art.

Alexander, who flourished in the reign of Julianus, is a more original author than either of the two former. He confines himself directly to the transcribing the signs of diseases, and the methods of cure, without meddling with anatomy, the materia medica, or surgery, as all the rest did. He employs a whole book in treating of the gout. One method he takes of relieving this disease is by purging; and in most of the purges he recommends mermodactyls, of which he has a great opinion. In a caustic, or burning fever, where the bile is predominant, the matter fit for evacuation, and the fever not violent, he prefers purging to bleeding, and says that he has often ordered purging in acute fevers with surprising success. In the caustic also, if a syncope happens from crude and redundant humours, he recommends bleeding. In syncope succeeding the supputation of any usual evacuation, he recommends bleeding, with friction. The diagnostics upon which he founds this practice are the following: viz. a face paler and more swelled than usual, a bloated habit of body, with a little sluggish pulse, having long intervals between the strokes. In tertian, and much more in quartan fevers, he recommends vomiting above all other remedies, and affirms that by this remedy alone he has cured the most inveterate quartans. On the bulimus, or canine appetite, he makes a new observation, viz. that it is sometimes caused by worms. He mentions the case of a woman who laboured under this ravenous appetite, and had a perpetual gnawing at her stomach and pain in her head: after taking rhubarb, she vomited a worm above a dozen of cubits long, and was entirely cured of her complaints.—He is also the first author who takes notice of rhubarb; which he recommends in a weakness of the liver and styfenty.—Alexander is recommended by Dr Freind Alexander, as one of the best practical writers among the ancients, and well worthy the perusal of any modern.

Paulus was born in the island Zægina, and lived in Paulus, the 7th century. He transcribes a great deal from Alexander and other physicians. His descriptions are short and accurate. He treats particularly of women's disorders; and seems to be the first instance upon record of a professed man-midwife, for so he was called by the Arabsians: and accordingly he begins his book with the disorders incident to pregnant women. He treats also very fully of surgery; and gives some directions, according to Dr Freind, not to be found in the more ancient writers.

After the downfall of the Roman empire, and when the inundation of Goths and Vandals had almost completely exterminated literature of every kind in Europe, medicine, though a practical art, shared the same fate with more abstruse sciences. Learning in general, banished from the seat of arms, took refuge among the eastern nations, where the arts of peace still continued to be cultivated. To the Arabian physicians, as they have been called, we are indebted both for the preservation of medical science, as it subsisted among the Greeks and Romans, and likewise for the description of some new diseases, particularly the small-pox. Among the most eminent of the Arabsians, we may mention Rhazes, Avicenna, Albulcafas, and Avenzoar. But of their writings it would be tedious, and is unnecessary to give any particular account.—They were for the most part, indeed, only copiers of Rhazes the Greeks; we are, however, indebted to them for some improvements. They were the first who introduced chemical remedies, though of these they used but few, nor did they make any considerable progress in the chemical art. Anatomy was not in the least improved by them, nor did surgery receive any advancement till the time of Albulcafas, who lived probably in the 14th century. They added a great deal to botany and the materia medica, by the introduction of new drugs, of the aromatic kind especially, from the east, many of which are of considerable use. They also found out the way of making sugar; and by help of that, syrups; which two new materials are of great use in making up compound medicines.

With regard to their practice, in some few particulars they deviated from the Greeks. Their purging medicines were much milder than those formerly in use; and even when they did prefer the old ones, they gave them in a much less dose than formerly. The same reflection may be made concerning their manner of bleeding, which was never to that extreme degree practised by the Greeks. They deviated from Hippocrates, however, in one very trivial circumstance, which produced a violent controversy. The question was, Whether blood in a plentiful course ought to be drawn from the arm of the affected side or the opposite? Hippocrates had directed it to be drawn from the arm of the affected side; but the Arabsians, following some other ancient physicians, ordered it to be drawn from the opposite one. Such was the ignorance of those ages, that the university of Salamanca in Spain made a decree, that no one should dare to let blood but in the contrary arm; and endeavoured to procure an edict from the emperor Charles V to second it.
In consequence of the general decay of learning in the western parts of the world, the Greek writers became totally forgotten, because nobody could read the language; and the Arabians, though mostly copiers from them, enjoyed all the reputation that was due to the others. The Arabian physis was introduced into Europe very early, with the most extravagant applause; and not only this, but other branches of their learning, came into repute in the west; infomuch that in the 11th century, the studies of natural philosophy and the liberal arts were called the studies of the Saracens. This was owing partly to the crusades undertaken against them by the European princes; and partly to the settlement of the Moors in Spain, and the intercourse they and other Arabians had with the Italians. For, long before the time of the crusades, probably in the middle of the 7th century, there were Hebrew, Arabic, and Latin professors of physic settled at Salernum; which place soon grew into such credit, that Charles the Great thought proper to found a college there in the year 803; the only one at that time in Europe.

Confiantine the African flourished here towards the latter end of the 11th century. He was a native of Carthage; but travelled into the east, and spent 30 years in Babylon and Bagdad, by which means he became master of the oriental languages and learning. He returned to Carthage; but being informed of an attempt against his life, made his escape into Apulia, where he was recommended to Robert Guiscard, created in 1060 duke of that country, who made him his secretary. He was reputed to be very well versed in the Greek, as well as the eastern tongues; and seems to have been the first who introduced either the Greek or Arabian physic into Italy. His works, however, contain nothing that is new, or material; though he was then counted a very learned man, and for that age no doubt was so.

From this time to the end of the 15th and beginning of the 16th century, the history of physis furnishes us with no interesting particulars. This period, however, is famous for the introduction of chemistry into medicine, and the description of three new diseases, the sweating sickness, the venereal disease, and the fevers. The sweating sickness began in 1483, in the army of Henry VII. upon his landing at Milford-haven, and spread itself at London from the 21st of September to the end of October. It returned here five times, and always in summer; first in 1483, then in 1506, afterwards in 1517, when it was so violent that it killed many in the space of three hours, so that numbers of the nobility died, and of the commonalty in several towns often the half perished. It appeared the fourth time in 1528, and then proved mortal in six hours; many of the courtiers died of it, and Henry VIII. himself was in danger. In 1529, and only then, it infected the Netherlands and Germany, in which last country it did much mischief. The last return of it was in 1558, and in Westminister it carried off 130 in a day. Dr. Cains describes it as a pestilential contagious fever, of the duration of one natural day; the sweat be reckoned to be only a natural symptom, or crisis of the distemper. It first affected some particular part, attended with inward heat and burning, unquenchable thirst, restlessness, sickness at stomach, but seldom vomiting, headach, delirium, then faintness, and extreme drowines. The pulse was quick and vehement, and the breath short and laborious. Children, poor and old people, were less subject to it. Of others, scarce any escaped the attack, and most of them died. Even by travelling into France or Flanders they did not escape; and what is still more strange, the Scots were said not to be affected: abroad the English only were seized, and foreigners in England were free. At first the physicians were much puzzled how to treat this distemper. The only cure they ever found, however, was to carry on the sweat for a long time; for, if it stopped, it was dangerous or fatal. The way, therefore, was for the patient to lie still, and not expose himself to cold. If nature was not strong enough to force out the sweat, it was necessary to afflict her by art, with cloaths, wine, &c. The violence of the distemper was over in 15 hours; but there was no security for the patient till 24 were passed. In some strong constitutions there was a necessity to repeat the sweating, even to 12 times. The removing out of bed was attended with great danger; some who had not sweated enough fell into very ill fevers.

No flesh meat was to be allowed in all the time of the distemper; nor drink for the first five hours. In the seventh, the distemper increased; in the ninth the delirium came on, and sleep was by all means to be avoided. However terrible this distemper appeared at first, it seldom proved obdurate, if treated in the abovementioned manner.

In the beginning of the 16th century, the famous chemist Paracelsus introduced a new system into medicine, founded on the principles of his art. The Galenical system had prevailed till his time; but the practice had greatly degenerated, and became quite trifling and frivolous. The physicians rejected the use of opium, mercury, and other efficacious remedies. Paracelsus, who made use of thee, had therefore greatly the advantage over them; and now all things relating to medicine were explained on imaginary chemical principles. It was easily conceived that a practice founded in this manner could be no other than the most dangerous quackery. At this time, however, it was necessary; for now a new distemper over-ran the world, and threatened greater destruction than almost all the old ones put together, both by the violence of its symptoms, and its baffling the most powerful remedies at that time known.

This was the venereal disease, which is said to have been imported from the West-Indies by the companions of Christopher Columbus. Its first remarkable appearance was at the siege of Naples in 1494, from whence it was soon after propagated through Europe, Asia, and Africa. The symptoms with which it made the attack at that time were exceedingly violent, much more so than they are at present; and consequently were utterly unconquerable by the Galenists. The quacks and chemists, who boldly ventured upon mercury, though they no doubt destroyed numbers by their excessive use of it, yet showed that a remedy for this terrible distemper was at last found out, and that a proper method of treating it might soon be fallen upon. Shortly after, the West-Indian specific, guarana,
History.

MEDICINE.

Modern.

Cum, was discovered: the materia medica was enriched with that and many other valuable medicines, both from the East and West Indies: which contributed considerably to the improvement of the practice of physic. At this period, as its voyages of considerable duration became more frequent, the scurvy became more frequent distemper, and was of course more accurately described. But probably, from supposed analogy to the contusions which at that time were new in Europe, very erroneous ideas were entertained with regard to its being of an infectious nature. And it is not impossible, that from its being attended alo with ulcers, it was on some occasions confounded with syphilitic complaints.

The revival of learning, which now took place throughout Europe, the appearance of these new distempers, and the natural fondness of mankind for novelty, contributed greatly to promote the advancement of medicine as well as other sciences. While at the same time, the introduction of the art of printing rendered the communication of new opinions as well as new practices so easy a matter, that to enumerate even the names of those who have introduced the most eminent for medical knowledge would be a very tedious task. It was not, however, till 1628 that Dr. William Harvey of London demonstrated and communicated to the public one of the most important discoveries respecting the animal economy, the circulation of the blood. This discovery, more effectually than any reasoning, overturned all the old systems. The whole subject, however, for some time it may have seemed with its being attended to, the conduct of health and disease, on a more solid and rational foundation, has been so much improved by careful attention to the history, and practice of particular diseases, and by endeavours to ascertain from cautious observations the symptoms by which they are to be distinguished, the causes by which they are induced, and the means by which they are to be prevented, alleviated, or cured. On this footing, therefore, we shall endeavour to give a brief account of at least the most important affections to which the human body is subjected, delivering what appears to us to be the best established facts and observations respecting each.

But before entering on the consideration of particular diseases, on what has commonly been styled the practice of medicine, it is necessary to give a general view of the most important functions of the animal body, and of the chief morbid affections to which they are subjected; a branch which has usually been named the Theory or Institutions of Medicine.

THEORY OF MEDICINE, or an Account of the principal Functions of the Animal Body.

While the functions of living animals, but particularly of the human species, are very numerous, the accounts given of these both in a state of health and disease are very various. Without therefore pretending to enumerate the contradictory opinions of different authors, we shall here present the reader with a view of this subject, extracted from one of the latest and best publications respecting it, the Confessio Medica Theorica of Dr. James Gregory, formerly professor of the medical science in the university of Edinburgh, and now professor of practice. In this work, which was first published in 1780, and afterwards reprinted under an enlarged form in 1782, Dr. Gregory introduces his subject by observing, that some functions of the human body relate to itself only, and others to external things. To the latter classes belong those by which physicians are called, to explain and cure the animal functions; to which are to be referred all the natural functions, as well as the power of voluntary motion, by which we become acquainted with the universe, and enjoy this earth. Among the functions which relate to the body, only some have been named vital, such as the circulation of the blood and respiration; because, without the constant continuance of these life cannot subsist. Others, intended for repairing the waste of the system, have been termed the natural functions;
it, and when changed also changes it. There are no doubt, from the general constitution of the
cause, and come quite remote cause, also remote causes, which physicians have been
found. A disease therefore may happen to any part of the
cuise.

57

Diftribution
of
diseases
into
simple
and
complex.

We have examples of the most simple kinds of
diseases, in the rupture or other injury of any of the
corporeal organs, by which means they become les
fit for performing their offices; or, though the organs
themselves should remain found, if the solids or fluids
have degenerated from a healthy state; or if, having
lost their proper qualities, they have acquired others
of a different, perhaps of a noxious nature; or lastly,
if the moving powers shall become too weak or too
strong, or direct their force in a way contrary to what
nature requires.

The most simple diseases are either productive of
others, or of symptoms, by which alone they become
known to us. Every thing in which a sick per-
son is observed to differ from one in health is called
a symptom; and the most remarkable of these symp-
toms, and which most constantly appear, define and
constitute the disease.

The causes of diseases are various; often obscure,
and sometimes totally unknown. The most full and
perfect proximate cause is that which, when pre-
fixed, produces a disease, when taken away removes
it, and when changed also changes it. There are also
remote causes, which physicians have been ac-
customed to divide into the predisposing and exciting
ones. The former are those which only render the
body fit for a disease, or which put it into such a
state that it will readily receive one. The exciting
cause is that which immediately produces the disease
in a body already disposed to receive it.

The predisposing cause is always inherent in the
body itself, though perhaps it originally came from
without; but the exciting cause may either come from
within or from without.

From the combined action of the predisposing and
exciting causes comes the proximate cause, which nei-
ther of the two taken singly is able to produce; seeing
neither every exciting cause will produce a disease in
every person, nor will every one predisposed to a
disease fall into it without an exciting cause. A
body predisposed to disease therefore has already
declined somewhat from a state of perfect health,
although none of its functions are impeded in such a
manner that we can truly say the person is diseased.

Yet, sometimes the predisposing cause, by continuing
long, may arrive at such an height, that it alone
without the addition of any exciting cause, may pro-
duce a real disease. Of this we have examples in the

doility of the simple solids, the mobility of the
living solids, and in plague. The exciting cause
also, though it should not be able immediately to
bring on a disease; yet if it continues long, will by
degrees destroy the strongest constitution, and render
it liable to various diseases; because it either
produces a predisposing cause, or is converted into it,
so that the same thing may sometimes be an exciting
cause, sometimes a predisposing one; of which the
inclemencies of the weather, sloth, luxury, &c. are
examples.

Diseases, however, seem undoubtedly to have their
origin from the very constitution of the animal
machine; and hence many diseases are common to every
body when a proper exciting cause occurs, though
some people are much more liable to certain diseases
than others. Some are hereditary; for as healthy pa-
rents naturally produce healthy children, so diseased
parents as naturally produce a diseased offspring.
Some of these diseases appear in the earliest infancy; others
occur equally at all ages; nor are there wanting some
which lurk unsuspected even to the latest old age, at
last breaking out with the utmost violence on a proper
occasion. Some diseases are born with us, even though
they have no proper foundation in our constitution, as
when a focus receives some hurt by an injury done to
the mother; while others, neither born with us nor
having any foundation in the constitution, are sucked
in with the nurse's milk. Many diseases accompany
the different stages of life; and hence some are proper
to infancy, youth, and old age. Some also are proper
to each of the sexes; especially the weaker sex, pro-
ceeding, no doubt, from the general constitution of the
body, but particularly from the state of the parts sub-
vient to generation. Hence the diseases peculiar
to virgins, to menstruating women, to women with
child, to lying-in-women, to nurses, and to old
women. The climate itself, under which people live,
produces some diseases; and every climate hath an ten-
dency to produce a particular disease, either from its
excess of heat or cold, or from the mutability of the
weather. An immense number of diseases may be
produced by impure air, or such as is loaded with pu-
trid, marshy, and other noxious vapours. The same
thing may happen likewise from corrupted aliment,
whether meat or drink; though even the best and most
nutritious aliment will hurt if taken in too great quan-
tity; not to mention poisons, which are endowed with
such pernicious qualities, that even when taken in a
very small quantity they produce the most grievous
diseases, or perhaps even death itself. Lastly, from
innumerable accidents and dangers to which mankind
are exposed, they frequently come off with broken
limbs, wounds, and contusions, sometimes quite incur-
able; and these misfortunes, though proceeding
from an external cause at first, often terminate in internal
diseases.

Hitherto we have mentioned only the dangers which
come from without; but those are not les, nor fewer
in number, which come from within. At every breath,
man pours forth a deadly poison both to himself and
others. Neither are the effluvia of the lungs alone hurt-
ful; there flows out from every pore of the body a
molt intolerable and poisonous matter, perhaps of a ptre-
History.

Medicine.

Origin of Diseases.

Diseases from passions of the mind.

Diseases from parts of the body.

Flo medicatric nature.

PhyGicians therefore have a twofold error to avoid, namely, either despising the powers of natural cure too much, or putting too great confidence in them; because in many diseases these efforts are either too feeble or too violent, insomuch that sometimes they are more to be dreaded than even the disease itself. So far therefore it is from being the duty of a physician always to follow the footsteps of Nature, that it is often necessary for him to take a directly contrary course, and oppose her efforts with all his might.

After this general view of the functions of the animal body, of the nature and causes of diseases, and of the powers by which these are to be combated, Dr. Gregory proceeds to treat of the solid materials of which the body is formed. He tells us, that the animal solid, when chemically examined, yields earth, oil, salt, water, phlogiston or inflammable air, and a great quantity of mephitic air. These elements are found in various proportions in the different parts of the body; and hence these parts are endowed with very different mechanical powers, from the hardest and most solid bone to the soft and almost fluid retina. Nay, it is principally in this difference of proportion between the quantities of the different elements, that the difference between the solid and fluid parts of the animal consists, the former having much more earth and less water in their composition than the latter. The cohesion, he thinks, is owing to something like a chemical attraction of the elements for one another; and its cause is neither to be fought for in the gluten, fixed air, nor earth. This attraction, however, is not so strong but that even during life the body tends to diffusion; and immediately after death purifcation commences, provided only there be as much moisture in it as will allow an intestinal motion to go on. The greater the beat, the sooner does purifcation take place, and with the greater rapidity does it proceed; the mephitic air flies off, and together with it certain saline particles; after which, the cohesion of the body being totally destroyed, the whole falls into a putrid colliquing, of which at length all the volatile parts being deliquated, nothing but the earth is left behind.

This analysis, he owns, is far from being perfect; because nobody has ever been able, by combining the chemical principles of flesh, to reproduce a compound any thing like what the flesh originally was; but, however imperfect the analysis may be, it fell has the advantage of showing in some measure the nature and causes of certain diseases, and thus leads physicians to the knowledge of proper remedies.

The solid parts are fitted for the purposes of life in Qualities three several ways; namely, by their cohesion, their of the animal fluids.

The variations in flexibility, within certain limits,
regard to the health: though sometimes, by exceed-
ing the proper bounds, they may bring on real and
very dangerous diseases; and this either by an excess or
diminution of their cohesion, flexibility, or elaticity.
By augmenting the cohesion, the elaticity is also for
the most part augmented, but the flexibility dimin-
ished; by diminishing the cohesion, the flexibil-
ity becomes greater, but the elaticity is diminished.

The causes of these affections, though various, may
be reduced to the following heads. Either the
chemical composition of the matter itself is changed: or,
the composition remaining the same, the particles of
the solid may be so disposed, that they shall more or less
strongly attract one another. As to the composition,
almost all the elements may exist in the body in an un-
due proportion, and thus each contributes its share to
the general disorder. But of many of these things we
know very little: only it is apparent, that the fluid
parts, which consist chiefly of water, and the solid,
which are made up of various elements are often in
very different proportions; the more water, the less is
the cohesion or elaticity, but the greater the flexibil-
ity; and the reverse happens, if the solid or earthly
part predominates.

The remote causes of these different states, whether
predispoin or exciting, are various. In the first
place, idiosyncrasy itself, or the innate constitution of
the body, contributes very much to the above-
mentioned effects. Some have naturally a much harder
and drier temperament of the body than others; men,
for instance, more than women; which can with the
utmost difficulty, indeed scarce by any means what-
ever, admit of an alteration. The same thing takes
place at different periods of life; for, from first to last,
the human body becomes always drier and more rigid.

Much also depends on the diet made use of, which
always produces a corresponding state of the solids in
proportion to its being more or less watery. Whether
are there wanting strong reasons for believing, that not
only the habit of the body, but even the disposition
of the mind, depends very much on the diet we
make use of. The good or bad complexion of the aile-
ment, also the application of the nourishment prepared
from it, and likewise the state of the air with regard to
moisture or dryness, affects the temperament of the
body not a little; and hence those who inhabit
mountains or dry countries, are very different from
the inhabitants of low marshy places. Lastly, the
manner of living contributes somewhat to this effect:
Exercize prefered, the moisture of the body, if in too great quantity; on the contrary, little
and laziness produce an effect directly opposite, and
cause a redundancy of humour.

By the chemical composition of the solid parts out of the question altogether, they may be affected
by many other causes. The condensation, for
instance, or compaction of the particles, whether by
mechanical causes or by means of cold or heat, makes
a considerable alteration in the strength and elaticity
of every solid body. How much mechanical pressure
contributes to this may be understood from the expe-
riments of Sir Clifton Wintringham; and hence also
are we to deduce the reason of many facts of the high-
ly importance in the animal economy; namely, the
growth, state, decrease of the body; its rigidity
daily increasing; and at last the unavoidable death
incident to old age from a continuance of the same
causes.

Perhaps the different density of the solids is in some
measure owing to Nature herself; but it seems rather to
depend more on the powers of exercise or inactivity in
changing the state of the solids, the effects of which
on the body, whether good or bad, may hence be eas-
ily understood.

Heat relaxes and expands all bodies, but cold ren-
ders them more dense and hard; the effects of which
on the human body are well known to most people.
Though the body is found to preserve a certain de-
gree of heat almost in every situation, it is impossible
but that its surface must be affected by the tempera-
ture of the ambient atmosphere: and we have not the
least reason to doubt that every part of the body may
thus feel the effects of that temperature. What a dif-
ference is there between one who, exposed to the south-
wind, becomes lazy and languid, scarce able to
drag along his limbs; and one who feels the force of
the cold north-wind, which renders the whole body alert,
strong, and fit for action?

That these various causes, each of which is capable
of affecting the constitution of the body when taken
singly, will produce much greater effects when com-
bined, is sufficiently evident. The experiments of
Bryan Robinson, the effects of the warm bath, and
indeed daily experience, show it fully.

It is not yet certainly known what is the ultimate
structure of the minute parts of the animal solid;
whether it consists of straight fibres or threads, whose
length is very considerable in proportion to their
breadth, variously interwoven with one another, as
Boerhaave supposes; or of spiral ones, admirably con-
voluted and interwoven with one another, as some mi-
croscopical experiments seem to show, or whether the
cellular texture be formed of fibres and lamina, and
from thence the greatest part of the body, as the
celebrated Flahert had endeavoured to prove.

The cellular texture is disposed throughout the whole body: it surrounds and connects the fibres
themselves, which are sufficiently apparent in many of
the organs; and slightly joins the different parts which
ought to have any kind of motion upon the neighbour-
ing ones. By a condensation of the same substance
also, the strongest, and what seem the thickest, mem-
branes are joined; the most simple of which, being
accurately examined, discover the cellular structure.
This cellular substance sometimes increases to a surpris-
ing degree, and all parts formed of it, membranes,
veils, &c. especially by a gentle dilatation; for a
sudden and violent dilatation either breaks it alto-
gether, or renders it thinner. Sometimes also it grows
between neighbouring parts, and joins those which nature
has left free. Preternatural concretions of this kind
are often observed after an inflammation of the
lungs or of the abdominal visceræ; and these new
membranes are found to be truly cellular. This sub-
stance, when cut, or by any other means divided, grows
together of its own accord; but if, by reason of very
great inflammation and suppuration, a large portion of
the cellular texture has been destroyed, it is never
again renewed, and an ugly fear is left. It is even

Causes affecting the solids.
Theory.

Medical

said, that this substance, in certain cases, is capable of joining the parts either of the same body with one another, or of a foreign body with them: and upon this, if on any foundation, rests the art of Falloccitus, and that of transplanting teeth, lately so much talked of.

The cellular texture is in some places merely a kind of net-work, in others filled with fat. Wherever too great bulk or compulsion would have been inconvenient or dangerous, as in the head, lungs, eyes, eyebrows, penis, scrotum, &c. there it collects no fat, but is lax, and purely reticulated; but between the muscles of the body and limbs below the skin, in the abdomen, especially in the omentum and about the kidneys, very much fat is seereted and collected.

Animal fat. The fat is augmented by the use of much animal food, or of any other that is oily and nourishing, provided the digestion be good; by the use of strung drink, especially mul-tiquor; by much rest of body and mind, much sleep and inactivity, calibration, cold, repeated bloodletting, and in general by whatever diminishes the vital and animal powers. Much, however, depends on the constitution of the body itself; nor is it possible to fatten a human creature at pleasure like an ox. A certain degree of fatness, according to the age of the person, is a sign and effect of good health; but when too great, it becomes a disease of itself, and the cause of other diseases. It may always be very certainly removed by strong exercise, little sleep, and a spare and solid diet. The fat always makes up a considerable part of the bulk of the body, and very often by far the greatest part. Its use seems to be to make the motion of the body more easy and free by lessening the friction of the moving parts, and thus preventing the abrasion of the folds, which would otherwise happen. It is also of use to hinder the parts from growing together, which sometimes happens, when by an ulcer or other accident a part of the cellular texture containing the fat is destroyed. Besides all this, the fat contributes not a little to the beauty of the body, by filling up the large interfaces between the muscles, which would otherwise give the person a deformed and shocking appearance. It is thought to be nutritious, when absorbed from its cells by the blood; but of this we have no great certainty. It seems to have some power of defending from the cold, seeing nature has bestowed it in very great quantity on those animals which inhabit the colder regions.

Those parts of the body which enjoy sense and motility, are called living or vital folds. They are the lids, brain, cerebellum, medulla oblongata, spinal marrow, the nerves arising from these and diffused throughout the whole body, and which are distributed through the various organs of sense and through the muscles, and lastly the muscles themselves. Sensation is much more general than motility, as being common to all the parts already mentioned. Motility is proper to the muscular fibres alone; where there is sensation, therefore, we may believe that there are nerves; and wherever there is motility, we may believe that muscular fibres exist. Nay, even motility itself seems to originate from the connection which the muscles have with the nerves; for soon after the nerves are compressed, or tied, or cut, the muscles to which they are distributed lose their faculties; which happens, too, when the brain itself, or even only the nerves, is affected. Some reckon that the muscles are produced from the nerves, and of the same kind of matter. Both indeed have a similar structure, as being fibrous and of a white colour; for the muscles when well freed from the blood, of which they contain a great abundance, are of this colour as well as the nerves; neither can the nervous fibres by any means be distinguished from the muscular fibres themselves. Both have also sensitiveness; and both stimulants and sedatives act in the same manner, whether they be applied to the muscles themselves or to the nerves.

It is difficult for us to discover the origin of many parts of the body, or to ascertain whether they are produced all at the same time or one after another; yet it must be owned, that many of the muscular parts are obsered to have attained a remarkable degree of strength, while the brain is still soft and almost fluid; and that the action of these muscular parts is required for the action and growth of the brain. The muscles are also of a much firmer texture than the nerves; and enjoy a power of their own, namely, that of irritability, of which the nerves never participate. Of necessity, therefore, either the muscles must be constructed of some kind of matter different from that of the nerves; or if both are made of the same materials, their organization must be exceedingly different. But if the substance of the muscles and nerves be totally different, we may safely be convinced that much of the one is always mixed with the other; for it is impossible to prick a muscle even with the smallest needle, without wounding or lacerating many nervous fibres at the same time. Since, therefore, there is such a close connection between the muscles and nerves both as to their functions and structure, they are deferently reckoned by physiologists to be parts of the same genus, called the genus nervous, or nervous fyllem.

After treating of sense in general, Dr. Gregory proceeds to consider particularly each of the senses both external and internal. He begins with the sense of feeling, as being the most simple, and at the same time in common to every part of the nervous syllem. In some places, however, it is much more acute than in others; in the skin, for instance,
Medicine.

Pain.

From the sense of feeling, as well as all the other senses, either pain or pleasure may arise; nay, to this sense we commonly refer both pain and almost all other troublesome sensations, tho' in truth pain may arise from every vehement sensation. It is brought on by any great force applied to the sentient part; whether this force comes from within or without. Whatever, therefore, pricks, cuts, lacerates, diffuses bruises, stings, gnaws, burns, or in any manner of way stimulates, may create pain. Hence it is so frequently conjoined with so many diseases, and is often more intolerable even than the disease itself. A moderate degree of pain stimulates the affected part, and by degrees the whole body; produces a greater flux of blood and nervous power to the part affected; and often stimulates to such motions as are both necessary and healthful. Hence, pain is sometimes to be reckoned among those things which guard our life. When very violent, however, it produces too great irritation, inflammation and its consequences, fever, and all those evils which flow from too great force of the circulation; it disorders the whole nervous system, and produces spasms, watching, convulsions, delirium, debility, and fainting. Neither the mind nor body can long bear very vehement pain; and indeed Nature has appointed certain limits, beyond which the will not permit pain to be carried, without bringing on delirium, convulsions, syncope, or even death, to rescue the miserable sufferer from its torments.

Long continued pain, even though in a more gentle degree, often brings on debility, torpor, palsy, and rigidity of the affected part. But if not too violent, not accompanied with fever, fevers, or anxiety, it sometimes seems to contribute to the clearness and sweetness of the judgment, as some people tell us who have suffered on this account. Moreover, when the vital power may happen at that time, because the vital powers, unable to perform their functions, cannot make the blood circulate. But what kind of anxiety this is, the other signs of approaching death shows very evidently. Moreover, in the time of sleep, anxiety may arise from the same cause: hence frightful dreams, which frequently disturb our repose with fearful phantasms.

Itching. An uneasy sensation, with a desire of scratch. Itching is a sensation, which is often most uncomfortable, though it seems to be more akin to pleasure than to pain. As pain proceeds from too great an irritation, either chemical or mechanical, so does itching proceed from a flight one. Titillation, or friction, of a woolen shirt,

Anxiety.

Anxiety is another disagreeable sensation, quite different from pain, as being more obtuse and less capable of being referred to any particular part, though frequently more intolerable than any pain. But we must take care to distinguish between this anxiety of which we treat in a medical sense, and that which is spoken of in common discourse. The latter does not at all depend on the state of the body, but belongs entirely to the mind; and arises from a sense of danger, or a foreboding of any misfortune. The former is truly corporeal, and derives, no less than pain, its origin from a certain state of the body. Notwithstanding this difference, however, it is very possible for both these kinds of anxiety to be present at the same time, or for the one to be the cause of the other. A very great bodily anxiety will strike fear and despondency into the most resolute mind; and mental anxiety, on the contrary, if very violent and long-continued, may induce the former, by destroying the powers of the body, especially those which promote the circulation of the blood.

Anxiety, in the medical sense of the word, arises in the first place from every cause disturbing or impeding the motion of the blood through the heart and large vessels near it. Anxiety, therefore, may arise from many diseases of the heart and its vessels, such as its enlargement, too great contraction, inflammation, polypus, palpitation, syncope, inflammation, debility, and also some affections of the mind. It is likewise produced by every difficulty of breathing, from whatever cause it may arise; because then the blood passes freely through the lungs: anxiety of this kind is felt deep in the breast. It is said also to arise from the difficult passage of the blood through the liver or other abdominal viscera.

A certain kind of anxiety is very common and troublesome to hypochondriacal people; and arises from the stomach and intestines being either loaded with indigestion and corrupted food, or diffused with air produced by fermentation and extracted from the alimentary parts. By such a load, or distension, the stomach, which is a very delicate organ, becomes greatly affected. Besides, the free interval of the diaphragm is thus hindered, and respiration obstructed. Anxiety of this kind is usually very much and suddenly relieved by the expulsion of the air; by which, as well as by other signs of a bad digestion, it is easily known. In these cases the anxiety is usually, though with little accuracy, referred to the stomach.

Anxiety also frequently accompanies fevers of every kind, sometimes in a greater and sometimes in a lesser degree. In this case it arises as well from the general debility as from the blood being driven from the surface of the body and accumulated in the large vessels; as in the beginning of an intermittent fever. Or it may arise from an affection of the stomach when overloaded with crude, corrupted aliment; or diffused and nauseated with too much drink, especially medicated drink. As the fever increases, the anxiety of the patient becomes greater and greater; remarkably so, according to the testimony of physicians, either immediately before the crisis or on the night preceding it; as before the breaking out of exanthemata, hemorhagias, fevers, or diarrhoeas, which sometimes remove fevers. The patient feels likewise an anxiety from the striking in of any eruption or critical metaffas. This sensation also accompanies fevers and most other diseases, when the vital power is exhausted, and death approaches, of which it is the forerunner and the sign. It happens at that time, because the vital powers, unable to perform their functions, cannot make the blood circulate. But what kind of anxiety this is, the other signs of approaching death shows very evidently. Moreover, in the time of sleep, anxiety may arise from the same cause: hence frightful dreams, which frequently disturb our repose with fearful phantasms.

Itching. An uneasy sensation, with a desire of scratch. Itching is a sensation, which is often most uncomfortable, though it seems to be more akin to pleasure than to pain. As pain proceeds from too great an irritation, either chemical or mechanical, so does itching proceed from a flight one. Titillation, or friction, of a woolen shirt,

Theory.

External senses.

Sens.
History.

MEDICINE.

External

Senses.

for instance, upon the skin of a person unaccustomed to it, and of a delicate constitution, excites itching; as do also many acrid fossils, vegetables, and animals. Hence an itching is the first sensation after the application of cantharides, although the same, when augmented, becomes painful. The same effect is produced by any thing acrid thrown out upon the skin; as in exanthematic fevers, the disease called the itch, &c. Lice, worms, especially acarides, irritating either the skin or the intestines, excite a troublesome itching. Certain species of internal itching excites people to many necessary actions both in a diseased and healthy state; such as the excresence of the faces and urine, coughing, freezing, and the like.

Too acute a sensation over the whole body is very rarely if ever observed. In a particular part the sense of feeling is often more acute than it ought to be, either from the cuticle itself being too thin and soft, or being removed; or from the part itself being inflamed, or exposed to too great heat. It becomes obtuse, or is even quite destroyed over the whole body, or in great part of it, from various affections of the brain and nerves; as when they are wounded, compressed, or defective in vital power. This is called anarthria, and sometimes accompanies palsy.

This sense may be deficient in a particular part, either from the nerve being defused, or from its being compressed or wounded, or from the part itself being exposed to too great a degree of cold;—or from the scarified skin which covers it being vitiated, either becoming too thick or hard, by the handling of too rough, or hard, or hot bodies, as is the cafe with glass-makers and smiths; or from the elevation of the cuticle from the subjacent cutis, or true skin itself; by the interposition of blood, serum, or pus; or from the cutis being macerated, relaxed, or become torpid, which sometimes happens to hydropic persons; or lastly, from the whole organ being corrupted by gangrene, burning, cold, or contusion. This sense is very rarely depraved, unless perhaps in the case of delirium, when all the functions of the brain are disturbed in a surprizing manner.

The sense next to be considered is that of taste, the principal organ of which is the tongue; the nearer the tip of it, the more acute is the sense, and the nearer the glosis so much the more obtuse. It must be owned, however, that some kind of acrid substances, the taste of which is scarce perceived upon the tip of the tongue, excite a most vehement sensation about its root; or even in the throat itself. The tongue is endowed with many large and beautiful nervous papilles, which seem to be the chief seat of this sense, and in the act of tasting are elevated and erected, in order to give the more acute sensation.

Nothing can be tasted which is not soluble in the saliva, that, being applied in a fluid form, it may pervade the involucra of the tongue, and affect its nervous pulp; and hence insoluble earths are quite insipid. Neither is it sufficient for a body to be soluble that it may be tasted; it must also have something in it acrid, or at least acrid, in order to vitiate the nervous substance; and hence, whatever has less salt than the saliva is totally insipid.

The taste is rarely found to be too acute, unless through a fault in the epidermis which covers the tongue. If this be removed or wounded, or covered with ulcers, aphthous, &c. then the taste, becoming too acute, is painful; or sometimes no other sensation than that of pain is felt. It may be impaired, as well as the sense of feeling, from various diseases of the brain and nerves; of which, however, the insipacies are but rare. In some people it is much more dull than in others; and in such the sense of smelling is usually deficient also. The taste is most commonly deficient on account of the want of saliva; for a dry tongue cannot perceive any taste: hence this sense is very dull in many diseases, especially in fevers, catarrhus, &c. as well on account of the defect of saliva as of appetite, which is of so much service in a state of health; or by reason of the tongue being covered with a viscid mucus.

The taste is frequently depraved; when, for example, we have a perception of taste without the application of any thing to the tongue: or, if any thing be applied to it, when we perceive a taste different from what it ought to be. This happens for the most part from a vitiated condition of the saliva, which is itself tasted in the mouth. Hence we may perceive a sweet, saline, bitter, putrid, or rancid taste, according to the state of the saliva: which may be corrupted either from the general vitiated condition of the mass of humours, or the glands which secrete it; of the mouth itself; or even of the stomach, the vapours and eruptions of which rise into the mouth, especially when the stomach is diseased.

Besides the faults of the saliva, however, the taste may be vitiated from other causes; as, for instance, the condition of the nervous papilles. This, however, is as yet but little known to us; for the taste is sometimes plainly vitiated when at the same time the saliva appears quite insipid when tasted by other people.

Physicians, in almost every disease, but especially in fevers, inquire into the state of the tongue; not, indeed, without the greatest reason: for from this they can judge of the condition of the stomach; of the thrill, or rather the occasion the patient has for drink, when, on account of his delirium or stupor, he neither feels his thirst nor is able to call for drink. And, lastly, from an inspection of the tongue, physicians endeavour to form some judgement concerning the nature, increase, and remission of the fever.

After the sense of taste, Dr Gregory next treats of smell, that of smell. Its seat is in that very soft and delicate membrane, filled with nerves and blood-vessels, which covers the internal parts of the nose, and the various sinuses and cavities proceeding from thence. This sense is more acute about the middle of the septum, and the ala frontalis, where the membrane is thicker and fitter, than in the deeper cavities, where the membrane is thinner, less nervous, and less filled with blood-vessels; although even these do not seem to be altogether destitute of the sense of smelling.

As by our taste we judge of the soluble parts of bodies, so by our smell we judge of those very volatile and subtle parts which fly off into the air; and like the organ of taste, that of smell is kepemnoit, that it may have the more exquisite sensation, partly by its proper mucus, and partly by the tears which descend from the eyes.
When the head is otherwise affected with inflammation, relaxation, or too great tension, by which it is impossible but the nerves, which constitute a great part of it, must be vitiated. It is evident also, that whatever obstructs the free entrance of the air into the nostrils, or impedes its passage through them, must prove detrimental to the sense of smelling.

The sense of hearing is more frequently vitiated than any other of the senses, as having a more delicate organ, and one composed of many and very small parts, of which an account is given under the article Anatomy. It frequently becomes too acute; either from the general habit of the body being too irritate, such as soon happens to hysterical and lying-in women; or from too great a sensibility of the brain itself, which is not unfrequently observed in fevers, as well as phrenitis, and sometimes in the true mania; or it may be from a disease of the ear itself, as when it is affected with inflammation, pain, or too great tension. It may be rendered dull, or even be altogether destroyed, so that the person shall become totally deaf from the same causes acting with different degrees of force. This happens especially from the want of the external ear; or from the meatus auditory being stopped up with mucus, wax, or other matters; or from the sides of the canal growing together, as sometimes happens after suppuration or the small-pox; or by the membrane of the tympanum becoming rigid or relaxed, or being eroded or ruptured; or the tympanum itself, or the Eustachian tube, may from certain causes be obliterated; or some of the little bones or membranes, or some of the muscles of the labyrinth itself, may be affected with concretion, spasm, palsy, or torpor; or lastly, it may happen from diseases from the brain and nerves, all the organs of hearing remaining sound. Hence deafness is often a nervous disease, coming suddenly on, and going off of its own accord. Hence also it is common in old people, all of whose solid parts are too rigid, while their nervous parts have too little sensibility.

Perfons labouring under fevers, especially of the typhous kind, often become deaf. When this comes on along with other signs of an oppressed brain, and a great prostration of strength, it may be a very bad sign; but for the most part it is a very good one, even though accompanied with some degree of torpor or sleepiness.

A very common disease in the sense of hearing is when certain sounds, like those of a drum, a bell, the falling of water, &c. are heard without any tremor in the air, or without a found person's hearing anything. This disease is called tinnitus aurium, of which various kinds have been observed. For the most part it is a very light transient disorder; but sometimes it is most obdurate, long-continued, and troublesome. It sometimes arises from the flighted caue, such as any thing partially stopping up the meatus auditorius or Eustachian tube itself, so that access is in part denied to the air; whence it happens that the latter strikes the membrane of the tympanum, or perhaps the interior parts, unequally, and with too much force. Hence bonsi, a kind of tinnitus, are heard even by the most healthy when they yawn.

A much more frequent and troublesome species of tinnitus accompanies many diseases both of the febile and nervous kind. This is occasioned by increased impetus of the blood towards the head, with an increase of sensibility in the nervous system itself, so that the very beatings of the arteries are heard; and partly from the increased sensation and mobility of the nerves and muscles of the labyrinth; whence it happens, that the parts which ought to be at rest until excited by the tremor of the air, begin to move of their own accord, and impart their motion to other parts which are already in a morbid state of too great sensibility.

A tinnitus sometimes arises from any vehement affectation of the mind; sometimes from a disorder in the stomach; sometimes from a rheumatic disorder affecting the ears and head; or from a catarrh, which commonly affects the tube. Sometimes, however, the tinnitus alone affects the patient; and even this is a disease of no small consequence. These various causes, however, both of this and other disorders of the hearing, are often very difficult to be distinguished, as well on account of the inaccessible situation of the organ, as on account of the little knowledge we have of its action. But from whatever cause it arises, both this and the other various affections of the hearing can neither be cured certainly nor easily.

Concerning the nature of the sense of sight, the sight reader may consult the articles Anatomy and Office. Of this sense some light disorders, or rather varieties, are often observed. These persons are called short-sighted who cannot see distinctly unless the object be very near them. This disorder arises from too great a refraction of the rays by reason of their being too soon collected into a focus by the crystalline lens, and diverging again before they fall upon the retina, by which means they make an indistinct picture upon it. The most usual cause is too great a convexity of the eye or some of its humours, as too prominent a cornea. It is a disorder common to young people, which is sometimes removed when they grow older. As soon as the first approaches of short-sightedness are observed, it is supposed it may be obviated by the person's accu-
MEDICINE.

The sight is liable to many and grievous disorders. It is sharpened beyond measure, so that the person either perceives nothing distinctly, or with great pain, from the same causes that induce a similar disorder in the other senses; namely, excessive sensibility in the general habit of body; or a particular state of the brain common in phrenitis, or even in those afflicted with fevers arising from inflammation or too great excitement; though more frequently from the condition of the eye itself, one becomes unable to bear the light. The inflammation of the tunica adventitia, and the forepart of the sclerotica, is communicated to the backparts of it, and from thence to the choroides and retina itself. Hence the light becomes intolerable, and vision is attended with pain and great irradiation, sometimes inducing or augmenting a delirium.

The sense of seeing is made dull, or even totally abolished, by age; the aqueous humour not being supplied in sufficient quantity, and the cornea and lens, or the vitreous humour, becoming thickened or decayed. It may likewise happen from the cornea becoming dry and opaque; which is too often imputed to the languid motion of the blood, and to great numbers of the small vessels being obstructed or having their sides concreted—or from the crystalline lens becoming yellow like amber, and the retina itself less sensible, for old age diminishes every sensation. It is totally abolished by injuries of the brain, the optic nerve, or the retina, even though the structure of the organ should remain found. This disease is called an amnopus; and is easily known by the dilatation and immobility of the pupil, the humour of the eye remaining clear. It is commonly owing to congestion of blood; and sometimes, where no congestion of blood can be shown, to mere torpor of the nerves. If it be only a torpor of part of the retina, we see black spots in those things at which we look; or flies seem to pass before our eyes, a very bad sign in fevers, and almost always mortal. The sight is abolished also by the obscurity or opacity of any of the parts through which the rays ought to pass and be refracted; as if the cornea lost its transparency by being covered with spots; or the aqueous humours become corrupted with blood, serous, or pus; or the lens (which often happens and which is called a cataara) becomes of a grey or brown colour, or the vitreous humour be in like manner corrupted; or lastly, when all the humours being disolved, confused, and mixed together, by inflammation and suppuration, either do not suffer the light to pass at all, or to pass imperfectly and unequally; whence either no image is formed on the retina, or it appears obscure, distorted, imperfect, and ill-coloured.

The sight is also depraved, when things appear to it of a colour different from their own, or even in another situation and of another shape than they ought to have. This happens from the humours being tinctured with any unusual colour, as is said to happen in some instances of jaundice; or from an extravasation and mixture of the blood with the aqueous humour. A surprising depravation also, or constant and perpetual defect of vision, is not uncommonly observed in men otherwise very healthy, and who see quite clearly; namely, that they cannot distinguish certain colours, green, for example, from red. Another deformity of vision is, when, without any light being admitted to the eyes, sparks, small drops of a flame or golden colour, and various other colours, are observed to float before us. This is generally a very frightful and transient disorder, common to those whose constitutions are very irritable; and arises from the flight impulses, as it would seem, on the retina, by the vessels bearing more vehemently than usual. A foreign circle is observed by pressing the eye with the finger after the eyelids are shut. The same reason, perhaps, may be given for those sparks which are seen by persons labouring under the falling sickness, and intermingled to the size of an immense and luminous beam before they fall down in convulsions. A similar beam those who have recovered from hanging or drowning testify that they have observed: for by reason of the respiration being suppressed, the vessels of the head swell and compress the whole brain and nervous parts of the head. Sparks of the same kind, and those too of no good omen, are observed in patients labouring under a fever, when phrenitis or fierce delirium is at hand: and likewise in those who are threatened with paralysis or epilepsy. A different but false perception, namely, of visible things which do not exist is to be imputed to some injury of the brain, to madness or a delirium, not to any defect of the eye.

A very frequent defect of vision remains to be mentioned; namely, squinting. A person is said to squint who has the axes of the eyes more oblique than usual, and directed to different points. Hence a great deformity, and often an imperfect and confused vision by which the objects are sometimes seen double. It is an evil for the most part born with the person, and often corrected by those attempts which an infant makes to see more pleasantly and distinctly; and this even without being conscious of its own defects. It is also easily learned, especially in infants, even without their own knowledge, by that kind of imitation which has a great influence over the human race, especially in their tender years. It is by no means, however, so easily unlearned.

Squinting is frequently occasioned by a pain, pull, or spasm.
rigidity, &c. of the muscles which manœuvre the eye; by epilepsy; by certain dilatations of the head, the hydrocephalus especially; or by any great injury done to the head. Sometimes, though very rarely, it comes on suddenly without any known cause. It is very probable, however, that squinting often arises from a fault of the retina, when their central points, for instance, and those similarly placed with respect to the centre, do not agree. In this case there must be a contortion of the eye, that the object may not be seen double. This seems also to be the reason why squinting is horribly increased when the person brings the object near his eye in order to view it more perfectly. Or if the central point of either, or both, of the retinas be insensible, or nearly so, it is necessary for the person to distort his eyes that he may have any distinct vision of objects. If the optic nerves had not entered the retina obliquely, but passed directly through its center, we would all either have squinted or seen double.

Physicians have referred to the sense of vision that most troublesome sensation which we call a vertigo; though it seems rather to belong to that of feeling, or of consciousness; for in many instances the disorder is not removed either in the dark or by shutting the eyelids. The vertigo takes place when external objects really at rest seem to reel, to whirl round, to tremble, or to move in any manner of way. If the disorder be very violent, the person is neither able to see, on account of a dimness of sight; nor can he stand, as the powers fail which ought to govern the limbs. A nausia also usually accompanies the vertigo, and the one generally produces the other.

This disorder is observed to be both the symptom and forerunner of some dangerous diseases; such as apoplexy, epilepsy, hysteria; hemorrhages from the nose and other parts; supplications of the meninges; plethora; fevers, as well such as are accompanied with debility as those in which there is an increased impetus of the blood towards the head. An injury done to the head also, but rarely one done to the eyes, unless in so far as it affects the whole head, brings on a vertigo. A vertigo may be likewise produced by a very great and sudden loss of blood or other fluid; by debility; syncope; various diseases of the alimentary canal, of the stomach especially; poisons admitted into the body, particularly of the narcotic kind, as opium, wine, &c. and hence vertigo is a symptom of every kind of drunkenness. Various motions also, either of the head or the whole body, being tossed in a ship, especially if the vessel be small and the sea runs high, produce a vertigo. In these and similar examples, the unusual and incoordinate motions of the blood are communicated to the nervous parts which are in the head; or else being affected by sympathies from the neighboring parts, produce a confused sensation as if of a rotary motion. Nay, it is often produced from an affection of the mind itself, as from beholding any thing turned swiftly round, or a great cataract, or looking down a precipice, or even by intense thought without looking at anything.

Though a vertigo be for the most part a symptom and concomitant of other diseases, yet it is sometimes a primary disease, returning at intervals, increasing gradually, and equally impeding and destroying the functions of the body and mind.

After having treated of the external senses, doctor Gregory next proceeds to consider those properly called internal; which are, the memory, the imagination, and the judgment. The first is lightened, disturbed, or even totally destroyed, in many diseases, especially those which affect the brain; as the apoplexy, palsy, internal tumors of the head, external violence applied, fevers, especially those in which there is an increased motion of the blood towards the head, or where the brain is any other way much affected. It is very rarely, however, deprived in such a manner that ideas are not represented to the mind in their proper order; or if at any time such a disorder occurs, it is considered rather as a disorder of the imagination, or as a delirium, than a failure of the memory. The mind is said to be disordered when the perceptions of memory or imagination are confounded with those of sense, and of consequence those things believed to be now present which are really past or which never existed; or when the sense of the peron concerning ordinary things is different from that of other people. The general name for such disorders is oyopia; if from fever, it is called delirium. A general fury without a fever, is called mania; but a partial madness, on one or two points, the judgment remaining found in all other respects, is called melancholia. There is, however, no exact and accurate limits between a fround mind and madness. All immoderate vivacity borders upon madness; and, on the other hand, a sorrowful and gloomy disposition approaches to melancholy.

Delirium accompanies fevers of many different kinds. Sometimes it is flight, easily removed, and scarce to be accounted a bad sign. Often, however, it is very violent, and one of the very worst of signs, requiring the utmost care and attention.

A delirium is either fierce or mild. The fierce delirium is preceded and accompanied by a redness of the countenance, a great beating of the arteries, and noise in the ears; the eyes in the mean time looking red, inflamed, fierce, shining, and unable to bear the light; there is either no sleep at all, or sleep troubled with horrid dreams; the wonded manners are changed; an unnatural peculiarity and ill-nature prevail. The deprivation of judgment is first observed between sleep and waking, and by the person's crediting his imagination, while the perceptions of sense are neglected, and the ideas of memory occur in an irregular manner. Fury at last takes place, and sometimes an untrivial and incredible degree of bodily strength, so that several people can scarce keep a single patient in his bed.

The mild delirium, on the contrary, is often accompanied with a weak pulse, a pale, collapsed countenance, and a vertigo when the patient fits in an erect posture; he is seldom angry, but often stupid, and sometimes remarkably grieved and fearful. The loss of judgment, as in the former kind, is first perceived when the patient is half awake; but a temporary recovery ensues upon the admission of the light and the conversation of his friends. The patient mutters much to himself, and attends little to the things around him; at last, becoming quite stupid, he neither feels the
History.

M E D I C I N E.

Delirium. Facinations of hunger or thirst, nor any of the other propensities of nature, by which means the urine and excrements are voided involuntarily. As the disorder increases, it terminates in subsultus tendinum, tremors, convulsions, fainting, and death. The other species of delirium also frequently terminates in this, when the spirits and strength of the patient begin to fail.

The symptoms accompanying either of these kinds of delirium show an unusual, inordinate, and unequal motion of the blood through the brain, and a great change in that state of it which is necessary to the exercise of the mental powers. It is sufficiently probable, that an inflammation of the brain, more or less violent and general, sometimes takes place, although the other species of delirium also frequently terminates in Hence, if the epilepsy derives its origin that an inflammation of the brain, more or less violent and general, sometimes takes place, although the other species of delirium also frequently terminates in it.

The motion of the blood through the brain, and symptoms of its injuries plainly sooner and more general, sometimes takes place, although the other species of delirium also frequently terminates in this, when the spirits and strength of the patient begin to fail.

The symptoms accompanying either of these kinds of delirium show an unusual, inordinate, and unequal motion of the blood through the brain, and a great change in that state of it which is necessary to the exercise of the mental powers. It is sufficiently probable, that an inflammation of the brain, more or less violent and general, sometimes takes place, although the other species of delirium also frequently terminates in Hence, if the epilepsy derives its origin that an inflammation of the brain, more or less violent and general, sometimes takes place, although the other species of delirium also frequently terminates in this, when the spirits and strength of the patient begin to fail.

The pathology of melancholy and mania is much more obscure; as coming on without a fever, or disturbance in the blood's motion. Often also they are hereditary, depending on the original structure of the body, especially of the brain; the fault of which, however, cannot be detected by the nescient anatomist. But it is well known, that various diseases of the brain, obstructions, tumours, either of the brain itself, or of the cranium prefixed upon it, any injury done to the head, and, as some physicians relate, the hardness and dryness of the brain, and some peculiar affections affecting the nervous system, are capable of bringing on this malady. And indeed so great are the affections affecting the nervous system in mad people, that they often sleep little or none for a long time,—yet even this so defective and imperfect knowledge of the diseases of the brain and nerves, is by no means free from difficulties. For though we know that the brain, or a certain part of it, is hurt, or that it is irritated by a swelling, or a pointed bone growing into it, nobody can foretell how great, or what may be the nature of the malady from such a hurt; for examples are not wanting of people who, after losing a large part of the brain, have recovered and lived a long time; or of those who have perceived no inconvenience from a large portion of that viscera being corrupted, until at length they have fallen suddenly down and died in convulsions.

Another disease of the internal senses, quite different from these, is fatuity or idiotism. Those are called ides who are delinquent either of judgment or memory, or else have these faculties unequal to the common offices of life. A kind of idiotism is natural and common to all infants; neither is it to be accounted a disease: but if it lasts beyond the state of infancy, it is a real disease, and for the most part incurable. It has the same causes with the other diseases of the internal senses: although these can never be detected by the eye or by the knife of the anatomist. It frequently accompanies, or is the effect of, epilepsy. Hence, if the epilepsy derives its origin from causes not seated in the head, as from worms lodging in the intestines, the fatuity may be cured by dislodging these, and removing the epilepsy. It is not unlikely that the fatuity of children, and the dotage of old men, may arise from the brain being in the former too soft and in the latter too hard.

The muscular power may be diseased in a great number of ways. The mobility itself may be too great; but this must be carefully distinguished from vigour, or power. By mobility is meant the ease with which the muscular fibres are excited into contraction. The vigour, on the other hand, is that power with which the contraction is performed. They are sometimes joined, but more frequently separate, and for the most part the excises of each are causing to contrary causes.

Too great mobility is when motions are excited by too flight a stimulus, or when too violent motions are produced by the customary stimulus. A certain habit of body, sometimes hereditary, renders people liable to this disease. Women have a greater share of mobility than men have. Infants have a great deal of mobility, often too great; youth has less than infancy, but more than man's estate; though old age has commonly too little. A lazy, sedentary life, full diet, a supposition of the usual evacuations, fulness of the blood-vessels, and sometimes their being suddenly emptied, laxity, flaccidity of the solids in general, but sometimes too great a tension of the moving fibres, the use of diluents, especially when warm, or heat applied in any manner, produce too great mobility. And this may be either general or particular, according as the causes have been applied to the whole body or only to a part of it.

Vigour in general is rarely morbid; although sometimes certain muscular parts appear to have too great strength. In maniacs and phrenitics, an immense strength is observed in all the muscles, especially in those that serve for voluntary motion; which is not unjustly reckoned morbid. The reason of this excess is very obscure; however, it is plainly to be referred to a diseased state of the brain.

A more frequent and more important excess of vigour is observed in those muscular fibres that do not obey the will, such as those which move the blood. Its circulation is thus often increased, not without great inconvenience and danger to the patient. But a lighter excess of this kind, pervading the whole body, renders people apt to receive inflammatory diseases, and is usually called a phlegmatic disease. But this is better observed when local, as in inflammation itself.

Too great vigour of the muscular fibres may arise from the nervous power increased beyond measure, as in maniac, phrenitis, or violent affections of the mind; from too great a tension of the fibres, by which they more easily and vehemently constrict movements, as of the arteries when filled with too much blood; from catching cold, by being exposed either to cold or heat, as usually happens in the spring; or lastly, though the nervous power and tension of the fibres

L should
Debility. Debility takes place, when the motion of the muscles, either voluntary or involuntary, is not performed with sufficient strength. A greater or lesser share of debility, either general or of some particular part, accompanies almost all diseases, and is indeed no small part of them: for it is hardly possible that a disease can subsist for any length of time without inducing some degree of debility. When a state of debility is induced, it renders a man obnoxious to innumerable disorders, and throws him as it were defenceless in their way. It often depends on the original structure of the body, so that it can be corrected neither by regimen nor medicines of any kind. A greater debility is frequently called a paralytic debility. This proceeds from some injury of the brain: though a state very similar to it is induced by narcotics, opium, wine itself, or any generous liquor taken to excess; and lastly, by breathing in air corrupted by noxious impregnations, such as a large proportion of carbonic acid, hydrocyanic gas, or any similar active aetiform fluid.

Palsy. The highest degree of debility, namely, when the strength of the muscles is altogether or nearly destroyed, is called paralysis or palsy; and is either universal, or belonging only to some particular muscles. An universal palsy arises from diseases of the brain and nerves, sometimes very obscure, and not to be discovered by the anatomist; for the nervous power itself is often deficient, even when the structure of the nerves remains unhurt: yet often a compression, obstruction, or injury of the vessels, extravasation of blood, or serum, collections of pus, swellings, &c. are discovered. It frequently arises from certain poisons acting on the nerves; from the fumes of metals; from the diseases of parts, and affections of the muscles, very remote from the brain, as in the colic of Pott. A palsy of single muscles, but less perfect, often arises without any defect of the brain or nerves, from any violent and continued pain, inflammation, too great tension, relaxation, rest, or destruction of the structure of the parts, such as commonly happens after the

An universal palsy, however, as it is called, seldom affects the whole body, even though it should originate from a disease of the brain. We most commonly see those who are paralytic affected only on one side, which is called an hemiplegia. It is said that the side of the body opposite to the diseased side of the brain is most commonly affected. If all the parts below the head become paralytic, it is called a paraplegia. In these diseases the senses for the most part remain; though sometimes they are abolished, and at others rendered dull. Sometimes, though rarely, and which is an exceeding bad symptom, the motion, sensation, pulse, and heat of the paralytic limbs are lost; in which case the arteries themselves become paralytic. A palsy of the whole body, as far as regards the voluntary motions, with anaesthesia and sleep, is called an apoplexy. This proceeds from some injury of the brain: though a state very similar to it is induced by narcotics, opium, wine itself, or any generous liquor taken to excess; and lastly, by breathing in air corrupted by noxious impregnations, such as a large proportion of carbonic acid, hydrocyanic gas, or any similar active aetiform fluid.

Spasm. Spasm therefore is a violent, constant, and preternatural contraction of the muscular fibres; but a convolution is an uneful and violent contraction alternated with relaxation. People are rendered liable to spasm by too soluble an habit of body, or too great mobility; and hence it is a disease common in women, in infants, and in weak, luxurious, lazy, and plethoric people. It is brought on through the already predisposed to it, by any kind of stimulus applied to the brain, or to any nerve, muscle, or nervous part connected with it: of which we have examples in dentition; worms lodged in the intestines, and irritating them; any acid matter affecting the blood, or much affecting the stomach and intestines; the irritation of any nerve, or of the brain itself, by an exfoliation, swelling, too great fulness of the vessels, pain, vehement affections of the mind, sudden evacuation, or poisons admitted into the body. Frequently, however, the malady originates from flight causes, little known, and not easily observed.

Spasm is both the cause and effect, and frequently constitutes the greatest part, of most diseases. It is often very difficult either to be known or cured; because it is so multiform and produces as many different symptoms as there are organs affected; of which it surprizingly disturbs, impedes, or increases the functions. It is a disease feated in the original flamina of the constitution; and neither to be removed by flight remedies, nor in a short time.

With regard to sleep, Dr Gregory observes, that its use is sufficiently apparent from the effects which it produces in the body. It renews the powers both of mind and body when exhausted by exercise, giving vigour to the one, and reforming its wasted alarthy to the.
WANT of sleep is hurtful in a great many different ways, especially to the nervous system. It renders the organs of sense both external and internal, as well as those of every kind of motion, unfit for performing their purposes. Hence the sensations are either abolifhed, or become imperfect or depraved; and hence imbecility of mind, defect of memory, a kind of delirium, mania itself, pain of the head, weakness of the joints, an imperfect or inordinate action of the vital organs, quickness of pulse, heat, fever, depraved digestion, atrophy, leanness, and an increase or perturbation of the secretions and excretions.

Sleep may be prevented both in healthy and sick people from various causes; such as strong light, noise, pain, anger, joy, grief, fear, anxiety, hunger, thirst, vehement desire, motion of the body, memory, imagination, intense thought, &c. On the other hand, sleep is brought on by a flight impression on the organs of sense, or none at all; by the humming of bees, the noise of falling water, cold and thirst, of sense both external and internal, as well as by reason of the impetus of the blood towards the head being frequently increased; and likewise from the stomach being disorder'd, loaded with meat, or distended with drink. Hence too we may see the reason why many hypochondriac and hysteric patients sleep so ill: because they have a bad digestion, and their stomach is disposed to receive many though frequently flight disorders; the flightest of which, however, is sufficient to deprive the patient of rest, provided the body be already irritable, and endowed with too great a share of mobility.

Want of sleep will hurt in diseases as well as in health; and for the same reason; but in a greater degree, and more quickly, in the former than in the latter; and is therefore not only a very troublesome symptom of itself, but often produces other very dangerous ones.

Too much sleep, on the other hand, produces many mischiefs, rendering the whole body weak, torpid, and lazy; and it even almost takes away the judgment. It also disturbs the circulation, and diminishes most of the secretions and excretions. Hence plethora, fatness, flaccidity, and an inability for the common offices of life.—The causes of this excess are, either the usual causes of sleep abovementioned increased beyond measure, or some fault in the body; or some fault in the organs of sense, or depraved; and hence

Too great an impulse of the blood towards the head, such as often happens in fevers, prevents sleep; but a free and equal distribution of the blood through the whole body, especially the extreme parts, frequently brings it on. Whatever weakens the body also favours sleep; and hence various kinds of evacuations, the warm bath, fomentations, sometimes heat itself, are useful or producing it. It is also of use to drink tea, or take some strong nourishing medicine.

Cold produces a deep sleep of long continuance, not easily disturbed, and often terminating in death. Lastly, there are certain substances which, when applied to the body, not only do not excite the nervous system, but plainly lay us asleep, and render us unfit for sensation: of this kind are those called narcotics, as opium and the like; among which also we may reckon wine taken in too great quantity.

Lastly, watching itself is often the cause of sleep; because while a man is awake he always more or less exercises the organs of his body, by which the nervous influence is diminished, and thus the more violently the body is exercised, in the same proportion is the perfon under a necessity of sleeping.

Sleep is deficient in many diseases; for there are few which do not excite pain, anxiety, or uneasiness, sufficient to prevent the approach of sleep, or to disturb it. Fevers generally cause those who labour under them to sleep ill; as well on account of the uneasiness which accompanies this kind of disease,
The blood is also distributed in various proportions to the different parts of the body, and that proportion too differs at different periods of our lives. At first an immense quantity is sent to the head, because that part of the body is first to be evolved and fitted for its offices: but as soon as the parts begin to make a considerable refalliance to the efforts of the blood, and the vessels cannot easily be further dilated, it is necessarily sent off to other parts; by which means the rest of the body increases in bulk, and becomes fitted for performing its proper functions. The effect of this change is also very soon observed, namely, when none of the blood passes through the navel, and of consequence a sometimes produces a still more remarkable slowness of the pulse, as in the hydrocephalus, apoplexy, &c.—Sometimes also the pulse is too slow in those who are recovering from tedious fevers. But this is a matter of little moment, and seems to be owing to some kind of torpor. Indeed it has generally been considered as a mark of a thorough and complete solution of the fever; for it is commonly observed, that when this state of the pulse takes place, the patient seldom suffers a relapse.

While the frequency of the pulse continues the same, its strokes may be either full, great, strong, and hard; or soft, small, and weak. A full, great, and strong pulse takes place when the ventricle strongly and completely empties itself; throwing out a greater quantity of blood into the arteries, which fully dilates them and stimulates them to a strong contraction. A pulse of this kind is common in strong healthy men, and is seldom to be accounted a symptom of disease. But if it be too strong, and strike the finger of the person who feels it violently and sharply, it is called a hard pulse. This hardness is produced by a sudden and violent contraction of the heart and arteries, which dilates even the remote branches, as those of the wrist, too suddenly and smartly, and excites them also to sudden and violent contractions.

A hard pulse therefore denotes too great an action of the heart and arteries. It may arise from various causes: in the first place, from too great a tension of the vessels; for instance, from their being too full, and by that means more prone to motion, and the more fit for receiving violent motions. It may arise also from too great a density and firmness of the folae; and hence it is most frequent in cold countries, among strong robust people, and such as are accustomed to hard labour. It may likewise arise from various causes irritating the whole nervous system, or only the heart and arteries. Lastly, it accompanies many fevers, as well as most inflammatory disorders, whether the inflammation arises from a general stimulus applied to the whole body, or from the irritation of particular parts, by degrees extended over the whole body. In such a state of the circulation, the patient frequently faints in need of blood-letting, and almost always bears it well.
A small, weak, and soft pulse is generally owing to causes opposite to the foregoing, and indicates a contrary state of the circulation and nervous system. It frequently requires stimulants; nor does it generally require blood-letting, or easily bear it. Sometimes, however, a pulse of this kind is observed even in the case of a dangerous inflammation, of the stomack for instance, or intestines. But in these and the like examples, we ought to attend to the nature of the malady, much more than to the state of the pulse.

The pulse is said to intermit, when the stroke does not return after the usual interval, and perhaps not till after twice, thrice, or four times the usual space. A pulse of this kind seems to be almost natural and constant in some animals, and is common to some men even in the most perfect health; and if these happen to be seized with a fever, the pulse sometimes becomes equal, nor can the disease be removed before the intermission has returned.

Moreover, in some people, though their pulse beats equally while in health, yet the slightest illness makes it intermit; and in others, especially those who have a great deal of mobility in their constitution, such as hypochondriac and hysteric people, the intermission of the pulse is felt, without applying the finger to the carotid and femoral parts, and of consequence where the motion of the heart is emptied, the more quickly is the blood confirmed by the pulse, which indeed is a certain and definite distribution of the vital fluid frequently applied to the part itself, or to the brain, or at least to the lungs. Hence, varices, and congections of blood, especially in those parts of the body where the veins are distended and of confluence where the motion of the muscles cannot affect the circulation. Hence also arises dropsy from an impeded or languid motion of the blood; because the resistance of the veins being increased, the blood is received into them with the greater difficulty, and more of the thin humour is driven into the exhauling vessels, and by them deposited in such quantities as cannot be reabsorbed by the lymphatics. These diseases, as well as all others proceeding from defects of the circulation, are also more difficult of cure than others, because all the vital powers are weakened at the same time.

Another disorder of the circulation is where the blood is carried to one part of the body in too great quantity, by which means the other parts are deprived of their due proportion. This irregular distribution of the vital fluid frequently arises from a stimulus applied to the part itself, or to the brain, or at length acting on the mind, which, according to the laws of sympathy, produces a certain and definite distribution of the blood. It arises also not unfrequently from a spasm taking place in some other parts, which drives the blood out of its ordinary course.

In proportion to this irregularity of the circulation are the consequences; heat, swelling, redness, inflammation, ruptures of vessels, haemorrhages, effusion, secretion, corruption, and suppuration of the cellular texture and adjoining parts, &c. Even this evil, however, nature often converts into an excellent remedy; and physicians, following her steps, frequently attempt to direct the distribution of the blood in particular diseases, well knowing that a change in the distribution in the blood is frequently efficacious either for radically curing some diseases or relieving their most urgent symptoms.

Lastly, some disorders in the motion of the heart itself, and those of no small consequence, remain yet to be taken notice of, namely, palpitation and syncope. A palpitation is a violent and irregular action of the heart, such as for the most part is perceived by the patient himself, and that not without a great deal of uneasiness and oppression at his breast; and is also manifest to the bystanders if they apply their hands, or look...
 look at his naked breast; the pulse of the arteries in the mean time being weak, unequal, and intermitting. This is a spasmodic disorder; and is induced by various causes affecting either the nervous system in general, or the heart in particular. Every disease of the organ itself, such as a contraction of its valves and blood-vessels, and obliteratism, enlargement, or polypus, hindering the free action of the heart, and evacuation of blood from it, are capable of exciting it to violent and unusual contractions. The same effect will also follow plethysm, or too violent an impulse of the blood, &c. The heart will likewise frequently palpitate from a violent excitement of the nervous system, especially where the constitution is endowed with a great deal of mobility. Hence palpitations from any affection of the mind, and in hysterical women. Palpitation may likewise arise from an affection of the stomach, occasioned by worms, a surfeit, flatus, or fermentation by various acid substan- cies. It frequently also accompanies the gout when driven back, or even when a fit is coming on. Sometimes it arises from debility, whatever may be the cause; frequently from any difficulty in breathing; and many of these causes may be joined at the same time, or some of them produce others.

Hence we may see why the evil is sometimes flight and of short continuance; at other times altogether incurable, and certainly mortal in a long or shorter time; why it sometimes returns at intervals, often coming on and being increased by every kind of irritation and excircle, and sometimes relieved or totally removed by stimulants or exercise.

A syncope is when the action of the heart, and, along with it, that of the arteries, is suddenly and very much lef sen; whence the animal-powers, the senses, and voluntary motions, immediately cease. This may be produced by almost all the causes of palpitation; because whatever can disturb and disorder the motion of the heart, may also weaken or suspend it. The vitiated structure of the heart itself therefore, violent passions of the mind, whether of the depressing kind, or those which suddenly and vehemently excite, various kinds of nervous diseases, those of the stom- ach, every kind of debility and evacuation, especially a great loss of blood, excessive and unremitting labor, long watching, heat, pain, many kinds of poisons, &c. produce fainting.

Hence we see, that whatever weakens the motion of the blood through the brain tends to produce fainting; and, on the contrary, whatever tends to augment that motion, also tends to refresh, and prevent the person from fainting. Hence also we see how the mere posture of the body may either bring on or keep off fainting, or remove it after it has already come on. We likewise see how this disorder may sometimes be of little consequence and easily removed; at others very dangerous, not only as a symptom, but in even itself, as sometimes terminating in death; and lastly, how it may be used as a remedy by a skilful physician, and artificially induced, either to free the patient from violent pain, or to stop an inordinate effusion of blood to be restrained by any other method.

With regard to the disorders of the blood itself, Dr Gregory observes, that the glutinous part of it produces that buff-coloured appearance often seen upon blood drawn from people afflicted with inflammatory dis- orders, and even sometimes when no such diseases are present. This crust indeed is nothing else than the pure gluten of the blood taking longer time than usual to coagulate, by which means the red particles have an opportunity of falling to the bottom. This indicates no lenter, density, thickness, or tenacity of the blood, as was formerly thought; but rather its thinness, or at least a left tendency in it to coagulate. It arises for the most part from a violent agitation and con- summation of the blood within the body; and hence it accompanies many fevers, all inflammations, sometimes hemorrhages, exanthema, phlethora, pain, and many irritations. It must however be allowed, that in several of these diseases it is rendered highly probable, at least from experiments apparently accurate, that the quantity of the gluten of the blood is really encreased in the proportion which it bears to the other parts. This crust, however, is not always to be accounted morbid, as it often happens to the most healthy; and may even be produced or destroyed by the sight of cau-ses while the blood is flowing from the vein, so that frequently we shall see a very thick and tenacious crust on the blood flowing into one cup, while that which runs into another has little or none at all. In general, however, the appearance of this crust shows, that the patient will bear blood-letting well, though those have been in a great mistake who directed this operation to be repeated till no more crust appeared on the blood.

The glutinous part of the blood also frequently produces those masses called polypus, which sometimes take place during life, but more frequently after death, in the large vessels near the heart, or even in the cavities of that organ. Similar masses also are frequently formed in the uterus, and are called mole.

The quantity of blood contained in a healthy body is very various, and difficult to be ascertained. Many diseases, however, may arise from its being either too scanty or too abundant. Too great a quantity of blood is produced by the use of rich nourishing diet, strong drink, accompanied with a good digestion; from a lazy, sedentary life, or much sleep, especially in those who have been formerly acclimated to too much exercise; with many other causes of the same kind. It renders the person dull, weak, and languid, and sometimes almost totally oppresses him; nor are those organs defined for moving the blood sufficiently for driving forward such a load. The pulse sinks; and sometimes a syncope, vertigo, or palpitation takes place. More frequently, however, the vessels are too much diffused, and ready to be thrown into violent and irregular motions. Hence a disposition to fevers, inflammations, unequal distribution of the blood, unusual congections, rupture of the vessels, and hemorrhages. Moreover, by reason of the close connection between the languid and the nervous system, a fulness of blood produces a disposition to pain and other diseases of that kind.

Hence we may understand why a phlethora is sometimes accompanied with a weak and sometimes with a strong and hard pulse, why it is the cause as well as a part of so many distempers, why it is the effect of a high state of health, &c.
Theory.

MEDICINE.

Disorders of the blood.

The want of a due quantity of blood is no less pernicious than too great an abundance of it. It debilitates the person, and renders him unable to perform the proper offices of life; produces a languid circulation, syncope, spasm, and at last death itself. In a lighter degree of the dispa the body is emaciated through want of nourishment, and its functions are vitiated in various ways. It may arise from want, bad food, or such as affords little nourishment; from bad digestion, or the chyle being hindered from passing into the blood; from fevers, or other diseases which exhaust the body and hinder nutrition; or lastly, from various evacuations, particularly of blood: and that the more exhausted, the quantity left in them. Besides, if the body be great, it may either prove mortal in a short time, or break the constitution to a degree beyond recovery. Hence the blood becomes thin, pale, scarce capable of coagulation, or becoming very thin, pale, scarce capable of coagulation, or the blood concur.

The acrimony of the fluids has afforded a large field for declamation to the speculative physicians, and the more thinnes of the blood alfo proceeds from the increase of motion in the heart and arteries, and the familiar augmentation of the action of the secretory organs, from acid substan ces taken inwardly. The same thing also appears from the unusual acrimony of the secreted fluids in such cases, by which the vessels are sometimes greatly stimulated, and sometimes very much diffused. Very acrid substan ces, however, are daily taken into the stomach; so that there must either be corrected in the prime vitia, or changed by digestion before they pass into the blood; or at least by dilution with much water, or being blunted by an admixture with gluten, oil, or inflammable air; they must deposit much of their acrimony, and at last be thrown out of the body as noxious substances. Thus a vaf quantity of salts, acid, alkaline, and neutral, may pass through the body, without in the least affecting the health; though these salts, if taken in very large quantity, undiluted, or not thrown out of the body, will do much hurt.

Moreover, even while life continues, putrefaction is going on, and produces much of that substance called animal salt; for into this a great part of our food is converted, and passes off by the urine. But if this putrefactive disposition be too great, it will produce too much a quantity of animal salt; especially if much of any saline substance is otherwise thrown into the body without proper dilution; and this kind of disease is well known to sailors who have been long at sea without having any opportunity of getting fresh provisions.

For this spontaneous putrefaction, nature has suggested a proper remedy, namely, fresh meat, especially of the vegetable and acce dent kind, and such as is well impregnated with aerial acid, which it may impart to the body. But where this kind of food is wanting, the putrefaction goes on apace, and a very great thinness and acrimony of the juices take place; especially if there be also a scarcity of water, or the excretions which ought to carry the putrid matters out of the body languish, either from cold, faith, torpor, depressed passions of the mind, or from the constitution being broken by diseases; or lastly, from too great heat, which always favours putrefaction.
Diforders, of the Blood.

Besides, it would seem, that sometimes a disposition to putrefaction is much increased by the reception of a putrid ferment into the body; of which we have examples in some infectious fevers, where the contagion is very much afflicted by heat, animal-diet, certain kinds of feals, debility and malnaifes.

Lastly, any fingle part of the body may putrefy from various causes, as from inflammation, gangrene, cold, &c. and thus may the whole body be infected; although for the most part the difeafe proves fatal before the corruption has spread over the whole body.

But when the malady begins to putrefy greatly, it not only becomes very acid, but thin also, so that it either will not coagulate at all, or flows only a flight and very loofe cratfallent. Nay, even the red globules are broke down and destroyed; in which cafe it necessarily follows, that the blood must become very acid, as well on account of the evolution of the falt, as by reafon of the rancid and putrid glutfen, which stimulates, and frequently even erodes, the vellifer producing spots, first red, then livid and black, tumours, and ulcers scarce to be cured, without fight removing the putrefent disposition of the humours. From the fame caufe proceed hemorrhages from every part of the body, hardly to be refrained; a molt intolerable feg of the breath and all the excrementd; the highest debility and laxity of the folidf; the putrefation acting as a poison to the nervous fystem, and at length bringing on death.

An acrimony of the acid kind never takes place in the human blood, nor in any of the humours fecreted from it; though one of them, namely the milk, turns acid fecondarily in a very fhort time after it is drawn from the breast. Neither, indeed, does an alkaline acrimony feem ever to take place in the blood. Putrefacy indeed tends this way, and at laft terminates in it; but fearcely when the perfon lives, though the nature of the urine, even while recent, feems to be but little differ from that of an alkaH.

Many kinds of acrimony indeed may exif in the blood from too liberal anufe of spices, wine, &c. but of these we know nothing certain. We well know, however, that the body is often infested with various kinds of morbid acrimony, which bring on many and dangerous difeafes, as the small-pox, measles, feasures, lues veneris, &c. of which the origin and manner of acting are very little understood, though the effects are abundantly evident. In molt cafes, nature has taken no left care to provide againft the acrimony than against the too great thickness of the blood. Sometimes an antidote is afforded, either by the excitation of thirst, that the acid fubftance may be diluted with plenty of drink; or by increafing the evacuations, that it may be thrown out of the body; or laftly, by exciting various motions and actions of the vital powers, by which it may be either subdued, changed, rendered innocent, or expelled from the body by new and unwaited paffages.

With regard to refpiration, Dr Gregory obferves, that it may be obstructed from various causes fcaet either in the lungs themfelves or the surrounding parts. But from whatever cause this obftruction may arife, it undoubtedly produces all thofe difeafes which proceed from an interrupted circulation. The lungs themfelves alfo being at length comprifed, and not sufferfed to dilate fufficiently, cannot throw off the vapour which arises from them; and hence they are frequently oppreffed with moifure. At the fame time they are irritated, fo that a greater quantity of mucus, and that of a thicker kind than ufual, is fecreted; by which means the fages through which the air enters them are fpofled up, and a violent cough at length throws off the load.

The refpiration is alfo fubjeft to fonfe other diforders, as a cough and fneezing; which, though at first they may feem very dangerous, are not deftitute of life, and may even be reckoned among the molt falutary attempts of nature to relieve the patient. Often, however, they are attended with danger, or very great uneafinesf; namely, when they are either too violent or exerted in vain. At any rate, it is necejfary for a physician to know the nature, caufes, and effects, of thefe, that he may be enabled to promote them when necejfary, to moderate them when too violent, and to stop them when noxious or to no purpose.

A cough is a violent, frequently involuntary, and coughforous expiration, suddenly expelling the air with great force through the glottis somewhat contracted. The contraction of the muscles ferving for expiration, gives a great force to the air, while the contraction of the glottis produces the found. It is often long continued, being repeated at certain intervals, during each of which the inspiration is imperfect and obftructed by reafon of the contraction of the glottis. It is excited by any kind of acrid fubftance, either chemically or mechanically applied to thefe paffages through which the air enters. These are lined with a membrane fo exceedingly delicate and impatient of stimulus, that it cannot even bear the touch of the mildeft fubftance, fuch as a small drop of water, without throughfing the muscles ferving for expiration into a violent convulfion; the glottis at the fame time contracting by means of the sympathy between it and the neighbouring parts. Thus the air is thrown out with fuch violence, that it drives the irritating fubftance along with it; and thus a cough becomes not only ufeful, but absolutely necejfary for the prefervation of life, as being able to free the lungs from every kind of irritating fubftance or foulnefs, which might soon bring on a fuffocation. Hence a cough is almost an ineparable companion of every inflammation of the lungs, as well as every difficultly in refpiration; and even frequently accompanies the entrance of the pureft air when the trachea and bronchiae are excoriated, or become too fensible. Examples alfo are not wanting, where a violent and troublesome cough has arisen from an irritation of the nervous fystem, or even of some particular part, of the ear, for infance, the fafhaen and intestines by worms, the liver by inflammation, &c.

Coughing may alfo be voluntarily excited, and may then be managed at pleafure. Even when involuntary, it may be moderated, or fuppreffed, by a contrary ef- fott: though a violent fit of coughing cannot by any means be refuted. When it is once excited, the cough goes on till the irritating fubftance be expelled, or the feuds of irritation abolished, or perhaps overcome by a more uneafy fenfation than even the cough itfelf; af-

MEDICINE.

Theory.

Diforders.

Diforders. of Respiration.
A very violent cough is often dangerous. For by the retention of the breath, and the strong efforts made in coughing, a great quantity of blood is collected in the lungs, of which the vessels are dilated, and frequently broken; and hence there sometimes happens a violent and even fatal hemorrhage. More frequently, however, it is the cause of a flower, though equally fatal, disease. Nay, a frequent and troublesome cough, without any great hemorrhage, or even without any hemorrhage at all, may damage the lungs to such a degree, especially if they be of a more tender structure than usual, so as to lay the foundation of a phthisis almost always incurable.

Again, by a long-continued and violent cough, the passage of the blood through the lungs being impeded, it must necessarily flow through the veins towards the head: hence redness and lividness in the countenance, hemorrhages, pallies, apoplexies, and sometimes mortal convulsions. Lastly, by a violent cough the abdominal viscera are perpetually compressed with remarkable violence; and if any part happens to be weaker than usual, a hernia, prolapsus uteri, abortion, or similar accidents, may happen.

Even when the cough is more gentle, if it happens to be importunate and frequent, although we have nothing of this kind to fear, yet the patient is by no means free from danger; as he is thereby agitated, fatigued, has his constitution broken, is deprived of rest, and has a fever brought upon him, his lungs are faken and irritated, digestion and all the other functions are impeded, till at last he sinks under a complication of maladies.

Sneezing is somewhat akin to cough, as consisting of a very full inspiration, to which succeeds a most violent expiration, by which the air is driven out through the nostrils with immense violence, and sweeps the passage through them as it goes out. It is a con

The real part of Dr Gregory's treatise necessary to be taken notice of here, is that which considers diseases arising from a bad digestion, disordered motion of the intestines, and some of the principal secretions. The first of these, he says, are sometimes very troublesome, though seldom dangerous. The principal symptoms are oppression, anxiety, pain at the stomach; eructation, by reason of air extricated from the fermenting aliment, and irritating the stomach; nausea and vomiting, from the irritation and diffusion of the bile organ; the belly sometimes too colicky, and sometimes too loose; a defect of nourishment; a general debility; relaxation of the solid parts; too great thin

The consequences of long-continued colic, are first an affection of the alimentary canal, and, then of the whole body. The stomach is diseased, and does not digest the aliments properly; the whole body is left delirious of its usual stimulus; the blood is corrupted, perhaps from the restoration of the putrid matter into it. The circulation through the alimentary vasa is impeded; hence frequent and irregular convulsions, varices of the veins, hemorrhoids, &c. Nay the intestines themselves being overloaded, dilated and irritated by an heavy, acid, and putrid load of aliments or other matters, are excited to new and unusual contractions, which, if they do not get the better of the obstruction, bring on torments, colic, or an ileiac passion, inflammation and gangrene, fatal in a very short time.

Looseness, or diarrhea, is a malady extremely common, and sometimes only a symptom or an effect of others. Sometimes it is a salutary effort of nature, such as the physician ought to imitate and bring on by art. It is also familiar to infants, and to people of certain constitution; and to them colic and diarrhea is very prejudicial. It may arise, in the first place, from a fermenting taken into the body, or generated in the intestines; from a fermentation and corruption of the mucus of aliments; from the bile being too abundant and acid, or from blood or pus poured into the intestines; from the intestines themselves being eroded, or deprived of their natural mucus; from the humour's being driven from the surface of the body towards the inward parts, as by cold, especially when applied to the fist; or from a general corruption of the whole body, as in the phthisis, hectic, or putrid fever, especially towards the end of these disorders. In fevers it is sometimes fatal, or even puts an end to the disease altogether, or at least renders it milder: more frequently, however, deriving its origin from putrefaction, it is of no service, but rather exhausts the strength of the patients. A diarrhea likewise, almost incurable, and often mortal in a short time, frequently arises after the operation for the flatus in ano. Some have their intestines so extremely weak and moveable, that from the slightest cause, such as eating cold, any violent commotion of the mind, &c. they are subjected to a violent diarrhea. Lastly, whatever be its origin, if it has continued for a long time, the vasa are rendered too weak and its
Dysentery.

Dysentery is attended with very severe gripes in the belly, a frequent desire of going to stool, and vain efforts which excrete nothing belies the mucus of the intestines mixed with a little blood; and is accompanied with excessive debility, and frequently with putrefaction and fever. It is thought to arise from the contraction of some part of the intestines, of the colon especially, by which means the bowels, though ever so much irritated, can pass nothing; neither can the disease be removed until the belly has been well purged by proper medicines.

Teneusus.

Tenesmus is a frequent and insatiable propensity to stool without being able to pass any thing, notwithstanding the most violent efforts. It may be occasioned by any kind of irritation, either of the rectum itself or of the neighbouring parts, by acrid substances taken into the body; by some of the stronger purges, especially aloes, which is very difficult of solution, and will pass even to the rectum with very little alteration; by a violent and obstinate diarrhœa, dyentery, hemorrhoids, worms, flatus, calculus, ulcer in the bladder, urethra, &c. It is often very pernicious, both from the excessive uneasiness it occasions to the patient, and from its exhausting its strength, by the frequent and vain efforts bringing on a prolapus ani, and communicating the violent irritation to the neighbouring parts, as the bladder, &c.

A nausea and vomiting are disorders very common, and owing to almost innumerable causes: not only to affections of the thoracic heart, but also to affections and irritations of the remotest parts of the body which may act upon the thorax by sympathy. Every irritation and dilation of that viscus therefore, a load of crude aliment, an obstruction about the pylorus, all acrid substances taken into it, diseases of the liver, intestines, kidneys, uterus, the head, the feet, the skin or indeed the whole body, inflammation, the stone, king's evil, scirrhus, apoplexy, contraction of the brain, fracture of the skull, vertigo, syncope, violent pain, the gout, especially when repelled, fevers, paf-

Theodore.

Theodore, or the theory of the alimentary canal. It may originate from several causes, as too strong a dose of an emetic by which means a vast quantity of bile frequently ascends into the stomach, and is discharged by vomiting.

An excessive vomiting with loofenings is called a cholo-

Choleræ, when the matter discharged has a bilious appearance. It arises from a very great irritation of the alimentary canal without any obstruction; and is for the most part occasioned by too great a quantity, or from an acrimony of the bile, from whence it takes its name. It may originate from several causes, as too strong a dose of an emetic, and cathartic medicine, eating too great a quantity of summer-fruits, &c. and is a very violent malady, often killing the patient in a few hours, unless proper remedies be applied in time.

From a suppression of any of the secretions, or a Obstructed disorder of any of the secretory organs, many mischief may arise. A diminution of perspiration produces plethora, latitudo, languor, depression of mind, bad digestion, loss of appetite, and even a general corruption of the humours from the retention of such a quantity of putrefactive matter.—The more suddenly the diminution or suppression of the perspiration takes place, the sooner the mischief is produced, and the greater it is; not only by retaining the matter which ought to be thrown out, but by repelling the humours from the surface of the body, and directing them to other parts; whence fevers, inflammations, congections of the blood, &c. frequently take place.

Thus suppression of perspiration may arise from many different causes; as from cold suddenly applied to the body when very hot; sometimes from very violent passions.
Theory.

MEDICINE.

Diabetes of secretion, palpitations of the mind; or from spasmic diseases, as the
hysteric, &c. It may be suppressed also by that kind of
contraction of the vessels of the skin which is pro-
cuced by various kinds of fevers, the nature of which has
hitherto been but little known.

Excessive perspiration or sweating is injurious by de-
bitating the body, relaxing the skin, and expelling the
patient to all the

motions of urin, will certainly prove fatal. This disor-
der, which is call­
ed Urinaria, may arise from various diseases of the kid­
neys, ureters, bladder, urethra, &c. Thus any obstruc-
tion or irritation of one or other of the kidneys or ure-
thra, being secreted, or may give rise to a scanty or depraved

urine, or in some particular state of the neighbouring
parts, as of the uterus, vagina, urethra, prostate

Akin to the strangury is an incontinence of urine, in

which the patient's water either comes away against the
will, or altogether without his knowledge. This
disorder may arise from debility, pain, an ulcer or

wound, or any long-continued and violent irritation of
the bladder, especially of its splinter, as from a

stone, a general palsy, or in females, difficult labour

injuring the neighbouring parts.—This symptom oc-
curs in a great number of diseases, especially in

the hydrocephalus. Sometimes the urine is expelled

with violence, either by reason of universal spasms, or by

violent contractions of the muscles of respiration, as

in freezing, laughter, &c.

Among the disorders incident to the urine we Urinary
may reckon the production of calculi, which frequently
bring on the most excruciating and dangerous diseases.

The urine, besides the water and salt, contains no
small share of the glutinous part of the blood already
somewhat corrupted, and still inclined to further cor-

ruption. Hence the urine even of the most healthy
people deposits a sediment after it has stood for some

time; and though none of this sediment be formed in

an healthy body, yet if the smallest particle of foreign
matter be introduced into the bladder, a crust soon
gathers round it, and it is sure to become the basis of

a stone, which by degrees grows to a very great

size. It is not unlikely, also, that some unknown

fault of the fluids may contribute to the produc-
tion of these calculi, as the stone is well known to be an

hereditary disease, and to be born with the patient.

Calculous persons also are commonly subject to com-
plaints of the stomach, especially to an acidity of it;

and many have received no little relief from alkalis, or

alkaline medicines.—From the same causes may cal-
culi be formed in the kidneys; from which proceed a
horrid train of symptoms described in the subsequent
part of this treatise.

It is now found by accurate experiments of the
most able chemists, that urinary calculi do not, as was
once supposed, confit almost entirely of an earthly mat-

ter. Their principal constituent is a peculiar acid
approaching more nearly to the phosphoric found in
the bones than to any other. But the acid of cal-
culus being in some respects peculiar in its nature, has
among modern chemists obtained a peculiar name, and
been distinguished by the appellation of the lithic
acid.

It is highly probable that this acid present in the cir-
culating fluids, is precipitated and difengaged by the
introduction of other acids, and thus thrown off in
greater quantities by the kidneys. Thus then we can
understand the influence of acids as tending to the ge-
neration of calculi, and of alkalies as tending to
prevent it.

The last disorder here to be taken notice of is a
Strangury.

Scheirrus, disorder of the glands themselves, owing to some kind
of obstruction, and is one of the most dreadful dis-
eases incident to human nature. Hence happens a

great
great swelling and surprising hardness, not only without pain, but sometimes even with a diminution of sensation in the part affected; and when the gland is thus affected, it is called a tumor. Sometimes it remains in this state for a long time; but sooner or later produces the most excruciating torment. By degrees it is affected with a slow and malignant supputation, degenerating into an horrid ulcer, consuming not only the part itself, but eating away the neighbouring ones, and corrupting the whole body with the most acrid and incurable poison. This disease is called a cancer, of which the causes are very little known.

PRACTICE OF MEDICINE, or an Account of the principal Diseases to which the Human Body is subjected.

We have already defined medicine to be the art of preventing, curing, and alleviating, those diseases to which mankind are subjected. While these affections, however, are in number almost infinite, each in its progress is subjected to almost endless varieties from differences in climate, constitution, treatment, and a variety of other particulars. Hence we may readily explain both the difficulty of distinguishing morbid affections from each other in actual practice, and the diversity of names which have been affixed to them in the writings of ancient physicians. It may readily be supposed, that in this as well as other subjects, there has been a gradual improvement from the progressive labours of industrious and ingenious men. And although much yet remains to be done in the proper arrangement and distinction of diseases, or what has been called methodical nomenclature, yet there cannot be a doubt that during the course of the present century, this subject has received very great improvements. For these, we are in the first place highly indebted to the labours of Franciscus Boissier de Sauvages, an eminent professor of medicine at Montpellier, who, following out an idea suggested by the famous Dr Sydenham of England, first successfully attempted to arrange diseases as botanists have done plants, into classes, orders, genera, and species. Since the publication of the Nomenclature Methodica of Sauvages, this subject has been successfully cultivated by several ingenious men, particularly by Sir Charles Linnaeus of Upall, to whose genius for arrangement every branch of natural history, but botany in particular, has been so highly indebted; by Rodolphus Augustus Vogel, an eminent professor at Gottingham; and by John Baptist Sagar, a distinguished physician at Iglaw in Moravia: but of all the systems of arrangement yet presented to the medical world, that published by the late illustrious Dr William Cullen of Edinburgh, may justly be considered as the best. In treating, therefore, of the principal diseases to which the human body is subjected, we shall follow his plan, endeavouring to deliver the best established observations respecting the history, theory, and practice of each. And in treating of particular genera of diseases, although we follow the arrangement of Dr Cullen, yet for the satisfaction of the reader, we shall point out the classes to which the same affection is referred by the other eminent writers whom we have mentioned. And on this account, it may not be improper briefly to enumerate the general classes to which each of them have referred the affections of the human body.

The classes of Sauvages are,

1. Vitia.
2. Febres.
3. Phlegmasia.
4. Spasmis.
5. Anhelationes.

The classes of Linnaeus are,

1. Exanthematici.
2. Critici.
3. Phlogistici.
4. Dolores.
5. Mentesales.
6. Quietales.

The classes of Vogel are,

1. Febres.
2. Profuvia.
3. Episciehes.
4. Dolores.
5. Spasmis.

The classes of Sagar are,

1. Vitia.
2. Palgis.
3. Cachexiae.
4. Dolores.
5. Fluixus.
7. Spasmis.

After this short view of different classifications, we shall next present to our readers a more particular account of the arrangement of Dr Cullen; which, although it can by no means be represented as free from errors or imperfections, is yet in many respects the best that has hitherto been published.

CULLEN'S ARRANGEMENT.

CLASS I. PYREXIA. A frequent pulse coming on after an horror; considerable heat; many of the functions
Practice.

MEDICINE.

General

Arrangement

of

Diseases.

ctions injured; the strength of the limbs especially diminished.

ORDER I. Fevers. Pyrexia without any primary local affection, following languor, litharge, and other symptoms of debility.

Sect. I. Intermitentes. Fevers arising from the misfina of marshes; with an apyrexia, or at least a very evident remission; but the disease returns constantly, and for the most part with a horror or trembling. There is only one paroxysm in a day.

Genus I. Tertiana. Similar paroxysms at an interval of about 48 hours, coming on most commonly at mid-day. A tertian heat either;

I. An apyrexia interpofed;

1. Varying the duration of the paroxysms.

A. The tertian whose paroxysms are not extended beyond 12 hours;

B. The tertian with paroxysms extended beyond 12 hours.

2. Varying in the return of the paroxysms.

C. The tertian returning every day with unequal paroxysms alternately similar to one another.

D. The tertian returning every third day with two paroxysms on the same day.

E. The tertian returning every day, with two paroxysms on every third day, and only one on the intermediate ones.

F. The tertian returning every day, with a notable remission interpolated between the odd and the even days, but a less remarkable one between the even and the odd one.

3. Varying in its symptoms.

G. The tertian accompanied with a disposition to sleep.

H. Accompanied with spasm and convulsive motions.

I. Accompanied with an efflorescence on the skin.

K. With phlegmasia.

4. Varying in being complicated with other diseases.

5. Varying as to its origin.

II. With the interpolation only of a remission between the paroxysms.

Genus II. Quartana. Similar paroxysms, with an interval of about 72 hours, coming on in the afternoon.

I. With the interpolation of an apyrexia.

1. Varying in the type.

A. The quartan with single paroxysms, returning every fourth day, none on the other days.

B. With two paroxysms every fourth day, and none on the other days.

C. With three paroxysms every fourth day, and none on the intermediate days.

D. Of the four days having only the third free from fever, with similar paroxysms every fourth day.

E. The quartan coming on every day, with similar paroxysms every fourth day.

2. Varying in its symptoms.

3. Varying in being complicated with other diseases.

II. With a remission only between the paroxysms.

Genus III. Quotidiana. Similar paroxysms with an interval of about 24 hours, coming on in the morning.

I. With the interpolation of apyrexia.

1. Varies in being solitary.

A. Universal.

B. Partial.

2. Complicated with other diseases.

II. With a remission only between the paroxysms.

Sect. II. Continus. Fevers without any interpolation, and not occasioned by marsh miflams; attended with exacerbations and remissions, though not very remarkable.

Genus IV. Synocha. Great heat; a frequent, strong, and hard pulse; high-coloured urine; the functions of the fenforium a little disturbed.

Genus V. Typhus. A contagious disease; the heat not greatly above the natural; the pulse small, weak, and for the most part frequent; the urine little changed; the functions of the fenforium very much disturbed, and the strength greatly diminished.

The species are,

I. Typhus petechialis. Typhus for the most part with petechiae.

II. Typhus iterodes. Typhus with a yellowness of the skin.

Genus VI. Synochus. A contagious disease. A fever composed of a synocha and typhus; in the beginning a synocha, but towards the end a typhus.

ORDER II. Phlegmasia. A synocha fever, with inflammation or topical pain, the internal function of the part being at the same time injured; the blood covered with fize.

Genus VII. Phlegmosis. Pyrexia; redness, heat, and painful tension, of some external part.

The species are,

I. Phlegmosis (phlegmone) of a vivid red colour; a swelling well defined, for the most part elevated to a point, and frequently degenerating into an abscess, with a beating or throbbing pain.

The variations are, 1. In the form. 2. In the situation.

II. Phlegmosis (erythema) of a reddish colour, vanishing by pressure; of an unequal and creeping circulation, with scarce any swelling; ending in the scaling off the cuticle, in phlyctenae, or blisters.

The variations are, 1. In the degree of violence. 2. In the remote cause. 3. In being complicated with other diseases.

The consequences of a phlegmosis are, an impolhimine, gangrene, phlyctenae.

Genus VIII. Ophthalmia. A redness and pain of the eye, with an inability to bear the light; for the most part with an effusion of tears.

The species and varieties of the ophthalmia are,

I. Idiopathic.

1. Ophthalmia (membranacea), in the tunicza adnata, and the membranes lying under it, or the coats of the eye.

A. Varying in the degree of the external inflammation.

B. In the internal coats affected.

2. Ophthalmia (tarpe) of the eye-lids, with swelling, erosion, and glutinous exudation.

II. Symptomatic.

1. From a disease of the eye itself.

3. From...
MEDICINE.

Practice.

General Arrangement of Diseases.

I. Idiopathic.
II. Symptomatic.

Genus XIX. Phrenitis. Pyrexia; pain of the belly, exasperated by an upright posture, without the proper signs of other abdominal phlegmasia. If the diagnostics of the following disease are given, they may be reckoned as so many species of this genus.

I. Phrenitis (propria) situated in the peritoneum, properly so called, surrounding the inside of the abdomen.
II. Phrenitis (omenta) in the peritoneum extended through the omentum.
III. Phrenitis (mesenterica), in the peritoneum spread through the mesentery.

Genus XVI. Enteritis. Pyrexia of a typhous nature; pungent pain of the belly, stretching and twirling round the navel; vomiting; the belly obliquely bound.

I. Idiopathic.
1. From internal causes.
A. Gastritis (phlegmonoea) attended with acute pain and violent pyrexia.
2. From external causes.
B. Gastritis (erysipelatosa), with a less violent fever and pain; an erysipelatous redness appearing on the fauces.

II. Symptomatic.

Genus XV. Gastritis. Pyrexia inclining to a typhus; anxiety; pain and heat of the epigastrium, augmented when any thing is taken into the stomach; an inclination to vomit, and an immediate rejection of every thing swallowed; an hiccup.

I. Idiopathic.
1. From internal causes.
A. Gastritis (phlegmonoea) attended with acute pain and violent pyrexia.
2. From external causes.
B. Gastritis (erysipelatosa), with a less acute fever and pain; an erysipelatous redness appearing on the fauces.

General XX. Hyperitis. Pyrexia; heat, tenesmus, vomiting of the stomach; dyspncea; difficulty of breathing; cough; unequal pulse; palpitation of the heart, and fainting.

III. Peritonitis, with a difficulty of swallowing and breathing; an erysipelatous redness of the right hypochondrium, often following the course of the ureter; frequent making of water, either thin and colourless, or very red; vomiting; a leucorrhoea; with an immediate rejection of every thing swallowed; an hiccup.

I. Idiopathic.
1. From internal causes.
A. Peritonitis (phlegmonoea) attended with acute pain, violent fever, vomiting, and confiptation of the belly.
2. Enteritis (erysipelatosa) with less acute fever and pain, without vomiting; but accompanied with a diarrhea.

II. Symptomatic.

Genus XVII. Hepatitis. Pyrexia; tenesmus and pain of the right hypochondrium; sometimes pungent like that of a pleurisy, but more frequently obtuse; a pain reaching to the clavicle and top of the right shoulder; a difficulty of lying on the left side; dypnha; dry cough, vomiting, and hiccup.

Genus XVIII. Splenitis. Pyrexia; tenesmus, heat, and swelling of the left hypochondrium, the pain increasing by pressure; without the signs of nephritis.

Genus XIX. Nephritis. Pyrexia; pain in the region of the kidneys, often following the course of the ureter; frequent making of water, either thin and colourless, or very red; vomiting; a leucorrhoea; with a reaction or pain of the fullness of the same side. The species are,

I. Idiopathic. Spontaneous.
II. Symptomatic.

Genus XX. Cystitis. Pyrexia; pain and swelling of the hypogastrum, frequent and painful making of water, or itchuria; and tenesmus. The species are,

I. These arising from internal causes.
II. Those from external causes.

Genus XXI. Hyderitis. Pyrexia; heat, tenesmus, swelling.
MEDICINE.

General Arrangement of Diseases.

Day of the disease begins and on the fifth is finished, the eruption of inflammatory pustules, which suppurate in the space of eight days, and at last go off in crusts, frequently leaving depressed cicatrices or pock-pits in the skin. The species are,

I. Variola (diferta) with few, dilute, turgid pustules, having circular bases; the fever ceasing immediately after the eruption.

II. Variola (confuent) with numerous, confluent, irregularly shaped pustules, flaccid, and little elevated; the fever remaining after the eruption.

Genus XXIX. Varicella. Synocha; papulae breaking out after a short fever, similar to those of the small pox, but hardly ever coming to suppuration; after a few days going off in small scales, but never leaving any mark.

Genus XXX. Rubeola. A contagious Synocha, with freezing, epiphora, and dry hoarse cough. On the fourth day, or a little later, break forth small, flurried, and scarce elevated papulae: after three days going off in very small branny scales.

I. Rubeola (vulgaris) with very small confluent, corymbose papulae, scarce rising above the skin.

Varying,
1. In the symptoms being more severe, and the course of the disease less regular.
2. In being accompanied with a quinsy.
3. With a putrid diathesis.

II. Rubeola (variolodes) with dilute papulae, raised above the skin.

Genus XXXI. Miliaria. Synocha with anxiety, frequent lightheadings, feverish sweat, and spots on the skin. On an uncertain day of the disease break out red, small, dilute papulae, spread over the whole body as well as the face; the apices of which, after one or two days, become very small white pustules, remaining for a short time.

Genus XXXII. Scarlatina. A contagious Synocha. On the fourth day of the disease the face swells a little; at the same time an universal redness occupies the skin in large spots, at length running together; after three days going off in branny scales; frequently succeeded by anasarca. The species are,

I. Scarlatina (limplex), not accompanied with cyanche.

II. Scarlatina (cynanchica), with an ulcerous cyanche.

Genus XXXIII. Urticaria. An amphemera fever. On the second day of the disease, red spots resembling the stinging of nettles, almost vanishing during the day, but returning in the evening with the fever, and after a few days going off altogether in very small scales.

Genus XXXIV. Pemphigus. A contagious typhus. On the first, second, or third day of the disease, blisters break out in several parts of the body, of the bigness of a bean, remaining for many days, and at last pouring out a thin ichor.

Genus XXXV. Aphtha. Synochus; the tongue somewhat swelled and of a livid colour, as well as the fauces; effuses first appearing in the fauces, but at
length occupying the whole internal part of the mouth, of a white colour, sometimes distended, often running together; quickly growing again when taken off; and remaining for an uncertain time.

The species are, 1. Idiopathic. 2 Symptomatic.

ORDER IV. Hemorrhagia. Pyrexia, with a profusion of blood, without any external violence; the blood drawn from a vein hath the same appearance as in phlegmata.

Genus XXXVI. Epifaxis. Pain or weight of the head, redness of the face: a profusion of blood from the nose.

1. Idiopathic.

Varying according to the time of life.

1. Epifaxis of young people, with symptoms of an arterious plethora.
2. Epifaxis of old people, with symptoms of a venous plethora.

II. Symptomatic.

1. From internal causes.
2. From external causes.

Genus XXXVII. Hæmoptysis. Redness of the cheeks; a sensation of uneasiness, or pain, and sometimes of heat in the breast; difficulty of breathing; tickling of the fauces, either a severe or less violence, and sometimes of heat in the head, redness of the face: a profusion of blood without any external violence: the blood drawn from a vein hath the same appearance as in phlegmata.

1. From internal causes.
2. From external causes.

Genus XXXVIII. Hæmorrhagia. Weight and debility of the body, with a leucophlegmatia over the whole body, especially in old people.

Varying:

1. Accompanied with worms.
2. With the excretion of small fleshly or sebaceous bodies.
3. With an intermittent fever.
4. Without blood.
5. With a mililiary fever.

CLASS II. Neurosis. An injury of the fænæ and motion, without an idiopathic pyrexia or any local affection.

ORDER I. Comata. A diminution of voluntary motion, with sleep, or a deprivation of the senses.

Genus XL. Apoplexia. Almost all voluntary motion diminished, with sleep more or less profound; the motion of the heart and arteries remaining.

The idiopathic species are,

1. Apoplexia (fauina) with symptoms of universal plethora, especially of the head.
2. Apoplexia (tena) with a leucophlegmatia over the whole body, especially in old people.
3. Apoplexia (hydrocephalus) Coming on by degrees; affecting infants, or those below the age of puberty, first with inquietude, a flight fever and pain of the head, then with flow of the pus, dilatation of the pupil of the eye, and drouthiness.
4. Apoplexia (strabismaria) taking place in those of a melancholic constitution.
5. Apoplexia (traumatica) from some external injury mechanically applied to the head.
6. Apoplexia (venenata) from powerful sedatives taken internally or applied externally.

7. Apo-
MEDICINE.

Genus XLVIII. Tetanus:—a spastic rigidity of almost the whole body.

Varying according to the remote cause, as it arises either from something internal, from cold, or from a wound. It varies likewise from whatever cause it may arise, according to the part of the body affected.

Genus XLIX. Trismus. A spastic rigidity of the lower jaw.—The species are,

1. Trismus (nascentium), seizing infants under two months old.
2. Trismus (transversum), seizing people of all ages either from a wound or cold.

Genus LX. Convulsio.—An irregular tonic contraction of the muscles without sleep.

I. Idiopathic.
II. Symptomatic.

Genus LI. Chorea, attacking those who have not yet arrived at puberty, most commonly within the 10th or 14th year, with convulsive motions for the most part of one side in endeavoring the involuntary motion of the hands and arms, resembling the gesticulations of mountebanks; in walking, rather dragging one of their feet after them than lifting it.

Genus LI. Raphania. A spastic contraction of the joints, with a convulsive agitation, and most violent periodical pain.

Genus LIII. Epilepsia. A convolution of the muscles, with sleep.

The idiopathic species are,

1. Epilepsia (cerebralis), suddenly attacking without any manifest cause, without any sense of uneasiness preceding, excepting perhaps a slight vertigo or ecotomia.
2. Epilepsia (sympathica), without any manifest cause, but preceded by the sensation of a kind of air rising from a certain part of the body towards the head.
3. Epilepsia (acrophonia), arising from a manifest irritation, and ceasing on the removal of that irritation.

Varying according to the difference of the irritating matter. And thus it may arise,

From injuries of the head; pain; worms; poison; from the repulsion of the itch, or an effusion of any other acrid humour; from crudities in the stomach; from passions of the mind; from an immediate hemorrhagia; or from debility.

Sect. II. In the vital functions.

In the action of the heart.

Genus LIV. Palpitation. A violent and irregular motion of the heart.

In the action of the lungs.

Genus LV. Asthma. A difficulty of breathing returning by intervals, with a sense of strainers in the breast, and a noisy respiration with husting. In the beginning of the paroxysm there is either no cough at all, or coughing is difficult; but towards the end the cough becomes free, frequently with a copious spitting of mucus.—The idiopathic species are,

1. Asthma (spontaneum), without any manifest cause or other concomitant disease.
2. Asthma (exanthematicum), from the repulsion of the itch or other acrid effusion.
3. Asthma (plethoricum), from the supposition of some...
some customary sanguineous evacuation, or from a spontaneous pleurisy.

Genus LVI. Dyphnia. A continual difficulty of breathing, without any sense of straitness, but rather of fullness and shortness in the breath; a frequent cough throughout the whole course of the disease.

The idiopathic species are,

1. Dyphnia (catarrhalis), with a frequent cough, bringing up plenty of viscid mucus.
2. Dyphnia (fica), with a cough for the molo part dry.
3. Dyphnia (aborea), increased by the least change of weather.
4. Dyphnia (terrea), bringing up with the cough an earthly or calculous matter.
5. Dyphnia (aqua), with scanty urine and oedematous feet, without any fluctuation in the breast, or other signs of an hydrothorax.
6. Dyphnia (pneumonica), in very fat people.
7. Dyphnia (thoracica), from an injury done to the parts surrounding the thorax, or from some bad conformation of them.
8. Dyphnia (ehrinea), from evident external causes.

The symptomatic species of dyphnia are symptoms,

1. Of diseases of the heart or large vessels.
2. Of a swelling in the abdomen.
3. Of various diseases.

Genus LVII. Pertussis. A contagious disease; convulsive frangulating cough reiterated with noisy inspiration; frequent vomiting.

Genus LVIII. Pyrofis. A burning pain in the abdomen, especially about the navel; vomiting; a contusion.

The idiopathic species are,

1. Colica (padmodica), with retention of the navel, and spasms of the abdominal muscles.

Varying, by reason of some symptoms superadded.

Hence,

1. Colica, with vomiting of excreta, or of matters injected by the anus.
2. Colica, with inflammation supervening.
3. Colica (pelionum), preceded by a sense of weight or uneasiness in the belly, especially about the navel; then comes on the colic pain, at first slight and interrupted, chiefly augmented after meals: at length more of limpid urine, for the nature of chyle is passed.
4. Colica (catarrhalis), with a bloody evacuation, in which a frequent cough, part of the abdomen, and calculi sometimes passing by the anus.

Genus LX. Cholera. A vomiting of bilious matter, especially in the nature of the remote cause; idiopathic species; but, by Dr Cullen, only varieties of the same species.

A. From a retention of the menses.
B. From a menorrhagia cruenta.
C. From a menorrhagia ferrea, or flour albus.
D. From an obstricition of the vescera.
E. From a fault of the stomach.
F. From too great fatacity.

Genus LXIII. Hydropsy. A disfife and horror at any kind of drink, and occasioning a convulsion of the pharynx; induced, for the most part, by the bite of a mad animal. The species are:

1. Hydro-
I. Hydrophobia (rabies), with a desire of biting the bylanders; occasioned by the bite of a mad animal.

II. Hydrophobia (sinais), without madness, or any desire of biting.

Order IV. Vefaniæ. Diforders of the judgment, without any pyrexia or coma.

Genus LXV. Amentia; an imbecility of judgment, by which people either do not perceive, or do not remember, the relations of things. The species are,

I. Amentia (sogenina), continuing from a person's birth.

II. Amentia (fania), from the diminution of the perceptions and memory through extreme old age.

III. Amentia (acquista), recurring in people formerly of a sound mind, from evident external causes.

Genus LXVI. Melancholia; a partial madness, without dysepia.

Varying according to the different subjects concerning which the person raves; and thus it is,

1. With an imagination in the patient concerning his body being in a dangerous condition, from flight causes; or that his affairs are in a desperate state.

2. With an imagination concerning a proferous state of affairs.

3. With violent love, without satyrisis or nymphomania.

4. With a superfluous fear of a future state.

5. With an aversion from motion and all the offices of life.

6. With refleffes, and an impatience of any situation whatever.

7. With a weariness of life.

8. With a deception concerning the nature of the patient's species.

Dr Cullen thinks that there is no such disease as that called damonomania, and that the diseases mentioned by Sauvages under that title are either,

1. Species of melancholy or mania; or

2. Of some disease by the speculators falsely ascribed to the influence of an evil spirit; or

3. Of a disease entirely feigned; or

4. Of a disease partly true and partly feigned.

Genus LXVII. Mania; universal madness.

1. Mania (mental), arising entirely from passions of the mind.

2. Mania (corpora), from an evident disease of the body.

Varying according to the different diseases of the body.

3. Mania (obscuri), without any passion of mind or evident disease of the body preceding.

The symptomatic species of mania are,

1. Paraphreny from poisons.

2. Paraphreny from fumom.

3. Paraphreny from febries.

Genus LXVIII. Oneirodynia. A violent and troublesome imagination in time of sleep.

1. Oneirodynia (alvea), exciting to walking and various motions.

2. Oneirodynia (gravans), from a sense of some weight incumbent, and preliding on the breast especially.

CLASS III. Cachexia; a depraved habit of the whole or greatest part of the body, without primary pyrexia or neuritis.

Order I. Marceors: a walking of the whole body.

Genus LXIX. Tubæ. Leanesis, athenia, hectic pyrexia. The species are,

1. Tubæ (purulenta), from an external or internal ulcer, or from a vomit.

Varying in its situation: hence,

2. Tubæ (serophylaios), in serpulphous constitutions.

3. Tubæ (venenata), from poison taken inwardly.

Genus LXX. Atrophy. lzanneis and atheenia, without hectic pyrexia. The species are,

1. Atrophy (inanitorum), from too great evacuation.

2. Atrophy (famiteorum), from a deficiency of nourishment.

3. Atrophy (ensymnina), from corrupted nourishment.

4. Atrophy (aboliium), from the functions of nutrition being depraved, without any extraordinary evacuation or caecohymia having preceded.

Order II. Intumescentia. An external tumor of the whole or greatest part of the body.

Sect. I. Alipotes.

Genus LXXI. Polyatarca; a troublesome swelling of the body from fat.

Sect. II. Fatuses.

Genus LXXII. Pneumatolus; a tense elastic swelling of the body, cracking under the hand. The species are,

1. Pneumatolus (ponạma), without any manifest cause.

2. Pneumatolus (traumatice), from a wound in the breast.

3. Pneumatolus (venenata), from poison injected or applied.

4. Pneumatolus (hydreras), with hysteric.

Genus LXXIII. Tymparnates; a tense, elastic, flororous swelling of the abdomen; colicnavis; a decay of the other parts. The species are,

1. Tymparnates (tentillina), with a tumor of the abdomen frequently unequal, and with a frequent evacuation of air relieving the tension and pain.

2. Tymparnates (abdominata), with a more evident noise, a more equable tumor, and a less frequent emission of flatus, which also gives less relief.

Genus LXXIV. Pneumometra; a flight elastic swelling in the epigaltrium, having the figures and situation of the uterus.

Sect. III. Aquosse or Hydroses.

Genus LXXV. Anasarca. A soft, inelastic swelling of the whole body, or some part of it. The species are,

1. Anasarca (fibia), from a retention of serum on account of the suppression of the usual evacuations, or from an increase of the serum on account of too great a quantity of water taken inwardly.

2. Anasarca (applicata), from a compression of the veins.

3. Anasarca (exanthematica), arising after exanthemata, especially after the erythelles.

4. Anasarca
MEDICINE.

Genus LXXXIV. Scrophula. Swellings of the conglobate glands, especially upon the neck; swelling of the upper lip and support of the nose; the face florid, skin thin, abdomen swelled. The species are,

1. Scrophula (vulgaris), simple, external, and permanent.
2. Scrophula (mesenterica), simple, internal, with paleness of the face, want of appetite, swelling of the abdomen, and unusual fetor of the extremities.
3. Scrophula (sphenidis), most simple, appearing only about the neck, for the most part proceeding from the resorption of the matter of ulcers in the head.
4. Scrophula (Americana), joined with the yaws.

Genus LXXXV. Syphilis. A contagious disease, after impure venery, and a disorder of the genitals; ulcers of the tonsils; of the skin, especially of the margin of the hair; scrophulo papule, ending in crusts and crusty ulcers; pains of the bones; exanthema.

Genus LXXXVI. Scrophula; in cold countries, attacking after putrefactive diet, especially such as is faind and of the animal kind, where no supply of fresh vegetables is to be had; athelias; stomachae; spots of different colours on the skin, for the most part livid, and appearing chiefly among the roots of the hair.

Varying in degree.

a. Scrophula incipiens.
b. Scrophula crescentis.
c. Scrophula inverteratus.
d. Varying also in symptoms.
e. Scrophula lvidus.
f. Scrophula petechialis.
g. Scrophula pallidus.
h. Scrophula ruber.
i. Scrophula calidus.

Genus LXXXVII. Elephantiasis; a contagious disease; thick, wrinkled, rough, unctuous skin, deformed of hairs, anaesthesia in the extremities, the face deformed with pimples, the voice hoarse and nasal.

Genus LXXXVIII. Lepra; the skin rough, with white, branny, and chapped ecchymoses, sometimes moist beneath, with itching.

Genus LXXXIX. Frambesis; swellings resembling fungi, or the fruit of the mulberry or raspberry, growing on various parts of the skin.

Genus XC. Trichoma; a contagious disease; the hairs thicker than usal, and twisted into inextricable knots and cords.

Genus XCI. Icterus; yellowness of the skin and eyes; white faces; urine of a dark red, tinged what is put into it of a clay colour.

The idiopathic species are,

1. Icterus (calculeus), with acute pain in the epigastric region, increasing after meals; biliary concretions voided by stool.
2. Icterus (psoridicus), without pain, after psoridic diseases and passions of the mind.
3. Icterus (hepaticus), without pain, after diseases of the liver.
4. Icterus (gravidum), arising during the time of pregnancy, and going off after delivery.
5. Icterus (infantilis), coming on in infants a few days after birth.

CLASS
M E D I C I N E.

Genus XCVI. Dysea. A diminution or total abolition of the sense of hearing. The species are,
1. Dysea (organica), from a disease in the organs transmitting sounds to the internal ear.
Varying according to the nature of the disease of the part affected.
2. Dysea (atonia), without an evident disease of the organs transmitting the sounds.
Varying according to the nature of the cause.
Genus XCVII. Paracusis; a deprivation of the hearing. The species are,
1. Paracusis (imaginaria), in which sounds coming from external objects are heard, yet it is neither distinctly nor in the usual manner.
Varying.
 a. With a dulness of hearing.
 b. With an hearing too acute and sensible.
 c. When a single external sound is doubled by some internal causes.
 d. When the sounds which a person desires to hear are not perceived, unless some other violent sound is raised at the same time.
2. Paracusis (imaginaria), in which sounds not exciting externally are excited from internal causes.
Varying according to the nature of the sound perceived, and according to the nature of the remote cause.
Genus XCVIII. Anosmia; a diminution or abolition of the sense of smell. The species are,
1. Anosmia (organica), from a disease in the membrane lining the internal parts of the nostrils.
Varying according to the nature of the disease.
2. Anosmia (atonia), without any evident disease of the membrane of the nose.
Genus XCIX. Aghellitia; a diminution or abolition of the sense of taste.
1. Aghellitia (organica), from a disease of the membrane of the tongue, keeping off from the nerves those substances which ought to produce taste.
2. Aghellitia (atonia), without any evident disease of the tongue.
Genus C. Anæsthesia; a diminution or abolition of the sense of feeling. The species from Sauvages, adopted by Dr Cullen, are,
1. Anæsthesia a spina bifida.
2. Anæsthesia plethorica.
3. Anæsthesia nafcentium.
4. Anæsthesia melanochola.

ORDER II. Dyseoria: error or defect of appetite.
Sect. I. Appetitio erronei.
Genus Cl. Bulimia; a desire for food in greater quantities than can be digested.
The idiopathic species are,
1. Bulimia (bulivum), an unusual appetite for food, without any disease of the stomach.
2. Bulimia (syncope), a frequent desire of meat, on account of a sensation of hunger threatening syncope.
5. Bulimia (emetic), an appetite for a great quantity of meat, which is thrown up immediately after it is taken.
Genus CII. Polydipsia; an appetite for an unusual quantity of drink.
The polydipsia is almost always symptomatic, and varies
Medicine.

2. Paraphonia (refracta), in which, by reason of an obstruction in the nostrils, the voice becomes hoarse, with a sound hissing through the nostrils.
3. Paraphonia (alterata), in which, on account of a defect or division of the uvula, for the most part with an hare-lip, the voice becomes obscure, harsh, and unpleasant.
5. Paraphonia (calva), in which, the voice is changed to one acute, thrill, and small.
6. Paraphonia (comata), in which, from a relaxation of the velum palati and glottis, a sound is produced during inspiration.

Genus CXIII. Pneumonia; a defect in the articulation of words. The species are,
1. Pneumonia (dyspnea), in which, the words, especi­ally the first ones of a discourse, are not easily pronounced, and not without a frequent repetition of the first syllable.
2. Pneumonia (sestam), in which, the found of the letter R is always aspirated, and, as it were, doubled.
3. Pneumonia (talis), in which, the found of the letter L becomes more liquid, or is pronounced instead of R.
4. Pneumonia (mollis), in which, the hard letters are changed into the softer ones, and thus the letter S is much used.
5. Pneumonia (balantium), in which, by reason of the tongue being large, or swelled, the labial letters are better heard, and often pronounced instead of others.
6. Pneumonia (aebeitus), in which, the labial letters cannot be pronounced at all, or with difficulty.
7. Pneumonia (tegulum), in which, on account of the division of the palate, the guttural letters are less perfectly pronounced.

Genus CXIV. Strabismus, the optic axes of the eyes not converging. The species are,
1. Strabismus (bilateralis), from a bad custom of using only one eye.
2. Strabismus (commutus), from the greater debility or mobility of one eye above the other; so that both eyes cannot be conveniently used.
3. Strabismus (acceius), from a change in the situation or shape of the parts of the eye.

Genus CXV. Contracutura; a long-continued and rigid contraction of one or more limbs. The species are,
1. Contracutura (primaria), from the muscles becoming contracted and rigid.
a. From the muscles becoming rigid by inflammation.
b. From muscles becoming rigid by fatum,
c. From muscles contracted by reason of their antagonists having become paralytic.
7. From muscles contracted by an irritating actini­mony.
2. Contracutura (articularia), from stiff joints.

Order IV. Apocynophyse. A flux either of blood or some other humour flowing more plentifully than usual, without pyrexia, or an increased impulse of fluids.

Genus CXVI. Profusio; a flux of blood.

Genus CXVII. Ephedrophia; a precursory evacuation of sweat.

Symp-
MEDICINE

Practise.

General Arrangement of Diseases.

Symptomatic epidroes vary according to the nature of the diseases which they accompany, the different nature of the sweat itself, and sometimes the different parts of the body which sweats most.

Genus CXVIII. Epiphora; a flux of the lacrimal humour.

Genus CXIX. Psalifismus; a flux of saliva.

Genus CXX. Enuresis; an involuntary flux of urine without pain. The species are,
1. Enuresis (atonicus), after diseases injuring the sphincter of the bladder.
2. Enuresis (irritata), from a compression or irritation of the bladder.

Genus CXXI. Gonorrhoea; a preternatural flux of humour from the urethra in men, with or without a desire of venery. The species are,
1. Gonorrhoea (cura) in which, without any impure venery having preceded, a humour resembling pus, without dilution or propensity to venery, flows from the urethra.
2. Gonorrhoea (impura), in which, after impure venery, an humour like pus flows from the urethra with dyuria. The consequence of this is.

Genus CXXII. Mucorrhoea; a mucous humour flows from the urethra with little or no dyuria.

3. Mucorrhoea (laxorum), in which an humour for the most part peculiar, without any erection of the penis, but with a propensity to venery, flows from the urethra while the person is awake.

4. Gonorrhoea (dermatium), in which the seminal liquor is thrown out, with erection and desire of venery, in those who are asleep and have lascivious dreams.

ORDER V. Epifcheses; suppressions of evacuations.

Genus CXXII. Obstipation; the stools either suppressed or fewer than usual. The species are,
1. Obstipation (debilium), in lax, weak and for the most part dyspeptic persons.
2. Obstipation (rigidum), in people whose fibres are rigid, and frequently of an hypochloriac disposition.
3. Obstipation (addictus), with symptoms of the colic ill, 2d, 4th, and 7th, abovementioned.

Genus CXXIII. Ichuria; an absolute suppression of urine. The species are,
1. Ichuria (renalis), coming after a disease of the kidneys, with pain, or troublesome sense of weight in the region of the kidneys, and without any swelling of the hypogallithum, or desire of making water.
2. Ichuria (urethralis), coming after a disease of the kidneys, with a sense of pain or uneasiness in some part of the ureter, and without any tumor of the hypogallium, or desire of making water.
3. Ichuria (vesicula), with a swelling of the hypogallium, pain at the neck of the bladder, and a frequent stimuli to make water.
4. Ichuria (urethralis), with a swelling of the hypogallium, frequent stimuli to make water, and pain in some part of the urethra.

All these species are subdivided into many varieties, according to their different causes.

Genus CXXIV. Dyuria; a painful, and somehow impeded emission of urine. The species are,
1. Dyuria (ardens), with heat of water, without any manifest disorder of the bladder.

2. Dyuria (irritata), with signs of a stone in the bladder.

3. Dyuria (compressiva), from the neighbouring parts pressuing upon the bladder.

4. Dyuria (bolegilia), from an inflammation of the neighbouring parts.

5. Dyuria (irritata), with signs of a stone in the bladder.

6. Dyuria (mucofa), with a copious excretion of mucus.

Genus CXXV. Dysermatismus; a flux, impeded, and insufficient emission of semen in the venereal act. The species are,
1. Dyspermatismus (urethralis), from discharges of the urethra.

2. Dyspermatismus (nodosus), from knots on the cavernous bodies.

3. Dyspermatismus (propiorum), from too narrow an orifice of the prepuce.

4. Dyspermatismus (mucofa), from mucus obstruing the urethra.

5. Dyspermatismus (hypertonicus), from too strong an erection of the penis.

6. Dyspermatismus (epilepticus), from a spasmodic epilepsy happening during the time of coition.

7. Dyspermatismus (episodius), from an imbecility of the parts of generation.

8. Dyspermatismus (rifluous), in which there is no emission of semen, because it returns from the urethra into the bladder.

Genus CXXVI. Amenorrhoea. The menses either falling more sparingly than usual, or not at all, at their usual time, without pregnancy. The species are,
1. Amenorrhoea (amastis), in those arrived at puberty, in whom, after the usual time, the menses have not yet made their appearance, and many different morbid affections have taken place.

2. Amenorrhoea (suppressalis), in adults, in whom the menses which had already begun to flow are suppressed.

3. Amenorrhoea (difficultis), in which the menses flow sparingly, and with difficulty.

ORDER VI. Tumores; and increased magnitude of any part without phlogosis.

Genus CXXVII. Aneurisma; a soft tumour, with pulsation, above an artery.

Genus CXXVIII. Varix; a soft tumor, without pulsation, above a vein.

Genus CXXIX. Ecchymosis, a diffused, and scarce eminent, livid tumor.

Genus CXXX. Scirrhus; an hard tumor of some part, generally of a gland, without pain, and difficultly brought to suppuration.

Genus CXXXI. Cancer. A painful tumor of a scirrhous nature, and degenerating into an ill-conditioned ulcer.

Genus CXXXII. Bubo; a suppurating tumor of a conglobate gland.

Genus CXXXIII. Sarcoma; a soft swelling, without pain.

Genus CXXXIV. Verruca; a harder scabrous swelling.

Genus CXXXV. Clavus; a hard, lamellated thicknes of the skin.

Genus
MEDICINE.

Genus CXXXVI. Lupia. A moveable, soft tumour below the skin, without pain.

Genus CXXXVII. Ganglion. An harder moveable swelling, adhering to a tendon.

Genus CXXXVIII. Hydatis; a cuticular vessel filled with aqueous humour.

Genus CXXXIX. Hydrarthrus; a most painful swelling of the joints, chiefly of the knee, at first scarce elevated, of the same colour with the skin, diminishing the mobility.

Genus CXLI. Hernia; an elevation of some part out of its proper situation.

Genus CXL. Exfoliosis; a hard tumor adhering to a bone.

ORDER VII. Exacerbatos.

Genus CXLII. Tinea; the removal of the mobility.

Genus CXLIII. Luxatio; the removal of a joint.

Genus CXLIV. Ulcus.

Genus CXLV. Vomitus; a profuse vomiting of a fluid part.

Genus CXLVI. Peritonitis; a fullness of the abdomen, adhering to a tendon.

ORDER VIII. Diaphragm.

Genus CXLVII. Tumors, infected; a fluid tumour, which changes to a white friable scurf.

Genus CXLVIII. Phlegmon; a large swelling, adhering to a tendon.

Genus CXLIX. Fractura; bones broken into large fragments.

Genus CLI. Caries an exulceration of a bone.

Having thus presented to our readers Dr Cullen's general systematic view of all the diseases to which the human body is subjected, we come next to give a more particular account of the most important affections, treating of them in the order which Dr Cullen has arranged them.

CLASS I. PYREXIAE, or the Febrile Diseases.

ORDER I. FEVERS.

Or FEVERS strictly so called.

Sav. I. INTERMITTENTS.

Intermittentes of some authors; Sav. Clas. II. Order III. Lin. Clas. II. Order II. Fag. Clas. I. Order i. Sagar. Clas. XII. Order III.

The remittentes of others, Sav. Clas. II. Order II. Sagar. Clas. XII. Order II.

Exacerbantes, Lin. Clas. II. Order III.

Continue, Fag. Clas. I. Order II.
3. Causes of this disease, and proper subject to it. The
 genuine tertian attacks men rather than women, young
 people rather than old; the latter being more subject to
 anomalous tertians. It likewise affects the fiery and aciel, rather than the lazy and indolent.
 Thos., however, who are apt to nauseate their meat,
 fall easily into a tertian fever. The cause, according to
 Dr Cullen, is the miasma of marathes, and that
 only. Other physicians have taken in many more
 causes, almost every thing which debilitates the
 body: but the Doctor denies that any of these,
 though they may dispoile the body for receiving the
disease or may augment it, can by any means pro-
duce it without the concurrence of the marsh miasma;
and it cannot be denied, that it is a disease almost
peculiar to marathes. Thus we find it very fre-
quent in the fenny counties of Britain, although in
other parts of the island it may be considered as a
rare disease.

3. Prognosis. The genuine simple tertian, unless
improper medicines be administered, is generally very
easily cured; nay, the vulgar reckon it of such a fa-
luatory nature, that after it they imagine a person be-
comes more strong and healthy than before. Hippo-
crates has observed, that these fevers terminate of
their own accord after seven or nine paroxysms.
Juncker tells us, that it frequently terminates before
the seventh paroxysm, but rarely before the fourth.
He also denies that any thing critical is to be ob-
served in its going off; but in this he differs from Vogel,
who tells us, that the urine, for some days after the
fever is quite gone off, appears flimsy, and lets fall much
sediment. The latter also informs us, that besides the
common crisis by sweat and urine, the tertian hath one
peculiar to itself, namely, dry feebly ulcers breaking
out upon the lips. These sometimes appear about the
third or fourth paroxysm; and then we may venture
to foretell that the disease will go off spontaneously
after the seventh. But though the disease be never
dangerous, in cold climates at least, when properly
reated; yet the improper use of hot and stimulat-
ing medicines may change it into a continued fever, more
or less dangerous according to the quantity of medi-
cines taken and the constitution of the patient; in
which case the prognosis must be regulated by the
particular symptoms which occur. In warm climates,
however, the tertian fever may be considered as a
much more dangerous disease; and unless the most
powerful medicines be employed, the patient is in dan-
ger of falling a victim to every paroxysm.

A variety of theories have been proposed for ex-
plaining the phenomena of this affection; but we may
easily affirm, that every thing hitherto said upon the sub-
ject is highly unsatisfactory. For although it be now
almost universally admitted, that this fever does arise
from the effluvia of marathes, yet in what manner the
action of these effluvia induces fever, and particularly
why this fever returns in regular paroxysms, are ques-
tions with regard to which we are still totally in the
dark. Dr Cullen, with much ingenuity, attempted to
prove, that the remote causes of this; as well as of
other fevers, operated by inducing a state of debility;
that this debility gives rise to ipasm, induces increased
action, from which the phenomena are to be explained.

This theory is liable to no less numerous and unfor-
table objections than the exploded hypotheses
which have before been propounded by others. For it is
an undeniable truth, that debility often exists, even to
the highest imaginable degree, without any fever; and,
that when fever has taken place, the debility is often much
greater after it is entirely gone than at any period
during its course. When ipasm and increased action do
take place, we have no reason to view them in any other
light than merely as symptoms of the disease; and
while they are often absent in this affection, they fre-
cquently occur in others where the fevers, anxiety,
and other characteristic symptoms of fever are entirely
absent; and, upon the whole, a probable or rational
theory of intermittents, as well as of other fevers, still
remains to be discovered.

Care. The treatment of all genuine intermittent
diseases whether tertiana, quotidian, or quartana,
being almost precisely the same, the general method of cure appli-
cable to them all may here be given, to which it will be
easier to refer when we come to describe the others.

In treating intermittent fevers, physicians have
formed indications of cure according to their dif-
frent theories. The followers of Boethave, Stahl,
&c., who imagined that the disease proceeded from
a former or other disorders in the blood, always thought it
necessary to correct and evacuate these pessant humours
by emetics and purgitives before they attempted
to stop the disease by the peruvian bark or any
other medicine. The bark, indeed, among some,
forms to be held in very little estimation by them; since
Vogel affirms, that this medicine, instead of delivering
the preference to have the preference of all other febrifuge medicines,
ought rather to be ranked among the lowest of the whole;
and for this reason he ascribes the cures, said
to be obtained by the use of the Peruvian bark, entirely
to nature.

According to Dr Cullen, the indications of cure in
intermittent fevers may be reduced to the following.

1. In the time of intermission, to prevent the return
 of the paroxysms.

2. In the time of paroxysms, to conduct the patient
 in such a manner as to obtain a final solution of the
disease.

3. To take off certain circumstances which might
 prevent the fulfilling of the two first indications.

The first indication may be answered in two ways.
1. By increasing the action of the heart and arteries
 some time before the period of accession, and support-
 ing that increased action till the period of accession be
 over, and thus to prevent the recurrence of that atony.
 and ipasm of the extreme vessels, which he thinks give
 occasion to the recurrence of paroxysms. 2. By sup-
 porting the tone of the vessels, and thereby preventing
 atony and the consequent ipasm, without increasing
 the action of the heart and arteries, the recurrence
 of paroxysms may be prevented.

The action of the heart and arteries may be increas-
ed, 1. By various stimulent remedies internally given
or externally applied, and that without exciting sweat.
2. By the same remedies, or others, managed in such
 a manner as to excite sweating and to support that
sweating till the period of accession be for some time past. 3. By emetics, supporting for the same time the tone and action of the extreme vessels.

The tone of the extreme vessels may be supported without increasing the action of the heart and arteries, by various tonic medicines; as, 1. Altrigents alone. 2. Bitters alone. 3. Altrigents and bitters conjointly. 4. Altrigents and aromatics conjointly. 5. Certain metallic tonics: and, 6. Opiates. A good deal of exercise, and as full a diet as the condition of the patient's appetite and digestion allow of will be proper during the time of intermission, and may be considered as belonging to this head. Although many particulars in this plan of cure are deduced from Dr Cullen's theory, yet there can be no doubt that the object chiefly to be aimed at is to employ such remedies during the intermissions as will prevent a recurrence of the paroxysm. Of all the remedies hitherto employed with this intention, the most celebrated, perhaps the most certainly effectual, is the Peruvian bark; or, to speak more properly, the bark of the Cinchona officinalis of Linneus. But it must be observed that good effects are only to be expected from this medicine when given in subhaunces and in large quantity; and for its use the following rules or observations have been given.

1. The bark may safely be employed at any period of interrupting fevers, providing that at the same time there be neither a phlegmatis diathesis prevailing in the system, nor any considerable or fixed congestion present in the abdominal viscera.

2. The proper time for exhibiting the bark in intermittent fevers is during the time of intermission, and it is to be obtained from in the time of paroxysms.

3. In the case of genuine intermitents, while a due quantity of bark is employed, the exhibition of it ought to be brought as near to the time of accession as the condition of the patient's stomach will allow.

4. In all cases of intermitents it is not sufficient that the recurrence of paroxysms be stopped for once by the use of the bark; a relapse is commonly to be expected, and should be prevented by the exhibition of the bark repeated at proper intervals.

The advantage of administering the bark as early as possible, was fully ascertained by Dr Lind in the year 1765, 66, and 67, during an uncommon prevalence of intermitents. When the disease was stopped by the bark immediately after the first or second fit, which was the case with 200 of the Doctor's patients as well as himself, neither a jaundice nor dropsy ensued; whereas, when the bark could not be administered, on account of the imperfect remission of the fever, or when the patient had neglected to take it, either a dropsy, jaundice, or continual head-ach, were the certain confquences; and the violence of the disease was in proportion to the number of the preceding fits, or to the continuance of the fever. By every paroxysm the dropical swellings were visibly increased, and the colour of the skin rendered of a deeper yellow. When the fever continued a few days without remission, the belly and legs generally swelled; a violent head-ach, likewise, and vertigo; for the most part deftroyed the patience, so that some, even after the fever had left them, were not able to walk across their chamber for a fortnight or three weeks. When the returns of the fever were regular and even, but flight, four or five fits of a simple tertian were sometimes followed by the most dangerous symptoms; especially in the year 1765, when these fevers raged with the greatest violence. If, as frequently happened, a dropical patient relapsed into the ague, there was an absolute necessity for putting an immediate flrop to it by the bark; and in upwards of 70 such patients, Dr Lind observed the most beneficial effects to accrue from this practice. He never prescribed the bark until the patient was free from all symptoms of the fever; but in that case, without regard to a cough, or any other chronic indisposition, he ordered it to be given in large doses.

The bark has been often observed to fail in removing intermitents, from not continuing the use of it for a sufficient length of time, from administering it in too small a dose, or from giving it in an improper form. It was a prevailing opinion, that an ounce, or an ounce and a half, of the bark, taken during one intermission, is sufficient to prevent the return of another paroxysm. But this is not always the case; for a severe fit will often attack a patient who has taken such a quantity. When this happens the patient ought to persevere during the following intermissions, with an increase of the dose, till five or six ounces at least have been taken. The medicine also ought not to be omitted as soon as one fit is stopped, but should be continued in a smaller dose, and after longer intervals, for at least ten days or a fortnight. Even for several months after the disease is entirely removed, it would be advisable to take a little bark occasionally in damp weather, or during an easterly wind, to prevent a relapse. Where the intervals between the fits are short, as in quotidiens and double tertians, from one to two drachms of it ought to be taken every two or three hours.

The form in which this medicine is administered is of some consequence. Mucilages and syrups have been recommended to conceal the taste of it; but, from various experiments, Dr Lind found nothing more effectual for this purpose than small-beer or milk, especially the latter. A drachm of bark mixed with two ounces of milk, and quickly drank, may easily be taken by a person of the most delicate taste, and by washing the mouth afterwards with milk there will not remain the least flavour of the bark; but if the mixture be not drank immediately, the bark will impart a bitter taste to the milk. This medicine is commonly given in electuaries or bolufes; but Dr Lind observes, that in these forms it proves much less efficacious than when administered in juleps or draughts, with the plentiful addition of wine or spirits. He has remarked, that six drachms of powdered bark, given in a julep, confisting of one fourth or one third of brandy, is as effectual as an ounce of the powder in the form of an electuary, and proves less disagreeable to the stomach. For patients unaccustomed to wine or spirits, each draught should be warmed with spiritus failis ammoniacci, or tinct. myrrh. by both of which the efficacy of the bark is increased. Dr Lind is also fully convinced that wine or spirits improve the virtues of the bark much more than elixir vitrioli, tinct. rofar. or such other medicines as have been recommended by different physicians.

For those who nauseate the bark from a weakness of
Practice.

MEDICINE:

Febra.

of the stomach or other cause, he advises it to be given in clysters, in which form it is as efficacious as when taken by the mouth. For this purpose the extract is most proper with the addition of a sufficient quantity of the tinctura thebaica, in order to its being longer retained. For children labouring under intermittents in children, even when externally applied, the magnesia frequently

by putting the powder of it into a quilted waistcoat. Of it he used; if this with more certainty than an ounce of the bark is found to remove the disease. It generally gives a

relief to the head, takes off the burning heat of the fever, and occasions a profuse sweat. This sweat is attended with an agreeable soothness of the skin, instead of the burning fenation which effects patients sweating in the hot fit, and is always much more copious than in those who have not taken opium.

It often produces a soft and refreshing sleep to a patient tortured in the agonies of the fever from which he awakes bathed in sweat, and in a greater measure free from all complaints.

The Doctor has always observed, that the effects of opium are more uniform and constant in intermittent fevers than in any other disease, and are more quick and sensible than those of any other medicine. An opiate thus given soon after the commencement of the hot fit, by abating the violence and lessening the duration of the fever, preserves the constitution so entirely uninjured, that, since he used opium in agues, a dropsey or jaundice has seldom attacked any of his patients in those diseases. When opium did not immediately abate the symptoms of the fever, it never increased their violence. On the contrary, most patients reaped some benefit from an opiate given in the hot fit, and many of them bore a larger dose at that time than they could do at any other. The Doctor affures us, that even a delirium in the hot fit is not increased by opium, though opium will not remove it. Hence he thinks it probable, that many symptoms attending these fevers are phaenomonic; but more especially the head-ach. However, if the patient be delirious in the fit, the administration of the opiate ought to be delayed until he recovers his senses, when it will be found greatly to relieve the weakness and faintness which commonly succeed the delirium. Dr. Lind is of opinion, that opium in this disease is the balm preparative for the bark; as it not only produces a complete intermixture, in which case alone that remedy can be safely administered; but occasions such a salutar and copious evacuation by sweat, as generally to render a much less quantity of bark requisite. He commonly prescribes the opiate in about two ounces of tinctura thebaica, when the patient is convulsive, who is to take the bark immediately after the fit. By these means the paroxysm is shortened, and the intermissions are cleansed,
previous to the administration of the bark; as the opiate doth not prevent, but only somewhat retards, the operation of the purgative. When a vomit is given immediately before the paroxysm, the administration of the opiate should be postponed till the hot fit is begun.

In the administration of the Peruvian bark, care should be taken that it be of a good quality. And different opinions have been entertained with respect to the choice, even where there is no reason to believe that it has been adulterated by the mixture of other articles. For a long time, the preference was given to small quilled pieces of a pale coloured bark; but of late the red bark, which is generally in larger masses, or of an apparently coarser texture, and evidently of a more relinous nature, has been highly celebrated by Dr Saunders and others. And in cases where it does not disagree with the stomach or cause loose motions, it is admitted by the most accurate observers to be more powerful in preventing the return of intermittents. Whether the red bark be the product of a different species of the cinchona, or be obtained as well as the pale quilled bark from the cinchona officinalis, is not yet ascertained with sufficient accuracy.

A species of cinchona, distinguished by the title of cinchona Jamaicensis, has been discovered in Jamaica and other islands in the West Indies. A very accurate description of it has been given by Dr Wright of Jamaica in the Philosophical Transactions of London. The bark of this species also has been recommended in the cure of intermittents; but the advantages of it have not hitherto been sufficiently confirmed by experience.

See CINCHONA AND JAMAICAN BARK.

The barks of various trees readily cultivated in Britain, particularly different species of the salix, the prunus, the fraxinus, and the quercus, have by some been represented as no less efficacious than the Peruvian bark. But we may safely venture to assert, that although several of them may produce some power in stopping intermittents, yet that none hitherto tried can be considered as in any degree approaching to the elachona in point of efficacy.

But although the Peruvian bark be the best cure for intermittents hitherto discovered, yet while it can by no means be represented as the only cure, it is very certain that other remedies have in different cases succeeded after the cinchona has failed. Cures have often been obtained by the use of different aromatic, bitters, and astringent. Many articles from the mineral kingdom also have been employed with advantage. And intermittents have unquestionably been in certain cases stopped by different preparations of iron, zinc, copper, lead, and mercury. But all of the articles of this nature, arsenic has of late been the most celebrated. Arsenic is on good grounds conjectured to be the basis of an article much employed in the cure of intermittents in some of the countries where they are most prevalent, and sold under the title of the toffelfe afque drop. The great success attending the use of this article, led Dr Fowler, an ingenious physician of Stafford, to examine it with particular attention. And in a treatise which he has lately published, entitled Medical Reports on the effects of arsenic in the cure of agues, he has given a formula for an arsenical solution, which he has found very successful in affections of this kind, and which is probably very nearly Tertian;

the same with the talfelfs aque drop. Dr Fowler's mineral solution, as he styles it, is found by dissolving 64 grains of arsenie and as much fixed vegetable alkaline salt in a pound of distilled water. This solution is given in doses from three to 12 drops, varied according to the condition of the patient, and repeated two or three times a-day. And where the Peruvian bark has failed in stopping intermittents, it seems to be one of the most powerful remedies yet discovered. But after all remedies prove ineffectual, intermittents are often stopped by change of season and of situation.

But besides the remedies employed in tertian fevers and other intermittents, with the view of preventing the return of paroxysms, it is often also necessary to employ powerful articles with other intentions, particularly to mitigate and shorten the paroxysm when present; to obviate urgent symptoms, especially those of an inflammatory or putrid nature; and to obtain a complete appresia or intermission from fever after the paroxysm has ceased. With these intentions, recourse is not unfrequently had to emetics, laxatives, blood-letting, blisters, opium, diuretics, and sudorifics, as the circumstances of the case may require.

The Irregular or Spurious Tertian.

Sp. I. var. 1. B.

The characteristic marks of this fever are, that its paroxysms last longer than 12 hours, and consequently its inclines more to the quotidian or continued fever than the former. Its paroxysms have no stated hour of attacking. The cure, however, is precisely the same with that above described, observing the proper caution already mentioned with regard to the use of the bark.

The Double Tertian.

Sp. I. var. 2. C.

Duplicata, Lin. 18.

The double tertian comes on every day; but differs from the quotidian in so far, that its paroxysms do not answer to each other singly, but alternately. The first day, for instance, the fit will come on in the forenoon, the second in the afternoon, the third in the forenoon, and the fourth in the afternoon.

Of these fevers we shall give the following description from Cieghorn's treatise on the diseases of Minorca: "They are called double tertians when there are two fits and two intervals within the time of each period. But commonly there is some difference between the two fits, either in respect of the hour they come at, the time of their duration, or the nature and violence of their concomitant symptoms. Some double tertians begin in this manner:—On the evening of Monday, for example, a slight fit comes on; and goes off early next morning; but on Tuesday, towards the middle of the day, a more severe paroxysm begins, and continues till night. Then there is an interval to Wednesday evening, when a slight fit commences a new period of the fever, which proceeds in the same manner as the first; so that (according to the way physicians calculate the days of disease, by beginning
to reckon from the first hour of their invasion, both paroxysms happen on the odd days, while the greatest part of the even days is calm and undisturbed. But in most double tertians the patient has a fit every day of the disease; the severest one commonly appearing at noon upon the odd days, the flight one towards evening on the even days; though sometimes the worst of the two fits happen on the even days.

There is a tertian fever sometimes to be met with, during each period of which there are three different fits, and as many intervals. For example, towards Monday noon the patient is feized with a paroxysm, which declines about five or six o'clock the same evening: a few hours after, another fit begins, and continues until morning; from which time there is an interval to Tuesday evening, when a third fit comes on, and lasts most part of the night. On Wednesday there are again two paroxysms, as on Monday and on Thursday, like that of Tuesday; and thus the fever goes on with a double fit on each of the odd days, and a single fit on the even days.

In double tertians, that interval is the most considerable which follows the severer fit; for the flight fit oftener ends in a remission than intermission, and frequently lingers till the other approaches: Hence it is, that the night preceding the violent fit is much more restless than that which comes after it, as has been observed by Hippocrates. In double tertians, the violent fit often comes on a little earlier in each period, than the other, which increases the disease.

Concerning the cure of these fevers Dr. Cullen observes, that though no entire apyrexia occurs, the bark may be given during the remissions; and it should be given even though the remissions be incomconsiderable; if, from the known nature of the epidemic, intermissions or considerable remissions are not to be expected, and that great danger is apprehended from repeated exacerbations.

The Sleepy Tertian. Sp. l. var. 3. G.

Tertiana carotica, Sauv. fp. 10. Werdlaph.

Tertiana hemiplusica, Sauv. fp. 20. Werdlaph.

Quotidiana fopora, Sauv. fp. 8 Car. Pif.

February caput impetens, Sydenham, ep. ad R. Brady.

This, according to Vogel, is a most dangerous species, and very commonly fatal; for which reason he ranks it among those intermitents which he calls magnum. Sometimes he tells us the alarming symptom of a sleepiness comes on, not at the beginning of the disease, but will unexpectedly occur during the third fourth, fifth, or sixth paroxysm. It commonly begins with the cold fit, and continues during the whole time of the paroxysm, and, becoming stronger at every succeeding one, at last terminates in a mortal apoplexy. Sometimes fevers of this kind rage epidemically. Vogel relates, that he saw a simple tertian change into one of these dangerous fevers. The patient was a woman of a delicate constitution, and the symptom appeared in consequence of her being put in a violent passion: however, it occurred but once, and he recovered.

Hoffman mentions a carus in a double tertian occurring seven times without proving mortal; though Vogel says, that the powers of nature are very seldom sufficient to conquer the disease.

In 1678, Dr. Sydenham tells us that intermitents raged epidemically at London, where none had appeared before from 1664. Of them "it is to be noted (says he), that though quartains were most frequent formerly, yet now tertians or quotidiens were most common, unless the latter be intituled double tertians; and likewise, that though these tertians sometimes began with chills and shivering, which were succeeded first by heat, and soon after by sweat, and ended at length in a perfect intermission, returning again after a fixed time, yet they did not keep this order after the third or fourth fit, especially if the patient was confined to his bed and used hot cardinals, which increase the disease. But afterwards this fever became so unusually violent, that only a remission happened in the place of an intermission; and approaching every day nearer the species of continued fevers, it seized the head, and proved fatal to abundance of persons."

From this description of Sydenham's we may have an idea of the nature of the disease. As to its cure,
he strongly recommends the bark; telling us, that, even in the most continued kind of intermittent s, "the nearer the intermittent approaches to a continued fever, either spontaneously, or from using too hot a regimen, so much the more necessary is it to exhibit larger quantity of the bark; and that he took advantage of a remission, though ever so small.

The Spasmodic or Convulsive Tertiana. Sp. I. var. 3. II

Tertiana hysterica, Sauv. fp. 8. Wedel. A. N. C.

Hysteria fibrifica, Sauv. G. 135. fp. 8. A. N. C.
Dec. I. Ann. II

The patient was a farmer's son about 26 years of age, of a strong plethoric habit of body. He had laboured under an ague half a years, and had taken a great deal of bark. While he was telling his case to the surgeon (Mr Baine of Pembroke), he was suddenly taken with a violent flamping of his feet; and the convulsions gradually ascended from the soles of the feet to his legs, thighs, belly, back, and shoulders. His head was then most violently convulsed, with a total deprivation of speech; but he had a moist discoloured vescication, that might have been heard in the soles of the feet, as well as in his legs, thighs, belly, back, and shoulders. His head was then most violently convulsed, and the next symptoms of asthma, in others with those of hysteric, in others with convulsions. Where the symptoms of asthma occur, the disease must be treated with diuretics and antispasmodics joined with the bark. In the hysteric asthma the fit comes on with cold, yawning, cardialgia, terror and dejection of mind. The disease is to be removed by mild aperients and antihysteric joined with the bark.

Of the convulsive tertian we have a most remarkable instance in the Edinburgh Medical Essays, Vol. V.

The patient was a farmer's son about 26 years of age, of a strong plethoric habit of body. He had laboured under an ague about 2 years, and had taken a great deal of bark. While he was telling his case to the surgeon (Mr Baine of Pembroke), he was suddenly taken with a violent flamping of his feet; and the convulsions gradually ascended from the soles of the feet to his legs, thighs, belly, back, and shoulders. His head was then most violently convulsed, with a total deprivation of speech; but he had a moist discoloured vescication, that might have been heard in the soles of the feet, as well as in his legs, thighs, belly, back, and shoulders. His head was then most violently convulsed, and the next symptoms of asthma, in others with those of hysteric, in others with convulsions. Where the symptoms of asthma occur, the disease must be treated with diuretics and antispasmodics joined with the bark. In the hysteric asthma the fit comes on with cold, yawning, cardialgia, terror and dejection of mind. The disease is to be removed by mild aperients and antihysteric joined with the bark.

The Eruptive Tertian. Sp. I. var. 3. I

Tertiana petechialis, Sauv. fp. 3. Donati. Lauter.
Tertiana scorbutorica, Wedel. A. N. C. Doc. I. A.

This species of tertian is accompanied with red or livid blotches on the skin, or an eruption like that occasioned by the stinging of nettles. In the latter case Dr Clegborn says the disease is very dangerous; and as the former indicates an incipient dilution and putrefaction of the blood, it must also be reckoned of very dangerous tendency.

The Inflammatory Tertian. Sp. I. var. 3. K

Tertiana arthritica, Sauv. fp. 5. Morton. Lautt.

Sauvages informs us, that he has seen a true and genuine pleurisy having all the pathognomonic signs of the disease, but assuming the form of an intermittent; that is, the patient is one day affected with the pleuris, and the next seemingly in perfect health. He also tells us, that in the month of May 1760 a tertian raging epidemically, which after the third fit imitated a pleuris, the pain of the side and difficulty of breathing coming regularly on, and the fever from an intermittent becoming remittent; the blood had also the same appearance with that of pleuritic persons, and the dæmper yielded to bleeding and gentle cathartics.—Morton also informs us, that he has observed similar disorders an hundred times over, which were always certainly and safely cured by the Peruvian bark.

The Tertian complicated with other Disorders, Sp. I. var. 4.

Tertiana fpphilistica, Sauv. fp. 17. Deidier.

The scorbustic tertian, according to Sauvages, is exceedingly anomalous, its periods being sometimes much anticipated, and sometimes much postponed. It is exceedingly obllinate, and will return if the body be not cleared of its febrifuge taint. The patient is affected with lancinating pains of a wandering nature. The urine lets fall a dusky red sediment, or a thick branny matter is copiously scattered up and down in it, feemingly tinged with blood. The usual symptoms of scurvy, viz. livid spots, and rotten fetid gums, also frequently occur. For this the Peruvian bark, is very useful, both as a febrifuge and antificrotic.

A tertian accompanied with worms is taken notice of by Sir John Pringle in his treatise on the diseases of the army. The worms, he tells us, were of the round kind; and though we are by no means to reckon them the cause of the fever, they never failed to make it worse, occasioning obstinate gripings or fieknefs at stomach. In these cases fitches were frequent; but, being flatulent, were not often relieved by bleeding. The worms were discharged by vomiting
as well as by foool. For discharging these worms, he commonly gave half a drachm of rhubarb with 12 grains of calomel; without observing any inconvenience from such a large dose of mercury. Anthelmintics, which act slowly, had little chance of doing good; for though worms will sometimes lie long in the bowels without giving much uneasiness to a person otherwise well, yet in fever, especially one of a putrid kind (to which his intermitents always seemed to incline), the worms being disturbed by the increase of heat, and the corruption of the humour in the prime viti, begin to move about, and struggle to get out. Lancifus, who makes this remark, adds, that upon opening the bodies of some who had died at Rome of fevers of this kind, wounds were found in the intellines made by the biting of the worms; nay, many cafes in which the worms escaped by the patient's mouth, though there had been no previous retching to bring them up. One soldier was thrown into violent convulsions, but was cured by the above-mentioned powder.

The Tertian varied from its Origin. Sp. I. var. 5.

Hoffman, II. p. 12.

The existence of fevers of this kind, as we have already observed, is denied by Dr Cullen; the accidental fever of Sauvages was said to arise from any flight error in the non-naturals, and consequently was very eaily cured. That which arose from the repetition of the itch, was cured as soon as the eruption returned.

The Tertian with only remission between the fits. Sp. II.

Tritreus, Lin. 21.
Hemitritreus, Lin. 23.
Tertiane remittentes et continue Auditorum.
Tertiane subintantes, proportionate, subcontinuæ, Tertiis.
Tertiana subcontinua, Sauv. fp. 19.
Quotidianæ deceptæ, Sauv. fp. 2.
Amphitheræa semiquintana, Sauv. fp. 24.
Tritreophya deceptæ, Sauv. fp. 10.
Cauros Hippocratis.
Tritreophya caulis, Sauv. fp. 2.
Febres ardens Boehrbaevis, aph. 738.
Tertiana periclorous, que simulata tertiana circuitus effugie lethalis, et mille accidentibus periculosissimis implicata, exifiit. Lud. Mercatus.
Tertiana peltientis, P. Sal. Doerferi.
Languor Pannonicus, Cober.
Amphitheræa Hungarica, Sauv. fp. 10.
Hemitritreus peltiens, Schenck. ex Corn. Gamma.
Febres peltientes Egyptianus, Aphiæ.
Febres tertiana epidemicæ, Bartholin.
Febris epidemica Urbevetana, *Lancet.* de noxis pal. effluv. II. c. 3.

The remittent fevers are much more dangerous than the true intermittents, as being generally attended with much greater debility of the nervous system and tendency to putrefaction in the fluids than the latter. Sauvages divides his tritephusa, a remittent tertian, into the following fpecies.

1. *Tritephusa fynceopalis,* or that attended with fainting. It begins like a tertian, with cold succeeded by heat and profuse sweating; but attended with much more dangerous symptoms, such as cardialgia, enormous vomiting, great weakness, small contracted pulse, coldness of the extremities, and, unless timely affilience be given, kills during the second or third paroxism.

2. The *caufa,* or burning fever of Hippocrates, returns every third day without any new fenation of cold; and is attended with great thirst, heat, but without diarrhrea or sweat, and continues only for one week or two at the utmost. It attacks chiefly young people of a robust and bilious habit of body, who have been accusto med to much exercife, and exposed to the fun during the heats of summer, and have also used a phlogiflic regime. The tongue is dry, sometimes black; the urine of a red or flame colour; together with pain of the head, anxiety, and sometimes other symptoms ill more dangerous.

3. *Tritephusa Vratilavieffis,* was a pestifential difeafe occasioned by famine, during which the people fed on putrid aliment: the air was infected by the vaft numbers of bodies of thofe slain in battle, and the inhabitants were also dejected by reafon of being deprived of their harvest and other calamities; to all which was added the continuance of a calm in the atmosphere for a long time. It began with an acute fever, lepia or coldness of the external parts and fenation of burning heat inwardly; general weakness, pain of the head and pre cordia; feros or bilious diarrhrea; a delirium, in some pursuance, and accompanied with a dread of being exposed to the air; on the second day the thirt was violent, attended with a bilious vomiting as well as diarrhrea, tough vifcid fputting, fainting, burning heat in the bowels, the tongue dry and feeming as if burnt with a hot fyrup, a fuppression of the voice, anxiety, fuppor; after which quickly followed convulsions and death. In some fevers a lepia came on with an exceeding great cold of the extremities, prefently followed by an intolerable heat of the vitfera, with symptomatic fweats, violent diarrhrea, followed by a very ichy military eruption. On the fourth day came on with the copious fweats, fphism of the lower jaw, naufea, involuntary paffing of urine, flight delirium, a flux of ichorous matter from the noftrils, and exceeding tough fputting, an epilepsey, and death. Profeflor Hahn, who gives the Hiftory of this difeafe, was himself attacked by it, and fuffered in the following manner. On the first day was a violent feverish paroxism without rigor, a sharp pain in the occiput, and immediately an inflammatory pain over the whole head; the feet were extremely cold, and the extremities rigid with fphism. The pain continued to increafe daily to such a degree, that the patient took his own life.

4. *Tritephusa typhodes.* The principal fymptom of this fever was a continual fweat with which the patients were almoft always wet; with paroxysms returning every third day. Sauvages tells us, that he had twice an opportunity of obferving this fever; one was in the teacher of an academy, about 40 years of age, and of a melancholic temperament. He fweated every other night fo plentifully, that he was obliged to change his linen nine times; and even on the intermediate days was never perfectly free of fever, and had his skin moistened with fweat. The other was a woman who went about in man's cloathes, and was disco vered only after her death. The difeafe began with a flight fenation of cold, after which the fweat left for eight hours. It was attended with the highest debility, anxiety, and at the fame time an infatiable hunger.

5. *Tritephusa eludes,* was an inflamatory epidemic, but not contagious, terminating about the 14th or 21st day. The difeafe came on in the night-time, with disturbed reft, universal weakness, watchings, great heat and fweat, redness of the face and almoft of the whole body, fparking eyes, the tongue dry and white; a hard, tender, and coupled pulse; about the third day a kind of frenzy frequently came on with the feverish paroxysm, the forerunner of an universal military eruption; or, what was worse, with purple spots to clofe together, that they looked like an erupfion...
of the whole body. Sometimes blisters of the size of small pearls, filed with acrid serum, appeared on the neck, armpits, and trunk of the body, which were of all others the most dangerous. There was a variety of the disease, which our author calls the bama-ras, and in which the pulse was felt and feeble, with greater weakness over the whole body, and the disposition to sleep more frequent than in the other; the eyes languid; the tongue very white, but not dry; and worms were discharged.

6. Tritreophya affideus. This species arose from a fountein of the prime vice, and the effluvia of waters in which hemp had been steeped. It began with rigor, followed by great heats, restlessness, toffing of the limbs, terrible faintings, immoderate thirst, dryness of tongue, delirium, and at length excessive watchings; these last, however, were less dangerous than vertigoes or convulsions, which brought on convulsions or apoplexies.

7. Tritreophya caroala. This had exacerbations every other evening; and its distinguishing symptom was an excessive inclination to sleep, preceded by a severe headache, and followed by delirium, and sometimes convulsions; the tongue was black, and the patient insensible of sight after the delirium came on. In those cases where the disease proved fatal, a delirium, tertius tendinum and other grievous symptoms came on.

8. Tritreophya laiyria is only a variety of the tritreophya eufus, already described.

9. Tritreophya delphitu. This species at first assumes the appearance of a continued fever; but afterwards degenerates into a remittent, or even an intermittent. It is described by Sydenham, but attended with no remarkable symptoms.

11. The last of Sauvages's species of Tritreophya belonging to the remittent tertian is the Americana. This, according to Sauvages, is the ardent fever with which the Europeans are usually seized on their first coming to America, and generally carries off one half of them. Of this there are two varieties, the very acute and the acute. The very acute ends before the seventh day. It comes on a few days after the person's arrival, with loss of appetite, with dyspepsia and sighing from weakness, head-ach, latitude, pain of the loins: a pyrexia succeeds, with great thirst, sweat, and heat; the sickness increases, nausea comes on, with vomiting of porridous bile; the tongue rough, the extremities often cold; watching, furious delirium; and the patient frequently dies on the third day. Copious sweats, and a plentiful hemorrhage from the nose on the fifth day, but not sooner, are serviceable; but a bilious diarrhoea is the best crisi of all.

The acute kind terminates most frequently on the ninth, but very rarely goes beyond the fifteenth day. Death frequently comes on between the fourth and seventh days. It begins with head-ache, pain in the loins, and sometimes heaving; great latitude, dyspepsia, thirst; burning fever, increasing every third day; inflation of the abdomen, pain at the pit of the stomach, nausea, and bilious vomiting. Such is the state of the disease within twenty-four hours. The eyes are red, and full of tears; the urine pellucid; there is a low delirium, and continual anxiety: the tongue is dry and red, and sometimes, though rarely, black, which is a still worse sign; the pulse, formerly strong and full, sinks about the fourth day, and becomes tenesmus and pulsemodic: if a carus then comes on, the patient dies the fifth or sixth day; but if the pulse keeps up, and no carus comes on, a crisis is to be expected by sweat, by a copious hemorrhage from the nose, or, which is still more safe, by a bilious diarrhoea, which is never fatal if it comes on before the fifth day.

To the Remitting tertian also belong the following species mentioned by Sauvages, viz.

1. Tertiana fubacuminus. This begins like a genuine tertian, and at first hath distinct paroxysms; but these grow gradually more and more obscure, the disease acquiring daily more of the appearance of continued fever, by which it is to be distinguished from the other varieties of this species. It is not unfrequently joined with those symptoms which attend the fatal fever already mentioned; as cardialgia, cholera, syncope, &c. but in a much less degree. The disease commonly begins with little or no sense of cold, but rather a sensation of heat; when the tertian is doubled, it has first a slighter and then a more severe fit; and thus goes on with an exacerbation on the even days: and though it should change from a double into a single tertian, we are still to expect it, if a weak fit is the forerunner of a very strong one. This change of the tertian into a continued fever is also to be prognosticated if a heat remarkable to the touch is perceived on the day of intermission, together with some disturbance of the pulse, thirst, and dryness of the tongue; all of which show an univerbal tendency to inflammation: the same is foretold by the urine being in small quantity, and very red, or of a faffron colour; also an ulcerous or aphthous inflammation of the throat, with difficulty of swallowing, or any very severe symptom coming on in the beginning of the disease, excepting only a delirium, which is easily removed.

2. Quotidiana deceptiva. This is a disorder of an inflammatory kind, with a strong tendency to putrefaction, and sometimes assumes the form of a quotidian. In it the patient frequently complains of cold when he really is hot, and the remission is very indistinct; and the disease is known by the great languor of the patient and the foulness of his tongue.

3. Amphimerina cardiaca is an acute malignant fever, with daily exacerbations, attended with fainting and vomiting of green bile. Afterwards, the weakness increasing, the patient's extremities grow cold, and a profuse sweat comes on, which is frequently succeeded by death on the fourth day. Another species resembling this Sauvages calls the fyncopa1s; but the cardiaca differs from it in being attended with cardialgia.

3. Amphimerina paludosa. This is the fever described by the British physicians under many different names, and appearing under various forms, according to the different conditions of the patients. This fever in the East Indies, according to Dr. Lind of Windfor, generally comes on suddenly, and begins with a sense of debility and very great lenows of spirits. These symptoms are attended with a greater or less degree of chillines, a dizziness, a nausea, very acute pains in the head and loins, and a trembling of the hands; the countenance is pale, the skin commonly very dry and corrugated, the eyes dull and heavy, the pulse quick and small, the breath generally difficult, and interrupted with hicouche.
As the paroxysm increases, the chilliness now and then gives way to irregular heats, which soon become violent and permanent; the nausée likewise increases; and in some there comes on a vomiting, in which they throw up a great deal of bile. Sometimes bile is likewise voided by foal. The skin grows red; the eyes small, and sometimes not a little inflamed. The pulse becomes fuller, and the breathing more difficult, attended with great restlessness and a troublesome thirst; notwithstanding which (so great is the nausée) the patient cannot endure any kind of liquids. The tongue becomes foul; and the pain of the head and loins more violent; a delirium then follows; a flight moisture appears on the face, and from thence spreads to the other parts; whilst the violence of the other symptoms abates, and shows the beginning of a remission, which is completed by plentiful sweats.

On the fever's remitting, the pulse returns almost to its natural state; the pains of the head and loins still continue, though somewhat less violent, as likewise the nausée and want of appetite. When the disease gains strength, the remission is scarcely obvious, and is immediately followed by another paroxysm; which begins, not indeed with so great a shivering, but is attended with a greater pain of the head, the greatest anxiety, a heartburn, nausées, vomiting, and bilious fumes. The matter most commonly evacuated by vomit and ftool is whitish like chalk and water, or curdled milk which is vomited by sucking children, when the curd is much broken down. A heat, immediate thirst, and delirium, now come on. The tongue becomes more foul; the teeth and inside of the lips are covered with a black crust; the breath grows hot and fetid; another remission ensues, attended with a sweat; but this remission is both shorter and less obvious than the first.

This second remission is succeeded by a paroxysm, in which the symptoms are far more violent than in the former; that which the patient discharges by vomiting and purging is more feit; the mouth, teeth, and inside of the lips, are not only covered with a black crust, but the tongue becomes fo dry and fetid, that the patient's voice can scarce be heard. Violent delirium, with restlessness and anxiety, come on chiefly during the paroxysm; nor do these symptoms abate till the fever remits, and the patient sweats.

When the fever becomes so violent, during the third fit, as to end in death, which is generally the case, some of the sick have a coma; in others the delirium becomes more violent. The discharges now become more fetid, and have a cadaverous smell; the stools are involuntary; the pulse is fo quick, small, and irregular, that it is scarce to be counted, or even felt; a cold sweat is diffused over the whole body, especially the head and neck; the face becomes Hippocratic and convulsed; the patient picks the bed-clothes; a fapheus tendinum comes on; the fick lie confantly on their backs, and insensibly slide down to the foot of the bed; their extremities grow cold; they are then seized with convulsions, with which the scene closes.

In this fever, the urine, which at the beginning is pale, becomes of a deeper colour by degrees, but without deposing any sediment. There seldom or never appear any petechiae, and the prickly heat which was before on the skin vanishes on the first appearance of the fever. But though these were the general symptoms of this disorder, they varied in the different subjects, and at different seasons of the same year. The pulse, for example, in some, was quick in the beginning of the disorder; in others, it varied with the other symptoms. The skin was generally dry in the beginning of the fit; but in some it was moist, and covered with sweat from the very first beginning of the disease. In the month of September, when the disorder raged most, the remissions were very imperfect and obscure; but, on the return of winter and the healthy season, they became more regular, and the disease assumed the appearance of an intermittent fever, to such a degree as at length not to be distinguished from it. In some the remissions could scarce be perceived, and the fever continued for two weeks without any material change for the better or the worse. At this time numbers were seized with it. When the disorder continued for any time without a change, it generally ended in death; while the weather grew better, it sometimes, in the space of a few days, from a common fever became an intermitting one, and the patient recovered, unless his liver, which was sometimes the cafe, happened to be affected.

The cure of an inflammation of the liver proved uncertain and tedious; as it was commonly followed by a colliquative diarrhœa, which generally endangered the patient's life. Every succeeding paroxysm was observed to be more dangerous than the preceding; the third generally proved fatal; some died during the fit. When this happened, the fever, in the language of the country, was called pucea, that is a strong fever.

This disease, according to Dr. Lind of Haflar hospital, is the autumnal fever of all hot countries, the epidemic disease between the tropics, and the disease most fatal to Europeans in all hot and unhealthy climates. All authors agree that intermittents in general, but particularly this dangerous kind of them, are produced by heat and moisture. Dr. Lind of Windermund remarks, that the European seamen are very subject to the fever above-mentioned when they happen to arrive at Bengal in autumn. They are predisposed to it from the nature of their food, their confinement on board, the very great heats to which they are exposed during the voyage, and their lying for hours together exposed to the night colds.

Most of the meat used by the crews of these ships is salted, and often in a putrid state, without any fresh vegetables, they having only biscuits, and some other farinaceous matters. The quantity of the vinous or spirituous liquors allowed them is by far too small to subsist the putrefcent disposition of their animal-food. Their fluids consequently become, from day to day; more and more putrefcent, and of course the more apt to breed and contract this disorder. This disposition is likewise induced by their being flown very close together, and that for a considerable length of time, and in a foul air, especially when the weather happens to be too stormy to permit the hatches and port-holes to be kept open.

Though the heats they endure in the voyage to India are less considerable than those of the country itself, yet they are too much for an European constitution
Practice. M E D I C I N E.

The general heat at sea within the tropics is about 84° of Fahrenheit's thermometer, which is sufficient to relax them, and promote a corruption of their humours, especially when it coincides with the above causes. It likewise creates a languor and indolence, which alone are sufficient to increase that putrefection. These causes are apt to be considerably aggravated by the masts being often exposed, when on duty, for hours together, to rain, damp, and cold air; a circumstance which frequently happens to them when working their ships up the river Ganges in the night-time. Hence the perpiration is checked, and the excrementitious fluid which used to be discharged by the skin being retained in the body, contributes, he thinks, very much towards the predisposition to this disease.

But the most powerful of all the remote causes is jutly thought to be the effluvia of marshes replete with putrid animal-substances. We have not, however, been able to determine from what kind of putrid animal-substances these effluvia arise. For that every kind of putrefaction has not such an effect appears from this, that neither practical anatomists, nor those who by their trades are exposed to the putrid effluvia of animals, for instance such tanners and butchers as keep their shops and stalls very dirty, are more subject than others to putrid diseases. Nor are the ship'swards and their servants, whose business it is to deliver out their provisions to the ships crews, and who spend the most of their time amongst the putrid and rank effluvia of the places in which those provisions are kept, more subject to putrid fevers than their ship-mates. But whatever be in this we are well assured that some particular putrid fermentations produce noxious vapours, which, united with those of marshes, render them more pernicious. Hence evidently proceeds the extreme unhealthfulness of a place called Culpis, on the eastern bank of the Ganges. The shores about it are full of mud, and the banks covered with trees. Opposite to the place where the ships lie there is a creek, and about a mile from its entrance stands the town of Culpis; the ships lie about a mile from the shore. None of the sailors on board the ships stationed at this place enjoyed their health. The burying ground also contributed not a little to spread the infection. The ground being marshy, the putrid water flowed from the old graves into the new ones, which infected the grave-diggers and those that attended the funerals; and from this cause many were suddenly seized while they were performing the last duty to their companions. This place has ever been remarkable for the unhealthfulness of its air. It was once customary to send some of the Company's servants here to receive the cargoes of the ships, and send them to Calcutta; but so many of them died on this duty that the Company was at length obliged to discontinue it.

Hence it plainly appears, how apt putrid animal and vegetable substances are to render the effluvia of fenny places more pernicious than they would otherwise be. The reason why great inundations of the Nile and Ganges are followed by a healthy season, is, that by this means the putrid animal and vegetable substances dispersed over the contiguous countries are carried off into the sea. The noxious vapours arising from dens spread but a little way. Dr Lind has often known ships crews at a very little distance from the shore quite free from this disorder. But although these marsh marshmata first bring on the disease, yet contagion is particularly spread by it, and renders it more epidemic. Thus the Drake East Indianmen continued free from the disorder for two weeks together, when she had no communication with the other ships; whereas as soon as the disorder was brought on board, many were seized with it within a few days in such a manner as to leave no room to entertain the least doubt concerning its pestilential nature.

Dr Lind of Haflar hospital has given a very curious and learned account of the appearance of this fever throughout the various parts of the globe. It was very common in England in the years 1763 and 1766, one obvious cause of which was the prevalence of the easterly wind. This wind in England is often said to bring with it a fog from the sea; but the truth of the matter is, that in many places of that island the easterly wind frequently raises a copious vapour from water, mud, and all marshy damp places. To this exhaling quality of the easterly wind Dr Lind has often been an eye-witness. When the wind changes to the east, the mud sometimes sends up a vapour as thick as smoke; and the doctor has observed two fishy ponds in his neighbourhood one of fresh and the other of salt water, which on the approach of an easterly wind sometimes emit a dense vapour, as from a pot of boiling water. In order to view this phenomenon distinctly, the person should stand at about 100 yards distance from the mud or ponds. If the sun shines when the wind changes to the east, he will observe a constant stream of vapours arising out of the ponds, from about five to ten yards in height, while the air about him remains serene. As the vapour or fog arising from other bodies glides along the surface of the earth, and is brought by the easterly wind to the ponds, he will still be able, for some time, to distinguish the vapours ascending perpendicularly out of the ponds from those which are carried in an horizontal direction by the wind: especially if the sun continues to shine, though faintly.

This evaporating quality of the easterly wind seems to manifest itself also by its effects both on the thermometer and the human body; for a thermometer hung over a damp piece of ground during the fogs or exhalations arising from it, will often indicate a degree of cold below the freezing point. The chilliness of the body, so sensibly perceived when in this situation, seems to proceed from the same cause, and to produce nearly the same sensations, which the damp arising from the wet floor in a chamber communicates to those who happen to be in it.

Winds are not constant in their effects. As we have sometimes warm weather with a north-wind, and sometimes very little heat with one blowing from the south; so the fogs attending an easterly wind are not constant, neither is the evaporation abovementioned at all times to be perceived. It is possible, however, that in all this there may be a deception; and that instead of supposing the quantity of vapours exhaled to be increased by an easterly wind, the coldness of that wind may only condense and render visible the vapours in the air at that time. But even this supposition is liable to great objections, as our coldest north-winds seldom or never produce such an effect, but on the contrary are attended with dry and serene weather.
Be this as it will, however, an east-wind is usually accompanied with a cold, damp, and unwholesome vapour, which is observed to affect the health both of animals and vegetables, and in many places to produce oblitinate intermitting fevers, and also to occasion frequent attacks. In particular spots of the low damp island of Portsea, the ague frequently prevails during the autumnal season, and in some years is much more frequent and violent than in others. It is also observable, that this disease always attacks strangers, or those who have formerly lived on a drier soil, and in a more elevated situation, with greater severity than those who are natives of the island.

The year 1765 was remarkable, not only for the long continuance of the easterly wind, but for an excessive degree of heat, which produced a more violent and general rage of those diseases than had been known for many years before. In the month of August the quicksilver in Fahrenheit's thermometer often rose to 82° in the middle of the day. This considerable addition of heat, together with the want of refreshing rains, greatly spread the fever, increased its violence, and even changed its form in many places. At Portsmouth, and throughout almost the whole island of Portsea, an alarming continual or remitting fever raged, which extended itself as far as Chichester. At the same time, the town of Gosport, though distant only one mile from Portsmouth, enjoyed an almost total exemption from sickness of every kind; whereas in the neighbouring villages and farm-houses, a mild regular tertian ague distilled whole families. The violence of the fever, with its appearances in a continued, remitting, or intermitting form, marked in some measure the nature of the soil. In Portsmouth the symptoms were bad, worse at Kingston, and full more dangerous and violent at a place called Half-way House; a street so named, about half a mile from Portsmouth, where fearfully one in a family escaped this fever, which generally made its first attack with a delirium. In the large suburb of Portsmouth called the Common, it seemed to rage with more violence than in the town, some parts excepted; but even whole streets of this suburb, together with the howies in the dock-yard, escaped the attack.

The Marines, who were three times a-week exercised early in the morning on South Sea beach, suffered much from the effect of the stagnant water in an adjoining marsh. Half a dozen of them were frequently taken ill in their ranks when under arms; some being feized with such a giddiness of their head, that they could fearlessly stand; while others fell down speechless, and upon recovering their senses complained of a violent head-ache. When such patients were received into the hospital, it was observed that some few had a regular ague, but that far the greater number laboured under a remitting fever, in which sometimes indeed there was no perceptible remission for several days. A constant pain and giddiness of the head were the most inseparrable and distreasing symptoms of this disease. Some were delicious, and a few vomited up a quantity of bile; but in all the countenance was yellow. A long continuance of the fever produced a dry, or jaundice, or both. Even a slight attack reduced the most robust constitution, to a state of extreme debility; and this weakness, together with the giddiness, continued for a long time after the fever.

Such is the appearance of the remitting fever occasioned by marsh miasmata in England. In the Netherlands its symptoms are not much different. Dr Wind informs us, that at Middleburg, the capital of Zeelend, a sicknes generally reigns towards the latter end of August, or the beginning of September, which is always most violent after hot summers. It commences after the rains which fall in the end of July; the sooner it begins the longer it continues, and it is only checked by the coldness of the weather. Towards the end of August and the beginning of September it is a continual burning fever, attended with a vomiting of bile, which is called the gall-sickness. This fever, after continuing three or four days, intermits, and assumes the form of a double tertian; leaving the patient in a fortnight, or perhaps sooner. Strangers that have been accustomed to breathe a dry pure air do not recover so quickly. Foreigners in indigent circumstances, such as the Scots and German soldiers, who are garrisoned in the adjacent places, are apt after those fevers to have a swelling in their legs and a dropsy of which many die.

These diseases, the Doctor observes, are the same with the double tertians common within the tropics. Such as are feized with the gall-sickness have at first some fluxes of heat over the body, a loss of appetite, a white fowl tongue, a yellow tint in the eyes, and a pale colour in the lips. Such as live well, drink wine, and have warm clothes and good lodgings, do not suffer so much during the sickly season as the poor people; however, these diseases are not infectious, and seldom prove mortal to the natives.

Sir John Pringle observes, that the prevailing epidemic of autumn in all marshy countries, is a fever of an intermitting nature, commonly of a tertian form, but of a bad kind; which, in the dampest places and worst feasons, appears as a double tertian, a remitting, or even an ardent fever. But however these fevers may vary in their appearance according to the constitution of the patient and other circumstances, they are all of a familiar nature. For though, in the beginning of the epidemic, the heat or rather the putrefaction in the air is the greatest, they assume a continued or a remitting form, yet by the end of autumn they usually terminate in regular intermitents.

In Zeelend, where the air is more corrupted than in other parts of the Netherlands, this distemper, as we have already observed, is called the gall-sickness; and indeed both the redundancy and depravation of the gall is sometimes so great, that it has been generally ascribed to the corruption and overflow of that humour. But though it cannot with justice be said to originate from corrupted gall or bile, it is certain that the disease may be continued, and the symptoms aggravated, by an increased secretion and putrefaction of the bile occasioned by the fever. In proportion to the coolness of the season, to the height and dryness of the ground,
ground, this distemper is milder, remits or intermits more freely, and removes further from the nature of a continued fever. The higher ranks of people in general are least liable to the diseases of the marshes; for such countries require dry houses, apartments raised above the ground, moderate exercise, without labour in the sun or evening damps, a just quantity of fermented liquors, plenty of vegetables, and fresh meats. Without such helps, not only strangers, but the natives themselves are sickly, especially after hot and close summers. The hardiest constitutions are very little excepted more than others; and hence the British in the Netherlands have always been subject to fevers.

By this distemper the British troops were harassed throughout the whole of the war from 1743 to 1747. It appeared in the month of August 1743; the paroxysms came on in the evening, with great heat, thirst, a violent headache, and often a delirium. These symptoms lasted most of the night, but abated in the morning, with an imperfect sweat, sometimes with a hemorrhagy of the nose or a looones. The stomach from the beginning was disordered with a nausea and sense of oppression, frequently with a bilious and offensive vomiting. If evacuations were either neglected, or too sparingly used, the patient fell into a continued fever, and sometimes grew yellow as in a jaundice. When the season was further advanced, this fever was attended with a cough, rheumatic pains, and fiery blood. The officers being better accommodated than the common men, and the cavalry who had cloaks to keep them warm, were not so subject to it: and others who belonged to the army, but lay in quarters, were least of all affected; and the left in proportion to their being little exposed to heats, night-damps, and the other fatigues of the service.

In this manner did the remitting fever infect the army for the remaining years of the war; and that exactly in proportion to their distance from the marshy places, of which we have several notable instances in Pringle's observations. In Hungary the same disease appears with still more violence, and is readily contracted by sickly constitutions, by which means it becomes extremely dangerous. Hungary is acknowledged to be the most sickly climate in Europe, and indeed as bad as any in the world. Here it was where the crusaders, in only marching through the country to invade Aflia, often lost half their number by fevers; and where the Austrians not long since buried, in a few years, above 40,000 of their best troops, who fell a sacrifice to the malignant disposition of the Hungarian air. The reason of this uncommon malignity is, that Hungary abounds with rivers, which, by often overflowing, leave that low flat country over-spread with lakes and ponds of stagnating water, and with large unhealthy marshes. So great is the impurity of these stagnated waters, that by them the rivers, even the Danube, whose course is flow, becomes in some places corrupted and offensive. The air is moist, and in summer quite sultry. In the nights of harvest, Krumper tells us, it was so very damp, that the Austrian soldiers could not secure themselves from the moisture even by a triple tent-covering. Here epidemic disturbances begin constantly to rage during the hottest months of the year; which are July, August, and September: and these complaints, according to the observations of the physician abovementioned, are the same with those which are epidemic upon the coast of Guinea, and in the sickly climates of the East and West Indies, of which malignant fevers of the remitting and intermitting kind are the most common and dangerous.

The heat of the sun in Hungary, according to the same author, is more intense than in any other country of Europe; and in proportion to the heat is the pestilential quality of the marshy exhalations. It is constantly observed, that the nearer any city or fort is to a marsh or a large river with foul and oozy banks, the more unhealthy are the inhabitants. At such feasons and places, the air swarms with numberless insects and animalcules, a sure sign of its malignant disposition; and the hotter the summer, the more frequent and mortal are the diseases. In short, this country, on account of its unhealthy air, has been termed the grave of the Germans; and in Italy, the Campania of Rome is almost equally unhealthy. Lancilius, physician to Pope Clement XI., furnishes us with a very striking instance of the malignant quality of the air of Campania. Thirty gentlemen and ladies of the first rank in Rome having made an excursion, upon a party of pleasure, towards the mouth of the Tyber, the wind suddenly shifting blew from the south over the putrid marshes, when 25 were immediately seized with a tertian fever, only one escaping.

The island of Sardinia is annually visited with an epidemic sickness, which rages from June to September, and is called by the natives the intermitent. In some years there is a want of rain for four or five months; and then it is that this sickness exerts its utmost violence, being always more fatal in some places than in others, and in particular to strangers. Of this the British had a severe proof in 1758. Admiral Broderick, in the Prince ship of war, anchored, in the bay of Orifaltani, where 27 of his men, sent ashore on duty, were seized with the epidemic distemper of this island; twelve of them in particular, who had slept on shore, were brought on board delicious. All of them in general laboured under a low fever, attended with great oppression at the breast and at the pit of the stomach, a constant retching, and sometimes a vomiting of bile; upon which a delirium often ensued. These fevers changed into double tertians, and terminated in obitinate quartan agues. It is worthy of remark, that in this ship, which lay only two miles from the land, none were taken ill but such as had been on shore, of whom seven died. The prior of a convent, making a visit to the English officers, informed them, that the intermitenties of the island was a remitting or intermitting fever, and that he himself had suffered several attacks of it. Sardinia was formerly so remarkable for its unhealthy air, that the Romans used to banish their criminals thither; and it is at present but thinly peopled, owing to the mortality occasioned by this annual sickness. For although it is about 140 miles long, and in several places 75 miles broad, yet it is computed that the whole number of its inhabitants does not exceed 250,000; an inconsiderable number, when compared with the inhabitants of the lefser, but comparatively more healthful, island of Corsica; though even there the French lost a number of their troops by intermitting and remitting fevers.
In the island of Minorca, too, Dr Cleghorn informs us, that fevers of this kind prevail exceedingly; that their types are various, their symptoms violent, the intermissions fallacious, and that they frequently and suddenly prove fatal. It is more than probable, he adds, from the accounts of several physicians and travellers, that epidemic terns are not wholly confined to the coasts and islands of the Mediterranean, but that they are equally frequent and destructive in many other parts of the globe; and perhaps may be deemed the anniversary autumnal distempers of most hot countries in the world. And though in the mild climate of Britain, a tertian may always easily be cured when once it is discovered; yet in warm climates, such is the rapid progress of the distemper, that it is necessary to know it in the very beginning, which is very difficult for those who have never seen any but the tertians usually met with in Britain.

From Dr Cleghorn's account of Minorca, however, it doth not appear why that island should be so much infected with fevers of this kind, since it is far from being a marshy country; may, on the contrary, it is very dry. The south wind, he observes, is very unhealthy; and it is the prevalence of this wind which brings on the fever: but still the difficulty is not removed, because the sea-air is so far from bringing on such dangerous diseases, that it is one of the greatest preservatives against them when it can be had. As to the moisture which must necessarily accompany an insular situation, that cannot reasonably be admitted as a cause of this or any other disease. In the London Medical Observations we find a paper on a subject very similar to the present, namely, the mischief produced by lying in damp sheets, or being exposed to moist vapour. The author tells us, that he hardly knows a distemper the origin of which hath not by some been ascribed to lying in a damp bed, or sitting in a wet room; and yet he does not know any one which will certainly be produced by these causes, and people frequently expose themselves to such causes without suffering any ill effects. "It must be owned indeed, (says he), that the vapours arising from the bilge waters of ships tend to produce a scurvy. The swampy plains also near the mouths of great rivers which are often overflowed, and low grounds which cannot readily be drained, and those tracts of land where the thickness and extent of the woods keep the ground moist and half putrid for want of ventilation, are destructive to the neighbouring inhabitants, by occasioning obdurate intermittents in the colder climates, and pestilential fevers in the hotter regions. But all this mischief arises not merely from moisture, but from an unventilated and putrid moisture; for the inoffensive fumes of mere wetness, untainted with putridity, may be reasonably inferred from the following considerations. The air is often fully saturated with moisture, and could not be more filled by the vapours arising from a chamber covered with water; and yet neither is any epidemic distemper produced by it, nor are they remarkably aggravated with which the sick happen at that time to be afflicted. The air from rivers and from the sea is probably more replenished with vapours than inland countries cleared of their woods; yet the most celebrated of the ancient physicians recommended the bank of a running river for the situation of a house, on account of its peculiar healthfulness; and many invalids are sent by the modern physicians to the sea side, only for the benefit of the sea air.

"Where the sailors are cleanly, and not too much crowded, they are often as healthy during long voyages at sea, as they would have been upon any part of the land. Venice is not observed to be less healthy than London or Paris."

"Those who are much disposed to sweat, lie many hours in bed-clothes impregnated probably with a less wholesome moisture than would have been left in the sheets half-dried after washing; and I have not yet had reason to think that any remarkable injury was done to the health by the continuance of such sweats almost every night for weeks, and for months, except what arose from the too great copiousness of this evacuation.

"Children, and such as are troubled with the stone, and those who, from other infirmities or age, constantly wet their beds with their urine, do not appear to suffer in their health on this account.

"It is a common practice, in some disorders, to go to bed with the legs or arms wrapped in linen cloths thoroughly soaked in Malvern water, so that the sheets will be in many places as wet as they can be; and I have known these patients and their bedfellows receive no harm from a continuance of this practice for many months. Nor can it be said that the Malvern water is more innocent than any other water might be, on account of any ingredients with which it is impregnated; for the Malvern water is purer than that of any other spring in England I ever examined or heard of.

"The greatest valetudinarians do not scruple to sprinkle lavender-water upon their sheets; and yet, when the spirit is flown off, there is left what is as truly water as if it had been taken from the river.

"Is it observed, that laundresses are peculiarly unhealthy by reason of the water, though they live half their time in the midst of wet linen, in the air fully saturated with vapours? Many other employments might be mentioned, the persons occupied in which must be exposed to wet floors or pavements, or to be surrounded with watery vapours, or to have their clothes often wet for many hours together.

"Is it the coldness of wet linen which is to be feared? But shirts and sheets, colder than any unfrozen water can be, are safely worn and lain in by many persons, who, during a hard frost, neither warm their shirts nor their sheets.—Or does the danger lie in the dampness? But then how comes it to pass, that a warm or cold bath, and long-continued fomentations, can be used, without the destruction of those who use them? Or is it for both together? Yet we have long heard of the thickness and continuance of the cold fogs in the seas north-west of England, but have never yet been told of any certain ill effect which they have upon those that live in these countries."

"With regard to the causes of fevers, however, Dr Lind is of opinion, that noxious vapours arising from the earth are for the most part to be blamed. Even in countries seemingly dry, and where violent rains are
not frequent, he thinks that the air may load itself with putrid exhalations from the ground; and that, except in the burning desarts of Arabia or Africa, people are nowhere exempt from diseases occasioned by putrid moisture. In most of the hot countries, however, the noxious effects of the putrid vapours are by no means equivocal. In Guinea, they seem to be more extraordinary than any where else in the world; neither indeed can it be supposed, that a hot and moist atmosphere can be without putrefaction. It may in general be remarked, that in sultry climates, or during hot weather, in all places subject to great rains, where the country is not cleared and cultivated, but is overrun with thickets, shrubs, or woods, especially if there are marshes or swamps, even in the huts or houses. But of all the parts of Guinea, where travellers are obliged to be denom's dominions at Benin (the most unhealthy part of Guinea), where travellers are obliged to be carried on mends backs for several days journey, through swampy grounds, and over marshes, amidst flinking oozes, and thickets of mangrove trees which are annually overflowed. These vapours come up the coast to a surprising distance, with the south-east and north-east winds; and it has been observed, that in their progress they have often changed both the course of the winds and of the sea currents. The times of their appearance at Cape Coaft are the months of December, January, or February. The north-east and south-east winds are always unhealthy, but particularly so during the harramattans: Some years this vapour is fearely perceptible; but in others it is thick, noxious, and destructive to the blacks as well as whites. The mortality is in proportion to the density and duration of the fog. It has a raw putrid smell; and it is sometimes so thick, that a person or house cannot be discerned through it, at the distance of 15 or 20 yards; and it continues so for 10 or 15 days; during which it opens the seams of tiles, splits or opens the crevices of wood as if burned, or dried with a great fire, and destroys both man and beast. In the year 1751 or 1755, the mortality occasioned in Guinea by this sinking fog was so great, that in several negro towns the living were scarce sufficient to bury the dead. Twenty women brought over from Holland by a new governor to the Cattle del Mina, perished, together with most of the men in the garrison. The gates of Cape Coast castle were shut up for want of centinels to do duty; the blacks dying at this time as well as the white people. It is lucky that it is only in some years that harramattans are so very thick and noxious, otherwise that part of the country would be depopulated. It is observed that all fogs are extremely unhealthy in those parts, particularly before and after the rainy seasons; but the above account of the harramattans appeared so very extraordinary and incredible to some of Dr. Lind's readers, that he thought proper to publish a further corroboration of the facts above-mentioned. A gentleman (says he), who had long resided at Cape Colle, informed me, that during the time of this fog, being in the upper chambers of the fort, the boards of the floor shrunk so much, that he could discern the candles burning in the apartments below him (there are no plaster ceilings used in those hot countries), and that he could then even distinguish what people were doing in the apartments below; the rooms of the floor having opened above half an inch, while the fog lasted which afterwards, upon its being diffused, became close and tight as before.

In this country the rains and dews seem to be possessed of qualities almost equally pernicious with the fogs. This much is certain, that in Guinea, many of the principal negroes, and especially of the mulatto Portuguese, take the utmost precaution to avoid being wet with these rains, especially such as fall first. At the setting in of the rainy season, they generally shut themselves up in a close well-thatched hut, where they keep a constant fire, smoke tobacco, and drink brandy, as preservatives against the noxious quality of the air at that time. When wet by accident with the rain, they immediately plunge themselves into salt-water, if near it. Those natives generally bathe once a-day, but never in the fresh water rivers when they are overflowed with the rains; at such times they prefer for that purpose the water of springs. The first rains which fall in Guinea are commonly supposed to be the most unhealthy. They have been known, in 48 hours, to render the leather of the shoes quite mouldy and rotten; they thin clothes more than any other rain; and soon after their commencement, even places formerly dry and parched swarm with fogs. At this time skins, part of the traffic of Senegal, quickly generate large worms; and it is remarked, that the fowls, which generally prey on other insects, refuse to feed on these. It has been farther observed, that woollen cloths wet in these rains, and afterwards hung up to dry in the sun, have sometimes become full of maggots in a few hours. It is also probable, that as in some of these countries the earth, for six or eight months of the year, receives no moisture from the heavens but what falls in dews, which every night renew the vegetation, the surface of the ground in many places becomes hard and incrusted with a dry flour, which pens up the vapours below; until by the continuance of the rains for some time, this crust is softened, and the long pent up vapours set free. These dews do not penetrate deep into the earth; they are eviden from the constant dryness and hardness of such spots of ground in those countries as are not covered with grass and other vegetables. Thus the large rivers in the dry season being confined within narrow bounds, leaving a great part of their channel uncovered, which having its moisture totally exhaled, becomes a solid hard crust; but no sooner the rains fall, than by degrees this long parched up crust of earth and clay gradually soften, and the ground, which before had not the left smell, begins to emit a fench, which in four or five weeks becomes exceedingly noifome, at which time the sickness is generally most violent.

This sickness, however, is not different from the remitting...
remitting fever which has been described under so many various forms and names. An inflammatory fever is seldom observed, during the season of sickness, in this part of the world; and we shall conclude our description of the *amphiocerina paludos* with some extracts from the surgeon’s journal of a ship that sailed up the rivers of Guinea.

“On the 5th of April we sailed up the river of Gambia, and found all the English in the fort in perfect health. The surgeon of the factory informed me, that a relaxation of the stomach, and consequently a weakened digestion, seemed to bring on most of the diseases so fatal to Europeans in the sickly season. They were generally of a bilious nature, attended with a low fever, sometimes of a malignant, at other times of a remitting kind. On the 12th of April, after 30 miles up the river St Domingo, we came to Cachou, a town belonging to the Portuguese, in Lat. 20° N. In this town were only four white people, the governor and three friars. The number of whites in the trading ships were 51. One morning, towards the latter end of April, a little rain fell. On the 13th of May there was a second shower, accompanied with a tornado. On the 18th of May it rained the whole day; and the rain continued, with but short intervals, until the beginning of October.

“In the month of June, almost two-thirds of the white people were taken ill. Their sickness could not be well characterized by any denomination commonly applied to fevers: it however approached nearest to what is called a nervous fever, as the pulse was always slow, and the brain and nerves seemed principally affected. It had also a tendency to frequent remissions. It began sometimes with a vomiting, but oftener with a delirium. Its attack was commonly in the night; and the patients, being then delirious, were apt to run into the open air. I observed them frequently recover their senses for a short time, by means of the heavy rain which fell upon their naked bodies. But the delirium soon returned: they afterwards became comatose, their pulse funk, and a train of nervous symptoms followed; their skin often became yellow; bilious vomitings and froths were frequent symptoms. The fever reduced the patient's strength so much, that it was generally six weeks or two months before he was able to walk abroad. A confining flux, a jaundice, a dropsey, or obstructions in the bowels, were the consequences of it. Of 51 white men, being the companies of four ships which were at Cachou, one-third died of the fever, and one-third more of the flux, and other diseases consequent upon it; and of these not one was taken ill till the rains began.

“I believe, on the whole face of the earth, there is scarce to be found a more unhealthy country than this during the rainy season: and the idea I then conceived of our white people was by making a comparison of their breathing such a noisily air, with a number of river-fish put into flagrant water; where, as the water corrupts, the fish grow less lively, take, droop, pine away, and many die.

“Thus some persons became dull, inactive, or slightly delirious at intervals; and, without being so much as confined to their beds, they expired in that delirious and comatose state in less than 48 hours, after being in apparent good health. The white people in general became yellow; their stomack could not receive much food without loathing and retchings. Indeed it is no wonder that this sickness proved so fatal, that recoveries from it were so tedious, and that they were attended with fluxes, dropsey, the jaundice, ague-cakes, and other dangerous chronic distempers. It seemed more wonderful to me that any white people recovered, while they continue to breathe so pestiferous an air as that at Cachou during the rainy season. We were, as I have already observed, 30 miles from the sea, in a country altogether uncultivated, overflowed with water, surrounded with thick impenetrable woods, and over-run with slime. The air was vitiated, noisome, and thick; insomuch that the lighted torches or candles burnt dim, and seemed ready to extinguish; even the human voice lost its natural tone. The smell of the ground and of the houses was raw and offensive; but the vapour arising from putrid water in the ditches was much worse. All this, however, seemed tolerable, when compared with the infinite numbers of insects swarming every where, both on the ground and in the air; which, as they seemed to be produced and cherished by the putrefaction of the atmosphere, so they contributed greatly to increase its impurity. The wild bees from the woods, together with millions of ants, over-ran and destroyed the furniture of the houses; at the same time swarms of cockroaches often darkened the air, and extinguished even candles in their flight; but the greatest plague was the musquetos and sand-flies, whose incessant buzz and painful stings were more inhuman than any symptom of the fever. Besides all these, an incredible number of frogs on the banks of the river made such a constant and disagreeable croaking, that nothing but being accustom to such a hideous noise could permit the enjoyment of natural sleep. In the beginning of October, as the rains abated, the weather became very hot; the woods were covered with abundance of dead frogs, and other vermin, left by the reces of the river; all the man­groves and shrubs were likewise over-spread with flinking slime.”

After so particular a description of the remitting fever in many different parts of the world, we presume it will be needless to take notice of any little varieties which may occur in the warm parts of America, as both the nature and cure of the distemper are radically the same; neither shall we lengthen out this article with further descriptions of remitting fevers from the works of foreign authors, as, from what we have already said, their nature cannot well be mistaken.

Cure. The difficulty in the cure of remitting fevers arises from their not being simple diseases, but a complication of several others. Fevers, properly speaking, have but three or four different appearances which they can assume without a complication. One is, when they are attended with a phlogistic diaphresis; another is, when they assume the form of genuine intermittent; a third is, when they produce a great debility of the nervous system; and the fourth is, when along with this debility there is also a rapid tendency to putrefaction. If, therefore, all these species happen to make an attack at once, the most dangerous fever we can imagine will be produced; and however contrary it may be to our theories to admit the possibility of such
such an attack, the truth of the fact is too often confirmed by fatal experience. In the beginning of remittent fevers, for instance, the symptoms indicate a high degree of inflammation: but if the practitioner attempts to remove this inflammation by blood-letting or other evacuations, the pulse sinks irrecoverably, and the person dies with such symptoms as show that the nervous system has been from the beginning greatly affected; at the same time the high stimulants and cordials, or the balsam, which would have conquered the nervous part of the disease, increase the inflammatory part of it to such a degree, that, by a too early exhibition of them the patient also dies, but after another manner.

In the remitting fever of the East Indies, Dr Lind of Windsor formed the following indications of cure.

1. To allay the violence of the fever.
2. To evacuate the putrid humours, and take great care to prevent the body from inclining to putrefaction.
3. To keep up the strength of the patient as much as possible during the disorder.
4. To lose no time in preventing the return of the paroxysms.

To allay the violence of the fever, everything that can contribute to increase it ought to be carefully avoided or removed; such as great heat, too strong a light falling on the eyes, noise, and motion. If during the paroxysm the head and loins be affected with violent pains, the pulse be full and hard, and the heat intense, bleeding may be used, but with the greatest caution; for, however useful this operation may be in cold climates, the success of it in warm ones is so far from being certain, that the lives of the patients have been often very much endangered, and even destroyed by it. Dr Balenoch, and the surgeon of the Pondborne, endeavoured each of them to relieve two patients by blood-letting; and the consequence was that each of them lost one patient. Dr Lind bled two patients, one of whom was Mr Richardson, the first mate of the ship, who complained of a most violent pain in his head with a full hard pulse. About four or five ounces of blood were taken from him, by which he was greatly relieved; nor was the cure returned by its means, the fever afterwards became laborious. At the time the other patient was bled, the disease was exceedingly frequent and violent. He was so earnest for bleeding, that he fired all the rest with the same desire, swearing, that by refusing them this only remedy, every one of them would be sent to their graves. To quiet them, therefore, and get quit of their importunities, the Doctor complied with their request, and took about five or six ounces from him who had been the first to require it. The consequence was, that he immediately lost his strength; and in less than an hour, during which time he made his will, was carried off by the next fit. It is necessary, however, to observe, and indeed the Doctor himself makes the observation, with regard to this patient, that he was bled at an improper time, namely, between the fits, whereas, had he been bled in the hot fit, it is possible he might have been relieved.

In support of the advantages to be derived from bleeding under proper circumstances, we have the authority both of Cleghorn and Pringle. As Dr Cleghorn practised in a very hot country, his observations must in the present case have greater weight than those of Pringle, who practised in a colder one. The former acquaints us, that if he was called in early enough, unless there was a strong contraindication, he always used to take away some blood from people of all ages; namely, from robust adults, 10 or, 12 ounces; from others a smaller quantity, in proportion to their strength and years. And further, if a violent head-ache, obliate delirium, and great heat or pains of the bowels, were urgent, the bleeding was repeated within a day or two. By this seasonable evacuation, he found the remission of all the paroxysms followed by diminished; the apoplexies became more complete; the operation of emetics and cathartics rendered safer and more successful; and the terrible symptoms which happenings about the height of the distemper, such as raging febrifor, difficulty of breathing, inflammations of the abdominal viscera, &c. were either prevented or mitigated. But if the fever had continued for some time before he was called, and the mass of blood appeared to be too much melted down or inclined to a putrid dilution, he either abstained from bleeding entirely, or took away a very small quantity, though some important symptoms might seem to require a larger evacuation. As to the time of performing the operation, he acquaints us, that it is safe enough, except when the cold fit lasts or is soon expected, or while the skin is covered with critical sweats; and that he usually opened a vein in the beginning of the hot fit; by which means the sick were relieved, the immediate heat of the body, which is often productive of fatal effects, was diminished, and the critical sweats brought on sooner and in greater abundance.

But though Dr Lind found venesection to be of such pernicious tendency in his patients, cooling acidulated liquors were of the utmost service, as they correled the putrid humours, lefened the heat and thirst, and of course prevented the fever from arriving at so great an height as it would otherwise have done. Those cooling liquids are the best which are made up with some stimulating substance, as they most easily unite with our fluids. Puddled acids and, in crystals of tartar, especially the latter, are of considerable use, not only in this but in other fevers. The neutral salts, prepared with the juice of lemons, were likewise given with success during the heat of the fever. They lessen the nausea, the fits become more regular, and the remissions more full; and they are particularly grateful when given in a state of effervescence. The good effects of these draughts we are in a great measure to ascribe to the antiseptic quality of the fixed air extirpated from them during the effervescence; of which we shall speak more fully when speaking of the typhous fevers.

During the remission, it is proper to evacuate the putrid humours by small doses of ipecacuanha, or rather tartar emetic. The tartar emetic indeed appears to be endowed with some kind of febrifuge virtue, which Dr Cullen thinks is owing to its relaxing the febrile spasm taking place in the capillary vessels. But should there appear any symptoms of a topical inflammation in some of the abdominal viscera, a thing which never happens unless the disorder has been of some standing, vomiting is to be avoided, and we are to depend upon purgatives alone for the
evacuation of the putrid bile, which are always useful in the cure of this disorder. But all acid and strong purgatives are to be carefully avoided, and only the mild antiseptic ones made use of, such as crystalline tartar, or tamarinds made up with manna or with Glauber’s salt.

Under the article Gall, we have observed, from Dr Percival, the effect which vegetable acids have in sweetening putrid bile; whence it seems probable, that a liberal use of these acids would be much more serviceable than a repetition of any kind of purgatives. Though in these diseases there is a great quantity of putrefcent bile collected in the body, yet it seems much more probable that this is the effect rather than the cause of the disorder; and therefore, though we carry off the quantity collected ever so often, more of the same kind will still be produced by the putrefcent disposition of the other fluids, at the same time that the strength of the patient must necessarily be diminished by repeated evacuations, when it ought rather to be kept up by all possible means. We ought well to observe, however, that the mineral acids have not that property of sweetening putrid bile which the vegetable ones have; and therefore the same relief will not be given by them which might reasonably be expected from vinegar or lemon-juice.

In order to keep up the strength of the patient, good food is absolutely necessary. Dr Lind allowed the sick small messes of panada made with boiled rice and barley mixed with currants or raisins and prunes, seasoned with sugar and a little wine, especially clarat. During the paroxysms, they had gruel made of flour and rice, with sugar and the juice of acid fruit; and when the fit went off, a little wine was more bleeding. A physician unacquainted with the use of the bark, and informed that there is a tendency to inflammation, by increasing the fluid of the body, yet he supposes the actions of these flies to operate usefully in the same manner in which volatile alkalies, that is, by dissolving and putrefying the blood still farther. But Sir John Pringle has shown, that, in inflammatory fevers as well as those of the putrid kind, both blisters and volatile falls may be of service; the latter, particularly, he hath experimentally proved to be so far from promoting putrefaction, that they are exceedingly strong antiseptics.

In the East Indies, Dr Lind found it absolutely necessary to exhibit the bark in large quantities, and as early as possible. By this method he not only cured the patient from the imminent danger of death Tertians, to which he was exposed at every fit, but likewise conquered those obstructions which were apt to enfee in the abdominal viscera, and which are to be attributed to the continuance of the disorder, and not to the bark employed to cure it. He always gave the bark during the second remission, as all his care was during the first to cleanse the prime vies. He observes, however, that it is to no purpose to give the bark till the necessary purgations are over; but assures us, that it never fails, unless from the coming on of a vomiting or diarrhoea it cannot be taken in sufficient quantities before the return of a paroxysm. To prevent the medicine from vomiting or purging, he mixed a few drops of liquid laudanum with every dose of it. Half a drachm was given every half hour in some convenient vehicle, beginning as soon as the fever had considerably abated, and the pulse was returned nearly to its natural rate; both which generally happened before the sweats were over. An ounce of the bark was sometimes found too little to check the fever, but an ounce and a half never failed. It must be continued daily in small doses till the patient has recovered his strength, and then a greater quantity must be given, especially at the season when the rivers overflow the country.

Dr Pringle found the autumnal remittents in the Netherlands complicated with a great many inflammatory symptoms; for which reason it was generally found necessary to open a vein in the beginning. The verbal and later autumnal remitting fevers are accompanied with pleuritic and rheumatic pains from the coldness of the weather, and on that account require more bleeding. A physician unacquainted with the nature of the disease, and attending chiefly to the paroxysms and remission would be apt to omit this evacuation entirely, and give the bark too soon, which would bring on a continued inflammatory fever. In these countries a vein may be safely opened either during the remission or in the height of a paroxysm; and our author also found good effects resulting from bleeding in the hot fits of the marsh-fever, even after it had almost come to regular intermissions. After bleeding a purgative was usually exhibited, of which he gives us the following formula.

R. Infiţi fæce commun. ʒ.iij.
Elefl. Leminiv. ʒ.ii.
Nitr. pur. ʒi
Tinœ. fæ. ʒ.ii. M.

Of this only one half was taken at once: and if it did not operate twice in four hours, the remainder was then taken. This potion agreed with the flow, much, purged plentifully, and therefore was a very useful composition. Next morning, when there was almost always some remission, he gave one grain of emetic tartar rubbed with 2 grains of crabs-eyes, and repeated the dose in two hours, if the first had little or no effect; or at any rate in four hours. This medicine was intended not only to vomit, but also to operate by stool, and excite a sweat. If these evacuations were procured, the fever generally became easier, and was even sometimes cured. This he prefers to the ipecacuanha, and therefore in the latter years of his practice infused that root entirely. The same medicine was repeated next day or the day following; or if
not, a laxative clyster was thrown in: and this method was continued till the fever either went off altogether, or intermitted in such a manner as to be cured by the bark.

A similar method was followed by Dr Huck in the remitting fevers of the West Indies and North America. In the beginning he let blood; and in the first remission gave four or five grains of ipecacuanha, with from half a grain to two grains of emetic tartar. This powder he repeated in two hours, taking care that the patient should not drink before the second dose; for then the medicine more readily passed into the bowels after it had operated by vomiting. If after two hours more the operation either way was small, he gave a third dose, which commonly had a good effect in opening the first passages; and then the fever either went quite off, or intermitted in such a manner as to yield to the bark. On the continent, he found little difficulty after the intermission; but in the West Indies, unless he gave the bark upon the very first intermission, though imperfect, the fever was apt to assume a continued and dangerous form.

In the remitting fevers of hot countries, however, it must be observed, that the lancet must in all cases be much more sparingly used than in similar diseases of the colder regions; and we must also be sparing of venesection in those countries where the marsh effusions are very strong and prevail much. For this reason Dr Lind of Halifax greatly condemns the practice of indiscriminate bleeding when people first arrive in hot climates. The first diseases indeed which occur in a voyage to the southward are for the most part of an inflammatory nature, and owing to a sudden transition from cold to hot weather. This occasions a fulness and dilatation of the vessels; whence all Europeans, on their first arrival under the tropic, bear evacuations much better than afterwards. The practice of indiscriminately bleeding, however, a number of the ship's company when they first come into a warm latitude, is by no means found to answer the purpose of a preventive. In such cases, indeed, as plainly indicate a plethoric disposition brought on by the heat, blood-letting is certainly useful. The signs of this are a pain and giddiness in the head; a heaviness and dulness of the eyes, which sometimes appear slightly inflamed; there is also commonly a sense of weight and fulness in the breast; the pulse at the same time being quick and oppressed.

But the case is quite different after a longer continuance of sultry weather, and when the constitution is in some measure habituated to the hot climate. For it is then observed, that the symptoms of inflammations in the bowels, even the most dangerous, are not near so severe in such climates as in cold countries; nor can the patients bear such large evacuations. The physician, however, must take care not to be misled by the apparent mildness of the symptoms: for he will find, notwithstanding such deceitful appearances, that the inflammation makes a more rapid progress in hot countries than in cold, suppurations and morbidions being much more suddenly formed; and that in general all acute diseases come sooner to a crisis in the warm southern than in colder regions. Hence it is an important rule of practice in those climates, to seize the most early opportunity, in the commencement of all threatening inflammations, to make frequent though not copious evacuations by blood-letting. For by delaying the inflammation quickly passes from its first to its last or fatal stage; at least an imperfect crisis in such inflammatory fevers ensues, which fixes an obstruction in the viscera extremely difficult to remove.

It is indeed a general maxim with some physicians in the West Indies, that in most acute diseases bleeding in that country is prejudicial. This is founded upon a supposition that the cressamentum of the blood is thinned, and the solids greatly weakened, by the heat of the climate. It is therefore objected, that bleeding in such an habit of body weakens the powers of nature, and withdraws the strength which is requisite to support the patient until the crisis of the fever.

This reasoning is partly just; but, like all general maxims, will admit of exceptions. First with regard to sailors, it is to be remembered, that they are more exposed to quick vicissitudes of heat, cold, damp, and to various changes of the air and weather, than most of the other inhabitants of the Torrid Zone. Add to this, that their intemperance, and the excesses they are apt to fall into whenever it is in their power to commit them, render them more liable to inflammations than any other set of people. Hence their diseases require more plentiful evacuations than the inhabitants of those parts of the world, and generally they bear them better. But with regard to the natives of the country, or those who have remained long there, it must be proper to bleed them very sparingly, making a small allowance for the different feasons of the year, the temperature of the air, and the situation of the places where they reside. Thus, in some parts, even on the island of Jamaica, at particular seasons, the weather is cool; wherefore, in these places, and at such seasons, the inhabitants having their fibres more rigid, and a firmer crasis of their blood, bear venesection much better.

In cold countries the state of the air greatly assists in restoring the impaired spring of the fibres; whereas every thing alike in warm weather, such as heat, moisture, &c. concur to relax and weaken the habit of body. Thus we may daily see persons in Britain, after having suffered a most severe fit of sickness, recover their strength and spirits in a few days, and in a very short time their natural constitution. But the case is very different in the sultry regions of the Torrid Zone, or indeed in any part of the world where the heat of the season causes the mercury to stand on any length of time at the 77th degree and upward of Fahrenheit's thermometer. During such an excess of heat, debility after fevers is apt to remain with European constitutions for several months. In Jamaica, the convalescents are sent to the cool summits of the mountains; but a retreat to a more northern climate is often absolutely necessary to recover their wonted tone and vigour of body. It is a well-established observation, that the negroes and aborigines of the Torrid Zone cannot bear plentiful evacuations by the lancet. They commonly mix the most stimulans zones with their ordinary light food; and this is found by experience suitable to their constitutions.

As proper preventives for the dangerous fevers of which:
which we are treating, Dr Lind on all occasions recommends the avoiding of Ranciant water, or putrid marlhes; the use of proper food, cleanliness, and sobriety. Of the propriety of removing from the neighbourhood of those places whose pestidical effluvia produce the disorders, we cannot possibly entertain a doubt; and of the efficacy of proper food in preventing putrid disorders he gives a remarkable instance in the Sheerness man of war, bound to the East Indies. As they went out, the men being apprehensive of sickness in foing a voyage, petitioned the captain not to oblige them to take up their salt provisions, but rather to permit them to live upon the other species of their allowance. It was therefore ordered, that they should be served with salt-meat only once a-week; and the consequence was, that, after a passage of five months and one day, the ship arrived at the Cape of Good Hope without having a single person sick on board. As the use of Sutton's pipes had been then newly introduced into the king's ships, the captain was willing to afcribe part of such an uncommon healthfulness to their beneficial effects; but it was soon discovered, that, by the neglect of the carpenter, the cock of the pipes had been all this while kept shut. This ship remained in India some months, where none of the men, except the boat's crew, had the benefit of going on shore; notwithstanding which, the crew continued to enjoy the most perfect state of health; they were, however, well supplied with fresh meat. On leaving India, knowing they were to stop at the Cape of Good Hope, and trulling to a quick passage, and the abundance of refreshments to be had there, they eat their full allowance of salt-meats, during a passage of only 10 weeks; and it is to be remarked the air-pipes were now open. The effect of this was, that when they were arrived at the Cape, 20 of them were afflicted in a most miserable manner with scurvy and other disorders. These, however, were speedily recovered by the refreshments they met with on shore. Being now thoroughly sensible of the beneficial effects of eating, in these southern climates, as little salt meat as possible when at sea, they unanimously agreed, in their voyage home from the Cape, to refrain from their too plentiful allowance of salt flesh. And thus the Sheerness arrived at Spithead, with her full complement of 150 men in perfect health and with unbroken constitutions; having in this voyage of 14 months and 15 days buried but one man, who died in a merciful fulfilment.

Thus we see, that a free and pure air is not a sufficient preservative against a putrescent state of the fluids, without proper food; and, on the other hand, we have a very remarkable instance of the inefficacy of the most salutary food to prevent putrid diseases, in a very noxious state of the atmosphere. In the year 1717, at the siege of Belgrade in Hungary, the fever of the country, and the flux, occasioned a most extraordinary mortality among the troops. The dread of these diseases caused every one, as may naturally be supposed, to have recourse to different precautions for self-preservation. Prince Eugene, the commander in chief, had water and the provisions for his table sent him twice a-week from Vienna. The pure stream of the river Kahlenberg was regularly brought to him; he avoided all excusses, and lived regularly, or rather abstemiously; refreshed himself often by eating a cool makan, and mixed his usual wine, which was Burgundy, with water. Yet notwithstanding his utmost care, he was seized with a dysentery; which would have quickly put an end to his life, had not the speedy conclusion of that campaign permitted him to make a quick retreat.

At this unhealthy season, when hardly-one imperial officer, much less their several domestics, escaped those malignant diseases, the renowned Count Bonneval and his numerous retinue continued in perfect health, to the surprise, or, to use the words of Dr Kramer, to the envy, of all who beheld him. The only precaution he used was to take, two or three times a-day, a small quantity of brandy in which the bark was infused; and he obliged all his attendants and domestics to follow his example. It is no less remarkable that the count, placing his certain prevetation in the use of this single medicine, lived for many years afterwards in the most unhealthy spots of Hungary, without any attack or apprehension of disease; and continued to enjoy a perfect state of health during the hottest and most sickly seasons. And thus, with an unbroken and found constitution, which is seldom the case of those who reside long in such climates, he lived to a great age. There is an instance produced by the fame author of a whole regiment in Italy having been preserved by the use of the bark from the attack of those malignant diseases, viz. the flux, and Lilis fever as it is frequently called, when the rest of the Austrian army, not pursuing that method, became greatly annoyed with them.

The intemperance and irregular living of those Europeans who visit the hot climates is frequently accused as the cause of their destruction; but, our author thinks, without sufficient reason: for though intemperance will make the body more liable to receive such diseases, it will not bring them on. It must by no means, however, be imagined, that in these climates Europeans may with impunity be guilty of excesses in eating or drinking; for the least error in that way will often prove fatal by debilitating the body, whose utmost strength in time of full health was perhaps scarce sufficient to resist the pestilential miasmas of the atmosphere.

It appears, therefore, from the concurrent testimony of the most eminent physicians, that the most proper medicine to be used, either as a preventive or cure for remitting and intermitting disorders is the Peruvian bark, administered with proper precautions, and after the prime use have been evacuated of the putrid biliary matter collected in them. In those species of *triaephoxy,* &c. belonging to this class, enumerated by Sauvages, the fame remedies only were useful; but in that pestilential diitterem which he calls *triaephoxy Priaflavienis,* he tells us, that washing the body with water sometimes hot sometimes cold, watery clysters, and plenty of aqueous drink, were likewise of use.

Genus II. Quartan Fever.

|--------------|--|

Description
The genuine quartan, according to Juncker, keeps its form more exactly than other intermittents; scarcely coming on at any other time than four or five in the afternoon. The cold is less violent than in the tertian; but is very perceptible, though it do not proceed to such a height as to make the limbs shake; and continues for about two hours. It is preceded and accompanied by a languid both of body and mind. There is seldom any vomiting unless when the stomach is manifestly overloaded with aliment; neither is there any diuresis, but the belly in general is rather bound, not only on the days on which the paroxysm takes place, but also on the intermediate ones. The heat, which swiftly succeeds the cold, is less troublesome to the patient by its violence than by the uneasy dryness of the skin, which is scarce ever moistened with sweat. This heat rarely continues longer than four or six hours, unless perhaps at the first or second paroxysm. It is accompanied also with a giddiness and dull pain of the head. On the termination of the paroxysm, the patient returns to a middling state of health, and continues in the same for the rest of the intermediate days; only there remains something of a loathing, and a deep-felt pain as if the person was all over bruised or broken, which kind of inflammation the physicians are wont to call postparoxysmus. The fit returns every fourth day, and that precisely at the same hours, being rarely postponed.

Causes of, and persons subject to, this Disorder. The same general causes concur in producing this as in other intermittents, namely, marsh miasmata, and whatever can duple the body to be easily affected by them. Studious people, and those of a melancholic turn, are said to be particularly subject to quartans; but what are the immediate causes which produce a return of the fits every fourth day, instead of every day, or every third day, must probably lie for ever concealed, as depending upon the secret and inexplicable mechanism of the human body.

Pregnomy. A simple quartan, where there is no reason to dread any induration of the viscera, may very certainly admit of a cure; and the prognosis can never be unfavourable, unless in cases of extreme weakness, or where the diætemper has been unskillfully treated.

Cure. This does not in the least differ from that which hath been fully laid down for the simple tertian, and which it is needless therefore to repeat here.

The Duplicated QUARTAN. Sp. I. var. 1. B Quarta duodecima, Sayw. sp. 4. Bonet. This is entirely similar to the duplicated tertian already mentioned; proper allowance being made for the difference between the type of a tertian and quartan.

The TRIPLED QUARTAN. Sp. I. var. 1. C. Quartana triplicata, Sayw. sp. 16. This hath three paroxysms every fourth day, while the intermediate days are entirely free from fever.

The Double QUARTAN. sp. I. var. 1. D. Quarta duodecima, Sayw. sp. 13, Voss. sp. 13. In the double quartan, the fits come on every day except the third; but so that the first paroxysm answers to the third, the second to the fourth, and so on.
MEDICINE.

Sect. II. CONTINUED FEVERS.

The Genuine QUOTIDIAN. Sp. i. var. i. A.

The Partial Quotidian. Sp. i. var. i. B.

The Remitting Quotidian. Sp. II.

Concerning these all nothing remains necessary to be mentioned in this place, having already so fully discussed the remitting fevers in all the different parts of the world. Many other varieties of these fevers mentioned by different authors are to be accounted merely symptomatic.

The Genuine QUOTIDIAN. Sp. i. var. i. A.

The Partial Quotidian. Sp. i. var. i. B.

The Remitting Quotidian. Sp. II.

Concerning these all nothing remains necessary to be mentioned in this place, having already so fully discussed the remitting fevers in all the different parts of the world. Many other varieties of these fevers mentioned by different authors are to be accounted merely symptomatic.
of certain humours; wounds, fractures, luxations, &c.; so that in general we may reckon every thing tending to increase the action of the arterial sytem to be in certain circumstances a cause of inflammatory fever.—Hence we find those are most subject to the synocha whose constitution is either naturally robust, or who are exposed to those cause which tend to produce an increased action of the arterial sytem; such as hard labour, high living, &c.

Prognosis. The most simple kind of synocha, that is, the ephemera or diary fever, is commonly cured without the assistance of medicine, and therefore the prognosis is for the most part favourable; yet, if it be improperly treated by heating medicines, it may easily be converted into the other kind; or, if there be a putrid disposition of the fluids, into a fever of a very dangerous nature. The same thing is to be understood even of the most violent kind; for simple inflammatory fevers are not dangerous unless complicated with an affection of some particular part, as the pleura, stomach, &c.

Dr. Cullen objects to the plan of those who are for leaving the cure of continued fevers to the operations of nature; because these operations are neither certain in themselves, nor are they so well understood as to enable us to regulate them properly; and it is likewise possible to supercede them by art. The plan therefore on which he proceeds is, to form his indications of cure upon the means of obviating the tendency to death in fevers; and these he reduces to three.

1. To moderate the violence of re-action.
2. To remove or obviate the causes of debility; and,
3. To obviate or correct the tendency of the fluids to putrefaction.

The first indication may be answered, 1. By all those means which diminish the action of the heart and arteries. 2. By those which take off the spasm of the extreme vessels, which, according to his theory, is the chief cause of violent re-action.

The action of the heart and arteries may be diminished, 1. By avoiding or moderating those irritations which, in one degree or other, are almost constantly applied to the body. 2. By the use of certain sedative powers. 3. By diminishing the tension or tone of the arterial sytem.

The second method of moderating the violence of re-action is by the employment of certain sedative powers, with a view to diminish the activity of the whole body, and particularly that of the sanguiferous sytem. The first of these to be mentioned is the application of cold. Heat is the chief support of the activity of the animal-sytem; and the sytem is therefore provided with a power of generating heat in itself; but at the same time we may observe, that this would go to excess, were it not constantly moderated by a cooler temperature in the surrounding atmosphere. When, therefore, the generating power of heat in the sytem is increased, as is commonly the case in fevers, it is necessary not only to avoid all further means of increasing it, but also to apply air of a cooler temperature; or at least to apply it more entirely and freely than in a state of health. This is shown, from some late observations, to be a very powerful means of moderating the violence of re-action; but what is the mode of its operation, to what circumstances of fever it particularly applies, or what limitations it requires, are not yet fully ascertained.

Another sedative power very frequently employed in fevers, is that of certain medicines known in the materia medica by the name of refrigerants. The chief of these are acids of all kinds when sufficiently diluted, and which are, in several respects, remedies adapted to continued fevers. Those especially in use...
are the vitriolic and vegetable; and on many accounts the latter are to be preferred. Another set of refrigerants are the neutral salts formed of the vitriolic, nitrous, or vegetable acids, with alkalies either fixed or volatile. All these neutrals, while they are dissolved in water, generate cold; but as that cold ceases soon after the dissolution is finished, and as the salts are generally exhibited in a dissolved state, their Refrigerant power in the animal body does not all depend upon their power of generating cold with water. Nitre is the refrigerant chiefly employed; but all the others, compounded as abovementioned, partake more or less of the same quality. Besides these neutrals, some metallic salts have also been employed in fevers, particularly the sugar of lead: but the Refrigerant powers of this salt are by no means ascertained, and its deleterious qualities are too well known to admit of its being freely used.

[3.] The third general method of diminishing the reaction of the system, is by leaching the tension, tone, and activity of the sanguiferous system. As the activity of the system in a great measure depends upon the tone, and this again upon the tension, of the vessels, given to them by the quantity of fluids they contain, it is evident, that the diminution of the quantity of these mull diminish the activity of the sanguiferous system. The most efficacious means of diminishing the quantity of fluids is by the evacuations of blood-letting and purging. The former is evidently one of the most powerful means of diminishing the activity of the whole body, and especially of the sanguiferous system; and it mull therefore be the most effectual means of moderating the reaction in fevers. When the violence of reaction, and its constant attendant a Phlogistic diathesis, are sufficiently evident; when these constitute the principal part of the disease, and may be expected to continue through the whole of it, as in the cases of Synocha; then blood-letting is the principal remedy, and may be employed as far as the symptoms of the disease may seem to require, and the constitution of the patient will bear. It mull, however, be remarked, that a greater evacuation than is necessary may occasion a fever recovery, and render the person more liable to a relapse, or bring on other diseases. It is also to be observed, that this evacuation is more effectual, as the blood is more suddenly drawn off, and as the body is at the same time more free from all irritation, and therefore when it is in a posture in which the fewest muscles are in action.

With regard to purging, when we consider the quantity of fluids constantly present in the cavity of the intestines, and the quantity which may be drawn off from the innumerable excretories that open into this cavity, it will be obvious, that a very great evacuation may be made in this way; and if this be done by a stimulus that is not at the same time communicated to the rest of the body, it may, by emptying both the cavity of the intestines and the arteries which furnish the excretions poured into it, induce a considerable relaxation in the whole system; and is therefore fitted to moderate the violence of reaction in fevers. But it is to be observed, that as the fluid drawn from the excretories opening into the intestines is not all drawn immediately from the arteries, and as what is even more immediately drawn from these is drawn off slowly; so the evacuation will not, in proportion to its quantity, occasion such a sudden depletion of the fluids as blood-letting does; and therefore cannot act so powerfully in taking off the phlogistic diathesis of the system.

At the same time the evacuation may induce a considerable degree of debility; and therefore, in those cases in which a dangerous state of debility is likely to occur, purging is to be employed with a great deal of caution; and this caution is more difficult to be observed than in the case of blood-letting: and it is further to be noticed, that as purging takes off in some measure the determination of the blood to the vessels on the surface of the body, it seems to be an evacuation not well adapted to the cure of fevers.

II. The other method of moderating the violence of reaction in fevers is by the exhibition of those remedies suited to take off the spasm of the extreme vessels, supposed to be the irritation which chiefly supports the reaction. The means to be employed for this purpose are either internal or external.

Firft, The internal means are, 1. Those which determine the force of the circulation to the extreme vessels, on the surface of the body, and, by restoring the tone and activity of these vessels, overcome the spasm on their extremities. 2. Those medicines which have the power of taking off spasm in any part of the system, and which are known under the title of Antispasmodics.

(i.) Those remedies which are fit to determine to the surface of the body are, 1. Dluaments. 2. Neutral salts. 3. Sudorifics. 4. Emetics.

1. Water enters, in a large proportion, into the composition of all the animal fluids, and a large quantity of it is always diffused through the whole of the common mafs. In a sound state, the fluidity of the whole mafs depends upon the quantity of water present in it. Water is therefore the proper diluent of our mafs of blood, and other fluids are dilute only in proportion to the quantity of water they contain.

In a healthy state, also, the fulness of the extreme vessels and the quantity of excretion are in proportion to the quantity of water present in the body. But in fever, though the excretions be in some measure interrupted, they continue in such quantity as to exchale the more fluid parts of the blood; and, while a portion of them is at the same time necessarily retained in the larger vessels, the smaller, and the extreme vessels, both from the deficiency of fluid and their own contracted state, are less filled, and therefore allowed to remain in that condition. To remedy this contracted state, nothing is more necessary than a large supply of water or watery fluids taken in by drinking or otherwise; for as any superfluous quantity of water is forced off by the several excretories, such a force applied may be a means of diluting the extreme vessels, and of overcoming the spasm affecting the extremities. Accordingly, the throwing in of a large quantity of watery fluids has been, at all times, a remedy much employed in fevers; and in no instance more remarkably than by the Spanish and Italian physicians, in the use of what they call the dieta aqua. This practice consists in taking away every other kind of aliment and drink, and in giving, in divided portions,
M E D I C I N E.

Practice.

every day for several days together, fix or eight pounds of plain water, generally cold, but sometimes warm. All this, however, is to be done only after the disease has continued for some time, and at least for a week.

7. A second means of determining to the surface of the body, is by the use of neutral salts. These neutrals, in a certain dose, taken into the stomach, produce soon after a sense of heat upon the surface of the body; and, if the body be covered close and kept warm, a sweat is readily brought out. The same medicines taken during the cold stage of a fever, very often put an end to it, and bring on the hot one; and they are also remarkable for stopping the vomiting which so frequently attends the cold stage of fevers.

All this shows, that neutral salts have more or less of the same virtue; and perhaps some of them, particularly the ammoniacal salts, possess it in a stronger degree. As cold water taken into the stomach often shows the same diaphoretic effects with the neutral salts, it is probable that the effect of the latter depends upon their refrigerant powers.

3. A third method of determining to the surface of the body, and taking off the ipam which subsists there in fevers. The neutral most commonly employed in fevers, is that formed of an alkali with the native acid of vegetables. But all the other neutrals have more or less of the same virtue; and perhaps some of them, particularly the ammoniacal salts, possess it in a stronger degree. As cold water taken into the stomach often shows the same diaphoretic effects with the neutral salts, it is probable that the effect of the latter depends upon their refrigerant powers.

3. That, when excited by art, is has been found useful at certain periods, and in certain species of fever.—On the other hand, it may be urged against the practice of sweating. 1. That in fevers, as a spontaneous sweating does not immediately come on, there are some circumstances different from those in the state of health, and which may render it doubtful whether the sweating can be safely excited by art. 2. That in many cases the practice has been attended with bad consequences. The means commonly employed have a tendency to produce an inflammatory diathesis; which, if not taken off by the sweat proceeding, must be increased with much danger. Thus sweating employed to prevent the accessions of intermittent fevers has often changed them into a continued form, which is always dangerous. 3. The utility of the practice is doubtful, as sweating, when it happens, does not always give a final determination, as must be manifest in the case of intermittent; and in many continued fevers which are sometimes in the beginning attended with sweatings which do not prove final; and, on the contrary, whether they be spontaneous or excited by art, they seem often to aggravate the disease.

From these considerations, it is doubtful if the practice of sweating can be admitted very generally; but, at the same time, it is also very doubtful if the failure of the practice, or the mischief thus to avoid from it, have not been owing to the improper conduct of the practitioner. With respect to the last, it is almost agreed among physicians, 1. That sweating has been generally hurtful when excited by stimulant, heating, and inflammatory medicines. 2. That it has been hurtful when excited by much external heat, and continued with a great increase of the heat of the body.

In these cases, it is probable, that either an inflammatory diathesis is produced, which increases the ipam on the extreme vessels; or that, from other causes, the ipam is too much fixed to yield easily to the increased action of the heart and arteries; and upon either supposition it must be obvious, that urging the sweat may produce determinations to some of the internal parts, with very great danger.

Notwithstanding these doubts, however, it still remains true, 1. That sweating has been often useful in preventing the accessions of fevers when they have been certainly foreseen, and a proper conduct employed. 2. That even after fevers have in some measure come on, sweating has interrupted their progress when properly employed, either at the very beginning of the disease, or during its approach and gradual formation. 3. That even after pyrexia have continued for some time, sweating has been successfully employed in curing them, as is particularly exemplified in the case of a rheumatism. 4. That certain fevers produced by a very powerful sedative contagion, have been generally treated most successfully by sweating.

These instances are in favour of sweating, but give no general rule; and it must be left to further experience to determine how far any general rule can be established in this matter. In the mean time, if the practice of sweating is to be attempted, the following rules may be laid down for the conduct of it. 1. That a sweat should be excited without the use of stimulant inflammatory medicines. 2. That it should be excited with as little external heat, and with as little increase of the heat of the body as possible. 3. That, when excited, it should be continued for a due length of time; not less than 12 hours, and sometimes for 24 or 48 hours; always, however, supposing that it proceeds without the dangerous circumstances already mentioned. 4. That for some part of the time, and as long as the person can easily bear, it should be carried on without admitting of sleep. 5. That it should be rendered universal over the whole body; and therefore particularly that care should be taken to bring the sweating to the lower extremities. 6. That the practice should be rendered safer by moderate purging excited at the same time. 7. That it should not be suddenly checked by cold any how applied to the body.

When attention is to be given to these rules, the sweating may be excited, 1. By warm bathing, or a fomentation of the lower extremities. 2. By frequent draughts of tepid liquors, chiefly water, rendered more grateful
grateful by the addition of a light aromatic, or more powerful by that of a small quantity of wine. 3. By giving some doses of neutral salts. 4. Moit effectually, and perhaps most safely, by a large dose of an opiate, joined with a portion of neutral salts, and of an emetic.

The fourth mean of determining to the surface of the body, and thereby taking off the spasm affecting the extreme vessels, is by the use of emetics. Their, particularly of the antimonial kind, have been employed in the cure of fevers ever since the introduction of chemical medicines; and though of late their use has become very general, their efficacy is still diffused, and their manner of operating is differently explained.

Vomiting is in many respects useful in fevers; as it evacuates the contents of the stomack, as it enuleges the biliary and pancreatic ducts, and evacuates the contents of the duodenum, and perhaps also of a larger portion of the intestines; as it agitates the whole of the abdominal visceras, it expedites the circulation in them, and promotes their several secretions; and lastly, as it agitation the visceras of the thorax, it has like effects there.

It is not to this cause, however, that we are to impute the effect of vomiting has in determining to the surface of the body. This must be attributed to the particular operation of emetics upon the mucular fibres of the stomack, whereby they excite the action of the extreme arteries on the surface of the body, and this means effectually determine the blood to these vessels, remove the atony, and take off the spasm affecting them. For this purpose they are exhibited in two different ways; that is, either in such doses as may excite full and repeated vomitings, or in such doses as may excite sickness and nausea only, with little or no vomiting at all.

Full vomiting is well suited to determine to the surface of the body, and therefore to obviate the atony and spasm which lay the foundation of fever. Thus, vomiting excited a little before the expected accession of the paroxysm of an intermittent, has been found to prevent the paroxysm altogether. It has been observed also, that when contagion has been applied to a person, and if it discovers its operation, a vomit given has prevented the fever which might otherwise have been expected.

There are the advantages to be obtained by exciting vomiting at the first approach of fevers, or of the paroxysm of fevers; and they may also be applied after fevers are formed, to take off, perhaps entirely, the atony and spasm, or at least to moderate them, so that the fever may proceed more gently and safely. It is seldom, however, that vomiting is found to produce a final solution of fevers; and after they are once formed, it is commonly necessary to repeat the vomiting several times; but this is attended with inconvenience, and sometimes with disadvantage. The operation of full vomiting is transitory, and the exercise of vomiting is a debilitating power; and therefore, when the vomiting does not remove the atony and spasm very entirely, it may give occasion to their recurrence with greater force. For these reasons, after fevers are fully formed, some physicians have thought proper to employ emetics in nauseating doses only. These are capable of exciting the action of the extreme vessels, and their operation is more permanent. At the same time they often show their power: by exciting some degree of sweat, and their operation is rendered more safe by their commonly producing some evacuation by stool. But nausea continued for any great length of time, is to moit patients a fenfation highly distasteful, and almost insufferable.

The emetics chiefly in use at present are, ipecacuanha and antimony. The former may be employed for determining to the surface of the body: but, even in very small doses, it do readily excites vomiting, that it is with difficulty employed for the purpose of nauseating only; and in whatever manner employed, there is reason to suspect that its effects are left permanent, and left powerfully communicated from the stomack to the rest of the system, than those of antimony. This last is therefore generally preferred; and its preparations, seemingly various, may all be reduced to two heads; one comprehending those in which the reguline part is in a condition to be acted upon by acids, and therefore on meeting with acids in the stomack it becomes active; and another, comprehending those preparations in which the reguline part is already joined with an acid, rendering it active. Of each kind there are great numbers, but not differing essentially from one another; the two most worthy of notice are, the calx nitrata antimonii and emetic tartar or antimonium tartarifatum, of the Edinburgh dispensatory. Both these are very efficacious medicines; but the latter seems preferable, because its dose is capable of being better CERTAINT; though the former, on account of its slower operation, may have some advantages, and in certain cases be more efficacious as a purgative and sudorific.

The calx nitrata antimonii, when first introduced into the pharmacopoeia of the Edinburgh college, was supposed to be very nearly, if not precisely, the same with a medicine which has of late been highlycelebrated in the cure of fevers, Dr James's powder. But from later and more accurate observations, there is now reason to believe that the pulvis antimonialis of the London pharmacopoeia, formed by the calculation of antimony with hartsthorn, approaches more nearly to that celebrated arcanum. But at any rate, the calx antimonii nitrata, the pulvis antimonialis, and James's powder, are probably not essentially different from each other. The two latter, however, have the most near resemblance; and accordingly the Edinburgh college in the laft edition of their pharmacopoeia have introduced an article under the title of antimonium calcaris phosphoratum, which they consider as so much fimilar to James's powder, that they have used it as a synonyme, for the title of pulvis Jacobi.

The time most proper for exhibiting these medicines is a little before the accession, when that can be certainly known. In continued fevers the exacerbations are not always very observables; but there is reason to believe, that one commonly happens about noon or noon after it; and that these, therefore, are the most proper times for exhibiting emetics.

With respect to the manner of administration, that of the calx nitrata is simple, as the whole of what is thought a proper dose may be given at once; and no more can be properly given till the next accession. The administration of the emetic tartar is different. It is to be given in small doses, not sufficient to excite vomiting.
M E D I C I N E.

Typhus.

Practice.

Fevers of the skin; and these doses are to be repeated after short intervals for several times, till sickness, nausea, and vomiting come on. The difference of administration must depend upon the dose, and the length of the interval at which it is given. If it be intended that the medicine should certainly penetrate by flood, the doses are made small, and the intervals long. On the contrary, when vomiting is proper, or when much purging ought to be avoided, and therefore some vomiting must be admitted, the doses are made larger, and the intervals shorter. With respect to both kinds of preparations, the repetition is to be made at the times of accession, but not very often: for if the first exhibitions, duly managed, have little effect, it is seldom that the after exhibitions have much; and it sometimes happens that the repeated vomiting, and especially repeated purging, does harm by weakening the patient.

(2.) The other fact of internal medicines which are frequently useful in taking off the spasm of the extreme vessels, is that named antispasmodic. But whatever may be the virtues of some of them in this way, such is their power of stimulating at the same time, that very few of them can with safety be administered in fevers of an inflammatory nature. Almost the only one which can with safety be exhibited in these cases is camphor; and the operations of this are by no means well ascertained. Dr. Huxham mentions it as a correc- tor of the acrimony of cantharides; and affirms us, that it very effectually promotes a diaphoreis. But from the remarks of other practitioners, we have no just reason to suppose that it acts perceptibly in a dose of five or six grains, though in 15 or 20 it produces a particular kind of intoxication:

Secondly. The external means suited to take off the spasm of the extreme vessels, are blistering and warm bathing.

1. What are the effects of blistering so frequently employed in fevers, is not yet agreed upon among physicians. Dr. Cullen is of opinion, that the small quantity of cantharides absorbed from a blistering plaister, is not sufficient to change the confidence of the mafs of blood; and therefore, that such a quantity can neither do good by resolving phlegmatic fentor if it exists, nor do harm by increasing the dissolution of the blood arising from a putrid tendency in it. The effects of cantharides upon the fluids, therefore, may be entirely, neglected. The inflammation produced by the application of cantharides to the skin, affords a certain proof of their stimulant power: but in many person the effect of that stimulus is not considerable; in many it is not communicated to the whole fystem; and even when it does take place in the whole fystem, it seems to be taken off very entirely by the evaporation and evacuation of furm from the blistered part. It may be concluded, therefore, that neither much good is to be expected nor much harm to be apprehended, from the stimulant power of blistering; and the certainty of this conclusion is established by the great benefit arising from the proper practice of blistering in inflammatory diseases. Much has been imputed to the evacuation made by blistering; but it is never so considerable as to affect the whole fystem; and there can neither be a sudden deploration relax the subcutaneous fystem, nor by any

revulsion affect the general distribution of the fluids. The evacuation, however, is so considerable as to cause a little swelling about it, and the manifest utility of blistering near the paraffected inflammatory diseases leads us to think, that blistering, by deriving to the skin, and producing and effusion there, relaxes the spasm of the deeper vessels. It is in this manner, most probably, that the tumor of a joint, from an effusion into the cellular textures under the skin, takes off the rheumatic pain formerly affecting that joint. Analogous to this, probably, is the good effect of blistering in continued fevers; and arises from the relaxation of the spasm of the extreme vessels by a communication of the blistered part with the rest of the skin. A blister may be employed at any period in continued fevers; but it will be of most advantage in the advanced state of such fevers, when the re-action being weaker, all ambiguity from the stimulating power of blistering is removed, and when it may best coincide with other circumstances tending to a final solution of the spasm.

From this view of the matter, it will appear, that the part of the body to which blisters ought to be applied is indifferent, except upon the suspicion of topical affection, when the blistering is to be made as near as possible to the part affected. Whether sinapisms and other rubefcentia act in a manner analogous to what has been supposed of blistering may be doubtful; but their effects in rheumatism and other inflammatory diseases render it probable.

2. The other external means of taking off the spasm of the extreme vessels is warm bathing. This was frequently, and in different circumstances, employed by the ancients; but has, till very lately, been neglected by modern physicians. As the heat of the bath stimulates the extreme vessels, and, with the concurrence of moiture, also relaxes them, it seems to be a fain stimulus, and well suited to take off the spasm affecting these vessels. It may be applied to the whole body by immersion; but this is in many respects inconvenient; but whether some of the inconveniences of immersing might not be avoided by a vapour-bath, is not yet determined by experience; but from extensive experience it appears, that most of the purpofes of warm bathing can be obtained by a fomentation of the legs and feet, if properly administered, and continued for a due length of time, not less than an hour. The marks of the good effect of such a fomentation are, the patient's bearing it easily, its relieving delirium, and inducing sleep.

GENUS V. TYPHUS; the Typhus Fever.

Typhus, Sauv. Gen. 82. S. 677.

I. Typhus minor, or the Slow Nervous Fever. Sp. I. var. 1.

Febris maligna hecida convulsiva, five lues suprad., Vol. de morb. convulsiva. cap. 8.

Febris pellitans, Pracaflor. de morb. contag. L. II. cap. 4.

Febris hecida pellitans, Forjfl. L. VI. obr. 32.

Febris nova ann. 1835, Sydenham, Sched. monitor.

Febris putrida nervosa, Wintrings, Com. Nofolog. ad ann. 1720, 1721.

R 2 Febris
MEDICINE.

Fever.

Fever, or Typhus. --v----

Typhus, Savin, fp. 10.

Typhus comatus, Savin, fp. 3.

Trizephyra typhodes Mangeti, Savin, fp. 19. Raym.

The fever, or Typhus, is a disorder of the nervous system, characterized by delirium, headache, and general debility.

Description.

The symptoms of the fever, or Typhus, are

1. Delirium, affecting the patient in various ways.

2. Headache, usually located in the back or top of the head.

3. Nausea and vomiting.

4. Rigors and chills.

5. Pain and coldness in the extremities.

6. Restlessness and agitation.

7. Loss of appetite.

8. Changes in the skin, such as blisters or eruptions.

The fever is often accompanied by a rise in temperature, and the patient may experience delirium, confusion, or disorientation.

The fever, or Typhus, is a contagious disease, and precautions should be taken to prevent its spread.
Practice.

MEDICINE.

out of much affecting the state of the blood or juices, though the latter are greatly affected in the putrid malignant fevers.

In nervous fevers, the prognosis is very much the fame as that with the putrid malignant kind. And although death be not so frequent as in that modification of fever, yet it may justly be considered as a very fatal disease.

Cure. As this fever is produced by a contagion affecting the nervous fystem of a person already debilitated, and thus producing weaknees in an extreme degree, we have now occasion to consider Dr Cullen's two indications of cure omitted under the Synoeha; namely, to remove the caufe and obviate the effects of debility, and to correct the putrifent tendency of the fluids; for though, in the beginning of nervous fevers, the tendency to putrefaction be not remarkablc, it becomes exceedingly great towards their conclusion.

As in anfwering the first indication, Dr Cullen observes, that most of the fedative powers inducing debility cease to act foon after they have been applied; and therefore the removing of them is not an object of the prefent indication. There is only one which may be fuppofed to continue to act for a long time, and that is the contagion applied; but we know nothing in the nature of contagion that can lead us to any measures for removing or correcting it. We know only its effects as a fedative power inducing debility, or as a ferment inducing a tendency to putrefaction in the fluids, the former of which at prefent falls under our consideration. The debility induced in fevers by contagion, or other caufes, appears especially in the weaker energy of the brain; but in what this conftits, or how it may be reftored, we do not well know; but as nature, seemingly for this purpofe, excites the motion of the heart and arteries, we muft attribute the continuance of the debility to the weaker re-action of the fanguiferous fystem: the means, therefore, which we employ for obviating debility, are immediately directed to fupport and increase the action of the heart and arteries; and the remedies employed are tonics or fimi­lants.

In contagious difeafes we know, both from the effects which appear, and from diffeffections, that the tone of the heart and arteries is considerably diminished; and that tonic remedies are therefore properly indicated. We are to consider these remedies as of two kinds; 1. The power of cold; 2. That of tonic medicines.

The power of cold as a tonic in fevers may be employed in two ways: either as thrown into the stomach, or as applied to the surface of the body. As we have already obferved that the power of cold may be communicated from any one part to every other part of the fystem, fo it will be readily allowed that the ftomach is a part as fitt as any other for this communication, and that cold drink taken into the ftomach may prove an useful tonic in fevers. This the experience of all ages has confirmed; but at the fame time it has been frequently obferved, that, in certain circumstances, cold drink taken into the ftomach has proved very hurtful; and therefore that its ufe in fevers requires fome limitations. What these limitations should be, and what are the circumftances which may forbid the ufe of cold drink, it is difficult to determine; but it seems clearly forbidden in all cafes where a phlogifit diathesis prevails in the fystem, and more efpecially when there are topical affections of an inftammatory nature.

The other method of employing cold as a tonic, is by applying it to the surface of the body, as a refrigerant power fit to moderate the violence of re-action; but probably it may here also be considered properly as a tonic, and useful in cafes of debility. Not only cool air, but cold water alfo may be applied to the surface of the body as a tonic. The ancients frequently applied it with advantage to particular parts as a tonic; but it is a discovery of modern times, that, in the cafe of putrid fevers attended with much debility, the body may be washed all over with cold water. This was firft practiced at Breflaw in Silefia, as appears from a difcourfe under the title of Epidemia Verna, que Wafterflauam anno 1737 of­fer­tis est, & ad usus medicos muta­l: 1. This increa­fed the circulation of blood; and a general debility was not fo frequent.

The medicines which have been employed in fevers as tonics are various. If the faccharum faturi hath been found ufeful, it is probably as a tonic rather than as a refrigerant; and the caracxi, or other preparations of iron which have been employed, can act as tonics only. The preparations of copper, from their effects in epilepsy, are presumed to proffefs a tonic power; but whether their ufe in fevers be founded on their tonic or emetic powers, is uncertain.

The bark has commonly been considered as a specific, or a remedy of which the operation was unfound. We muft obferve, however, that, as in many cafes the effects of the bark are perceived foon after its being taken into the ftomach, and before it can poibibly be conveyed to the mafs of blood, we may conclude, that its effects do not arife from its operating on the fluids; and mutt therefore depend upon its operating on the nerves of the ftomach, and being thereby communicated to the reft of the nervous fystem. This operation seems to be a tonic power, the bark being a remedy in many cafes of debility, particularly in gangrene; and if its operation may be explained from its poffeffing a tonic power, we may easily perceive why it is improper when a phlogifit diathesis prevails; and from the fame view we can acertain in what cafes of continued fever it may be admitted. These cafes are either where coniderable remissions have appeared, when it may be employed to prevent the return of exacerbations, on the fame footing as it is ufed in intermitting fevers; or in the advanced flate of fevers, when all fufpicion of an inftammatory flate is removed, and a general debility prevails in the fystem; and its being then employed is sufficiently agreeable to the prefent practice.

Another fet of medicines to be employed for obviating debility and its effects, are the direft fimul­lants.
MEDICINE.

Febre. Thefe, in some meafure, increafe the tone of the moving fibres; but are different from the tonics, as they more directly excite and increafe the action of the heart and arteries. This mode of their operation renders their ufe ambiguous; and when an inflammatory diathesis is prefent, the effects of the stimulants may be very hurtful; but it is ftill probable, that in the advanced state of these fevers, when debility prevails, they may be ufeful.

Of all the stimulants which may be properly employed, wine feems to be the moft eligible. It has the advantage of being grateful to the palate and stomach, and of having its stimulant parts fo much diluted, that it can be conveniently given in small doses; and therefore it may be employed with fufficient caution; but it is of little service unlefs taken pretty largely.—It may be influfped that wine has an operation analogous to that of opium; and on good grounds. But we can pretty largely.—It may be

operation analogous to that of opium; and on good
delirium manifefHy hurtful; and in the mild
cure, namely to
the fluids to
matter already prefent in the body. 3. By
the violence of
tone of the
by diluents and antifeptics. 4. By fupporting the
fweats, fyncope, or a comatofe difpofition.

The progrefs of
putrefaction. -
ber. 4. By avoiding
accumulation of the patients own effluvia, by a confiant
removal of all excremental matters from the patient's
and body-linen.
The putrid or putrefcent matter already prefent
may be evacuated partly by frequent
and various

and innocent by the ufe of diluents, or may be
which

are of many
applicable, or more particularly fuited to the cafe of
as already mentioned. The violence
of re-action, confidered as a means of increafing
putrefaction.
The further application of putrid or putrefcent matter
may be avoided, 1. By removing the patient from
places filled with corrupt air. 2. By preventing the
accumulation of the patients own effluvia, by a conflant
ventilation, and by a frequent change of bed-clothes
and body-linen. 3. By the careful and speedy removal
of all excremental matters from the patient's chamber.
4. By avoiding animal-food.
The putrid or putrefcent matter already prefent in the
body, may be evacuated partly by frequent
exafinations of the contents of the intestines; and more
effentially by influffing the exfcreta of diluents. That
which remains in the body may be rendered more mild
and innocent by the ufe of diluents, or may be corrected
by the ufe of antifeptics. Thisleft are of many
and various kinds; but which of them are conveniently
applicable, or more particularly fufet to the cafe of
fevers, is not well ascertained. Thofe most certain
applicable and ufeful are acetic aliments, acids of
all kinds, and neutral falt.
The progrefs of putrefaction may be coniderably
retarded, and its effects obferved, by influffing the
tone of the veffels; and this may be done by
tonic medicines, of which the chief are cold, and the
Peruvian bark, as already mentioned. The violence
of re-action increafing the tendency to putrefaction,
may be moderated by the means already mentioned
under fyncope.

These are the proper indications to be obferved in
the cure of the fnow nervous fever. Dr Harham
observes, that evaucations (efpecially bleeding) are
improper even at the beginning. Even a common purgative
given at this time hath been followed by surprifing
langsions, fyncope, and a train of other ill fymptoms. However, it may fometime be neceffary to
cleane the fomach and prime vief by a gentle emetic,
or a mild rarificative. Indeed where nausea, fick-
feness, and load at fomach are urgent, as is frequently
the cafe in the beginning of this fever, a vomit is nece-
cary. Clysters of milk, sugar, and salt, may be
injected with safety and advantage every second or
third day, if nature wants to be prompted to ftool.
The temperate, cordial, diaphoretic medicines, are
certainly, according to our author, moft proper in
these fevers; and a well-regulated, fupporting,
diluting diet, is neceffary. The latter of itself, ju-
dicilly managed, will go a great way in the cure,
especially affifted by well-timed and well-applied
blifters, and a due care to keep the patient as
quiet as poflible both in body and mind. But it
should be obferved, that any ftrong opiates are commonly
very pernicious, however, much the want of sleep and
reflelifines may feem to demand them. Mild dia-
phoretics, such as neutral draughts or elixir paregori-
cum, have much better effects; which, by raising a
gentle easy sweat, or at leat a plentiful perpiration,
keep the hurry of the spirits, and a refufling sleep en-
ues. Where the confufion and dejection of spirits
are very confiderable, blifters have been advifed to be
applied to the neck, occiput, or behind the ears;
and during all this a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cafe,
should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cafe,
should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cafe,
should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cafe,
should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cave,should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this caee,should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
and this may be done by

a free ufe of thin wine-whey,
some pleafant ptifan or gruel, with a little foft wine,
mufi be indulged. Indeed the patients, in this cave,should drink frequently; though fuch quantities may
not be neceffary as in the ardent, or even putrid mal-
ignant fevers; yet they fhould be fufficient to carry
on the work of dilution, fupport the fweats, and
supply the blood with fresh and wholesome fluids, in
place of that noxious matter which is continually
paffing off. In this view also a thin chicken-broth is
a very ufeful service, both as food and phyfic, efpecially towards
the vital power, and are followed
of fpirits
dehiscion of fpirits, tremors,
devises the swells, supports the patient, and keeps up the military pressure if they happen to attend. Towards the decline of the fever also, where the swells are abundant and weakening, small doses of the tincture of the bark with saltness and saucy root were given with the greatest advantage, frequently interposing a dose of rhubarb to carry off the putrid colluvings in the first passages; which vital sickness makes the remission or intercalations that often happen in the decline of nervous disease more distinct and manifest, and gives a safer opportunity of throwing in the bark; for in the proper exhibition of this medicine we are to place our chief hopes of curing both the nervous and putrid malignant fevers.

R. Pulv. contrayerv. comp. gr. xv.
Croc. Angl. gr. iii.
Coc. C. C. 3 grs.
Syr. Croc. q.t.
M. f. Balsam.

If great tremors and sublunus tendimium came on, he substituted half a scruple of mulk instead of the contrayerv in the bolus, with advantage. One or other of these, or similar prescriptions, are to be taken every fifth, sixth, or seventh hour, and a temperate cordial julep may be now and then given out of thin wine or cider whey, or, which is in many cases better, out of mustard-whey; which last is by no means a contemptible medicine. The saline draught made as above, is much more apt to pass through the pores of the skin when made with sixt of wormwood, which rather moves through the urinary passages.

The above mentioned difficulty of breathing, anxiety, and opression, many times precede a military eruption, which often appears on the seventh, ninth, or eleventh hour of the fever, and sometimes later. Indeed great anxiety and opression on the precordia always precede pustular eruptions of any kind in all sorts of fevers. This eruption should be promoted by 1 or 2 easy cordials and proper infusions; to which should be sometimes added some gentle aromatics. These tend to calm the universal uneasiness commonly complained of, and also very effectually. promote a diaphoresis, or breathing kindly swells, with which the military eruptions freely and easily advance. But however advantageous these commonly are, profuse swells are seldom or never so, even though attended with a very large eruption. Two or three crops of these military pustules have been known to succeed one another, following profuse swells, not only without advantage, but with great detriment to the patients, as they were thereby reduced to an extreme degree of weakness; so that they may jutly be reckoned symptomatical rather than any thing else, and the consequent eruption is often merely the symptom of a symptom; for the military glands of the skin appear very turgid, and mimic a rash, after profuse sweating, even in the worst healthy.

In these profuse colliquative sweatings a little generous red wine (diluted somewhat, if necessary) may be given with the greatest advantage; as it presently mo-
Hence fever is a disease of the most dangerous nature, as, that both frequently originate from a contagion precicely of the same nature. In the same manner we see, during different feasons, and in different circumstances, various degrees of malignity in small-pox. Though every instance of the disease depends on the introduction of a peculiar and specific contagion into the body, yet this contagion in particular epidemics evidently poises peculiar malignancy. The same is probably the case with the typhoid fever: But whether this observation be well founded or not, there cannot be a doubt that the typhus gravior or putrid fever is a disease of the most dangerous nature, as, besides the extreme debility of the nervous system, there is a rapid tendency of the fluids to putrefaction, which sometimes cuts off the patient in a few days, nay, in the warm climates, in 12 or 14 hours; or if the patient recovers, he is for a long time, even in this country, in an exceedingly weak state, and requires many weeks to recover his former health.

The putrid fevers, according to Huxham, make their attack with much more violence than the flow nervous ones; the rigor are sometimes very great, though sometimes scarce felt; the heats much sharper and permanent; yet, at first, fudden, transient, and resurgent; the pulse more tenax and hard, but commonly quick and small; though sometimes flow, and seemingly regular for a time, and then fluttering and unequal. The head-ach, nausea, and vomiting, are much more considerable even from the beginning. Sometimes a severe fixed pain is felt in one or both temples, or over one or both eyes-brows; frequently in the bottom of the orbits of the eyes. The eyes at times appear very dull, heavy, yellowish, and very often a little inflamed. The countenance seems bloated, and more dead-coloured than usual. Commonly the temporal arteries throb much, and tinnitus aurium is very troublesome; a strong vibration also of the carotid arteries frequently takes place in the advance of the fever, though the pulse at the wrist may be small, nay, even feeble: this is a certain sign of an impending delirium, and generally proceeds from some considerable obstructions in the brain.

The prostration of spirits, weakness, and faintness, are often surprizingly great and sudden, though no inordinate evacuation happens; and this too sometimes when the pulse seems tolerably strong. The respiration is most commonly laborious and interrupted with a kind of sighing or sobbing, and the breath is hot and offensive.

Few or none of these fevers are without a sort of lumbago, or pain in the back and joints; always an universal weariness or soreness is felt, and often much pain in the limbs. Sometimes a great heat, load, and pain, affect the pit of the stomach, with continual vomiting of porridgeous or black choler, and a most troublesome fignum; the matter discharged is frequently of a very nauseous smell. The tongue, though only white at the beginning, grows daily more dark and dry; sometimes of a shining livid colour, with a kind of dark bubble at top; sometimes exceeding black; and so continues for many days together; nor is the tint to be got off many times for several days, even after a favourable crisis: at the height of the disease, it generally becomes very dry, stiff, and black, or of a dark pomegranate colour. Hence the speech is very inarticulate, and scarce intelligible. The thirst in the increafe of the fever is commonly very great, sometimes unquenchable; and yet no kind of drink pleases, but all seem bitter and mawkish; at other times, however, no thirst is complained of, tho' the mouth and tongue are exceedingly foul and dry; this is always a dangerous symptom, and ends in a frenzy or coma. The lips and teeth, especially near the height, are furred up with a very black tenacious matter. At the onset of the fever, the urine is often crude, pale, and rapid, but grows much higher-coloured in the advance, and frequently resembles a strong lixivium, or citrine urine, tinged with a small quantity of blood; it is without the least sediment or cloud, and so continues for many days together; by degrees it grows darker, like dead strong high-coloured beer, and finally very rank and offensive. In petechial fevers, the urine hath often been seen almost black and very feitid. The foids, especially near the height, or in the decline of the fever, are for the most part intolerably fetid, green, livid, or black, frequently with severe gripes and blood. When they are more yellow or brown, the fea the danger; but the height when they run off infeffibly, whatever their colour may be. It is likewise a very bad symptom when the belly continues teetle, swollen, and hard, after profuently foids; for this is generally the consequence of an inflammation or mortification of the intestines. A gentle diarrhoea is often very beneficial, and sometimes seems to be the only way which nature takes to carry off the morbiferous matter.
Practice.

Sometimes black, livid, dun, or greenish spots appear, which always indicate a high degree of malignity; however, the more florid the spots are, the less danger is to be feared. It is also a good sign when the black or violet petechiae become of a brighter colour. The large, black, or livid spots, are almost always attended with profuse hemorrhages; and the small, dusky, brown spots, like freckles, are not much less dangerous than the livid or black; though they are seldom accompanied with fluxes of blood: excessively profuse, cold, clammy sweats are often concomitant, by which also they sometimes vanish, though without any advantage to the patient. The eruption of the petechiae is uncertain; sometimes they appear on the fourth or fifth day, though sometimes not till the eleventh, or even later. The ulcers, or large dark, blue, or greenish marks, seldom appear till very near the fatal period. Frequently also we meet with an efflorescence like the measles in malignant fevers, but of a much more dull and livid hue; in which the skin, especially on the breast, appears as it were marble'd or variegated. This in general is an ill symptom, and is often attended with fatal consequences.

Sometimes about the 11th or 14th day, on the occurrence of profuse sweats, the petechiae disappear, and vail quantities of white milky pur turds break out. This is seldom found of any considerable advantage; but an itching, smarting, red rash, commonly gives great relief; and so do the large, fretting, watery bladders, which many times rise upon the back, breast, shoulders, &c. A scabby eruption-like about the lips and nose is certainly one of the salutary symptoms; and the more hot and angry it is, so much the better. But of much more uncertain and dangerous event are the brown-coloured aphyres; nor are those that are exceeding white and thick, like lard, of a very pleasing aspect. They are soon succeeded by great difficulty of swallowing, pain and ulceration of the faucies, oesophagus, &c. and with an incessant singulitus: the whole prime view become at last affected; a bloody dyentery comes on, followed by a phacelation of the intestines; as is evident from the black, fanning, and bloody fluids, extremely fetid and infectious. Vomits, or large, black, and bluish marks resembling bruises, are frequently seen towards the close of the fever; and, when attended with lividity and coldness of the extremities, are certain tokens of approaching death. In some cases, the blackness hath been known to reach almost to the elbows, and the hands have been dead-cold for a day or two before the death of the patient.

Such are the general appearances of the putrid malignant fever in this country, among those who enjoy a free air, and are not crowded together, or exposed to the causes of infection: but in jails, hospitals, or other places where the sick are crowded, and in some measure deprived of the benefit of the free air, the symptoms are, if possible, more terrible. Sir John Pringle, who had many opportunities of observing it, tells us, that the jail or hospital fever, especially in the beginning, is not easy to be distinguished from a common fever. The first symptoms are light interchanges of heat and cold, a trembling of the hands, sometimes a feint of numbness in the arms, weakness of the limbs, loss of appetite; and the disorder increasing towards night, the body grows hot, the sleep is interrupted, and not refreshing. With these symptoms, for the most part, there is some pain or confusion in the head; the pulse at first is a little quicker than natural, and the patients find themselves too much indisposed to go about business, though too well to be wholly confined.

When the fever advances, the abovementioned symptoms are in a higher degree; and in particular, the patient complains of a languid, nervous, pains in his back, a more constant pain and confusion in his head, attended with an uncommon deviation of spirits. At this time the pulse is never faint, but beats quick, and often varies in the same day both as to strength and fulness. It is little affected by bleeding once, if a moderate quantity of blood be taken away; but if the evacuation be large, and especially if it be repeated, to answer a false indication of inflammation, the pulse, increasing in frequency, is apt to sink in force, and often irrecoverably, whilst the patient becomes delirious. But whilst we must observe, that, in every case, independent of evacuations, the pulse sooner or later sinks, and then gives certain intelligence of the nature of the disease. The appearance of the blood is various; for though it be commonly little altered, yet sometimes it will be puffy, not only on the first attack, but after the fever is formed. The work appearance is when the rash is indolent; though this does not happen till the advanced state of the fever: though indeed this feems not easy to be ascertained, as blood has been so seldom taken away at that time.

The urine is also various. Sometimes it is of a reddish or flame colour, which it preserves a long time; but it is oftener pale, and changes from time to time in colour as well as crudity, being sometimes clear, sometimes clouded: towards the end, upon a favourable crisis, it becomes thick, but does not always deposit a seminum. If the sick lie warm, and have had no preceding flux, the belly is generally bound; but when they lie cold, as they often do in field-hospitals, the pores of the skin being that; a diarrhoea is a common symptom, but is not critical. In the worst cases, a flux appears in the last stage; then the fluids are incontinent, collapacous, behavous, and have a cadaverous smell; the effects of a mortification of the bowels, and the signs of approaching death. When the hospitals are filled with dyfenteric patients, some of the nurses will be infected with the flux only, and others with this fever, ending in these bloody and gangrenous fluids.

In the beginning the heat is moderate; and even in the advanced state, on first touching the skin, it seems inconsiderable; but upon feeling the pulse for some time, we are sensible of an uncommon ardeur (the color nordinus, as it has been called), leaving an unpleasant sensation on the fingers for a few minutes after. A day or two before death, if care be not taken, the extremities become cold, and the pulse is then hardly to be felt. The skin is generally dry and parched, though sometimes there are longer or shorter sweats, especially in the beginning. Such as are produced by medicine are of no use, except on the first attack, at which time they will often remove the fever; and natural sweats are never critical till the dillenper begins to decline. These last are rarely profuse.
profuse, but gentle, continued, and equally diffused
over the body; sometimes the disease will terminate
by an almost imperceptible moisture of the skin; the
sweats are usually fetid, and offensive even to the pa-
tient himself.

The tongue is commonly dry; and, without constant
care of the nurse, becomes hard and brown, with deep
chops: But this symptom is common to most fevers.
At other times, though rarely, the tongue is soft and
moist to the lilt, but with a mixture of a greenish or
yellowish colour. The breath is sometimes great, but
more frequently moderate. In the advanced stage, the
breath is offensive, and a blackish, furring gathers about
the roots of the teeth.

Soms are never delirious, but all lie under a stupor
or confusion; few retain their senses till death; many
lose them early, and from two causes; either from im-
moderate bleeding, or the premature use of warm and
spiritious medicines. They rarely sleep, and, unless delirious,
have more of a dejected and thoughtful lool than what is
commonly seen in other fevers. The face is late in acquiring either a ghastly or a very morbid
appearance; yet the eyes are always muddy, and gen-
erally the white is of a reddish cast as if inflamed.
The confufion of the head generally rises to a delirium,
especially at night; but, unless by an unreasonable hot
regimen, it seldom turns to rage, or to those high
flights of imagination common in other fevers. When
the delirium comes to that height, the face is flushed,
the eyes red, the voice is quick, and the patient struggles
to get up. But when that symptom is owing to large
evacuations, or only to the advanced stage of the dis-
case, the face appears meagre; the eye-kids in flammers
are only half flult; and the voice, which is commonly
low and flow, sinks to a degree fcarce to be heard.
From the beginning, there is generally a great dejec-
tion and failure of strength. A tremor of the hands
is more common than a flattering of the tendons; or if the
subfultus occurs, it is in a lefser degree than in many
other fevers. In every stage of the disease, as the pulse
sinks, the delirium and tremor increafes; and in pro-
portion as the pulse rises, the head and fpirits are re-
lieved. Sometimes in the beginning, but for the moft
part in the advanced stage, the patient grows dull of
hearing, and at last almost deaf. When the fever is
protracted, with a flow and low voice, the fick have a
particular craving for fomething cordial, and nothing
is fo cordial or fo acceptable as wine. They long for
no food, yet willingly take a little panada if wine be
added. But fuch as are delirious, with a quick voice,
with fuch a fubfultus tendium, or violent actions,
though their pulse be fink, yet bear neither hot medi-
cines, wine, nor the common cordials.

Vomiting, and complaints of a load and ficknefs at
the stomach, though usual symptoms, are not efential to
the disease; nor are pleuritic diftiffies, difficulty in
breathing, or flying pains, to be referred so much to
it as to the continuation of the patient, or to a prece-
ding cold.

A pectinal effuence is a frequent, though not
an ineparable, attendant of this fever. It sometimes
appears of a brighter or paler red, at other times of a
livid colour, but never rises above the skin. The spots
are small; but generally fo confluent, that at a little di-
fance the skin appears only somewhat redder than or-
dinary, as if the colour was uniform; but upon a nearer
inspection there are interlaced fmall fquares or dots.

The hofpital fever, though accounted one of the con-
tinued kind, yet has generally some exacerba
tion at night, with a remiffion and often partial sweats in
the day; and after a long continuance it is apt to change
into a hectic, or an intermitting form. The length of
the disease is uncertain. Sometimes it terminated
either in death or recovery, in feven days after the pa-
tient took to his bed; but in the hofpitals it generally
continued from 14 to 20, and fome died or recovered
after four weeks. From the time of the finking of the
pulse until death or a favourable crisis, there is per-
haps lea? change to be seen from day to day in this
than in molt other fevers. When its course is long, it
sometimes terminates in fuppurations of the parotid
or auxiliary glands; and when these do not appear, it
is probable that the fever is kept up by the formation
of some internal afscefs. The parotid glands themselves
do not fuppurate, but only three of the lymphatic glands
that lie over them. Sir John Pringle obferved one in-
fance of a swelling of this kind on both fides, with-
out any previous indifpofition, when the perfon, not
feeking the caufe, and applying diftifeent cau-
als, was, upon the tumour fubfliding, fezed with the
hufpital-fever. Many patients after the crisis of
this fever comain of a pain in the limbs and want of
refi; and almost all of them mention great wea-
kness, confufion in their head, vertigo, and a noise in
their ears.

Ten of the bodies of thofe who died of this diftem-
er in Houghton's regiment were opened. In fome
of them, all the cavities were examined; in others, only
the brain or the bowels. In fome of them, the brain ap-
peared to be fuppurated. The fift of this kind Sir John
Pringle met with at Ghent; but the man being brought
into the hufpital from the barracks no earlier than two
days before he died, he could only conjecture from the
symptoms and the imperfect accounts he had of him,
that his death was owing to a fever of this kind, after
lirting near a month in it. About three ounces of
purulent matter was found in the veficles of the
brain, and the whole cortical and medullary fubflance
was uncommonly f leaked and tender; nay, fome of
the fame kind of matter was found in the fubflance of
the upper part of the cerebellum; yet this perfon, with
fome fupur and deftrines, had his fenses till the night
before he died; fo far, at leaft, that he anfwered di-
finitely when roufed and fpoken to; but about that

wine, reticled on common
the ho2pital-fever. Many patients after the crisis of
this fever complain of a pain in the limbs and want of
rest; and almost all of them mention great weakness,
confusion in their head, vertigo, and a noise in their
time the muscles of his face began to be convulsed. Of
two other instances of men who undoubtedly died of
this fever, in one the cerebrum was suppurred, in the
other the cerebellum. In the former cafe, the patient
was under a stupor, with deafness from the beginning;
but was never delirious, nor altogether insensible. His
pulse funk early; and about ten days before his death
his head began to swell, and continued very large till
within two days before he died, when it subsided a little.
For several days before his end, he would taffe nothing
but cold water, and during his illness he lay conftantly
upon one fide. The head being opened, an abfcess as
large as an egg was found in the fubftance of the fore-
part of the right hemifphere of the brain, full of thin
matter like whey. At
afterwards, in which the cortical
abfcesses in both orbits, the brain was found flaccid, and
marfhes that had been made
the contagion. As to the
ill
about its
cerebellum. In the former
case, the abfcess in the cere-

Thefe fuppurations, however, were not
for another who died about the fame time and had
been ill about the fame number of days with the like
symptoms, the pale water excepted, had no abfcess ei-
ther in the brain or cerebellum. And two were opened
afterwards, in which the cortical fubftance of the brain had an inflammatory appearance, but no fuppura-
tion. In one of them the large inflations were cor-
ruped; that man went off with a loofeness; and juft
before he died, an ichorous matter was discharged from
his nofe. In the military hospital at Ipswich, one
who unexpectedly died of this fever after having been
feemingly in a fair way of recovery, had no fuppura-
tion in his brain; but in another, who died after an
abfcess in both orbits, the brain was found flaccid, and
about two ounces of a thin ferum in the ventricles.

Cauces of, and persons subject to, this disorder. The
caufe of this fever, as well as that of the flow nervous
fever, is an infection or contagion from fome difeafe
animal-body, or from corrupted vegetables; and there-
fore is very little, if at all, different from thofe
peftilential disorders which have arifen after battles, when
great numbers of dead bodies were left unburi'd, and
infected the air with their effluvia. This is con-
mifed by an obfervation of Forelhus, who was eye-
 witnefes to a diftemper of this kind (which indeed he
calls a fbounding) owing to the fame caufe, attended with
buboes and a high degree of contagion. The fame au-
thor also gives an account of a malignant fever break-
ning out at Egmont in North-Holland, occafioned by
the rotting of a whale which had been left on the shore.
We have a like obfervation of a fever affecting the
crew of a French fhip, by the putrefadion of fome
cattle which they had killed on the ifland of Nevis in
the Wett Indies. Thofe men were feized with a pain
in their head and loins, great weaknefs, and a difor-
der of the stomach, accompanied with fever. Some
died of carbuncles; and on others purple spots appeared
after death.

Galen affigns two caufes for peftilential fever's:
1. The great heat of the weather, when the humours
happen to be in a more putrefacent state than usual.
2. A putrid flate of the air, arifing either from a mul-
titude of dead bodies left unburi'd, as after a battle,
or from the evaporation of corrupted lakes and
marshes.

One of the moft remarkable difeafes incident to an
army is related by Diodorus, as breaking out among
the Carthaginians at the siege of Syracufa. That au-
tor not only relates fome of its moft diftinguifhing
symptoms, but reafons well about its caufe. He ob-
erves, that fome in the back and eruptions (\textit{\textcopyright})
were common; that fome had bloody floods; that oth-
ers were feized with a delirium, fo as to run about
and beat all that came in their way; that the physici-
ans knew no cure; and that it was the more fatal as
the fick were abandoned by every body on account of
the contagion. As to the caufe, the author takes no-
tice of the multitude of people confined within a nar-
row compass; of the fiation of the camp in a low
and wet ground; of the fcorching heats in the middle
of the day, fucceeded by the cold and damp air from
the marshes in the night-time; to thofe he adds, the
putrid flames arifing from the marshes, and afterwards
from the bodies of thofe who lay unburi'd.—This
diftemper feems to have been a compound of the
marsh and peftilential fever.

Forelhus remarks, that, from the putrefadion of
the water only, the city of Delit, where he prahifed,
was fcarce ten years together free from the plague or
peftilential disorder. He adds, that the mag-
illrates, upon their reprefentation of the caufe, erect-
ed a wind-mill for moving and refrefhing the water.
At that time Holland was much more fubject to in-
flations and the fagnation of water than preftent.
In 1694, a fever broke out at Rochfert in France,
which, on account of the uncommon symptoms and
great mortality, was at first believed to be the plague.
But M. Chiras, who was fent by the court to inquire
into its nature, found the caufe to arife from fome
marshes that had been made by an inftigation of the
seas; and obferved, that the corrupted flreams, which
flmed like gun-powder, were carried to the town by
the wind, which had long blown from that quarter.
About two-thirds of thofe who were taken ill died.
In fuch as were opened, the brain was found either
infamed or loaded with blood; the fibres of the body
were uncommonly tender; and the bowels had either
difcharges or were filled with matter.

It is needful to mention more inftances of peftil-
elial fever's being brought on by the flreams of
corrupted flufances, whether animal or vegetable. In
general it may be remarked, that the putrefadion of
fuch flufances in a dry air is more apt to bring on a
fever of the continued form; but in a moif air hath
a greater tendency to produce remitting fervers. But
it muft alfo be obferved, that, even in cafes where the
moft malignant fever's prevail, all perfons are not
equally difposed to receive the infection, though
equally exposed to it with others. Some, through
mere vigour of body and mind, cannot be infected with
the moft contagious difeafes; whiles, on the other
hand, thofe whole bodies are defribed by a former
difeafe, by fudy, low diet, or war, or thofe who
have laboured under any of the defpefting pains of
the mind for fome time, feldom or never escape. Men,
therefore, who have been weakened by accidents (as
thofe who have undergone a mercurial fublimation)
are very apt to fall into this diftemper. Thofe who are
taken into crowded hospitals, ill of the small-po
however
MEDICINE.

Practise.

however good the fort may be, fall readily into this fever, and run a greater risk of dying of it than others. The second fever is attended with double danger, fearing the patient has been so much weakened by the first. A sure sign of the corruption of the air in an hospital is when many of the nurses fall sick.

Prognosis. In these fevers we cannot draw a prognostic from any symptom by itself; and perhaps all of them together are more fallible than in others. Generally the following are good: to have little delirium; the strength little impaired; turbid urine in the decline of the disease; and at that time a gentle sweat or moisture diffused over the body, or even the skin soiled and the tongue moist; or to have some loose stools succeeded by a diaphoresis; the pulse to rise by wine or cordials, with an abatement of the flour, tremor, and other affections of the brain. Deafness is rather a good sign. A sediment in the urine, without other changes to the better, is no sure sign of recovery; and some have recovered in whose urine there was no sediment.—The bad signs are, a subfultus tendinum; the patient complains of blindness; when he swallows with difficulty, or cannot put out his tongue when desired to do it; when he can lie on his back only, and pulls up his knees; or when insensible he endeavours to uncover his breast, or makes frequent attempts to get out of bed without affigning any reason. If to any of these are added ichorous, cadaverous, and putrid stinks, frequent stools, with a sinking pulse, and the day, from such a sandy soil, is always hot, disagreeable, and unhealthy; these fogs may be compared to that of a new cleaned ditch. Diffuses therefore, arising from this cause, generally take place in the night, or before sun-rising.

Numerous fwarms of flies, gnats, and other insects which attend the corrosion of the air and unhealthy places covered with wood.

4. When all butchers meet soon corrupts, and in a few hours becomes full of maggots; when metals are quickly corroded on being exposed to the air; and when a corpse becomes intolerably offensive in less than six hours; these are proofs of a close, hot, and unhealthy country. And in such places, during excessive heats and great calms, it is not altogether uncommon for Europeans, especially such as are of a gross habit of body, to be seized at once with the most alarming and fatal symptoms of what is called the yellow fever, without even any previous complaint of biliousness or other symptoms of the disease. There has first been perceived an uneasy itching sensation, commonly in the legs; and upon pulling down the stockings, streams of thin discolored blood followed, a ghastly yellow colour quickly diffused itself over the whole body, and the patient has been carried off in less than forty-eight hours.

5. A fort of sandy soil, commonly a small, loose, white sand, as that at Pensacola, Whydah, and the island of Bonavista, which is found by experience to be injurious to health. The pestiferous vapour arising, during the summer months and in the heat of the day, from such a sandy soil, is best characterized by its effects in the extensive deferts of Asia and Africa. It there constitutes what is called the semel-awin; a blast which, in the parched deserts, proves insupportable to man and beast: but when it passes over a soil well covered with grass and vegetables, has its effects greatly mitigated; it is, however, even then, productive of sickness; thus the southerly winds, while they blow from the deserts of Libya during the summer, at Algiers, Tunis, and Tripoli, produce an unhealthy season; and at Madras the winds, which, in the months of April and May, pass over a large tract of sand, are always hot, disagreeable, and unhealthy.

During these land-winds, sudden gusts of a more hot and suffocating nature are often observed to come from these sands once or twice, or even more frequently, in a day, which seem to be this vapour in a purer form. These gusts pass very quickly, and affect persons who happen to stand with their faces towards them in the same manner as the hot air which issues from a burning furnace, or from a heated oven, and obliges them immediately to turn away from it in order to recover breath. The effect of this hot suffocating blast or vapour on the human body, even when mitigated by passing through a moist atmosphere, is the same as that of intense cold; it flushes up every pore of the skin, and entirely stops the perspiration of such
The heat of the season is increased; but the opposite winds, arising from the opposite parts of India, are a wholesome check to this increase of heat and suffocating quality of these winds, which accompany them, proceed from sand heated in the desert of Nubia and the deserts of Arabia, and other places of Africa, where the sun, is evident from experience, is confirmed by the experience of Europeans, who have often been obliged to die from this dangerous work; the captain and 11 of his men being seized with violent fevers, which terminated in obliterating intermittent, and of which several died. The survivors suffered so much in their constitutions, that, even after they came to England, the return of an east wind was apt to bring on a violent fit of the ague. The Ludlow-Castle, a ship of war of 40 guns, in a voyage to the coast of Guinea, also lost 5 of her men at Sierra Leone, who were employed in cutting down wood for the ship. This is an occupation which has often proved destructive to Europeans in those climates, and in which they ought never to be employed, especially during the rainy season. There being numberless instances of white persons, when cutting down the woods at that season, who have been taken ill in the morning, and dead before night.

Another evil, less known, and less suspected, but no less dangerous, is the sending of Europeans in open boats after fish, where the soil is swampy, or where there are great night-fogs. The tingle duty alone of fetching fresh-killed butchers meat at night for the use of our ships companies in the East and West Indies, has destroyed every year several thousand seamen. In those parts of the world, butchers meat must be brought on board at night immediately after it is killed, otherwise it will not be fit for use the next day; but a contract made with the natives to send it on board at that time, which might be done for a trifling sum, would be the means of preserving many useful lives. During the sickly season at Batavia, a boat belonging to the Medway, which attended on shore every night, was three times successively manned, not one having survived that service. They were all taken ill in the night, when on shore, or when returning on board; so that at length the officers were obliged to employ none but the natives on that business. Great numbers of men have perished from being employed in this manner at Bengal, where the European ships often anchor in the most unhealthy spots of the river; and even when the great night-fogs arise, after the rainy season, the men are often obliged to perform such night-services in boats.
boats. Now since it is so dangerous for Europeans in unhealthy countries, particularly during a season of sickness, to be exposed in an open boat to the foggy night-air, it must appear, that sending them unsheltered, in open boats, far up rivers, in unhealthy southern climates, for the sake of wood, water, trade, or other purposes, must be attended with the most destructive and fatal consequences.

Burying the dead in swampy countries is another occupation which has proved fatal to many, and which ought to be entailed on negroes or the natives of the country. The effluvia from the ground when newly opened, whether from graves or ditches, are far more dangerous than from the same swampy soil when the surface is undisturbed; nay, in some places, it has been found almost certain death for an European to dig a grave, unless long feasoned to the country. In such a place, the attendance of friends at funerals ought to be dispensed with.

In all cases where it is practicable, the ships which visit these unhealthy countries should anchor as at great a distance as possible from shore; or if obliged to anchor near marshy grounds or swamps, especially during summer or in hot weather, and when the wind blows directly from thence, the gun-ports which would admit the noxious land-breeze ought to be kept shut, especially at night. Or if the ship rides with her head to the wind, a thick sail ought to be put upon her forecastle, along which the smoke from the fire-place might be made conveniently to play and ascend. If the sails should occasion a little smoke between decks, this inconvenience will be sufficiently compensated by its keeping off the direct stream of the swampy shore effluvia; which now being obliged to form a curve before they reach the more distant parts of the vessel, must needs be greatly diverted and scattered.

The best preservative against the mischievous impressions of a putrid fog, or of a marshy exhalation, is a close, sheltered, and covered place; such as the lower apartments in a ship, or a house in which there are no doors or windows facing the swamps. If an open place a fire be kept, either at the doors and other inlets to a house, or in the chambers, as is practised in some unhealthy countries during the rainy or foggy season, it will prove an excellent and effectual protection against the injuries of a bad air. On board of ships also fires may be made at the hatchways; and of the good effects of this we have the following example.

When the Edgar, a ship of war of 60 guns, was upon the coast of Guinea in the year 1768, her men were very sickly, and many of them died; however it was observed, that in a flood of war, which was constantly in company with her, few were taken ill, and not one died during the whole voyage. This could be ascribed to no other cause, but that in the flood the fire-place for cooking victuals was on the same level with the deck where the men lay; and every morning when the fire was lighted, especially when there was but little wind, the smoke from the cook-room spread itself all over the ship, and particularly over those parts where the men lay; but from the constriction of the fire-place of the Edgar, no smoke from it ever came between her decks.

Persons on board any ship whatever, are much more safe, and their situation is much more preferable to that of those who make distant inland excursions in small boats upon the rivers, and who are for the most part ignorant of the cause of those maladies which destroy them. The intolerable heat at noon often obliges such persons to go in a manner half-naked; while a free and plentiful perspiration issues from every pore. A near approach to putrid swamps at this time is apt to produce an immediate sickness, vomiting, and afterwards a low nervous or malignant fever. But if they happen to pass them at night, or lie near them in an open boat, the air from those swamps is perceived to be quite chill and cold; in so much that warm thick clothing becomes absolutely requisite to guard the body against the impressions of so great an alteration in the air, and against its cold and indecent quality: for the effects of it then, even on the most healthy and vigorous constitution, is frequently a chilling cold fit of an ague, terminating in a fever with delirium, bilious vomitings, a flux, or even death itself. But where such exposure becomes unavoidable, the only method is then to defend the body as much as possible against the pernicious manifesta with which the air abounds. All those who are employed in cutting down woods, or in other laborious and dangerous services in hot climates, during the heat of the day ought to have their heads covered with a bladder dipped in vinegar, and to wash their mouths often with the same liquid; never to swallow their spittle, but rather to chew a little rubarb or some other bitter, and spit it out frequently; to stop their nostrils with a small bit of linen or tow dipped in camphorated vinegar; and to infuse some bark, garlic, and rubarb, in brandy, of which a dram is to be taken, either by itself or diluted with water morning and evening.

In the evening before sunset they should leave off work, and not return to their labour in the morning till the sun has dispersed the unhealthy vapours. Those who must of necessity remain on shore, and sleep in dangerous places, must take care not to lie upon the ground exposed to the dew, but in hammocks in a close tent, standing upon a dry sand, gravel, or chalk, near the sea shore, and where there is no subterraneous water for at least four feet below the surface of the ground. The door of this tent should be made to open towards the sea; and the back part of it, which receives the land breeze, must be well secured by double canvas, or covered with branches of trees. But in such circumstances, a hut, when it can be procured, is preferable to a tent, especially if it be well thatched, so as to prove a defence both against the excessive heat of the sun by day, and the noxious dew which falls at night. Here the men may be enjoined to smoke tobacco. When the air is thick, moist, and chill, the earth being overspread with cold dew, a constant fire must be kept in and about the tent or hut, as the most excellent means of purifying such unhealthy air, and of preserving the health of those who either sleeping or waking are exposed to its influence. The centinels who guard the water-casks, ought likewise at such a time to have a fire burning near them. All old and forsaken habitations, natural caves and grottos in the earth, where the men may be induced to take up their abode, must before their admission be perfectly dried and purified.
with sufficient fires. Fire and smoke are undoubtedly the great purifiers of all tainted and unwholesome air, and the most excellent preservatives against its noxious influence. It is the custom of the negroes in Guinea, and also of some Indians (who both sleep for the most part on the ground), to have a fire producing a little smoke, constantly burning in their huts where they sleep. This not only corrects the moisture of the night, but also, by occasioning more smoke than heat, renders the damp from the earth less noxious; of which Dr Lind gives the following remarkable instance.

A Guinea ship being up one of the rivers for the sake of trade, it was found to be very dangerous to sleep on shore; without which their trade could not be so conveniently carried on. First the captain, then the mate, and two or three of the seamen, were taken ill; each of them the morning after they had lain on shore. By these accidents the men were greatly intimidated from lying abroad; till the surgeon boldly offered to try the experiment on himself. Next morning when he waked, he found himself greatly relieved, especially by breathing some smoke, and in the head, &c. He immediately acquainted one of the negroes with his condition, who carried him to his hut, and set him down in the smoke of it; when his giddiness and shiverings soon left him. He then took a dram of the bark bitter; and found himself greatly relieved, especially by breathing some time in the smoke.—Thus instructed by the negro, he ordered a large fire to dry the hut he slept in; and afterwards had every night a small fire sufficient to raise a gentle smoke, without occasioning a troublesome heat: and by this means he and several others, using the same precautions, slept many nights on shore without any inconvenience.

Fire and smoke indeed are found to be certain correctors, or rather destroyers, of infection in all cases, whether arising from the noxious effluvia of marshes, or from the contagion of diseased bodies. Thence most extraordinary and fatal damps called harnamattas, are unable to refift the salutary effects of smoke. In other cases, Dr Lind remarks, that, under some circumstances, the source of an infection in a sick chamber or any other place, may be removed or destroyed by accidental means, for which we cannot account, and which we often cannot ascertain. But it oftener happens, that it is very difficultly rooted out; and that exaet cleanliness, with the benefit of a pure air, often proves insufficient to remove the evil. Smoke, however, has never been known to fail. It is not to be doubted, that excepting the true plague, there has been an infection fully as pestilential and as mortal in some ships as in any other place whatever; yet it has never been heard, that any ship, after having been carefully smoked, did not immediately become healthy; and if afterwards they turned fickly, it was easy to trace that sickness from other infected ships, jails, and the like places.

There are three methods practised for purifying vessels after the men have been removed out of them. The first is by burning of tobacco. A quantity of tobacco is spread on several fires, made with such old pieces of rope as are called junk. These are dispersed into different places of the ship, and their heat and smoke afterwards closely confined below for a considerable time.—The second method is by charcoal fires drewed with brimstone. The heat and flem of these burning materials must also be long and close; but, although this furnance properly applied, has been found by experience to purify most efficiently tainted apartments, ships, clothes, &c. yet there are some kinds of vermin which it will not destroy, particularly lice. The third method of purification is performed by the addition of arsene to the materials of the second process, in the following manner. After carefully fopping up all the openings and every small crevice of the ship (as was also necessary in the preceding processes), a number of iron pots, properly secured, are to be placed in the hold, orlopes, gun-deck, &c. Each of these to contain a layer of charcoal at the bottom, then a layer of brimstone, and so alternately three or four layers of each, upon which the arsenic is to be sprinkled; and on the top of it some oakum dipped in tar is to be laid to serve as a match. The men, upon setting fire to the oakum, must speedily leave the place, shutting close the hatchway by which they came up.

From the small and experienced efficacy of these processes, it appears, that fire and smoke are the most powerful agents for annihilating infection; and, it may be presumed, even the plague itself. This is in some measure agreeable to what we learn from the ancient records of physic. But the preposterous use, or rather abuse, of fire on such occasions, has caused its effects to be disregarded by some, and to be suspected of mischief by others. The modern practice of burning large fires in the open air, in the streets, and about the walls of towns infected with the plague or other contagion, is founded on principles groundless and erroneous; and has therefore been found by experience not only unsuccessful, but hurtful. But though this must be allowed, it doth not thence by any means follow, that when once a house hath been fumck, the patients removed from it, the doors and windows at the same time being shut, that such fires will then prove hurtful; or that, by this method of purification, all the seeds of contagion will not be effectually destroyed. Whenever, therefore, perons die of a spotted fever, a malignant sore throat, the small-pox, or any other disease found to be communicable from the sick to others, the corpse ought quickly after death to be removed into another room; that in which the person died should be well aired, by having the windows opened, till a charcoal-fire be kindled, with some rolls of sulphur upon it; after which, both doors and windows should be kept shut for a considerable time, not less than eight or ten hours, till the room be thoroughly smoked. In several ships, where there are the fairest opportunities of trying and judging things of this nature, the contagion of the small-pox has been entirely expelled by wood fires, sprinkled with brimstone, kept burning and closely confined in the infected place. In a word, a judicious and proper application of fire and smoke is the best means for the destruction and utter extirpation of the most malignant sources of disease; and they are besides the greatest purifiers of all bad and tainted air.

Next to the smoke of wood for purifying a tainted air, that of gun-powder is to be esteemed the best; and it has this further good property, that it is entirely inoffensive to the lungs. The cacteilla-bark, when burning, gives a most agreeable fcent to the chamber of the sick; so is at least an elegant preservative, and may prevent
Such slight degrees of infection have been often observed to be derived from patients of a gross habit of body when labouring under inflammatory distempers, and even other complaints. A man was sent to Hal­lar Hospital supposed to have a fever. He was furiously delirious, with a quick full pulse. Notwithstanding plentiful evaporation, this delirium continued for two months with short intervals; when the case was found to be plainly maniacal. A nurse, upon rais­ing this person up in her arms, perceived an intoler­ably bad smell, and was instantly seized with shiverings, sicknese, and head-ach. Finding herself very ill, she took a vomit in fix hours afterwards, and passed the night in profuse sweats by means of a sudorific draught.

Next morning the violence of the head-ach was but little abated; upon every attempt to move, she com­plained of a burning heat and pain in her forehead, and became giddy. Her inclination to drink was frequent, and her pulse low and quick. A blister was im­mediately applied to the back; as soon as the blister took effect, the head-ach and thirst entirely left her, and the pulse was calm. Next day the afe and was well.

Many similar instances of infection have been ob­served from putting the dead into their coffins. In par­ticular, one man, who, from performing that duty to his mate, was so ill, even after the operation of the vomit, as to require a blister. In the course of one week two nurses were infected by a person in the small­pox. Both were seized in like manner with shiverings, sicknes, and head-ach; the one upon receiving the patient's breath, the other upon making his bed. In the one, a pain darted into her breast; in the other, into the breast and in the small of the back. The com­plaints of the former were speedily removed by a vomit, though the continued to have irregular returns of shiverings for three days afterwards. But in the latter, though the head-ach, sicknes, and rigors, were greatly abated by the vomit, yet a constant heat and thirst, with a low pulse, and a violent pain in the breast, indi­cated the necessity of applying a blister to the affected parts, which next morning removed all her com­plaints.

A person is often immediately sensible of his having received an infection from the first attack: they gene­rally compare the first impression to an earthy, dif­agreeable smell, reaching down as they express it, into their throats, as from a grave newly opened, but not quite so raw as the cadaverous fcent, and the effects of it, shivering and sicknes, are instan­taneous. It is a smell difficult to describe; but it is well known to the nurses and attendants about the sick, as it usually accom­panies fevers of extreme malignity, and, with the peculiar discharges from the blistered parts, may be reckoned among the most con­stant symptoms of a bad fever. Some compare the smell to that of rotten straw. It often resembles the disagreeable fcent of a perfum labouring under the con­stant small-pox at their turn, though not so strong. One person, on receiving the infection, was sensible of something like an electric shock through his body. But many are not sensible of any effect from an infection at first; and an infection from a fever will sometimes continue for many days, nay weeks, discovering itself chiefly by irregular shiverings, sometimes so severe as to oblige the patients to have
in the delirium with a sunk pulse, even leeches were hurtful. Many recovered without letting blood, but few who lost much of it.

Vomits also must be used with caution; for though they may be of use by way of prevention, yet in the advanced state of the disease, when the patient has all along complained of sickness at stomach, they are evidently unsafe. Here the antilptic quality of fixed air is of much use, and the neutral draughts given in the act of effervescence are generally attended with happy effects. Nay, clysters of fixed air itself have been found very serviceable. Even in very bad flages of the delirium, where a putrid and colloquate looefet has taken place, clysters of fixed air have been known to alleviate the symptoms. We must not, however, put too much confidence in medicines of this kind. Mild astringent cordials, especially wine and Peruvian bark, are the only resources in these disorders. Concerning the former, Sir John Pringle observes, in the low state of these fevers, and in great sicknesses, which either come after unseasonable bleedings or long want of nourishment, it was a most grateful and efficacious cordial, to which nothing was comparable. The common men had an allowance, from a quarter to half a pint in a day, of a strong kind, made into whey, or added to the panada which was their ordinary food. But to others out of the hospital, he usually prescribed Rhenish or a small French wine, whereof some consumed near a quart per day, and part of that undiluted. Nay, fo great was the virtue of wine in this stage of the fever, that several were known to recover from the lowest condition, when refusing the bark on account of its taste, they took nothing but a little panada with wine and a volatile diaphoretic mixture every two or three hours by turns. Perhaps there is no rule more necessary in this state, than not to let the patient when low remain long without taking something cordial and nourishing: as many have been observed past recovery, by being suffered to pass a whole night without any support about the time of the crisis. In the advanced state of this fever the sick are remarkably low; and therefore Hoffmann advises in such cases, that they should be constantly kept in bed, and not permitted even to sit up in it. In the last stage of this fever, as well as in that of the sea-scurvy, it would seem that the force of the heart was too small to convey the blood to the brain, except when the body is in a horizontal posture.

But, however necessary wine and the bark may be in the low state of this fever, we must remember, that these remedies are to be administered only as antileptics and supporters of the ditto wine, without aiming at thoroughly raising the pulse or relieving the head, or at forcing a sweat by them, before nature points that way, and which Sir John Pringle seldom observed before the 14th day. For though the patient may die before that time if he has been largely bled, or if the cordial medicines have been given him too freely, yet such means as he made use of were not powerful enough to bring on a crisis sooner.

In the low state of the hospital-fever, a florup was a constant attendant, which was very apt, in the evening, to change to a slight delirium. If this was all, as being in the common course, nothing was done. But if the delirium increased upon ufing wine, if the eyes
eyes looked wild, or the voice became quick, there was reason to apprehend a phrenitis; and accordingly it was observed, that at such times all internal heating medicines aggravated the symptoms; and in these cases blisters were of the greatest service. Fomentations of vinegar and warm water for the feet, our author is of opinion would answer better than either snipums or blisters, provided they were long enough and often enough applied. In the inflammatory fevers, he has known thefe fomentations have little effect for the fifth hour, and yet succeeded afterwards. For internal medicine the bark was omitted for some time, but the patient was continued with an acidulated drink, viz. barley-water and vinegar; and treated also with camphire, pubis confreyera campfta, and nitre, as was usual in the beginning of the fever. If the delirium was of the low kind, a decoction of the bark and wine were the only remedies; for in no instance was the delirium perfectly removed till the time of the crisis. It must also be observed, that a delirium may arise in putrid fevers from two opposite errors; one from large and repeated bleedings, and the other from wine and the cordial medicines being taken too early. It appears therefore how nice the principles are that regard the cure; as neither a hot nor a cool regimen will answer with every patient, or in every flate of the disease.

If a diarrhoea came on in the decline of the fever, it was moderated, but not suppreffed, by adding an opiate to the usual medicines. For though the loofenefs may be considered as critical; yet as the fick were too low to bear evacuations, there was a necessity for refraining it in some measure; and it has often been observed, that when it has been treated in this manner, the usual time of the crisis, the patient has fallen into a gentle sweat, which has carried off the disease. In the worst cafes of this fever, and especially when it coincides with the dysentery, the fowls are frequently bloody; in which dangerous flate, if any thing could be done, it was attempted by medicines of the fame kind. In proportion to the putrid nature of the fowls, opiates and astringents were used with the greater caution.

If the disease terminate in a fuppuration upon one of the parotid glands (for the gland itself does not suppurate), the abfcess was opened without waiting for a fluctuation, which might never happen; the pus being often here fo vifcid, that after it was rife the part felt nearly as hard as if the fuppuration had not begun. Almost every patient, after the fever, complained of want of reft, frequently of a vertigo or confusion of the head, of a continuation of the deafness, or of other symptoms commonly called nervous. An opiate was then given at night; and in the day some strengthening medicines, fuch as the bark and the elixir of vitriol. In these cafes, the bark was found not only to be the belt ftrenger, but the fureft prefervative againft a return of the disease. For this laft intention the convalefcent was ordered about three draffms a-day for fix or seven days together; and afterwards, if he remained longer in the hospital, fome smaller quantity daily. But if there was any appearance of a hectic fever from an inward abfcess, the cafe was treated accordingly. Upon comparing fome of the remaining symptoms of thofe who recovered, with the condition of the brain in thofe who died and were opened, Sir John Pringle was induced to think, that fome part even of that fubflance might fuppurate, and yet the person recover.

Sometimes the patient falls into an irregular intermittent; which, if not of a hectic nature from an internal abfcess, may proceed from neglecting to clear the prima via. For it is easy to conceive, that after a long fever of fuch a putrid nature, often attended with languor of the bowels, the faces may be fo much accumulated, and fo corrupted, as to occasion new disorders. In fuch cafes, after proper evacuation by a purge, the bark was almofl an infallible remedy.

The Yellow Fever.

Typhus cum flavidine cutis. Typhus icteroides, Sawa, fp. 7.

Mackittrick de febre flavo India Occidentalis, Edin. 1766.

Definition. This is one of the most fatal diseases to which the inhabitants of warm climates are subject, and is the fame with that called, from one of its worst symptoms, the black vomit, which is fo terribly deftructive in fome of the warm parts of America, particularly at Carthageana. According to Dr. Hilliard, the yellow or putrid fever most commonly feizes the patient at fift with a faintnefs, then with a fickness at fometime, accompanied moftly with a giddinefs of the head; foon after with a flight chillnefs and horror, very rarely with a rigor, which is foon followed by a violent heat and high fever, attended with acute darting pains in the head and back. A flushing in the face, with an inflamed rednefs and a burning heat in the eyes, great anxiety and oppreffion about the precordia, are the pathognomonic signs of the diftemper; fpecially when attended with fickness at fomach, violent retching, and bilious yellow vomitings, with frequent fighing. The pulse is now generally very quick, high, foft, and fometimes throbbing, but neverhard: in fome it is very quick, foft, low, and oppreffed; the respiration quick, full, and fometimes difficult; the skin very hot, and fometimes dry, though more frequently moist. Blood taken from the patient, even at the very beginning of the difafe, is often of an exceedingly florid red colour; much rareded and thin, and without the leaft appearance of fize; and the craffamentum, when it has flood till it is cold, will fcarce cohere, but fluctuates; the serum is very yellow.

Moft of the abovementioned symptoms continually increase, and are much aggravated; the retching and vomitings become almofl incessant; the anxiety great, and fighing frequent; great rednefs; continual toiling; no eafe in any posture; little sleep, and that disturbed and uneasy; and without any refreshment to the fick: and when they are fainting, they turn yellow about the face and neck, instead of turning pale; and as the fainting goes off, they recover their natural colour. These symptoms generally continue to the third day, though fometimes not longer than the fift or second, in others to the end of the fourth: the fift shows the greater defolution of the blood, and the greater malignity of the disease; the laft, the contrary; which
which the improper manner of treating the disease sometimes hastes and increases, or the proper method retards. This may be called the first stadium of the disease, and generally ends on the third day.

Blood taken from the sick on the second or third day, is much more discolored, the serum more yellow, and the cagamentum florid, loofe, scarce cohering, but undulates like fify water when shaken, and sometimes has dark blackish spots on its surface, showing a strong gangrenous diathesis.

About the third day, the pulse, which was quick and full before, now generally sinks greatly, and becomes very low; though sometimes it remains very quick, yet in others it is not much quicker than when the patient is in health, but is always low, the vomiting becomes almost incessant if not so before, and the matter thrown up is black; the patient then becomes comatose, with interrupted delirium. The thirst in some is very great, in others but little; the pulse still low and quick, attended with cold clammy sweats, and sometimes with delirium. The eyes, which were inflamed and red before, and began to be of a more dusky colour, now turn yellow; and this yellowness also soon appears round the mouth, eyes, temples, and neck, and in a short time diffuses itself all over the body.

But this yellowness is so far from being always an encouraging prognostic, as some would have it, that it most commonly proves a mortal symptom. Sometimes indeed, though seldom, this suffusion of bile upon the surface has proved critical; but then it did not come on till the eighth or ninth day, nor appear till the coma and all the other bad symptoms began to abate; and then in proportion as the yellowness increases, all the bad symptoms decrease. But the case is most commonly quite the reverse; especially when the yellowness comes on soon; and then it is not only symptomatical, but ufhers in the most fatal symptoms of the disease, viz. a deep coma, a low, vermicular, and intermitting pulse, great hemorrhages from various parts of the body, a delirium with laborious and interrupted respiration, great anxiety, deep sighing, refltilleshns, a subfultus tendinum, coldness of the extreme parts, and then all over the body, a faltering of the speech, tremors, and convulsions, which are soon after followed by death. So that from the first appearance of the yellowness we may say the patient is in the last stage of the disease, whether it terminates in death or recovery.

It has been observed, that, in some strong sanguine constitutions, when the patients have not been bled to a sufficient quantity in the beginning of the disease, the pulse has continued full, strong, and rapid, but never hard; the face flushed, eyes inflamed; the tongue dry, with great thirst and heat, till the second or last stage of the fever is come on, when the pulse has suddenly sunk, and death soon after ensued. Yet in others, who seemed to be of a phlegmatic habit, the tongue has been moist all along, though they have been delirious most of the time, and the heat of their skin and the strength and quickness of their pulse have continued, after the first stage of the disease was over, pretty near to that of their natural state in health, till within a few hours of their death; and when they have had a coma on them, one who is not well acquainted with the nature of this disease would, from their pulse, heat, breathing, and other symptoms, have taken them to be in a natural sleep. Others, when the pulse has begun to sink, and the fatal period seemed to be just approaching, to the great surprize of all present have recovered their senses, sat up, and talked pretty cheerfully for an hour or two, and in the midst of this seeming security have been suddenly seized with convulsions, which carried them off immediately.

In the latter stage of this fever, the blood is so attenuated and discolored, that we frequently fee it flowing not only out of the nose and mouth, but from the eyes, and even through the pores of the skin; also great quantities of black, half-baked, or half-mortified blood, are frequently voided both by vomiting and by stool, with great quantities of yellow and blackish putrid bile by the same passages; and the urine, which was before a high fetiduous colour, is now almost black, and is frequently mixed with a considerable quantity of half-dissolved blood.

The pulse, which was much sunk before, now becomes very low, unequal, and intermitting; the breathing difficult and laborious; and the anxiety inexpressible; an oppression with a burning heat about the precordia comes on, tho' the extremities are cold, and often covered with cold clammy sweats; a constant delirium follows; and then a total loss of the outward senses as well as the judgment, with livid spots in many parts of the body, especially about the precordia; and sometimes gangrenes in other parts of the body, which are very soon succeeded by death.

In a short time after death, the body appears much more full of livid, large, mortified spots, particularly about the precordia and hypochondres, especially the right; which parts seem, even from the first seizure, to be the principal seat of this terrible disease; and, upon opening the bodies of those who die of it, we generally find the gall-bladder and biliary ducts turgid, and filled with a putrid blackish bile; and the liver, stomach, and adjoining parts, full of livid or blackish mortified spots; and the whole corpse soon putsrefies after death, and can be kept but a few hours above ground.

Dr Lind is of opinion, that the remarkable diffusion of the blood, the violent hemorrhages, black vomit, and the other symptoms which characterize the yellow fever, are only accidental appearances in the common fever of the West Indies; that they are to be esteemed merely as adventitious, in the same manner as purple spots and bloody urine are in the small-pox, or as an hiccup in the dysentery: like these they only appear when the disease is attended with a high degree of malignity, and therefore always indicate great danger. This opinion, he thinks, is confirmed by an observation of Dr Wind's, that in 1750 the crew of a Dutch ship of war were distempered by the yellow fever, accompanied with the black vomit; but when the ship left the harbour, and changed the noxious land-air for one more healthy, the fever continued, but was not accompanied with the black vomit.

Diseases similar to this fever, Dr Lind informs us, may arise in any part of the world where the air is intensly hot and unwholesome; and therefore he treats
treats as chimerical the notion of its being imported
from one part of the world to another. An example
of this happened at Cadiz in Spain, in the months
of September and October 1764, when excessive heat,
and want of rain for some months, gave rise to viol-
ent, epidemic, bilious disorders; resembling those of
the West Indies, of which 100 persons often died in a
day. At this time the winds blew principally from
the south, and after sun-fet there fell an unusual and
very heavy dew.

This disease began commonly with alternate flight
chills and heats, nausea, pains of the head, back, loins,
and at the pit of the stomach. These symptoms were often
fellowed, in less than 24 hours, with violent retchings,
and vomiting of a green or yellow bile, the smell of
which was very offensive. Some threw up an hontour
as black as ink, and died soon after in violent convul-
sions and in a cold sweat. The pulse was sometimes
fast, sometimes quick, but often varying. After the
first day, the surface of the body was generally either
cold, or dry and parched. The head-ache and flupor
often ended in a furious delirium, which quickly proved
fataL. The dead bodies having been examined by
order of the court of Madrid, the stomach, intestines,
and orifices, were found covered with gangrenous
spots. The orifice of the stomach appeared to have
been greatly affected, the spots upon it being ulcer-
ated. The liver and lungs seemed to be putrid, both
from their texture and colour. The stomach con-
tained a quantity of an atrodiabulous liquor, which, when
poured on the ground, produced a sennible efferv-
cia; and, when mixed with spirit of vitriol, a vio-
lent exultion ensued. The dead bodies do quickly
turned putrid, that at the end of six hours their feter
was intolerable; and, in some of these, worms were
found already lodged in the stomach. His Britannic
majesty’s ship the Tweed being at that time in Cadiz bay,
several of her men were taken ill when on shore, but
by being carried on board, all of them recovered.
Neither did the black vomit, or any other deadly
symptom of that fever, make its appearance in any of
the ships.

It has been a matter of much dispute, whether the
yellow fever is of an infectious nature or not. Some
time ago it became an object of considetation before
the Right Hon. the Lords Commissioners of Trade
and Plantations, where it was urged, among other reasons,
for not removing the seat of government and justice
in the island of Jamaica from Spanish Town to King-
ston, that there was danger from Greenwich hospital,
situated near Kingston, of an infection from the yellow
fever being frequently communicated to that town.
On this affair a physician was consulted, who had long
practised in that island, and who gave it as his opini-
on, that from the yellow fever in that island there
was no infection. This was the opinion not only of
that gentleman, but of many others who had an oppor-
tunity of being well acquainted with this fever in
Jamaica. Dr Lind, however, gives a remarkable in-
stance of its being of an infectious nature. A gent-
leman dying at Barbades of a yellow fever, his
wearing apparel and linen, packed up in a chest, were
sent to his friends at Philadelphia; where, upon open-
ing the chest, the family were taken ill; and the clothes
being unluckily hung abroad to be aired, they pre-
ently diffused the contagion of the yellow fever over the
whole town, by which 200 persons died. These
contradictions, Dr Lind thinks, can only be reconciled,
by supposing the yellow fever in the West Indies to be
sometimes of an infectious nature and sometimes not.

In the description of the same fever by Dr Lining,
as it appears in South Carolina, there are several
particulars considerably different from that by Dr
Hillary. According to the former, people complained
for a day or two before the attack; of a head-ach, pain
in the loins and extremities, especially in the knees
and calves of the legs, loss of appetite, debility, and a
spontaneous latitude. Some, however, were seized
suddenly, without any such previous symptoms. After
a chilliness and horror, with which this disease gene-
really invades, a fever succeeded. The pulse was very
frequent, till near the termination of the fever, and
was generally full, hard, and consequently strong: in
some, it was small and hard; in others, soft and small;
but in all those cases, it frequently varied in its full-
ness and hardness. Towards the termination of the
fever, the pulse became smaller, harder, and less fre-
quent. In some there was a remarkable throbbing
in the carotids and in the hypochondria; in the latter
of which it was sometimes so great, that it caufed a
confiant tremulous motion of the abdomen. The heat
generally did not exceed 102 degrees of Fahrenheit’s
thermometer; in some it was less; it varied frequently,
and was commonly nearly equal in all parts, the heat
about the precordia being seldom more intense than
in the extremities when these were kept covered.
In the frjl day of the disease, most had frequent returns
of a fenfe of chillinefs, though there was not any abate-
ment of their heat. In a few, there happened to great
remiffion of the heat for some hours; when at the
same time the pulse was soft and lefs frequent; and
the skin was moist, that one from these circumstances
might reasonably have hopfed that the fever would only
prove a remittent or intermittent. About the end of:
the second day, the heat began to abate. The skin was
sometimes (though rarely) dry; but oftener, and in-
deed generally, it was moist, and difcharged to sweat.
On the first day, the sweating was commonly profuse
and general; on the second day, it was more mo-
dest; but on both these, there happened frequent short
remissions of the sweatings; at which times the febile
heat increased, and the patient became more une-
sely. On the third day, the disposition to sweat
was so much abated, that the skin was generally dry;
only the forehead and backs of the hands continued
moist. The respiration was by no means frequent or
difficult; but was soon accelerated by motion, or the
fatigue of drinking a cup of any liquid. The tongue
was moist, rough, and white, even to its tip and edges.
On the second day, its middle in some was brown.
On the third day, the whitening and roughness of the
tongue began to abate. The thirst in very few was
great. A nausia, vomiting, or frequent retchings to
vomit, especially after the exhibition of either medi-
cines or food, came on generally the third day, as the
fever began to lessen; or rather as the fulness of the
pulse, heat, and disposition to sweat, began to abate.
Some indeed, but very few, on the first day, had a
vomiting, either bilious or phlegmatic. Very few
complained of anxiety or oppression about the precor-
dia.
M E D I C I N E.

Pratt's Practice.

Fever accompanied with this affection, was often attended with great dependency, and the strength was greatly prostrated from the first attack. The patient had complained before the attack, and then the pain in the head, loins, &c. of which they had complained before the attack, and then the pain in the head, which was very acute and darting, but those pains went generally off the second day. The face was flushed, and the eyes were hot, inflamed, and unable to bear much light. On the first day, many of them at times were a little delirious, but afterwards not until the recess of the fever. The blood often at venereal affection had not any inflammatory crust; in warm weather, it was florid like arterial blood, and continued in one soft homogeneous-like mass, without any separation of the serum after it was cold. When there was no separation, the effaancement was of a very lax texture. The stools, after the first day, were fetid, inclined to a black colour, and were very rarely bilious, soft, or liquid, excepting when forced by art; for an obstinate colliquia adhered and obstructed the fleshy flange.

The urine was discharged in a large quantity, was pale, sometimes limpid, and rarely of a higher than a straw colour, except when the weather was very warm, and then it was more saturated, of a deep colour, and discharged in smaller quantities. It had a large cloud, except when it was very pale or limpid; but more generally it had a copious white sediment, even on the first day of the fever. On the second day, the urine continued to be discharged copiously; in some it was then turbid, and deposited a more copious sediment than on the first day: this sediment was sometimes of a brownish colour; in which case it was generally followed by bloody urine, either about the end of the second or beginning of the third day.

The colour and quantity of the urine, discharged in equal times, were remarkably variable, being now limpid, then of a deeper colour, now discharged in a larger, then in a smaller quantity; which could not be accounted for by any change made either in the quantity or equality of the drink, &c.

The fever accompanied with those symptoms terminated on the third day, or generally in less than 72 hours from the first attack, not by any amelioration or cessation of the morbid matter: for if by the latter, there would have been some critical discharge by sweat, urine, stool, or otherwise, none of which happened; and if by the former, nothing then would have remained but great debility. This fever, however, did not terminate in either of these salutary ways, excepting in some, who were happy enough to have the disease conquered in the beginning by proper evacuations, and by keeping up a plentiful sweat, till the total solution of the fever, by proper mild diaphoretics and diluents. But those who had not that good fortune, however tranquil things might appear at this period (as great debility, and a little yellowness in the white of the eyes, seemed then to be the chief complaint, excepting when the vomiting continued), yet the face of affairs was quickly changed: for this period was soon succeeded by the second fatidum; a state, though without any fever, much more terrible than the first: the symptoms in which were the following. The pulse, immediately after the recess of the fever, was very little more frequent than in health, but hard and small. However, though it continued small, it became, soon afterwards, slower and very soft; and this softness of the pulse remained as long as the pulse could be felt. In many, in this stage of the disease, the pulse gradually subsided, until it became scarce perceptible; and this, notwithstanding all the means used to support and fill it; and when this was the case, the interminable-like suffocation, the vomiting, delirium, reflexes, &c. increased to a high degree. In some, the pulse, after being exceedingly small and scarce perceptible, recovered considerably its fullness; but that favourable appearance was generally of but short continuance. The heat did not exceed the natural animal-heat; and when the pulse subsided, the skin became cold, and the face, breath, and extremities acquired somewhat of a livid colour. The skin was dry when the weather was cold, but moist and clammy when the weather was hot. The respiration was natural, or rather slow. The tongue was moist, and much cleaner than in the former stage; its tip and edges, as also the gums and lips, were of a more florid red colour than usual. Very few complained of thirst, though they had a great desire for cold liquors. The vomiting or retching to vomit increased, and in some was so constant that neither medicines nor aliment of any kind were retained. Some vomited blood; others only what was left undigested, mixed with phlegm, and others again had what is called the black vomit (A). The retching to vomit continued a longer or shorter time according to the state of the pulse; for as that became fuller, and the heat greater, the retching to vomit abated, and de contra. The inquietude was very obstinate; and when they did, their flumbers were but short and unrefreshing. There were some who were drowsy; but these always awakened, after the shortest slumber, with a great dejection of spirits and strength.

(A) That which is called the black vomit at first sight appears to be black; but on a more careful examination, it was observed that this colour proceeded from a great quantity of small flaky black substances which floated in the liquor thrown up by vomiting; but the colour of this liquor was much the fame with that which the patient had last drank, and was by no means black. Those black flaky substances are the bile mixed with, or adhering to the mucus which lined the stomach. For, upon digestion of those who died of this disease, it was always observed that the mucus of the stomach was sometimes very viscid. In a lad who died of this disease in the beginning of the fourth day, and who was immediately opened, the bile was not only black, but had the confluence of thick venous-turpentine, and was exceedingly tough. On the inside of the stomach, there were several carbuncles or gangrenous specks. And in all those who were dissected, and had died of this disease, the same appearances were not only always observed, but likewise the blood was very fluid, and the vessels of the viscera were much distended.
The jaundice or jaunty were surging: it was frequently scarce possible to keep the patients in bed; though, at the same time, they did not complain of any anxiety or uneasiness; but if asked how they did, the reply was, Very well. The debility was so great, that, if the patient was raised on the pillow, or, in some, if the head was only raised from the pillow, while a cup of drink was given, the pulse sunk immediately, and became sometimes so small, that it could scarcely be felt; at this time, they became cold, as in a horripilation, but without the anæmis-like skin, their lips and skin, especially about the neck, face, and extremities, together with their nails, acquired a livid colour. The delirium returned and increased; it was generally constant in those whose pulse was small and subsiding. The inflammation of the conjunctiva or white of the eyes increased much, but without pain. A yellowness in the white of the eyes, if it did not appear before in the febrile state, became now very observable, and that ëtirous-like colour was soon diffused over the whole surface of the body, and was continually acquiring a deeper farron-like colour. In some indeed no yellowness was observable, except in the white of the eyes, until a little before death, when it increased very quickly, especially about the breast and neck. There were many small specks, not raised above the skin, which appeared very thick in the breast and neck, and less so in the extremities, and were of a scarlet, purple, or livid colour. In women the menstrua flowed, and sometimes excessively, though not at their regular period.

There was such a putrid dissolution of the blood in this flatus of the disease, that, beside the vomiting of blood formerly mentioned, and the bloody urine soon to be taken notice of, there were hemorrages from the nose, mouth, ears, eyes, and from the parts which were blistered with cantharides. Nay, in the year 1739 and 1745, there were one or two instances of an hemorrage from the skin, without any apparent puncture or lacer of any part of the tear-skin.

An obstinate constipation continued in some; in others, the stools were frequent and loose; in some they were black, liquid, large, and greatly fatiguing; in others, when the stools were moderate, even though they were black, they gave great relief; in others, again, the stools nearly resembled tar in smoothness, tenacity, colour, and consistence.

The urine was discharged in a large quantity, in proportion to the drink retained by the patient: it was pale if the patient was not yellow; but if yellow, then it was of a deep farron-colour: in either case, it had a sediment, or at least a large cloud, which remained at the bottom of the glass; in some it was very turbid; in others it was bloody; and the quantity of blood discharged with the urine bore always some proportion to the state of the pulse; when that became fuller, the quantity of blood in the urine was diminished; when the pulse subsided, the bloody urine increased, and even returned after it had ceased some days, soon after the pulse became smaller. This stage of the disease continued sometimes seven or eight days before the patient died.

When this flatus of the disease terminated in health, it was by a reces or abatement of the vomitings, hemorrages, diastem, inquietude, jaundices, and ëtirous-like suffusion of the skin and white of the eyes; while, at the same time, the pulse became fuller, and the patient gained strength, which, after this disease, was very slowly. But when it terminated in death, those symptoms not only continued, but sooner or later increased in violence, and were succeeded with the following, which may be termed the third flatus of the disease, which quickly ended in death. The pulse, though faint, became exceedingly small and unequal; the extremities grew cold, clammy, and livid; the face and lips, in some, were flushed; in others they were of a livid colour; the livid specks increased to faint, that in some the whole breast and neck appeared livid; the heart palpitated strongly; the heat about the precordia increased much; the respiration became difficult, with frequent sighting; the patient now became anxious, and extremely relatives; the sweat flowed from the face, neck, and breast; blood flowed from the mouth, or nose, or ears, and in some from all those parts at once; the deglutition became difficult; the hiccoughs and fulfultus of the tendons came on, and were frequent; the patients trifled with their fingers, and picked the maps of the bed-clothes; they grew comatous, or were constantly delirious. In this terrible state, some continued eight, ten, or twelve hours before they died, even after they had been so long speechless, and without any perceptible pulsation of the arteries in the wrists; whereas, in all other acute, diseases, after the pulse in the wrists ceased, death follows immediately. When the disease was very acute, violent convulsions seized the unhappy patient, and quickly brought this flatus to its fatal end. After death, the livid blotches increased fast, especially about the face, breast, and neck, and the putrefaction began very early, or rather increased very quickly.

This was the progress of this terrible disease through its several flatus. But in hot weather, and when the symptoms in the first stage were very violent, it passed through those stages with such precipitation that there was but little opportunity of distinguishing its different flatus, the whole tragedy having been finished in less than 48 hours. It was remarkable, that 1. The infection was increased by warm and lented by cold weather. 2. The symptoms in the several flatus were more or less violent, according to the heat or coolness of the weather. In hot days, the symptoms were not only more violent, but in those who seemed in moderate weather to be on the recovery, or at least in no danger, the symptoms were also greatly heightened, when the weather grew considerably warmer, as frequently to become fatal. In cool days, the symptoms were not only milder, but many who were apparently in great danger in hot days were faved from the very jaws of death by the weather becoming happily cooler. The disease was generally more fatal to those who lay in small chambers not conveniently fitted for the admis of fresh air, to those of an athletic and full habit, to strangers who were natives of a cold climate, to those who had the greatest dread of it, and to those who before the attack of the disease had overheated themselves by exercise in the sun, or by excessive drinking of strong liquors; either of which, indeed
Practice.

MEDICINE.

Indeed seemed to render the body more susceptible of the infection. Lastly, the disease proved most certainly fatal to valetudinarians, or to those who had been weakened by any previous disease.

Although from the description which has now been given of the yellow fever, it may appear to be in many particulars very different from the remittent fever of warm climates; yet it is the opinion of many late writers of great accuracy, particularly of Dr John Hunter in his Observations on the Diseas of the Army in Jamaica, that it is to be considered only as a more dangerous form of the same disease. And there can be no doubt that the remittent fever not only appears in different feasons and situations with very different degrees of severity; but also that while the remittent fever prevails in its usual form in the West India islands, some individuals, particularly those who are newly arrived, will be affected with very remarkable yellowness, as well as bilious and black vomitings.

Causes of, and effects subject to, this disease. The yellow fever attacks principally Europeans, especially those who have but lately arrived in the hot climates. Negroes are entirely exempt from it, though the mulattoes and tawnies are as liable to be seized with it as the whites themselves. The cause of the disease seems to be a particular kind of contagion; but Dr Lind seems to be of opinion, that the immediate cause of the symptoms is a disposition in the glutinous part of the blood to separate from the others, and to become purulent. In some persons who have been bled in the yellow fever, the blood hath been observed prodigiously viscid; the cæmentum covered with a yellow gluten half an inch in thickness, and impenetrable to the finger unless cut by the nail; the serum being at the same time of the consistence of a thin syrup, and of a deep yellowish tinge. This serum tasted bitter, and was taken for a composition of foot. The appearances on diffusion, with his conclusion from them, we shall give in his own words: "In a man who died on the eleventh day of a yellow fever, whose body emitted no bad smell 36 hours after death, and was still yellow, I found all the bowels of the abdomen found; the liver and spleen were remarkably fo; as also the stomach and intestines. There was no suffusion of the bile either in the intestines or stomach. The gall-bladder, of the natural size, contained the usual quantity of bile, somewhat thicker than common, and gramineous (a)."

Upon examining further, this disease was found to have lain wholly on the left side, where, within the breast, was found near a quart of yellowish water, in which were many large flakes of yellowish gluten, appearing, by comparison, precisely the same with the thick pellicle which had covered the blood taken from his arm. These flakes bore in several places a resemblance to a membranous substance beginning to be converted into a purulent jelly. The pleura, both on its inside and outside, as also its continuation, the invading membrane of the lungs (which in some parts was greatly thickened), were covered with cakes of this gluten, hanging in some places loosely, in others adhering more strongly; and all in different states of yellow or purulent corruption. The right cavity of the breast, and all the other parts of his body, were found entirely free from disease.

His complaints had been chiefly in his breath; and a small quantity of blood, taken from him two days before his death, was covered with an impenetrable, yellow, thick gluten; the red portion below it being quite loose.

In those fevers, I have also seen the disease entirely confined to the heart and pericardium. In one who died the tenth day of the fever, without having been yellow, a quantity of pus and purulent eruits were found mixed with the water of the pericardium. The heart in different places was excoriated; and, together with the inside of the pericardium, was lined with a thick membranous cake, similar to that already mentioned on the lungs and pleura. In some places this cake had a purulent, in others a gelatinous, appearance, exactly resembling the coagulum of the blood. His complaints had been, a great oppression on the breast, and an extreme difficulty of breathing. In a third person, who died on the thirtieth day of the fever, above two quarts of pus and purulent jelly were found in the cavity of the belly. The source of such an extraordinary quantity of matter was not from any preceding inflammation, nor any impolthume, that we could discover; but from innumerable ulcerations on the surface of the intestines, omentum, mesentery, an peritoneum. Neither did those ulcerations (or excoriations, as they rather appeared in several places) seem to be the primary fountains of the matter, but to have been occasioned by its acrimony.

This purulent appearance seems to arise merely from an extravasation of one of the component parts of the blood, the gluten or coagulable lymph. Blood taken from persons in a fever, and frequently even from persons in perfect health, after standing in a clean vessel for a short time, commonly separates into three distinct portions; viz. the serum, or water of the blood, the red concreted mass, and a viscid pellicle termed the face, which spreads itself on the top of the red concretion. Some time ago, when making experiments with the blood taken from persons in the fevery, I was surprized to find it often covered with that fazy crust. This induced me to extend my experiments to large quantities of blood from different subjects, which I had opportunities of inspecting at once in a large hospital. For this purpose I one morning ordered ten patients in the fevery to be bled, taking two ounces from each. A larger quantity was taken, for its inspection, from two men in health. That day I had occasion to preferibe bleeding to a woman in labour, two hours before her delivery; to a girl of sixteen years of age afflicted with a luminary proceeding from the chlorosis; to three patients in the rheumatism; and to a person labouring under an irritation of the liver.

From.

(a) In others who died in this yellow state, the bile in the gall-bladder was found of a thick ropy consistence like pitch, but the liver never appeared in the least affected. Dr Lind at first in several bodies opened the head only; but afterwards judged that all the cavities ought to be inspected.
From a nice examination, and an examination of the different blood, I found in general, that the more
size there was on the top, and the thicker and more
viscid this white 'pellicle' showed itself, the concretion
below it was of a more loose coherence. This was not
so observable when only some slight white streaks appeared
on the top. But when much size had separated itself, the red mass became very soft at the bottom of
the vessel, and less compact in its different parts, in proportion to their distance from the surface, towards
which this whitish portion had ascended.

From this and from other experiments it appears,
that this crust or pellicle is the natural gluten or ce-
ment of the blood (called by some the coagulable
lymph), which becomes strongly dispersed, in certain
circumstances and diseases, to separate itself. And
whereas the serum and red concretion are easily incor-
pored together, it will be found, that this glue, af-
ter its separation, becomes immitachable with either.
We have, by gentle drying, converted it into a perfectly
tough elastic membrane; and, by the means of a small
portion of the red mass being left adhering to it, into
a substance resembling muscular flesh; and it is capable
of undergoing various changes into corruption, in the
same manner as of either of the two.

Now I can see no reason why this gluten, in its
morbid state, may not separate itself from the circu-
lating blood, and be deposited in the cavities of the
body, as readily as the serum does in dropsies; the
former having always a less disposition than the latter
to incorporate with the mass.

In different persons who died of fevers in Lon-
don and Minorca, and where no infection was suspected,
appearances similar to these have also fallen under
the inspection of those accurate anatomists Drs Hun-
ter and Claghnorn. Hence it may be presumed very
difficult to distinguish fevers that are produced by
infection, from some others. I cannot; however, be
induced to think, as those gentlemen seem to do, that
these preternatural substan ces which were found in the
cavities of the body are the consequence, but rather
that they are the cause of the inflammation and ex-
coriation. I believe these substances to have been
dis charged at first diseased extravasated gluten, and conjecture their different
states greatly to depend upon the different times
at which they were deposited.

I have remarked in a variety of dead bodies,
three different kinds of extravasation; those occurred
in fluid as had died of the fever, of the consumption,
and of fevers. In the former of those diseases, red
coagulated blood is found extravasated in almost all
parts of the body, not only into the tela cellulosa,
but into the bellies of the muscles, particularly of the
legs and thighs, which often become quite inflated and
even distended with large granular masses. The intestines and meconium are often spotted with
extravasated blood; and I have seen large ecchymoses on
the thorax. These appearances at first sight rumbl-
ed so many different modifications; and by this ap-
pearance some anatomists have been deceived; but,
upon a nice examination, the texture, of the parts is
found to be loose and firm. There is likewise, in
that disease, sometimes, an extravasation of water,
chiefly collected in, and always when in the legs con-
fined to, the tela cellulosa.

But whereas, in the limbs of scurvy patients,
it is extremely difficult to make a good distinction by
reason of such quantities of extravasated blood that
every where obstruct the operator; for, upon the con-
trary, the lower extremities of those whose had died
consumptive, with swelled legs, are of all other sub-
jects, in the best state to afford a satisfactory view of
the muscles. The water inclosed in their legs having
infalinated itself, by passing the tela cellulosa, into
the spaces between the muscles, the muscles are easily sepa-
rated from each other, and their several origins and
insertions may be distinctly traced by means of their
having been cleaned and washed by the water in the
invelling cellular membrane. Thus there are extrava-
sations of three sorts; viz. first, the granular mass in
the scurvy; and this I have often remarked where no
serum was observed. Secondly, the serum alone in
anaceous swellings. The third and last is what was
taken notice of in those who died of fevers, being the
granular of the blood, accompanied for the most part
with some serum; both of them altogether confined
in the large cavities of the body.

I conjecture, that in these fevers there is always
an ulcerous or purulent disposition in the blood; and
that this gluten or coagulable lymph is greatly dis-
eased. I have frequently seen it have a true purulent
appearance soon after it was drawn off, when the pa-
tient seemed not very ill.

And I further conjecture, that the Mitchief often
lies within the breath; and also, that the great benefit de-
ferred from the early application of blisters, in a
great measure flows from so many ulcerations and vents
being timely provided for the free discharge of those
purulent and tainted particles from the body.

If an infection depends, as many have imagined,
on the admission of certain foreign particles into the
blood, this gluten seems to be its more immediate
seat, and to be primarily affected by it; and a dis-
charge of this, as though by washing those particles
out of the body, tends in a great measure to remove the
disease.

It is an observation of the best practical writers,
that ifuses and fetons are most excellent preservatives
against receiving an infection, nay, even that of the
plague itself. And indeed a suppuration and plentiful
discharge from a proper ulcer, whether produced by
nature or by art, seems to open a channel the belh appr-
propriated for an exit out of the body to some of the
tous malignant poisons. Thus the most favourable
crisis in the plague, and in most pestilential fevers,
happens when nature excites tumours kindly suppura-
ting in the groin or arm pits, by which beneficial and
plentiful discharge the deadly poison is expelled from
the constitution.

I have observed it to be amongst the most certain
characteristics of the worst fevers, that the blisters ei-
er do not rise and fill, or discharge such yellow,
greenish, fetid, and highly offensive fluid, that even
experienced nurses could give a pretty certain conjectu-
re from the blisters, of the different degrees of mal-
dignity in the fever. We have more than once en-
dangered to conceal the bad state of some patients in the
hospital; but a discovery was always made of their
condition in the wash-houses, from the linen sent there
stained with the discharges from the blistered parts.

And
Fever.

The cure of this terrible disease, according to Dr. Hillery, is very easy and simple. His indications are, 1. To moderate the too great and rapid motion of the fluids, and abate the too great heat and violence of the fever in the two first days of the disease, as much and as safely as we can. 2. To evacuate and carry out of the body as much of the putrid bile and other humours, and as expeditiously and safely as possible. 3. To put a stop to the putrefactive disposition of the fluids, and to prevent the gangrenes from coming on, by suitable antiseptics.

The first indication is answered by bleeding, which, in the first stage of this fever, is absolutely necessary in some degree: the quantity to be taken away must be determined by the age and strength of the patients, the degree of plethora, fulness of the pulse, &c. When called in at the beginning, he orders 12, 14, 16, 18, or 20 ounces of blood to be taken away on the first or second day: and if the patient's pulse rise after the first bleeding, or if the fever still continue high and the pulse full, he repeats the bleeding once on the days above mentioned. But bleeding a third time is seldom or never required: neither is bleeding on the third day almost ever necessary: and when it is performed on that day, it ought to be done with the greatest caution and judgment; neither should a vein be opened after the third day in this fever, unless some very extraordinary symptoms and circumstances require it; which seldom or never happen. On that day, indeed, the pulse generally sinks, and the blood is in such a dilated state, that bleeding must be accounted highly pernicious. Nevertheless, it is indispensably necessary in the beginning of the disease; and if omitted at that time, the violent heat and motion of the blood increase the putrefaction of the humours to such a degree as to bring on the fatal consequences much sooner than would otherwise have happened.

After bleeding, we come to the second indication of cure, namely, to evacuate as much of the bilious and putrid humours as soon and as safely as we can. The great irritation of the stomach, by the putrid bilious humours constantly attending this fever, with almost continual retchings and violent vomitings, seem to indicate the giving of an emetic: but the stomach is always observed to be so violently inflamed and irritated and most commonly inflamed by the acrimony of the putrefacient bile, that any emetic, even the most mild and gentle, given in the smallest dose, brings on an inceffant vomiting, which continues, in spite of all remedies, till a mortification and death ensue. Instead of this, it is proper to give large draughts of warm water, which, without any additional stimulus to the coats of the stomach, evacuates its acid and putrid contents, commonly with great relief to the patient; the warm water also acts as an emollient fatus to the inflamed coats of the stomach; and thus abates the inflammation, and prevents the gangrene and mortification from coming on.

After the patient has by this means vomited seven or eight times or oftener, and discharged a great quantity of yellow and black bilious matter as they often do; a grain or a grain and a half of thebeic extract is given in order to procure some respite from the violent retching, vomiting, and anxiety. The person is defir'd to take nothing into his stomach for two hours after this, by which means it is seldom or never rejected; and thus all the symptoms are considerably abated, the retching and vomiting either totally cease or are very much lessened, so that medicines may now be exhibited which the stomach would not have retained before. These are cooling acid juleps, or other antiseptic remedies; but neither nitre nor any of its preparations will commonly be found to stay on the stomach; nor are the nitrous medicines, or even the common anti-emetic draughts, proper to be given in this disease, even though they should agree with the stomach, on account of their attenuating property. If the patient has not a feoul or two after drinking the warm water and vomiting, it is necessary to give a gentle purging (quality; and when six or eight hours have been obtained, a gentle antiphlogistic and antiseptic purge, in order to evacuate by stool as much of the bilious matter as we possibly can. Or if the patient has a purging before, which sometimes though very rarely happens, a dose of toasted rhubarb is given and an antiseptic anodyne after it has operated, to abate and check the too great purging, but not to stop it, as this evacuation has been always observed to be of service, provided it be not too violent.

After this indication is completely answered, the next is to exhibit such proper antiseptic medicines as may stop the putrefactive disposition of the fluids. Here the Peruvian bark would seem to be the most proper remedy, but unluckily the stomachs of the patients in this disease are so much irritated, and so apt to reject every thing, that the bark cannot be retained in any form whatever. In this case Dr. Percival recommends columnb-root, the infusion of which is found to be a powerful anti-emetic and antiputrefactive medicine, and might perhaps so far alter the state of the stomach as to make it bear the bark. Dr. Hillary, however, who was ignorant of the virtues of columbo, substituted the radix serpentaria Virginiana with success. A slight infusion of this root not only soothes entirely on the stomach of the patients, but moderately raises the pulse and fever, both of which are now too low. The following receipt was found most agreeable and efficacious.

By the use of this medicine, and soft light nourishment taken in small quantities, the pulse is usually kept up.
Being called out of the town, I did not see him till the fourth morning after; he said that he had followed my directions; and I found him free from the fever and all its symptoms, but weak and low, and his skin a little yellow, but much less so than usual, uncle's when the bilious matter is thus carried off. I ordered him to take euc. virreli acidi. got. 1x, three or four times a-day for a few days, in an infusion of mint-leaves with a little snake-root, made as tea; which he did, and four recovered perfectly well in seven or eight days time.

"This patient being fixed in so violent a manner, and recovering in so short a time, and so near to the rule which the elegant Celsius recommends Lib. tabo, et jucum'ves, not only confirmed the above manner of reasoning on the cause and nature of this disease to be right, but made me determine to follow the same method as near as I possibly could ever since, and I must add, with the same good success also, when I am called so early in the disease that I can distinctly perceive it: which is too seldom the case; for in general the physician is not called till the fourth or fifth day, or after, when the putrid, acid, bilious matter is a great part of it carried into the blood, which it has been dissolved and brought into a colliquated, putrid, gangrenous state, that the best of methods, and the most efficacious medicines, however judiciously timed and applied, are precarious and uncertain; or sometimes it is so far advanced, that the ablest physician can do no more than tell the relations of the sick that it is too late, and that they can live but a few hours: for I know no disease in which the recovery of the patient so much depends upon the right or wrong method of treating it, at the very first attack or beginning of the disease, as this fever does: for by thus discharging and carrying the putrid, acrimonious, bilious matter, out of the body before much of it is carried into the blood, not only most of the bad symptoms which attend the second stage of the fever are prevented from coming on, but the hemorrhages, and the yellowness of the skin, &c. also, and the fever been taken off too; for I have never seen any hemorrhoagy come on, but little yellowness, or in some cases, when they were thus treated.

"And when the last stage of this fever is come on before we are called in, provided that it is not at the very latter end of it, I have always found that this method of gentle purging, whenever the beforementioned symptoms indicate it, and a liberal use of the anti septic medicines in the intervals, has been so successful, that I have seen but two patients that have died in this fever during the eight years past in which I treated it in this manner; and one of them was so weak that he could not take a spocial of any thing, and so near his end that he died about two hours after without taking any medicine; and the other killed himself by drinking a gallon of cold water in less than three hours time (after taking half an ounce of manna in the morning), which struck such a coldness into his whole body that he died; though I have visited several every year, and in some years a great many; therefore I take the liberty of recommending this method to others, and with it to be successful to all."

To the genus of typhus also belong all those fevers attended with very profuse and debilitating sweats, and which
when the patient is very ill, it will return so frequent;

The urine in a true intermittent is clear in the fits and turbid in the intervals; but in the hectic fever it is liable to all kinds of irregularity. It will be equally clear or turbid in both stages; or turbid in the fits and clear in the intervals; and sometimes it will be, as in a true intermittent, clear during the fever, and thick at the going off.

Hectic patients often complain of pains like those of the rheumatism, which either affect a part of the body, or else return constantly to the same place; which is often at a great distance from the seat of the principal disorder, and, as far as is known, without any peculiar connection with it. Those pains are so violent in some patients, as to require a large quantity of opium. As far as Dr Heberden has observed, they are most common, where the hectic arises from some ulcer open to the external air, as in cancers of the face, breast, &c. Joined with this fever, and arising probably from one common cause, he has been surprised to see swellings of the limbs, neck, or trunk of the body, rise up almost in an instant, as if the part was all at once grown fatter. These swellings are not painful, hard, or discoloured, and they continue for several hours.

Dr Heberden has seen this fever attack those who seemed in tolerable health, in a sudden and violent manner, like a common inflammatory one; and like that, also, in a very short time bring them into imminent danger of their lives; after which it has begun to abate, and to afford hopes of a perfect recovery. But though the danger might be over for the present, and but little of a fever remain; yet that little has soon demonstrated, that it was kept up by some great mischief within, and, proving unconquerable by any remedies, has gradually undermined the health of the patient, and never ceased except with his life. This manner of its beginning, however, is extraordinary. It much often differs in its strength at first, and creeps on so slowly, that the subjects of it, though they be not perfectly well, yet for some months hardly think themselves ill; complaining only of being sooner tired with exercise than usual, of want of appetite, and of falling away. But gentle as the symptoms may seem, if the pulse be quicker than ordinary, so as to have the artery to beat 90 times and perhaps 120 times in a minute, there is the greatest reason to be apprehensive of the event. In no disorder, perhaps, is the pulse of more use to guide our judgment than in the hectic fever; yet even here we must be upon our guard, and not trut entirely to this criterion; for one in about twenty patients, with all the worst signs of decay from some incurable cause, which irresistibly goes on to destroy his life, will show not the smallest degree of quickness, nor any other irregularity of the pulse, to the day of his death.

Cauti, &c. This fever will suprervene whenever there is a great collection of matter formed in any part of the body; but it more particularly attends upon the
Inflammation of a fibrous gland, and even upon one
that is slight and only just beginning; the fever growing
worse in proportion as the gland becomes more in-
flamed, ulcered, or gangrenous. And such is the ling-
ering nature of those glandular disorders, that the first
of those stages will continue for many months, and the
second for some years.

If this fibrous inflammation be external, or in the
lungs, or some of the abdominal visera, where the dis-
turbance of their functions plainly points out the
seat of the disorder, no doubt can be entertained con-
cerning the cause of the fever. But if the part affec-
ted be not obvious to the senses, and its precise func-
tions be not known, the hectic, which is there only part
of the train of another disease, may be mistaken for
the primary or only one.

Lying-in women, on account of the violence suf-
tained in delivery, generally die when affected with
this fever. Women of the age of near 50 and upwards
are particularly liable to it. For, upon the cellu-
tation of their natural discharge, the glands of the
breasts, ovaries, or womb, too commonly begin to
grow fibrinous, and proceed to be cancerous. Not
only there, but the glandular parts of all the abdo-
ninal visera, are disposed to be affected at this part
icular time, and to become the seats of incurable disor-
ders.

The injuries done to the stomach and liver by hard
drinking are attended with similar symptoms, and ter-
minate in the same manner.

Dr Heberden observes, that the slightest wound by
a fine pointed instrument is known upon some occa-
sions to bring on the greatest disturbances, and the most
alarming symptoms, may even death itself. For
not only the wounded part will swell and be painful, but
by turns almost every part of the body; and very dif-
tant parts have been known to come even to suppura-
tion. These symptoms are constantly accompanied
with this irregular intermittent, which lasts as long as a
part of the breast.

Fregigns. This anomalous fever is never less dan-
gerous than when it belongs to a kindly suppuration, in-
to which all the diseased parts are melted down, and for
which there is a proper outlet.

The symptoms and danger from some small punctures,
with their concomitant fever, most frequently give way in
a few days; though in some persons they have continued for
two or three months, and in others have proved fatal.

The inflammation of internal fibrous glands, or of
those in the breasts, sometimes goes off, and the fever,
which depended upon it, ceases; but it much oftener
happens, that it proceeds to cancerous and gangrenous
ulcers, and terminates only in death. Death is also
almost universally, the consequence of hectic fever
from tubercles of the lungs, which have in general at
least been considered as glandular bodies in a fibrous
state.

Cure. It is not to be expected that the same re-
medies will in every case be adapted to a fever which,
arising from very different causes, is attend-
ed with such a variety of symptoms. A mixture
of afebrin and opium has in some persons seemed
singularly serviceable in this fever, when brought on
by a small wound; but in most other cases the princi-
pal if not the sole attention of the physician must be
Hectics.

ORDER II. PHLEGMASIAE.

Phlegmasiae membranaceae et parenchymatosa, Sauv.
Clafs III. Ord. I. II. 305, 605.
Morbi febriles phlogistici, Lin. Clafs III.
Febres continuas cephalae inflammatoriae, V.
Morbi acuti febriles, Barth. 770.
Febres inflammatoryae, Hafin. II. 105. Tumur. 61.

The phlegmasia, or topical inflammations, are a
very numerous assemblage of diseases. Their great
char-
When a tendency to suppuration is perceived, the proper indication is to promote the production of perfect pus as much as possible. For this purpose various remedies, supposed to possess a specific power, have been proposed; but it does not appear that any of them are possessed of a virtue of this kind; and, in Dr Cullen's opinion, all that can be done is to favour the suppuration by such applications as may support a moderate heat in the part, by some tenacity confine the perforation, and by an emollient quality may weaken the cohesion of the teguments, and favour their erosion. As all abscesses are occasioned by the effusion of fluids and as in the case of certain effusions a suppuration becomes not only unavoidable but desirable, it may be supposed that most of the means of procuring a resolution by diminishing the force of circulation, &c. ought to be avoided, but as we observe on the one hand, that a certain degree of increased impetus, or of the original symptoms of inflammation, is necessary to produce a proper suppuration; so it is then especially necessary to avoid those means of resolution which may diminish too much the force of circulation. And on the other hand, as the impetus of the blood, when violent, is found to prevent the proper suppuration; so, in such cases, though a tendency to suppuration may have begun, it may be proper to continue those means of resolution which moderate the force of the circulation. With respect to the opening of abscesses when completely formed, see the article Surgery.

When an inflammation has taken a tendency to gangrene, that event is to be prevented by every possible means; and these must be different according to the nature of the several causes: but after a gangrene has in some degree taken place, it can be cured only by the separation of the dead from the living parts. This in certain circumstances can be performed, and most properly, by the knife. In other cases it can be done by exciting a suppuratory inflammation on the verge of the living part, whereby its cohesion with the dead part may be every where broken off, so that the latter may fall off by itself. While this is doing, it is proper to prevent the further propagation of the part, and its spreading wider. For this purpose various antifeptic applications have been proposed: but Dr Cullen is of opinion, that while the teguments are entire, these applications can hardly have any effect; and therefore, that the fundamental procedure must be to scarify the part so as to reach the living subcutis; and, by the wounds made there, to excite the suppuration required. By the same incisions also we give access to antiseptics, which may both prevent the progress of the putrefaction in the dead, and excite the inflammation necessary on the verge of the living parts.

When the gangrene proceeds from the loss of tone, and when this communicat d to the neighbouring parts prevents that inflammation which, as we have said, is requisite to the separation of the dead parts from the living, it will be necessary to obviate this loss of tone by tonic medicines given internally; and for this purpose the Peruvian bark has been found to be most effectual. But when the gangrene arises from the violence of inflammation, the bark may not only fail of proving a remedy, but may do harm; for its power as a tonic is especially suited to those cases of gangrene which proceed from an original loss of tone, as in the

MEDICINE.

When a tendency to suppuration is perceived, the proper indication is to promote the production of perfect pus as much as possible. For this purpose various remedies, supposed to possess a specific power, have been proposed; but it does not appear that any of them are possessed of a virtue of this kind; and, in Dr Cullen's opinion, all that can be done is to favour the suppuration by such applications as may support a moderate heat in the part, by some tenacity confine the perforation, and by an emollient quality may weaken the cohesion of the teguments, and favour their erosion. As all abscesses are occasioned by the effusion of fluids and as in the case of certain effusions a suppuration becomes not only unavoidable but desirable, it may be supposed that most of the means of procuring a resolution by diminishing the force of circulation, &c. ought to be avoided, but as we observe on the one hand, that a certain degree of increased impetus, or of the original symptoms of inflammation, is necessary to produce a proper suppuration; so it is then especially necessary to avoid those means of resolution which may diminish too much the force of circulation. And on the other hand, as the impetus of the blood, when violent, is found to prevent the proper suppuration; so, in such cases, though a tendency to suppuration may have begun, it may be proper to continue those means of resolution which moderate the force of the circulation. With respect to the opening of abscesses when completely formed, see the article Surgery.

When an inflammation has taken a tendency to gangrene, that event is to be prevented by every possible means; and these must be different according to the nature of the several causes: but after a gangrene has in some degree taken place, it can be cured only by the separation of the dead from the living parts. This in certain circumstances can be performed, and most properly, by the knife. In other cases it can be done by exciting a suppuratory inflammation on the verge of the living part, whereby its cohesion with the dead part may be every where broken off, so that the latter may fall off by itself. While this is doing, it is proper to prevent the further propagation of the part, and its spreading wider. For this purpose various antifeptic applications have been proposed: but Dr Cullen is of opinion, that while the teguments are entire, these applications can hardly have any effect; and therefore, that the fundamental procedure must be to scarify the part so as to reach the living subcutis; and, by the wounds made there, to excite the suppuration required. By the same incisions also we give access to antiseptics, which may both prevent the progress of the putrefaction in the dead, and excite the inflammation necessary on the verge of the living parts.

When the gangrene proceeds from the loss of tone, and when this communicat d to the neighbouring parts prevents that inflammation which, as we have said, is requisite to the separation of the dead parts from the living, it will be necessary to obviate this loss of tone by tonic medicines given internally; and for this purpose the Peruvian bark has been found to be most effectual. But when the gangrene arises from the violence of inflammation, the bark may not only fail of proving a remedy, but may do harm; for its power as a tonic is especially suited to those cases of gangrene which proceed from an original loss of tone, as in the

MEDICINE.

When a tendency to suppuration is perceived, the proper indication is to promote the production of perfect pus as much as possible. For this purpose various remedies, supposed to possess a specific power, have been proposed; but it does not appear that any of them are possessed of a virtue of this kind; and, in Dr Cullen's opinion, all that can be done is to favour the suppuration by such applications as may support a moderate heat in the part, by some tenacity confine the perforation, and by an emollient quality may weaken the cohesion of the teguments, and favour their erosion. As all abscesses are occasioned by the effusion of fluids and as in the case of certain effusions a suppuration becomes not only unavoidable but desirable, it may be supposed that most of the means of procuring a resolution by diminishing the force of circulation, &c. ought to be avoided, but as we observe on the one hand, that a certain degree of increased impetus, or of the original symptoms of inflammation, is necessary to produce a proper suppuration; so it is then especially necessary to avoid those means of resolution which may diminish too much the force of circulation. And on the other hand, as the impetus of the blood, when violent, is found to prevent the proper suppuration; so, in such cases, though a tendency to suppuration may have begun, it may be proper to continue those means of resolution which moderate the force of the circulation. With respect to the opening of abscesses when completely formed, see the article Surgery.

When an inflammation has taken a tendency to gangrene, that event is to be prevented by every possible means; and these must be different according to the nature of the several causes: but after a gangrene has in some degree taken place, it can be cured only by the separation of the dead from the living parts. This in certain circumstances can be performed, and most properly, by the knife. In other cases it can be done by exciting a suppuratory inflammation on the verge of the living part, whereby its cohesion with the dead part may be every where broken off, so that the latter may fall off by itself. While this is doing, it is proper to prevent the further propagation of the part, and its spreading wider. For this purpose various antifeptic applications have been proposed: but Dr Cullen is of opinion, that while the teguments are entire, these applications can hardly have any effect; and therefore, that the fundamental procedure must be to scarify the part so as to reach the living subcutis; and, by the wounds made there, to excite the suppuration required. By the same incisions also we give access to antiseptics, which may both prevent the progress of the putrefaction in the dead, and excite the inflammation necessary on the verge of the living parts.

When the gangrene proceeds from the loss of tone, and when this communicat d to the neighbouring parts prevents that inflammation which, as we have said, is requisite to the separation of the dead parts from the living, it will be necessary to obviate this loss of tone by tonic medicines given internally; and for this purpose the Peruvian bark has been found to be most effectual. But when the gangrene arises from the violence of inflammation, the bark may not only fail of proving a remedy, but may do harm; for its power as a tonic is especially suited to those cases of gangrene which proceed from an original loss of tone, as in the

MEDICINE.

When a tendency to suppuration is perceived, the proper indication is to promote the production of perfect pus as much as possible. For this purpose various remedies, supposed to possess a specific power, have been proposed; but it does not appear that any of them are possessed of a virtue of this kind; and, in Dr Cullen's opinion, all that can be done is to favour the suppuration by such applications as may support a moderate heat in the part, by some tenacity confine the perforation, and by an emollient quality may weaken the cohesion of the teguments, and favour their erosion. As all abscesses are occasioned by the effusion of fluids and as in the case of certain effusions a suppuration becomes not only unavoidable but desirable, it may be supposed that most of the means of procuring a resolution by diminishing the force of circulation, &c. ought to be avoided, but as we observe on the one hand, that a certain degree of increased impetus, or of the original symptoms of inflammation, is necessary to produce a proper suppuration; so it is then especially necessary to avoid those means of resolution which may diminish too much the force of circulation. And on the other hand, as the impetus of the blood, when violent, is found to prevent the proper suppuration; so, in such cases, though a tendency to suppuration may have begun, it may be proper to continue those means of resolution which moderate the force of the circulation. With respect to the opening of abscesses when completely formed, see the article Surgery.

When an inflammation has taken a tendency to gangrene, that event is to be prevented by every possible means; and these must be different according to the nature of the several causes: but after a gangrene has in some degree taken place, it can be cured only by the separation of the dead from the living parts. This in certain circumstances can be performed, and most properly, by the knife. In other cases it can be done by exciting a suppuratory inflammation on the verge of the living part, whereby its cohesion with the dead part may be every where broken off, so that the latter may fall off by itself. While this is doing, it is proper to prevent the further propagation of the part, and its spreading wider. For this purpose various antifeptic applications have been proposed: but Dr Cullen is of opinion, that while the teguments are entire, these applications can hardly have any effect; and therefore, that the fundamental procedure must be to scarify the part so as to reach the living subcutis; and, by the wounds made there, to excite the suppuration required. By the same incisions also we give access to antiseptics, which may both prevent the progress of the putrefaction in the dead, and excite the inflammation necessary on the verge of the living parts.

When the gangrene proceeds from the loss of tone, and when this communicat d to the neighbouring parts prevents that inflammation which, as we have said, is requisite to the separation of the dead parts from the living, it will be necessary to obviate this loss of tone by tonic medicines given internally; and for this purpose the Peruvian bark has been found to be most effectual. But when the gangrene arises from the violence of inflammation, the bark may not only fail of proving a remedy, but may do harm; for its power as a tonic is especially suited to those cases of gangrene which proceed from an original loss of tone, as in the
calf of palsy and oedema; or in those cases where a
loss of tone takes place while the original inflammatory
symptoms are removed.

On the other hand, Mr Bell is of opinion, that in-
cisions made with a view to admit the operation of an-
ti-lytic remedies in gangrene, as well as the remedies
themselves, must be peminous from the irritation they
occasion, and from the danger of wounding blood-
veins, nerves, or tendons, and also by allowing a free
passage for the putrefcent fluids into the parts not
yet affected. And unless they be carried so deep as
to reach the found parts, applications of the anti-lytic
kind can never have any effect in answering the pur-
pose for which they were intended. The same author
also remarks, that all the advantages commonly observed
from the great number of applications recommended for
gangrenes, are obtained with more ease, and generally
too with more certainty, from the use of some gentle
stimulating embrocation; which, by exciting a slight
irritation upon the surface, especially when allided
by a free use of the Peruvian bark, produces for the moft
part such a degree of inflammation as is wished for.
With this view he has frequently known a
reduction of the degree of inflammation to its
normal state, and has in due course of time seen the
condition return to that which it was in before the
coward was applied.

Whenever, either by the means recommended, or by
a natural exertion of the system, a slight inflammation
appears between the diseased and found parts, we may
in general, with tolerable certainty, expect, that in due
time the parts will be separated; and when a full sup-
rupation is once fairly established, there can be little
doubt that the mortified parts will be soon and easily
removed.

A complete separation being effected, the remaining
fore is to be treated in the manner described under the
article SURGERY; with a proper attention, at the same
time, to the support of the general system by the con-
imination of a nourishing diet, and the bark with such
quantities of wine as may seem necessary.

With regard to the bark, however, it is proper to
note, that in the use of it in the manner in which it is
likewise unsuccessfull, as well as in that attended with
an high degree of inflammation; and that is, in those
mortifications of the toes and feet, common in old
people, or which arise from any cause increaing the
rigidity of the vessels to such a degree as to prevent
the motion of the fluids through them. In this case
Mr Pott has discovered, that all kinds of warm applica-
tions are very unsuccessfull; but that by the free use
of opium, together with sedatives and relaxants exter-
nally applied, he has frequently seen the tumefaction
of the feet and ankles subsided, the skin recover its
natural colour, and all the mortified parts separate in a
very short time, leaving a clean fore. But what to
elvations, or any other attempt to separate artificially
the mortified from the found part, he thinks them
very prejudicial, by giving pain; which is generally of
itself violent in this dis ease, and which seems to have a
great share in producing the other evils.

The other terminations of inflammation either do
not admit of any treatment except that of preventing
them by resolution, or properly belong to the article Phtbosia.

Sp. II. PHLEGMON.

Erythema, Sauv. gen. 11.
Erysipelas acutum, f sq. 343.
Hieropye, f sq. 344.
Carbo et carbonculus auditorum.
Erythema gangrenosum, Sauv. f p. 7.
Erythema a frigore.
Erythema pernio, Sauv. f p. 4.
Erythema ambulatio, Sauv. f p. 2.
Erysipelas ambulatio, Sauv. f p. 4.
Combifutura, Lin 245.
Combifuto, Beur. 476.
Encaufa, V sq. 347.
Erythema ab acri alieno applicato.
Erysipelas Chinenfe, Sauv. f p. 7.
Erythema ab acri inquinino.
Erythema intertrigo, Sauv. f p. 5.
Intertrigo, Lin. 247, V sq. 502.
Erythema a compreffione.
Erythema paratrima, Sauv. f p. 6.
Erythema a punctura, Sauv. f p. 9.
Erysipelas a velpis, Sauv. f p. 19.
Pldvra a velpis, Sauv. f p. 2.
Erythema cum phlegmon.
Erysipelas phlegmonodes auditorum.
Erythema cum oedemate.
Erythema symptomaticum, Sauv. f p. 6.

The word erythema doth not apply to any primary dis-
 ease, but to a great number of those cutaneous inflam-
mations denominated by another general term, viz. the
erysipelas, or " St Anthony's fire;" and which being
commonly symptomatic, of some other inflammation or
disorder, are to be removed only by removing the
primary disease; the erythema is found scarcely to bear
any kind of warm application to itself; and is very apt,
if treated as a primary disea, to terminate in a gan-
grene of the part affected, or some other disorder fell
more dangerous. The difference between the phleg-
mon or preceding species, and erythema, according to Dr
Cullen, is, that, in the former, the inflammation seems
particularly to affect the vessels on the internal surface
of the skin, communicating with the l ax adjacent cel-
ular texture; whereas a more copious effusion, and that
too of serum convertible into pus, takes place. In
the erythema the affection is of the vessels on the ex-
ternal surface of the skin communicating with the rete
suctosum, which does not admit of any effusion but
what separates the cuticle and gives occasion to the
formation of a blister, while the smaller size of the
veins admits only of the effusion of a thin fluid very
f seldom convertible into pus. For the cure of the fever
attended with erythema or cef fe, see below; and
for the external treatment of erythema, see the article
SURGERY.

GENUS VIII. OPHTHALMIA.

Inflammation of the Eye.

Chemosis, V sq. 46.
Oph-
Ophthalmia, \textit{Vog.} 47.
Ophthalmia \textit{ocularum}, \textit{Flemm.} II. 165.
Ophthalmia ad natum, \textit{Sauv.} \textit{f.p.} 16.
Ophthalmia ab escocata, \textit{Sauv.} \textit{f.p.} 18.
Ophthalmia uvea, \textit{Sauv.} \textit{f.p.} 22.

From reading this long list of distinctions which authors have invented in the ophthalmia, it is evident, that by far the greatest part of them are symptomatical, or merely the consequences of other disorders present in the habit; and therefore the remedies must be directed towards the removal of the primary disorder; and when they are gone the ophthalmia will be removed of course. Dr Cullen observes, that the inflammation of the eye may be considered as of two kinds; according as it is seated in the membranes of the ball of the eye, when it is named \textit{ophthalmia membranarum}; or as it is seated in the subcutaneous glands placed in the tarsus, or edges of the eyelids, in which case it may be termed \textit{ophthalmia tarso}. These two kinds are very frequently connected together, as the one may excite the other; but they are full to be distinguished according as the one or the other may happen to be the primary affection.

7. The inflammation of the membranes of the eye affects especially, and most frequently, the adnata, and appears in a turgescence of its vessels; so that the red vessels which are naturally there, become not only increased in size, but many more appear than in a natural state. This turgescence of the vessels is attended with pain, especially from the motion of the ball of the eye; and this irritation, like every other, applied to the surface of the eye, produces an effusion of tears from the lacrymal gland.

The inflammation commonly, and chiefly, affects the adnata spread on the anterior part of the bulb of the eye; but usually spreads also along the continuation of the adnata on the inside of the palpebra, and as that is extended on the tarsus palpebrarum, the excretories of the subcutaneous glands opening there are also frequently affected. When the affection of the adnata is considerable, it may be communicated to the subjacent membranes of the eye, and even to the retina itself; which thereby acquires so great sensibility, that every impression of light becomes painful. The inflammation of the membranes of the eye is in different degrees, according as the adnata is more or less affected, or according as the inflammation is either of the adnata alone, or of the subjacent membranes also; and upon these differences, different species have been established; but they seem all to differ only in degree, and are to be cured by the same remedies more or less employed.

The proximate cause of ophthalmia is not different from that of inflammation in general; and the different circumstances of ophthalmia may be explained by the difference of its remote causes, and by the different parts of the eye which it happens to affect; as may be understood by what has been already said. We shall therefore proceed to give an account of the method of cure.

The great objects to be aimed at in the treatment of ophthalmia, are, in the first place, the resolution of the inflammation which has already taken place; and, secondly, the removal of those consequences which frequently arise from the inflammation, especially if it have been of long standing. But besides these, while it has appeared from former observation, that there is a peculiar disposition to the disease, practices may often be successfully employed to combat this disposition, and thus prevent the return of the affection.

The ophthalmia membranarum requires the remedies proper for inflammation in general; and when the deeper-seated membranes are affected, and especially when a pyrexia is present, large general bleedings may be necessary. But this is seldom the case; and, for the most part, the ophthalmia is an affection merely local, accompanied with little or no pyrexia. General bleedings therefore have little effect upon it, and the cure is chiefly to be obtained by topical bleedings, that is, blood drawn from the vessels near the inflamed part; and opening the jugular vein, or the temporal artery, may be considered as some measure of this kind. It is commonly sufficient to apply a number of leeches round the eye; but it is perhaps still better to draw blood by cupping and scarifying upon the temples. In many cases, the most effectual remedy is to scarify the internal surface of the inferior eye-lid, and to cut the turgid vessels upon the adnata itself.

Besides the blood-letting, purging, as a remedy suited to inflammation in general, has been considered as peculiarly adapted to inflammation in any part of the head, and therefore to ophthalmia; and it is sometimes useful: but, for the reasons given before with respect to general bleeding, purging in the case of ophthalmia does not prove useful in any proportion to the evacuation excited. For relaxing the pangs in the part, and taking off the determination of the fluids to it, blistering near the part has commonly been found useful. When the inflammation does not yield to the application of blisters after topical bleeding, great benefit is often obtained by supporting a discharge for the blistered part, under the form of an issue, by which means a more permanent determination of blood from the part is obtained.

It is probably also on the same principle that the good effects obtained from the use of ointment medicines in obliterative cases of ophthalmia are to be accounted for. By these ointments, in particular, which occasion and
and support for some time a great discharge from the nofe, great benefit has often been obtained. The powder of aftarbacca, or the infusion of hippocastanum, fluftup the nofe at bed-time in proper doses, are often productive of the bleft effects, when many other remedies have been tried in vain.

Ophthalmia, as an external inflammation, admits of topical applications. All thofe, however, which in creafe the heat and relax the vessels of the part, prove hurtful; and the admission of cool air to the eye, and the application of cooling and altirgent medicines which at the fame time do not produce irritation, prove ufeful. All thofe the folution of acetated lead, affiduously applied, is perhaps the more generally adapted to this purpose.

Before the ufe of this dilatemper, indeed, all irritation must carefully be avoided, particularly that of light; and the only certain means of doing this is by keeping the patient in a very dark chamber.

The flighter kinds of inflammations from the dust or the fun may be removed by fomenting with warm milk and water, adding a small portion of brandy; and by anointing the borders of the eye-lids with unguentum tufts, or the like, at night, especially when thofe parts are excoriated and fore. But in bad cafes after the inflammation has yielded a little to evaucations, the cataplasma aluminis of the London pharma­topia spread on lint, and applied at bed-time, has been found the beft external remedy. Before the ufe of the latter, the folution of white vitriol is prefcribed with advantage; and in violent pains it is of fervice to foment frequently with a decoction of white poppy heads. One of the moft common and moft disagreeable confequences of ophthalmia, is an oifudation of the cornes, fo far obstructing the passage of light as to diminish or prevent vision. This is fometimes fo confeiderable as to admit of removal by operation: but in flighter cafes it may often be removed by the application of different gentle eicharotics; and in this way, without the leaft danger of any inconvenience, good effects are often obtained, from gently introduc­ing into the eye at bed-time a powder confifting of equal parts of crystals of tartar and fuugar.

Where there is a propensity to frequent returns of this affection, the Peruvian bark is often employed with fuccefs in combating it: But nothing in general answers better than frequent and regular cold bathing of the eyes.

GENUS IX. PHRENITIS.

PHRENEX, or Inflammation of the Brain.

Phrenitis, Sauv. gen. 101. Lin. 25. Sauv. gen. 301
Phrenitica, Vog. 45.
Phacelia, Lin. 32.
Phrenitis idiopathica, Junc. 63.
Cephalitis spontanea, Sauv. fp. 3.
Cephalitis firlaftis, Sauv. fp. 4.
Siriasis, Vag. 45.
Cephalitis Litttriana, Sauv. fp. 5.

Dr. Cullen obferves, that the true phrenitis, or inflammation of the membranes or fubftance of the brain, is very rare as an original disease: but, as a fymptom of others, much more frequent; of which the following kinds are enumerated by different authors.

Phrenitis synochi pleuritics, Sauv. fp. 2.
Phrenitis synochi fanguinis, Sauv. fp. 4.
Phrenitis calentura, Sauv. fp. 11.
Phrenitis Indica, Sauv. fp. 12.
Cephalitis Egyptiaca, Sauv. fp. 1.
Cephalitis epidemica anno 1510, Sauv. fp. 6.
Cephalitis verminosa, Sauv. fp. 7.
Cephalitis cerebelli, Sauv. fp. 8.
Phrenitis miliaris, Sauv. fp. 3.
Phrenitis variolosa, Sauv. fp. 5.
Phrenitis morbillosa, Sauv. fp. 6.
Phrenitis a plica, Sauv. fp. 8.
Phrenitis aphrodisifica, Sauv. fp. 9.
Phrenitis hydrophobica, Sauv. fp. 15.
Phrenitis a dolore, Sauv. fp. 13.
Cephalitis traumatica, Sauv. fp. 2.

Description. The figns of an impending phrenitis are, immoderate and continual watchings; or if any fleep be obtained, it is disturbed with dreams and gives no refreshment; acute and lafiting pains, especially in the hind part of the head and neck; little thirt; a great and low respiration, as if proceeding from the bottom of the breath, the pulse fometimes small and low, fometimes quick and frequent; a fup­preffion of urine; and forgetfulness. The dilatemper when prefent may be known by the following figns:

The veins of the head swell, and the temporal arteries throb much; the eyes are fixed, sparkle, and have a fierce afpect; the fpeech is incoherent, and the pa­tient behaves very roughly to the by-fanders, with furious attempts to get out of bed, not indeed con­nually, but returning as to admit of removal by operation; the tongue is dry, rough, yellow, or black; there is a coldnef of the external parts; a promenea to anger; chattering of the teeth; a trembling of the hands.
with which the sick seem to be gathering something and actually do gather the mumps off the bed clothes.

Causes of, and persons subject to, this disorder. People of a hot and bilious habit of body, and such as are of a passionate disposition, are apt to be affected with phrenitis. In the former danger are those who use much spices, or are given to hot and spirituous liquors; who have been exposed more than usual to the sun, or obliged to undergo inordinate studies or watchings; who are subject to head-aches, or in whom some customary hemorrhages have been stopped; or the disease may arise from some injury offered to the head externally. Dr Pringle observes, that the phrenitis, when considered as an original disease, is apt to attack soldiers in the summer season when they are exposed to the heat of the sun, and especially when asleep and in liquor. A symptomatic phrenitis is also more frequent in the army than elsewhere, on account of the similar cases, a hate of phrenitis. In the same danger are those who use much coffee and bilious habit of digestion, the disease is apparently critical, breaking out suddenly, with watching; thin watery urine, white and frothy, running off involuntarily from the part affected, and the patient dies delirious. The following symptoms: Sweats, especially those from the feet and soles, are a symptom of danger; and, unless removed before the fourth day, are the cause of death. An abatement of strength, the mind, we are still totally in the power of the disease, and particularly that peculiar delirium which characterizes it. But in what manner local diseases, even of the brain itself, produce affections of the mind, are we still totally in the dark.

Progress. Every kind of phrenitis, whether idiopathic or symptomatic, is attended with a high degree of danger; and, unless removed before the fourth day, a gangrene or phacelus of the meninges readily takes place, and the patient dies delirious. The following are the most fatal symptoms: A continual and furious delirium, with watching; thin watery urine, white faces, the urine and fowls running off involuntarily or a total suppression of these excretions; a ready disposition to become insipid, or to faint; trembling, rigor, chattering of the teeth, convulsions, hic-cough, coldness of the extremities, trembling of the tongue, shrill voice, a sudden cessation of pain, with apparent tranquillity. The following are favourable: Sweats, apparently critical, breaking out; a ceasing effort of nature to terminate the disease by a diarrhoea; a large hemorrhoagy from the nose; swellings of the glands behind the ears; hemorrhoids.

Cure. From what has been said of the theory of this disease, the cure must entirely depend on obtaining a resolution of the inflammation. The objects chiefly to be aimed at with this view are, 1. The removal of such exciting causes as continue to operate. 2. The diminution of the momentum of the blood in the circulating system in general. 3. The diminution of impetus at the brain in particular; and, 4. The avoiding circumstances which tend either to accelerate the motion of the blood or to give determination to the head.

Different practices may be used with these intentions; but here the most powerful remedies are to be immediately employed. Large and repeated bleedings are especially necessary; and these too, taken from well-fed as near as possible to the part affected. The opening the temporal artery has been recommended and with some reason: but as the practice is attended with some inconveniences, perhaps the opening of the jugular veins may prove more effectual; with which, however, may be joined the drawing of blood from the temples by cupping and scarifying. It is also probable, that purging may be of more use in this than in some other inflammatory affections, as it may operate by resolution. For the same purpose of resolution, warm pediluvia are a remedy, but rather ambigious. The taking off the force of the blood in the veins of the head by an erect posture is generally useful. Blisters are also useful, but chiefly when applied near to the part affected. In short, every part of the antiphlogistic regimen is here necessary, and particularly the admission of cold air. Even cold substances applied to the head have been found useful; and the application of such refrigerants as vinegar is certainly proper. Opiates are thought to be hurtful in every inflammatory state of the brain. On the whole, however, it must be remarked, that practitioners are very uncertain with regard to the means proper to be used in this disease; and the more so, that the symptoms by which the disease is commonly judged to be present, appear sometimes without any internal inflammation; and on the other hand, diffuse signs have shown that the brain has been inflamed, where few of the peculiar symptoms of inflammation had appeared before.

Genus X. Cynanche.
Cynanche, Sauv. gen. 110. Lim. 33. Syst. gen. 300.
Angina inflammatoria, Boerh. 798.

Sp. I. Cynanche tonsillaris.

The Inflammatory Quinsy.
Cynanche tonsillaris, Sauv. sp. 1.
Angina inflammatoria, sp. 5. Boerh. 805.

Description. This is an inflammation of the mucous membrane of the fauces, affecting principally that congeries of mucous follicles which forms the tonsils; and from thence spreading along the velum and uvula, so as frequently to affect every part of the mucous membrane. The disease appears by some tumour and redness of the parts; is attended with a painful and difficult deglutition; a troublesome clamminess of the mouth and throat; a frequent but difficult excretion of mucus; and the whole is accompanied with pyrexia. The inflammation and tumor are commonly at first most considerable in one tonsil; and afterwards, abating in that, increase in the other. This disease is not contagious.

Causes of and persons subject to, this disorder. This disease is commonly occasioned by cold externally applied, particularly about the neck. It affects especially the young and sanguine; and a disposition to it is often acquired by habit. It occurs especially in the spring and autumn, when vicissitudes of heat and cold frequently take place.

Progress. This species of quinsy terminates frequently by resolution, sometimes by suppuration, but hardly ever by gangrene; though in some cases fleshy spots appear on the fauces: the prognosis in these cases is generally favourable.

Cure. As the principal morbid affection in this disease, on which all its characterizing symptoms im-
Angina maligna, probably the more apt to Phlegm as tonsils and neighbouring parts, the object first and principally to be aimed at in the cure is to obtain a resolution of this inflammation. Sometimes, however, it is necessary to have recourse to practices, with the view of obviating urgent symptoms before a resolution can be effected: and in other cases, where a resolution cannot be obtained, it must be the aim of the practitioner to promote a speedy and favourable suppuration.

After suppuration has taken place, the proper treatment is to promote a speedy and favourable evacuation. Here some bleeding may be necessary; but large and general evacuations are seldom beneficial. The opening of the ranular veins seems to be an insignificant remedy, according to Dr Cullen but is recommended as efficacious by Sir John Pringle: more benefit, however, may in general be derived from leeches to the external fauces. The inflammation may be often relieved by moderate astringents, and particularly by acids applied to the parts affected. In many cases, nothing has been found to give more relief than the vapour of warm water received into the fauces.

Besides these, blistering, and still more frequently rubeficient medicines, are applied with success, as well antiphlogistic purgatives; and every part of the antiphlogistic regimen is to be observed, except the application of cold. Sir John Pringle recommends a thick piece of flannel moistened with two parts of common sweet oil, and one of spirit of hartshorn (or in a larger proportion, if the skin will bear it), to be applied to the throat, and renewed once every four or five hours. By this means the neck, and sometimes the whole body, is put into a sweat, which after bleeding either carries off or lefbens the inflammation. When the disease takes a tendency to suppuration, nothing will be more useful than the taking into the fauces the steam of warm water. Benefit is also obtained from poultices applied to the external fauces. When the abscess is attended with much swelling, if it break not spontaneously, it ought to be opened by a lancet; and this does not require much caution, as even the inflammatory state may be relieved by some scarification of the tonsils. When this disease runs very rapidly to such a height as to threaten suffocation, it is sometimes necessary to have recourse to bronchotomy as the only mean of saving the life of the patient. But there is reason to believe that this operation has sometimes been employed where it was not necessary; and we may safely venture to say, that it is but seldom requisite; infomuch that Dr Cullen tells us, that he has never in his practice seen any case requiring bronchotomy.

Sp. II. Cynanche maligna.
The maligna, patrid, or ulcerous sore throat.

Cynanche maligna, Sauw. fp. 3.

Cynanche ulcerosa, Sauw. var. a. Journ. de Med. 1758.

Cynanche gangrenosa, Sauw. var. b. Journ. de Med. 1756.

Angina ulcerosa, Folchart's Account of the ulcerous sore throat, edit. 1751. Huxham on the malignant ulcerous sore throat, from 1751 to 1753.

Febris epidemica cum angina ulcerulosa, Douglas's Cynanche.

Practical History, Bolon 1756.

Angina siccatica, Bard's Inquiry, New-York, 1771.

Angina maligna, Johnstone on the malignant Angina, Worceller, 1779.

History and description. This disease is not particularly described by the ancient physicians; though perhaps the Syrian and Egyptian ulcers mentioned by Aretas Cappadox, and the pestilent ulcerated tonsils we read of in Actius, Amideus were of this nature. Some of the scarlet fevers mentioned by Morton seem also to have approached near to it. In the beginning of the last century, a disease exactly similar to this is described by the physicians of that time, as raging with great violence and mortality in Spain and some parts of Italy; but no account of it was published in this country till the year 1748, when a very accurate one was drawn up by Dr Fothergill, and in 1752 by Dr Huxham. The latter observes, that this disease was preceded by long, cold, and wet seafons by which probably the bodies of people were debilitated, and more apt to receive contagion, which possibly also might be produced by the flagrant and putrid waters.

The attack of this disease was very different in different persons. Sometimes a rigor, with fulnes and foreheads, and painful stiffness of the neck, were the first symptoms complained of. Sometimes alternate chills and heats, with some degree of giddiness, drowsiness, or head-ach, ushered in the disease. It feized others with much more severity; great pain of the head, back, and limbs; a vall oppression of the precordia, and continual fighting. Some grown persons went about for some days in a drooping state with much uneasiness and anxiety, till at last they were obliged to take to their beds. Thus various was the disease, says Dr Huxham, at the outset. But it commonly began with chills and heats, load and pain of the head, foreheads of throat, and hoarseness; some cough, sickness at stomach, frequent vomiting and purging, in children especially, which were sometimes very severe; though a contrary state was more common to the adult. There was in all a very great dejection of spirits, very sudden weakness, great heaviness on the breast, and faintness, from the very beginning. The pulse in general was quick, small, and fluttering, though sometimes heavy and undulating. The urine was commonly pale, thin, and crude; however in many grown persons, it was passed in small quantities and high-coloured, or like turbid whey. The eyes were heavy, red, and as it were weeping; the countenance very often full, flushed, and bloated, though sometimes pale, and funk.

How long ever the disorder might appear in the day time, at night the symptoms became greatly aggravated, and the feverish habit very much increased, nay, sometimes a delirium occurred on the very first night; and this exacerbation constantly returned thro' the whole course of the disease. Indeed, when it was considerably on the decline, our author says he has been often pretty much surprized to find his patient had
had passed the whole night in a phrenzy, whom he had let tolerably cool and fedate in the day.

S me few hours after the seizure, and sometimes cotemporary with it, a swelling and foreness of the throat was perceived, and the tonsils became very tumid and inflamed, and many times the parotid and maxillary glands swelled very much, and very suddenly, even at the very beginning; sometimes so much as even to threaten strangulation. The fauces also very soon appeared of a high florid red, or rather of a bright crimson colour, very shining and glossy; and moist commonly on the uvula, tonsils, velum palatini, and back part of the pharynx, several whitish or ash-coloured spots appeared scattered up and down, which oftentimes increased very fast, and soon covered one or both the tonsils, uvula, &c.; those in the event proved sloughs of superficial ulcers (which sometimes, however, eat very deep into the parts). The tongue at this time, though only white and moist at the top, was very foul at the root, and covered with a thick yellowish or brown coat. The breath also now began to be very nauseous; which offensive smell increased hourly, and in some became at length intolerable, and that too sometimes even to the patients themselves.

The second or third day every symptom became much more aggravated, and the fever much more considerable; and those that had struggled with it tolerably well for 30 or 40 hours, were forced to submit. The relievness and anxiety greatly increased, as well as the difficulty in swallowing. The head was very giddily, pained, and loaded; there was generally more or less of a delirium; sometimes a pervigilium and perpetual phrenzy; though others lay very stupid, but often startling and muttering to themselves. The skin was very hot, dry, and rough; there was very rarely any disposition to sweat. The urine was pale, thin, crude; often yellowish and turbid. Sometimes a vomiting was urgent, and sometimes a very great looseness, in children particularly. The sloughs were now much enlarged, and of a darker colour, and the surrounding parts tended much more to a livid hue. The breathing became much more difficult; with a kind of a rattling flteror, as if the patient was actually strangling, the voice being excessively hoarse and hollow, exactly resembling that from vesere ulcers in the fauces: this noise in speaking and breathing was so peculiar, that any person in the least conversant with the disease might easily know it by this odd noise; from whence indeed the Spanish physicians gave it the name of garruolis, expressing the noise made by persons when they are strangled by a rope. Our author never observed in one of them the thriling barking noise that we frequently hear in inflammatory quinsies. The breath of all the diseased was very nauseous; of some insufferably fetid, especially in the advance of the delirium to a crisis; and many about the fourth or fifth day spit off a vast quantity of thinning purulent mucus tinged sometimes with blood; and sometimes the matter was quite livid, and of an abominable stench. The nostrils likewise in many were greatly inflamed and ex-coriated, continually dripping down a most sharp ichor or fanguineous matter, so excessively acrid, that it not only corroded the lips, cheeks, and hands of the children that laboured under the disease, but even the fingers and arms of the very nurses that attended them: as this ulceration of the nostrils came on, it commonly caused an almost incessant sneezing in the children; but few adults were affected with it, at least to any considerable degree. It was surprising what quantities of matter some children discharged this way, which they would often rub on their face, hands, and arms, and blister them all over. A sudden stoppage of this rhum from the mouth and nostrils actually choked several children; and some swallowed such quantities of it, as occasioned excoriations of the interines, violent gripings, dysenterie, &c. nay, even excoriations of the anus and buttocks. Not only the nostrils, fauces, &c. were greatly affected by this extremely sharp matter, but the wind-pipe itself was sometimes much corroded by it, and pieces of its internal membrane were spat up, with much blood and corruption; and the patients lingered on for a considerable time, and at length died tabid; though there were more frequent influences of its falling suddenly and violently on the lungs, and killing in a peripneumonic way.

Dr Huxham was astonifhied sometimes to see several swallow with tolerable ease, though the tumour of the tonsils and throat, the quantity of thick mucus, and the rattling noise in breathing, were very terrible; which he thinks pretty clearly shows, that this malignant quinsy is more from the armaancy and abundance of the humours than the violence of the inflammation.

Most commonly the angina came on before the exanthemata; but many times the cuticular eruption appeared before the sore-throat, and was sometimes very considerable, though there was little or no pain in the fauces: on the contrary, a very severe angina seized some patients that had no matter of eruption; and yet, even in these cases, a very great itching and desquamation of the skin sometimes ensued; but this was chiefly in grown persons, very rarely in children. In general, however, a very considerable efflorescence broke out on the surface of the body, particularly in children; and it most commonly happened the second, third, or fourth day: sometimes it was partial, sometimes it covered almost the whole body, though very seldom the face; sometimes it was of an erythematous kind: sometimes more pustular: the pufules frequently eminent, and of a deep fery red colour, particularly on the breast and arms; but oftentimes they were very small, and might be better felt than seen, and gave a very odd kind of roughness to the skin. The colour of the efflorescence was commonly of a crimson hue, or as if the skin had been smeared over with juice of rubberries, and this even to the fingers ends; and the skin appeared infamed and inflamed, as if it were; the arms, hands, and fingers, were often evidently so, and very stiff, and somewhat painful. This crimson colour of the skin seemed indeed peculiar to this disease. Though the eruption seldom failed of giving some manifest relief to the patient, as to anxiety, lickenes at stomach, vomiting, purging, &c. yet there was observed an universal fery eruption on some persons, without the least abatement of the symptoms, nay almost every symptom seemed more aggravated, particularly the fever, load at breast, anxiety, delirium; and our author knew more than one or two patients die in the most raging phrensy, covered with the most universal fery rash whatever. Saw fo that, as in the
the highly contained smallpox, it seemed only to denote the quantity of the disease, as he terms it.

He had under his care a young gentleman, about 12 years of age, whose tongue, fauces, and tonsils, were as black as ink, and he swallowed with extreme difficulty; he continually spit off immense quantities of black, fomaceous, and very fetid matter, for at least eight or ten days:—about the seventh day, his fever being somewhat abated, he fell into a bloody dysentery, though the bloody, fomaceous, fetid expectation still continued, with a most violent cough. He at length indeed got over it, to the very great surprise of every one that saw him. Now, in this patient, a fever and universal rash broke out upon the second and third day; and the itching of his skin was so intolerable, that he tore it all over his body in a most shocking manner: yet this very great and timely eruption very little relieved his fever and phrenzy, or prevented the other dreadful symptoms mentioned.

An early and kindly eruption, however, was most commonly a very good omen; and, when succeeded by a very copious desquamation of the cuticle, one of the most favourable symptoms that occurred; but when the eruption turned of a dusky or livid colour, or prematurely or suddenly receded, every symptom grew worse; and the utmost danger impended, especially if purple or black spots appeared up and down, as sometimes happened: the urine grew limpid, and convulsions came on, or a fatal suffocation soon closed the tragedy.

The disease was generally at the height about the fifth or sixth day in young persons, in the elder not so soon; and the crisis many times was not till the 11th or 12th, and then very imperfect: some adults, however, were carried off in two or three days; the distemper either falling on the lungs, and killing in a peripneumonic manner; or on the brain, and the patient either died raving or comatose. In some, the disease brought on a very troublesome cough, purulent expectoration, haemoptoe, and hectic; in which they lingered on for several weeks, and then died tabid.

If a gentle easy sweat came on the third or fourth day; if the pulse became more flow, firm, and equal; if the fomaces called off in a kindly manner, and appeared at the bottom tolerably clean and florid; if the breathing was more soft and free, and some degree of vigour and quickness returned in the eyes; all was well, and a salutary crisis followed soon by a continuance of the sweat, and a turbid, subfiding, farinaceous urine, a plentiful expectoration, and a very large desquamation of the cuticle. But if a rigor came on, and the exanthemata suddenly disappeared or turned livid; if the pulse grew very small and quick, and the skin remained hot and parched as it were, the breathing more difficult, the eyes dead and glassy, the urine pale and limpid, a phrenzy or coma succeeded, with a coldish clammy sweat on the face or extremities; life was despaired of; especially if a singultus and choking or gulping in the throat attended, with fomaceous liquid, involuntary, livid froths, intolerably fetid. In some few patients Dr Huxham observed, some time before the fatal period, not only the face bloated, hollow, flaming, and greyish as it were, but the whole neck very much swollen, and of a cadaverous look; and even the whole Cynanchus, body became in some degree adenoma; and the impulsion of a finger would remain fixed in a part, the skin not returning again as usual; an indication that the blood stagnated in the capillaries, and that the extensibility of the fibres was quite lost.

Medical writers are still much divided in opinion, whether the cynanche maligna is to be considered as the same disease with the scarlatina anginosa, afterwards to be treated of, or not. This question will afterwards come to be more fully discussed. At present we may only observe, that although ulcerous sore throats of a malignant nature often appear sporadically, yet that the disease above described appears only as an epidemic, and is always the consequence of contagion.

Prognostic. This may be easily gathered from the above description. The malignant and putrid tendency of the disease is evident, and an increase of the symptoms which arise from that putrefactive disposition of the body must give an unfavourable prognostic; as, on the contrary, a decrease of these, and an apparent increase of the vis viva, are favourable: in general, what is observed to be favourable in the nervous and putrid malignant fevers, is also favourable in this and vice versæ.

Causes. Since the accurate accounts given by Dr Fothergill and Huxham of the epidemics which prevailed about 30 years ago, this disease has frequently been observed at times epidemic in almost every different part of Britain. Like smallpox, measles, and chinchough, it seems in every case to be the effect of a peculiar and specific contagion. It has been observed to prevail, equally generally in every situation, and at every season; and on exposure to the contagion, no age, sex, or condition, is exempted from it. But the having once had the disease, seems in this affection to afford the same security against future contagion as in the smallpox: at least infinaces, where it can be said that the same individual has been twice affected with it, are both very rare and very doubtful, as well as in smallpox. Cure. Like other febrile contagious, the malignant ulcerous sore throat is terminated only by a natural course; and the chief business of the practitioner is to combat unfavourable occurrences. In this the septic tendency of the disease is chiefly to be kept in view. The debility with which it is attended renders all evacuations by bleeding and purging improper, except in a few instances where the debility is left, and the inflammatory symptoms more considerable. The fauces are to be preferred from the effects of the acid matter poured out upon them, and are therefore to be frequently washed out by antiseptic gargles or injections; and the putrid flate of the whole system should be guarded against and corrected by internal anti-fevers, especially by the Peruvian bark given in the beginning and continued through the course of the disease. Great benefit is also often derived from the liberal use of the mineral acids. Both the vitriolic and muriatic, in a state of proper dilution, have been highly extolled by different medical writers, and are productive of the best effects in actual practice, when they can be introduced to a sufficient extent. Emetics, both by vomiting and nauseating, prove useful. When any considerable tumor occurs, blisters applied

MEDICINE.

Practice.
Irac 1: ice.

Very lately, the internal use of the capricum annum, or Cayenne pepper as it is commonly called, has been highly celebrated in this affection; and it is particularly said to have been employed with singular success in the West Indies.

Sp. III. Cynanche trachealis.
The Croup

Cynanche trachealis, Super. sp. 5.
Cynanche laryngae auctorum, Lur de cogn. et curand. morb. f. 23.
Angina, inflammatoria, sp. 1. Dider. 801.
Angina latens et diuticis, Dider. ob. 18.
Angina interna, Vaug. L. 1. ob. 51.
Angina perniciosa, Virg. 19th. Ob. 1. iii. ob. 1.
Sufociatio trachea, Home on the Croup.
Allaha infantum, illiur on the Asthma and Cing.

Asthma infantum paludicium, Russel, Dissertatio, Lond. 1770.
Angina epidemicca anno 1743. Notes apud F'utty's History of the weather.
Morbus fisangulatus, Storer, Phil. Trans. n° 495.
Catarhuss susciosius Barbaricensis ann. 1758. Hallary's Diseaces of Barbadoes.

Angina inflammatoria infantum, Russel, Oecon. nat. p. 70.

Angina polypora in membranacea. Michelis. Argentorati 1778, et autores ab eo allegati.

The best description of this disease we have in Dr Cullen's Practice of Physic. He informs us, that it consists in an inflammation of the glottis, larynx, or upper part of the trachea, whether it affect the membranes of these parts or the muscles adjoining. It may arise first in these parts, and continue to fubflit in them alone; or it may come to affect these parts from the cynanche tonnllarisis, or m greatest, spreading into them.

In either way it has been a rare occurrence, and few instances of it have been marked and recorded by physicians. It is to be known by a peculiar croaking sound of the voice, by difficult respiration, with a sense of straining about the larynx, and by a pyrexia attending it.

From the nature of these symptoms, and from the description of the body of persons who died of this disease, there is no doubt of its being of an inflammatory kind. It does not, however, always run the course of inflammatory affections; but frequently produces such an obstruction of the passage of the air, as suffocates, and thereby proves suddenly fatal.

It is particularly hazardous, in consequence of the trachea being obstructed by a membranous substance lining the inside of it, and very nearly approaching in appearance to the inflammatory exudation often discovered on the intellecal canal in those dying of catarrhus.

If we judge rightly of the nature of this disease, it will be obvious, that the cure of it requires the most powerful remedies of inflammation to be employed upon the very first appearance of the symptoms. When a suffocation is threatened, whether any remedies can be employed to prevent it, is not yet determined by sufficient experience: but it is evident, that in certain cases the life of the patient can be preserved only by the removal of that matter which obstructs the passage of air through the trachea.

The accounts which books have hitherto given us of inflammations of the larynx and the parts connected with it, amount to what we have now said; and many instances are recorded of this disease happening in adult persons: but there is a peculiar affection of this kind happening to infants which has been little taken notice of till lately. Dr Home is the first who has given any distinct account of this disease; but since he wrote, several other authors have taken notice of it, and have given different opinions concerning it.

This disease seldom attacks infants till after they have been weaned. After this period, the younger they are, the more they are liable to the disease. The frequency of it becomes less as children become more advanced; and there are few instances of children above 12 years of age being affected with it. It attacks children of the midland countries, as well as those who live near the sea; but it occurs much more frequently at certain places than at others. It does not appear to be contagious; and its attacks are frequently repeated in the same child. It is often materially effects of cold applied to the body; and therefore appears most frequently in the winter and spring seasons. It very commonly comes on with the ordinary symptoms of a catarh; but sometimes the peculiar symptoms of the disease flow themselves at the very first.

These peculiar symptoms are the following: A hoarseness, with some thrillings and ringing found, both in speaking and coughing, as if the noise came from a brzen tube. At the same time, there is a sense of pain about the larynx, some difficulty of respiration, with a whistling found in inspiration, as if the passage of the air were straitened. The cough which attends it, is commonly dry; and if anything be spit up, it is a matter of a purulent appearance, and sometimes films resembling portions of a membrane. With all these symptoms, there is a frequency of pulse, a reflexibility, and an uneasy sense of heat. When the internal fauces are viewed, they are sometimes without any appearance of inflammation; but frequently a redness, and even swelling, appears; and sometimes there is an appearance of matter like to that rejected by coughing, together with the symptoms now described, and particularly with great difficulty of breathing, and a sense of strangling in the fauces, by which the patient is sometimes suddenly taken off.

Many divisions have been made of infants who had died of this disease, and almost constantly there has appeared a preternatural substance, apparently membranous, lining the whole internal surface of the upper part of the trachea, and extending in the same manner.
This preternatural membrane may be easily separated, and sometimes has been found separated in part, from the subjacent proper membrane of the trachea. This latter is commonly found entire, that is, without any appearance of erosion or ulceration; but it frequently shows the vestiges of inflammation, and is covered by a matter resembling pus, like to that rejected by coughing; and very often a matter of the same kind is found in the bronchi, sometimes in considerable quantity.

From the remote causes of this disease; from the catarrhal symptoms commonly attending it; from the pyrexia constantly present with it; from the same kind of preternatural membrane being found in the trachea when the catarrhal maligna is communicated to it; and from the vestiges of inflammation on the trachea discovered upon exudation; we must conclude, that this disease consists in an inflammatory affection of the mucous membrane of the larynx and trachea, producing an exudation analogous to that found on the surface of inflamed vidiæ, and appearing partly in a membranous crust, and partly in a fluid form resembling pus.

Though this disease consists in an inflammatory affection, it does not commonly end either in suppuration or gangrene. The troublesome circumstance of it appears first as a pain in the muscles of the glottis, threatening suffocation.

When this disease terminates in health, it is by resolution of the inflammation, by ceasing of the pain of the glottis, by an expectoration of the matter exuding from the trachea, and of the crusts formed there, and frequently it ends without any expectoration, or at least with fuch as only attends an ordinary catarrh. But in some instances, a fulatory termination has very speedily taken place, in consequence of the discharge of the membranous substance from the trachea, even under its proper tubular form.

When the disease ends fatally, it is by a suffocation, seeming depending upon a pain affecting the glottis; but sometimes, probably, depending upon a quantity of matter filling the bronchi, or obstructing the trachea.

As we suppose the disease to be an inflammatory affection, so we attempt the cure of it by the usual remedies of inflammation. Bleeding, both general and topical, has often given immediate relief; and by being repeated, has entirely cured the disease. Blistering also, near to the part affected, has been found useful. Upon the first attack of the disease, vomiting, immediately after bleeding, seems to be of considerable use, and sometimes suddenly removes the disease. But emetics are still more useful in advanced periods. By the employment of these, the matter obstructing the trachea, and inducing phlegmotic affections, has often been successfully removed, when the situation of the patient seemed to be almost desperate. And as in the progress of the disease fresh effusions of this matter are very apt to take place, the frequent repetition of emetics becomes necessary. It is often necessary to have recourse to those operating the most expeditiously, such as vitriolated zinc even in large doses. In every stage of the disease, the antiphlogistic regimen is necessary, and particularly the frequent use of laxative glyters. Though we suppose that a pain affecting the glottis is often fatal in this disease, antiphlogistic medicines have not in general been found of great service. Some, however, have strongly recommended the use of aspirin in the form of injection; others place great confidence in oil, or oily mixtures taken by the mouth: but more immediate benefit is derived from tepid bathing, and the employment of vitriolic ether, both externally and internally.

Sp. IV. CYNANCHE PHARYNGEA.

Cyananche pharyngea, Sawv. sp. 6. Eller de cogn. et cur. foè. 7.

Angina inflammatoria, sp. 4. Boerh. 804.

This is not materially different from the cyananche tonsilaris; only that the inflammation is said to begin in the pharynx, though Dr Cullen says he never knew an instance of it. The symptoms are almost the same, and the cure is precisely so with that of the cyananche tonsilaris.

Sp. V. CYNANCHE PAROTIDEA.

This is a disease well known to the vulgar, but little taken notice of by medical writers. It is often epidemic, and manifestly contagious. It comes on with the usual symptoms of pyrenia, which is soon after attended with a considerable tumour of the external fauces and neck. The swelling appears first as a glandular moveable tumour at the corner of the lower jaw; but it soon becomes uniformly diffused over a great part of the neck, sometimes on one side only, but more commonly on both. The swelling continues to increase till the fourth day; but from that period it declines, and in a few days more goes off entirely. As the swelling of the fauces recedes, it not unfrequently happens that some tumour affects the teeths in the male sex, or the breasts in the female. These tumours are sometimes large, hard, and somewhat painful; but are seldom either very painful or of long continuance. The pyrexia attending this disease is commonly slight, and goes off with the swelling of the fauces; but sometimes, when the swelling of the teeths does not succeed to that of the fauces, or when the one or the other has been suddenly reprieved, the pyrexia becomes more considerable, is often attended with delirium, and has sometimes proved fatal.

As this disease commonly runs its course without either dangerous or troublesome symptoms, so it hardly requires any remedies. An antiphlogistic regimen, and avoiding cold, are all that will be commonly necessary. But when, upon the receding of the swellings, the pyrexia comes to be considerable, and threatens an affection of the brain, it will be proper, by warm fomentations,
mentations, to bring back the swelling; and by vomiting, bleeding, or blistering, to obviate the consequences of its absence.

Genus XI. Pneumonia.

Febris pneumonica, *Hoffa. II. 136.*

Sp. I. Peripneumonia

Peripneumonia, or Inflammation of the Lungs.

Peripneumonia pura in five vera *Auctorium, Sauw. ip. 1.*

Peripneumonia catarhalis, *Sauw. sp. 6.*

Peripneumonia putrida, *Sauw. sp. 2.*

Peripneumonia ardens, *Sauw. sp. 3.*

Peripneumonia maligna, *Sauw. sp. 4.*

Peripneumonia typ. Òdes, *Sauw. sp. 5.*

Amphiphrina peripneumonica, *Sauw. sp. 15.*

Sp. II. Pleuritis.

The Pleurisy, or Inflammation of the Pleura.

Diaphragmatitis, *Seg. gen. 304.*

Pleuritis vera, *Sauw. sp. 1. Boerh. 875. Verna. princeps morb. acut. pleuritias, l. i. cap. 2. 3.*

Zeviani della parapleuritide, cap. 3. *Morgagni de sed. et cauf. morph. Epift. xx. art. 56. xi. 45.*

Wendt de pleuritide, apud *Sandfort, thes. ii.*

Pleuritis pulmonis, *Sauw. sp. 2. Zeviam, dell. para­pleur. iii. 28, &c.*

Pleuroneumonia, pleuro-peripneumonia, peripneumo­pleuritis *Auctorium. Batonis de pleuri-pneumonia.*

Pleuritis hydrothoracica. *Sauw. sp. 15. Morgagni de cauf. et sed. x. 34.*

Pleuritis dorfaris, *Sauw. sp. 3. Verna. p. 3. cap. 8.*

Mediafliina, *Vog. 52.*

Pleuritis pericardii, *Sauw. sp. 5. Verna. p. iii. cap. 9.*

Parapleuritis, *Zeviani della parapleuritide.*

Pleurodyne parapleuritis, *Sauw. sp. 19.*

Paraphrenitis diaphragmatic, *Sauw. sp. 1. De Ham.*

Rat. med. i. 7. iii. p. 91.

Paraphrenitis pleuritica, *Sauw. sp. 2.*

Paraphrenitis hepatica, *Sauw. sp. 3.*

Under the general head of *Pneumonia*, Dr Cullen comprehends all inflammations of the thoracic visera, or membrane lining the inside of that cavity; as the symptoms do not sufficiently distinguish the seat of the affection, nor does a difference in the situation of the affected place make any difference in the cure.

Description. Pneumonic inflammation, however various in the seat, always discloses itself by pyrexia, difficult breathing, cough, and pain in some part of the thorax. It almost always comes on with a cold stage, and is accompanied with the other symptoms of pyrexia; though in some few instances the pulse may not be more frequent, nor the heat of the body increased beyond what is natural. Sometimes the pyrexia is from the beginning accompanied with the other symptoms; but frequently it is formed some hours before them, and particularly before the pain be felt. The pulse for the most part is frequent, full, strong, hard, and quick; but, in a few instances, especially in the advanced state of the disease, it is weak, soft, and at the same time irregular. The difficulty of breathing is most considerable in inspiration, both because the lungs do not easily admit of a full dilatation, and because the dilatation increases the pain attending the disease. The difficulty of breathing is also greater when the patient is in one posture of the body rather than another. It is generally greater when he lies on the side affected; though sometimes the contrary happens. Very often the patient cannot lie easy upon either side, and can find ease only when lying on the back; and sometimes he cannot breathe easily, except when in some fashion of an erect posture. The cough, in different cases, is more or less urgent or painful. It is sometimes dry, or without any expectoration, especially in the beginning of the disease; but more commonly it is, even from the beginning, moist, and the matter spit up various both in consistence and colour, and frequently it is streaked with blood. The pain is also different in different cases, and felt in different parts of the thorax, but most frequently in one side. It has been said to affect the right side more frequently than the left; but this is uncertain, and we are sure that the left side has been very often affected. Sometimes it is felt as if it was under the sternum; sometimes in the back between the shoulder blades; and when in the sides, its place has been higher or lower, more forward or backward; but the place of all most frequently affected is about the sixth or seventh rib, near the middle of its length, or a little more forward. The pain is often severe and pungent; but sometimes more dull and obtuse, with a sense of weight rather than of pain. It is most especially severe and pungent when occupying the place last mentioned. For the most part it continues fixed in one part, but sometimes shoots from the side to the stappula on one hand, or to the sternum and clavicle on the other.

Dr Cullen supposes that the disease is always feated, or at least begins, in some part of the pleura, taking that membrane in its greatest extent, as now commonly understood; that is, as covering not only the internal surface of the cavity of the thorax, but also as forming the mediastinum, and as extended over the pericardium, and over the whole surface of the lungs. But as the symptoms never clearly indicate
where the seat of the disease is, there is but little foundation for the different names by which it has been distinguished. The term pleurisy is improperly limited to that inflammation which begins in and chiefly affects the pleura costalis. This our author thinks is a rare occurrence; and that the pneumonia much more frequently begins in the pleura, involving the lungs, producing all the symptoms which belong to what hath been called the pleuritis vera. The word peripneumony has been applied to an inflammation beginning in the parenchyma, or cellular texture of the lungs, and having its seat chiefly there. But to Dr Cullen it seems very doubtful if any acute inflammation of the lungs, or any disease which has been called peripneumony, be of that kind. It seems probable, that every acute inflammation begins in membranous parts; and in every dissection of persons who have died of peripneumony, the external membrane of the lungs, or some part of the pleura, has appeared to have been considerably affected. An inflammation of the pleura covering the upper surface of the diaphragm, has been distinguished by the appellation cephalophrenitis, as supposed to be attended with the peculiar symptoms of delirium, rigors, and convulsive motions; but it is certain, that an inflammation of that portion of the pleura, and affecting also even the muscular substance of the diaphragm, has often taken place without any of the symptoms above-mentioned; and neither the dissections which have fallen under Dr Cullen's observation, nor any accounts of dissections, support the opinion that an inflammation of the pleura covering the diaphragm is attended with delirium more commonly than any other pulmonary inflammation.

It is to be observed however, that though the inflammation may begin in one particular part of the pleura, the morbid affection is commonly communicated to the whole extent of the membrane. The pneumonia inflammation, like others, may terminate by resolution, suppuration or gangrene: but it has also a termination peculiar to itself; namely, when it is attended with an effusion into the cellular texture of the lungs, which, soon interrupting the circulation of the blood through the vices, produces a fatal suffocation. This indeed appears to be the most common termination of pneumonia inflammation when it ends fatally; for upon the dissection of almost every person who has died of this disease, it appears that such an effusion had happened. From the same dissections we learn, that pneumonia inflammation commonly produces an exudation from the internal surface of the pleura, which appears partly as a soft viscid crust, often of a compact membranous form, covering every where where the surface of the pleura, and particularly those parts where the lungs adhere to the pleura costalis, or mediastinum; and this crust seems always to be the cement of such adhesion. The same exudation flows itself also by a quantity of a serous fluid, commonly found in the cavity of the thorax; and some exudation or effusion is usually found to have been made into the cavity of the pericardium. It seems likewise probable, that an effusion of this kind is sometimes made into the cavity of the bronchi; for in some persons who have died after labouring under a pneumonia inflammation for a few days only, the bronchi have been found filled with a consider-
Pneumonia.

Practice.

MEDICINE.

The pulfe, heat of the body, and other febrile symptoms. Although, from the history now given, it appears that pleurisy and pneumonia cannot with propriety be considered as different diseases, yet it is certain that in different cases this affection occurs with an assemblage of symptoms separate and distinct.

Thus even Dr. Cullen himself, in his Neology, has defined pleurisy to consist in pyrexia, attended with a pungent pain of the side, painful respiration, difficulty of lying down particularly on the affected side, and distempering cough, in the beginning dry, but afterwards humid, and often with bloody expectoration. While again he has defined pneumonia to consist in pyrexia, attended with a dull pain under the sternum and between the shoulders, anxiety, difficulty of breathing, humid cough, expectoration generally bloody, a soft pulfe, and a turgid livid appearance of the countenance. It is highly probable, that the first of these sets of symptoms chiefly arises from a state of active inflammation, and the second from effusion. Thus, in certain cases the symptoms may appear perfectly separate and distinct; but more frequently both inflammation and effusion are united; and thus the symptoms in both definitions are in general combined in the same patient.

Cough, and perform subject to, this disorder. The remote cause of pneumonia inflammation is commonly cold applied to the body, obstructing perspiration, and determining to the lungs, while at the same time the lungs themselves are exposed to the action of cold. These circumstances operate chiefly when an inflammatory diathesis, prevails in the system; and therefore those principally affected with the disease are persons of the greatest vigour, in cold climates, in the winter season, and particularly in the spring, when vicissitudes of heat and cold are frequent. This disease, however may arise in any season when such varieties take place. Other remote causes also may have a share in producing this distemper; such as every means of obstructing stratification, or otherwise injuring, the pneumonic organs. The pneumatic inflammation has sometimes been so much an epidemic, that it hath been suspected of depending on a specific contagion; but Dr. Cullen never met with an instance of its being contagious.

Prognosis. In pneumatic inflammations, a violent pyrexia is always dangerous. The danger, however is chiefly denoted by the difficulty of breathing. When the patient can lie on one side only; when he can lie on neither side, but only on his back; when he cannot breathe with tolerable ease, except when the trunk of his body is erect; when even in this posture the breathing is very difficult, and attended with a turgescence and flush of the face, partial sweats about the head and neck, and an irregular pulfe; these circumstances mark the difficulty of breathing in different degrees and, consequently, in proportion, the danger of the disease. A frequent violent cough, aggravating the pain, is always the symptom of an oblique disease; and as the disease is seldom or never resolved without some expectoration, so a dry cough must always be an unfavourable symptom.

The proper characteristics of the expectoration have been already laid down; and though an expectoration which has not these marks must indicate a doubtful state of the disease, yet the colour alone can give no certain prognostic. An acute pain, very much interrupting inspiration, is always the mark of a violent disease but not of a more dangerous disease than an obtuse pain attended with very difficult respiration.

When the pains, which had at first affected one side only, shall afterwards spread into the other; or when, leaving the side first affected, they pass entirely into the other; these are always marks of a dangerous disease. A delirium coming on during a pneumatic inflammation is always a symptom denoting much danger.

When pneumatic disorders terminate fatally, it is on one or other of the days of the first, week, from the third to the seventh. This is the most common case; but, in a few instances, death has happened at a later period. When the disease is violent, but admitting of resolution, this also happens frequently in the course of the first week; but in a more moderate disease the resolution is often put off to the second week. The disease generally suffers a remission on some of the days from the third to the seventh: which, however, may be often fallacious, as the disease sometimes returns again with as much violence as before; and in such a case with great danger. Sometimes it disappears on the third day, while an erysipelas makes its appearance on some external part; and if this continue fixed, the pneumatic inflammation does not recur. If the disease continue beyond the 14th day, it will terminate in a suppuration, or Putrescence. The termination by gangrene is much more rare than has been imagined: and when it does occur, it is usually joined with the termination by effusion: the symptoms of the one being hardly distinguishable from those of the other.

Cure. This must proceed upon the general plan mentioned under Synochia; but, on account of the importance of the part affected, the remedies must be employed early, and as fully as possible; and these are chiefly directed with one of three views, viz, for obtaining a resolution of the inflammation in the thorax, for mitigating the urgent symptoms before a resolution can be effected, and for counteracting or obviating the consequences of an effusion. Venesection is the remedy chiefly to be depended on; and may be done in either arm, as the surgeon finds most convenient; and the quantity taken away ought in general to be as large as the patient's strength will allow. The remission of pain, and the relief of respiration, during the flowing of the blood, may limit the quantity to be then drawn; but if these symptoms of relief do not appear, the bleeding should be continued to a considerable extent unless symptoms of a beginning syncope come on. It is seldom that one bleeding, however large, will cure this disease; and though the pain and difficulty of breathing may be much relieved by the first bleeding, these symptoms commonly and after no long interval recur, often with as much violence as before. In this case the bleeding is to be repeated even on the same day, and perhaps to the same quantity as before. Sometimes the second bleeding may be larger than the first. These are persons whose constitution, are ready to faint, even upon a small bleeding; and in such persons this may prevent the drawing to much blood at first as a pneumatic inflammation may require: but as the pains are
Phlegmatics have plenty of warm diluting drinks, disease emetics have been found to be dangerous; but in a somewhat advanced state they should have procured some remission, yet upon the return of the urgent symptoms, bleeding may be repeated at any time within the first fortnight, or even after that period, if a fluctuation be not evident, or if after a feeming solution the disease shall have returned.

With respect to the quantity of blood which may be taken away wit.its safety, no general rules can be given; as it must be very different according to the state of the disease, and the constitution of the patient. In an adult male of tolerable strength a pound avoidance of blood is a full bleeding. Any quantity above 20 ounces is a large, and any quantity below 12 is a small, bleeding. An evacuation of four or five pounds in the course of two or three days, is generally as much as most patients will bear; but if the intervals between the bleedings, and the whole of the time during which the bleedings have been employed, have been long the quantity taken upon the whole may be greater.

When a large quantity of blood hath been taken from the arm, and it is doubtful if more can be taken in that manner with safety, some blood may still be taken by cupping and scarifying. This will especially be proper, when the recurrence of the pain, rather than the difficulty of breathing, becomes the urgent symptom; and then the cupping and scarification should be made as near as possible to the painful part.

An expectoration sometimes takes place very early in this disease; but if the symptoms continue urgent, the bleedings must be repeated notwithstanding the expectoration: but in a more advanced state, and when the symptoms have suffered a considerable remission, we may then trust the cure to the expectoration alone. It is not observed that bleeding, during the first days of the disease, stops expectoration; on the contrary, it hath been often found to promote it; and it is only in a more advanced state of the disease, when the patient has been already exhausted by large evacuations and a continuance of his illness, the bleeding seems to put a stop to expectoration; and even then, this stoppage seems not to take place so much from the powers of expectoration being weakened by bleeding, as by its favouring the feterous effusion in the bronchise, already taken notice of.

Bleeding every part of the antiphlogistic regimen ought here to be carefully employed: the patient must keep out of bed as much as he can bear; must have plenty of warm diluting drinks, impregnated with vegetable acids, accompanied with nitre or some other cooling neutral falt; and the belly also ought to be kept open by emollient, glisters or cooling laxative medicines. Vomiting in the beginning is dangerous; but in a somewhat advanced state of the disease emetics have been found the best means of promoting expectoration. Fomentations and poultices to the painful part have been found useful; but blisters are found to be much more effectual. A blister, however, ought not to be applied till at least one bleeding hath been primed, as venesection is less effectual when the irritation of a blister is present. If the disease be moderate, a blister may be applied immediately after the first bleeding; but in violent cases, where it may be presumed that a second bleeding may soon be necessary after the first, it will be proper to delay the blister till after the second bleeding, when it may be supposed that the irritation occasioned by the blister will be over before another bleeding becomes necessary. It may frequently be of use in this disease to repeat the blisters; and in that case the blisters should always be applied somewhere on the thorax, for when applied to more distant parts they have little effect. The keeping the blistered parts open, and making what is called a 'perpetual blister', has much less effect than a repeated blistering.

Many methods have been proposed for promoting expectoration, but none appear to be sufficiently effectual; and some of them, being acrid stimulating substances, are not very safe. The gums usually employed seem to be too heating; the squills less so; but they are not very powerful, and sometimes inconvenient, by the constant nausea they occasion. The volatile alkali may be of service as an expectorant, but it ought to be reserved for an advanced state of the disease. Musculinuous and oily demulcents appear to be useful, by allaying that acrimony of the mucus which occasions too frequent coughing; and which coughing prevents the flagration and thickening of the mucus, and thereby its becoming mild. The receiving into the lungs the steams of warm water, impregnated with vinegar, has often proved useful in promoting expectoration; and, for this purpose, the machine called the INHALER, lately invented by Dr Mudge of Plymouth, promises to be of great service. But of all others, the antimonial emetics given in nauseating doses, promise to be the most powerful for promoting expectoration. The kermes mineral has been greatly recommended; but doth not seem to be more efficacious than emetic tartar or antimonial wine; and the dose of the kermes is much more uncertain than that of the others.

Though this disease often terminates by a spontaneous sweating, the evacuation ought not to be excited by art, unless with much caution. When, after some remission of the symptoms, spontaneous sweats arise, they may be encouraged; but it ought to be without much heat, and without stimulant medicines. If, however, the sweats be partial and clammy only, and a great difficulty of breathing still remain, it will be very dangerous to encourage them.

Physicians have differed much with regard to the use of opiates in pneumonic affections. It appears, however, that, in the beginning of the disease, and before bleeding and blistering have produced some remission of the pain, and of the difficulty of breathing, opiates have a bad tendency, by their increasing the difficulty of breathing and other inflammatory symptoms. But in a more advanced state of the disease, when the difficulty of breathing has abated, and when the urgent symptom is a cough, proving the chief cause of the continuance of pain and want of

ref
Practise.

Medicine.

VOMICA, or Affections of the Lungs.

Vomica, Boerh. 835, fmalc. 35.

Pleurodyne vomica, Sauv. fp. 21.

This sometimes follows pneumonia, though the cafee is not frequent. The symptoms of it so much re semble the phthisis, that it can mofl properly be treated of under that head.

EMPHYEMA.

This is another consequence of a pneumonia terminating unfavourably, and is occasioned by the effufion of a quantity of purulent matter into the cavity of the thorax, producing a lingering and painful disorder, very often incurable.

Description. The firft sign of an emphyema is a effufion of the pain in the breath, which before was continual; this is followed by a effufion of weight on the diaphragm, and a fluctuation of matter, sometimes making a noise that may be heard by the bystanders; the acute fever is changed into a hectic, with an exacerbation at night: a continual and troublefome night-sweats is danger of fufFocation when they ascend. Thefe fymptoms are accompanied with great anxiety, palpitations of the heart, and faintings. Sometimes the patients have a fefuation like a hot vapour effuding from the cavity of the thorax to their mouth. Others, in a more advanced f fate of the disease, have a putrid taste in the mouth. At the fame time, profuse night-sweats waftes the body, and greatly weaken the patient. The face at firft grows red on that fide where the matter lies, at laft the Hippocratic face comes on, and the eyes become hollow. The pulse, especially on the affected f ide, is quick, but more frequently intermitting. Sometimes the nails are crooked, and pulsules appear on the thorax; and frequently, according to the testimony of Hippocrates, the feet fwell, and, on the affected f ide of the breath, there is an inflammation and swelling of the skin.

Causes, &c. An emphyema may arife either from Empyema, the burbling of a vomica of the lungs, or from a suppuration taking place after the inflammatory flag of the pneumonia; or sometimes from a suppuration in the cafe of a quincy, when the inflammation had extended to the alveolar arteries, from whence arifes a kind of bloody f pittle, and the patients are afflicted with an emphyema, unless they die on the 7th day of the disease, according to the obervation of Hippocrates. It may arife also from external violence, as wounds of the thorax, &c. blood extravafated, corrupted, or changed into pus. Like the vomica, it is a rare diftemper, but may attack all thofe fubjeft to pneumonia.

Prognosis. Very few recover after an emphyema has been once formed, efpecially if the operation of paracentesis be neglected. After this operation is performed, if a great quantity of bloody f eftid pus be discharged, if the fever continue, and if the patient fipt up a purulent, pale, frothy, livid, or green matter, with a decay of strength, there is no hope: But when a small quantity of pus, of a white colour, not very f eftid, is discharged; when the fever and thifty moment ceafe, the appetite returns, and faces of a good confidence are discharged, the strength also returning in fome degree, there is then hope of a perfect recovery. If the matter be not dried up in f even weeks time, the disease readily changes to a f uitulous ulcer which is very difficult to cure. An emphyema affecting both fides of the thorax is more dangerous than that which affects only one.

Cure. This confists in evacuating the purulent matter contained in the cavity of the thorax, which is best done by the operation of paracentesis. See the article Surgery. Afterwards the ulcer is to be treated with abftrangent and confolidating medicines, and the fame internal ones are to be given as in a Phthisis.

Gen. XIII. CARDITIS.

Infammation of the Heart.

Carditis, Sauv. gen. 111. Vgg. 54.

Pericarditis, Vgg. 53.

Eryhipelas pulmonis, Lomn. Obcrv. lib. ii.

Description. This disease is attended with all the fymptoms of pneumonia, but in a higher degree; it is besides f aid to be accompanied with hydrophobic fymptoms, fainting, palpitation of the heart, a heatening madness, a funk and irregular pulse, watery eyes, and a dejected countenance, with a dry and black tongue. On defiication, the heart and pericardium are found very much inflamed, and even ulcerated, with many polynomial concerations.

Causes, &c. The fame as in the pneumonia.

Prognosis. In the carditis the prognosis is more unfavourable than in the pneumonia; and indeed, unless the disease very quickly terminates, it muft prove fatal, on account of the confluitant and violent motion of the heart, which exaitiates the inflammation, and increafes all the fymptoms.

Cure. Here bleeding is neceffary in as great a degree
external injuries, such as wounds, contusions, &c. It affects chiefly those of a plethoric habit and hot bilious constitution.

Prognosis. This disease is always very dangerous, and the prognosis doubtful, which also must always be in proportion to the severity of the symptoms. A cessation of pain, coldness about the precordia, great debility, with a languid and intermitting pulse, with an abatement of the hicchough, denote a gangrene and speedy death. From the sensibility of the stomach also, and its great connection with the reft of the system, it must be obvious, that an inflammation of it, by whatever causes produced, may be attended with fatal consequences; particularly, by the great debility it produces, it may prove suddenly fatal, without running through the usual course of inflammations. Its tendency to admit of resolution may be known by its having arisen from no violent cause, by the moderate state of the symptoms, and by a gradual remission of these symptoms in the course of the first or at most of the second week of the disease. The tendency to gangrene may be suspected from the symptoms continuing with unremittent violence notwithstanding the use of proper remedies, and a gangrene already begun may be known by the symptoms abovementioned, particularly great debility and sudden cessation of pain. The tendency to suppuration may be known by the symptoms continuing, but in a moderate degree for more than one or two weeks, and by a considerable remission of the pain while a sense of weight and anxiety still remain. When an abscess has been formed, the frequency of the pulse is first abated; but soon after it increases, with frequent cold shivering, and an exacerbation in the afternoon and evening; followed by night-sweats, and other symptoms of hectic fever. These at length prove fatal, unless the abscess open into the cavity of the stomach, the pus be evacuated by vomiting, and the ulcer soon healed.

Cure. It appears from dissections, that the stomach may very often be inflamed when the characteristic marks of it have not appeared; and therefore we are often exposed to much uncertainty in the cure. But when we have sufficient evidence that a state of active inflammation has taken place in the stomach, the principal object to be aimed at is to obtain a resolution. Before, however, this can be accomplished, it will often be necessary to employ measures with the view of obviating urgent symptoms. When the symptoms appear in the manner above described, the cure is to be attempted by large and repeated bleedings employed early in the disease; and from these we are not to be deterred by the weakness of the pulse, for it will commonly become fuller and softer after the operation. A blister ought also to be applied to the region of the stomach; and the cure will be assisted by fomentations of the whole abdomen, and by frequent enemata of laxative glyters. The irritability of the stomach in this disease will admit of no medicines being thrown into it; and if any can be supposed necessary, they must be exhilarated in glyters. Diluting drinks may be tried; but they must be of the very mildest kind, and given in very small quantities at a time. Opiates, in whatever manner exhibited, cannot be retained in the stomach during the first days of the disease; but when the violence of the disease shall have abated, and when the pain and vomiting
vomiting recur at intervals only, opiates given in glbtides may frequently be employed with advantage; and after bleeding and blisters no remedy is more effective either in allaying the pain or vomiting. As soon as the stomach will retain any laxative, gentle refrigerant cathartics, taken by the mouth, such as the soda phosphorata, soda tartarifata, or the like, are productive of great benefit. A tendency to gangrene in this disease is to be obviated only by the means just now mentioned; and when it does actually suppurate, it admits of no remedy. A tendency to supuration is to be obviated by the same means employed early in the disease. After a certain period it cannot be prevented by any means whatever; and, when actually begun, must be left to nature; the only thing that can be done by art being to avoid all irritation.

B. GASTRITIS ERYSPELATOSA, or the Eryspelatous Gastritis.

Description. This species of inflammation takes place in the stomach much more frequently than the former. From dissections it appears that the stomach has been often affected with inflammation, when neither pain nor fever had given any notice of it; and such is justly looked upon to have been of the eryspelatous kind. This kind of inflammation also is especially to be expected from acrimony of any kind applied to the stomach; and would certainly occur more frequently, were not the interior surface of this organ commonly defended by mucus exuding in large quantity from the numerous follicles placed immediately under the villous coat. On many occasions, however, the exudation of mucus is prevented, or the liquid poured out is of a less vivid kind, so as to be less fitted to defend the subjacent nerves; and it is in such cases that acid matters may readily produce an eryspelatous affection of the stomach.

In many cases, however, this kind of inflammation cannot be discovered, as it takes place without pain, pyrexia, or vomiting; but in some cases it may; namely, when it spreads into the oesophagus, and appears on the pharynx and on the whole internal surface of the mouth. When therefore an eryspelatous inflammation affects the mouth and fauces, and there shall be at the same time in the stomach an unusual sensibility to all acrids, and also a frequent vomiting there can be little doubt of the stomach's being affected in the same manner. Even when no inflammation appears in the fauces, if some degree of pain be felt in the stomach, if there be a want of appetite, an anxiety and frequent vomiting, an unciall sensibility with regard to acrids, some thirst, and frequency of pulse, there will then be room to suspect an inflammation in the stomach; and such symptoms, after some time, have been known to discover their cause by the inflammation rising to the fauces or mouth. Inflammation of this kind is often disposed to pass from one place to another on the same surface, and, in doing so, to leave the place it had at first occupied. Such an inflammation has been known to spread successively along the whole tract of the alimentary canal; occasioning, when in the intestines, diarrhoea, and in the stomach vomitings; the diarrhoea ceasing when the vomitings came on, and the vomitings on the coming on of the diarrhoea.

Causes, &c. An eryspelatous inflammation may arise from acrid matters taken into the stomach; or from some internal causes not yet well known. It frequently occurs in putrid diseases, and in those recovering from fevers.

Cure. When the disease is occasioned by acid matters taken internally, and these may be supposed still present in the stomach, they are to be washed out by drinking a large quantity of warm and mild medicines, and exciting vomiting. At the same time, if the nature of the acrimony and its proper corrector be known, this should be thrown in; or if a specific corrector be not known, some general demulcent should be employed.

These measures, however, are more suited to prevent than to cure inflammation after it has taken place. When this last may be supposed to have happened, if it be attended with a sense of heat, with pain and pyrexia, according to the degree of these symptoms, the measures proposed for the cure of the other kind are to be more or less employed. When an eryspelatous inflammation of the stomach has arisen from internal causes, if pain and pyrexia occur, bleeding may be employed in persons not otherwise weakened; but in cases of its occurring in putrid diseases, or where the patients are already debilitated, bleeding is inadmissible; all that can be done being to avoid irritation, and only throwing into the stomach what quantity of acids and aseptic aliments it shall be found able to bear. In some conditions of the body in which this disease is apt to occur, the Peruvian bark and bitters may seem to be indicated; but an eryspelatous flame of the stomach will seldom allow them to be used.

Genus XVI. ENTERITIS,

Inflammation of the Intestines.

Intestinalis inflammatorius, Boerh. 959.

Febris intestinorum inflammatoria ex mense ferentio, Hoffm. II. 170.

Sp. I. ENTERITIS PHLEGMONOSA, or the Acute Enteritis

Enteritis iliacas, Sauv. sp. 1.

Enteritis colica, Sauv. sp. 2. Boerh. 963.

Description. This disease shows itself by a fixed pain in the abdomen, attended with fever, vomiting, and colic.

Causes, &c. Inflammations of the intestines may arise from the same causes as those of the stomach; though commonly the former will more readily occur from cold applied to the lower extremities, or to the belly itself. It is also found suppurating on the inflammatory colic, incarcerated hernia, and volvulus.

Prognosis. Inflammations of the intestines have the same terminations with those of the stomach, and the prognosis in both cases is much the same.

Cure. The cure of enteritis is in general the fame with that of gastritis: but in this disease there is commonly more opportunity for the introduction of liquids, of acids, aseptic, and other cooling remedies, and even of laxatives; but as a vomiting frequently attends the enteritis, care must be taken not to excite that vomiting by the quantity or quality of any thing thrown
MEDICINE.

Phlegmoe.

thrown into the stomach. With regard to the suppuration and gangrene of the intestines following the enteritis, the observations, made respecting these terminations of gaitritis are equally applicable in this disease.

Sp. II. Enteritis Erysipelas, or Erysipelas Enteritis.

Concerning this nothing farther can be said, than what hath been already delivered concerning the gaitritis.

Genus XVII. HEPATITIS.

Inflammation of the Liver.

Description. The inflammation of the liver is thought to be of two kinds, acute and chronic; but the latter very often does not discover itself except by an abscess found in the liver after death, and which is supposed to have been occasioned by some degree of inflammation; for this reason the chronic inflammation often escapes observation, and we shall here only treat of the acute hepatitis.

The acute hepatitis is attended with considerable fever; a frequent, strong, and hard pulse; high coloured urine; an acute pain in the right hypochondrium, increased by pressing upon the part. The pain is very often in such a part of the side as to make it appear like a pleurisy; and frequently, like that, is increased on inspiration. The disease is also commonly attended with a cough, which is generally dry, but sometimes moist; and when the pain thus ressembles a pleurisy, the patient cannot lie easily except upon the side affected. The pain is frequently extended to the clavicle, and to the top of the shoulder; and is attended sometimes with hiccup, and sometimes with vomiting. Some have added jaundice, or a yellowness of the eyes, to the symptoms of this distemper; but experience shows that it has often occurred without any such symptom.

When hepatitis is of the chronic kind, depending more on the accumulation and effusion in the liver than in an increased action of its small vessels, the patient complains rather of a sense of weight than of pain; and the fever is by no means either acute, or constant: but it often returns in paroxysms somewhat resembling the attacks of an intermittent. This disease is very florid in its progress, frequently continuing for many months, and at last terminating in a very considerable suppuration. In most cases however, it may be discovered by careful examination of the region of the liver externally. By this means, a considerable enlargement of that viscus may in general be discovered.

Cauters, &c. The remote causes of hepatitis are not always to be disbelieved, and many have been assigned on a very uncertain foundation. It has been supposéd that the disease may be an affection either of the extremities of the hepatic artery, or those of the vena portarum; and the supposition is by no means improbable. The opinion, however, most commonly adopted is, that the acute hepatitis is an affection of the external membrane of the liver, and the chronic kind an affection of the parenchyma of that viscus. The acute disease may be seated either on the convex or concave surface of the liver; and in the former case a more pungent pain and hiccup may be produced, and the respiration is more considerably affected. In the latter there occurs less pain; and a vomiting is produced, commonly by some inflammation communicated to the stomach. The inflammation on the concave surface of the liver may be readily communicated to the gall-bladder and biliary ducts; and this, perhaps, is the only case of idiopathic hepatitis attended with jaundice.

Prognosis. The inflammation of the liver, like others, may end by resolution, suppuration, or gangrene; and the tendency to one or to the other of these events may be known from what has been already mentioned concerning the gaitritis. The resolution of hepatitis is often the consequence of or is attended with, evacuations of different kinds. A hemorrhage, sometimes from the nose, and sometimes from the hemorrhoidal vessels, gives a solution of the disease. Sometimes the same thing is accomplished by a bilious diarrhoea; and sometimes the resolution is attended with sweats, and an evacuation of urine containing a copious sediment. Sometimes it may be cured by an erysipelas appearing in one external part.

When the disease has ended in suppuration, the pus collected may be discharged by the biliary ducts; or, if the suppurated part does not adhere any where closely to the neighbouring parts, it may be discharged into the cavity of the abdomen: but if, during the first state of inflammation, the affected part of the liver shall have formed a close adhesion to some of the neighbouring parts, the discharge after suppuration may be various, according to the different seat of the abscess. When feated on the convex part of the liver, if the adhesion be to the peritoneum lining the common teguments, the pus may make its way through these, and be discharged outwardly: or if the adhesion shall have been to the diaphragm, the pus may penetrate through this, and into the cavity of the stomach, from whence it may be discharged by coughing. When the abscess is seated on the concave part of the liver, in consequence of adhesions, the pus may be discharged into the stomach or intestines; and into these last, either directly, or by the intervention of the biliary ducts. Upon a consideration of all these different circumstances therefore, together with the general principles of inflammation, must the prognosis of this disease be established.

Cure. For the cure of hepatitis, we must have recourse to the general means of removing other inflammatory disorders. Bleeding is to be used according to the degree of fever and pain. Blistering are to be applied: fomentations of the external parts, emollient gluters, gentle laxatives, drenches and refrigerants, are also useful. The cure, however, particularly in warm climates, where the disease is much more common than it is in Britain, is chiefly trusted to mercury. Not only in cases of the chronic kind, but in acute hepatitis also, after an attempt has been made to alleviate the urgent symptoms by bleeding and blistering, recourse is immediately had to this powerful mineral. It is employed by different practitioners, and in different cases, under various forms. Some are very
very fond of the use of calomel. But the preference is in general given, and perhaps with justice, to friction with mercurial ointment over the region of the liver. But under whatever form it may be employed, it is necessary that it should be introduced to such an extent as to keep the patient on the verge of suffocation for some length of time; the duration being regulated by the circumstances of the case.

From the liberal use of mercury, there can be no doubt that a successful resolution has been obtained in many cases, which would otherwise have infallibly terminated in suppuration. But notwithstanding the most careful employment of it in some cases, suppuration will ensue; and then it is very doubtful whether any benefit will be derived from the continuance of it. But when a suppuration has been formed, and the abscess points outwardly, the part must be opened, the pus evacuated, and the ulcer healed according to the ordinary methods in use for healing abscesses and ulcers in other parts.

Genus XVIII. SPLENITIS.

Description. This disease, according to Juncer, comes on with a remarkable shivering succeeded by a most intense heat and very great thirst; a pain and tumor are perceived in the left hypochondrium, and the paroxysms for the most part assume a quartan form. When the patients expose themselves for a little to the free air, their extremities immediately grow very cold. If an hemorrhage happens, the blood flows out of the left nostril. The other symptoms are the same with those of the hepatitis. Like the liver, the spleen often is also subject to a chronic inflammation, which often happens after agues, and is called the ague cake, though that name is also frequently given to a falsehood tumour of the liver succeeding intermittents.

Causes, &c. The causes of this distemper are in general the same with those of other inflammatory disorders; but those which determine the inflammation to that particular part more than another, are very much unknown. It attacks persons of a very plethoric and fangineous habit of body rather than others.

Prognosis. What has been said of the inflammation of the liver applies also to that of the spleen, tho' the latter is less dangerous than the former. Here also a vomiting of black matter, which in other acute diseases is such a fatal omen, sometimes proves critical, according to the testimony of Juncer. Sometimes the hemmorhoids prove critical; but very often the inflammation terminates by farinthus.

Genus XIX. NEPHRITIS.

Nephritis vera, Sauw. sp. 1.

Description. The nephritis has the same symptoms in common with other inflammations; but its distinguishing mark is the pain in the region of the kidney, which is sometimes obtuse, but more frequently pungent. The pain is not increased by the motion of the trunk of the body so much as a pain of the rheumatic kind affecting the same region. It may also frequently be distinguished by its shooting along the course of the ureter, and it is often attended with a drawing up of the testicle, and a numbness of the limb on the side affected; though indeed these symptoms most commonly attend the inflammation arising from a calculus in the kidney or ureter. The disease is also attended with frequent vomiting, and often with coldness and colic pains. The urine is most commonly of a deep red colour, and is voided frequently and in a small quantity at a time. In more violent cases the urine is commonly coloured.

Causes, &c. The remote causes of this disease may be various; as external contusion, violent or long-continued riding; strains of the muscles of the back incumbent on the kidneys; various acids in the course of circulation conveyed to the kidneys; and perhaps some other internal causes not yet well known: the most frequent is that of calculous matter obstructing the tubuli uriniferi, or calculi formed in the pelvis of the kidneys, and either flicking there or falling into the ureter.

Prognosis. This is not different from that of other inflammatory diseases.

Cure. When any of those causes operating as inducing the inflammation still continue to act, the first object in the cure must be the removal of those; but the principal intention to be had in view, is the revolution of the inflammation which has already taken place. But when, notwithstanding efforts for this purpose, the disease terminates in suppuration, it must be the endeavour of the practitioner to promote the discharge of purulent matter, and the healing of the ulceration in the kidney.

These different objects are principally accomplished by bleeding, external fomentation, frequent emollient glycerins, antiphlogistic purgatives, and by the free use of mild and demulcent liquids. The use of blisters is scarce admirable, or at least will require great care to avoid any considerable absorption of the causticides.

The other species of nephritis enumerated by authors are only symptomatic.

Genus XX. CYSTITIS.

Inflammation of the Bladder.

Inflammation vesicae, Hoffm. II. 157.

The Cystitis from Internal Causes.

Cystitis spontanea, Sauw. sp. 1.

The Cystitis from External Causes.

Cystitis a cantharidibus, Sauw. sp. 2.

Cystitis traumatica, Sauw. sp. 3.
Phlegm: inflammation of the bladder from internal causes is a very rare distemper; and when it does at any time occur, is to be cured in the same manner with other inflammations, avoiding only the use of cantharides. When the disease arises from the internal use of those flies, camphor is recommended, besides other cooling medicines, and particularly cooling and emollient glycers.

Genus XXI. HYSTERITIS. Inflammation of the Uterus. Hyysteris, Lin. 38. Vog. 63. Metritis, Sauv. gen. 107. Sag. gen. 315. Inflammatio et febris uterina, Hoffm. II. 156. Description. This disease is often confounded with that called the peripetal or child-bed fever; but is essentially distinct from it, as will be shown in its proper place. The inflammation of the uterus is apt to terminate by gangrene: there is a pain in the head, with delirium; and the uterine region is so exceedingly tender, that it cannot bear the least gentle pressure without intolerable pain. When the fundus uteri is inflamed, there is great heat, throbbing, and pain, above the pubes; if its posterior part, the pain is more confined to the loins and rectum, with a tenesmus; if its anterior part, it shoots from thence towards the neck of the bladder, and is attended with a frequent irritation to make water, which is voided with difficulty; and if its sides or the ovaria are affected, the pains will then dart into the inside of the thighs. Causer, &c. Inflammation of the uterus, and indeed of the rest of the abdominal visceræ, are very apt to take place in child-bed women; the reason of which seems to be the sudden change produced in the habit, and an alteration in the course of the circulating blood by the contraction of the uterus after delivery. The preffure of the gravid uterus being suddenly taken off from the aorta defendens after delivery, the resistance to the impulse of the blood passing through all the vessels derived from it, and distributed to the contiguous visceræ, will be considerably lessened: it will therefore rush into those vessels with a force superior to their resistance; and, by putting them violently on the stretch, may occasion pain, inflammation, and fever. This contraction of the uterus also renders its vessels impervious to the blood which had freely passed through them for the service of the child during pregnancy; and consequently a much larger quantity will be thrown upon the contiguous parts, which will still add to their diffusion, and increase their tendency to inflammation.

Prognosis. An inflammation of the uterus generally may be expected to produce an obstruction of the lochia; but the fever produced seldom proves fatal, unless the inflammation be violent, and end in a gangrene.

Cure. This is to be attempted by the same general means already recommended, and the management of this disorder entirely coincides with that of the peripetal fever.

Dolores rheumatici et arthritici, Hoffm. II. 317. Myolitis, Sag. gen. 301.

The Acute Rheumatism. Rheumatismus acutus, Sauv. sp. 1. Rheumatismus vulgaris, Sauv. sp. 2.

A. The Lumbago, or Rheumatism in the muscles of the Loins.

B. The Sciatica, Icthisia, or Hip-Gout.

Icthisia rheumatica, Sauv. 213. sp. 10.

C. The Bastard Pleurisy, or Rheumatism in the muscles of the Thorax.

Pleuritis rheumatica, Sauv. gen. 148. sp. 3.

Pleuritis purula, Boerh. 878.

The other species, which are very numerous, are all symptomatic; as, Lumbago plethorica, Sauv. sp. 3. Icthisia fangueinum, Sauv. sp. 2. Pleurodyna plethorica, Sauv. sp. 1. Rheumatismus hytericus, Sauv. sp. 7. Icthisia hytericus, Sauv. sp. 3. Pleurodyna hyterlica, Sauv. sp. 6. Rheumatismus faltatorius, Sauv. sp. 8. Pleurodyna flatulenta, Sauv. sp. 4. Pleurodyna a spumat, Sauv. sp. 9. Rheumatismus scorbuticus, Sauv. sp. 4. Lumbago scorbutica, Sauv. sp. 5. Pleurodyna scorbutica, Sauv. sp. 11. Icthisia fyrphiliticum, Sauv. sp. 7. Pleurodyna venerea, Sauv. sp. 5. Lumbago sympathica, Sauv. sp. 13. a mefenterii glansis indurate a pancrace tumido, purulent, scirrhus, putrid, ab induratis pyloro, vena coar, pancrace a ren scirrhus, putrefacto ab abscefa circa vena coar bifurcationem a vermibus intra renis. Lumbago a faburra, Sauv. sp. 8. Pleurodyna a cacochylia, Sauv. sp. 7. Rheumatismus faltatorius verminolus, Sauv. sp. 8. Icthisia verminolus, Sauv. sp. 8. Pleurodyna verminola, Sauv. sp. 2. Rheumatismus metallicus, Sauv. sp. 10. Lumbago a hydrothorace, Sauv. sp. 14. Lumbago pseudofuracia, Sauv. sp. 16. Pleurodyna a rupto cepephago, Sauv. sp. 20. Pleurodyna raetica, Sauv. sp. 13. Icthisia a ipargano, Sauv. sp. 5. Pleurodyna catarehalis, Sauv. sp. 14. Rheumatismus nerocephas, Sauv. sp. 14. Rheumatismus doryseus, Sauv. sp. 11. Lumbago a fattyriales, Sauv. sp. 15. Rheumatismus febricola, Sauv. sp. 9. Lumbago febrilis, Sauv. sp. 4.

Description. The rheumatism is particularly distinguished by pains affecting the joints, and for the most part the joints alone; but sometimes also the muscular parts. Very often they shoot along the course of the muscles.
Practice.

MEDICINE.

Phlegma-

muscles from one joint to another, and are always much increased by the action of the muscles belonging to the joint or of joints affected. The larger joints are those most frequently affected, such as the hip-joint and knees of the lower extremities, and the shoulders and elbows of the upper ones. The ankles and wrists are also frequently affected; but the smaller joints, such as those of the toes or fingers, seldom suffer. Sometimes the diseaè is confined to one part of the body, yet very frequently it affects many parts of it; and then it begins with a cold stage, which is immediately succeeded by the other symptoms of pyrexia, and particularly by a frequent, full, and hard pulse. Sometimes the pyrexia is formed before any pains are perceived; but more commonly pains are felt in particular parts before any symptoms of pyrexia occur. When no pyrexia is present, the pain may be confined to one joint only; but when any considerable pyrexia takes place, though the pain may chiefly be felt in one joint, yet it seldom happens that the pains do not affect several joints, often at the very same time, but for the most part shifting their place, and having abated in one joint they become more violent in another. They do not commonly remain long in the same joint, but frequently shift from one to another, and sometimes return to joints formerly affected; and in this manner the diseaè often continues for a long time. The fever attending these pains has an exacerbation every evening, and is most considerable during the night, when the pains also become more violent; and it is at the same time that the pains shift their place from one joint to another. These seem to be also increased during the night by the body being covered more closely, and kept warmer.

A joint, after having been for some time affected with pain, commonly becomes also affected with some swelling and redness, which is painful to the touch. It seldom happens that a swelling coming on does not take off the pain entirely, or secure the joint again until a return of it. This diseaè is commonly attended with more or less sweating, which occurs early, but is seldom free or copious, and seldom either relieves from the pains or proves critical. The urine is high in not either relieves from the swelling and redness, which is

when the application of the cold is long continued, as when moist or wet clothes are applied to any part of the body.—These causes may affect persons of all ages; but the rheumatism seldom appears either in very young or in elderly persons, and most commonly occurs from the age of puberty to that of 35. These causes may also affect persons of any constitution, but they most commonly affect those of a fane temperament.

With respect to the proximate cause of rheumatism, there have been various opinions. It has been imputed to a peculiar astringency; of which, however, there is no evidence; and the consideration of the remote causes, the symptoms, and cure, render it very improbable. A disease of a rheumatic nature, however, may be occasioned by an acrid matter applied to the nerves, as is evident from the tooth-ach, a rheumatic affection generally arising from a carious tooth. Pains arising from deep-seated suppurations may also resemble the rheumatism; and many cases have occurred in which such suppurations occasioned pains resembling the lumbago and ischias; but from what hath been already said, it seems improbable that ever any rheumatic case should end in suppuration.

The proximate cause of rheumatism hath by many been supposed to be a leucorrhea in the fluids obliterating the vessels of the part; but in the former part of this treatise, sufficient reasons have been already laid down for rejecting the doctrine of leucorrhea. While we cannot therefore find either evidence or reason for supposing that the rheumatism depends on any change in the state of the fluids, we must conclude that the proximate cause of it is the same with that of other inflammations not depending upon a direct stimulus.

In the case of rheumatism, it is supposed that the most common remote cause of it, that is, cold applied, operates especially on the vessels of the joints, these being less covered by a cellular texture than those of the intermediate parts of the limbs. It is farther supposed, that the application of cold produces a constriction of the extreme vessels, and at the same time an increase of tone of phlogistic diathesis in the course of them, from which arises an increased impetus of the
the blood, and at the same time a resistance to the free passage of it, and consequently inflammations and pain. It is also supposed, that the resistance formed, excites the vis medica rix to a further increase of the impetus of the blood; and to support this, a cold stage arises, a spasm is formed, and a pyrexia and phlogistic diathesis are produced in the whole system.

Hence the cause of rheumatism appears to be exactly analogous to that of inflammations depending on an increased influx of blood to a part while it is exposed to the action of cold. But there seems to be further in this disease some peculiar affection of the muscular fibres. These seem to be under some degree of rigidity; and therefore less easily admit of motion, and are gained upon the exertions of it. This also seems to be the affection which gives opportunity to the propagation of pains from one joint to another, and which are most severely felt in the extremities terminating in the joints, because beyond these the oscillations are not propagated. This affection of the muscular fibres explains the manner in which strains and spasms produce rheumatic affections; and, on the whole, shows, that with an inflammatory affection of the sanguiferous system, there is also in rheumatism a peculiar affection of the muscular fibres, which has a considerable share in producing the phenomena of the disease. And it would even appear, that in what has commonly been called acute rheumatism, in contradistinction to the chronic, of which we are next to treat, there exists not only a state of active inflammation in the affected parts, but also of peculiar irritability; and that this often remains after the inflammation is very much diminished or has even entirely ceased. Hence a renewal of the inflammation and recurrence of the pain take place from very slight causes; and in the treatment of this disease both the state of inflammation and irritability must be had in view.

Cure. For countering the state of active inflammation, the chief aim of the practitioner must be to diminish the general impetus of the circulation, and the impetus at the part particularly affected. For countering the state of irritability, he must endeavour to remove the disposition to increased action in the vessels; to prevent the action of caustics exciting painful sensations; and to obviate their influence on the part. The cure therefore requires, in the first place, an antiphlogistic regimen, and particularly a total abstinence from animal-food, and from all fermented or spirituous liquors; substituting a mild vegetable or milk diet, and the plentiful use of soft diluting liquors. On this principle also, blood-letting is the chief remedy of acute rheumatism. The blood is to be drawn in large quantity; and the bleeding is to be repeated in proportion to the frequency, fulness, and hardness of the pulse, and the violence of the pain. For the most part, large and repeated bleedings during the first days of the disease seem to be necessary, and accordingly have been very much employed; but to this some bounds are to be set; for very profuse bleedings occasion a flow recovery, and if not absolutely effectual, are ready to produce a chronic rheumatism.

To avoid that debility of the system which general bleedings are apt to occasion, the urgent symptom of pain may be often relieved by topical bleedings; and when any swelling or redness have come upon a joint, the pain may very certainly be relieved by topical bleedings: but as the pain and continuance of the disease seem to depend more upon the phlogistic diathesis of the whole system than upon the affection of particular parts, so topical bleedings will not supply the place of the general bleedings proposed above.

To take off the phlogistic diathesis prevailing in this disease, purging may be useful, if produced by medicines which do not stimulate the whole system, as neutral salts, and other medicines which have a refrigerant power. Purging, however, is not so useful as bleeding in removing the phlogistic diathesis; and when the disease has become general and violent, frequent stools are inconvenient, and even hurtful, by the motion and pain which they occasion.

Next to blood-letting, nothing is of so much service, both in alleviating the pains in this disease and in removing the phlogistic diathesis, as the use of sudorifics; and of all the medicines belonging to this class, what has commonly been known by the name of Dover's powder, a combination of powder of sanguis and opium, is the most convenient and the most effectual. Copious sweating, excited by this medicine, and supported for 10 or 12 hours by tepid diluents, such as decoction of the woods, or the like, will in most instances produce a complete remission of the pain: and by this practice, combined with blood-letting and proper regimen, the disease may often be entirely removed.

If, however, after complete intermissions from pain for some length of time have been obtained by these means, it be found that there is a great tendency to a return of the pains without any obvious cause, recourse may be had with very great benefit to the use of the Peruvian bark. By the early use of this, where a complete intermission from pain is obtained, the necessity of repeated blood-letting and sweating is often superseded; but where a complete remission cannot be obtained, it has been suspended by some to be hurtful: and in these cases, when blood-letting and sudorifics have been pushed as far as may be thought prudent without being productive of the desired effect, very great benefit is often obtained from the use of calomel combined with opium, as recommended in the Edinburgh Medical Commentaries by Dr Hamilton of Lynn-regs.

In this disease, external applications are of little service. Fomentations in the beginning of the disease, rather aggravate than relieve the pains. The rubefacients and camphire are more effectual: but they, commonly only shift them from one part to another, and do not prove any cure of the general affection. Blistering may also be very effectual in removing the pain from a particular part; but will be of little use, except where the pains are much confined to one place.

ARTHRODYNA, or Chronic Rheumatism.

Rheumatism chronicus Auctorum.

Description. When the pyrexia attending the acute rheumatism has ceased; when the swelling and redness of the joints are entirely gone, but pains still continue to affect certain joints, which remain stiff, feel uneasily upon
Phlegmasia upon motion, changes of weather, or in the night-time, the disease is then called the chronic rheumatism, as it often continues for a very long time.

The limits between the acute and chronic rheumatisms are not always exactly marked. When the pains are still ready to shift their place; when they are especially severe in the night-time; when, at the same time, they are attended with some degree of pyrexia, and with some swelling, and especially some redness of the joints; the disease is to be considered as partaking of the nature of the acute rheumatism. But when there is no longer any degree of pyrexia remaining; when the pains of these are increased by cold, and relieved by heat, applied to them; the case is to be considered as that of a purely chronic rheumatism; or perhaps more properly the first of the conditions now described may be termed the state of irritability, and the second state of atony.

The chronic rheumatism, or rather the atonic, may affect different joints; but is especially apt to affect those which are surrounded with many muscles, and those of which the muscles are employed in the most constant and vigorous exertions. Such is the case of the vertebrae of the loins, the affection of which is named lumbago; or of the hip-joint, when the disease is named ischias or sciatica.

Violent strains and spains occurring on sudden and somewhat violent exertions, bring on rheumatic affections, which at first partake of the acute, but very soon change into the nature of the chronic, rheumatism. Such are frequently the lumbago, and other affections, which seem to be more seated in the muscles than in the joints. The distinction of the rheumatic pains from those resembling them which occur in the fibrisis and scurvy must be obvious, either from the seat of the pains, or from the concomitant symptoms peculiar to those diseases. The distinction of the rheumatism from the gout will be more fully understood from what is laid down under the genus Podagra.

G. XXIV. ODONTALGIA, the Tooth-ach.

For answering these purposes, a great variety of remedies, both external and internal, are had recourse to. The chief of the external are, the supporting the heat of the part, by keeping it constantly covered with flannel; the increasing the heat of the part by external heat, applied either in a dry or humid form; the diligent use of the flesh-brush, or other means of friction; the application of electricity in sparks or shocks; the application of cold water by affusion or immersion; the application of officinal oils of the moist warm and penetrating kind; the application of salt brine; the employment of the warm bath or of the vapour baths, either to the body in general or to particular parts; and lastly, the employment either of exercise of the part itself as far as it can easily bear, or by riding or other modes of gentle motion.

The internal remedies are, Large doses of officinal oils drawn from resinous substances, such as turpentine. Substances containing pitch oils, as guaiac. Volatile alkaline salts. These or other medicines are directed to procure sweat; and calomel, or some other preparation of mercury, in small doses, may be continued for some time. Besides these, there are several others recommended. The cicuta, aconitum, and hyosciamus, have in particular been highly extolled; and an infusion of the rhododendron corymbosum is said to be employed by the Siberians with very great success. An account of the Siberian mode of practice is given by Dr Matthew Guthrie of Peterburgh, in the fifth volume of the Edinburgh Medical Commentaries, and has been followed with success at other places.

Description. This well-known disease makes its attack by a most violent pain in the teeth, most frequently in the malaris, more rarely in the incisivis, reaching sometimes up to the eyes, and sometimes backward into the cavity of the ear. At the same time there is a manifest determination to the head, and a remarkable tension and inflation of the ear; the patient often feels and inflammation of the inner ear, together with a sense of oppression and choking in the throat. The pain is most frequently at the height of pregnancy, and takes place in some nervous disorders; it may attack persons at any time of life, tho' it is most frequent in the young and plethoric.

Cura. From the view just now given of the proximate cause of chronic rheumatism, the chief indication of cure must be, to restore the activity and vigour of the part, which is principally to be done by increasing the tone of the moving fibres, but which may sometimes also be aided by giving condensation to the simple solid. When, however, the disease has degenerated into the state of paralysis, the objects to be aimed at are, the restoration of a due condition to the nervous energy in the part affected; the obtaining free circulation of blood through the vessels of the part; and the removal of rigidity in membranes and ligaments.
Cure. Many empirical remedies have been proposed for the cure of the tooth-ach, but none have in any degree answered the purpose. When the affection is purely rheumatic, blushing behind the ear will almost always remove it; but when it proceeds from a carious tooth, the pain is much more obstinate. In this case it has been recommended to touch the painful part with a hot iron, or with oil of vitriol, in order to destroy the aching nerve; to hold strong spirits in the mouth; to put a drop of oil of cloves into the hollow of the tooth, or a pill of equal parts of opium and camphire; but one of the most useful applications of this kind is strong nitrous acid, diluted with three or four times its weight of spirit of wine, and introduced into the hollow of a tooth from which great pain arises, either by means of an hair pencil or a little cotton. The Peruvian bark has also been recommended, and perhaps with more justice, on account of its tonic and antifeptic powers; but very often all these remedies will fail, and the only infallible cure is to draw the tooth. See Surgery.

Genus XXIV. Podagra, the Gout.

Podagra, Vog. 175. Barth. 1254.
Fibris podagrica, Vog. 60.
Dolor podagricus et arthriticus verus, Hoffm. II.

Sp. I. The Regular Gout.

Arthritis podagra, Sauv. fp. 1.
Arthritis rachialglia, Sauv. fp. 11.
Arthritis allivia, Sauv. fp. 4.

Sp. II. The Atonic Gout.

Arthritis melanocholia, Sauv. fp. 6.
Arthritis hemi, Sauv. fp. 2.
Arthritis chlorotica, Sauv. fp. 5.
Arthritis alhmatica, Sauv. fp. 9.

Sp. III. The Retrocedent Gout.

Sp. IV. The Misplaced Gout.

Description. What we call a paroxysm of the gout is principally constituted by an inflammatory affection of some of the joints. This sometimes comes on suddenly, without any warning, but is generally preceded by several symptoms; such as the ceasing of a sweating which the feet had been commonly affected with before; an unusual coldness of the feet and legs; a frequent numbness, alternating with a sense of prickling along the whole of the lower extremities; frequent cramps of the muscles of the legs, and an unusual turgescence of the veins.

While these symptoms take place in the lower extremities, the body is affected with some degree of torpor and languor, and the functions of the stomach in particular are more or less disturbed. The appetite is diminished; and flatulency, or other symptoms of indigestion, are felt. These symptoms take place for several days, sometimes for a week or two, before a paroxysm comes on; but commonly, upon the day immediately preceding it, the appetite becomes keener than usual.

The circumstances of paroxysms are chiefly the following. They come on most commonly in the spring, and sooner or later according as the vernal heat succeeds sooner or later to the winter's cold; and, perhaps, sooner or later also, according as the body may happen to be more or less exposed to vicissitudes of heat and cold.

The attacks are sometimes felt first in the evening, but more commonly about two or three o'clock in the morning. The paroxysm begins with a pain affecting one foot, most commonly in the ball or first joint of the great toe, but sometimes in other parts of the foot. With the attack of this pain, there is commonly more or less of a cold shivering; which, as the pain increases, gradually ceases; and is succeeded by a hot sweat of pyrexia, which continues for the same time with the pain itself. From the first attack, the pain becomes, by degrees, more violent, and continues in this state with great restlessness of the whole body till next midnight; after which it gradually remits; and, after it has continued for 24 hours from the commencement of the first attack, it commonly ceases almost entirely; and, with the coming on of a gentle sweat, allows the patient to fall asleep. The patient, upon coming out of this sleep in the morning, finds the painful part affected with some redness and swelling, which, after having continued for some days, gradually abates.

When a paroxysm has thus come on, although the violent pain after 24 hours be considerably abated, the patient is not entirely relieved from it. For some days he has every evening a return of more considerable pain and pyrexia, and these continue with more or less violence till morning. After going on in this manner for several days, the disease sometimes goes entirely off, not till after a long interval.

When the disease, after having thus remained for some time in a joint, ceases entirely, it generally leaves the person in very perfect health, enjoying greater ease and alacrity in the functions of both body and mind than he had for a long time before experienced.

At the beginning of the disease, the returns of it are sometimes only once in three or four years; but as it advances, the intervals become shorter, and at length the attacks are annual; afterwards they come twice each year; and at length recur several times during the course of autumn, winter, and spring; and as, when the fits are frequent, the paroxysms become also longer, so, in the advanced state of the disease, the patient is hardly ever tolerably free from it, except perhaps for two or three months in summer.

The progress of the disease is also marked by the parts which it affects. At first, it commonly affects one foot only; afterwards every paroxysm affects both feet, the one after the other; and as the disease proceeds, it not only affects both feet at once, but, after having ceased in the foot which was secondly attacked, returns again into the first, and perhaps a second time also into the other. Its changes of places are not only from one foot to another, but from the feet into other joints, especially those of the upper and lower extremities; so that there is hardly a joint of the body, which,
Of such irregular gout there are three different states, which may be named the astatic, the retrocedent, and the misplaced gout.

The first is, when the gouty diathesis prevails in the system; but from certain causes, does not produce the inflammatory affection of the joints. In this case, the morbid symptoms which appear, are chiefly affections of the stomatch, such as loss of appetite, indigestion, and its various attendants of sickness, nausea, vomiting, flatulency, acid eruptions, and pains in the region of the stomatch. These symptoms are frequently accompanied with pains and cramps in several parts of the trunk and the upper extremities of the body, which are relieved by the discharge of wind from the stomatch. Together with these affections of the stomatch, there commonly occurs a colicene, but sometimes a looseness, with colic pains. These affections of the alimentary canal are often attended with all the symptoms of hypochondria, such as dejection of mind, a constant and anxious attention to the lightest feelings, an imaginary aggravation of these, and an apprehension of danger from them.

In the same astatic gout, the vasa of the thorax also are sometimes affected, and palpitations, faintings, and asthma, occur.

In the head also occur headaches, giddinefs, apoplectic and paralytic affections.

When the several symptoms now mentioned occur in habits having the marks of a gouty disposition, this may be suspected to have laid the foundation of them; and especially when either, in such habits, a manifest tendency to the inflammatory affection has formerly appeared, or when the symptoms mentioned are intermixed with and are relieved by some degree of the inflammatory gout. In such cases there can be no doubt of considering the whole as a state of the gout.

Another state of the disease we name the retrocedent gout. This occurs when an inflammatory state of the joints has, in the usual manner, come on, but without arising to the ordinary degree of pain and inflammation; or at least without these continuing for the usual time, or without their receding gradually in the usual manner; these affections of the joints suddenly and entirely cease, while some internal part becomes affected. The internal part most commonly attacked is the stomatch; which then is affected with anxiety, sickness, vomiting, or violent pain; but sometimes the internal part is the heart, which gives occasion to a syncope; some times it is the lungs, which are affected with asthma; and sometimes it is the head, giving occasion to apoplexy or palsy. In all these cases there can be no doubt that the symptoms are all a part of the same disease, however different the affection may seem to be in the parts in which it attacks.

The third state of irregular gout, which we name the misplaced, is when the gouty diathesis, instead of producing the inflammatory affection of the joints, produces an inflammatory affection of some internal part, and which appears from the same symptoms that attend the inflammations of those parts arising from other causes.

Whether the gouty diathesis does ever produce such inflammation of the internal parts without having first produced it in the joints, or whether the inflammation
of the internal part be always a translation from the joints previously affected, we dare not determine; but, even supposing the latter to be always the case, we think the difference of the affection of the internal part must still distinguish the misplaced from what we have named the retrograded gout.

With regard to the misplaced gout, Dr Cullen, whom we here follow, tells us, that he never met with the pneumonic inflammation. of which is an

The other is an hemorrhoidal affection indicated by pain alone in that part, and sometimes by hemorrhoidal symptoms. In gouty persons such affections have been known to alternate with inflammatory affections of the joints; but whether these belonged to the retrograded or to the misplaced gout, our authors pretend not to determine.

It is commonly supposed, that there are some cases of rheumatic which are scarcely to be distinguished from the gout: but these, Dr Cullen thinks, are but few; and that the two diseases may be for the most part distinguished with great certainty, by observing the predisposition, the antecedent circumstances, the parts affected, the recurrences of the disease, and its connection with the system; which circumstances, for the most part, appear very differently in the two diseases.

Causes, &c. The gout is generally an hereditary disease: but some persons, without any hereditary disposition, seem to acquire it; and some an hereditary disposition may be counteracted from various causes. It attacks the male sex especially; but it sometimes, more rarely, attacks also the female. The females liable to it are those of the more robust and full habits; and it very often happens to those before the menstrual evacuation had ceased. Dr Cullen has also found it occurring in several females whose menstrual evacuations were more abundant than usual.

The gout seldom attacks children; and when it does, seem to fall upon those who happen to be of a robust habit, to lead an indolent life, and to live very full. It attacks especially men of robust and large bodies, those of large heads, are of full and copulent habits, and whose skins are covered with a thicker rete mucosum, which gives a coarser surface. To speak in the style of the ancient physicians, the gout will seldom be found to attack those of a fanguiine, or such as are of a purely melancholic temperament; but very readily those of a phlegmatis-fanguiine temperament. It is, however, very difficult to treat this matter with precision. The gout seldom attacks persons employed in constant bodily labour, or those who live much upon vegetable aliment. It does not commonly attack men till after the age of 35; and generally not till a still later period. There are indeed instances of the gout appearing more early; but these are few in comparison of the others. When the disease does appear early in life, it seems to be in those who have the hereditary disposition very strong, and to whom the remote causes hereafter mentioned have been applied in a very considerable degree.

As the gout is an hereditary disease, and affects men particularly of a certain habit, its remote causes may be considered as predisposing and occasional. The predisposing cause, as far as expressed by external appearances, has been already marked; and physicians have been very confident in affiguing the occasional causes: but in a disease depending so much upon a predisposition, the affiguing occasional causes must be uncertain; as in the predisposing the occasional causes may not always appear, and in persons not predisposed they may appear without effect; and this uncertainty must particularly affect the cause of the gout.

The occasional causes of the disease seem to be of two kinds. First, those which induce a phlegmatic state of the body. Secondly, those which in plethoric habits, induce a state of debility. Of the first kind are a sedentary, indolent manner of life, and a full diet of animal-food. Of the second kind of occasional causes which induce debility are excess in venery; intemperance in the use of intoxicating liquors; indigestion, produced either by the quantity or quality of the aliments; much application to study or business; the latter are common in the gout: a sudden change from a very full to a very spare diet; the large use of acids and astringents; and lastly, cold applied to the lower extremities. The former seem to act by increasing the predisposition; the latter are commonly the exciting causes, both of the first attacks, and of the repetitions of the disease.

With respect to the proximate cause of the gout, it has generally been thought that it depends on a certain morbid matter always present in the body; and that this matter, by certain causes, thrown upon the joints or other parts, produces the several phenomena of the disease.

This doctrine, however ancient and generally received, appears to Dr Cullen to be very doubtful. For,

First, there is no direct evidence of any morbid matter being present in persons disposed to the gout. There are no experiments or observations which show that the blood or other humours of gouty persons are in any respect different from those of others. Previous to attacks of the gout, there appear no marks of any morbid state of the fluids; for the disease generally attacks those persons who have enjoyed the most perfect health, and appear to be in that state when the disease comes on. At a certain period of the disease, a peculiar matter indeed appears in gouty persons; but this, which does not appear in every instance, and which appears only after the disease has subsided for a long time, seems manifestly to be the effect, not the cause, of the disease. Further, though there be certain acids which, taken into the body, seem to excite the gout, it is probable, that these acids operate otherwise in exciting the disease, than by affording the material cause of it. In general, therefore, Dr Cullen thinks there is no proof of any morbid matter being the cause of the gout.

Secondly, the suppositions concerning the particular nature of the matter producing the gout, have been so various, and so contradictory, as to allow us to conclude, that there is truly no proof of the existence of
of any of them. With respect to many of these suppositions, they are inconsistent with chemical philosophy, and with the laws of the animal economy, that they must be entirely rejected. Thirdly, the supposition of a morbific matter as the cause is not consistent with the phenomena of the disease, particularly with its frequent and sudden translations from one part to another. Fourthly, the supposition is further rendered improbable by this, that, if a morbific matter did exist, its operation should be similar in the several parts which it attacks; whereas it seems to be very different, being stimulant, and exciting inflammation, in the joints; but sedative and destroying the tone in the stomach: which, upon the supposition of the same particular matter acting in both cases, is not to be explained by any difference in the part affected. Fifthly, Some facts all aged in proof of a morbific matter, are not sufficiently confirmed; such as those which would prove the disease to be contagious. There is, however, no proper evidence of this, the facts given being not only few, but exceptional, and the negative observations innumerable. Sixthly, Some arguments brought in favour of a morbific matter are founded upon a mistaken explanation. The disease has been supposed to depend upon a morbific matter, because it is hereditary. But the inference is not just; for most hereditary diseases do not depend upon any morbific matter, but upon a particular conformation of the structure of the body transmitted from the parent to the offspring; and this last appears to be particularly the case in the gout. It may be also observed, that hereditary diseases depending upon a morbific matter, appear always much more early in life than the gout commonly does. Seventhly, The supposition of a morbific matter being the cause of the gout, has been hitherto useless, as it has not suggested any successful method of cure. Particular theories of gout have often corrupted the practice, and have frequently led from those views which might have been useful, and from that practice which experience had approved. Further, though the supposition of a morbific matter has been generally received, it has been as generally neglected in practice. When the gout has affected the stomach, nobody thinks of correcting the matter supposed to be present there, but merely of restoring the tone of the moving fibres. Eighthly, The supposition of a morbific matter is quite superfluous; for it explains nothing without supposing that matter to produce a change in the state of the moving powers; and a change in the state of the moving powers, produced by other causes, explains every circumstance without the supposition of a morbific matter; and it may be observed, that many of the causes exciting the gout, do not operate upon the state of the fluids, but directly and solely upon that of the moving powers. Lastly, Dr Cullen contends that the supposition of a morbific matter is superfluous; because, without that, the disease can be explained, he thinks, in a manner more consistent with its phenomena, with the laws of the animal economy, and with the method of cure which experience has approved. We now proceed to give this explanation; but, before entering upon it, we must premise some general observations which Dr Cullen states. The first observation is, That the gout is a disease of the whole system, or depends upon a certain general conformation and state of the body, which manifestly appears from the facts abovementioned. But the general state of the system depends chiefly upon the state of its primary moving powers; and therefore the gout may be supposed to be an affection of these chiefly. The second observation is, That the gout is manifestly an affection of the nervous system; in which the primary moving powers of the whole system are lodged. The occasional or exciting causes are almost all such as act directly upon the nerves and nervous system; and the greater part of the symptoms of the atomic or retrodental gout are manifestly affections of the same system. This leads us to seek for an explanation of the whole of the disease, in the laws of the nervous system, and particularly in the changes which may happen in the balance of its several parts. The third observation is, That the stomach, which has to universal a connex with the rest of the system, is the internal part that is most frequently, and often very considerably, affected by the gout. The paroxysms of the disease are commonly preceded by an affection of the stomach; many of the exciting causes act first upon the stomach, and the symptoms of the atomic and retrodental gout are most commonly and chiefly affections of the same organ. This observation leads us to remark, that there is a balance subsisting between the state of the internal and that of the external parts; and in particular that the state of the stomach is connected with that of the external parts, so that the state of tone in the one may be communicated to the other. These observations being premised, Dr Cullen offers the following pathology of the gout. In some persons there is a certain vigorous and phlegmatic state of the system, which at a certain period of life is liable to a loss of tone in the extremities. This is in some measure communicated to the whole system, but appears more especially in the functions of the stomach. When this loss of tone occurs while the energy of the brain still retains its vigour, the vis medicastris naturae is excited to restore the tone of the parts; and accomplishes it, by exciting an inflammatory affection in some part of the extremities. When this has fulfilled for some days, the tone of the extremities and of the whole system is restored, and the patient returns to his ordinary state of health. This is the course of things in the ordinary form of the disease, which we name the regular gout; but there are circumstances of the body, in which this course is interrupted or varied. Thus, when the atony has taken place, if the reaction do not succeed, the atony continues in the stomach, or perhaps in other internal parts; and produces that state which Dr Cullen, for reasons now obvious, named the atomic gout. A second cause of variation in the course of the gout is, when to the atony the reaction and inflammation have to a certain degree succeeded, but from causes either internal or external the tone of the extremities and perhaps of the whole system is weakened; so that the inflammatory state, before it had either proceeded to the degree, or continued for the time, requisite for restoring
A third case of variation from the ordinary course of the gout, is, when to the atony, uttally preceding, an inflammatory reaction fully succeeds, but has its usual determination to the joints by some circumstances prevented; and is therefore directed to some internal part, where it produces an inflammatory affection, and that state of things which we have named the misplaced gout.

Though this theory of Dr Cullen's be supported with much ingenuity, yet we may confidently venture to assert, that on this subject he has been less successful in establishing his own opinion, than in combating those of others; and this theory, as well as others formerly propounded, is liable to numerous and unfirmamentable objections. According to the hypothesis, a vigorous and phlethoric habit should in every case exist prior to the appearance of gout; which is by no means consistent with fact; nor is it true that a vigorous and phlethoric habit is liable at a certain age to a loss of tone in the extremities; which is another necessary condition in the hypothesis. Loss of tone often occurs in the extremities without exercising any peculiar influence on the stomach; and why a loss of tone in the stomach should excite the vis medicatrix naturee, to restore it by exciting an inflammatory affection in some part of the extremities, is very inconceivable. Were the hypothesis true, every dyseptic patient should infallibly be affected with gout; which, however, is by no means the case. In short, every step in the theory is liable to unfirmamentable objections; and it by no means, any more than former hypotheses, explains the phenomena of the disease, particularly what Dr Cullen has himself so accurately pointed out, the connection of gouty with calculous complaints.

A very ingenious work has lately been published by an anonymous author, entitled "A Treatise on Gravel and upon Gout," in which the features of each are investigated, and effectual means of preventing or removing these diseases recommended. In this treatie an attempt is made to prove, that both diseases depend upon a peculiar concretion acid, the acid of calculus, or the lithic acid, as it has been styled by some. He supposes this acid, constantly present to a certain degree in the circulating fluids, to be precipitated by the introduction of other acids; and in this manner he explains the influence of acid wines and other liquors, as claret, cyder, &c inducing gout; for he considers the circumstance chiefly constituting the disease as being an inflammation in parts of which the functions have been interrupted by the redundant acid precipitated. Although this theory be supported with much ingenuity, yet it is also liable to many objections. The sudden attack of the affection; its sudden transition from one part of the body to another; the infant relief of one part when another comes to be affected; and the various anomalous forms which the disease puts on, having an exact resemblance to different affections; are altogether irreconcileable to the idea of its depending on any fixed obstruction at a particular part arising from concreting acid. Nor does the plan of prevention and cure which he proposes, and which consist chiefly in abstinence from acid and in the deftruction of acid, by any means correspond in every particular to be felt established facts respecting the treatment of gout; to which we next proceed.

Cure. In entering upon this, we must observe, in the first place, that a cure has been commonly thought impossible; and we acknowledge it to be very probable, that the gout, as a disease of the whole habit, and very often depending upon original conformation, cannot be cured by medicines, the effects of which are always very transitory, and seldom extend to the producing any considerable change of the whole habit.

It would perhaps have been happy for gouty persons if this opinion had been implicitly received by them; as it would have prevented their having been so often the dupes of self-interested pretenders, who have either amused them with inert medicines, or have rashly employed those of the most pernicious tendency. Dr Cullen, who has treated of the cure of the disease with great judgment, as he has done the theory with much ingenuity, is much disposed to believe the impossibility of a cure of the gout by medicines; and more certainly still inclined to think, that, whatever may be the possible power of medicines, yet no medicine for curing the gout has hitherto been found. Although almost every age has presented a new remedy, all hitherto offered have, very soon after, been either neglected as useless, or condemned as pernicious.

But, though unwilling to admit the power of medicines, yet he contends, that a great deal can be done towards the cure of the gout by a regimen: and he is firmly persuaded, that any man who, early in life, will enter upon the constant practice of bodily labour and of abstinence from animal-food, will be preserved entirely from the disease.

Whether there be any other means of radically curtailing the gout, the Doctor is not ready to determine. There are histories of cases of the gout, in which it is said, that by great emotions of mind, by wounds, and by other accidents, the symptoms have been suddenly relieved, and never again returned; but how far these accidental cures might be imitated by art, or would succed in other cases, is at least extremely uncertain.

The practices proper and necessary in the treatment of the gout, are to be considered under two heads; firstly, As they are to be employed in the intervals of paroxysms; or, secondly, As during the time of these. In the intervals of paroxysms, the indications are, to prevent altogether the return of paroxysms; or at least to render them less frequent, and more moderate. During the time of paroxysms, the indications are, to moderate the violence and shorten the duration of them as much as can be done with safety.

It has been already observed, that the gout may be entirely prevented by constant bodily exercise, and by a low diet; and Dr Cullen is of opinion that this prevention may take place even in persons who have a hereditary disposition to the disease. Even when the disposition has discovered itself by several paroxysms of inflammatory gout, he is persuaded that labour and abstinence will absolutely prevent any returns of it for the
the rest of life. These, therefore, are the means of an-
swering the first indication to be pursued in the intervals of paroxyms.

Exercise in persons disposed to the gout, in Dr Cull-
len’s opinion, has effect by answering two purpotes: One of these is the strengthening of the tone of the extreme vessels; and the other, the guarding against a plethoric state. For the former, if exercise be em-
ployed early in life and before intemperance has wea-
kened the body, a very moderate degree of it will an-
swer the purpose; and, for the latter, if abstinence be at the same time observed, little exercise will be ne-
necessary.

With respect to exercise, this in general is to be ob-
erved, that it should never be violent; for, if violent it cannot be long continued, and must always endan-
ger the bringing on an atony in proportion to the violence of the preceding exercise.

It is also to be observed, that the exercise of ge-
station, though considerable and constant, will not, if it be entirely without bodily exercise, answer the purpose in preventing the gout. For this end, therefore, the exercise must be in some measure that of the body, and must be moderate, but at the same time constant and continued through life.

In every case and circumstance of the gout in which the patient retains the use of his limbs, bodily exer-
cise, in the intervals of paroxyms, will be always use-
ful; and in the beginning of the disease, when the disposition to it is not yet strong, exercise, may prevent a paroxysm which otherwise might have come on. In more advanced states of the disease, however, when there is some disposition to a paroxysm, much walking will bring it on, either as it weakens the tone of the lower extremities, or as it excites an inflammatory dis-
position in them; and thus it seems to be that strains or contusions often bring on a paroxysm of the gout.

Abstinence, the other part of the proper regimen for preventing, the gout is of more difficult applica-
tion. If an abstinence from animal food be entered upon early in life, while the vigour of the system is yet entire, Dr Cullen has no doubt of its being both safe and effectual; but if the motive for this diet shall not have occurred till the constitution has been broken by intemperance or by the decline of life, a low diet may then endanger the bringing on an atomic state.

Further, if a low diet be entered upon only in the decline of life, and be at the same time a very great change from the former manner of living, the with-
drawing of an accustomed stimulus of the system may readily throw this into an atomic state.

The safety of an abstemious course may be greater or less according to the management of it. It is ani-
mal food which especially disposes to the plethoric and inflammatory state, and that food is to be therefore especially avoided; but, on the other hand, vegetable aliment of the lowest quality is in danger of weak-
ening the system too much by not affording suffi-
cient nourishment, and more particularly of weaken-
ning the tone of the stomach by its aecency. It is therefore a diet of a middle nature that is to be cho-

As approaching to the nature of milk, and as being a vegetable matter containing the greatest portion of nourishment, the farinaceous foods are next to be cho-

With respect to drink, fermented liquors are useful only when they are joined with animal food, and that by their acceancy; and their stimulus is only neces-
sary from custom. When, therefore, animal food is to be avoided, fermented liquors are unnecessary; and by increasing the acceancy of vegetables, these liquors may be hurtful. The stimulus of fermented or spirit-
luous liquors is not necessary to the young and vigo-
rous; for, when much employed injures the tone of the system. These liquors, therefore, are to be avo-
ded, except so far as custom and the declining state of the system may have rendered them necessary. For pre-
venting or moderating the regular gout, water is the only proper drink.

With respect to an abstemious course, it has been sup-
posed, that an abstinence from animal food and fer-
m ented liquors, or the living upon milk and farina,
alone for the space of one year, might be sufficient for a radical cure of the gout; and it is possible that, at a certain period of life, in certain circumstances of the constitution, such a measure might answer the purpose. But this is very doubtful; and it is more probable, that the abstinence must, in a great measure, be con-

It has been alleged, that, for preventing the return of the gout, blood-letting or scarifications of the feet, frequently repeated, and at stated times, may be prac-
ticed with advantage; but of this Dr Cullen tells us he has had no experience; and the benefit of the prac-
tise is not, as far as we know, confirmed by the obser-
vation of any other practitioner.

Exercise and abstinence are the means of avoiding the plethoric state which gives the disposition to the gout; and are therefore the means proposed for pre-
venting the paroxyms, or at least for rendering them less frequent and more moderate. But many circum-
stances prevent the readiness necessary in pursuing these measures; and therefore, in such cases, unless great care be taken to avoid the exciting causes, the disease may frequently return; and, in many cases, the preventing of paroxyms is chiefly to be obtained by avoiding those exciting causes already men-
Phlegmatic fures necessary for this purpose will, in most cases, be pursued with difficulty, and even with reluctance, men have been very desirous to find a medicine which might answer the purpose without any restraint on their manner of living. To gratify this desire, physicians have proposed, and, to take advantage of it, empirics have feigned, many remedies. Of what nature several of these remedies have been, it is difficult to say; but of those which are unknown, we conclude, from their having been only of temporary fame, and from their having been fallen into neglect, that they have been either inert or pernicious, and therefore shall make no inquiry after them, and shall now remark only upon one or two known remedies for the gout which have been lately in vogue.

One of these is what has been named in England the Portland powder. This is not a new medicine, but is mentioned by Galen, and, with some little variation in its composition, has been written by the writers of almost every age since that time. It appears to have been at times in fashion, and to have again fallen into neglect; and Dr Cullen thinks that this laft has been owing to its having been found to be, in many instances, pernicious. In every instance which he has known of his exhibition for the length of time prescribed, the persons who had taken it were indeed afterwards free from any inflammatory affection of the joints; but they were affected with many symptoms of the atonic gout; and all, soon after finishing their course of the medicine, have been attacked with apoplexy, asthma, or dropsy, which proved fatal.

Another remedy which has had the appearance of preventing the gout, is an alkali in various forms; such as the fixed alkali, both mild and caustic, lime-water, soap, and absorbent earths; and of late the alkaline aerated water has been more fashionable than any other. Since it became common to exhibit these medicines in naphritic and calculous cases, it has often happened that they were given to those who were at the same time subject to the gout; and it has been observed, that under the use of these medicines, gouty persons have been longer free from the fits of their disease. That, however, the use of these medicines has entirely prevented the returns of gout, Dr Cullen does not know; because he never pufhed the use of those medicines for a long time, being apprehensive that the long-continued use of them might produce a hurtful change in the state of the fluids.

As the preventing the gout depends very much on supporting the tone of the stomach, and avoiding indigestion; so colchicines, by occasioning this, is very hurtful to gouty persons. It is therefore necessary for such persons to prevent or remove colchicines, and by a laxative medicine, when needful; but it is at the same time proper, that the medicine employed should be such as may keep the belly regular, without much purging. Aloetis, rhubarb, magnesia alba, oleum ricini, or flowers of sulphur, may be employed, as the one or the other may happen to be best suited to particular persons.

These are the several measures to be pursued in the intervals of the paroxysms; and we are next to mention the measures proper during the time of them.

As during the time of paroxysms the body is in a feverish state, no irritation should then be added to it; every part, therefore, of the antiphlogistic regimen except the application of cold, ought to be strictly observed.

Another exception to the general rule may occur when the tone of the stomach is weak; and when the patient has been before much accustomed to the use of strong drink; for then it may be allowable, and even necessary, to give some animal-food and a little wine.

That no irritation is to be added to the stylen during the paroxysms of gout, except in the cases mentioned, is agreed upon among physicians; but it is a more difficult matter to determine, whether, during the time of paroxysms, any measures may be pursued to moderate the violence of reaction and of inflammation. Dr Sydenham has given it as his opinion, that the more violent the inflammation and pain, the paroxysm will be the shorter, as well as the interval between the present and the next paroxysm longer: and, if this opinion be admitted as just, it will forbid the use of any remedies which might moderate the inflammation; which is, to a certain degree, undoubtedly necessary for the health of the body. On the other hand, acute pain presides for relief; and although a certain degree of inflammation may seem absolutely necessary, it is not certain but that a moderate degree of it may answer the purpose; and it is even probable, that in many cases the violence of inflammation may weaken the tone of the parts, and thereby invite a return of paroxysms. It seems to be in this way, that, as the disease advances, the paroxysms become more frequent.

From these last considerations, it seems probable, that during the time of paroxysms, some measures may be taken to moderate, the violence of the inflammation and pain, and particularly, that in first paroxysms, and in the young and vigorous, blood-letting at the arm may be practised with advantage; but this practice cannot be repeated often with safety; because blood-letting not only weakens the tone of the gouty, but may also contribute to produce plethora. However, bleeding by leeches on the foot, and upon the inflamed part, may be practised and repeated with greater safety; and infusions have been known of its having been employed with safety to moderate and shorten paroxysms; but how far it may be carried, we have not had experience enough to determine.

Besides blood-letting and the antiphlogistic regimen, it has been proposed to employ remedies for moderating the inflammatory pain of the part affected, such as warm bathing and emollient poultices. These have sometimes been employed with advantage and safety; but at other times, have been found to give occasion to a retrocession of the gout.

Blistering is a very effectual means of relieving and discharging a paroxysm of the gout; but has also frequently had the effect of rendering it retrocedent. The flogging with nettles is analogous to blistering; and probably would be attended with the same danger. The burning with moxa, or other substances, is a remedy of the same kind; but though not found hurtful, there is no sufficient evidence of its proving a radical cure.

Camphir, and some aromatic oils, have the power of
of allaying the pain, and of removing the inflammation from the part affected: but these remedies commonly make the inflammation only shift from one part to another and therefore with the hazard of its falling upon a part where it may be more dangerous, and they have sometimes rendered the gout retrocedent.

From these reflections it will appear, that some danger must attend every external application to the parts affected during a paroxysm; and that therefore the common practice of committing the person to patience and flannel alone, is established upon the best foundation. Opium gives the most certain relief from pain but, when given in the beginning of gouty paroxysms, it has by some been thought that they occasion these to return with greater violence. When, however, the paroxysms shall have abated in their violence, but still continue to return, so as to occasion painful and refl€ct nights, opium may be given with safety and advantage; especially in the case of persons advanced in life, and who have been often affected with the disease. When, after paroxysms have ceased, some swelling and stiffness still remain in the joints, these symptoms are to be diffused by the diligent use of the flesh-brush. Purging immediately after a paroxysm will be always employed with the hazard of bringing it on again.

Thus far of the regular gout. We now proceed to consider the management of the disease when it has become irregular.

In the atomic gout, the cure is to be accomplished by carefully avoiding all debilitating causes; and by employing, at the same time, the means of strengthening the system in general, and the stomach in particular.

For strengthening the system in general, Dr Cullen recommends frequent exercise on horseback, and moderate walking. Cold bathing also may answer the purpose, and may be safely employed, if it appear to be powerful in stimulating the system, and be not applied when the extremities are threatened with pain.

For supporting the tone of the system in general, when threatened with atomic gout, some animal food ought to be employed, and the more acentic vegetables ought to be avoided. In the same cafe, some wine also may be necessary; but it should be in moderate quantity, and of the least acentic kinds; and if every kind of wine shall be found to increase the acidity of the stomach, ardent spirits and water must be employed.

For strengthening the stomach, bitters and the Peruvian bark may be employed; but care must be taken that they be not constantly employed for any great length of time.

The most effectual medicine for strengthening the stomach is iron, which may be employed under various preparations; but the best appears to be the rust in fine powder, which may be given in large doses.

For supporting the tone of the stomach, aromatics may be employed; but should be used with caution, as the frequent and copious use of them have an opposite effect; and they should therefore be given only in compliance with former habits, or for palliating present symptoms.

When the stomach happens to be liable to indige-
M E D I C I N E.

Practice.

The case was that of Mr James Roebuck, surgeon and apothecary in Upper Shadwell, of about 45 years of age, a sober, temperate man, of a good habit of body, accustomed to no disease but the gout; the returns of the fits whereof had never been more frequent than once in 12 or 14 months, about the month of June 1752, was seized with a very severe paroxysm of the gout. As I had known some extraordinary effects proceeding from a vegetable diet in that distemper, particularly in one gentleman, who, by a total abstinence from all manner of food except cow's milk, and that without bread, had cured himself of this disease; and who, at the time I mentioned the cafe to my friend, was in the 13th year of his milk-diet; I persuaded Mr Roebuck to try what vegetables would do for him: he readily complied, and entered upon it immediately, with a resolution, that, if it answered his expectation, he would renounce fish and flesh for ever.

But after the most religious abstinence from animal food of every kind for eleven weeks, being visited by a gentle paroxysm, the fit of the gout went off in half a minute, the part affected, no sooner, and in three days disappeared.

The urine was tinged as with saffron; and his urine very high coloured, of almost as deep a red as claret; but, upon the critical vomitings, every one of these symptoms disappeared with the disease.

Mr Roebuck had experienced so great and happy effects from the former critical vomitings, he was greatly disappointed upon finding the quantity evacuated...
Phlegma-

"During the first of these fits, in the year 1752, a hard tumor had appeared on the side of the meta-
tarsus near the middle of the right foot, which con-
tinued till after the third critical vomiting; when it
was resolved, and totally disappeared, upon the dis-
charge of a viscid matter like the white of an egg, with
a few small chalk-stones from the end of the middle
toe of the same foot. This disease happened about
four or five days before the patient was seized with
a regular fit in April 1755. But it is to be remark-
ed, that this last fit continued three or four weeks, and
went off in the common way, without any of the
discharges of vomiting, urine or sweat; but left on one hand three, and on the other two, fingers
loaded with chalk-stones; with this peculiar symptom,
that when the weather was cold those fingers were
affected with a most exquisite pain, which was always
removed by heat.

"But not long after this last mentioned fit, a large
quantity of chalk-stones were extracted from the bot-
tom of the left foot, near the ball of the great toe, and
that from time to time for about three or four months.
On the 10th of January 1756 (the wound occasion-
ed by the chalk-stones being still open), he was seized
with a fever, without any symptom of the gout: the
fever went off on the third day, with the same kind
of critical sweat and urine as always accompanied the
acid vomitings in the forementioned fits. On the fourth
day from the attack of the fever, a fit of the
gout came on, with the common symptoms, in both
feet; which continued with frequent retching and vomiting, but without bringing up more than the common contents of the stomach.
At this time an uncommon itching in the
bottom of the foot and ball of the great toe from
whence the chalk-stones had been extracted, torment-
ed the patient for five or six hours; upon his gently
rubbing the part, he was very sensible of a fluctuation
of some matter, which soon appeared to flow at first
in small quantities from the open orifice in the ball
of the toe: upon pressing the part, about a tea-cup
full of a liquid chalky matter was collected. The next
morning the patient made a large opening with an im-
opollume knife, which produced more than half a pint
of a bloody serous matter, full of chalk-stones, which
proved as truly critical as the vomitings of the corro-
five acid did in the cases above-mentioned; for the
orifice from whence the chalk-stones first issued, was
very soon healed, and the gentleman continues in per-
fect health."

Genus XXV. ARTHROPOUSIS.

Lumbago phaenica. Sauv. sp. 6. *Fondyce, Practice of
Physic.* II. p. 70.

Lumbago apophismata. Sauv. sp. 12.

**Lumbago ab arthroacae.* Sauv. sp. 17.

**Lichias ex abcesibus.* Sauv. sp. 6.

c. xxxii.

This is a disease very much resembling the rheuma-
tism; but differing from it and the gout, in that
it occasions suppuration, which they seldom or never
do. It frequently, according to Sauvages, attacks the
piaos muscle; and occasions excruciating pains, and
then collections of matter.

The only cure is, if suppuration cannot be prevent-
ed, to lay open the part where the matter is contain-
ed, which would otherwise be absorbed, and occasion
a fatal hæmorrhage.

ORDER III. EXANTHEMA.

Exanthema, Swe. Class X.

Phlegmatis exanthematica, *Sauv. Class III. Ord. I.*

Morbus exanthematici, *Lin. Class I. Ord. II.*

Febres exanthematici, Veg. Class I. Ord. 2.

Genus XXVI. ERYSPILAS.

St. Anthony's Fire.

Eryspilas Sauv. gen. 97. Lin. 10. Swe. gen. 296.

Febre eryspilaca, *Vog. 68. Hoffn. II. 98.*

Sp. I. ERYSPILAS with Blister.

**Eryspilas rosea. Sauv. sp. 1. Senect de febr. lib. ii.
c. 15.**

Febre eryspilatofo, *Sydenham, lec. vi. cap. v.*

Eryspilas typhodes, *Sauv. sp. 2.*

Eryspilas peñilens. Sauv. sp. 5.

Eryspilas contagiosum, *Sauv. sp. 9.*

Description. The eryspilas of the face, where this
affection very frequently appears, comes on with a
cold shivering, and other symptoms of pyrexia. The
hot flush of this is frequently attended with a con-
fusion of the head, and some degree of delirium; and
almost always with drowsiness, and perhaps coma.
The pulse is always frequent, and commonly full and
hard.—When these symptoms have continued for one
two, or at most three days, an erytheumat appears on
some part of the face. This at first is of no great
extent, but gradually spreads from the part it first
occupied to the other parts of the face, till it has
affected the whole; and frequently from the face it
spreads over the hairy scalp, or extends on some
part of the cheek. As the redness spreads, it com-
monly leaves, or at least is abated in the parts it had
before occupied. All the parts which the redness
affects are also affected with some swelling, which
continues for some time after the redness has abated.
The whole face becomes considerably turgid; and
the eye-lids are often so much swelled as entirely to
shut up the eyes. When the redness and swelling
have continued for some time, there commonly arise,
a sooner or later, blisters of a larger or smaller size on
several parts of the face. These contain a thin colour-
less liquor, which sooner or later runs out. The sur-
fice of the skin in the blistered places, sometimes
becomes livid and blackish; but this seldom goes
deeper, or discovers any degree of gangrene affecting
the skin. On the parts of the face not affected with
blister, the cuticle suffereth, towards the end of the
disease, a considerable desquamation. Sometimes the
tumor of the eye-lids ends in a suppuration.

The inflammation coming upon the face does not
produce any remission of the fever which had before
prevailed; and sometimes the fever increases with the
spreading and increasing inflammation. The inflamma-

**Archopou-

Genus III. EXANTHEMA.

Exanthema, Swe. Class X.

Phlegmatis exanthematica, *Sauv. Class III. Ord. I.*

Morbus exanthematici, *Lin. Class I. Ord. II.*

Febres exanthematici, *Veg. Class I. Ord. 2.*
MEDICINE.

150

Practice.

An erysipelas frequently appears on other parts of the body besides the face, and such other erysipelas inflammations frequently end in suppuration; but these cases are seldom dangerous. At coming on they are sometimes attended with drowsiness, and even with some delirium; but this seldom happens, and these symptoms do not continue after the inflammation is formed; and Dr Cullen does not remember to have seen an instance of the translation of an inflammation from the limbs to an internal part; and though these inflammations of the limbs be attended with pyrexia, they seldom require the same evacuations as the erysipelas of the face.

Sp. II. Erysipelas with Phlyctena.

Erysipelas zolfer, Sauv. sp. 8.
Herpes zolfer, Sauv. sp. 9.

This differs from the former in no other way than in being attended with an eruption of phlyctena or small watery blisters on several parts of the body.—The method of cure is the same.

Gen. XXVII. Pestis, the Plague.

Pestis, Sauv. gen. 91. Lin. 2. Funck. 78.
Febris pestilentialis, Vog. 33. Hoffm. II. 93.
Pestis benigna, Sauv. sp. 2. Pestis Maffilennis, Clas III. Traite de la pelle, p. 41. Ejudiem pestis, Cl. 50. Traité p. 228.
Pestis remittens, Sauv. sp. 9.
Pestis Egyptiaca, Sauv. sp. 11. Alpin. de Med. Egypt.

History. Of this distemper Dr Cullen declines giving any particular history, because he never saw it; from the accounts of other authors, however, he is of opinion, that the circumstances peculiarly characteristic of it, especially of its more violent and dangerous states, are, 1. The great loss of strength in the animal function, which often appears early in the disease. 2. The stupor, giddiness, and consequent staggering, which resembles drunkenness, or the head-ach and various delirium all of them denoting a great disorder in the functions of the brain. 3. Anxiety, palpitation, syncope, and especially the weakness and irregularity of the pulse, denoting a considerable disturbance in the action of the heart. 4. Nausea and vomiting, particularly the vomiting of bile, which shows an accumulation of vitiated bile in the gall-bladder and biliary ducts, and from thence derived into the intestines and stomach; and which denote a considerable pain, and loss of tone in the extreme vessels on the surface.
Practice.

MEDICINE.

5. The buboes and carbuncles, which denote an action prevailing in the fluids and, lastly, the petechiae, hemorrhages, and colliquative diarrhoea, which denote a putrefactive tendency prevailing in a great degree in the mafs of blood.

To these characteristics of the plague enumerated by Dr Cullen, we shall add one mentioned by Sir John Pringle, which though perhaps less frequent than the others, yet seems worthy of notice. It is this, that in the plague there is an extraordinary enlargement of the heart and liver. In nine differences of bodies dead of the plague at Marfselles, this extraordinary enlargement of the heart is taken notice of in all of them, and of the liver in seven of them. The account was sent to the Royal Society by M. Didier, one of the physicians to the king of France, and has been published in the Philosophical Transactions. In the first case, the author takes notice, that "the heart was of an extraordinary bigness; and the liver was of double the natural size."—Case 2. The heart was of a prodigious size, and the liver much enlarged.—Case 3. The heart double the natural bigness.—Case 4. The heart was very large, and the liver was bigger and harder than ordinary.—Case 5. The heart was of a prodigious bigness.—Case 6. The heart was larger than its natural state; the liver also was very large.—Case 7. The heart was of a prodigious size, and the liver very large.—Case 8. The heart was much larger than natural, and the liver of a prodigious size.—Case 9. The heart was double the natural bigness, and the liver was larger than ordinary."—

This preternatural enlargement Dr Pringle thinks is owing to the relaxation of the solid parts, by which means they become unable to resist the impetus of blood, and therefore are easily extended; as in the case of infancy, where the growth is remarkably quick. And a similar enlargement he takes notice of in the scurvy, and other putrid diseases.

A very elaborate work has lately been published on the subject of the plague by Dr Patrick Ruffel, formerly physician to the British Factory at Aleppo. In this work, a very full history is given of the various forms and varieties of the disease. He makes particular observations on the following symptoms, which, in addition to the putrid eruptions, he considers as the most important concomitants of plague, viz. fever, delirium, coma, impediment or lofs of speech, deafness, mudrines of the eyes, white tongue, state of the pulse, respiration, anxiety, pain at the heart, inquietude, debility, fainting, convulsion, appearances of the urine, perforation, vomiting, looseness, and hemorrhagy; and he concludes those remarks with some observations on the occurrence of the plague with pregnant women. To point out more distinctly the flable varieties of the disease, he arranges the putridal cases which fall under his observation at Aleppo under six clasfes: and he concludes his description with a very minute and particular account of the putridal eruptions, appearing under the form either of buboes, carbuncles, or other exanthemata. The prefer of the two first, he observes either separately or conjundly, leaves the nature of the diftemper unequivo-

ence. Buboes affected the inguinal, axillary, parotid, maxillary, and cervical glands. But the first were the moft commonly affected, and the two latter seldom observed to swell, without either the parotid swelling at the time or soon after. Of the carbuncles, Dr Ruffel describes five different varieties. The other exanthemata, which he observed sometimes, though less frequently, attending the plague, were petechiae, a marbled appearance of the skin, an erysipelas dusky, streaks of a reddish purple or livid colour, vices or weals, and large blue or purple spots, the macule magne of authors. In some cases, an extraordinary concurrence of eruptions took place, which was chiefly observed among children under 10 years of age.

Causes, &c. From a consideration of the symptoms abovementioned, Dr Cullen concludes, that the plague is owing to a specific contagion, often suddenly producing the most considerable debility in the nervous system or moving powers, and a general putrefactive in the fluids. Dr Ruffel also considers the disease as being universally the consequence of what may be called putridal contagion; and has judiciously repelled the objections which have been brought against this doctrine.

Prevention. Here we must refer to all those methods of preventing and removing the incipient contagion of putrid fevers, which have been so fully enumerated. Dr Cullen is persuaded that the disease never arises in the northern parts of Europe, but in consequence of being imported from some other country. The magistrate's first care therefore ought to be to prevent the importation; and this may generally be done by a due attention to bills of health, and to the proper performance of quarantines. With respect to the latter, he is of opinion, that the quarantines of persons may with safety be much less than 40 days; and if this were allowed, the execution of the quarantine would be more exact and certain, as the temptation to break it would be in a great measure avoided. With respect to the quarantine of goods, it cannot be perfect unless the suspected goods be unpacked, duly ventilated, and other means be employed for curtailing the infection they may carry; and if all this be properly done, it is probable that the time commonly prescribed for quarantine may be also shortened.

A second measure in the way of prevention is required, when an infection has reached and prevailed in any place, to prevent that infection from spreading into others. This can only be done by preventing the inhabitants or the goods of any infected place from going out of it till they have undergone a proper quarantine.

The third measure, and which ought to be employed with great care, is to prevent the infection from spreading among the inhabitants of a place in which it has ariien. And in this case, a great deal may be done by the magistrate. 1. By allowing as many of the inhabitants as are free from infection, and are not necessary to the service of the place, to go out of it. 2. By discharging all assemblies, or unnecessary intercourse of the people. 3. By ordering some necessary communications to be performed without contact. 4. By making such arrangements and provisions...
MEDICINE.

Practise.

The fourth and last part of the business of prevention respects the conduct of persons necessarily remaining in infected places, especially those obliged to have some communication with persons infected. Thefe obliged to remain in places infected, but not to have any near communication with the fick, muft avoid all near communication with other persons or their goods; and it is probable, that a small distance will serve, if, at the fame time, there be no stream of air to carry the effluvia of persons or goods to some distance. Thofe who are obliged to have a near communication with the fick ought to avoid any of the debilitating caufes which render the body infusceptible of infection, as a fpare diet, intemperance in drinking, excess in venery, cold, fear, or other deprefling paffions of the minds. A full diet of animal food is alfo to be avoided, becaufe it increases the irritability of the body, and favours the operation of contagion; and indigefion, whether from the quantity or quality of the food, contributes very much to the fame.

Besides thefe, it is probable that the moderate ufe of wine and fpirituous liquors, moderate exercife, and the cold bath, may be of ufe; tonic medicines alfo, of which the Peruvian bark is defervedly accounted the chief, may likewise be ufed with fome probability of fuccefs. If any thing is to be expected from antifeptics, Dr Cullen thinks campbhor preferrable to any other. In general, however, every one is to be indulged in the ufe of all medicines of which he has the beft opinion, provided it is not evidently hurtful. Whether fuccefs in preventing from the effects of contagion, is a matter of doubt. Dr Ruffel in his treatment enters very fully into the consideration of the means of prevention, both with refpect to quarantines, lazarettoes, and bills of health. He is of opinion, that the prefent laws on this fubjeét are in many places, efpecially in the United States, defective; and he thinks, that a fet of new regulations would have the beft chance of a deliberate and impartial diftribution in the fenate, if the inquiry were taken at a time free from any apprehenfion of immediate danger.

Cure. Here according to Dr Cullen, the indications are the fame as in fever in general, but are not all equally important. The meafures for moderating the violence of reaction, which operate by diminishing the action of the heart and arteries, have feldom, he fays, any place here, excepting that the antiphlogific regimen is generally proper. Some phyficians have recommended bleeding, and Sydenham even fays, to think it an effectual cure; but Dr Cullen fuppofes, that for the moft part it is unnecessary, and in many cafes might do much hurt. Dr Ruffel, however, who on this fubjeét fpeaks from experience and actual obfervation, is of a different opinion. With moft of his patients, a fingle bleeding was employed with advantage; and even where the fick under his inspection were bled oftener than once, he did not find that the low state was thereby hurried on. Purging has also been recommended; and in fome degree it may be ufeful in driving off the putrefcent matter frequently prefent in the intelleus; but a large evacuation this way may certainly be hurtful.

The moderating the violence of reaction, as far as it can be done, by taking off the fpasm of the extreme vessels, is a meafure, in Dr Cullen's opinion, of the utmost neceffity in the cure of the paffion; and the fourth of the means formerly mentioned, as joined to this indication, are extremely proper. The giving an emetic, at the first approach of the difeafe, would probably be of great fervice; and it is probable that, at fome other periods of the difeafe, emetics might be ufeful, both by evacuating bile abounding in the alimentary canal, and by taking off the fpasm of the extreme vessels. Indeed Baron Asf, and fome other of the Russian practitioners, represent the early and repeated ufe of emetics as the only effectual mode of cure.
MEDICINE.

Practise.

224. **Sp. II. The Confluent Small-Pox.**

Variola confluent, Sauv. fp. 9.

Variole regulares confluentes, ann. 1657. Sydenham, fect. iii. cap. 2.

Variola confluentis crystallina, Sauv. fp. 10.

Variola japonica, Kempfer.

Veiculae divee Barbarea, C. Pl. Obf. 149.

Variola confluentis maligna, Helvet. Obf. fp. 11.

Variola confluentis cohærens, Sauv. fp. 11.

Variola confluentis maligna, Helvet. fp. 2.

Variola confluentis maligna, Helvet. fp. 3.

Variola fanguinea, Med. de variolis, cap. 2.

Variola confluentis corymbofa, Sauv. fp. 13.

Variola confluentis maligna, Helvet. fp. 4.

Description. In the difcrtc small-pox, the difeafe begins with a fynochus or inflammatory fever. It generally comes on about mid-day, with fome symptoms of a cold fit, and commoniy with a confiderable languor and drowfiness. A fhort fit isfoon formed, and becomes more confiderable on the second and third day. During this courfe children are liable to frequent flatings from their flulls; and adults, if they are kept in bed, are difposed to much sweating.

On the third day, children are fometimes affected with one or two epileptic fits. Towards the end of the third day the eruption commonly appears, and gradually increafes during the fourth; appearing firft on the face, and fucceffively on the inferior parts, fo as to be completed over the whole body on the fifth day. From the third day the fever abates, and again the fifth it entirely ceafes. The eruption appears firft in small red spots hardly eminent, but by degrees rifting into pimples. There are generally but few on the face; but, even when more numerous, they are separable and diffufed from one another. On the fifth or fith day, a small vehicle, containing an almost colourless fluid, appears on the top of each pimple. For two days these vehicles increafes in breadth only, and there is a small hollow pit in their middle, fo that they are not raised into frouruoidal pufifules till the eighth day. Thesef pufifules from their firft formation continue to be surrounded with an exadly circular in-flamed margin, which when they are numerous diffufs feome inflammation over the neighbouring skin; fo as to give fomewhat of a damniff-robe colour to the spaces between the pufifules. As the pufifules increafes in fize, the face fwell incread if the matter are numerous on it; and the eyes, particularly, in fevefle of the matter which they covered becomes degrccs more opaque and white, and at length affumes a yellowish colour. On the elimin day the swelling of the face is abated, and the pufifules seem quift full. On the top of each a darker spot appears; and at this place the pufifule, on the 11th day, or fon after, is spontaneoufly broken, and a portion of the matter oozes out; in confequence of which the matter is ferviled, and fufible; while the matter remaining out drys, and forms a crust upon its surface. Sometimes only a little of the matter oozes out, and what remains in the pufifule becomes thick and even hard. After some days, both the crusts and the hardened pufifer fall off, leaving the skin which they covered of a brownifh red colour; nor doth it refume its natural colour till many days after. In fome cafses where the matter of the pufifules has been more liquid, the crusts formed from it are later in falling off, and the part they covered fuffers fome defquaframion, which occasions a small hollow or pit in it.

On the legs and hands the matter is frequently absorbed; fo that at the height of the difeafe, their pufifules appear as empty as vehicles. On the 10th and 11th days, as the swelling of the face rufides, a swelling arifes in the hands and feet; but which again rufides as the pufifules come to maturity. When the pufifules on the face are numerous, some degree of pyrexia appears on the 10th and 11th days; but disappears again after the pufifules are fully ripened, or perhaps remains in a very light degree till the pufifules on the feet have finished their courfe; and it is feldom that any fever continues longer in the difcrtc small-pox. When the pufifules are numerous on the face, upon the fifth or fith day, fome uneafiness of the throat, with a hoarnefnes of the voice, comes on, and a thin liquid is poured out from the mouth. These symptoms increafe with the swelling of the face; and the liquids of the mouth and throat be coming thicker are with difficulty thrown out; and there is at the fame time fome difficulty in swallowing, fo that liquids taken in to be swallowed are frequently rejected or thrown out by the nofe. But all these af- fections of the fauces are abated as the swelling of the face rufides.

In the confluent small-pox all the symptoms above-mentioned are much more fevere. The eruptive fever particularly is more violent; the pufifer is more frequent and more contracted, approaching to that state of pufifer which is obferved in typhus. The coma is more confiderable, and there is frequently a delirium. Vomiting also frequently attends, efpecially at the beginning of the difeafe. In very young infants, epileptic fits are fometimes frequent on the firft days of the difeafe, and fometimes prove fatal before any eruption appears, or they uffer in a very confluent and putrid small-pox. But at the fame time, it has been fully remarked by Dr Sydenham, and other accurate obervers, that epileptic attacks more frequently precede difcrtc and mild than malignant and confluent small-pox. The eruption appears in the confluent more early on the third day, and it is frequently preceded or accompanied with an eryphthalmous effufion. Sometimes the eruption appears in chifters, like the measles. When the eruption is completed, the pufifer are always more numerous upon the face, and at the fame time smaller and lefs eminent. Upon the eruption the fever fuffers fome remiffion, but never goes off entirely; and after the fifth or fith day it increafes again, and continues to be confiderable throughout the remaining part of the difeafe. The vehicles formed on
the top of the pimples appear sooner; and while they
increase in breadth, they do not retain a circular, but
are every way of an irregular figure. Many of them
run into one another, inflating that very often the face
is covered with one vesicle rather than with a
number of pustules. The vesicles, as far as they are
any way separated, do not arise to a spherical form,
but remain flat, and sometimes the whole of the face
is of an even surface. When the pustules are in any
measure separated, they are not bounded by an
inflamed margin, but the part of the skin that is free
from pustules is commonly pale and flaccid. The li-
quor that is in the pustules changes from a clear to an
opaque appearance, and becomes whitish or brownish,
but never acquires the yellow colour and thick con-
sistency that appears in the distinct small-pox. The
swelling of the face, which only sometimes attends
the distinct small-pox, always attends the confluent
kind; it also comes on more early, and arises to a
greater height, but abates considerably on the tenth
or eleventh day. At this time the pustules or vesicles
break and thrive; pouring out at the same time a
liquor, which is formed into brown or black crusts,
which do not fall off for a long time after. Those
of the face, in falling off, leave the skin subject to a
defquamation, which pretty certainly produces pit-
tings. On the other parts of the body the pustules of
the confluent small-pox are more distinct than on
the face; but never acquire the same maturity and
consistency of pus as in the properly distinct kind.
The vesicles, which only sometimes attend the
distinct small-pox, very constantly attend the con-
fuent; and both the vesicles and the affection of the
sides abovementioned are, especially in adults, in a
degree higher. In infants a diarrhoea comes frequently
in place of a vesication.

In this kind of small-pox there is often a very con-
siderable putrefcency of the fluids, as appears from
petechiae, from serous vesicles, under which the skin
swells a disposition to gangrene, and from bloody urine
or other hemorhages; all of which symptoms fre-
quently attend this disease. In the confluent small-
pox alfo, the fever, which had only suffered a remission
from the eruption to the maturcation, at or immedi-
ately after this period, is renewed again with
considerable violence. This is what has been called
the secondary fever, and is of various duration and
event.

casus, &c. It is evident, that the small-pox is ori-
ginally produced by contagion; and that this conta-
gion is a ferment with respect to the fluids of the
human body, which affinimates a great part of them to
its own nature; or, at least, we have every reason to
believe that a small quantity of contagious matter in-
troduced, is somehow multiplied and increased in the
circulating fluids of the animal body. This quantity
passes again out of the body, partly by insensible per-
piration again, and partly by being deposited in pustules.
The causes which determine more of the variolous
matter to pass by perspiration, or to form pustules, are
probably certain circumstances of the skin, which de-
termines more or less of the variolous matter to flock in
it, or to pass freely through it. The circumstance of
the skin, which seems to determine the variolous
matter to flock in it, is a certain state of inflammation de-
pending much on the heat of it; thus we have many
inflances of parts of the body, from being more heated,
having a greater number of pustules than other parts.
Thus parts covered with pustules, especially those of
the stimulant kind, have more pustules than others.

—Certain circumstances, also, such as adult age,
and full living, determining to a phlogistic diathesis,
seem to produce a great number of pustules, and

varia. foil. It is therefore probable, that an inflam-
matory state of the whole system, and more particu-
larly of the skin, gives occasion to a greater number of
pustules; and the causes of this may produce molt of
the other circumstances of the confluent small-pox,
such as the time of eruption, the continuance of the
fever; the effusion of a more putrefcent matter, and
lefts to be converted into pus, together with the form
and other circumstances of the pustules.

Properties. The more exactly the disease retains
the form of the distinct kind, it is the safer; and
the more completely the disease takes the form of the
confluent kind, it is the more dangerous. It is only
when the distinct kind shows a great number of pustu-
les on the face or otherwise, by fever or putre-
fecy, approaching to the circumstances of the con-
fuent, that the distinct kind is attended with any
danger.

In the confluent kind the danger is always very
considerable; and the more violent and permanent
the fever is, the greater the danger; and especially
in proportion to the increafe of the symptoms of put-
refcence. When the putrid disposition is very great,
the disease sometimes proves fatal before the eighth
day; but in most cases death happens on the
eleventh, and sometimes not till the fourteenth or seven-
teenth.

Though the small-pox may not prove immediately
fatal, the more violent kinds are often followed by a
morbid state of the body, sometimes of very dan-
gerous event. These consequences, according to Dr.
Cullen, may be imputed sometimes to an acrid matter
produced by the preceding disease, and deposited in
different parts; and sometimes to an inflammatory
diathesis produced and determined to particular parts
of the body.

Care. The art of medicine hath never yet afforded
a method of preventing the eruption of the small-pox
after the contagion is received; all that can be done is,
to render the disease more mild, which is generally ef-
pected by inoculation. It is not to be supposed that
the mere giving of the infection artificially could make
any difference in the nature of the disease, was it not
that certain precautions are commonly used in the case
of those who are inoculated, which cannot be used
in the case of those who receive them naturally.—
These measures, according to Dr. Cullen, are chiefly
the following:

1. The choosing for the subject of inoculation per-
sons whose age is not; the children, and not liable
from their age or otherwise to any incidental disease.

2. The choosing that time of life which is most fa-
vourable to a mild disease.

3. The choosing for the practice a season most
favourable to a mild disease.

4. The
Practice.

MEDICINE.

4. The preparing the person to be inoculated, by enjoining abstinence from animal food for some time before inoculation.

5. The preparing the person by courses of mercurial and antimonial medicines.

6. The taking care at the time of inoculation to avoid cold, intemperance, fear, or other circumstances which might aggravate the future disease.

7. After these preparations and precautions, the choosing a fit matter to be employed in inoculation, by taking it from a person of a sound constitution and free from any disease, or suspicion of it; by taking it from a person who has had the small-pox of the most benign kind; and lastly, by taking the matter from such person as soon as it has appeared in the pustules, either on the part inoculated, or on other parts of the body.

8. The introducing, by inoculation, but a small portion of the contagious matter.

9. After inoculation, the continuing of vegetable diet, and the employment of mercurial and antimonial medicines, and at the same time employing frequent purging.

10. Both before and after inoculation, taking care to avoid external heat, either from the sun, artificial fires, warm chambers, much clothing, or being much in bed; and on the contrary, exposing the person to a free and cool air.

11. Upon the appearance of the eruptive fever, the rendering that moderate by the employment of purgatives; by the use of cooling and antiseptic acids; and especially by exposing the person frequently to a cool and even a cold air, at the same time giving freely of cold drink.

12. After the eruption, the continuing the application of cold air, and the use of purgatives, during the course of the disease, till the pustules are fully ripened.

On these measures Dr Cullen observes, that, as the common infection may often seize persons under a diseased state, which may render the small-pox more violent, it is evident that inoculation must have a great advantage by avoiding such concurrence. But as the avoiding of this may in the mean time frequently leave persons exposed to the common infection, it is well worth while to enquire what are the diseased states which should refrain from the practice of inoculation. This is not yet sufficiently ascertained; for it hath been observed, that the small-pox has often occurred with a diseased state of the body, without being thereby rendered more violent; and it hath also been observed, that some diseases of the skin are equally innocent.

Dr Cullen is of opinion that they are diseases of the febrile kind, or such ailments as induce or aggravate a febrile state, that especially give the concurrence which is most dangerous with the small-pox. He is also of opinion, that though a person be in a diseased state, if that state be of uncertain nature and effect, and at the same time the small-pox are very common in the neighbourhood, so that it must be extremely difficult to guard against the common infection it will always be safer to give the small-pox by inoculation than to leave the person to take them by the common infection.

Though inoculation has been practised with safety upon persons of all ages, yet there is reason to conclude, that adults are more liable to a violent disease than persons of younger years. At the same time it is observed, that children, in the time of their first dentition, are liable, from the irritation of that, to have the small-pox rendered more violent; and that infants, before the time of dentition, upon receiving the contagion of the small-pox, are liable to be afflicted with epileptic fits, which frequently prove fatal. Hence it is evident, that though circumstances may admit and approve of inoculation at any age, yet for the most part it will be advantageous to choose persons after the first dentition is over, and before the time of puberty. But in large cities in particular, if the operation be delayed till after dentition, the patient must run many risks of accidental infection, and thus many will be cut off by the natural small-pox who might have been saved by early inoculation. Accordingly, in towns especially, it is now the common practice to inoculate infants when only three or four months old; and indeed accidents so rarely happen, that it is almost impossible to conceive that greater success can be obtained at any other period of life.

The operation of inoculation may be performed at any season of the year; yet as it is certain that the cold of winter may increase the inflammatory, and the heats of summer increase the putrescent state of the small-pox it is highly probable that inoculation may have some advantage from avoiding the extremes either of cold or heat.

As the use of animal-food may increase both the inflammatory and putrescent state of the human body so it must render persons, in receiving the contagion of the small-pox, less secure against a violent disease; and therefore inoculation may derive some advantage by enjoining abstinence from animal-food for some time before the operation is performed; But Dr Cullen is of opinion, that a longer time is necessary than what is commonly prescribed.

Mercurial and antimonial preparations may have some effect in determining to a more free perspiration and therefore may be of some use in preparing a person for the small-pox; but there are many observations which render their use doubtful. The quantity of both these medicines, particularly the antimony, commonly employed, is too inconsiderable to have any effects. Mercurials indeed have been often employed more freely; but even their salutary effects have not been evident, and they have sometimes been manifestly productive of mischief. It is therefore much to be doubted, whether inoculation really derives any benefit from these preparatory courses or not.

It has been often observed, in the case of almost all contagions, that cold, intemperance, fear, and some other circumstances, concurring with the application of the contagion, have greatly aggravated the future disease; it must undoubtedly be the same in the case of the small-pox: and it is certain that inoculation must derive a great advantage, perhaps its principal one, from avoiding the concurrences above mentioned.

It has commonly been supposed, that inoculation derives some advantage from the choice of the matter employed in it; but it is very doubtful if any choice...
be here necessary, or can be of any benefit in determining the state of the disease. It is not indeed probable that there is any difference of contagion producing the small-pox; for there are innumerable instances of the contagion, arising from a person who labours under the distinct small-pox producing the constant kind, and the contrary. Since the practice of inoculation hath been introduced, it has also been observed that the same variolous matter would in one person produce the distinct and in another the confluent small-pox. It is therefore highly probable, that the difference of the small-pox does not much depend upon any difference of the contagion, but upon some difference in the state of the persons to whom it is applied, or in the state of certain circumstances concuring with the application of the contagion.

Some have supposed, that inoculation has an advantage over the natural infection, by introducing only a small portion of contagious matter into the body; but this is by no means well ascertained. It is not known what quantity of contagion is introduced into the body by the common infection of the small-pox; and it is probable the quantity is not great; nor, though it were larger than that thrown in by inoculation; is it certain what the effects would be. A certain quantity of ferment may be necessary to excite fermentation in a given mass; but when that quantity is given the fermentation and inflammation are extended to the whole mass; and we do not find that a greater quantity than is just necessary, either increases the activity of the fermentation, or more certainly secures the inflammation of the whole. In the case of the small-pox a considerable difference in the quantity of the contagion introduced hath not shown any effects in modifying the disease.

Purging has the effect of diminishing the activity of the fanguiferous system, and of obliterating the inflammatory state of it; and therefore it is probable that the frequent use of cooling purgatives gives a considerable advantage to the practice of inoculation and probably this is also obtained by diminishing the determination to the skin. It seems also probable, that mercurials and antimonials are useful only as they make part of the purging course.

It is probable that the state of the small-pox depends very much upon the state of the eruptive fever, and particularly in avoiding the inflammatory state of the skin; and therefore it is also probable that the measures taken for moderating the eruptive fever, and inflammatory state of the skin, are the greatest improvement which has been made in the practice of inoculation. The tendency of purging, and the use of acids to this purpose, is sufficiently obvious; and upon the same grounds we should suppose blood-letting might be useful; but probably this has been omitted, and perhaps other remedies might be so, since we have found a more powerful and effectual one in the application of cold air and the use of cold drink.

It hath been the practice of inoculators to continue the use of purgatives and the application of cold air after the eruption; but it cannot be said to give any particular advantages to inoculation, and the employment of purgatives seems often to have led to an abuse. When the state of the eruption is determined, when the number of pustules is very small, and the fever has entirely ceased, the safety of the disease may be said to be ascertained, and further remedies absolutely superfluous; in such cases therefore the use of purgatives is unnecessary, and may be hurtful.

It remains now only to consider the treatment of the small-pox, when the symptoms are violent, as they sometimes happen, even after inoculation and every remedy and precaution have been used. The cause of this is not ascertained, but it seems to be a putrefactive tendency of the fluids. When therefore, from the prevailing of small-pox as an epidemic, and more especially when it is known that a person not formerly afflicted with the disease has been exposed to the infection if such person should be attacked with the symptoms of fever, there can be little doubt that it is the fever of the small-pox, and therefore he is to be treated in every respect as if he had received the disease by inoculation. He is to be freely exposed to cool air, to be purged, and to have cooling acids given liberally. If these measures moderate the fever, nothing more is necessary: but if the nature of the fever be uncertain; or if, with suspicions of the small-pox, the fever be violent; or even if, knowing the dilatometer to be the small-pox, the measures above-mentioned do not moderate the fever sufficiently; venesection will be proper; and more especially if the person be an adult, of a plethoric habit, and accustomed to full living: in the same circumstances it will always be proper to give a vomit which is useful in the beginning of all fevers, and especially in this, where a determination to the stomach appears by pain and spontaneous vomiting.

It frequently happens, especially in infants, that, during the eruptive fever of the small-pox, convulsions occur. Of these, if only one or two fits appear on the evening preceding the eruption, they give a prognostic of a mild disease, and require no remedy: but if they occur more early, are violent, and frequently repeated, they are very dangerous, and require a speedy remedy: and here bleeding and blistering are of no service, the only effectual medicine is an opiate given in a large dose.

These are the remedies necessary during the eruptive fever; and if upon the eruption, the pustules on the face are difficult and their number few, the disease requires no further remedies. But when, upon the eruption, the number of pimples on the face is considerable, when they are not difficult, and especially if, upon the fifth day, the fever does not suffer a considerable remission; the disease still requires a great deal of attention.

If, after the eruption, the fever shall fall continue the avoiding of heat and the continuing to expose the body to a cool air will still be proper. If the fever be considerable, with a full hard pulse, in an adult person, a bleeding will be necessary, and more certainly a cooling purgative; but it will be seldom necessary to repeat the bleeding, as the loss of strength very soon comes on; but the repetition of a purgative, or the frequent use of laxative glisters, is commonly advantageous.

When a loss of strength, with other marks of a putrefactive tendency of the fluids, appears, the Peruvian bark must be given in substance, and in large quantity,
quantity. In the same cafe, the use of acids and of nitre is advantageous, and commonly it is proper also to give wine very freely. From the fifth day of the disease throughout the whole course of it, it is proper to give an opiate once or twice a day; taking care at the same time to obviate colic in the bowels, by purgatives, or by laxative gyllers. From the eighth to the eleventh day of a violent disease, it will be proper to lay on blisters successively on different parts of the body, and that without regard to the parts being covered with pustules. Blisters are also to be applied to the external parts, in cafe of difficult deglutition, and vilicid tilla and mucus, which are thrown out with difficulty, at the same time that detergent gargles are to be delicately used. During the whole course of this disease, when a considerable fever is present, antimonial medicines, in nauseating doses, have by some been alleged to be employed with advantage; and in this way they have often the effect of moving the belly. But the great differees which patients suffer from a state of constant nausea is hardly to be borne; and every advantage which can be had from this practice may be obtained by easier means.

The remedies above-mentioned are frequently proper from the fifth day till the suppuration be finished. But after that period the fever is sometimes continued and increased; or sometimes, when there was little or no fever before, a fever now arises and continues with considerable danger; this is called the secondary fever, and requires a particular treatment.

When the secondary fever follows the distinct small-pox, and the pulse is full and hard, the cafe is to be treated as an inflammatory affection, by bleeding and purging; but the secondary fever which follows the confluent kind is to be considered as a putrid disease and bleeding is improper. Some purging may be necessary, but the remedies chiefly to be depended upon are the Peruvian bark and acids. When the secondary fever first appears, whether after a distinct or confluent small-pox, it is useful to exhibit an antimonial emetic in nauseating doses, but in such a manner as to produce some vomiting. For avoiding the pits which frequently follow the small-pox, no method hitherto proposed seems to be sufficiently certain.

On the subject of inoculation, Baron Dimfdale, a very celebrated writer, informs us, that were it left to his choice, he would decline inoculating children under two years old; because within that period they are exposed to all the dangers of diphtheria, fevers, fluxes, convulsions, and other accidents, sufficiently difficult in themselves to manage in such tender subjects.

In regard to constitution, Baron Dimfdale observes, that greater liberties may be taken than were formerly judged admissible. Persons afflicted with various chronic complaints, of phrenological scrobutic and arthritic habits; persons of unwieldy corpulence, and of intertemperate irregular lives; have all passed through this disease with as much facility as the most temperate healthy, and regular. But those who labour under any acute or critical disease, or its effects, are obviously unfit and improper subjects. So likewise are those in whom are evident marks of corrosive acrimonious humour's, or who have an evident debility of the whole frame from inanition or any other cause. All such require to be treated in a particular manner previous to the introduction of this disease. Constitutions disposed to frequent returns of intermitments, seem likewise justly exceptional; especially as the preparatory regimen may in some habits increase this tendency.

Baron Dimfdale, however, has known instances of severeague fits attacking persons between the infection of the matter and the eruption of the small-pox, and even during maturation, when the Peruvian bark has been given liberally and with much success; the principal business, in the mean time, suffering no injury or interruption.

Among the circumstances generally considered as more or less propitious to inoculation, the season of the year has been reckoned a matter of some importance. Spring and autumn have been generally recommended, as being the most temperate seasons; the cold of winter and the warmer heats having been judged unfavourable for this purpose. But Baron Dimfdale remarks, that experience does not justify those opinions; for, according to the best observations he has been able to make, inoculated persons have generally had more pustules in spring than at any other time of the year; and epidemic diseases being commonly most frequent in autumn, especially fluxes, intermitments, and ulcerated fore throats (all which are liable to mix more or less with the small-pox), the autumn, upon this account does not seem to be the most favourable season in general.

Baron Dimfdale's opinion is, that considering the surprising and indubitable benefits arising at all times to patients in the small-pox, from the free admission of fresh cool air and evacuations, we may safely inoculate at all feasons, provided care be taken to screen the patients as much as possible from heat in summer, and to prevent them from keeping themselves too warm and too much shut up, as they are naturally disposed to do, from the weather in winter. When feasons, however, are marked with any peculiar epidemics, of such a kind especially as may render a mild disease more untractable, it may perhaps be most prudent not to inoculate while such diseases are prevalent.

In directing the preparatory regimen, Baron Dimfdale principally aims at the following points, viz. To reduce the patient, if in high health, to a lower and more secure state; to strengthen the constitution, if too low; to correct what appears vitiated; and to clear the stomach and bowels as much as may be, from all crudities and their effets. With this view he orders such of his patients as constitute the first class above-mentioned, and who are by much the majoritv, to live in the following manner: To abstain from all animal food, including broths, and likewise butter, and cheese, from all fermented liquors, excepting small-beer, which is allowed sparingly; and from all juices, and whatever is ended with a manifest heating quality. The diet is to consist of pudding, gruel, fago, milk, rice-milk, fruit-pies, greens, roots, and vegetables of any of the kinds in feason, prepared or raw. Eggs, though not to be eaten alone, are allowed in puddings, and butter in paste-crust. The patients are to be careful that they do not eat much a quantity as to overload their stomachs, even of this kind of food. Tea, coffee, or chocolate, are permitted for breakfast; to those who choose or are accustomed to them.
In this manner they are to proceed about nine or ten days before the operation; during which period, at nearly equal distances, they are directed to take three doses of the following powder, either made into pills or mixed with a little syrup or jelly, at bedtime, and a dose of Glauber’s salts dissolved in thin water-gruel, each succeeding morning.

The powder is composed of eight grains of calomel, the same quantity of the compound powder of crab’s claw’s, and one eighth part of a grain of ermetic tartar. Instead of the latter, Baron Dimfdale has sometimes substituted two grains of precipitated sulphur of antimony. In order to facilitate the division of the doses, a large quantity is prepared at once, and great care taken that the several ingredients be well mixed.

This quantity is usually sufficient for a healthy strong man; and the dose must be allowed for women or children, according to their age and strength, as well as for persons advanced in years.

The first dose is generally ordered at the commencement of the course; the second three or four days after; and the third about the eighth or ninth day. The Baron chooses to inoculate the day after the last dose has been taken. On the days of purging, broths are to be allowed, and the patients are dehord to abstain from unprepared vegetables.

What has been said concerning the preparation, must be considered as proper only for the young or middle-aged, in a good state of health; but among those who are deficient in inoculation, are often found tender, delicate, and weak women; men of bad dispositions, valetudinarians by constitution, by illness, or intemperance; also aged persons, and children; and for all such a very different treatment must be directed. Here a milder course of medicine, rather of the alterative than purgative kind, is preferable; and in many instances, an indulgence in some light animal-food, with a glass or two of wine in cafe of lowness, is not only allowable, but necessary to support a proper degree of strength, especially in advanced age.

Children, whose bowels are often tender, and ought not to be ruffled by strong purges, yet require a mild mercurial and bear it well. Besides emptying the bowels of crudities, it is a good security against worms and their effects, which sometimes produce very alarming and even fatal disorders.

Inattention to the particular state of health of those who are entering upon the preparatory course, has been productive of great mischief. This is chiefly observable respecting the indiscreet use of mercurials, by which a salivation has often been raised, to the risk of impairing good constitutions, and the ruin of such as were previously weak and infirm. The difficulties and treatment necessary, will be obvious to those who are acquainted with the animal economy and medical practice.

The time of menstruation has generally been the guide in respect to the inoculation of women, that the whole of the disease may be over within the menstrual period. Baron Dimfdale informs us, that he observes this rule, when he can choose his time without any inconvenience, and he inoculates soon after the evacuation ceases; though he has no reason to decline performing the operation at any time.

Women with child have likewise been inoculated, and done well; but the state of pregnancy seems unfavourable to the process, which ought therefore not to be hazarded without some urgent reason. Baron Dimfdale has not inoculated any woman whom he knew to be pregnant; but on some who concealed their pregnancy he has performed the operation, without producing a miscarriage; the hope of which event, he suspects, had rendered them delirious of the process.

One of those had a child born nine weeks after inoculation at the full time, with distinct marks of the disease, though the mother had very few pustules.

The manner most commonly practiced in Britain, for communicating the small-pox by inoculation, has of late been the following: a thread was drawn thro’ a ripe pustule, and well moistened with matter. A piece of this thread was infused into a superficial incision made in one or both arms, near the part where the females are usually fixed; and being covered with a plaster, was three left for a day or two.

Very different methods of inoculation, however, are pursued; two of which Baron Dimfdale has frequently practiced and describes; but he informs us, that the following has proved so invariably successful, as to induce him to give it the preference.

The patient to be inoculated being in the same house, and if no objection be made to it, in the same room, with one who has the disease, a little of the various matter is taken from the place of infection, if the subject be under inoculation; or a pustule, if in the natural way, on the point of a lancet, so that both sides of the point are moistened.

With this lancet an incision is made in that part of the arm where the pustules are usually placed, deep enough to pass through the scar-skim, and just to touch the skin itself; and in length as short as possible, not more than one eighth of an inch.

The little wound being then stretched open between the finger and thumb of the operator, the incision is moistened with the matter, by gently touching it with the flat side of the infected lancet. This operation is generally performed in both arms, and sometimes in two places in one arm; a little distant from each other. For as Baron Dimfdale has not observed any inconvenience from two or three incisions, he seldom trifles to one; that neither he nor his patient may be under any doubt about the success of the operation from its being performed in one place only.

Baron Dimfdale has also tried the following method, with the same success as that above described; but he does not so much approve of it, because he has been credibly informed that it has sometimes failed in the practice of others. A lancet being moistened with the various fluid in the same manner as in the former, is gently introduced, in an oblique manner, between the scar and true skin, and the finger of the operator is applied on the point, in order to wipe off the infection from the lancet, when it is withdrawn. In this method, as well as in the former, a little blood will sometimes appear; but Baron Dimfdale neither draws blood with design, nor does he think there is any necessity of wiping it off before the matter is introduced.

In both these ways of inoculating, neither plaster, bandage,
bandage, nor covering is applied, nor in any respect necessary.

Baron Dimfdale informs us, that those methods of producing this disease have never once failed him; and experience has sufficiently proved that there is no danger from additional infection by the natural disease at the same time. He therefore makes no scruple of having the person to be inoculated, and the person from whom the infection is to be taken, in the same room; nor has he ever observed any ill consequence attending this practice. But he advises the inoculated patients (though perhaps there be no necessity for that precaution) to be afterwards separated from places of infection till certain signs of success appear, when all restraints are removed, there being then no danger from accumulation.

Baron Dimfdale remarks, that it seems to be of no consequence whether the infecting matter be taken from the natural or inoculated small-pox. He has used both, and never has been able to discover the least difference, either respecting the certainty of infection, the progress, or the event. He therefore takes the infection from either, as opportunity offers, or at the option of the patients or their friends.

Neither is it of any consequence whether the matter be taken before, or at the crisis of, the distemper. It is generally supposed, that the small-pox is not infectious till after the matter has acquired a certain degree of maturity; and in the common method of inoculation this is so much attended to, that when the operation has proved ineffectual, the failure has been ascribed to the unripeness of the matter.

But, as the author remarks, it appears very clearly from the present practice of inoculation, that so soon as any moisture can be taken from the infected part of an inoculated person, previous to the appearance of any pustules, and even previous to the eruptive fever, this moisture is capable of communicating the small-pox with the utmost certainty. Baron Dimfdale has taken a little clear fluid from the elevated pellicle on the incised part, even so early as the fourth day after the operation; and has at other times used matter tullly digested at the crisis, with equal success. In general, however, he prefers taking the matter for infection during the eruptive fever, as he supposes it at that time to have its utmost activity.

In all cases, when he takes matter from an inoculated person, it is from the place where it was infected; as he is always sure to find infection there if the disease succeeds, and always of sufficient energy.

It may appear strange that no bandage, dressing, or application whatsoever, is used to the part infected; but that the most simple incision being made, and moistened with the smallest particle of the recent fluid matter, the whole is committed to nature. This method, however, the Baron observes, is perfectly right: because the application of either plaster or unguent, as is the usual practice, will occasion an inflammation on some skins; and, in all, tend to disfigure the natural appearance of the incision, and prevent our forming a proper judgment of the progress of the infection.

If neither an inoculated patient be at hand, nor any one in the neighbourhood has a distinct kind of the natural disease, a thread may be used as in the common manner, provided it be very recently infected; but Baron Dimfdale is of opinion, that the thread ought to be used as soon as possible after being charged with the infecting matter.

The method of inoculation recommended by Baron Dimfdale is now almost universally adopted; or at least if any change has taken place, the operation is, if possible, still more simplified. Without the trouble of bringing to the same house both the person from whom the contagion is to be taken and the person to whom it is to be given, the operator in general carries the matter about with him on what is called a refervoir lancet. For this purpose a common lancet may be employed; but one, the blade of which is accurately inlaid in a metallic case, so constructed as to prevent the access of the air, and at the same time not to rub off the matter, is certainly preferable.

The infectious matter on this lancet is gently moistened by holding it for a few seconds over the steam of warm water; and by rubbing on it the point of another lancet, as much is taken off as is sufficient for giving the disease, which is done by introducing this infected point under the scurf-skin, in the manner Baron Dimfdale has recommended. Where fresh matter can be had, it is always preferable; but where this cannot be obtained, a lancet may be infected from a dry pustule, though kept for many months, by moistening it in warm water; particularly if care has been taken to preserve it from the action of external air by keeping it in a close phial.

A due attention to the progress of infection, discoverable by the part where the operation was performed, is a necessary circumstance; because a just prognostic may thence be sometimes formed of the future state of the distemper, and indications may be taken from the different appearances on the arm, that will enable us to prevent inconveniences.

Baron Dimfdale observes, that the former method of covering the place of incision with a plaster, and continuing upon it dressings of one sort or other, prevented much useful information of this kind. They precluded any judgment by the touch, and sometimes rendered that by the eye equivocal.

The day after the operation is performed, though it takes effect, little alteration is discoverable. On the second day, if the part be viewed with a lens, there generally appears a kind of orange-coloured stain about the incision, and the surrounding skin seems to contract. At this time Baron Dimfdale usually gives the following medicine at going to bed, either mixed with a little of any kind of jelly, or more frequently made into a pill.

Calomel, and compound powder of crab's-claws, of each three grains; emetic tartar, one-tenth of a grain.

A quantity of this medicine should be carefully prepared at once, in order to make the division more exact.

On the fourth or fifth day, upon applying the finger, a hardness is perceptible to the touch. The patient feels an itching on the part, which appears slightly inflamed; and under a kind of vesication is seen a little clear fluid, the part resembling a superficial burn. About the sixth, most commonly some pain and stiffness is felt in the axilla; a circumstance which not only foretells the near approach of the eruptive symptoms,
but is a sign of a favourable progress of the disease. Sometimes on the seventh, oftener on the eighth day, symptoms of the eruptive fever appear; such as light remittent pains in the head and back, succeeded by transient shivering and alternate heats, which continue in a greater or less degree till the eruption be perfected. At this time also it is usual for the patient to complain of a very disagreeable taste in his mouth, the breath is always fetid, and there ensues a smell peculiar to the variolous eruptive fever.

The inflammation in the arms at this time spreads fast; and, upon viewing it with a good glass, the incision for the moat part appears surrounded with an infinite number of small confluent pustules, which increase in size and extent as the disease advances. On the tenth or eleventh day, a circular or oval efflorescence is usually discovered surrounding the incision, and extending sometimes near half round the arm, but more frequently to about the size of a shilling; and being under the cuticle, is smooth to the touch and not painful. This appearance also is favourable. It accompanies eruption; every disagreeable symptom ceases; and at the same time it certainly indicates the whole affair to be over, the pain and flatness in the axilla also going off.

The feverish symptoms are for the most part so mild, as seldom to require any affliction, except a repetition of the same medicine that was directed on the second night after the operation; and next morning the following laxative draught should be given, to procure three or four fowls.

Infusion of fenna two ounces, manna half an ounce, tincture of jalap two drachms.

These are given as soon as the eruptive symptoms are perceivable, if they seem to indicate any uncommon degree of vehemence.

It has been observed, that by attending to the progress of infection, we may in general be able to prognosticate with some degree of certainty the issue of the distemper. Particular incidents will ever happen, but not sufficient to invalidate the propriety of general rules.

If the appearances already described are observed early, a very favourable event may be expected; but it happens in some cases, that the success of the inoculation is barely perceptible, the colour about the wound remaining pale, instead of changing to red or inflamed; the edges of the incision spread but little; they remain almost entirely flat, and are attended neither with itching nor uneasiness of any kind. Nay, sometimes on the fifth, and even the sixth day, the alteration is so little as to render it doubtful whether the infection has taken place.

When matters are in this state, Baron Dimidale observes the appearance is unfavourable, implying a late and more untoward disease: To prevent which, he directs the powder or pill to be taken every night, and in came it fails to operate by itself, or there be the least difficulty to collectives, an ounce of Glauber’s falls, or more commonly the laxative draught already mentioned, is given in the morning, once or twice, as the case may require. This course forwards the inflammation, which is always a desirable circumstance; it being in general observed, that an early progress on the arm, and an early commencement of the eruptive complaints, portend that the distemper will be mild and favourable; and on the contrary, when both are late, the symptoms he tells us are usually more irregular and unfavourable.

Further experience, however, has by no means fully confirmed his opinion in this particular. On the contrary, even where the progress of infection in the arm has been uncommonly slow, a disease in the mildest possible form has succeeded. There is therefore no good reason why a practitioner should be alarmed at an unusually slow progress, or should in such instances employ more internal remedies than he would do in other cases. And some, whose practice in inoculation has been very extensive, have even remarked, that when infants are inoculated, they have never observed epileptic accessions, the most alarming forerunners of the disease, in thoee cases where the progress of the arm has been slow.

The management recommended by Baron Dimidale at the period of eruption differing essentially from that of former practitioners, and being a matter of great importance, he gives the following explicit directions on this head, advising that they may be pursued with firmness and moderation.

Instead of the patient being confined to his bed or his room, when the symptoms of the eruptive fever come on, he is directed, as soon as the purging medicine has operated, to keep abroad, as much as he can bear, in the open air, be it ever so cold; always taking care not to stand still, but to walk about moderately while abroad. He is also directed, if thirsty, to drink cold water.

Baron Dimidale observes, that this treatment seems as hard at first to the patients as it must appear singular to those who are unacquainted with such practice; but the effects are so salutary, so constantly confirmed by experience, and an easy progress through every stage of the disease depends so much upon it, that he admits of no exception, unless the weather be extremely feverish and the constitution very delicate. He adds, it is indubitably true, that in the few instances where the symptoms of eruption have run very high, the patients being averse to any motion, and fearing the cold as the greatest evil; yet when, under those circumstances, he has persuaded them to rise out of bed, and go out of doors, though led sometimes by two attendants, and has allowed them to drink as much cold water as they chose, they have not suffered the least unfavourable accident: on the contrary, after they have been prevailed upon to comply with those directions, they find their spirits revived; an inclination for nourishment returns; they rest well; a gentle sweat succeeds, accompanied with a favourable eruption; and the fever seems to be entirely extinguished.

Cool regimen during the eruptive fever is now almost universally adopted; but like other useful remedies it has not unfrequently been abused: And practitioners ought never to forget, that inoculated patients are not, more than the rest of the human species, exempted from injuries from cold, which is unquestionably a powerful cause of disease. Unless, therefore, in cases where very considerable morbid heat is induced by the eruptive fever, by which a temporary defence is unquestionably afforded against the action of external
external cold, the bad effects which may result from it are never to be overlooked. And there is reason to believe, as may indeed be inferred from Baron Dimfdale's observations, that the disease is more moderated by the action of pure and free air than by cold. Accordingly inoculation is performed with very great success even in the warmest seasons and situations of warm climates.

In general, the complaints in this disease are very moderate, and attended with so little illness that the patient eats and sleeps well the whole time. A few pustules appear, sometimes equally disposed; sometimes the inflammations on the arms spread, and are surrounded with a few pustules, which gradually advance to maturity; during which time, for the most part, the eruption proceeds kindly, and there is much more difficulty to restrain the patients within due bounds, and prevent their mixing with the public, thereby spreading the infection, than there was at first to prevent them to go abroad. During this time medicine is seldom wanted; the coolest air seems the best cordial; and if any uncommon languor happens, a glass of wine is allowed in the day, or some white-wine whey at bed-time; which are indeed at any time allowed to tender, aged or weakly persons.

With these exceptions, the patients are hitherto kept very scrupulously to the diet at first directed. But after the eruption is completed, they are, if occasion requires, indulged in a little well boiled meat of the lightest kind, as chicken, veal, or mutton.

The above mentioned regimen, the cooling alterations, and the free use of cool air at the season of eruption, almost universally prevent either alarming symptoms or a large crop of pustules. Baron Dimfdale has seen a few with such a quantity of pustules, though deficient that he has neither advised nor allowed them to go out of the house. But the generality of his patients, where the eruptions are few, assume themselves abroad, within proper limits, with the pustules upon them.

This practice, however, the Baron neither enjoins nor maintains to be necessary; but he has not been able to observe that any inconvenience has arisen from it. He also informs us, that, how strange severer it may appear, those who are most adventurous, seem to enjoy better spirits, and are more free from complaints, than others who are inclined to keep within doors.

Those who have the disease in the slightest manner first described viz. without any appearance of eruption but on the inoculated part, are soon permitted to go about their usual affairs: and many instances have happened of very industrious poor men, who have immediately returned to their daily labour, with a caution not to intermix with those who have not had the distemper, for fear of spreading it; and with injunctions to take, two or three times, of the purge already directed, or as many doses of Glauber's salts. Those who have the disease in a greater degree, are confined somewhat longer; and, if there be the least suspicion of convulsions, a very mild laxative is now and then exhibited; as the progress to maturation appears rather to be advanced than retarded by such means.

When the maturation is completed, and there is nothing farther to fear from the distemper, Baron Dimfdale allows his patients gradually to change their course of diet, from the perfectly cooling kind, to one a little more generous; recommending firstly to all a return to their ordinary animal-diet, with much caution and restraint upon their appetites, both in respect of food and fermented liquors.

He observes it is not often that we are under the necessity of making any application to the part where the infection of the various matter was made. It most commonly heals up, and is covered with a scab, about the time when, in a natural way, all the small-pox would have been dried up. But in some cases the infusions continue to discharge a purulent matter a longer time. In these instances it is sufficient to cover the part with the white cerate, or any other mild emollient substance, which may at once prevent the linen from adhering to the scab, and defend it from the air. As in these cases the part remains unhealed from some peculiar cause in the habit, it will be necessary to give gentle purgatives, and proper alternatives, as particular exigencies may require.

After describing the usual progress of the small-pox from inoculation, Baron Dimfdale remarks that there are frequent deviations from this course, which may embarrass an inexperienced practitioner, and create a real difficulty, as well as apprehensions of danger. He therefore proceeds to relate the means for removing those symptoms, and the doubts respecting the event.

The symptom he first notices, and which, though it very rarely happens, sometimes gives much trouble, is great fickliness, accompanied with vomiting, in the eruptive state of the disease. For this complaint it is always necessary in the first place to clear the stomach, which may be effected, either by ordering the patient to drink plentifully of warm liquids to promote vomiting; or perhaps more properly, by giving to an adult one grain of tartarised antimony, mixed with ten grains of compound powder of crab's-claws; taking care to diminish the dose for very young and weak subjects.

This usually throws off some bilious matter by vomiting, sometimes produces flosses, or occasions a moderate sweat, and generally administers relief. If, however, no flosses should follow from this medicine, and the fickliness should remain, a gentle laxative almost certainly procures a respite, and the appearance of the eruption entirely removes the complaint.

Another deviation, of yet greater consequence, which sometimes happens towards the times of the eruption, and is often, though not always, accompanied with great sickliness, is an erythematous efflorescence. If this shows itself on the skin partially, and here and there in patches, it is not very alarming, and soon wears off. But sometimes the whole surface of the body is covered with a rash intimately mixed with the various eruption, and so much resembling the most malignant kind of confluent small-pox as scarcely to be distinguished from it. In some such cases, accompanied with petechial and livid spots, Baron Dimfdale has been much alarmed; not being able by inspection only, though assisted by glasses, to determine whether what he saw was an inoffensive rash, or tokens of the greatest malignity. Very strict attention, however, has
enabled him to distinguish the difference clearly; and for afflicting others in such a discrimination, he makes the following remarks.

The real and essential differences to be gathered from the concomitant symptoms. In the erythematous or variolous rash, there is not so much fever, nor is the redness, or pain of the head, or loins, so considerable; neither is there that general prostration of strength; all which are usual attendants on a confluent small-pox especially when accompanied with such putrid appearances. Besides, upon a careful examination, there may sometimes be discerned a few distinct pustules, larger than the rest, mixed with the rash, which are the real small-pox. In these cases the patients are ordered to refrain from cold water, or any thing cold and to keep within doors, but not in bed. If any sickness yet remains, a little white-wine whey, or other temperate cordial, is advised; and this method has been so generally successful, as to prevent any alarming complaint. After two or three days, the skin changes from a florid to a dusky colour, a few distinct pustules remain and advance properly to maturation without any farther trouble ensuing from this formidable appearance.

This rash has often been mistaken for the consequence it so much resembles; and has afforded occasion for some practitioners, either ignorantly or diligenously, to pretend, that, after a very copious eruption of the confluent pox, they can by a specific medicine, discharge the greater part of the pustules, leaving only as many distinct ones as may satisfy the patient that he has the distemper.

Baron Dimidale informs us, that rashes of the kind above described frequently happen during the preparation (whether owing to the regimen, or medicine, or both, he does not determine), and cause the operation to be postponed. But he has observed, that in such cases they are apt to return at the time of the eruption of the small-pox.

In general, as has been already said, the symptoms which precede eruption commence at the end of the seventh or on the eighth day inclusive from the operation; but it often happens that they appear much sooner, and sometimes much later than this period. Baron Dimidale has seen some cases in which the distemper has come on so suddenly after infection, and with so little complaint or uneasiness, that the whole affair has been terminated, purges taken and the patient returned home perfectly well, in a week; before others, inoculated at the same time, from the same patient, and under the same circumstances, have begun to complain.

In this case, the inoculated part shows early certain marks of infection, sometimes on the very next day, or the day after, when the incision will often appear considerably inflamed and elevated. The patient about this time frequently makes some of the following complaints, viz. chilliness, itchings and flight prickings, pains in the parts, and sometimes on the shoulders; giddines, drowsines, and a flight head-ache, sometimes attended with a feverish heat, but often without any. The account which patients themselves give of their feelings is, in some, as if they had drank too much, and in others, as if they had caught a cold. Tho' these complaints seldom last 24 hours, often not so long, and with frequent intermissions; never, so far as our author remembers, rising to a degree that requires confinement. During the continuance of those complaints, the inflammation of the arm advances space, and feels hard to the touch: but upon their wearing off, the inflamed appearances gradually diminish, and the part dries to a common scab; the skin, that was before red, turns livid, and the distemper entirely vanishes. In some instances, tho' symptoms attack much later; even on the seventh or eighth day, when an eruption might be expected in consequence of them, yet none appears; but the arm gets well very soon, and the distemper is at an end.

In this irregular sort of the disorder there have, however, been some examples where a few eruptions have appeared, and probably in consequence of the inoculation; yet the pustules have not looked like the true small-pox, neither have they maturated like them nor lasted longer than three days; about which time for the most part, they have dried away.

When this irregular kind of the distemper first occurred in Baron Dimidale's practice, he was in doubt whether the patients were quite secure from any future attacks of the distemper. In order to be satisfied of this point, he inoculated them a second time, causing them to associate with persons in every stage of the distemper, and to try all other means of catching the infection. This method has been practiced with the generality of such patients ever since, yet without a single instance of its producing any disorder. Baron Dimidale, therefore, now makes no scruple of pronouncing them perfectly safe; and experience has enabled him to foretell, for the most part, in two or three days after the operation, whether the distemper will pass in this flight manner.

Upon the second inoculation, however, the incised parts are commonly inflamed for a day or two, just in the same manner as has in numerous instances been observed, as well in those who, though certain of having had the small-pox in the natural way, have submitted to inoculation for the sake of experiment, as in others, who being doubtful whether they have had the distemper or not, have been inoculated in order to be satisfied. But in all such cases, the parts soon became well; nor did any of those appearances which have been described as the constant attendants on inoculation, as pain in the head, giddines, marks of infection, in the arm, &c. ensue. Neither can those appearances ever be produced upon a person who has had the small-pox before, either in the natural way, or by inoculation.

Another irregularity deserving notice is, that some times upon the abatement of the fever and other symptoms, after the appearance of several pustules, and when the eruptive stage of the distemper seems completed, it nevertheless happens that fresh eruptions come out, and continue doing so daily, for four, five, or even six days successively; preceded sometimes by a flight pain in the head, though more frequently they appear without any new disturbance. Tho' these are generally few, of short duration, and seldom come to maturity. Baron Dimidale, however, has seen four cases in which, after a cessation of complaints, and an appearance of few pustules, the eruptive stage of the distemper was thought to be over, yet in two or three days
a fresh fit of fever has attacked the patients, and after a short illness a quantity of new pustules has broke out far exceeding the first number, and those remained and matured completely.

Some of the Baron's own patients, and, as he has been credibly informed, those of other inoculators, have had considerable eruptions of this kind after they returned home; which have probably given occasion for the reports of several having had the disease in the natural way after inoculation. But in confirmation that those reports are ill-grounded, he observes, that in all the cases of this sort which have occurred in his own practice, or as far as he can learn, in that of others, the second or latter crop of pustules has always happened within the time usually allowed for the progress of the small-pox from inoculation; before the inflammation on the arm has ceased, and sooner than we can suppose them to have been produced by inoculation received in the natural way. When this has happened, it has been to persons in whom, after a flight eruption and abatement of symptoms, the disease has prematurely been judged to be quite over, and they have therefore been permitted to return to their families.

An appearance, more alarming and more dangerous than any of those which have already been taken notice of, is the occurrence of epileptic fits. For although it has been remarked, that these are often the forerunners of a mild disease, both in cases of accidental and likewise of intentional contagion; yet it is undeniable, that in not a few instances they have of themselves proved fatal. Wherever, therefore, an epileptic fit occurs, it naturally claims the attention of the practitioner. The occurrence of future fits is best prevented by the employment of tincture of opium, taking off the tendency to inordinate action by giving at first a temporary diminution of irritability; and on the same principle, when during a fit the patient is able to swallow, nothing is more effectual either in shortening the fit or diminishing its severity, than a dose of laudanum accommodated to the age and condition of the patient. Considerable benefit may be derived from any volatile alkaline spirit, such as spirit of hartshorn, the favourite remedy of Dr. Sydenham in such cases. But the best effects may be obtained from the use of the tepid bath, which is not only of service in such cases from its action as an antisyphilitic, but which also, by producing relaxation of the skin facilitates and promotes the eruption. And even allowing that, as some imagine, the number of pustules should be increased by heat applied in this manner; yet much less is to be dreaded from thence than from the continuance of the fits.

Baron Dimfoldale next considers the consequences that arise from this very cool and repelling method and how far the patients future state of health may be affected by a practice so opposite to what was formerly employed.

It has been the general opinion, that in most or all eruptive complaints, especially the small-pox, the rational method of cure was to forward, by every gentle means, the efforts of nature in producing an eruption and on the contrary, that there was danger in checking it, either by cold air, cold drink, or any considerable evacuations. For this purpose the use of warm diluents, and the lying in bed, especially if the fever and symptoms run high, or at least confining to the house, have been generally approved and recommended. Experience, however, has now sufficiently confirmed the advantage of a different kind of treatment.

While the old methods prevailed of conducting inoculation, the patients, particularly children, after passing through the disease in a very favourable manner, were frequently liable to abscesses in the axilla and other parts, tedious ophthalmies, and troublesome ulcerations in the place of infection; which though they could not be foreseen nor prevented, yet often gave more pain and vexation to the patients, and trouble to the operator, than the disease itself had done. But on inquiry into the state of those who have been treated in the cool way, or according to the new method, Baron Dimfoldale affirms, that in more than 1500 there has been only one who has had so much as a boil in the axilla; and this was a child who had in the same arm an idium, which was at that time dried up. He has seen only two very small superficial boils in others near the place of infection; and those seemed to be occasioned rather by an irritation from the discharge than by any other cause, and were all soon healed with very little trouble.

In a few instances also, there has been a slough in the incised part, which has caused a fore of short duration; but not one instance of an ulcer of any continuance. Such like breakings out too, and scabs as frequently succeed the mild natural small-pox, sometimes though rarely happen to those inoculated in the new way; and, as they are of little consequence, are generally cured by the same method, the use of a few gentle purges.

In regard to ophthalmies from this kind of practice, Baron Dimfoldale has never known an instance of one truly deferving that name. The coats of the eye have been a little inflamed in a very few, but they soon cleared, without any means used for that purpose. He knows but two cases where he thought the discharges produced some inconvenience, and these were sand in two cafes where he thought the inflammation great enough to require bleeding; and not one where a blister was necessary. Those complaints, therefore, which were formerly so frequent and troublesome, seem to be much reduced by the new method, the great utility of which is now universally acknowledged.

When the benefits of inoculation have now been demonstrated to be so great, it is truly surprising that the practice has not yet become general. Even its wonderful success, however, particularly when contrasted with the natural small-pox, has not been sufficient to remove every prejudice against it; and in many parts of Britain, the lower classes are deterred from it by scruples even of a religious nature, by which means the state annually suffers a very considerable loss. It is, however, but just to observe, that in many parts, both the medical practitioners and the clergy have done all in their power to remove every difficulty.

At Edinburgh, the colleges of physicians and surgeons annually make an offer of their assistance and advice gratis to all the poor who submit to this operation during certain months; and a most respectable clergyman has been at the expense of publishing a plain and sensible discourse, not only calculated to remove every religious doubt or scruple which can be entertained on
MEDICINE.

Exanthematous eruptions are sometimes so common among children, as to excite the doubts and fears of parents; and I have been frequently consulted on the subject of the chicken-pox, by persons who have been sufficiently cautioned against the small-pox; and, by the accidental rubbing of the face, and.

This is in general a very slight disease; and is attended with so little danger, that it would not merit any notice, if it were not apt to be confounded with the small-pox, and thus give occasion to an opinion that a person might have the small-pox, twice in his life; or that they have apt to deceive into a false security those who have never had the small-pox, and make them believe that they are safe when in reality they are not. This eruption breaks out in many, according to Dr Heberden, without any illness or previous sign; in others it is preceded by a little degree of chilliness, latiitude, cough, broken sleep, wandering pains, loss of appetite, and feverish state for three days.

In some patients the chicken-pox make their first appearance on the back; but this perhaps is not constant. Most of them are of the common size of the small-pox, but some are large. Dr Heberden never saw them confluent, nor very numerous. The greatest number was about 12 in the face, and 200 over the rest of the body.

On the first day of the eruption they are reddish. On the second day there is at the top of most of them a very small bladder, about the size of a millet-seed. This is sometimes full of a watery and colourless, sometimes of a yellowish liquor contained between the cuticle and skin. On the second, or at the farthest, on the third day from the beginning of the eruption, as many of these pocks as are not broken seem arrived at their full maturity; and those which are full of that yellow liquor very much resemble what the genuine small-pox are on the fifth or sixth day, especially where there happens to be a larger space than ordinary occupied by the extravasated serum. It happens to most of them, either on the first day that this little bladder arises, or on the day after, that its tender cuticle is burst by the accidental rubbing of the clothes, or by the patient's hands to allay the itching which attends this eruption. A thin scab is then formed at the top of the pock, and the swelling of the other part abates, without its ever being turned into pus, as it is in the small-pox. Some few escape being burst; and the little drop of liquor contained in the vehicle at the top of them, grows yellow and thick, and dries into a scab. On the fifth day of the eruption they are almost all dried and covered with a light crust.

This eruption is preceded for three or four days by all the symptoms which forewarn the chicken-pox; but in a much higher degree. On the fourth or fifth day the eruption appears, with very little abatement of the fever; the pains likewise of the limbs and back still continue, to which are joined pains of the gums. The pocks...
pocks are redder than the chicken-pox, and spread wider; and hardly rise so high, at least not in proportion to their size. Instead of one little head or vesicle of a serous matter, these have from four to ten or twelve. They go off just like the chicken-pox, and are distinguishable from the small-pox by the same marks; besides which, the continuance of the pains and fever after the eruption, and the degree of both these, though there be not above 20 pocks, are circumstances never happening in the small-pox.

Genus XXX. Rubeola.

Measles.

Exantheme.

Var. 1. The Anomalous Measles.

Rubeola anomala, Sauv. sp. 2. Morbilli anomali. Syden. lec. v. cap. 3.

Var. 2. The Measles attended with Quinsy.

Var. 3. The Measles with Putrid Diathesis of the Blood.

Sp. II. The Variolodes.

In Scotland commonly called the Nirles.

Rubeola variolodes, Sauv. sp. 3.

Description. This disease begins with a cold stage, which is soon followed by a hot, with the ordinary symptoms of thirst, anorexia, anxiety, and vomiting; and these are more or less considerable in different cases. Sometimes from the beginning the fever is sharp and violent; often, for the first two days, it is obscure and inconsiderable; but always becomes violent before the eruption, which commonly happens on the fourth day. This eruptive fever, from the beginning of it, is always attended with hoarseness, a frequent hoarse dry cough, and often with some difficulty of breathing. At the same time, the eyes are somewhat swollen; the eyes are a little inflamed, and pour out tears; and with this there is a coryza, and frequent sneezing. For the most part, a continual drounness attends the beginning of the disease. The eruption, as we have said, commonly appears upon the fourth day, first on the face, and successively on the lower parts of the body. It appears first in small red points; but, soon after, a number of these appear in clusters, which do not arise in visible pimplies, but, by the touch, are found to be a little prominent. This is the cæfe on the face; but, in other parts of the body, the promineney, or roughness, is hardly to be perceived. On the face, the eruption retains its redness, or has it increased for two days; but on the third, the vivid redness is changed to a brownish red; and in a day or two more the eruption entirely disappears, while a mealy desquamation takes place. During the whole time of the eruption, the face is somewhat turgid, but seldom considerably. Sometimes, after the eruption has appeared, the fever ceases entirely: but this is seldom the case; and more commonly the fever continues or is increased after the eruption, and does not cease till after the desquamation. Even then the fever does not always cease, but continues with various duration and effect. Though the fever happen to cease upon the eruption's taking place, it is common for the cough to continue till after the desquamation, and sometimes much longer. In all cases, while the fever continues, the cough also continues, generally with an increase of the difficulty of breathing; and both of these symptoms sometimes arise to a degree which denote a pneumatic affection. This may happen at any period of the disease; but very often it does not come on till after the desquamation of the eruption.

After the same period, also, a diarrhœa frequently comes on, and continues for some time.

It is common for measles, even when they have not been of a violent kind, to be followed by inflammatory affections, particularly ophthalmia and phthisis. If blood be drawn from a vein in the meaules, with circumstances necessary to favour the separation of the glutton, this always appears separated and lying on the surface of the cæramentum, as in inflammatory diseases. For the most part, the meaules, even when violent, are without any putrid tendency; but in some cases, such a tendency appears both in the course of the disea על and especially after the ordinary course of it is finished.

Causa. The meaules are occasioned by a peculiar kind of contagion, the nature of which is not understood; and which, like that of the small-pox, affects a person only once in his life.

Prognosis. From the description of this distemper already given, it appears that the meaules are attended with a catarrhal affection, and with an inflammatory diathesis to a considerable degree; and therefore the danger of them is to be apprehended chiefly from the coming on of a pneumatic inflammation.

Care. In meaules, as well as in small-pox, the disease from its nature must necessarily run a determined course; and therefore the sole aim of a practitioner is to conduct this course in the easiest manner, by preventing and obviating urgent symptoms.

From the consideration mentioned in the prognosis, it will be obvious, that the remedies especially necessary are those which may obviate and diminish the inflammatory diathesis; and therefore, in a particular manner, blood-letting. This remedy may be employed at any time in the course of the disease, or after the ordinary course of it is finished. It is to be employed more or less, according to the urgency of the symptoms of fever, cough, and dyspnoea; and generally may be employed very freely. But as the symptoms of a pneumatic inflammation seldom come on during the eruptive fever, and as this is sometimes violent immediately before the eruption, though sufficiently mild disease be to follow; bleeding is seldom very necessary during the eruptive fever, and may often be desired for the times of greater danger which are perhaps to follow.

In all cases of meaules, where there are no marks of putreency, and where there is no reason, from the known nature of the epidemic, to apprehend putrefency, bleeding is the remedy most to be depended upon:
uppon: but allusion may also be drawn from cooling purgatives; and particularly from blisters on the fides or between the shoulders. The dry cough may be alleviated by the large use of demulcent peptoria, mucilaginous, oily, or sweet. It may, however, be observed with respect to these demulcents, that they are not so powerful in involving and correcting the acrimony of the masts of blood as has been imagined; and that their chief operation is by soothing the fauces, and thereby defending them from the irritation of acrides, either arising from the lungs or difilling from the head. For moderating and quieting the cough in this disease, opiates certainly prove the most effectual means, whenever they can be safely employed.

In the meahes, in which an inflammatory state prevails in a considerable degree, opiates have indeed by some been supposed to be inadmissible: but experience abundantly demonstrates, that the objection made to their use is merely hypothetical; and even in cases where, from a high degree of pyrexia and of dyspnoea, there is reason to fear the preference, or at least the danger, of pneumatic inflammation, opiates are highly useful; after bleeding, to obviate or abate the inflammatory state, has been duly employed in such cases, while the cough and watchfulnes are the urgent symptoms, opiates may be safely exhibited, and with great advantage. In all the exanthemata, there is an acrimony diffused over the system, which gives a considerable irritation: and, for obviating the effects of this, opiates are useful, and always proper, when no particular contra-indication prevails.

When the desquamation of the meahes is finished, though then there should be no disorder remaining, phyaicians have thought it necessary to purge the patient several times, with a view to draw off what has been called the drugs of this disease; that is, a portion of the morbid matter, which is supposed to remain long in the body. Dr Cullen does not reject this supposition; but at the same time cannot believe that the remains of the morbid matter diffused over the whole mass of blood, can be wholly drawn off by purging; and therefore thinks, that, to avoid the consequence of the meahes, it is not the drawing off the morbid matter which we need to study, so much as to obviate and remove the inflammatory state of the system which had been induced by the disease. With this last view indeed, purging may still be a proper remedy; but bleeding, in proportion to the symptoms of inflammatory disposition is still more so.

From our late experience of the use of cold air in the eruptive fever of the small-pox, some physicians have been of opinion that the practice may be transferred to the meahes; but this point has not yet been determined by sufficiently extensive experience. We are certain, that external heat may be very hurtful in the meahes, as in most other inflammatory diseases; and therefore, that the body ought to be kept in a moderate temperature during the whole course of the disease: but how far, at any period of the disease, cold air may be applied with safety, is still uncertain. Analogy, though so often the resource of physicians, is frequently fallacious; and further, though the analogy with the small-pox might lead to the application of cold air during the eruptive fever of the meahes, the analogy with catarh feems to be against the practice.

When the eruption is upon the skin, there are many instances of cold air making it disappear, and thereby producing much disorder in the system; and there are also frequent instances of this disorder's being removed by retuming the heat of the body, and thereby again bringing out the eruption.

Upwards of 20 years ago, inoculation for the meahes was proposed, and practiced in several instances with success, by Dr Home of Edinburgh. His method of communicating the infection was, by applying to an incision in each arm cotton moistened with the blood of a patient labouring under the meahes; but with others who have made similar trials, the attempt has not yet succeeded. And attempts have been made to inoculate this disease by means of the fluid discharged under the form of tears, the sm镭e falling from the surface, and the like; but there is reason to believe, that where it was imagined the infection had thus been communicated, the contagion was only carried about the person inoculating, and communicated in the ordinary way.

From inoculation of the meahes, it is imagined that several advantages may be obtained, and among others, it is thought the forenes of the eyes may be mitigated, the cough abated, and the fever rendered less severe. But the practice was never much in fashion, and now is scarce ever heard of.

Genus XXXI. Miliaria.

The Miliary Fever.

Miliaria, Lin. 7.
Miliaria, Sauv. gen. 95. Sag. gen. 295.
Fever miliaris, Vag. 37.
Fever purpurea rubra et alba miliaris, Hoffm. II. 68.
Fever purpurea fem miliaris,
Junk. 75.
Miliaria benigna, Sauv. fp. 1.
Miliaria maligna, Sauv. fp. 2.
Miliaria recidivans, Sauv. fp. 3.
Miliaria Germanica, Sauv. fp. 5.
Miliaria Boia, Sauv. fp. 6.
Miliaria Britannica, Sauv. fp. 1.
Miliaria fudatoria, Sauv. fp. 2.
Miliaria nautica, Sauv. fp. 3.
Miliaria purpurea, Sauv. fp. 4.
Miliaria lacca, Sauv. fp. 5.
Miliaria puerperarum, Sauv. fp. 6.
Miliaria fcorbutica, Sauv. fp. 7.
Miliaria critica, Sauv. fp. 8.

Hiflory and Description. This disease is said to have been unknown to the ancients, and that it appeared for the first time in Saxony about the middle of the last century. It is said to have since spread from thence into ail the other countries of Europe; and, since the period mentioned, to have appeared in many
From the time of its having been first taken notice of, it has been described and treated of by many different writers; and by all of them, till very lately, has been considered as a peculiar idiopathic disease. It is said to have been constantly attended with peculiar symptoms. It comes on with a cold stage, which is often considerable. The hot stage, which follows, is attended with great anxiety, and frequent sighing. The heat of the body becomes great, and soon produces profuse sweating, preceded, however, with a sense of pricking, as of pin points in the skin; and the sweat is of a peculiar rank and disagreeable odour.

The eruption named milia is said to be of two kinds: the one named the red, the other the white miliaria. The former, which in English is strictly named a rubo, is commonly allowed to be a symptomatic affection; and as the latter is the only one that has any pretensions to be considered as an idiopathic disease, it is this only that we shall more particularly describe and treat of under this genus.

What is then called the white miliaria eruption, appears at first like the red, in very small red pimples for the most part distinct, but sometimes clustered together. Their little prominence is better distinguished by the finger than by the eye. Soon after the appearance of this eruption, and, at least, on the second day, a small veicle appears upon the top of the pimples. At first the veicle is whey-coloured: but soon becomes white, and stands out like a little globule on the top of the pimple. In two or three days these gloubules break, or are rubbed off; and are succeeded by small crusts, which soon fall off in small scales. While one set of pimples take this course, another set arise to run the same; so that the disease often continues upon the skin for many days together. Sometimes when one crop of this eruption has disappeared, another, after some intervals, is produced. And it has been further observed, that in some persons there is such a disposition to this disease, that they have been affected with it several times in the course of their lives.

This disease is said to affect both sexes, and persons of all ages and constitutions; but it has been observed at all times to affect especially, and most frequently, lying-in women.

It is often accompanied with violent symptoms and has frequently proved fatal. The symptoms, however attending it are very various; and they are, upon occasions, every one attending febrile diseases; but no symptom, or concourse of symptoms, are steadied the same in different persons, so as to give any specific character to the disease. When the disease is violent, the most common symptoms are phrenetic comatose, and convulsive affections which are also symptoms of all febrile diseases treated by a very warm regimen.

When there is such a variety of symptoms appearing in this disease, it is not to be expected that any one particular method of cure can be proposed; and, accordingly, we find in different writers different methods and remedies prescribed; frequent disputes about the most proper; and those received and practised by some, opposed and deferted by others.

It appears, however, to Dr Cullen, very improbable, that this was really a new disease, when it was first considered as such. There are very clear traces of it in authors who wrote long before that period; and though there were not, we know that ancient descriptions were often inaccurate and imperfect, particularly with respect to cutaneous affections; and we know also that those affections which commonly appeared as symptomatic only, were often neglected, or confounded together under a general appellation.

The antecedent symptoms of anxiety, sighing, and pricking of the skin, which have been spoken of as peculiar to this disease, are, however, common to many others; and perhaps to all those in which sweatings are forced out by a warm regimen. Of the symptoms said to be concomitant of this eruption, there are none which can be affirmed to be confant and peculiar but that of sweating. This, indeed, always precedes and accompanies the eruption; and, while the miliaria eruption attends many different diseases, it never, however, appears in any of these but after sweating; and in persons labouring under the same diseases it does not appear, if in such persons sweating be avoided. It is therefore probable, that the eruption is the effect of sweating; and that it is the effect of a matter not before prevailing in the mafs of blood, but generated under particular circumstances in the skin itself. That it depends upon particular circumstances of the skin, is also probable from its being observed that the eruption seldom or never appears upon the face, although it affects the whole of the body besides; and that it comes upon those places especially which are more closely covered; and that it can be brought out upon particular places by external applications.

It is to be observed, that this eruptive disease differs from the other exanthemata in many circumstances, especially the following; that it is not contagious, and therefore never epidemic; that the eruption appears at no determined period of the disease; that the eruption has no determined duration; that successive eruptions frequently appear in the course of the same fever, and that such eruptions frequently recur in the course of the same person's life. All this renders it very probable, that, in the miliaria fever, the morbid matter is not a subsisting contagion communicated to the blood, and thence, in consequence of fever and assimilation, thrown out upon the surface of the body, but a matter occasionally produced in the skin itself by sweating.

This conclusion is further rendered probable from hence, that, while the miliaria eruption has no symptoms or concourse of symptoms peculiar to itself, it, upon occasions, accompanies almost every febrile disease, whether inflammatory or putrid, if these happen to be attended with sweating; and from thence it may be presumed, that the miliaria eruption is a symptomatic affection only, produced in the manner we have said.

But as this symptomatic affection does not always accompany every instance of sweating, it may be proper to inquire, what are the circumstances which especially
Exantemata. Dr Cullen gives no full and proper answer. He cannot say that there is any one circumstance which in all cases gives occasion to this eruption; nor can he say what different causes, in different cases, may give occasion to it. There is only one observation that can be made to the purpose of this inquiry; and it is, that these perimetric sweats, under febrile diseases are especially liable to the military eruption, who have been previously weakened by large evacuations, particularly of blood. This will explain why it happens to lying-in women more frequently than to any other persons; and to confirm this explanation, he has observed, that the eruption has happened to other women though not in child-bed, but who had been much subjected to a frequent and copious menstruation, and to an almost constant nitric album. He has also observed it to have happened to men in fevers, after wounds from which they had suffered a great loss of blood.

Further, that this eruption is produced by a certain state of debility, is, he thinks, probable, from its often attending fevers of the putrid kind, which are always attended with great debility. It is true, that it also sometimes attends inflammatory diseases, when it cannot be accounted for in the same manner; but he believes it may be observed, that it especially attends those inflammatory diseases in which the sweats have been long protracted, or frequently repeated, and which have thereby produced a debility, and perhaps a debilitating putrid diathesis.

That, however, the military eruption is not necessarily or even generally connected with a certain state of debility, is abundantly evident from its being entirely wanting in by much the greater number of instances of typhoid fever, and in a variety of other diseases, where every possible degree of debility occurs: And that it is not connected with any certain state of debility, till farther appears, both from the condition of those afflicted with it in different instances, which in point of strength is very various; and likewise from the continuance of fresh eruptions with the same individual, although during that time in very different states with respect to debility. It appears, therefore, much more probable, that it depends on some peculiar state of the surface, induced by the concurring influence of certain predisposing and occasional causes.

It appears so clearly that this eruption is always a symptomatic and factitious affection that Dr Cullen is persuaded it may be, in most cases, prevented merely by avoiding sweats. Spontaneous sweats, in the beginning of diseases, are very rarely critical; and all sweats not evidently critical, should be prevented, or at least moderated; and the promoting them, by increasing external heat, is commonly very pernicious. Even critical sweats should hardly be encouraged by such means. If, therefore, spontaneous sweat arise, they are to be checked by the coolness of the chamber; by the lights and loofeness of the bed-cloaths; by the persons laying out their arms and hands; and by their taking cold drink; and in this way Dr Cullen thinks he has frequently prevented military eruptions, which were otherwise likely to have appeared, particularly in puerperal women.

But it may happen, when these precautions have been neglected, or from other circumstances, that a military eruption does actually appear; and the question will then be put, how the case is to be treated? This in a question of consequence; as there is reason to believe that the matter here generated is often of a virulent kind; it is often the offspring of putrefacence; and, when treated by increasing the external heat of the body, it seems to acquire a virulence which produces those symptoms mentioned above, and proves certainly fatal.

It has been an unhappy opinion with most physicians, that eruptive diseases were ready to be hurt by cold; and that it was therefore necessary to cover up the body very closely, and thereby increase the external heat. We now know that this is a mistaken opinion; that increasing the external heat of the body is very generally pernicious; and that several eruptions not only admit, but require the application of cold air. Dr Cullen is persuaded, therefore, that the practice which formerly prevailed in the cafe of military eruptions, of covering up the body closely, and both by external means and internal remedies encouraging the sweats which accompany this eruption, was highly pernicious, and commonly fatal. He is therefore of opinion, that even when a military eruption has appeared, in all cases in which the sweating is not critical, we should employ all the means of stopping the sweating that are mentioned above; and he has sometimes had occasion to observe, that even the admission of cool air was safe and useful.

This is, in general the treatment of military eruptions: but at the same time, the remedies suited to the primary diseases are to be employed; and, therefore, when the eruption happens to accompany inflammatory affections, and the fullness and hardness of the pulse or other symptoms show an inflammatory state present, the case is to be treated by blood-letting, purging and other antiphlogistic remedies.

Upon the other hand, when the military eruption attends diseases, in which debility and putrefacence prevail, it will be proper to avoid all evacuations, and to employ tonic and antiseptic remedies, particularly the Peruvian bark, cold drink, and cold air.

The most difficult circumstance attending this affection, is the almost unsupported sickness at first which frequently occurs, and which is often observed to precede fresh eruptions taking place during the course of the disease. With the view of counteracting and alleviating this symptom, recourse is had to wine and other cordial medicines. But with many patients nothing is found to have so much influence as the use of camphor, particularly when introduced gradually in small doses, under the form of the miliaria camphorata, of the London Pharmacopeia, or the emulsio camphorata of that of Edinburgh.

We shall conclude this subject with observing, that the venerable octogenarian practitioner, de Fischer, when treating of this subject, in laying down the indications of cure, has given this as one of them: "Excretions peripherica non primarium habere rationem."
M E D I C I N E.

Practice.

Sp. I. The Mild SCARLET FEVER.
Scarlatina febris, Sav. sp. 1. Sydenham, sect. vi. cap. 2.

Sp. II. The SCARLET FEVER with ulcerated Sore Throat.
Scarlatina aniginosa. Withering on the SCARLET FEVER.

The mild scarlet fever is described by Sydenham, who tells us that he can scarce account it a disease; and indeed nothing more seems to be necessary in the treatment of it than an antiphlogistic regimen, avoiding the application of cold air and cold drink. The disease however sometimes rages epidemically, and is attended with very alarming symptoms, bearing no small resemblance to the coryza maligna, in which case it is called scarlatina aniginosa.—The best description of this distemper has been published by Dr Withering in the year 1778. This disease made its appearance, we are told, at Birmingham and the neighbouring villages, about the middle of May 1778. It continued in all its force and frequency to the end of October; varying, however, in some of its symptoms, as the air grew colder. In the beginning of November it was rarely met with; but towards the middle of that month, when the air became warmer, it increased again, and in some measure resumed those appearances it boistered in the summer-months, but which it had lost during the cold winds in October.

It affected children more than adults; but seldom occurred in the former under two years of age, or in the latter if they had passed their fifteenth year.

Description. With various general symptoms of fever, the patient at first complains of a dejection of spirits, a slight fever, or rather flatness in the neck, with a sense of straitness in the muscles of the neck and shoulders, as if they were bound with cords. The second day of the fever this sense of the throat increases, and the patients find a difficulty in swallowing; but the difficulty seems less occasioned by the pain excited in the attempt, or by the straitness of the passage, than by an inability to throw the necessary muscles in action. The skin feels hot and dry, but not hard; and the patients experience frequent, small, pungent pains, as if touched with the point of a needle. The breath is hot and burning to the lips, and thirst makes them wish to drink; but the tendency to sleep, and the exertions necessary in deglutition, are so unpleasant, that they seldom care to drink much at a time. They have much uneasiness also from want of rest during the night. In the morning of the third day, the face, neck, and breast, appear redder than usual; in a few hours this redness becomes universal; and increases to such a degree of intensity, that the face, body, and limbs, resemble a boiled lobster in colour, and are evidently swollen. Upon pressure the redness vanishes, but soon returns again. The skin is smooth to the touch, nor is there the least appearance of pimples or pustules. The eyes and nostrils partake more or less of the general redness; and in proportion to the intensity of this colour in the eyes, the tendency to delirium prevails.

Vol. XI.

Things continue in nearly this state for two or three days longer, when the intense scarlet gradually abates, a brown colour succeeds, and the skin becoming rough, peels off in small scales. The tumefaction subdues at the same time, and the patients gradually recover their strength and appetite.

During the whole course of the disease, the pulse is quick, small, and uncommonly feeble; the urine small in quantity; the sub-maxillary glands somewhat enlarged and painful to the touch. The velum palatini, the uvula, the tonsils, and gullet, as far as the eye can reach, partake of the general redness and tumefaction; but although collections of thick mucus, greatly resembling the iphecks or fluids in the putrid sore throat, sometimes occur, yet those are easily washed off, and real ulcerations of those parts were never observed.

These are the most usual appearances of this disorder; but it too frequently assumes a much more fatal form. In some children the delirium commences in a few hours after the first attack; the skin is intensely hot; the scarlet colour appears on the first or second day, and they die very early on the third. Others again, who survive this rapid termination, instead of recovering, as is usual, about the time the skin begins to get its natural colour, fall into a kind of lingering, and die at last in the course of six or eight weeks.

In adults, circular livid spots were frequently observed about the breath, knees, and elbows; also large blotches of red, and others of white intermixed, and often changing places.

In the month of October, when the air becomes colder, the scarlet colour of the skin was both less frequent and less permanent. Many patients had no appearance of it at all; whilst others, especially adults, had a few minute red pimples, crowned with white pellicular heads. The inside of the throat was considerably tumefied; its colour a dull red, sometimes tending to a livid. The pulse beat in general 130 or 140 strokes in a minute; was small, but hard, and sometimes sufficiently so to justify the opening of a vein; and the blood thus taken away, in every instance when cool, appeared fizzly, and the whole ccaffamentum firm.

Happy would it be, Dr Withering observes, if the baneful influence of this disorder terminated with the febrile symptoms. But in ten or fifteen days from the cessation of the fever, and when a complete recovery might be expected, another train of symptoms occur, which at last frequently terminate fatally. The patients, after a few days amendment, feel something that prevents their further approach to health; an unaccountable languor and debility prevails, a stiffness in the limbs, an accelerated pulse, disturbed sleep, disfolfie to food, and a scarcity of urine. These symptoms, we are told, are soon succeeded by swellings of a real dropical nature, forming sometimes an anasarca, and on other occasions an ascites; and not unfrequently scarlatina has proved fatal, from supervening hydrothorax in consequence of the effusion of water into the chest. It is unnecessary to remark, that when this happens, a fatal termination is more sudden than from any other modification of dropy.

Dd Dr
Dr Withering, after examining the accounts given of this disease by different authors, proceeds to the diagnosis. It may be distinguished, he observes, from the petechial fever, by the eruption appearing seldom before the fourth day, by the regularity and distinctness of the spots, and by its principally occupying the neck, the back, and the loins. On the other hand, in the scarlet fever, the eruption generally appears about the third day; confls either of broad blotches, or else one continued redness, which spreads over the face and the whole body. In the fever called purpura, the pustules are prominent, keep their colour under pressure, and never appear early in the disease; whereas in the scarlet fever, the eruption appears more early, is not prominent, but perfectly smooth to the touch, and becomes quite white under pressure.

Although the purple fever and scarlatina may be connected by some general cause, yet our author takes occasion to observe, that they cannot be more modifications of the same eruption: for examples occur, he says, of the same person being first feigned with one of these disorders, and afterwards with the other; but he never met with an instance of the same person having the scarlet fever twice; and he believes it to be as great an improbability as a repetition of the small-pox.

This disorder is particularly distinguished from the measles, we are told, by the want of that cough, watery eye, and running at the nose, which are known to be the predominant symptoms in the early state of the measles, but are never known to exist in the scarlatina.

From the erysipelis this disease is distinguishable, by the limited seat of the former, together with its not being contagious.

The ulcerated sore throat, however, is more difficult to distinguish from this disease than any other; and yet the distinction is a matter of the greatest importance, as the method of treatment, according to Dr Withering, ought to be extremely different.—But although, in a number of circumstances, these two diseases bear a very great resemblance, yet, with a little attention, the one may in general, he thinks, be distinguished from the other. From Dr Fothergill’s account of the sore throat attended with ulcers, our author has made out the following characteristic circumstances of the two diseases, contrasted to one another.

Scarlata Anginofa.

Season. Summer. Autumn.

Air. Hot. Dry.

Place. High. Dry.

Gravely.

Subject. Vigorous.

Sexes alike. Robust in most danger...

Skin. Full scarlet smooth. If pimply, the pimples white at the top.. Always dry and hot.

Angina Gangrenofa.

Season. Spring. Winter.

Air. Warm. Moist.

Place. Clofe. Low.

Damp. Marshy.

Subject. Delicate. Women and female children. Robust adults not in danger.

Skin. Red. Ate pimply. The pimples redder than the interstices bedewed with sweat toward morning.

Scarlata Anginofa.

Eyes. Shining, equable, intense redness, rarely watery.

Throat. In summer, tonsils, &c. considerably swelled and ulcerated... Sloughs dark brown.

Breath. Very hot, but not fetid.

Voice. In summer, natural.

Bowsels. Regular at the accession.

Blood. Buffy. Firm.

Termination. The 3d, 5th, 8th, or 11th day.

Nature. Inflammatory.

Angina Gangrenofa.

Eyes. Inflamed and watery, or foul and dead.

Throat. Tonsils, &c. considerably swelled and ulcerated... Sloughs white.

Breath. Offensive to the patients and attendants.

Voice. Flat and ratling.

Bowsels. Purging at the accession.

Blood. Florid. Tender. Natural.

Termination. No settled period.

Nature. Putrid.

It is not pretended, Dr Withering remarks, that all the above contrasted symptoms will be met with in every case. It is enough, he observes, that some of them appear; and that if joined with the consideration of the prevailing constitution, they enable us to direct that mode of treatment which will most contribute to the relief of the sick.

But notwithstanding the attention which Dr Withering has bestowed upon this subject, we are still inclined to think, that the disease which he has accurately described under the title of *scarlatina anginosa,* is in reality the same affection with the malignant ulcerous sore throat of Huxham and Fothergill. During different epidemics, this disease, like small-pox and measles in different seasons, is considerably varied in its appearance. But still there occurs such a similarity as clearly marks the sameness of the affection. And indeed this, as in the case of the small-pox, is abundantly demonstrated, by infection from one contagion giving protection against succeeding ones, although the appearances be much varied. This has particularly appeared at Edinburgh, where the disease has of late prevailed as an epidemic on three different years, viz. 1774-5, 1782-3, and 1789-90. During the first of these, in the greater part of patients, the sore throats were of a very gangrenous and malignant nature: during the second, the disease more commonly appeared under the form of what might be called *simple scarlatin:* and during the third epidemic, the contagion was, if we may be allowed the expression, of an intermediate nature. But it is farther to be remarked, that during every one of these epidemics, when several children of a family were at the same time subjected to the infection, in one the disease would have been attended with almost all the symptoms mentioned in the column of *scarlatina anginosa,* with respect to skin, eyes, throat, breath, bowels, termination of the afections, &c. In another, would have occurred all the symptoms with respect to those particulars which he has mentioned under the column of *angina gangrenosa.* While at the same time, in numberless instances, even in the same patient, the disease at its commencement has shown evident marks of such inflammatory, and at its termination of a putrid tendency. And there cannot be a doubt, that both the scarlatina anginosa,
angina spasmodica, and angina gangrenosa, as described by
Thomson and Hueham have occurred in every season
and situation, and have affected persons of every age
and constitution not before subjected to either di-
cese.

Cures. Dr Withering affirms, that the immediate
cause of this disease is a poison of a peculiar kind,
communicable by contagion.

1. That this poison first takes possession of the
mucous membrane lining the fauces and the nose;
and either by its action upon the secretory glands;
or upon the mucus itself, assimilates that mucus to its
own nature.

2. That it is from this beginning, and from this
only, that it spreads to the stomach, &c. and at length
acts upon the system at large.

3. That its first action upon the nerves is of a de-
finately or debilitating nature.

4. That in consequence of certain laws of the ner-
vous system, when the debilitating effects operate upon
the fenso-rium commune, a reaction takes place;
and that this reaction is, ceteris paribus, proportioned to
the debilitating power.

5. That, in consequence of this reaction of the ner-
vous system, the vibratory motion of the capillary
blood vessels dependent thereon is greatly encreased;
an unusually large quantity of blood is accumulated
in those vessels; the heart and large blood-vessels are
deprived of their customary proportion; and hence,
though stimulated to more frequent contraction, the
pulse must necessarily be feeble.

6. That as violent exertions are followed by debility,
upon the cessation of the fever, the capillary vessels,
which had acted with such unusual violence, are left
in a state of extreme debility, and are long in reco-
viving their tone; hence it is that so many patients
afterwards become deracial.

Dr Withering next proceeds to the consideration of
the different remedies, which either are at present in
common use or have been recommended as proper in
this disease.

Cure. Blood-letting has been recommended by
authors; but such was the state of the pulse in this
disease, at least during the summer months, that it
was not in any instance thought advisable to take
away blood. In some cases, indeed, where the fiery
redness of the eyes seemed to demand the use of leeches,
they were had recourse to, but never with any
advantage. In the harvest months, when the
pulse was more firm, and when suffocation seemed to
be threatened from the swelling in the fauces, blood-
letting was sometimes advised; but still with less
advantage than one would have expected in almost any
other situation.

Vomiting. This, our author observes, seems to be the
remedy of nature; and he is surprised how it should
have been omitted by several authors who have gone
before him. Vomiting, he says, most amply fulfills
the indications arising both from a consideration of the
cause and of the effects; and a liberal use of the
remedy he holds forth as the true foundation for suc-
cessful practice in scarlet fever and sore throat. His
common form of emetic is a combination of tartar
etemic and ipecacuanha, given in pretty smart doses;
and these are to be repeated at least once in 48 hours,
and in the worst cases so often as twice in 24 hours.

Purgings.] The action of purgatives is considered
by Dr Withering as altogether repugnant to the cu-
rative indications in this disease; for the poisonous,
formerly remarked, being received into the system by
the fauces, the operation of a purge, instead of dis-
charging it, can only promote its diffusion along the
alimentary canal; and in fact, we are told, that when
even a spontaneous purging supervenes in this disease,
the patients sink so amazingly fast, that it is not with-
in the reach of art to support them. When, how-
ever, a considerable quantity of acid matter pass-
ing from the fauces into the bowels, makes its way to the
remedy, a considerable degree of toxemica often takes
place. And although evacuations from the system in
general by means of cathartics may be useful, yet
patients are often obtained great relief from a free dis-
charge of this matter; and by discharging it, purgatives have
the effect even of preventing an evacuation from the
system, which would otherwise take place.

Sudorifics. Cordials, Alexipharmics. None of these
remedies were found beneficial. With respect to cord-
dials, Dr Withering observes, that although they seem to
be indicated by the great loss of strength and feeble
pulse, yet the certain confluence of their use always
was, an increase of restlessness, of the delirium and of
the heat.

Diuretics. These were found very beneficial. The
vegetable fixed alkalii is recommended as the most
proper article of this kind; a dram or two may be
easily swallowed every 4 hours, by giving a small
quantity in every thing the patient drinks. Diure-
tics, however, have been found principally serviceable
by practitioners in general in those cases where the
urine is observed to be scanty, and where dropical
symptoms have taken place.

Peruvian bark. No medicine, we are told, ever
had a fairer trial in any disease than the Peruvian bark
had in this epidemic; for the feeble pulse, great
proliferation of strength, with here and there a livid
spot were thought to be such undeniable evidences of
a putrid tendency, that the bark was poured down
not with a sparing hand. But this was only at first;
for these livid spots and the loughs in the throat be-
ing found to be the effects of inflammation instead of
putrefaction, and the bark instead of diminishing,
rather increasing these symptoms, it was at last entire-
ly laid aside by Dr Withering in his practice. But
although Peruvian bark may not have been successful
with a particular epidemic at a particular place; yet
from the concurrent testimony of many practitioners,
it is very commonly found to be productive of good
effects: And there is perhaps no remedy in which
greater dependence is in general put, particularly in
the advanced periods of the disease, where the factor
is considerable.

Upon the same principles that the bark was pre-
fixed, flammable air was at first likewise advised, but
with no evident effects either one way or another.
Dulcified acids were also had recourse to, but with no
advantage.

Opiates. These, although recommended by some
authors
MEDICINE.

Genus XXXIII. URTICARIA, NETTLE-RASH.

Febris urticaea, Vog. 40.
Urado, Lin. 8.
Scarlatina urticaea, Jand. 75.
Scarlatina urticaea, Sauv. p. 2.
Erythelatis species altera, Sydenham, s. e. vi. cap. 6.

Febris scarlatina, et febris urticaea, Meyferry, Mal. des armées, 291 et seq.

Description. This disease has its English name from the resemblance of its eruption to that made by the flogging of nettles. These little elevations upon the skin in the nettle-rash often appear instantaneous, especially if the skin be rubbed or scratched, and seldom stay many hours in the same place, and sometimes not many minutes. No part of the body is exempt from them; and where many of them rise together, and continue an hour or two, the parts are often considerably swelled, which particularly happens in the face, arms, and hands. These eruptions will continue to infest the skin, sometimes in one place and sometimes in another, for one or two hours at a time, two or three times every day, or perhaps for the greatest part of the 24 hours. In some persons they last only a few days, in others many months; and sometimes the disease has lasted for years with very short intervals.

But though the eruption of the urticaria resembles, as already observed, that produced by the flogging of nettles, it is sometimes accompanied with long wheals, as if the part had been struck with a whip. Whatever be the shape of these eminences, they always appear solid, without having any cavity or head containing either water or any other liquor: and this affords an easy mark whereby this disease may be distinguished from the itch. For it often happens, that the inoffensive itching with which this eruption is attended, provokes the patient to scratch the parts so violently, that a small part of the cuticle on the top of these little tumours is rubbed off; a little scab succeeds; and when the swelling is gone down, there is left an appearance hardly to be distinguished from the itch, but by the circumstance just now mentioned. The nettle-rash also further differs from the itch, in not being infectious.

Cauttes, &c. Dr Heberden is inclined to ascribe this distempers to some mechanical cause outwardly applied to the skin. He observes that most people suffer in a similar manner from the real flogging of nettles. Cowhage, or, as it is corruptly called, cow-itch, a sort of phaeolus, or French bean, the pod of which is covered over with a kind of down or hair, and the effect of which upon the skin is much the same as that of nettles; and almost any hairs cut equally short, and sprinkled upon the skin, whenever they happen to stick in it, will make the part itch or smart in such a manner as to give great uneasiness; it is also a considerable time before the skin can be cleared of the finer ones, when once they are stirred upon it.

Reaumur, in the fourth memoir of his History of Insects, describes a species of caterpillars to which be-
long a sort of hairs almost invisible to the naked eye, which are easily detached, and frequently float in the air round their nest, though they have not been at all disturbed. The touch of these hairs has a similar effect with the cow-itch; that is, they occasion intolerable itchings, with little bumps and redness, arising sometimes to a slight inflammation. These he found all disturbed. The touch of but for a shorter time. These hairs of cantharides: but though it has continued many weeks the cantharides over the readily be carried to other parts of the body. But it had a violent itching, attended with great heat and pain: the skin would then be almost as red as vermillion, and thicken like leather; and this remained till he went out of the open air, and then abated in about 15 or 20 minutes. This happened only when the fun was above the horizon; at other times he was what he called quite well.—But it was not owing to the heat of the sun; for the sun in winter affected him as much, if not more, and the heat of the fire had no such effect. This he was confined to the house for 10 years. He tried several hospitals, and had advices from many physicians, without the least abatement of his complaints. At last it was agreed by a consultation of physicians, that he should try dipping in salt-water; which he did at Yarmouth for 13 weeks, without any visible amendment. One hot day, having pulled off his clothes and gone into the sea in the middle of the day, the heat diffused itself so violently all over his body, that, by the time he had put on his clothes, his eye-sight began to fail, and he was compelled to lie down upon the ground to save himself from falling. The moment he lay down, the faintness went off: upon this he got up again; but had no sooner arisen, than he found himself in the former condition; he therefore lay down again, and immediately recovered. He continued alternately getting up and lying down, till the disorder began to be exhausted, which was in about half an hour; and he was frequently obliged to have recourse to the same expedient.

Dr Heberden asks, Is it impossible that the nettle-rash should arise from the same causes, or from others similar, which we meet by looking too deeply for them in the blood and humours? Such (says he) may have been its origin in some instances, where it has lasted only a few days; but where this affection has continued for some years, in persons who change their linen every day, and who bathe frequently all the time, it can hardly be ascribed to such an external cause. He has observed it frequently to arise from cantharides: but though it has continued many weeks after the removal of the blister, yet it might be suspected that this arose from the fine spicule of the cantharides sticking all this time about the skin; it being customary to burn much of the dry powder of the cantharides over the blister-plaster, whence it may readily be carried to other parts of the body. But it is certain that similar effects will sometimes follow the internal use of wild valerian root, or the eating of fish not sufficiently dried; muscles, shrimps, and even honey, and the kernels of fruits, will also sometimes produce symptoms of a similar kind. But whatever be its cause, Dr Heberden never saw any reason to suppose that the nettle-rash had in any way vitiated the humours to such a degree as to require the use of internal remedies; and if the itching could be certainly and expeditiously allayed, there would be no occasion for any farther cure. He concludes this history of the disorder with a case communicated to him by Dr Monfey, physician of Chelsea-college, and in which the disease appeared with uncommon violence.

W. A. aged near 30, of a thin spare habit, was seized with a disorder attended with symptoms of a very uncommon kind. Whenever he went into the air, if the sun shined bright, he was seized with a tickling of his flesh on those parts exposed to the sun: this tickling, by his continuing in the air, increased to a violent itching, attended with great heat and pain: the skin would then be almost as red as vermillion, and thicken like leather; and this remained till he went out of the open air, and then abated in about 15 or 20 minutes. This happened only when the sun was above the horizon; at other times he was what he called quite well.—But it was not owing to the heat of the sun; for the sun in winter affected him as much, if not more, and the heat of the fire had no such effect. This he was confined to the house for 10 years. He tried several hospitals, and had advices from many physicians, without the least abatement of his complaints. At last it was agreed by a consultation of physicians, that he should try dipping in salt-water; which he did at Yarmouth for 13 weeks, without any visible amendment. One hot day, having pulled off his clothes and gone into the sea in the middle of the day, the heat diffused itself so violently all over his body, that, by the time he had put on his clothes, his eye-sight began to fail, and he was compelled to lie down upon the ground to save himself from falling. The moment he lay down, the faintness went off: upon this he got up again; but had no sooner arisen, than he found himself in the former condition; he therefore lay down again, and immediately recovered. He continued alternately getting up and lying down, till the disorder began to be exhausted, which was in about half an hour; and he was frequently obliged to have recourse to the same expedient.

Having at last accidentally met with Dr Monfey, this physician questioned him concerning the cause of the disorder; but nothing could be guessed at, excepting that the patient owned he had one winter lived entirely upon bullock's liver and porter, from inability to purchase better vi{uals. A comrade lived with him at that time, on the same provisions; and he also was affected in a similar manner, though in a less degree, and had recovered. This patient was then first put upon a course of Dover's sweating powder without any effect, and, afterwards tried a course of nitrous ones with the same bad success. At last Dr Monfey determined to try the effect of mercury, which happily proved effectual in removing this intractable and uncommon distemper. The patient began with taking five grains of calomel for three nights running, and a cathartic next morning. In this course he went on for near a fortnight, at the end of which he found himself very sensibly relieved. This encouraged him to go on rather too boldly, by which means a slight salivation ensued; however, that went off soon, and in about six weeks he was quite well.—Some time after, he was threatened with a return of his disorder; but this was effectually relieved by a dose of calomel, which he had afterwards occasion to repeat for the same reason, and with the same success;
Genus XXXIV. Pemphigus.

Pemphigus, Sauv. gen. 93. Sag. 291.
Mortn. Lin. 1.
Febris bullofa, Vog. 41.
Pemphigus major, Sauv. sp. 1.
Exanthemata ferora, C. PiJen. Obl. 150.
Obl. 56.
Pemphigus caitrensis, Sauv. sp. 2.
Fvereosynechis, cum veluculis per pectus et collum
sparis, Morton. App. ad Exerc. II.
Pemphigus Helveticus, Sauv. sp. 3. Langbain in
Ad. Helvet. vol. ii. p. 260. et in Byfchreibung
des Siementhalis, Zurich 1753.

This is a very rare disease, insomuch that Dr Cul-
len declares he never saw it. He declines taking the
descriptions of foreign physicians: we shall therefore
content ourselves with giving an instance of this very
uncommon disemper, as it was observed in the infir-
mary at Aberdeen, and was treated by the late Dr
David Stuart, then physician to that hospital, who
soon after published an account of it in the Edinburgh
Medical Commentaries. A private soldier of the 3d
regiment, aged eighteen years formerly a pedlar,
and naturally of a fvery healthy constitution, was
David
Mary at Aberdeen, and
his whole body, and the pustules continued every day
flill,
and rigiditv of his knees and other joints. The surgeon of the
regiment vifited him: he was purged, but with little
benefit. About ten days before, he observed on the
inner side of his thighs a number of very small, disfance,
red spots, a little elevated above the surface of the
skin, and much resembling the first appearance of
small-pox. This eruption gradually spread itself over
his whole body, and the pultules continued every day
to increase in size.

Upon being received into the hospital, he complained
of head-ach, fickness at stomach, opprefion about the
precordia, head-ach, laatitude, and wearineffes,
on the left exertion; with liffness and rigidity of his knees and other joints. The surgeon of the
regiment vifited him: he was purged, but with little
benefit. About ten days before, he observed on the
inner side of his thighs a number of very small, disfance,
red spots, a little elevated above the surface of the
skin, and much resembling the first appearance of
small-pox. This eruption gradually spread itself over
his whole body, and the pultules continued every day
to increase in size.

Upon being received into the hospital, he complained
ed of head-ach, fickness at stomach, opprefion about the
precordia, thrift, fore throat, with difficulty of
swallowing; his tongue vvas foul, his skin felt hot and
feveriith; pulse from 110 to 120, rather depreffed;
belly conflive; eyes dull and languid, but without deli-
rium. The whole surface of his skin was interfpered
with vehicles, or phlydias, of the size of an ordinary
walnut; many of them were larger, efpecially on the
arms and breast. In the interftices, between the vehi-
cles, the appearance of the skin was natural, nor was
there any redneff round their base: the diftance from
one to another was from half an inch to a hand-
breadth or more. In fome places two or three were
joined together, like the pultules in the confluent small-
pox. A few vvefles had burst of themelves, and form-
ed a whitifh fcrab or crust. These were mostly on the
neck and face; others showed a tolerably laudable pus.
However, by far the greatest number were perfectly
entire, turgid, and of a blulfh colour. Upon opening
them, it was evident that the cuticle elevated above the
cutis, and diftended with a thin, yellowish, femipelle-
ucid fcrum, formed this appearance. Nor was the sur-
face of the cutis ulcerated or livid; but of a red florid
colour, as when the cuticle is interfolated by a blister,
or superficial burning. No other perfon laboured un-
der a similor difeafe, either in the part of the country
from which he came, or when he resided in Aberdeen.
This cafe was treated in the following manner. The
largest of the vehicles were flipped, and defribed with
arquant. e lap. calaminari. In the evening he was
vomited with a folution of tartar emetic, given in small
quantities and at intervals. This also procured two
loofe ffools. And he was ordered for drink, water-
grel aciuated with lemon juice.

"April 16. He still complained of fickness, some
oppreffion about his brefth, and fore throat; he had
fept little during the night; his tongue was foul and
blackish; his skin, however, was not fo hot as the pre-
ceeding day; his urine was high-coloured, but had the
appearance of separation; his pulse go, and foft; most
of the fores on the trunk of the body looked clean.
Others, particularly where the vehicles were confluent,
seemed beginning to ulcerate, and to have a blutfh sub-
livid appearance. They were defribed after with ce-
tre, and he was ordered the following medicines:
3ii. M. Hujus mixtura capiat 35l. tertia quaque hora
hora
His aciuated drink was continued; and on ac-
count of the very offensive fhmell on approaching near
him, fome vinegar was placed in a bafon before the
bed, and sprinkled on the floor; and the room was
keperd properly aired.

"April 17. His fores looked tolerably clean, un-
feles on his arms and thighs; where they were livid, a
little ulcerated, and difcharged a bloody ichor.

"April 18. The little ulcers in his arms and thighs
flill difcharged a bloody ichor, and looked ill; his
other complaints were better; pulse 82. The bark
had not nafeated him, and it was continued as well
as his former drink.

"April 19. His fores looked much cleaner and
better; the fever was gone, his pulse natural, and he had
no complaint but weakness and troubleome itching
of the skin: The Peruvian bark, &c. were continued.

"April 20. Some of the ulcers still poured forth a
bloody ichor; molt of them, however, looked well,
and had begun to heal—fever gone—medicines con-
tinued.

"From the 21st of April he went on gaining strength,
and his fares appeared to heal fast; he was defired to
practice.
take only four doses every day; and by the 27th his fores, &c. were totally dried up—he had no complaint, and was diffimil cured.

Since the publication of this case of pemphigus by Dr Stuart, observations on this disease have been published by Dr Stephen Dickson of Dublin in the Transactions of the Royal Irish Academy. In the observations, an account is given of six different cases which Dr Dickson has had an opportunity of seeing. Judging from these, Dr Dickson thinks that Dr Cullen's definition of this disease requires correction; and that it ought to be defined, "a fever accompanied with the succedaneum eruption, from different parts of the body, internal as well as external, of vesicles about the size of an almond, which become turgid with a faintly yellowish serum, and in three or four days subside."

From the cases which have been published under Dr Dickson's observation, he concludes, that the disease varies considerably as to its mildness or malignity. In three of the cases which he has seen, the symptoms were extremely mild, but in the other three strong symptoms of putrefaction were manifell, and the life of the patient was in great danger. With respect to the method of cure, he is of opinion, that the general symptoms of weakness, and tendency to putrefaction, obviously point out the proper treatment. Nourishment must be supplied, and the Peruvian bark and wine carefully administered; and when vesicles appear on internal parts, irritation must be guarded against by opiates, demulcent, and gentle laxatives.

Some additional observations on the subject of pemphigus have lately been published in the London Medical Journal by Mr. Thomas Chriftie. From a cafe which Mr. Chriftie describes, he is disposed to agree with Dr Dickson in thinking that sometimes at least pemphigus is not contagious. He remarks, however, that the pemphigus described by some foreign writers was extremely infectious; which he thinks this may lead to a division of the disease into the two species, the pemphigus simplex and complicatus; both of which, but especially the latter, seem to vary much with respect to mildness and malignity.

GENUS XXXV. APHTHA.

The Thrush.

Febris aphthosa, Feg. 44.

The only idiopathic species is the thrush to which infants are subject; (Aphtha lacticius, Sauv. 6. 1.)

The aphthae are whitish or ash-coloured vesicles, invading the uvula, fauces, palate, tonsils, inside of the cheeks, gums, tongue, and lips. They may on the most part begin at the uvula, sending forth a glutinous mucus, and the vesicles covering all or the greatest number of the parts abovementioned with a thick whitish crust adhering most tenaciously. This crust does not induce an echar on the parts on which it lies by eating into them, but comes off in whole pieces after the vesicles have arrived at maturity. This will often happen in a short time, so that the throat and internal parts of the mouth are frequently observed to be clean which a few years before were wholly covered with white crusts. Neither is this disease confined to the thr. as and fauces, but is said to affect the esophagus, thorax, and all parts of the alimentary canal. Of this indeed there is no other proof, than that, after a great difficulty of swallowing, there is sometimes an immense quantity of aphtha evacuated by stool and vomiting, such as the mouth could not be thought capable of containing.

Caufes, &c. The aphthae fever seems to be produced by cold and moisture, as it is found only in the northern countries, and especially in marshy places; and in them the aphthae often appear without any fever at all.

Progress. There is no symptom by which the coming out of aphtha can be foretold, though they are common in many fevers; but they themselves are in general a bad symptom, and always signify a very tedious disorder: the danger denoted by them is in proportion to the difficulty of abatement and a discharge accompanying them is likewise bad. This indeed generally carries off old people when they become afflicted with aphtha. The dark-coloured aphtha also are much more dangerous than such as are of a brown or ash colour; but it is a good sign when the ap­petite returns, and the dark-coloured ones are succeeded by others of a whiter colour. Neither are those which are unaccompanied with fever so dangerous as the other kind.

Care. As the aphthae are seldom a primary disease, we must generally endeavour to remove the disorder upon which they depend, after which they will fall off; but in the mean time we are not to neglect applications to the aphthae themselves, such as detergent and softening gargles made of the decoction of figs, with the addition of honey of roses, a little vinegar, and some tincture of myrrh.

ORDER IV. HÆMORRHAGIÆ.

Hæmorrhagies.

Hæmorrhagia, Sauv. gen. 239. Lin. 173. S. 298.

Sanguifluxus, Sauv. Cl. IX. Ord. I. S. 174.

Cl. V. Sauv. Ord. 2.

Cl. VI. Sauv. Ord. 4.

Genus XXXVI. EPISTAXIS.

Bleeding at the Nose.

Hæmorrhagia narium, Hoffm. II. 196. Junck. 6.

Hæmorrhagia plethorica, Sauv. Ord. 2. Hoffm. II. 198.

The other species enumerated by authors are all symptomatic.

Description. The milder species of this hæmorrhagy comes on more frequently in summer than in winter, and for the most part without giving any warning, or being attended with any inconvenience; but the lea benign kind is preceded by several remarkable symptoms. These are, congestions of the blood sometimes in one part and sometimes in another, and which are often very troublesome in the sides of the head; there is a redness of the cheeks; an inflammation of the face, and of the vessels of the neck and temples; a thuribus aurium; a heavy pain of the eyes, with a promincence
MEDICINE.

Practice.

Epistaxis.

Hemorrhagiae minence, dryness, and sparks; there is a vertiginous affection of the head, with an itching of the nostrils, and a feeble of weight, especially about the root of the nose. In some the sleep is disturbed with dreams about blood, fire, &c. Frequently the belly is cold, there is a diminution of the quantity of urine, a suppression of sweat, coldness of the lower extremities, and tension of the hypochondria, especially the right one.

Casus, &c. This hemorrhagia may occur at any time of life; but most commonly happens to young persons, owing to the peculiar state of the system at that time. Sometimes, however, it happens after the

\[\text{exsanguination} \] and during the state of manhood, at which time it is to be imputed to a plethoric state of the system; to a determination of the blood, by habit, to the vessels of the nose; or to the particular weakness of these vessels.

In all these cases the disease may be considered as an arterial hemorrhagia, and depending upon an arterial plethora; but it sometimes occurs in the decline of life, and may then be considered as the sign of a venous plethora in the vessels of the head. It often happens at any period of life in certain febrile diseases, which are altogether or partly of an inflammatory nature, and which show a particular determination of the blood to the vessels of the head. As this evacuation, other diseases are often removed, it may on these occasions be deemed truly critical. It happens to persons of every constitution and temperament; but in all cases it should be moderated by keeping the patient in cool air, by giving cold drink, by keeping the body and head erect, by avoiding any blowing of the nose, speaking, or other irritation; and if the blood has flowed for some time without showing any tendency to stop, we are to attempt the suppression of the hemorrhagia, by pressing the nostrils from which the blood flows, washing the face with cold water, or applying this to some other parts of the body. Thse measures Dr Cullen judges to be proper even on the first attacks, and in young persons where the disease is the least hazardous; but they will be more requisite if the disease frequently recurs without any external violence; if the returns happen to persons disposed to a plethoric habit; and more particularly if the signs of plethora appear in the symptoms preceding the discharge.

When the bleeding is so profuse that the pulse becomes weak and the face pale, every means must be used to put a stop to it, and that whether the patient be young or old. Besides those methods above-mentioned, we must use astringents both internal and external; but the latter are the most powerful, and the choice of these may be left to the surgeon. The internal astringents are either vegetable or solid; but the vegetable astringents are seldom powerful in the cure of any hemorrhagies except those of the alimentary canal. The solid astringents are more active, but differ considerably in strength from one another.—The child bearing may have little strength, the preparations of lead are more powerful; but cannot be employed, on account of their pernicious qualities, unless in cases of the utmost danger. The \text{fruits} \text{furninae}, \text{or antiphlogistica}, is a medicine of very little efficacy, either from the small quantity of lead it contains, or from the particular state in which it is. The safest and at the same time the most powerful astringent seems to be alum.

For suppressing this and other hemorrhagies, many suppuritious remedies and charms have been used, and said to have been employed with success. This has probably been owing to the mistake of the by-flanders, who have supposed that the spontaneous cessation of the hemorrhagia was owing to their remedy. At the same time Dr Cullen is of opinion, that such remedies have sometimes been useful, by improving the mind with horror or dread. Opiums have sometimes proved successful in removing hemorrhagies; and when the fulness and inflammatory diathesis of the system have been previously taken off by bleeding, they may, in Dr Cullen’s opinion, be used with safety and advantage. Ligatures have been applied upon the limbs, for retarding the return of the venous blood from
from the extremities; but their use seems to be ambiguous. In the case of profuse hemorrhages, no care is to be taken to prevent the patient from fainting, as this is often the most certain means of stopping them.

Genus XXXVII. **Hemoptysis.**

Spitting of Blood.

Hemoptysis, Sauv. gen. 240. Lin. 179. Vog. 84.
Hemoptoe, Baer. 1198.
Sanguinis fluxus ex pulmonibus, Hoffm. II. 202.
Sp. I. **Hemoptysis from Plethora.**
Sp. II. **Hemoptysis, from External Violence.**
Hemoptysis accidentalis, Sauv. sp. 1.
Hemoptysis habitualis, Sauv. sp. 2.
Hemoptysis traumatica, Sauv. sp. 12.
Sp. III. **Hemoptysis with Phthisis.**
Hemoptysis phthisica, Sauv. sp. 9.
Hemoptysis ex tuberculo pulmonum, Sauv. sp. 10.
Sp. IV. **The Calculous Hemoptysis.**
Hemoptysis calculosa, Sauv. sp. 14.
Sp. V. **The Picaeious Hemoptysis.**
Hemoptysis catamenialis, Sauv. sp. 4.
Hemoptysis periodica, Sauv. sp. 5.

Description. This hemoptysis commonly begins with a sense of weight and anxiety in the chest, some uneasiness in breathing, pain of the breast or other parts of the thorax, and some sense of heat under the sternum; and very often it is preceded by a faintish taste in the mouth. Immediately before the appearance of blood, a degree of irritation is felt at the top of the larynx. The person attempts to relieve this by hawking, which brings up a little florid and somewhat frothy blood. The irritation returns; and in the same manner blood of a similar kind is brought up, with some noise in the wind-pipe, as of air palling through a fluid. Sometimes, however, at the very first, the blood comes up with coughing, or at least somewhat of coughing, and accompanies the hawking above-mentioned. The blood is sometimes at first in very small quantity, and soon disappears; but in other cases, especially when it frequently recurs, it is in greater quantity, and often continues to appear at times for several days together. It is sometimes profuse, but rarely in such quantity as either by its excess or by a sudden suffocation to prove immediately mortal.

It is not always easy to discover whether the blood evacuated by the mouth proceeds from the internal surface of the mouth itself, from the faucies or adjoining cavities of the nose, from the pharynx, or from the lungs. It is, however, very necessary to distinguish the different cases; and for this Dr Cullen offers the following considerations.

1. When the blood proceeds from some part of the internal surface of the mouth, it comes out without any hawking or coughing; and generally, upon inspection, the cause is evident.
2. When blood proceeds from the faucies, or adhering cavities of the nose, it may be brought out by hawking, and sometimes by coughing. In this case there may be a doubt concerning its real source, and the patient may be allowed to please himself with the thoughts that the blood does not come from the lungs. But the physician must remember that the lungs are much more frequently the source of an hemorrhagia than the faucies. The latter seldom happens but to persons who have before been liable to an hemorrhagia from the nose, or to some evident cause of erosion; and in most cases, by looking into the faucies, the distillation of the blood from thence will be perceived.

3. When blood proceeds from the lungs the manner in which it is brought up will commonly shew from whence it comes; but, independent of that, it may also be known from the causes of hemoptysis from the lungs, to be afterwards mentioned, having preceded.

4. When vomiting accompanies the throwing out of blood from the mouth, we may generally know the source from whence it proceeds, by considering that blood does not proceed so frequently from the stomach as from the lungs; that blood proceeding from the stomach commonly appears in greater quantity than from the lungs. The pulmonary blood also is usually of a florid colour, and mixed with a little frothy mucus only; but the blood from the stomach is of a darker colour, more grumous, and mixed with the other contents of the stomach. The coughing or vomiting, as the one or the other happens first to arise, may sometimes point out the source of the blood; and this hath also its peculiar antecedent signs and causes.

Causes, &c. An hemoptysis may be produced at any time of life by external violence; and, in adult persons, while the arterial plethora prevails in the vitium, i.e. from the age of 16 to 35, an hemoptysis may at any time be produced merely by a plethoric state of the lungs. More frequently, however, it arises from a faulty proportion between the capacity of the lungs and that of the rest of the body. Thus it is often an hereditary disease, which implies a peculiar and faulty conformation.

This disease especially happens to persons who discover the smaller capacity of their lungs by the narrowness of their chest, and by the prominence of their shoulders; which last is a mark of their having been long liable to a difficulty of respiration. In such cases, too, the disease very frequently happens to persons of a fagacious temperament, in whom particularly the arterial plethora prevails. It happens also to persons of a tender delicate make, of which a long neck is a mark; to persons of much sensibility and irritability, and therefore of quick parts; to persons who have formerly been liable to hemorrhages from the nose; to those who have suffered a suppression of any uterine hemorrhagia; to those who have suffered a suppression of their menstrual flux; and, lastly, to persons who have suffered the amputation of any considerable limb.

All this constitutes the predispontion cause of hemoptysis; and the disease may happen merely from the predispontion cause arising to a considerable height. But in those who are already predisposed, it is often brought on by the concurrence of various occasional
and exciting causes. One of these, and perhaps a frequent one is external heat; which, even when in no great degree, brings on the disease in spring, and the beginning of summer, while the heat rarifies the blood more than it relaxes the solids, which had before been contracted by the cold of winter. Another exciting cause is a sudden diminution of the weight of the atmosphere, especially when concurring with any effort in bodily exercise. The effort too, alone, may often be the exciting cause in those who are already predisposed; and more particularly any violent exercise of respiration. In the predisposed, also the disease may be occasioned by any degree of external violence.

Progress. Hæmoptysis may sometimes be no more dangerous than a hemorrhagy from the nose; as when it happens to females, in consequence of a supposition of their menicles; when, without any marks of predisposition, it arises from external violence; or, from whatever cause arising, when it leaves no cough, dyspnoea, or other affection of the lungs, behind it. But, even in these cases, a danger may arise from too large a wound being made in the vessels of the lungs, from any quantity of red blood being left to stagnate in the cavity of the bronchus, and particularly from any determination of the blood being made into the vessels of the lungs, which by renewing the hemorrhagy may have these consequences.

Cure. In the treatment of this disease, with a view of stopping the discharge, it is first necessary to have recourse to those measures which tend to diminish the impetus by which the blood is expelled. This is to be effected by a removal of plethora when it exists; by diminishing the general impetus of circulation; by diminishing local increased action when it takes place in the vessels of the lungs; and by producing a determination of blood to other parts of the system remote from the lungs. But besides practices diminishing impetus, it is often also necessary to employ such as augment the reluctance to the passage of blood through the ruptured vessels of the lungs. With these views a variety of practices may be employed, particularly blood-letting, astringents, refrigerants, sedatives, and the like.

On this subject Dr Cullen differs from those who prescribe chalybeates and the Peruvian bark in the cure of hæmoptysis. Both of these, he observes, contribute to increase the phlogistic diathesis then prevailing in the system, and the hæmoptysis from predisposition is always accompanied with such a diathesis. Instead of these, therefore, he recommends blood-letting in greater or smaller quantity, and more or less frequently repeated as the symptoms shall direct. At the same time cooling purgatives are to be employed, and every part of the antiphlogistic regimen is to be strictly enjoined. In the London Medical Observations, the use of nitre is greatly recommended by Dr Dickson, to whom its efficacy was made known by Dr Letherland, physician to St Thomas's hospital. The most commodious method of exhibiting it he found was in the spring.

Practice. Hæmoptysis may sometimes be no more dangerous than a hemorrhagy from the nose; as when it happens to females, in consequence of a supposition of their menicles; when, without any marks of predisposition, it arises from external violence; or, from whatever cause arising, when it leaves no cough, dyspnoea, or other affection of the lungs, behind it. But, even in these cases, a danger may arise from too large a wound being made in the vessels of the lungs, from any quantity of red blood being left to stagnate in the cavity of the bronchus, and particularly from any determination of the blood being made into the vessels of the lungs, which by renewing the hemorrhagy may have these consequences.

Cure. In the treatment of this disease, with a view of stopping the discharge, it is first necessary to have recourse to those measures which tend to diminish the impetus by which the blood is expelled. This is to be effected by a removal of plethora when it exists; by diminishing the general impetus of circulation; by diminishing local increased action when it takes place in the vessels of the lungs; and by producing a determination of blood to other parts of the system remote from the lungs. But besides practices diminishing impetus, it is often also necessary to employ such as augment the reluctance to the passage of blood through the ruptured vessels of the lungs. With these views a variety of practices may be employed, particularly blood-letting, astringents, refrigerants, sedatives, and the like.

On this subject Dr Cullen differs from those who prescribe chalybeates and the Peruvian bark in the cure of hæmoptysis. Both of these, he observes, contribute to increase the phlogistic diathesis then prevailing in the system, and the hæmoptysis from predisposition is always accompanied with such a diathesis. Instead of these, therefore, he recommends blood-letting in greater or smaller quantity, and more or less frequently repeated as the symptoms shall direct. At the same time cooling purgatives are to be employed, and every part of the antiphlogistic regimen is to be strictly enjoined. In the London Medical Observations, the use of nitre is greatly recommended by Dr Dickson, to whom its efficacy was made known by Dr Letherland, physician to St Thomas's hospital. The most commodious method of exhibiting it he found was in the spring.
Practice.

MEMORANDA. 3. A catarrh. 4. An asthma; and, 5. Tubercles.

1. When a phthisis arises from an hemoptysis, it is probable that it is occasioned by particular circumstances; and what these circumstances are, may not always be easily known. It is possible, that merely the degree of rupture, or frequently repeated rupture, preventing the wound from healing, may occasion an ulcer; or it is possible, that red blood effused, and not brought up entirely by coughing, may, by flaginating in the lung, become acrid, and erode the parts. But these hypotheses are not supported by any certain evidence; and from many observations we are led to think, that several other circumstances must concur in producing the dilacée from hemoptysis.

2. The second cause of an ulceration of the lungs mentioned above is a suppuration formed in consequence of pneumonia. When a pneumonia, with symptoms neither very violent nor very light, has continued for many days, it is to be feared it will end in a suppuration: but this is not to be determined by the number of days; for, not only after the fourth, but even after the tenth day, there have been examples of a pneumonia ending by a resolution; and if the disease has differed from the previous, and again recurred there may be instances of a resolution happening at a much later period from the beginning of the disease than that just now mentioned. But, if a moderate dilacée, in spite of proper remedies employed, be protracted to the 14th day without any considerable remission, a suppuration is pretty certainly to be expected; and it will be more certain still, if no signs of resolution have appeared, or if an expectoration which had appeared shall have again ceased, and the difficulty of breathing has continued or increased, while the other symptoms have been rather abated.

That in a pneumonia, the effusion is made which may lay the foundation of a suppuration, may be concluded from the difficulty of breathing becoming greater when the patient is in a horizontal posture, or when the patient can lie more easily on the affected side. That, in such cases, a suppuration is actually begun, may be inferred from the patient's being frequently affected with flight cold shiverings, and with a sense of cold felt sometimes in one sometimes in another part of the body. We form the same conclusion also from the state of the pulse, which is commonly less frequent and softer, but sometimes quicker than before. That a suppuration, is already formed, may be inferred from there being a considerable remission of the pain which had before subsisted; while with this the cough especially the dilacée continue, and are rather increased. At the same time the frequency of the pulse is rather increased, the feverish state fullers considerable exacerbations every evening, and by degrees a hectic fever in all its circumstances comes to be formed.

In this state of symptoms, we conclude very confidently, that an abscess, or, as it is called, a vomica, is formed in some part of the pleura, and most frequently in that portion of it involving the lungs. Here purulent matter frequently remains for some time, as if enclosed in a cyst; but commonly not long before it comes to be either absorbed and transferred to some other part of the body, or breaks through into the cavity of the lungs, or into that of the thorax. In the latter case it produces the dilacée called empyema, but it is when the matter is poured into the cavity of the bronchiae that it properly constitutes the phthisis pulmonalis. In the case of empyema, the chief circumstances of a phthisis are indeed also present: but we shall here consider only that case in which the abscess of the lungs gives occasion to a purulent expectoration.

An abscess of the lungs, in consequence of pneumonia, is not always followed by a phthisis; for sometimes a hectic fever is not formed; the matter poured into the bronchiae is a proper and benign pus, which frequently is coughed up very readily, and spat out; and though this purulent expectoration should continue for some time, if it be without hectic fever, the ulcer soon heals, and every morbid symptom disappears.

This has so frequently happened, that we may conclude, that neither the access of the air, nor the constant motion of the lungs, will prevent an ulcer of these parts from healing if the matter of it be well conditioned. An abscess of the lungs, therefore, does not necessarily produce the phthisis pulmonalis; and if it be followed by such a dilacée, it must be in consequence of particular circumstances which corrupt the purulent matter produced, render it unfit for the healing of the ulcer, and at the same time make it afford an acrimony, which, absorbed, produces a hectic fever and its consequences.

The corruption of the matter of such abscesses may be owing to several causes; as, 1. That the matter effused during the inflammation had not been a pure serum fit to be converted into a laudable pus, but had been joined with other matters which prevented that and gave a considerable acrimony to the whole. Or 2. That the matter effused and converted into pus, merely by long flagination in a vomica, or by its connection with an empyema, had been so corrupted as to become unfit for the purpose of pus in the healing of the ulcer. Thence seem to be possible causes of the corruption of matter in abscesses, so as to make it the occasion of a phthisis in persons otherwise found; but it is probable that a pneumatic abscess especially produces phthisis when it happens to persons previously disposed to that dilacée, and therefore only as concurring with some other causes of it.

3. The third cause suppos’d to produce a phthisis is a catarrh; which, in many cases, seems in length of time to have the expectation of mucus proper to it gradually changed to an expectoration of pus; and at the same time by the addition of a hectic fever, the dilacée which was at first a pure catarrh, is changed into a phthisis. But this supposition is, in the opinion of least of some physicians, liable to several difficulties. The catarrh is properly an affection of the mucous glands of the trachea and bronchiae analogous to the coryza and less violent kinds of cypanche tonsillaris, which very seldom end in suppuration. And although a catarrh should be disposed to do so, the ulcer produced might readily heal up, as it does in the case of a cypanche tonsillaris; and therefore should not produce a phthisis.

Further, he catarrh, as purely the effect of cold, is generally a mild dilacée as well as of short duration; and, according to Dr Cullen, there are at meath but very few of the numerous cases of it, which can be said.
to have ended in a phthisis. In all these cases in which this seems to have happened, he thinks it probable that the persons affected were peculiarly predisposed to phthisis; and the beginning of phthisis is often resembles a catarrh, that it may have been mistaken for such a disease. It often happens also, to increase the fallacy, that the application of cold, which is the most frequent cause of catarrh, is also frequently the exciting cause of the cough, which proves to be the beginning of a phthisis.

Many physicians have supposed that an acrimony of the fluids eroding some of the vessels of the lungs is a frequent cause of ulceration and phthisis; but this appears to Dr Cullen to be a mere supposition. He acknowledges, that in many cases an acrimony subsisting in some part of the fluids is the cause of the disease; but observes that it is at the same time probable, that this acrimony operates by producing tubercles, rather than by any direct erosion.

But notwithstanding these objections, experience affords numerous examples of cases in which a disease long subsisting under the form of catarrh has at last degenerated into phthisis, and proved fatal from subsisting long hectic fever. To this must, however, at the same time be allowed, that catarrh, degenerating into a chronic state after subsisting for many years, has itself often proved fatal without inducing phthisis.

4. If phthisis does not frequently follow catarrh, it is still more rarely a consequence of asthma. Innumerable examples are unquestionably afforded of that disease subsisting for many years without any symptom whatever of phthisis as a consequence of it. But at the same time, there are unquestionable examples of phthisis deriving its origin from asthma; which, however, probably happens only in cases where a peculiar state of the lungs at the same time takes place: But without the concurrence of asthma, this state would not of itself have been sufficient for inducing the affection.

5. Of all the causes formerly mentioned, phthisis most frequently arises from tubercles. Dr Simmons informs us, that he has had opportunities of inspecting the bodies of many people who died in this way, and never found them totally abstinent. He has likewise seen them in subjects of different ages, who had been troubled with no symptoms of an affection of the breath during their lifetime. In these, however, they were small, and few in number. This proves that they may exist without inconvenience till they begin to disturb the functions of the lungs by their size and number; or till some degree of inflammation be excited, either by accidental causes, or by certain changes that take place within their substance; for as yet we know but little of their true nature. These little tumors vary in their consistence; in some they are composed of a pulpy substance, and in others approach more to the nature of fibrous. They are most commonly formed in consequence of a certain constitutional predisposition; but whatever is capable of occasioning a morbid irritability of the lungs seems also to be capable of generating them. Thus the spasmodic asthma frequently ends in tubercles and consumption; and it is not unusual for millers, stone-cutters, and others, to die consumptive, from their being constantly exposed to dust, which in these cases probably acts by producing similar concretions; and Dr Kirkland observes, that the grinders rot-tubercles, however, in by much the greater number of instances, have their source from a scrophulous disposition; and some eminent physicians have supposed that the generality of pulmonary consumptions are of this kind. This notion, however, they have perhaps carried too far: they have probably been misled by these tuberculous concretions which, without good reason, have been supposed to be diseased glands, and of course analogous to the glandular affections we meet with in the scrophula. Tubercles may likewise sometimes be owing to the sudden repulsion of cutaneous eruptions, or of the matter of exanthemata, &c. or to other causes.

The persons who are most liable to consumption are those of a fair complexion, fine and soft skin, florid cheeks, and a slender make; with high cheek-bones, hollow temples, long neck, shoulders standing out like wings, narrow chest, and a remarkable prominence of the processes of the os sacrum. To these marks we may add, that of found teeth, which, as the disease advances, usually become of a milky white colour, and more or less transparent. Of those who are carried off by this disease, Dr Simmons afferts, the greater number will be found never to have had a carious tooth. This circumstance, however, does not seem to us to hold so generally as Dr Simmons is disposed to imagine; and instances not unfrequently occur of patients dying of phthisis, although they have had many teeth subjected to caries; and some of these beginning even at an early period of life.

Perons of the above description often remain for a long time without feeling any other inconvenience than some oppression at the breast in moist weather, or in hot apartments. Their breathing is easily hurried, sometimes by the slightest motion; and they become languid, paler, and thinner. All this time, however, they feel no heat or painful sensation in the breast. As the evil increases, the patient begins to be attacked with a flight, frequent, and dry cough, which is most troublesome in the night-time. But this, by proper care, is often relieved; and the patient remains in this state for a considerable time, and even for many years, if he be sensible of his danger, and careful to guard against it by a suitable manner of living. More commonly, however, we find the cough increas'd, and sometimes accompanied with more or less catarrh. This is usually ascribed to cold; and but too generally neglected, till the disease become alarming by its obstinacy and its effects. This may be considered as the beginning, or first period, of the disease. During this stage, the cough is sometimes dry from the first; and sometimes, when it begins in the form of a catarrh, is attended with more or less expectoration of mucus.

When the cough begins in the form of a catarrh, and appears to be occasioned by an increased secretion of a thin faltih mucus irritating the membrane of the trachea, all judicious practitioners agree in recommending an attention to regimen, the free use of diluting liquors, bland emulsions, small doses of nitre, the taking away a few ounces of blood if there be much in
inflammation, the inhaling the steam of warm water by means of the machine contrived for that purpose, and occasional use of such a dose of elixir paregoricum as, will be sufficient to allay the irritation of the bronchial, and to promote a gentle moisture on the skin. These methods will generally be found to be efficacious, especially if the patient's chamber be of a moderate temperature, and he carefully avoid exposure to a cold, damp, or raw air, till the complaint be removed. In cafes in which the cough has been obstinate, and the inflammatory symptoms considerable, Dr Simmons has often experienced the great advantages of the warm bath, the heat of which did not exceed 92. When this is had recourse to, the patient should remain in it only a very few minutes, and go soon afterwards to bed; but not with a view to force sweat by an increased weight of bed-clothes, as is too often injudiciously practised.

Patients of a consumptive habit, who have had an attack of this kind at the beginning of winter, are particularly liable to a return of the complaint during the continuance of the cold season, on the slightest occasion and with greater violence. A relapse is therefore to be carefully guarded against; and nothing will be found to do this more effectually than the use of foots and a flannel under-waiftcoat. The use of flannel has been condemned by several medical writers as increasing the infeebil temperature; but in the present cafe, to say nothing of some others in which it may be useful, it will in general be found to have the best effects. It will prevent a too great determination to the lungs, and should not be left off till the approach of summer. In some feve infancies in which flannel was found to have a disagreeable effect, a piece of dimity, worn over the breast next the skin, prevented the return of colds and coughs in persons of a delicate habit, who had before been liable to them on the slightest occasions. Shirts made of cotton cloth are much more effectual than linen in preserving an equable temperature of the surface, and guarding against the action of external cold; while at the same time they are much more pleasant to most people than even the finest flannel. In these cases, circumstances that are seemingly of the most trivial nature become of importance.

Sometimes the cough is occasioned by an immediate inflammation of some part of the lungs, from some of the usual causes of inflammation; and when this happens no time is to be lost in removing it. To do this will perhaps require more than one bleeding, together with a strict attention to a cooling plan of diet diluting drinks, the inhalation of warm items, and if convenient the use of the warm bath: but above all, the speedy application of a large blister as near as may be to the supposed seat of the inflammation. The cough, in this cafe, will often remain after the original complaint is abated. A prudent use of opiates at bed-time, either by themselves or combined with gummy and mucilaginous medicines, will then generally be used as a sedative and antispasmodic.

In this, as well as in the catarrhal cough just now mentioned, many practitioners are too eager to administer the Peruvian bark, with the view, as they term it, of bracing the patient: but this never fails to increase the cough, and of course to do great and very often irreparable mischief.

And here it will not be foreign to our subject to observe, that a symptomatic cough, which has its rise not from catarrh or from an immediate inflammation of the lungs, but from their sympathy with the stomach, has sometimes laid the foundation of phthisis, from its being miftaken, and of course improperly treated. It seems to be owing to a redundancy or vitiated state of the bile or to some affection of the stomach, which it is perhaps not easy to define. It is sometimes a concomitant of other bilious symptoms; and when this happens to be the cafe, it cannot easily be mistaken, but we sometimes find it occurring fingly, and in general attacking persons of a sedentary life. Dr Stoll of Vienna, who has noticed this cough, has very properly given it the name of tussis flumachiæ. This complaint is so far from being relieved by bleeding, that it constantly grows worse after it, especially if the evacuation be in any considerable quantity. The oily medicines seldom fail to exasperate this cough, which at first is dry, frequent, and often extremely violent, but which seldom fails to give way to one or two gentle pukes, and the occasional use of mild cathartics. The cough, in other cafes, often continues from habit after the cause that gave rise to it has been removed, and may then be checked by opiates.

When the disease has been neglected, or our attempts to remove it in the beginning have failed, both of which circumstances but too frequently happen, the patient begins to complain of a looseness, of the face, which usually accompanies the beginning of the disease, to which succeeds the supplicative stage. In the latter, the expectoration becomes more copious and purulent, the breath proportionably offensive, and the exacerbations of the hectic fever more considerable: an increased quinckeus of the pulse comes on about the middle of the day; but the most considerable paroxysm of the fever is at night, and at first continues till towards morning, commonly till three or four o'clock, when it terminates in a sweat, which usually begins upon the breast. As the disease advances, these sweats become more profuse, and some times come on almost as soon as the pulse begins to quicken, but without affording any relief to the patient. During the exacerbations, we observe a circumflibed redness of the cheeks, while the rest of the face is pale, and appears as if it were not clean washed. The colic which commonly accompanies the beginning of the disease is usually succeeded by a diarrhea; the spitting lefens and
and all the putrid matter seems to be carried downwards. The walking of the fat, and the loss of nourishment occasion the nails to curve inwards, the hair to fall off, and the eyes to sink in their sockets. In the mean time, the legs commonly swell; till at length death closes a scene which is melancholy to all but the patient himself, who in general continues sensible to the last moment, and even then indulges a vain hope of prolonging a miserable existence. In some cases, and that not unfrequently, a delirium comes on towards the close of the disease.

The hectic fever that attends this and some other chronic diseases is evidently the effect of acrimony, and most commonly of pus absorbed and carried into the circulation. The nature of this acrimony, and the different irritability of different patients, are probably the sources of the variety we observe in fevers of this denomination; a variety which is doubtless much greater than we are aware of. Thus we find that the matter of the small-pox excites a fever and the different irritability of different individuals who are placed in different circumstances; nor does the latter correspond with that which sometimes accompanies the suppuration of a cancerous ulcer. In the pulmonary consumption, or at least in the third stage of it, the fever induced often appears to be of the putrid kind, and has been denominated fœbris hætica parvîa by the judicious Morton, who considers it as being combined with a peripneumonic or inflammatory fever, which recur so often as fresh tubercles begin to inflame. For although we have named one period of the disease the inflammatory, and another the suppurative period, yet we are not to suppose that the latter is exempt from inflammation. While matter is poured into the bronchies, or absorbed and carried into the system from one part of the lungs, other parts are in a crude state of inflammation, or advancing towards suppuration; so that, on examining the lungs of persons who die consumptive, we find some tubercles that are small and just formed, some that are large and full of matter, and others that are in a state of ulceration. This easily accounts for the occasional combination of inflammatory symptoms with those of the putrid hectic. When the matter absorbed is a laudable pus, as in the case of a pinæ abscess, we find the form of the hectic fever differing from either of those we have mentioned.

Cure. In these different periods of the disease, the curative indications are sufficiently obvious. To prevent the formation of fresh tubercles; to obviate the inflammation of those already formed; to promote their resolution; to allay morbid irritability, the cough, and other troublesome symptoms; and, above all, to check the tendency to the hectic state, are the views that every rational physician propounds to himself in the treatment of the genuine consumption. We know of no medicines that can exert their specific effects upon the lungs by dissolving tuberculous concretions; nor is it probable, from what we know of the animal economy, that any such will ever be discovered. Yet medicines that operate in a general manner upon the system, may, by promoting absorption, and diminishing the determination to the lungs, tend to diffuse tubercles, or to prevent their formation. There are not wanting instances of wonderful recoveries in cases where the evil was supposed to be beyond the power of physic; and in some, where nature was left to herself; so that a physician who has observed the various and powerful resources nature has within herself, will be very cautious how he afferts that a disease is incurable.

The most fruitful effects of ulcerated lungs are the absorption and consequent hectic. It seems evident, that, in many cases, death is brought on by this, rather than by the lungs themselves being rendered unfit for the purposes of respiration. So that if we can obviate the effects of the absorption, diminish the preternatural determination to the lungs, and fill up the other general indications just now mentioned, we may very often enable nature to recover herself. It may be alleged indeed, that the physician’s art has hitherto proved very unsuccessful in these cases; but may not this be owing to the remedies that are employed being very often such as are inimical to the cure.

The Peruvian bark is, perhaps, the most commonly employed of any, and often confided in as an ultimate resource in consumption cases. But besides this, the elixir of virioll, the balsams, and frequent bleedings, have each had their partizans. The use of blisters and infusions, opiates, a milk and vegetable diet, exercise, and change of air, are pretty generally recommended by all. Concerning the bark, Default long ago observed, that it had been productive of great mischief in consumptive cases; and Dr Fothergill, in a paper lately published by him on this subject, very judiciously remarks, that the bark is so far from curing the hectic fever arising from diseased lungs, that according to the best of his observations, it not only takes up that time which might probably have been better employed in the use of other medicines, but for the most part aggravates the disease beyond remedy. Indeed it has been the opinion of several attentive observers, that, whenever pus or any kind of matter excites an hectic fever, by being absorbed and carried into the circulation, the Peruvian bark will never fail to exasperate the complaint, especially if it be accompanied with any degree of inflammatory diathesis, unless the matter has a free outlet from the system; as in the case of abscesses, for instance, in which we often find the bark productive of excellent effects. It is likewise well known to be used as a tonic, to obviate the effects of fluor albus, or any other immediate evacuation in delicate persons, which, by enfeebbling the system, very often lays the foundation of phthisis; but the moment we have reason to suspect that the lungs are ulcerated, especially if this ulceration be attended with an inflammatory disposition; or if the separation of vitiated pus be the consequence of a peculiar increased morbid action of the vessels at the part, it ought to be laid aside; and in the genuine tuberculous consumption, perhaps it is at all times inadmissible.

Dr Fothergill, however, observes, that there are two causes of consumption, which often produce symptoms similar to those of the genuine phthisis, as sometimes to have misled him to make use of the bark in apparent tendencies to a genuine pulmonary consumption with advantage.

One of these causes is, the suckling of children longer than is consistent with the mother’s ability. This
Phthisis.

M E D I C I N E.

Practice.

Hemorhagia.

This case frequently occurs among the middling and lower classes of females of constitutions naturally delicate and tender. In such a state of weakness, some slight cold brings on a cough, which increases gradually, till at length it produces the true pulmonary consumption. Here the bark given early, in moderate doses, and merely as a tonic remedy, is often of excellent use.

Another cause is, any weakening discharge, either from abscences, the greater operations of surgery, a copious and constant flor albus, or similar ensuing evacuations. That the bark is, for the most part, of use in these cases, when the lungs are not inflamed, is indubitable; and if they be so affected, but not beyond a certain degree, it is also efficacious in preventing the progress of the consumption.

In phthisical complaints succeeding such situations, a prudent trial of the bark seems necessary. Small doses of the decoction, either alone, or joined with the saline mixture or such other additions as the physician thinks proper, may be given. But if the breath becomes more tight and dry, the pulse more quick and hard, and especially if flight traumato pains or fitches about the throat are more frequently complained of, a perseverance in the use of the bark will increase the difficulty. If this also should be the appearances in the progress of the disease, or, from whatever cause, if the bark be accompanied with such effects, the use of it ought to be withheld.

If, on the other hand, no pain, tightness, or oppression is perceived, and there appears a manifest abatement of the symptoms, it will be advisable to proceed. The administration of this medicine, however, requires a judicious observer; and it ought neither to be given in the early inflammatory stage of the disease, nor be continued in any subsequent period, if it produce the effects above-mentioned.

By its tonic virtues it will often enable nature to conquer many difficulties. In confirmation of this remark, Dr Eatherall further observes, that he has seen it of use in promoting expectoration, when this became deficient from want of strength towards the end of peripneumonic fevers; but that if it stops this discharge, changes flight wandering pains into such as are fixed, and increases them with all their consequences, in a variety of cases.

The elixir of vitriol, or the pure vitriolic acid properly diluted, though in many instances a highly useful remedy, is often exhibited in consumptive cases with no less impropriety than the bark. This medicine, from its alteregy, is obviously improper in the inflammatory stage of the disease. But in the latter stage, when a general tendency to putrefaction takes place, it is serviceable in retarding the effect; it restrains the colliquitive sweats; and if the lungs be not injured past reparation, it is allowed to be a very useful auxiliary.

Various are the opinions concerning the efficacy of Britol-water in this disease. The experienced author last mentioned informs us, that he has seen many persons recover from pulmonary diseases after drinking these waters, whose cure seemed to be doubtful from any other process; and he thinks this circumstance, added to the general reputation of Britol-waters in phthisical cases, affords sufficient inducement to recommend the trial of them in the early stages of such complaints. It is, however, before the approach of a confirmed phthisis that patients ought to repair to Britol; otherwile a journey thither will not only be without benefit, but may even prove detrimental.

Some have imagined, that the journey, a better air, change of situation and of objects, have contributed to the patient's recovery; and these may doubtless be of advantage. It seems, however, that the water drank fresh at the pump, actually contains principles conducive to the recovery of patients affected with phthisical complaints. It seems to poetles a flight calcareous, diphthletic, and perhaps the air it contains may also have an antiseptic quality. On the whole, it appears to be an efficacious medicine, and is often found of remarkable benefit to consumptive patients.

Change of air, particularly from good to bad, is of great consequence in all chronic diseases of the lungs. In consumptive cases, the air of all large cities is found to be particularly injurious.

A sea-voyage has been much recommended in the cure of this disease. The benefit of exercise has also been strongly urged by many writers; but, however falutary when properly used, it certainly ought to be regulated with discretion. Dr Dickson declares himself of opinion, that riding on horseback in consumptive cases is most commonly hurtful, without such regulations as in general have been little regarded. For instance, he has known a person who, by a ride of an hour or two in the morning, was very much recruited, and who, at another time, in the afternoon and evening, without undergoing more bodily motion, has returned faint and languid, and apparently worse. This observation on the same person has been so frequently made, as to point out clearly the times when this exercise shall not do hurt in consumptive cases. In this disease, the pulse, however calm in the morning, becomes more frequent in the afternoon and night, attended with heat and other feverish symptoms. Exercise therefore at this time, can only add to the mischief of the fever. For this reason he prudently recommends to all hectic persons, especially those who shall travel to distant places on account of a better air, or the benefit expected from any particular water, that their travelling should be slow, confined to a very few hours, and only in the morning.

Exercise on horse-back seems to be chiefly beneficial in those cases where consumption is a secondary disease. For example, in the nervous atrophy; in the hypochondriacal consumption; or when it is the effect of long continued intermittents, or of congestions in any of the abdominal viscera; or, in a word, whenever the consumption is not attended with an inflamed or ulcerated state of the lungs; long journeys on horseback will be beneficial. Such a practice may likewise be highly useful in obviating an attack of phthisis, or in carrying off a dry husky cough in a person of a consumptive habit, when there is reason to suppose that no tubercles are as yet formed. On the other hand, in the confirmed phthisis, when the lungs are inflamed or ulcerated, much or violent exercise will be improper; and there have been instances where the death of the patient was evidently accelerated by
The exercise therefore should be gentle, proportioned to the strength of the patient, and employed only in the morning. In fine weather, an easy open carriage is perhaps the most eligible, not only on account of its being open to the air, but because it affords that kind of agitation which is most wanted in these cases. For if we consider the different modes of exercise, we shall find that walking, though the best exercise in health, as it employs the most muscles, is the worst for the sickly, who should have the benefit of exercise without fatigue. Riding on horseback agitates the viscera more than walking, and is therefore preferable to it in many chronic diseases; but when a preternatural determination to the lungs has taken place; it will be liable to increase the evil, and may likewise be hurtful by the fatigue that attends it. For these reasons it will be prudent to begin with a carriage; and if the patient gain strength, and the disease abates, recourse may afterwards be had to horse-exercise.

The gentle motion of a coach has been often found of great utility in pulmonary complaints. Its efficacy seems to depend chiefly on its increasing the determination to the surface of the body. The nausea which this motion excites in some persons is an effect of this increased determination. It has therefore been found beneficial in hemorrhys; and Dr Simmons mentions the case of a lady, who, after trying various remedies to no purpose, was cured of this complaint by travelling several hundred miles through different parts of England in her own coach. At first, whenever she tarried three or four days in any place, the disorder began to return again; but at length by persevering in her journeys, it gradually went off. Default, who practiced at Bordeaux about 40 years ago, tells us, he sent several consumptive patients to Bareges, and with good success; but that in these cases his reliance was not so much upon the Bareges waters, as upon the motion of the carriage and the change of air in a journey of more than 100 leagues.

It is now pretty generally acknowledged, that the good effects of sea-voyages in consumptive cases depend more upon the constant and uniform motion of the ship, than upon any particular impregnation of the sea-air; although this from its coolness and purity may likewise be of great use, especially in the hot months, when sea-voyages are generally undertaken by consumptive patients. The ancients were no strangers to this remedy; and amongst the Romans it was no unusual thing for consumptive persons to sail to Egypt. Pliny observes, that this was done not for the sake of the climate, but merely on account of the length of the voyage.

Many of the English physicians have recommended a voyage to Liben in these cases. When this is done, the proper season of the year should be carefully attended to. Dr Simmons knew a gentleman who went thither with symptoms of incipient phthisis, and who experienced some relief during the course of the voyage; but happening to arrive at Liben at the beginning of a rainy season, the patient died, his cough greatly increased, and terminated fatally.

Another species of motion has of late been extolled as highly useful in consumptive cases. Dr James Carmichael Smyth of London, has lately published an account of the effects of swinging, employed as a remedy in the pulmonary consumption and hectic fever. In this treatise Dr Smyth contends, that sea-air, in place of being of advantage is constantly prejudicial to hectic and consumptive patients, and even to those who have a tendency to such complaints. He thinks, therefore, that the benefit derived from sea-voyages must certainly be referred to some other cause. In flattering his sentiments on this subject, he attempts to establish a distinction between exercise and motion. By exercise, he understands muscular action, or the exertion of the loco-motive powers of the body either alone or combined. This he represents as increasing the force and frequency of the heart's contraction, the velocity and momentum of the blood, the quickness of breathing, the heat, the irritability, and the transpiration of the whole body. By motion, in contradistinction to exercise, he means such motion as is not necessarily accompanied with any agitation or excitation of the body, and which is totally independent of any muscular exertion. The effects of this, both on the heart, the lungs, and indeed on the system in general, he considers as of the sedative kind; thus it subsists the action of coughing, and lessens the frequency of the pulse. He is, therefore, led to refer the good effects of sea-voyages entirely to this cause. And on these grounds he was led to conclude, that the motion given by swinging might be of equal if not greater service. This conclusion, we are told, in the treatise above alluded to, experience in many cases has fully confirmed. And he recommends it as a mode of cure which may be employed with advantage in every stage of phthisis. While, however, the reasoning of Dr Smith on this subject seems to be liable to many objections, we are sorry to add, that his observations in practice have by no means been confirmed by those of others, who have had recourse to this mode of cure.

The best adapted diet in consumptive cases is milk, particularly that of calves. It may however be remarked, that there are constitutions in which this salutary nutriment seems to disagree. A propensity to generate bile, or too strong a disposition to acidity from a weakness of the digestive organs, both merit attention. Whey, either from cows or goat's milk, appears to be more salutary in the former case; and for correcting acidity, lime-water may be added to milk. The method of adding rum or brandy to calves or cow's milk, should be used with great caution; for when added beyond a certain quantity, as is often the case, they not only congeal the milk, but heat the body; by which means the former disagrees with the patient, and the spirit augments the disease.

In consumptive cases, Dr Simmons observes, that the patient's table should be consulted; and says that a moderate use of animal food, where the falted and high-seasoned kinds are avoided, is not to be denied. Shell-fish, particularly oysters, are useful as well as finals swallowed whole, or boiled in milk.

Repeated bleedings, in small quantities, are considered in consumptive cases as highly advantageous; and in particular circumstances they undoubtedly are so; for instance, when the constitution apparently abounds with blood; when the fluid drawn off is extremely fizy; when there is much pain in the breast; and
and when venefaction is followed by an abatement of every symptom. In these cases, bleeding is certainly proper, and ought to be repeated so long as it seems to be attended with advantage. In very delicate constitutions, however, even where the pulse is quick, with some degree of fulness, and the blood last drawn considerably fizy, it may not prove equally serviceable.

It deserves to be remarked, that the inflammatory appearance of the blood is not alone a sufficient reason for bleeding; but, in determining the propriety of this evacuation, all other circumstances should be considered; such as the patient's age, strength, habit, and the state of the diseased.

A remark which has been judiciously made by Dr Fothergill, ought not to be omitted in the account of this disease. It is, that young delicate females, from the age of 15 or 16, and upwards, are often subject to consumptions. When the disease has advanced considerably, the medicines have sometimes been administered, which, without obtaining this end, have tended to aggravate the dislemer. This deficiency is often of no real disadvantage in those cases; and in many the evacuation would prove injurious, by diminishing the strength, which is already too much impaired. Even small bleedings at the regular periods have often done more harm than good. A sudden supression may require bleeding; but when the evacuation fails through want of strength, and from poverty of blood, the renewal of it increases the disease.

Besides these remedies, Dr Simmons strongly recommends a frequent repetition of vomits. Many physicians have supposed, that where there is any increased determination to the lungs, vomits do mischief; but Dr Simmons is persuaded, that instead of augmenting they diminish this determination; and that much good may be expected from a prudent use of this remedy, than which none has a more general or powerful effect on the system. If any remedy be capable of dispersing a tubercle, he believes it to be vomits. The affections of the liver, that sometimes accompany pulmonary complaints, give way to repeated emetics sooner than to any other remedy. In several cases where the cough was expectorated, the flushing heats, loss of appetite, and other symptoms, threatened the most fatal event; the complaints were greatly relieved, and in others wholly removed, by the frequent use of emetics. Other suitable remedies were indeed employed at the same time; but the relief the patients generally experienced after the emetic, was a sufficient proof of its salutary operation. By this, however, he does not mean that vomits will be useful in every period of the disease, or in every patient. In general, it will be found that the earlier in the disease emetics are had recourse to, the more likely they will be to do good and the less likely to do harm. The cafes in which emetics may be reckoned improper, are commonly those in which the disease is rapid in its progress; or in that stage of it when there is great delicacy, with profuse colloquative sweat.

In these cases, when an emetic has been administered twice a-week, and the cough is mitigated, the evacuation facilitated, and the other symptoms relieved, both the patient and the physician will be encouraged to proceed, and to repeat the vomit every second day, or even every day, for several days together, as Dr Simmons has sometimes done when the good effects of it were obvious.

The choice of emetics to be employed in these cases is by no means a matter of indifference. Carduus tea, camomile tea, warm water, and others that act by their bulk, and by exciting nausea, relax the tone of the stomach when they are frequently repeated, and of course will be improper. More active emetics are therefore to be preferred; and here some of the preparations of antimony might naturally be thought of. But the operation of these is not confined to the stomach. They produce evacuations by food, and a defquamation of the lungs; and are therefore improper in the pulmonary hectic. The mildness and excellence of ipecacuana as an emetic, are well known; but in these cases, Dr Simmons has often employed the blue vitriol and the emetic distempers.

More active emetics are therefore to be preferred; and here some of the preparations of antimony might naturally be thought of. But the operation of these is not confined to the stomach. They produce evacuations by food, and a desquamation of the lungs; and are therefore improper in the pulmonary hectic. The mildness and excellence of ipecacuana as an emetic, are well known; but in these cases, Dr Simmons has often employed the blue vitriol and the emetic distempers.

Another remedy which Dr Simmons strongly recommends in consumptive cases, both from his own observation and on the authority of many other eminent practitioners is gum myrrh. This given by itself to the extent of a scruple or half a dram for a dose, two or three times a-day, or, if there be much inflammatory tendency, combined with a proportion of nitre or of cream of tartar, has often been serviceable.
able in cases which were apparently instances of incipient phthisis even of the tuberculous kind. But when the disease is far advanced, or even decidedly marked, as far as our experience goes it has rarely if ever been productive of any benefit.

Besides the use of internal remedies in pulmonary affections, physicians have often prescribed the fumes of resinous and balsamic substances to be conveyed into the lungs. The vapour of dulcified spirit of vitriol, dropped into warm water, has likewise been used in these cases, and is advertised as a nostrum under the name of ether. The inhaling of fixed air has also been spoken of as an useful practice. Dr. Simmons has seen all of these methods tried at different times; but without being able to perceive any real advantages from them in the suppurative stage of the disease, where they might be expected to be of the greatest use; and in the beginning he has often found the two first to be too stimulating. He therefore preferred the simple vapour of warm water, and has experienced its excellent effects in several instances; but when the complaint has made any considerable progress, its utility is less obvious; and when the patients have been much weakened, he has seen it bring on profuse sweats, especially when used in bed, and therefore generally recommended it to be used in the daytime. Formerly he made use of a fumigating machine, described in the Gentleman's Magazine for 1748, in which the air, inspired by the patient, is made to pass through hot water by means of a tube that communicates with the external air, and with the bottom of the vessel: but we have now a more elegant and (on account of the valve and mouth-piece) a more useful instrument of this kind, the inhaler, invented by the ingenious Dr. Mudge.

Another remedy recommended by some as a specific in consumptions is the earth-bath. Van Swieten, in his Commentaries on Boerhaave, tells us, from the information of a person of credit, that in some parts of Spain they have a method of curing the phthisis pulmonary by the use of this remedy; and he quotes the celebrated Solano de Laque in confirmation of this practice. Solano speaks of the "baños de tierra," or earth-baths, as a very old and common remedy in Granada and some parts of Andalusia; in cases of hectic fever and consumptions; and relates several instances of their good effects in his own practice. The method he adopted on these occasions was as follows: He chose a spot of ground on which no plants had been fown, and there he made a hole large and deep enough to admit the patient up to the chin. The interior of the pit were then carefully filled up with the fresh mould, so that the earth might everywhere come in contact with the patient's body. In this situation the patient was suffered to remain till he began to shiver or felt himself uneasy; and during the whole process, Solano occasionally administered food or some cordial medicine. The patient was then taken out, and, after being wrapped in a linen cloth, was placed upon a matras, and two hours afterwards his whole body was rubbed with an ointment, composed of the leaves of the jujnum nigricum and hog's lard. He observes, that a new pit must be made every time the operation is repeated; and advices the use of these baths only from the end of May to the end of October.

Dr. Fouquet, an ingenious French physician, has tried this remedy in two cases. In one, a confirmed phthisis, he was unsuccessful; but the remedy had not a fair trial. The patient, a man 50 years of age, had been for several months afflicted with cough, hectic fever, and profuse colliquative sweats. He was first put into the earth in the month of June; but soon complained of an uneasy oppression at his stomack, and was removed at the end of seven minutes. The second time he was able to remain in it half an hour, and when taken out was treated in the way prescribed by Solano. In this manner the baths were repeated five times, and the patient was evidently relieved; but having conceived a dislike to the procés, he refused to submit to any further trials, and died some months afterwards. In the second case he was more fortunate: the patient, a girl 11 years of age, had been for three months troubled with a cough brought on by the measles, which was at length attended with a purulent expectoration, hectic fever, and night-sweats. She began the use of the earth-bath in August, and repeated it eight times in the space of 20 days. At the end of that time the fever and disposition to sweat had entirely ceased, and by the use of the common remedies the patient was perfectly restored. A physician at Warsaw has likewise prescribed the earth-bath with good success in cases of hectic fever. The Spaniards confine it entirely to such cases; but in some other parts of the world we find a similar method employed as a remedy for other diseases, and particularly for the sea-scurvy. Dr. Priestley observes, that the Indians, he has been told, have a custom of burying their patients labouring under putrid diseases up to the chin in fresh mould, which is also known to take off the feator from flesh-meat beginning to putrify. The racioidity of a ham for example, may be corrected by burying it for a few hours in the earth. The efficacy of this remedy in the sea-scurvy has, it is said, frequently been experienced by the crews of East India ships.

Solano, who is fond of philosophizing in his writings, is of opinion, that the earth applied in this way absorbs the morbid taint from the system; but does not seem more probable, that the effe&s of the earth, by being absorbed and carried into the circulation, corrects the morbid state of the fluids, and thus are equally useful in the fea-scurvy and in the pulmonary hectic. That the earth when moistened does emit a grateful odour is a fact generally known; and Baglivi long ago gave his testimony in favour of the grateful effects of the effluvia of fresh earth. He ascribes these good effects to the nitre it contains.

The earth-bath, both in consumptive cafes and likewise in a variety of other affections, has of late been extensively employed in Britain by a celebrated empiric. But, as far as we can learn, in most cafes it produced to the patient a very distressing sensation of cold; in some, it seemed to be productive of bad effects, probably in consequence of this cold; and we have not heard of any consumptive cases in which good effects were decidedly obtained from it.

With regard to the drains, such as blisters, ifusses, and fotons, that are so frequently recommended in pulmonary complaints, there is least danger of abuse from them than from the practice of venfication. The discharge they excite is not calculated to weaken the patient.
tient much; and the relief they have so often been found to afford, is a sufficient reason for giving them a trial. Blisters, as is well known, act in a twofold manner; by obviating pain, and producing resolution: Iffues and setons act chiefly in the latter of these two ways; and in this respect their effects, though not sudden and not powerful at first, are more durable from the continuance of the discharge they occasion. It is perhaps hardly necessary to remark, that, if much service is to be expected from either of these remedies, they should be applied early in the disease. The ingenious Dr Mudge, who experienced the good effects of a large scapulary iffue on his own perfon, very properly observes, that the discharge in these cases ought to be considerable enough to be felt. But it is seldom possible for us to prevail on the delicate persons, who are most frequently the victims of this disease, to submit to the application of a cautery between the shoul- ders. The discharge produced by a seton is by no means incon siderable; and as in these cases there is generally some inflammatory fitch, some part of the breath that is more painful or more affected by a deep inspiration than the rest, a seton in the fide, as near as can be to the seat of the inflammation, will be an useful auxiliary. Dr Simmons has seen it evidently of great use in several cafes.

Genus XXXVIII. Hæmorrhoids.

Hæmorrhoids, or Piles.

Hæmorrhoidalis fluxus. Hoffm. 219.

Hæmorrhoides, Junck. 11. and 12.

Lencorrhoides, Vag. 112.

Sp. I. External Piles.

Var. A. Bloody Piles.

Hæmorrhoides moderata, Saw. sp. 1.

Hæmorrhoides ordinates, Junck. 11.

Hæmorrhoides nimii, Junck. 11.

Hæmorrhoides immundus, Saw. sp. 2.

Hæmorrhoides excedentes, Alberti de hemor. rhoid. p. 179.

Hæmorrhoides polyposi. Saw. sp. 3.

Var. B. Muson Piles.

SP. II. The Piles from a Procidemia Ani.

Hæmorrhoids ab exanima, Saw. sp. 4.

SP. III. The Running Piles.

SP. IV. The Blind Piles.

Description. The discharge of blood from small tumors on the verge of the anus constitutes what is called the hæmorrhoides or piles. They are distinguished into the external and internal, according to the situation of the tumors, either without or within the anus. Sometimes, however, these tumors appear without discharging any blood; and in this case they are called the hæmorrhoides inae or blind piles. Sometimes the disease appears without the verge of the anus in dilated separate tumors; but frequently only one tumid ring appears, seeming as it were the anus pushed without the body. Sometimes these tumors appear without any previous disorder of the body; but more frequently, before the tumors are formed and sometimes even before the blood begins to flow, various affections are perceived in different parts of the body; as head-ache, vertigo, flufor, difficulty of breathing, fickness, colic pains, pain of the back and loins, and frequently a considerable degree of pyrexia; while along with these symptoms there is a tene of fullness, heat, itching, and pain in and about the anus. Sometimes the disease is preceded by a ferosus discharge from the anus; and sometimes this ferosus discharge, accompanied with swelling, seems to come in place of the discharge of blood, and to relieve the abovementioned disorders of the syslem. This ferosus discharge hath therefore been named the hæmorrhoides albus.

In this disease the quantity of blood discharged is different upon different occasions. Sometimes it flows only when the perfon goes to stool, and commonly follows the discharge of faces. In other cafes it flows without any discharge of faces; and then generally in confequence of the disorders abovementioned, when it is alfo commonly in larger quantity. This is often very considerable; and, by the repetition, fo great, that we could hardly fuppofe the body to bear it but with the hazard of life. Indeed, though rarely, it has been fo great as to prove suddenly fatal. These considerable discharges occur especially to persons who have been frequently liable to the disease. They often induce great debility, and frequently a leucopuficmatia or dropy which proves fatal. Sometimes the tumors and discharges of blood in this disease recur exactly at flated periods. In the decline of life it frequently happens that the hæmorrhoidal flux, formerly frequent, ceases to flow; and in that cafe it generally happens that the persons are affected with apoplexy or palsy. Sometimes hæmorrhoidal tumors are affected with inflammation, which ends in suppuration, and gives occasion to the formation of fitious ulcers in those parts.

The hæmorrhoidal tumors have often been confidered as varices or dilatations of the veins; and in some cafes various dilatations have appeared upon defcription. These, however, do not appear in the greater part of cafes; and Dr Cullen is of opinion that they are ufually formed by an effufion of blood into the cellular texture of the intine near to its extremity. When recently formed, they contain fluid blood; but after they remain for some time they are usually of a firmer confistence, in confequence of the blood being coagulated.

Confus, &c. It would seem probable, that the hæmorrhoidal tumors are produced by some interruption of the free return of the blood from the rectum, by which a rupture of the extremities of the veins is occasioned. But considering that the hæmorrhagia occurring here is often preceded by pain, inflammation, and a fribile flate, and with many other symptoms which show a connection of the topical affection with the state of the whole syslem, it is probable that the interruption of the blood in the veins produces
produces a considerable resitance to the motion of the blood through the arteries, and consequently that the discharge of blood is commonly from the latter. Some have thought, that a difference of the hemorrhoids, and of its effects upon the system, might arise from the difference of the hemorrhoidal vessels from whence the blood issued. But Dr. Cullen is of opinion, that we can scarce ever distinguish the vessels from which the blood flows, and that the frequent inculcations of both arteries and veins belonging to the lower extremity of the rectum, will render the effects of the hemorrhagy much the same, from whatever source it proceeds.

With regard to the hemorrhoids, however, he is of opinion, that they are, for the most part, merely a topical affection. They take place before the period of life at which a venous plethora happens. They happen to females, in whom a venous plethora determined to the hemorrhoidal vessels cannot be supposed to occur; and they happen to both sexes, and to persons of all ages, from cauces which do not affect the system, and are manifestly suited to produce a topical affection only.

These causes are, in the first place, the frequent voiding of hard and bulky feces, which, by their long friction in the rectum, and especially when voided, must necessarily press upon the veins of that part, and interrupt the course of the blood in them. For this reason the disease so frequently happens to those who are habitually collique. From the same causes, the disease happens frequently to those who are subjected to a prolapsus ani. In voiding the feces, it almost always happens that the internal coat of the rectum is more or less protruded; and, during this protrusion, it sometimes happens that the sphincter ani is contracted: in consequence of this, a strong constriction is made, which preventing the fallen-out gut from being replaced, and at the same time preventing the return of blood from it, occasions a considerable swelling, and the formation of a tumid ring round the anus.

But when the sphincter's being a little relaxed, as it is immediately after its strong contraction, the portion of the gut which had fallen out is commonly taken into the body again; but by the frequent repetition of the accident, the size and fulness of the ring formed by the prolapsed intestine is much increased. It is therefore more slowly and difficultly replaced; and in this confits the chief uneasiness of hemorrhoidal persons. As the internal edge of this ring is necessarily divided by clefts, the whole often puts on the appearance of a number of distinct swellings; and it also frequently happens, that some portions of it are more considerably swelled, become more protuberant, and form those small tumors more strictly called hemorrhoids or piles.

From considering that the pressure of the feces, and other causes interrupting the return of venous blood from the lower extremity of the rectum, may operate a good deal higher up than that extremity, we may understand how tumors may be formed within the anus; and probably it also happens, that some of the tumors formed without the anus may continue when taken within the body, and even be increased by the causes just mentioned. Thus may the production of internal piles be explained, which, on account of their situation and bulk, are not protruded on the person's going to stool, and are therefore more painful.

The production of piles is particularly illustrated by this, that pregnant women are frequently affected with the disease. This is to be accounted for, partly from the pressure of the uterus upon the rectum, and partly from the native habit to which pregnant women are liable. Dr. Cullen has known manyinstances of piles happening for the first time during the state of pregnancy; and there are few women who have born children, that are afterwards entirely free from piles.

Purgatives also, especially those of the more acrid kind, and particularly aloetics, are apt to produce the piles when frequently used; and as they stimulate particularly the larger intestines, they may be justly reckoned among the exciting causes of this disease.

Prognosis. Though the hemorrhoids are commonly, as we have said, to be esteemed a topical disease, they may, by frequent repetition, become habitual and connected with the state of the whole system; and this will more readily happen in persons who have been once affected with the disease, if they be frequently exposed to a renewal of the causes which occasioned it. It happens also to persons much exposed to a congestion in the hemorrhoidal vessels, in consequence of their being often in an erect position of the body, and in an exercise which presses the blood into the depending vessels, while at the same time the effects of these circumstances are much favoured by the abundance and laxity of the cellular texture about the anus. It is to be particularly observed, that when an hemorrhoidal affection has either been originally or has become a disease of the system, it then acquires a particular connection with the stomach; so that certain affections of the stomach excite the hemorrhoidal disease, and certain states of this disease excite the disorders of the stomach.

It has been an almost universally received opinion, that the hemorrhoidal flux is a salutary evacuation, which prevents many diseases that would otherwise have happened; and that it even contributes to give long life; and as this opinion has been strenuously adopted by Dr. Stahl, it has had a very considerable influence on the practice of physic in Germany. But Dr. Cullen maintains that we can never expect to reap much benefit from this flux, which at first is purely topical; and, granting that it should become habitual, it is never, he thinks, proper to be encouraged. It is a disagreeable disease; ready to go to excess, and thereby to prove hurtful and sometimes, even fatal. At best it is liable to accidents, and thus to unhappy consequences. He is therefore of opinion, that even the first approaches of the disease are to be guarded against; and that, though it should have proceeded for some time, it ought always to be moderated, and the necessity of it superceded.

Cure. The general intentions of cure in cases of hemorrhoids are much varied, according to the circumstances of the affection at the time. When hemorrhoids exist in the state of tumor, the principal objects are to counteract inflammation, and to promote a discharge of blood from the part. When it is in the state
state of evacuation, the chief intentions of cure are, to
diminish the impetus of blood at the part affected, and
to increase the resistance to the passage of blood through
the ruptured vessels. And finally, when the disease
exists in the state of suspension, the aims of the prac-
titioner must chiefly be, to obviate the particular af-
fections which are induced in consequence of the sus-
ension; to restore the discharge, as a means of miti-
gating these and preventing others; or when the
discharge cannot with propriety or advantage be re-
stored, to compensate the want of it by vicarious evac-
uations.

With these various intentions in different cases, a
variety of different remedies may be employed with
advantage.

When any evident cause for this disease is perceived,
we ought immediately to attempt a removal of that
disease. One of the most frequent remote causes is an
habitual coliciveness; which must be obviated by a pro-
cer diet, such as the person's own experience will be-
direct; or if the management of diet be not effectual,
the belly must be kept open by medicines, which may
prove gently laxative, without irritating the rectum.
In most cases it will be of advantage to acquire a ha-
bit with regard to the time of discharge, and to ob-
serve it exactly. Another cause of the hemorrhoids to
be especially attended to is the prolapsus ani, which
is apt to happen on a person's having a stool. If this
shall occur to any considerable degree, and be not at
the same time easily and immediately replaced, it may
certainly produce piles, or when the affection occurs as a critical discharge; for if the prolapsus ani, the frequent walking of the anus with cold-water may be useful.

Besides general antiphlogistic regimen, in some cases
where the inflammation runs high, recourse may be
had with great advantage both to general blood-let-
ing and to leeches applied at the anus. Relief is also
often obtained from the external application of emol-
lients, either alone or combined with different articles
of the sedative kind, as acedated Ceruife or opium, by
which it is well known that pain in general, particu-
larly when depending on increased sensibility, or aug-
mented action of the vessels, is powerfully allayed.

When the flux has actually come on, we are to mo-
derate it as much as possible, by causing the patient
to lie in a horizontal posture on a hard bed; by avoiding
exercise in an erect posture, using a cool diet, and
avoiding external heat. But with respect to the fur-
ther cure of this disease, we must observe, that there
are only two cases in which it is common for hemor-
rhoidal persons to call for medical attendance. The one
is, when the affection is accompanied with much pain;
and the other, when the piles are accompanied with
excessive bleeding. In the first, we must consider
whether the piles be external or internal. The pain
of the external piles happens especially when a con-
 siderable protrusion of the rectum has taken place;
and while it remains unreduced, it is strangled by the
contraction of the sphincter; and at the same time no
bleeding happens to take off the swelling of the pro-
truded portion of the intestine; and sometimes an in-
flammation supervesens, which greatly aggravates the
pain. In this case, emollient fomentations and pou-
lincs are sometimes of service, but the application of
leeches is generally to be preferred.

In case of excessive bleeding, we are on all occa-
sions to endeavour to moderate the flux, even where
the disease has occurred as a critical discharge; for if
the primary disease shall be entirely and radically cur-
ed, the preventing any return of the hemorrhoids seems
perfectly safe and proper. It is only when the disease
arises from a plethoric habit, and from a stagnation of
blood in the hypochondriac region, or when, though
originally topical, it has by frequent repetition be-
come habitual and has thereby acquired a connection
with the fympron, that any doubt can arise about curing
it entirely. In any of these cases, however, Dr Cul-
len is of opinion that it will be proper to moderate the
bleeding, left, by its continuance or repetition, the
plethoric state of the body, and the particular deter-
mination of the blood into the hemorrhoidal vessels, be
increased, and the return of the disease be too much
favoured. Dr Stahl is of opinion, that the hemorrh-
rhoidal flux is never to be accounted excessive except-
ing when it occasions great debility or leukophlegma-
tia: but Dr Cullen thinks, that the smallest approach
towards producing either of those effects should be
considered as an excess which ought to be prevent-
ited from going farther; and even in the cases of con-
gleion and plethora, if the plethoric habit and ten-
dency can be obviated and removed, the hemorrhoi-
dal bux may then with safety be entirely suppressed.
In all cases therefore of excessive bleeding, or any ap-
perceived.
Menorrhagia.

Immediate Flow of the Menstrual Flux.

Uteri hemorrhagia, Hoffm. II. 224.

Hemorrhagia uterina, Junct. 14.

Sig. gen. 202.

Cachexia uterina, five flor albus, Hoffm. III. 348.

Flor albus, Junct 133.

Abortus, Sauv. gen. 245. Lin. 204. Sig. gen. 180.

Junct. 92.

Abortio, Vog. 97.

Elixir uterini fanguinis, Boerh. 1303.

Convulso uteri, five abortus, Hoffm. III. 176.

Description. The quantity of the menstrual flux is different in different women, and likewise in the same woman at different times. An unusual quantity therefore is not always to be considered as morbid; but when a large flow of the menstrual flux is preceded by headache, giddiness or dyspnea; has been ushered in by a cold stage, and is attended with much pain of the back and loins, with a frequent pulse, heat and thirst; it may then be considered as preternaturally morbid. On the other hand, when the face becomes pale, the pulse weak, an usual debility is felt in exercise, and the breathing is hurried by little labour; when the back becomes pained from any continuance in an erect posture, when the extremities become frequently cold, and when at night the feet appear affected with edematous swelling; from all these symptoms we may conclude, that the flow of the menstrual flux has been immoderate, and has already induced a dangerous state of debility. The debility, induced in this case, often appears also by affections of the stomach, an anorexia, and other symptoms of dyspepsia; by a palpitation of the heart, and frequent faintings; by a weakness of mind, liable to strange emotions from flight causes, especially those preferred by surprize. A large flow of the menstrual flux is attended with barrenness in married women, may generally be considered as preternaturally morbid. Generally, also, that flow of the menstrual flux may be considered as immoderate, which is preceded and followed by a leucorrhrea.

Causes, &c. The proximate cause of the menorrhagia is either the effort of the uterine vessels preternaturally increased, or a preternatural laxity of the extremities of the uterine arteries. — The remote causes may be, 1. Those which increase the plethoric state of the uterine vessels; as a full and nourishing diet, much strong liquor, and frequent intoxications. 2. Those which determine the blood more copiously and forcibly into the uterine vessels; as violent strainings of the whole body; violent shocks from falls; strokes or contusions on the lower belly; violent exercise, particularly in dancing; and violent pallions of the mind. 3. Those which particularly irritate the vessels of the uterus; as excess in venery; the exercise of venery in the time of menstruation; a collute habit, giving occasion to violent strainings at stool; and cold applied to the feet. 4. Those which have forcibly overstrained the extremities of the uterine vessels; as frequent abotions, frequent child-bearing without nursing, and difficult or tedious labours. Or, lastly, those which induce a general laxity; as living much in warm chambers, and drinking much of warm evaporating liquors, such as tea, coffee, &c.

Cure. The treatment and cure of the menorrhagia, must be different according to the different causes of the disease. The practices employed, however, are chiefly used with one or two intentions; either with the view of refraining; the discharge when present, or of preventing the return of an excessive discharge at the succeeding period. The first is chiefly to be accomplished by employing such practices as diminish the force occasioning the discharge of blood, or as augment the resistance to its passage through the vessels by which it is to be discharged. The last is in some degree to be obtained by avoiding causes which either increase the general impetus of the blood, or the impetus at the uterus in particular; but principally by giving additional vigour to the uterine vessels.

In all cases, the first attention ought to be given to avoiding the remote causes, whenever that can be done; and by such attention the disease may be often entirely cured. When the remote causes cannot be avoided, or when the avoiding them has been neglected, and a copious menstruation has come on, it should be moderated as much as possible, by abating from all exercise at the coming on or during the continuance of the menstruation; by avoiding even an erect posture as much as possible; by fumming external heat, and of course warm chambers and beds; by taking a light and cool diet; by abating a light and cool drink, at least as far as former habits will allow; by abating venery; by obviating colitiveness, or removing it by laxatives which give little stimulus. The sex are commonly negligent, either in avoiding the remote causes, or in moderating the first beginnings of this disease. It is by such neglect that it so frequently becomes violent and of difficult cure; and the frequent repetition of a copious menstruation may be considered as a cause of great laxity in the extreme vessels of the uterus.

When the coming on of the menstruation has been preceded by some disorder in other parts of the body, and is accompanied with pains of the back, somewhat like parturient pains, with febrile symptoms, and when in the same time the flow seems to be copious, a bleeding at the arm may be proper, but is not often necessary; and it will in most cases be sufficient to employ, with great attention and diligence, those means already mentioned for moderating the discharge.

When the immoderate flow of the menstrual flux shall seem...
to be owing to a laxity of the vessels of the uterus, as
may be concluded from the general debility and laxity
of the person's habit; from the remote causes that
have occasioned the disease; from the absence of the
symptoms which denote increased action in the vessels
of the uterus; from the frequent recurrence of the
disease; and particularly from this, that the female in
the intervals of menstruation is liable to a leucorrhœa:
in such a case, the disease is to be treated, not only by
employing all the means (above-mentioned for moderating
the hemorrhagy, but also by avoiding all irri-
tation, every irritation having a greater effect in propor-
tion as the vessels are more lax and yielding. If,
in such a case of laxity, it shall appear that some degree
of irritation concurs, opiates may be employed to
moderate the discharge; but in using these much caution
is requisite. If, notwithstanding these measures
having been taken, the discharge shall prove very large,
astringents both external and internal may be employ-
ed. In such cases, Dr Cullen asks, May small doses
of emetics be of service?

When the menorrhagia depends on the laxity of the
uterine vessels, it will be proper, in the intervals
of menstruation, to employ tonic remedies; as cold
bathing and chalybeats. The exercises of geftation
also may be very useful, both for strengthening
the whole system, and for taking
the passage
of the blood to the internal parts.

These remedies may be employed in all cases of
menorrhagia, from whatever cause it may have pro-
ceeded, it shall have already induced a considerable
degree of debility in the body.

Sp. II. Abortion.
Menorrhagia abortus, Cal.
Menorrhagia gravidarum, Sauv. Sp. 6.
a. Abortus subtrimefris.
b. Abortus subfememfris.
c. Abortus oflomefris.
Abortus ab uteri laxitate, Sauv. Sp. 2.

Sp. III. Immoderate Flux of the Lochia.
Menorrhagia lochialis, Sauv. Sp. 8 Cal.

For the description, treatment and cure, of these
two last diseases, see the article Midwifery.

Sp. IV. Immoderate Flow of the Menses from some
Local Disorder.
Menorrhagia vitiorum, Cal.
Menorrhagia ex hyysteropepsi, Sauv. Sp. 5.

Sp. V. The Leucorrhœa, Fluor Albus, or Whites.
Menorrhagia alba, Cal.
Menorrhagia decoro, Sauv. Sp. 7
Leucorrhœa Americana Sauv. Sp. 5.

Description. The fluor albus, female weaknesses, or
whites, as it is commonly called, is a disease of the womb and its contiguous parts; from which a pale
coloured, greenish, or yellow fluid, is discharges, at-
tended with loss of strength, pain in the loins, bad di-
gestion, and a wan, sickly aspect.

Conject. &c. The quantity, colour, and consistence of the
discharge, chiefly depend upon the time of its dur-
ation, the patient's habit of body, and the nature
of the cause by which it was produced. Taking cold,
strong liquor, immoderate heat and moisture, or vi-
olent exercise, are all observed to produce a bad effect,
as to its quantity and quality.

Weakly women of lax solids, who have had many
children, and long laboured undér ill health, are of
all the most subject to this disfigréeable disease; from
which they unfortunately suffer more severe pene-
tration than others, as the nicest sensations are often con-
neeted with such a delicacy of bodily frame as sub-
jects them to it.

In Holland it is very frequent and in a manner pecu-
lar to the place, to the dampness of its situation;
the surrounding air being so overcharged with
moisture as to relax the body, drop peripetition, and
throw it upon the bowels or womb; producing in the
first a diarrhoea or flux, in the last the fluor albus or
female weaknesses.

The discharge often proceeds from the vessels sub-
fervient to menstruation; because, in delicate habits,
where those vessels are weak, and consequently remain
too long uncontrasted, the fluor albus sometimes im-
imediately follows the menœs, and goes off by degrees
as they gradually close. It also comes from the nu-
cous glands of the womb, as is particularly evident
in very young females of eight and ten years old; in
whom, though very rarely, it has been observed, and
where it must then have necessarily escaped from those
parts, as the uterine vessels are not sufficiently en-
larged for its passage at so early a period.

Sometimes, as in women with child, it proceeds
from the passage to the womb, and not from the womb
itself; which, during pregnancy, is closely sealed up,
so that nothing can pass from thence till the time of
labour. The application of those instruments called
poOFairs, from the pain and irritation they occasion,
are also apt to bring on this discharge. Hence we
may conclude, that this disease may happen although
the blood be in a pure state. Here the fault seems to
be placed in the vessels at the parts, by which the
fluids are vitiated and changed from their natural qua-
lities.

The fluor albus has been supposed to supply the
want of the menœs; because where the first prevails,
the last is generally either irregular or totally wanting;
but it might more properly be said, that the preference
of the fluor al bus, which is a preternatural evacuation,
occasions the absence of that which is natural; as is
evident from the return of the menœs after the fluor
albus has been cured. Indeed, when this discharge
appears about the age of 13 or 14, and returns once
a month, with symptoms like those of the menœs,
then it may be deemed finely natural, and therefore
ought not to be stopped.

Prognostic. The fluor albus may be distinguished in
to two kinds. The first arises from a simple weakness,
or the relaxation of the solids; which may either be
general, where the whole bodily system is enervated,
and unfrrung; or partial, where the womb only is thus
affected,
MEDICINE.

Hemorrhagia.

affected in consequence of hard labour, frequent miscarriages, a suppression or immediate quantity of the menses, or a sprain of the back or loins.

In the first case, the discharge being generally mild, may be safely taken away. In the second it may proceed from a vitiated or impure blood, where the body from thence, is loaded with grofs humours, which nature for her own security and relief thus endeavours to carry off. In such cases, the discharge is often of a reddish colour, like that from old ulcerous sores; being sometimes so sharp as to excoriate the contiguous parts, and occasion a smarting and heat of urine.

A deep-seated, darting pain, with a forcing down, attending such a discharge, is a very dangerous and alarming sign, and indicates an ulceration or cancerous state of the womb. This malignant state of the disease, if of long continuance, is extremely difficult of cure; and disposes the patient to barrenness, a bearing down, dropsey, or consumption.

Cure, &c. The causes of those two kinds of this disease being different, so they will require a very different method of cure. For this purpose, in the first case, nothing will be more proper than nourishing simple food; such as veal broths, jellies, fresh eggs, and milk diet. The acid fruits will also be proper; and the patient may take a reforative, or purgative water, or simple fenn-tea sweetened with manna, till those complaints be removed.

In the second sort of the disease, where the discharge is a deep-teated, darting pain, with a forcing down, the patient may go into the cold bath every second day; and also drink a dry milk diet. The acid fruits will also be proper; such as veal broths, jellies, eggs, milk, which will expedite the cure.

In short, as this is a malady of the most disagreeable kind, which by long continuance or neglect becomes difficult of cure and often produces an ulceration of the womb, bearing down, barrenness, a dropsey, or consumption; it was to be wished that women, on such occasions, would be more attentive to their own safety, by using all possible means, in due time, to prevent those disorders.

Dr. Leake says he has attended more patients labouring under the fluor albus in the autumn than at any other season of the year, especially when the weather was uncommonly moist and cold; most of them were cured by change of diet, an increased perspiration, and the proper use of Peruvian bark with aromatics. He observed, that several about this time who escaped the disorder, were visited with bad colds, a delusion on the throat, or a diarrhoea, which were removed by a similar treatment.

As women are sometimes connected with those who do not conscientiously regard their safety, it is a circumstance of the utmost consequence to distinguish a fresh venereal infection from the fluor albus or subites; for if the first be mistaken for the last, and be either neglected or improperly treated, the worst consequences may arise.

The following signs will best inform the patient whether there be occasion for her doubts or not. A fresh infection, called gonorrhoea, is malignant, and inflammatory; the fluor albus most commonly arises from relaxation and bodily weakness; and therefore the remedies proper in the first disorder would render the laft more violent, by locking up and confining the infectious matter.

In the gonorrhoea, the discharge chiefly proceeds from the parts contiguous to the urinary passage, and continues whilst the menses flow but in the fluor albus it is supplied from the cavity of the womb and its passage, and then the menses are seldom regular.

In the gonorrhoea, an itching, inflammation, and heat of urine, are the fore-runners of the discharge; the orifice of the urinary passage is prominent and painful, and the patient is affected with a frequent irritation to make water. In the fluor albus, pains in the loins, and lofts of strength, attend the discharge; and if any inflammation or heat of urine follow, they happen in a less degree, and only after a long continuance.
in ZSI Species: gu.larities of the menfes, frequent abortion,:fprains, Ipw, All the other kinds of fennentive, ten of the fame colour, efpecially in bad habits of . Cephalalgia Catarrhus a
Rheuma catarrhale, Rheuma epidemic urn, Coryza phlegmatorrhagia, Tullis Amphimerinatufficulofa, Amphimerina catarrhal is, Coryza febricofa, Cory.za Catarrhus ruffis, ·Rheuma, Catarrhus a frigore, Catarrhus, Tullis II):Cdical lI~MATF;MEsls, Sa;Jv:STOMACACE,
In the XIV. Haller, Sag. gen. 176.
~bf. .fg.
V. Vog. 178. 21.
Pract. Prac. V. 100. Sag. gen 176. I.

Stomach Accentuated.

Species : Scorbutica, Purulentla, &c.

Hematemesis, Sauw. gen. 242. Lin. 184. Vg. 89. gen. 177.

Species : Pletorica, Catamenialis, Scorbutica, &c.

Species : Purulentla, Calculofa, Hemorrhoidalis, &c.

ORDER V. PROFLUVIA.

GENUS XL. CATARRHUS.

The Catarrh.

Tullis catarrhalis et rheumatica, Hoffm. III. 109.

Sp. I. Catarrh from Cold

Catarrhus a frigore, Cul.

Coryza phlegmatorrhagia, Sauw. fp. 2. Salvatbc.

Coryza fabricofa, Sauw. fp. 6. Tullis catarrhalis, Sauw. fp. 1. N. Rofen Diff. apud Haller, Difput. Prae. tom. II.

Cephalalgia catarrhalis, Sauw. fp. 10.

Sp. II. Catarrh from Contagion.

Catarrhus a contagio, Cul.

Catarrhus epidemicus, Sauw. fp. 3. Rheuma epidemicum, Sauw. fp. 2.

Synocho catarrhalis, Sauw. fp. 5.

There are severall symptomatic species : as, Catarrhus Rubeolofus; Tullis Variofoa, Verminofa, Calcul.

Vol. XI.
MEDICINE.

Catarthi.

Whether one country of Europe, without appearing successfully, the fluids, the profusious objections before, seem rested not only more tedious than otherwise it would be, but also more dangerous by the supervening of other diseases. Some degree of the cynthiae tonsillaris often accompanies the catarth; and when this is aggravated by a freth application of cold, the cynthia becomes more violent and dangerous from the cough, which is present at the same time. When a catarth has been occasioned by a violent causethat it has been aggravated by improper management, and especially when it has been rendered more violent by freth and repeated applications of cold, it often passes into a pneumonic inflammation, attended with the utmost danger.

Unluckily, however, such accidents as those happen, a catarth, in found persons not far advanced in life, is always a slight and safe disease; but in persons of a phthisical disposition, a catarth may readily produce a hemoptysis, or perhaps form tubercles in the lungs; and still more readily in persons who have tubercles already formed in the lungs, an accidental catarth may occasion the inflammation of these tubercles, and in consequence produce a phthisis pulmonalis.

In elderly persons, a catarth sometimes proves a dangerous disease. Many persons, as they advance in life, and especially after they have arrived at old age, have the natural mucus of the lungs poured out in greater quantity, and requiring a frequent expectoration. If, therefore, a catarth happen to such persons, and increase the afflux of fluids to the lungs, with some degree of inflammation, it may produce the peripneumonia notha, or more properly chronic catarrh, a disease continuing often for many years, or at least regularly every winter; which in such cases is very often fatal.

Carnies, &c. The proximate cause of catarth seems to be an increased afflux of fluids to the mucous membrane of the nose, fauces, and bronchee, along with some degree of inflammation affecting the same. The latter circumstance is confirmed by this, that, in the case of catarth, the blood drawn from a vein commonly exhibits the same inflammatory crust which appears in the case of phlegmatiae. The remote cause of catarth is most commonly cold applied to the body. This application of cold producing catarth is generally evident and observed; and Dr. Cullen is of opinion that it would always be so, were men acquainted with and attentive to the circumstances which determine cold to act upon the body.

The application of cold which occasions a catarth, probably operates by stopping the perspiration usually made by the skin, and which is therefore determined to the mucous membrane of the parts abovementioned. As a part of the weight which the body daily loses by innumerable evaporation, is owing to an exhalation from the lungs, there is probably a connexion between this exhalation and the cutaneous perspiration, so that the one may be increased according as the other is diminished; and therefore we may understand how the diminution of cutaneous perspiration, by the application of cold, may increase the afflux of fluids to the lungs, and thereby produce a catarth.

Dr. Cullen observes that there are some observations of Dr. James Keil which may render this matter doubtful; but says there is a fallacy in those observations. The evident effects of cold in producing coryza, leave the matter, in general, without doubt; and there are several other observations which show a connexion between the lungs and the surface of the body.

Whether from the suppression of perspiration, a catarth be produced merely by an increased afflux of fluids, or whether in addition to this the matter of perspiration be at the same time determined to the mucous glands, and there excites a particular irritation, may be uncertain; but Dr. Cullen thinks the latter supposition is most probable.

Although in the case of a common catarth, which is in many instances sporadic, it may be doubtful whether any morbid matter be applied to the mucous glands; we are, however, certain that the symptoms of a catarth do frequently depend upon such a matter being applied to these glands, as appears from the case of measles, chincough, and especially from the frequent occurrence of contagious and epidemic catarrh.

The phenomena of contagious catarrhas have been much the same with those of the others; and the disease has always been particularly remarkable for this, that it has been the most widely and generally spreading epidemic known. It has seldom appeared in any one country of Europe, without appearing successively in almost every different part of it; and, in some instances, it has been also transferred to America, and has been spread there in like manner, so far as we have had opportunities of being informed.

The catarth from contagion appears with nearly the same symptoms as those abovementioned. It seems often to come on in consequence of the application of cold. And indeed catarth from cold and contagion are in every respect so similar, that when this epidemic rages, it is impossible to determine with a person having symptoms of catarth after exposure to cold, whether the disease proceeds from the one cause or the other. In most instances, however, catarth from contagion comes on with more cold shivering than the catarth arising from cold alone; and the former does also not only sooner show febrile symptoms, but to a more considerable degree. Accordingly, it more speedily runs its course, which is commonly finished in a few days. It sometimes ends by a spontaneous sweat; and this, in some persons, produces a military eruption. It is, however, the febrile state of this disease especially that is finished in a few days; for the cough and other catarthial symptoms do frequently continue longer, and often when they appear to be going off they are renewed by any fresh application of cold.

Prognosis. Possessing the number of persons who are afflicted with catarrh of either the one species or the other, and escape from it quickly without any hurt, it may be allowed to be a disease commonly free from danger; but it is not always to be treated as such,
MEDICINE

for in some persons it is accompanied with pneumatic inflammation. In the phthisically disposed, it often accelerates the coming on of phthisis; and in elderly persons it often proves fatal in the manner we have explained above, viz. by degenerating into its chronic state. But though chronic catarrh be often the termination of that species which arises from cold, we have not, in any case, observed it to arise as a consequence of a catarrh from contagion. This species of catarrh, however, is not unfrequently followed by phthisis; or rather where a phthisical tendency before existed, the affection has been begun and its progress accelerated from this cause.

Cure. The cure of catarrh is nearly the same, whether it proceeds from cold or contagion; only in the latter case remedies are commonly more necessary than in the former. In the cases of a moderate disease, it is commonly sufficient to avoid cold, or to abstain from animal-food for some days. In some cases, where the febrile symptoms are considerable, it is proper for that length of time to lie a-bed, and, by taking frequently some mild and diluent drink, a little warmed, to promote a very gentle sweat; and after this to take care to return very gradually only to the use of fluids to the surface of the body, and at the same time for expediting the secretion of mucus in the lungs, which may take off the inflammation of its membrane, vomiting is the most effectual means. For the last-mentioned purpose, it has been supposed that fquills, gum-ammoniac, the volatile alkali, and some other medicines, might be useful; but their efficacy has never been found considerable: and if squills have ever been very useful, it seems to have been rather by their emetic than by their expectorant powers. When the inflammatory affections of the lungs seem to be considerable, it is proper, besides blood-letting, to apply blisters to the back or sides.

As a cough is often the most troublesome circumstance of this disease, so demulcents may be employed to alleviate it. But after the inflammatory symptoms are much abated, if the cough still remains, opiates afford the most effectual means of relieving it; and, in the circumstances just now mentioned, they may be very safely employed. Very considerable advantage is often derived from employing opium in such a manner as to act more immediately on the head of the wind-pipe. For this purpose, opium may often be advantageously conjoined with demulcents, melting slowly in the mouth. And perhaps no form is more convenient, or answers the purpose better, than the trochice glycyrrhiza cum opio of the Edingburgh Pharmacopœia, where purified opium is combined with extract of liquorice, gum Arabic, and other demulcents, to the extent of about a grain in a dram of the composition. After the inflammatory and febrile states of this disease are very much gone, the most effectual means of discharging all remains of the catarrhal affection is by some exercise of generation diligently employed.

Besides the remedies abovementioned, Mr Mudge, in a treatise on this disease, recommends the steam of warm water as a most efficacious and safe remedy for a catarrh, and which indeed he seems to consider as little less than infallible. The method of breathing in these steams is described under the word Inhaler; but he gives a caution to people in health, who may accidentally see his machine, not to make the experiment of breathing through cold water with it, for they will be almost certain of catching a severe cold. His directions for those troubled with the catarrh are as follows:

"In the evening, a little before bed-time, the patient, if of adult age, is to take three drachms, or as many tea-spoonfuls, of elixir pargaricum, in a glass of water: if the subject be younger, for instance under five years old, one tea-spoonful; or within that and ten years, two. About three quarters of an hour after, the patient should go to bed, and, being covered warm the inhaler three parts filled with water nearly boiling (which, from the coldness of the metal, and the time it ordinarily takes before it is to be used by the patient, will be of a proper degree of warmth), and being wrapped up in a napkin, but so that the valve in the cover is not obstructed by it, is to be placed at the arm-pit, and the bed-clothes being drawn up and over it close to the throat, the tube is to be applied to the mouth, and the patient should inspire and expire through it for about twenty minutes or half an hour.

"It is very evident, as the whole act of respiration is performed through the machine, that in inspiration the lungs will be filled with air which will be hot, and loaded with vapour, by passing through the body of water; and in expiration, all that was contained in the lungs will, by mixing with the steam on the surface of the water, be forced thro' the valve in the cover, and settle on the surface of the body under the bed-cloaths.

"The great use of this particular construction of the inhaler is this. First, as there is no necessity, at the end of every inspiration, to remove the tube from the mouth, in order to expir from the lungs the vapour which had been received into them, this machine may therefore be used with as much ease by children as older people. And, secondly, as a feverish habit frequently accompanies the disorder, the valve in that respect allo is of the utmost importance; for a sweat, or at least a free perspiration, not only relieves the patient from the relief's anxiety of a hot, dry, and sometimes parched skin, but is also, of all evacuations, the most eligible for removing the fever; and it will be generally found, that, after the inhaler so constructed has been used a few minutes, the warm vapour under the cloaths will, by settling upon the trunk, produce a sweat, which will gradually extend itself to the legs and feet.

"In a catarrhal fever, or any feverish habit attending this cough, it would be proper to take a draught of warm thin whey a few minutes before the inhaler be used; and after the process is over, the sweat which it has produced may be continued by occasional small
small druggs of weak warm whey or barley-water. The sweating is by no means so necessary to the cure of the catarrhous cough, as that the success of the inhaler against that complaint at all depends upon it; yet I cannot help once more remarking, that when this disorder happens to be accompanied with a feverish habit, the advantages of this particular confection will be very important.

"After this respiratory process is over, the patient usually passes the night without the least interruption from the cough, and feels no farther molestation from it than once or twice in the morning to throw off the trifling leakage which, unperceived, had dripped into the bronchie and vesicles during the night; the thinner parts of which being evaporated, what remains is soon got rid of with a very gentle effort.

"I cannot, however, take leave of this part of my subject, without pointedly observing, that if the patient means not to be disappointed by my assurances or his own expectations, it is essentially necessary that the following remarks, with regard to the time and manner of using this process, should be strictly attended to.

"First, That as tender valetudinary people are but too well acquainted with the first notices of the disorder, the remedy must, or ought to be, used the same evening; which will, in an ordinary feiture, be attended with an immediate cure: but if the forense of the respiritory organs, or the petulance of the cough, throw the cold which has been contracted to have been very severe, the inhaler, without the opiate, should be again repeated for the same time the next morning.

"Secondly, if the use of the inhaler, &c. be delayed till the second night, it will be always right to repeat it again the next morning without the opiate, but with it if the fever is not violent.

"And, lastly, if the cough be of some days standing, it will be always necessary to employ both parts of the process at night and the succeeding morning; as the first simple inflammatory mischief is now most probably aggravated by an additional one of a chronic tendency.

"But if, through the want of a timely application or a total neglect of this or any other remedy, the cough should continue to harass the patient, it is, particularly in delicate and tender constitutions, of the utmost consequence to attempt the removal of it as soon as possible, before any floating injury in the constitution (from the perpetual irritation) receives an habitual determination to an organ so essential to life as the lungs.

"If the patient expectorate with ease and freedom a thick and well-digested inoffensive phlegm, there is generally but little doubt of his spitting off the disorder, with common care, in a few days; and till that be accomplished, a proper dose of elixir paregoricum for a few successive nights will be found very useful in suppreffing the fatigue of irritation and ineffectual cough, occasioned by a matter which, dripping in the early state of the disease into the bronchio during the night, is commonly at that time too thin to be discharged by those convulsive efforts.

"If, however, notwithstanding these other means, the cough continuing dry or unattended with a proper expectoration, should persevere in harassing the patient; if, at last, it should produce, together with a forense, flueting pains through the breast and between the shoulders, attended also with shortness of the breath; and if, added to this, flushes of the cheeks after meals, falding in the hands and feet, and other symptoms of a hectic, should accompany the disorder; there is certainly no time to be lost, as there is the greatest reason to apprehend that some acrimony in the habit is determined to the tender substance of the lungs, and that consequently tubercular suppurations will follow. In this critical and dangerous situation, I think I can venture to say from long experience, that, accompanied with change of air and occasional bleedings, the patient will find his greatest fe-
GENUS XLI. DYSENTERIA.
THE DYSENTERY.

DYSENTERIA.

DESCRIPTION.

The dysentery is a disease in which the patient has frequent stools, accompanied with much griping, and followed by a tenesmus. The stools, though frequent, are generally in small quantity; and the matter voided is chiefly mucus, sometimes mixed with blood. At the same time, the natural faces seldom appear; and when they do, it is generallv in a compact and hardened form, often under the form of small hard substances known by the name of phylodes. This disease occurs especially in summer and autumn, at the same time with autumnal intermittent and remittent fevers; and with these it is often complicated. It comes on sometimes with cold flushings, and other symptoms of pyrexia; but more commonly the symptoms of the topical affection appear first. The belly is colicky, with an unusual flatulence in the bowels. Sometimes, though more rarely, some degree of diarrhoea is the first appearance. In most cases, the disease begins with griping, and a frequent inclination to go to stool. In indulging this, little is voided, but some tenesmus attends it. By degrees the stools become more frequent, the griping more severe, and the tenesmus more considerable. — With these symptoms there is a loss of appetite, and frequently sickness, nausea, and vomiting, also affecting the patient. At the same time there is always more or less of pyrexia present. It is sometimes of the remittent kind, and observed a tertian period. — Sometimes the pyrexia is manifelty inflammatory, and very often of a putrid kind. These febrile states continue to accompany the disease during its whole course, especially when it terminates soon in a fatal manner. In other cases, the febrile state almost entirely disappears, while the proper dysenteric symptoms remain for a long time after. In the course of the disease, whether for a shorter or a longer time, the matter voided by stool is very various. Sometimes it is merely a mucous matter, without any blood, exhibiting that disease which is named by some the morbus mucus, and by others the dysenteria alta. For the moat part, however, the mucus discharged is more or less mixed with blood. This sometimes appears only in streaks among the mucus; but at other times is more copious, giving a tint to the whole; and upon some occasions a pure and unmixed blood is voided in considerable quantity. In other respects, the matter voided is variously changed in colour and consistence, and is commonly of a strong and unctuous and fetid odour. It is probable, that sometimes a genuine pus is voided, and frequently a putrid faeces, proceeding from gangrenous parts. There are very often mixed with the liquid matter some films of a membraneous appearance, and frequently some small masses of a seemingly seaceous matter. While the stools voiding these various matters are, in many instances, exceedingly frequent, it is seldom that natural faces appear in them; and when they do appear, it is, as we have said, in the form of phylodes, that is, in somewhat hardened, fe-
the common opinion has been, that the disease depends upon an acrid matter thrown upon or somehow generated in the intestines, exciting their peristaltic motion, and thereby producing the frequent foleys which occur in this disease. But this supposition cannot be adopted; for, in all the instances known, of acrid substances applied to the intestines, and producing frequent foleys, they at the same time produce copious foleys, as might be expected from acrid sub-
stances applied to any length of the intestines. This, however, is not the case in a defertility, in which the foleys, however frequent, are generally in very small quantity, and such as may be supposed to proceed from the lower parts of the rectum only. With respect to the superior portions of the intestines, and particularly those of the colon, it is probable they are under a preternatural and considerable degree of con-
triction; for, as we have said above, the natural foleys are seldom voided; and when they are, it is in a form which gives reason to suppose they have been long retained in the cells of the colon, and con-
sequently that the colon had been affected with a preternatural contraction. This is confirmed by almost all the affections which have been noted of the bodies of dyfenteric patients; in which, when gangrene had not entirely destroyed the texture and form of the parts, large portions of the great guts have been found af-
fected with a very considerable contraction.

The proximate cause of dyfenteria, or at least the chief part of the proximate cause, seems to consist in a preternatural contraction of the colon, occasioning at the same time, those spasmodic effects which are felt in severe gripings, and which effects propagated downwards to the rectum, occasion there the frequent mucous foleys and tenesmus. But whether this explanation shall be admitted or not, it will still remain certain, that hardened foleys, retained in the colon, are the cause of the griping, frequent foleys, and tenesmus; for the evacuation of these foleys, whether by nature or by art, gives relief from the symptoms mentioned; and it will be more fully and usefully confirmed by this, that the most immediate and successful cure of dyfenteria is obtained by an early and conftant at-
evacuation of the visceral femeicupium, or by fomentation of the alimentary canal. In the more advanced periods of the disease, the principal objects are, the giving a proper defence to the intestines against irritating caufes; the diminution of morbid fensibility of the intestinal canal; and the reparation of due vigour to the system in general, but to the intestines in par-
cular.

The most eminent of our late practitioners, and of greatest experience in this disease, seem to be of opinion, that it is to be cured most effectual-
ly by purging, affiduously employed. The means may be various; but the most gentle laxatives are usuallly sufficient; and, as the medicine must be fre-
quently repeated, these are the most safe, more es-
pecially as an inflammatory state so frequently ac-
companies the disease. Whatever laxatives produce an evacuation of natural foleys, and a conftant re-
mission of the symptoms, will be sufficient to effectuate the cure. But if the gentle laxatives shall not pro-
duce the evacuation now mentioned, somewhat more powerful must be employed; and Dr. Colten has found nothing more proper or convenient than tartar emetic, given in small doses, and at fuch intervals as may determine its operation to be chiefly by ffool.

To the antimonial tartar, however, employed as a purgative, the great fickfness which it is apt to occa-
fion, and the tendency which it has, notwithstanding every precaution, to operate as an emetic, are certain-
ly objections. Another antimonial, at one time con-
 sidered as an almost infallible remedy for this dis-
ease, the vittrum antimonii ceratum, is no lefs excep-
tionable, from the uncertainty and violence of its op-
eration; and perhaps the safest and belt purgatives are the different neutral falts, particularly thole containing fodic and tartaric, or a mixture of the bodies of Rhubarb and Saltpetre. If they be more frequently employed, it is, he thinks, in feveral repects, amongst the moft unfit purgatives; and indeed from its astringent quality, it is exceptionable at the commencement of the affection, unlefs it be joined with something to render its operation more brisk, such as mild muriated mercury, or caolame as it is commonly called.

Vomiting has been held a principal remedy in this disease; and may be usefully employed in the be-

ing, with a view to both the state of the ftemach and of the fever; but it is not necessary to repeat it often; and, unless the emetics employed, operate alfo by ffool, they are of little service. Speciaauha is by no means a specific; and it proves only useful when fo managed as to operate chiefly by ffool.

For relieving the conftitution of the colon, and evacuating the retained foleys, glyfers may sometimes be useful; but they are seldom fo effectual as laxatives given by the mouth; and acrid glylers, if they be not effectual in evacuating the colon, may prove hurt-
ful by stimulatig the rectum too much.

The frequent and severe griping attending this disease, leads almost neceffary to the ufe of opiates; and they are very effectual for the purpose of relieving from the gripes; but, by occasioning an interuption of the action of the small intestines, they favour the conftitution of the colon, and thereby aggravate the disease; and if, at the fame time, the ufe of them supercede in any measure the employing purgatives, it is doing much mischief; and the neglect of purging seems to be the only thing which renders the ufe of opiates very neceffary.

When the gripes are both frequent and severe, they may sometimes be relieved by the employment of the fecicupim, or by fomentation of the ab-
domen continued for some time. In the fame cafe, the pains may be relieved, and the conftitution of the colon may be taken off, by blitters applied to the lower belly.

At the beginning of this disease, when the fever is any way considerable, blood-letting, in patients of tolerable
and tolerable vigour, may be proper and necessary; and, when the pulse is full and hard, with other symptoms of an inflammatory disposition, blood-letting ought to be repeated. But, as the fever attending dysentery is often of the typhoid kind, or does, in the course of the disease, become a symptom of that nature, blood-letting must be cautiously employed.

From our account of the nature of this disease, it will be sufficiently obvious, that the use of astringents in the beginning of it must be very pernicious. But although astringents may be hurtful at early periods of this affection, yet it cannot be denied that where frequent loose stools remain after the febrile symptoms have subsided, they are often of great service and the intestinal canal. Accordingly, on this ground a variety of articles have been highly extolled in cases of dysentery by some of the Swedish physicians; for diminishing morbid sensibility, and the stagnation of fluids, which attend the dysentery, may be uncertain; but, from the indigestion and the sthenic kind, as the mucus, hordei, potios saccharae, &c. are often employed with advantage. And perhaps also, on the same principles, we are to account for the benefit which has been sometimes derived from the nux vomica, a remedy highly valuable, been but very precarious to allow of its entire state, is of doubtful quality in many cases; but even some portion of the cream is often allowed, often proves very powerful as an evacuant. Its effects, however, whatever its mode of operation may be, are too precarious to allow its ever being introduced into common practice; and in Britain, it has, we believe, been but very rarely employed. Whether an acid matter be the original cause of the dysentery, may be uncertain; but, from the indigestion, and the stagnation of fluids, which attend the disease, we may suppose that some acid matters are constantly present in the stomach and intestines; and therefore that demulcents may be always usefully employed. At the same time, from the consideration that mild oily matters thrown into the intestines in considerable quantity always prove laxative, Dr Cullen is of opinion, that the oleaginous demulcents are the most useful. Where, however, these are not acceptable to the patient's taste, theose of the mucilaginous and farinaceous kind, as the decoctum hordei, potio creatceae, &c. are often employed with advantage.

As this disease is so often of an inflammatory or of a putrid nature, it is evident that the diet employed in it should be vegetable and acidulent. Milk, in its entire state, is of doubtful quality in many cases; but even some portion of the cream is often allowed, and whey is always proper. In the first stages of the disease, the sweet and subacid fruits are allowable, and even proper. It is in the more advanced stages only that any morbid acidity seems to prevail in the stomach, and to require some reserve in the use of astringents. At the beginning of the disease, astringents seem to be superfluous; and by their astringent and septic powers, they may be hurtful; but in other periods they are often of advantage.

When this disease is complicated with an intermitment, and is prostrated from the circumstance chiefly, it is to be treated as an intermitent, by administering the Peruvian bark, which in the earlier periods of the disease is hardly to be admitted.
MEDICINE.

Prognosis. This species is equally fatal with the Apoplexy of the other; and what had been said of the prognosis of the fanguineous, may also be said of that of the serous, apoplexy.

Cure. In this species venefication can fearlessly be admitted: acrid purgatives, emetics, and stimulating clysters, are recommended to carry off the superabundant serum; but in bodies already debilitated, they may perhaps be liable to the same exceptions with venefication itself. Volatile salts, cephalic elixirs, and cordials, are also prescribed; and in case of hemiplegia supervening, the cure is to be attempted by aperient pills, cathartics, and sudorifics; gentle exercise, as riding in a carriage; with blisters and such stimulating medicines as are in general had recourse to in ailments originally of the paralytic kind.

Sp. III. Hydrocephal Apoplexy, or Dropisy of the Brain.

Hydrocephalus interior, Sauv. sp. 1.

Hydrocephalus interior, Dr Whytt's works, pag. 725.

Gaudelius de hydrocephalo, apud Sandifort Theaur. vol. ii.

Hydrocephalus acutus, Quain, Diff. de hydrocephalo, 1779.

Althenia a hydrocephalo, Sauv. sp. 3.

History and description. This disease has been accurately treated within these few years by several eminent physicians, particularly the late Dr Whytt, Dr Fothergill, and Dr Watton, who concur in opinion with respect to the seat of the complaint, the mode of its symptoms, and its general fatality. Out of twenty patients that had fallen under Dr Whytt's observation, he candidly owns that he had been so unfortunate as to cure only one who laboured under the characteristic symptoms of the hydrocephalus; and he supposes that those who imagine they have been more successful, had mistaken another disposition for this. It is by all supposed to consist in a dropy of the ventricles of the brain; and this opinion is fully established by observations, it is supposed to happen more commonly to healthy, active, lively children, than to those of a different disposition.

Dr Whytt supposes that the commencement of this disease is obscure; that it is generally some months in forming; and that, after some obvious urgent symptoms rendering assistance necessary, it continues some weeks before its fatal termination. This, in general, differs from what has hitherto been observed by Dr Fothergill, the latter informing us, that he has seen children, who, from all appearances, were healthy and active, seized with this distemper, and carried off in about 14 days. He has seldom been able to trace the commencement of it above three weeks.

Though the hydrocephalus be most incident to children, it has been sometimes observed in adults; as appears from a case related by Dr Hack, and from some others.

When the disease appears under its most common form, the symptoms at different periods are so various as to lead Dr Whytt to divide the disease into three stages, which are chiefly marked by changes occurring in the condition of the pulse. At the beginning it is quicker
quicker than natural; afterwards it becomes uncommonly slow, and towards the conclusion of the disease it becomes again quicker than natural, but at the same time very irregular.

Those who are feized with this distemper usually complain first of a pain in some part below the head, most commonly about the nape of the neck and shoulders; often in the legs; and sometimes, but more rarely, in the arms. The pain is not uniformly acute, nor always fixed to one place; and sometimes does not affect the limbs. In the latter case, the head and stomach have been found to be most disordered; so that when the pain occupied the limbs, the sickness or head-ach was less considerable; and when the head likewise with the shoulders; often in the legs; and sometimes, but more feverishly, the pain in the limbs procured. These are generally of a very dark greenish colour with an oiliness or a glairy bile, rather than the slime which accompanies worms; and they are, for the most part extremely offensive. No positive conclusion can be drawn from the appearance of the urine; it being various, in different subjects, both in its colour and contents, according to the quantity of liquor they drink, and the time between the discharges of the urine. From their unwillingness to be moved, they often retain their water 12 or 15 hours, and sometimes longer. In complaints arising from worms, and in dentition, convulsions are more frequent than in this disorder. Children subject to fits are sometimes feized with them a few days before they die. Sometimes these continue 24 hours incessantly, and till they expire.

Causes. The causes of internal hydrocephalus are very much unknown. Some suppose it to proceed from a rupture of some of the lymphatic vessels of the brain. But this supposition is so far from being confirmed by any anatomical observation, that even the existence of such vessels in the brain is not clearly demonstrated. That lymphatics, however, do exist in the brain, cannot be doubted; and one of the most probable causes giving rise to an accumulation of water in the brain is a diminished action of these. Here, however, as well as in other places, accumulation may also be the consequence of augmented effusion; and in this way, an inflammatory disposition, as some have supposed, may give rise to the affection. But from whatever cause an accumulation of water in the ventricles of the brain may be produced, there can be no doubt that from this the principal symptoms of the disease arise, and that a cure is to be accomplished only by the removal of it.

In the first stage of the disease there seems to be a peculiar sensibility of the eyes, as appears from the intolerance of light. But in the progress of the disease a very opposite state occurs: The pupil is remarkably dilated, and cannot be made to contract by the action of strong light; such, for example as by bringing a candle very near to it. In many cases there is reason to believe that total blindness occurs: Often also the pupil of one eye is more dilated than that of another, and the power of moving the eyes is also morbidly affected. Those children, who were never observed to squint before, often become affected with a very great degree of strabismus. The patients are unwilling to be disturbed for any purpose, and can bear no posture but that of lying horizontally. One or both hands are most commonly about their heads. The urine and stools come away insensibly. At length the eyelids become paralytic, great heat accompanied with sweat overpowers the whole body, respiration is rendered totally fulfurus, the pulse becomes in its trembling indubitions beyond the possibility of count. Apoplexy.

Many of the symptoms above enumerated are so common to worm-cafes, teething, and other irritating causes, that it is difficult to fix upon any which particularly characterize this disease. The most peculiar symptom is the pain in the limbs, with sickness and incessant head-ach; which, though frequent in other diseases of children, are neither so uniformly nor so constantly attendant as in this. Another circumstance observed to be familiar, if not peculiar to this distemper, is, that the patients are not only colitive, but it is likewise with the greatest difficulty that ffools can be procured. These are generally of a very dark greenish colour with an oiliness or a glairy bile, rather than the slime which accompanies worms; and they are, for the most part extremely offensive. No positive conclusion can be drawn from the appearance of the urine; it being various, in different subjects, both in its colour and contents, according to the quantity of liquor they drink, and the time between the discharges of the urine. From their unwillingness to be moved, they often retain their water 12 or 15 hours, and sometimes longer. In complaints arising from worms, and in dentition, convulsions are more frequent than in this disorder. Children subject to fits are sometimes seized with them a few days before they die. Sometimes these continue 24 hours incessantly, and till they expire.

Causes. The causes of internal hydrocephalus are very much unknown. Some suppose it to proceed from a rupture of some of the lymphatic vessels of the brain. But this supposition is so far from being confirmed by any anatomical observation, that even the existence of such vessels in the brain is not clearly demonstrated. That lymphatics, however, do exist in the brain, cannot be doubted; and one of the most probable causes giving rise to an accumulation of water in the brain is a diminished action of these. Here, however, as well as in other places, accumulation may also be the consequence of augmented effusion; and in this way, an inflammatory disposition, as some have supposed, may give rise to the affection. But from whatever cause an accumulation of water in the ventricles of the brain may be produced, there can be no doubt that from this the principal symptoms of the disease arise, and that a cure is to be accomplished only by the removal of it. It is, however, probable, that the symptoms are somewhat varied by the position of the water, and that the affection of vision in particular is often the consequence of some morbid state about the thalami nervorum opticorum; at least, in many cafes, large collections of water in the ventricles have occurred, without either strabismus, intolerance of light, or dilatation of the pupil. And in cafes where these symptoms have taken place to a remarkable degree, while upon dissection after death but a very small collection of water was found in the ventricles, it has been observed that a peculiar tumid appearance was discovered about the optic nerves, which upon examination was found to arise from water in the cellular texture. This may have given compreッション producing a state of insensibility; but it may have been preceded, or it may even have originated from, some inflammatory affec-
Comata

Prognosis and Cure. Till very lately this disorder was reckoned totally incurable; but of late it has been alleged, that mercury if applied in time, will remove every symptom. This remedy was first thought of by Dr Dobson of Liverpool, and afterwards employed apparently with success by Dr Percival and others. The method of exhibiting this medicine in order to effect a cure, as well as the inutility of other medicines, will fully appear from the following cases.

Case I. By Dr Percival.

"September 4, 1777. Master H. a child at the breast, aged seven months, has laboured about a fortnight under a febrile irregular fever. His eyes have been half open and then a little distorted; he has been affected with some degree of flux; his gums have been inflamed and tender; and his mouth uncommonly dry. No tooth has yet made its appearance. An emetic has been administered; a blister applied to his back; and his belly has been kept hot; repeated small doses of magnesia. During the action of the blister, he was thought to be much better, but he soon relapsed into his former state.

"About three o'clock this morning he was convulsed; at nine I saw him; and from his countenance instantly suspected a dropopy of the brain. The symptoms confirmed my apprehensions. His skin was hot; yet his pulse beat only 78 strokes in a minute, which were irregular. The pupils of his eyes were considerably, but unequally, dilated; nor did they contract much when a lighted candle was suddenly held before them. He often squeezed, especially with the right eye, and seemed to take no notice of any objects around him. He refused the bread, and seldom swallowed till the lips and tongue had been fumulated with a feather. During several days past, he had been frequently observed to rub the end of his nose when his hand was at liberty; and notwithstanding his stupor, he was at liberty; and notwithstanding his stupor, he was thought to be much better, but he soon relapsed into his former state.

"On September 5, nine o'clock. The child has had frequent convulsions in the night; his right eye is much distorted; and it has been remarked, that he seldom moves the right hand. The pulse beat 120 strokes in a minute. Two scrupules of the mercurial ointment have been used, and he has taken five grains of mufk. A large discharge of foam has been produced by the blisters. Five o'clock, P.M. the tumor of the head is sensibly diminished; the child's mouth is now moist, and often filled with saliva; and his tongue appears to be swollen. His pulse beat 146 strokes in a minute, I directed another blister to be applied to the head.

"September 6. His convulsions have been much lighter; his eyes are frequently distorted; and the pupils of each are more contracted. The flux is considerably abated; the child seems to take some notice, distinguishes taste, and swallows freely. The mufk has been continued; and half a dram more of the mercurial ointment has been consumed. A clyster was injected last night. Yet, although the flux is considerably abated, the pulse has had a short sleep, and is now composed. His pulse beats 140 strokes in a minute, his heat is moderate; and his skin soft and perspirable. The mercurial ointment has been again used; but, though his gums and tongue are gone and very moist, his breath is not offensive. I directed a grain of calomel to be immediately given, to procure a stool; and a blister to be applied to the occiput.

"September 7. The child has passed the night more comfortably, but not free from convulsions. His head has sweated profusely, and the blisters have run much. The tumor of the bregma is considerably reduced. The jalap operated gently last night, and the mercurial unction has been twice repeated. There is an evident mitigation of all the symptoms.

"September 8. About eleven o'clock last night the child was attacked with severe convulsions, which recurred frequently till one o'clock this morning. He had a short sleep, and is now composed. His pulse beats 140 strokes in a minute, his heat is moderate; and his skin soft and perspirable. The mercurial ointment has again been used; but, though his gums and tongue are sore and very moist, his breath is not offensive. I directed a grain of calomel to be immediately given, to procure a stool; and a blister to be applied to the occiput.

"September 9. He has passed two nights almost entirely free from convulsions. Ten grains of the mercurial ointment have been again rubbed into his thighs. The dose of calomel occasioned three very offensive fumes; and directions are given to repeat it, as he is again coltive. The blister applied to the occiput, like all the others, has produced a very copious discharge. The tumor of the head is now scarcely perceptible. Pulsæ 120.

"September 10. At 12, o'clock last night, the convulsions recurred with greater violence than ever, and still continue. Two teeth have almost protruded through the upper, and the same number through the lower gum. Pulsæ 160, tremulous, and irregular. I directed that the child should be immediately put into a warm bath, and that the following remedies should be administered.

"Small blisters were applied on each side of the head, just below the bregma; and a folded rag, frequently moistened with brandy, was laid upon the tumor to promote absorption. An emetic had been given early in the morning, by which a large quantity of bile was discharged; and a vesicator had also been applied to his leg.

"September 11. Nine o'clock. The child has had frequent convulsions in the night; his right eye is much distorted; and it has been remarked, that he seldom moves the right hand. The pulse beat 120 strokes in a minute. Two scrupules of the mercurial ointment have been used, and he has taken five grains of mufk. A large discharge of foam has been produced by the blisters. Five o'clock, P.M. the tumor of the head is sensibly diminished; the child's mouth is now moist, and often filled with saliva; and his tongue appears to be swollen. His pulse beat 146 strokes in a minute, I directed another blister to be applied to the head.

"September 6. His convulsions have been much lighter; his eyes are frequently distorted; and the pupils of each are more contracted. The flux is considerably abated; the child seems to take some notice, distinguishes taste, and swallows freely. The mufk has been continued; and half a dram more of the mercurial ointment has been consumed. A clyster was injected last night. Yet, although the flux is considerably abated, the pulse has had a short sleep, and is now composed. His pulse beats 140 strokes in a minute, his heat is moderate; and his skin soft and perspirable. The mercurial ointment has again been used; but, though his gums and tongue are sore and very moist, his breath is not offensive. I directed a grain of calomel to be immediately given, to procure a stool; and a blister to be applied to the occiput.

"September 7. The child has passed the night more comfortably, but not free from convulsions. His head has sweated profusely, and the blisters have run much. The tumor of the bregma is considerably reduced. The jalap operated gently last night, and the mercurial unction has been twice repeated. There is an evident mitigation of all the symptoms.

"September 8. About eleven o'clock last night the child was attacked with severe convulsions, which recurred frequently till one o'clock this morning. He had a short sleep, and is now composed. His pulse beats 140 strokes in a minute, his heat is moderate; and his skin soft and perspirable. The mercurial ointment has again been used; but, though his gums and tongue are sore and very moist, his breath is not offensive. I directed a grain of calomel to be immediately given, to procure a stool; and a blister to be applied to the occiput.

"September 9. He has passed two nights almost entirely free from convulsions. Ten grains of the mercurial ointment have been again rubbed into his thighs. The dose of calomel occasioned three very offensive fumes; and directions are given to repeat it, as he is again coltive. The blister applied to the occiput, like all the others, has produced a very copious discharge. The tumor of the head is now scarcely perceptible. Pulsæ 120.

"September 12. At 12, o'clock last night, the convulsions recurred with greater violence than ever, and still continue. Two teeth have almost protruded through the upper, and the same number through the lower gum. Pulsæ 160, tremulous, and irregular. I directed that the child should be immediately put into a warm bath, and that the following remedies should be administered.

The convulsions continued but with less violence; and the child expired about one o'clock in the afternoon.

On this case the Doctor makes the following observations.

"The deplorable case which I have related appears..."
Comat'le, by the powerful expired were more formidable or alarming, even to the parents of the and fully approved of the trial of this new method of into; the course of circulation; to which may be added, mitius, part of the two grains of the calomel administered treating violent; and the half of this quantity might be absorbed, and carried was consumed in the usual way of fluid discharge were probably increased in the ventricles of the brain. That these discharges were diminished, and that the extravasated water was absorbed, by the powerful action of the mercury, may be presumed from the mitigation of all the symptoms which succeeded the salivation. And I am inclined to believe, that the convulsions under which the child expired were more owing to the irritation of his gums by the protrusion of four teeth, than to any remaining water in the brain; for the tumor of the head had entirely disappeared, and after death there was a manifest depression of the bregma. During the space of a week, 110 grains of the unguentum mercuriale nitrius, which contains about 22 grains of mercury, was confumed in the usual way of friction. Perhaps half of this quantity might be absorbed, and were deceit into the course of circulation; to which may be added, part of the two grains of the calomel administered internally. The symptoms of the salivation were not violent; and the effects of the mercury did not appear formidable or alarming, even to the parents of the child, who were apprized of the nature of the disorder, and fully approved of the trial of this new method of treating it.

CASE II. By Dr Dobson

"On the 15th of February 1775, I was called to the only son of Mr C. a gentleman of this place: the child was between three and four years of age; had been indisposed about eight days; and had frequently complained of pain in his head and earis, and pains in his limbs: had been sick by fits, and sometimes vomited; was feverish, and could not bear the light.

"I was much alarmed on hearing this account, as the hydrocephalus internus had already proved fatal to three children of this family, who had all been under my care. And that this had been the disease was evident, both from the symptoms and the appearances on dissection. But my alarm was much farther increased on examining the little patient. The pulse I found very frequent and irregular. The head hot, the cheeks flushed; the pupils dilated, and a great degree of strabismus. There remained no doubt with respect to the nature of the disease.

"An emetic, some calomel powders, and a purgative, had been administered, without affording any relief. I directed the pediluvium, and emetic tartar, to be given in such doses as to excite nausea.

"February 14th. The symptoms the same, with frequent startings, disturbed sleep, and toiling from side to side on the pillow. A blister was applied between the shoulders, the pediluvium repeated, and the emetic tartar continued.

"15th. Comatose, reliefs, and shrieking by fits. The pulse quicker than in health, and the eyes infensible even to the impressions of strong light.

"As I had no hope of doing any thing effectual for the recovery of my patient, I paid my visits, prescribed, and gave directions with a foreboding and heavy heart. Anxiously, however, considering the case in different points of view, and fully convinced that it Apoplexy, was vain to pursue the usual line of practice, it occurred to me, that mercurials, so far urged as to enter the course of circulation, and affect the salivary glands, might possibly reach the sytem of absorbents in the ventricles of the brain, and thus remove the extravasated fluid.

"The short continuance of the disease, and the apparent strength of my patient, were favourable to the trial of this method. No time, however, was to be lost. The parents were consulted, and readily gave their sanction to the proposal; for they were convinced, that, unless some powerful steps were taken, this their only son must be numbered with those of their children who had already fallen a sacrifice to the disease.

"The mercurial course, therefore, was commenced, and urged on with caution and expedition. In 48 hours the breath began to be offensive; the gums were reddish and swelled; and the symptoms of the disease, so far as could be distinguished, were somewhat abated. In 48 hours more the ptyalism came on, and the disease was evidently declining. Between the 15th and 22d he took 20 grains of calomel, and one drachm of the strongest mercurial ointment was likewise rubbed in on the legs and thighs. The dofe of calomel was one grain, mixed with a little sugar, and repeated at such intervals as the circumstances of the case pointed out.

"After the 22d no more mercurials were administered: a moderate ptyalism continued for five or six days, then gradually ceased, and the disease was entirely removed. The bark was then given, as the best tonic remedy after the mercurial course, and as the best preservative against a relapse. The strabismus, I observed, was the last symptom which disappeared.

"From the 15th, no other medicines were used except mercurials. The three sisters of the above patient, who all died of this disease, were treated with blisters; and to one of them they were applied in suffusion to the head, behind the ears, and between the shoulders."

CASE III. By Dr Percival.

"One of my own children, a girl, aged three years and three months, has lately been a severe sufferer under this alarming malady. As soon as the characteristic symptoms of the disease clearly manifested themselves, I laid aside all other remedies, convinced, by repeated observation, of their insufficiency; and trusted solely, though with much solicitude, to the internal and external use of mercury. In 48 hours, signs of amendment appeared, and her recovery was perfected in six days. During this space of time, thirteen grains of calomel were administered, and seven frcuples of unguentum mercuriale fortis carefully rubbed into her legs."

CASE IV. By Mr John Mackie, Surgeon in Huntington.

John Algoood, aged 27, of a thin habit of body, accustomed for four or five years past to work in a tan-yard in a very flopping posture, was attacked in the beginning of May with an irregular intermittent fever, accompanied with much pain in his joints. These
These complaints continued till about the middle of June, when he was seized with a violent and confluent pain in the back-part of his head, attended with giddiness, noise in his head and ears, dimness of lights, &c., and his fever became more continued. He lay in this state upwards of a month, without receiving any benefit from some medicines which he took during this period.

Mr. Mackie was called to him in the middle of July, and found him labouring under the following symptoms: A fixed pain on the right side and back part of his head, which was frequently so acute as to make him quite outrageous, crying out, tearing his hair, beating himself on the head, &c. He had such a giddiness that, unless strongly held, he could not support himself a moment in an upright posture. He could not bear the light; and, when he did venture to open his eyes, could not see objects distinctly. His pupils were uncommonly dilated; and his right eye seemed drawn outward, and rather contracted in its volume. He complained of a strange palpatiting noise in his head and ears; and said, he felt at times as if there was a weight of water falling from one side of his head to the other. He was, in general, sensible; but, on asking him two or three questions together, he became confused, and, like a person with an oppressed brain, answered with hesitation, quite wide of the question, and often opposite to what he meant. Along with these, he had a hot skin, small quick pulse, third, a foul tongue, urine in small quantity and high-coloured; he was emaciated, sick, collyvit, and sweated much; bad often a kind of foppur, but very little fever. Once in the 24 hours he had generally a remission (of three or four hours continuance) of the febrile symptoms, but of none of the other complaints.

July 16th. Ordered three or four leeches to be applied to each temple immediately; an emetic to be taken in the evening, and a cooling purge to-morrow, but all his other complaints better. Pain in his head was well; and the medicines to be continued as on the 23d.

July 19th. The blisters have discharged much, and he has taken the medicines punctually; but the fever and other complaints remain as before. Pulse very irregular; pain in the head and reflexion extreme.

1st. Dressed the blisters with the unguent, &c. He took the calomel, and ordered a double quantity of the mercurial ointment to be rubbed into his thighs every night.

26th. He had a calmer night than any for these two months past. For the first time, he said the pain of his head was abated; he looked more composed; his skin felt cooler; his pulse more full, and not so quick. He complained of his mouth being sore, and his tongue swollen; and had discharged a good deal of saliva in the night. Only one dram of the ointment to be rubbed in, for the two next nights.

30th. He spit about three quarts during the last 48 hours, and complains of much heat in his mouth; but all his other complaints better. Pain in his head almost gone, excepting now and then a swoon. Giddiness much abated. He said he often felt a trickling kind of motion, as of water running along the inside of his temples; but this sensation was without pain. He could sit up in bed, and feed himself; was sensible, and in spirits. Pulse regular, and not above 70 in a minute. He has had a remission of upwards of six hours to-day; ordered the ointment to be left off.

Aug. 1st. Continues to spit freely. Had yesterday a smart return of the fever; which, however, only held him about 12 hours. To-day there is a perfect remission, and he is in every respect much mended.—Has had some hours good sleep. Complains very little of pain. Got out of bed for the first time; sat up three hours; and could even bear the light without being disturbed by it. Complained of being hungry. Allowed plenty of milk-porridge and small broth.

3d. The spitting keeps up about a quart in the 24 hours. Found him out of bed to-day, and almost without complaints. He said his head was well; and that he only wanted strength and to get rid of his fever and low mood. The remissions were now almost as long as the paroxysms, being about 12 hours each. Has taken no medicine internally since he left off the calomel.
Praactic MED

Complied calomel, and was coltive. Ordered a dose of rhubarb; and after its operation a dram of the bark every four hours during the remissions.

6th. The spitting begins to decline. He has had no fever for the last 24 hours. He sleeps well; and has an appetite, if the foreheads of his mouth would let him eat. Headach and giddines gone; but his pupils still continue much dilated. Ordered him another rhubarb-purge, and the bark to be continued every six hours.

6th. Has had no fever, or other complaints. Spitting inconsiderable; mouth better; aspect more natural; is able to walk about, and mends daily. Allowed him a more generous and substantial diet, and continued the bark twice a-day for another week.

From this time, he continued toget strength apace; had good nights, good appetite, a perfect freedom from head-ach and fever; and, on the 23d, went to work, being in every respect quite well, and has continued to do every place.

This patient did not seem to receive the smallest benefit from the blisters, or any thing else, till he took the mercury, which acted like a specific; and the fever seemed to be altogether symptomatic, as it easily yielded after the other complaints were removed.

Although it must be allowed, that the affection here described was in many respects an anomalous one, yet many of the circumstances render it in some degree probable that it depended on water in the head; and there are strong reasons for inferring that the mercury pulsed so far as to excite salivation, was the means by which the cure was accomplished.

It is not wonderful that the publication of these cafes should have led to the frequent employment of mercury in hydrocephalic affections. We are however, sorry to add, that extensive employment of this remedy in such cases has by no means confirmed the favourable opinion which some were disposed to entertain of it. It has been found, that in many cases where mercury with hydrocephalic patients had been employed both internally and externally to a very great extent, no salivation was produced. Some, therefore, have even gone so far as to conclude, that salivation cannot be induced in this disease; and there is little reason to doubt, that, in the advanced periods of the disease, there occurs both an insensibility and diminished action of the absorbtents, by which alone mercury can be introduced into the system; and likewise of the salivaary organs, on which it must act before any obvious salivation can be induced. But, besides that mercury is often given in this disease even to the greatest extent without producing any obvious effect, we must also mention with regret, that in not a few cases of hydrocephalus, where mercury copiously exhibited at an early period produced salivation, the disease nevertheless has had a fatal termination, and it must be confessed, that an effectual remedy in this complaint still remains to be discovered.

At the same time; besides the cafes already mentioned, mercury has also succeeded in several others which had every appearance of hydrocephalus; and as we are yet unacquainted with any remedy, not even excepting blisters, of which some are disposed to think very favourably, on which more dependence is to be put, the careful and regular employment of it should not be neglected in any instance of this affection, unless some circumstance occur strongly contraindicating its use.

Sp. IV. Apoplexy from Atarabils. 219

Apoplexia atarabiliaria, Saw. sp. 12. Prefinger, sp. 6.

This takes place in the last stage of the diffusion of bile through the system, i.e. of the black jaundice, and in some cases the brain hath been found quite tinged brown. It cannot be thought to admit of any cure.

Sp. V. Apoplexy from External Violence.

Apoplexia traumatica, Saw. sp. 2. Carus-traumaticus, Saw. sp. 5.

The treatment of this disease, as it arises from some external injury, properly falls under the article Surgery.

Sp. VI. Apoplexy from Poisons.

The poisons which bring on an apoplexy when taken internally may be either of the Limulant or sedative kind, as spirituous liquors, opium, and the more virulent kinds of vegetable poisons. The vapours of mercury or of lead, in great quantity, will sometimes produce a similar effect; though commonly they produce rather a paralytic, and operate slowly. The vapours of charcoal, or fixed air, in any form, breathed in great quantity, also produce an apoplexy, or a state very similar to it; and even cold itself produces a fatal sleep, though without the apoplectic snorting.—To enumerate all the different symptoms which affect the unhappy persons who have swallowed opium, or any of the stronger vegetable poisons, is impossible, as they are scarce to be found the same in any two patients. The state induced by them seems to differ somewhat from that of a true apoplexy; as it is commonly attended with convulsions, but has the particular distinguishing sign of apoplexy, namely, a very difficult breathing or snorting, more or less violent according to the quantity of poisonous matter swallowed.

Of the poisonous effects fixed of air, Dr Percival gives the following account. “All those notious vapours, whether arising from burning charcoal, the fermenting grape, the Grotti di Cani, or the cavern of Pyrmont, operate nearly in the same manner. When accumulated and confined, their effects are often instantaneous. [omitted]
Comata: they immediately destroy the action of the brain and nerves, and in a moment arrest the vital motions. When more diffused, their effects are flow-
er, but still evidently mark out a direct affection of the nervous system.

"Those who are exposed to the vapours of the fermenting grape, are as instantly destroyed as they would be by the strongest electrical shock. A state of insensibility is the immediate effect upon those animals which are thrust into the Grotti di Cani, or the cavern of Pyrmont: the animal is deprived of motion, lies as if dead; and if not quickly returned into the fresh air, is irrecoverable. And if we attend to the histories of those who have suffered from the vapours of burning charcoal, we shall in like manner find, that the brain and moving powers are the parts primarily affected.

"A cook who had been accustomed to make use of lighted charcoal more than his business required, and to stand with his head over these fires, complained for a year of very acute pain in the head; and after this, till after the vapours of burning charcoal more than his business required, and was, immediately,...

"The vapours of burning charcoal, and other poisonous effluvia, frequently produce their prejudicial, and even fatal effects, without being either offensive to the smell or oppressive to the lungs. It is a matter of importance, therefore, that the common opinion should be more agreeable to truth; for where suffocation is supposed to be the effect, there will be little apprehension of danger, so long as the breath keeps free from pain or oppression.

"It may be well to remember, that the poison itself is distinct from that gross matter which is offensive to the smell, and that this is frequently in its most active state when undistinguished by the fumes. Were the following cautions generally attended to, they might in some instances be the happy means of preferring life. Never to be confined with burning charcoal in a small room, or where there is not a free draught of air by a chimney or some other way. Never to venture into any place in which air has been long pent up, or which from other circumstances ought to be suffocated; unless such suffocated place be either previously well ventilated, or put to the use of the lighted candle. For it is a singular and well-known fact, that the life of flame is in some circumstances destroyed more expeditiously extinguished by noxious vapours than animal-life. A proof of which I remember to have received from a very intelligent clergyman, who was present at a musical entertainment in the theatre at Oxford. The theatre was crowded; and during the entertainment, the candles were observed to burn dim, and some of them went out. The audience complained only of faintness and languor; but had the animal effluvia been still further accumulated or longer confined, they would have been extinguished as well as the candles.

"The most obvious, effective and expeditious means of relief to those who have unhappily suffered from this cause, are such as will dislodge and wash away the poison, restore the energy of the brain and nerves, and renew the vital motions. Let the patient therefore be immediately carried into the open air, and let the air be fanned backwards and forwards to affit its action; let cold water be thrown on the face; let the face, mouth, and nostrils, be repeatedly washed; and as soon..."
MEDICINE.

Practise.

as practicable, get the patient to drink some cold water. But if the case be too far gone to be thus relieved, let a healthy person breathe into the mouth of the patient; and gently force air into the mouth, throat, and nostrils. Frictions, cupping, bleeding, and blisters, are likewise indicated. And if, after the infant danger is removed, a fever be excited, the method of cure must be adapted to the nature and prevailing symptoms of the fever.

With regard to the poison of opium, Dr. Mead recommends the following method of cure. Before evacuations by vomiting, bleeding, and blistering, acid medicines and lixivial fires are proper. These contract the relaxed fibres, and by their diuretic force make a depletion of the vessels. Dr. Mead says he hath given repeated doses of a mixture of salt of wormwood and juice of lemons, with extraordinary success. But nothing is of greater consequence, than to use proper means for the prevention of sleep, by resting the patient, and by forcing him to walk about; for if he be once permitted to fall into a found sleep, it will be found altogether impossible to awake him.

Of a kind somewhat akin to the poison of opium seems to be that of laurel-water, a simple water distilled from the leaves of the lauro-cerasus or common laurel. The bad effects of this were first observed in Ireland, where it had been customary to mix it with brandy for the sake of the flavour; and thus two women were suddenly killed by it. This gave occasion to some experiments upon dogs, in order to ascertain the malignant qualities of the water in question; and the event was as follows: All the dogs fell immediately into torpor and convulsions of the limbs, which were soon followed by a total paralysis; so that no motion could be excited even by prickings or cutting them. No inflammation was found upon dissection, in any of the internal membranes. The most remarkable thing was a great fulness and dilation of the veins, in which the blood was so fluid, that even the lymph in its vessels was generally found tinged with red. The same effects were produced by the water injected into the intestines by way of clyster.

To make the experiment more fully, Dr. Nichols prepared some of this water so strong, that about a dram of strong essentil oil remained at the bottom of three pints of it, which by frequent shaking was again quite incorporated with it. So virulent was this water, that two ounces of it killed a middle-sized dog in less than half a minute, even while it was passing down his throat. The poison appeared to reside entirely in the above-mentioned essentil oil, which comes over by distillation, not only from the leaves of laurel, but from other vegetables; for ten drops of a red oil distilled from bitter almonds, when mixed with half an ounce of water, and given to a dog, killed him in less than half an hour.

Volatile alkalies are found to be an antidote to this poison; of which Dr. Mead gives the following instance. About an ounce of strong laurel-water was given to a small dog. He fell immediately into the most violent convulsions, which were soon followed by a total loss of his limbs. When he seemed to be expiring, a vial of good spirit of sal ammoniac was held to his nose, and a small quantity of the same forced down his throat: he instantly felt its virtue; Apoplexia. and by continuing the use of it for some time, he by degrees recovered the motion of his legs; and in two hours walked about with tolerable strength, and was afterwards quite well.

With regard to the pernicious effects of cold, there is no other way of counteracting them but by the application of external heat. We are apt to imagine, that the swallowing considerable quantities of ardent spirits may be a means of making us refit the cold, and preventing the bad effects of it arising to such an height as to destroy life; but these do not appear to be in the least possessed of any such virtue in those countries liable to great excesses of cold. The Peruvian bark, by strengthening the solids, as well is increasing the motion of the fluids, is found to answer better than any other thing as a preservative: but when the pernicious effects have already begun to discover themselves, nothing but increasing by some means or other the heat of the body can possibly be depended upon: and even this must be attempted with great care; for as in such cases, there is generally a tendency to mortification in some of the extremities, the sudden application of heat will certainly increase this tendency to such a degree as to destroy the parts. But for the external treatment of such morbid situations, see the article Surgery.
This is the kind of apoplexy which takes place in those who are hanged or drowned. For the treatment of those persons, see the articles DROWNING and HANGING.

Besides the species abovementioned, the apoplexy is a symptom in many other distempers, such as fevers both continued and interrupting, exanthemata, hysteria, epilepsy, goat, worms, fichuria, and scurvy.

Genus XLIII. Paralysis.

The Palsy.

Paralyis, Boer. 1057.

Paraplexia, Sauv. gen. 171.

Junct. II.

Atonia, Lin. 120.

Sp. I. The Partial Palsy.

Junct. 115.

Paralyis plethorica, Sauv. sp. 1.

Paralyis ferofa, Sauv. sp. 12.

Paralyis nervae, Sauv. sp. 11.

Mutitas a glossophylsi, Sauv. sp. 1.

Aphonitia paralytica, Sauv. sp. 8.

Sp. II. Hemiplegia, or Palsy of one side of the Body.

Sag. gen. 276.

Hemiplegia ex apoplexia, Sauv. sp. 7.

Hemiplegia spasmodica, Sauv. sp. 2.

Hemiplegia iverosa, Sauv. sp. 10.

Sp. III. Paraplegia, or Palsy of one half of the Body taken together.

Paraplexia sanguinea, Sauv. sp. 2.

Paraplexia a spina bifida, Sauv. sp. 3.

Paraplexia rheumatica, Sauv. sp. 1.

Description. The palsy under all the various forms here mentioned as particular species, shows itself by a sudden loss of tone and vital power in a certain part of the body. In the lighter degrees of the disease, it only affects a particular muscle, as the sphincter of the anus or bladder, thus occasioning an involuntary discharge of excrements or of urine; of the muscles of the tongue, which occasions a trembling, or loss of speech; of the muscles of the larynx, by which the patient becomes unable to swallow food, and sometimes even liquids also. In the higher degrees of the disease, the paralytic affection is diffused over a whole limb, as the foot, leg, hand, or arm; and sometimes it affects a whole side of the body, in which case it is called hemiplegia; and sometimes, which is the most violent case, it affects all the parts below the waist, or even below the head, though this last be exceedingly rare. In these violent cases, the speech is either very much impaired, or totally lost. Convulsions often take place in the found side, with the cynical spasm or involuntary laughter, and other distortions of the face. Sometimes the whole paralytic part of the body becomes livid, or even mortifies before the patient's death; and sometimes the paralytic parts gradually decay and thrlve up, so as to become much less than before. Whether the disease be more or less extended, many different varieties may be observed in its form. Sometimes there occurs a total loss of sense while motion is entire; in others a total loss of motion with very slight or even no affection of sense; and in some cases, while a total loss of motion takes place in one side, a total loss of sense has been observed on the other. This depends entirely on the particular nerves or branches of nerves in which the affection is situated; loss of sense depending on an affection of the subcutaneous nerves; and loss of motion on an affection of those leading to the muscles.

Cauæ, &c. Palsies most commonly supervene upon the different species of coma, especially the apoplexy. They are also occasioned by any debilitating power applied to the body, especially excites in venery. Sometimes they are a kind of crisis to other distempers, as the colic of Poisonion, and the apoplexy. The hemiplegia especially often follows the last mentioned disease. Aged people, and those who are by any other means debilitated, are subject to palsy; which will sometimes also affect even infants, from the repulsion of exanthemata of various kinds. Palsies are also the invariable consequences of injuries of the large nerves.

Prognosis. Except in the lighter cases of palsy, we have little room to hope for a cure; however, death does not immediately follow even the most severe paralytic affections. In an hemiplegia it is not uncommon to see the patients live several years; and even in the paraplegia, if death do not ensue within two or three weeks, it may not take place for a considerable time. It is a promising sign when the patient feels a slight degree of painful itching in the affected parts; and if a fever should arise, it bids fair to cure the palsy. When the sense of feeling remains there is much more room to hope for a cure than where it is gone, as well as the power of motion. But when we observe the flesh to wither, and the skin to appear withered and dry, we may look upon the disease to be incurable. Convulsions supervening on a palsy are a fatal sign.

Cure. Many remedies have been recommended in palies: but it must be confessed, that, except in the lighter cases, medicines seldom prove effectual; and before any scheme of cure can be laid down, every circumstance relative to the patient's habit of body and previous state of health should be carefully weighed. If an hemiplegia or paraplegia should come on after an apoplexy, attended with those circumstances which physicians have supposed to denote a vitious state of the blood, a course of the attenuant gomps, with fixed alkaline salts, and chalybeate waters, may do service; to which it will be proper to add frictions with the volatile liniment all down the spine: but in habits where the blood is rather inclined to the watery state, it will be necessary to give emetics from time to time; to apply blisters, and cut blisters.

The natural hot baths are often found useful in paralytic cases; and where the patients cannot avail themselves of these, an artificial bath may be tried by dissolving...
Practice.

M E D I C I N E.

Comata. — dissolving salt of steel in water, and impregnating the water with fixed air. Frictions of the parts, and scouring them with nettles, have also been recommended, and may do service, as well as volatile and stimulating medicines taken inwardly. And it is probably by operating in this manner, that the use of camphor, or a mercurial dilution falfate of this length of time to such a degree as gently to affect the mouth, have been found productive of a cure in obilinate cafe of this affection. Of late years, an infusion of the arnica montana or German leopard's bane, has been highly extolled in the cure of this disease by some foreign writers: but the trials made with it in Britain, particularly at Edinburgh, have been by no means equally successful with those related by Dr Collins, who has strongly recommended this medicine to the attention of the public.

Sp. IV. The Palsy from Paixs.

Paralyxias mettallariorum, Sauv. fp. 22.

This kind of palsy arises most frequently from lead taken into the body, and is a consequence of the colica piétonum, under which it is more particularly treated.

TREMOR, or TREMBLING.

This by Dr Cullen is reckoned to be always symptomatic either of palsy, at hernia, or convulsions; and therefore need not be treated of by itself.

ORDER II. ADYNAMIAE.

ADYNAMIAE, Vegg. Class VI.

Defectivi, Lin. Class VI. Order I.

Leiopofychies, Sauv. Class VI. Order IV. Sag. Class IX. Order IV.

GENUS XLIV. SYNCOPE.

Fainting.

Sag. 280. Funck. 119.

Virium lapius et animi deliquia. Hoffin. III. 267.

Sp. I. The Cardiac Syncope.

Syncope plethorica, Sauv. fp. 5. Senac Tr de Cœur, p. 540.

Syncope a cardiogmo, Sauv. fp. 7. Senac. de Cœur, 414. Morgaen. de Sed. XXV. 2. 3. 10.

Schreider Almag. L III. § 196.

Aphyxia Valfalviana, Sauv. fp. 13.

Sp. II. Occasional Syncope.

Vol. XI.
M E D I C I N E.

The idiopathic species are,

Anorexia pituitosa, Bauw. sp. 2.
Anorexia a faburra, Bauw. sp. 9.
Anorexia exhaustorum, Bauw. sp. 8.
Anorexia paralytica, Bauw. sp. 1.
Naufea ex cacochydia, Bauw. sp. 11.
Vomitus pituitosis, Bauw. sp. 26.
Vomitus ruminatio, Bauw. sp. 6.
Vomitus a faburra, Bauw. sp. 2.
Vomitus a crapula, Bauw. sp. 1.
Vomitus lafeus, Bauw. sp. 3.
Flatulentia infantilis, Bauw. sp. 5.
Flatulentia acida, Bauw. sp. 1.
Flatulentia nitrofa, Bauw. sp. 2.
Cardialgia bradypnepta, Bauw. sp. 9.
Cardialgia a faburra, Bauw. sp. 2.
Cardialgia laeantantium, Bauw. sp. 11.
Cardialgia flatulenta, Bauw. sp. 3.
Cardialgia paralytica, Bauw. sp. 7.
Gafrrodynia faburralis, Bauw. sp. 1.
Gafrrodynia flatulenta, Bauw. sp. 2.
Gafrrodynia periodynia, Bauw. sp. 7.
Gafrrodynia altringens, Bauw. sp. 9.
Gafrrodynia atterens, Bauw. sp. 10.
Gafrrodynia a frigore, Bauw. sp. 18.

Besides these there are a great number of symptomatic species.

Description. It is by no means easy to define exactly the distemper called dyspepsia, when considered as an original disease, as there are very few maladies which some way or other do not throw themselves by an affection of the stomach; and much more difficult must it be to enumerate all its symptoms. The most remarkable, however, and the most common, are the following: Want of appetite; dilution of the stomach when no food has been taken for some time before; flight dejection of spirits; a gradual decay of the muscular strength; languor, and aversion from motion; the food which is taken without appetite is not well digested; the stomach and intestines are much disturbed with flatus, whence the patients are tormented with flatulences, gripes, and fickness; frequently a limpid water, having an acid or putrid taste, is brought up; sometimes the food itself is thrown up by mouthfuls; and sometimes, though rarely, the same is swallowed again, after the manner of ruminating animals. While matters are in this situation, the heart sometimes palpitates, and the breath is quick, and drawn with difficulty; the head aches and is giddy; and sometimes both these symptoms are continual, and very violent, insomuch that the patient is not only tormented with pain, but staggerers as if he was drunk. From the too great acieency or putrefaction of the aliment, a cardialgia or heartburn comes on; and in this situation a spontaneous diarrhoea sometimes carries off the disease; but in other cases there is an obilinate colicvines, attended with colic-pains. Frequently the pulle is quick, sometimes flow, but always weak; the circulation is so languid, that the blood can scarce reach the extreme vessels, or at least stagnates.
MEDICINE.

Practice.

A dysepsia flagnates in them, so that the face becomes livid, swelled, and has an unusual appearance: and at the same time that the circulation and nervous power are in this languid state, the perspiration becomes less copious, the skin becomes dry and corrugated; the natural heat, especially of the extremities, is much diminished; the tongue is white; and an universal laxity takes place, insomuch that the uvula and velum pendumulum palati are sometimes enlarged to such a degree as to become extremely troublesome. The patient is either deprived of rest or wakes suddenly out of his sleep, and is disturbed by frightful dreams; at the same time that the mind seems to be affected as well as the body, and he becomes peevish, fretful, and incapable of paying attention to anything as usual. At last hecific symptoms come on, and the whole frame becomes so irritable, that the slightest cause excites an universal tremor, and sometimes violent vomiting and diarrhea. Sometimes the salivary glands are so relaxed, that a salivation comes on as if excited by mercury; the serum is poured out into the cavity of the abdomen and cellular substance of the whole body, and the patient becomes affected with anaesthesia or acrides.

Causes &c. The causes of dysepsia may be any thing which debilitates the system in general, but in a particular manner affects the stomach. Such are opium taken in immoderate quantities, which hurts by its sedative and relaxing powers; spirituous liquors drunk to excess; tobacco, tea, coffee, or any warm relaxing liquor, taken in too great quantity; acid, unripe fruits; vomits or purges too frequently taken; an indolent sedentary life, &c. &c. All these chiefly upon people of a weak and delicate habit; for the robust and hardy seldom labour under a dysepsia, or at most a very slight one.

Prognostic. When a dysepsia first occurs, it is frequently removed without great difficulty; when it is symptomatic, we must endeavour to cure the primary disease; and without this we cannot expect a complete removal of the affection: but when it frequently returns with symptoms of great debility, hectic fever, or dropy, we have great reason to dread the event.

Cure. A radical cure of dysepsia is only to be expected by removing from the stomach and system that debility on which the disease depends. On this ground, the objects chiefly to be aimed at is the cure are, 1st, The avoiding whatever will tend to diminish the vigour of the stomach; 2d, The employing such remedies as have influence in increasing that vigour; and, in the third place, The obviating urgent symptoms, particularly those which tend to increase and support the affection. Of the avoiding causes, which tend to diminish the vigour of the stomach, after what has already been said of the causes inducing the disease, it is unnecessary to make any particular observations; and indeed every dyspeptic patient will be taught by experience what is to be done with this intention. The medicines chiefly employed with the view of increasing vigour are those of the tonic kind: but, previous to their use, it will be necessary to evacuate the contents of the alimentary canal by emetics or purgatives. If there be a tendency to putrefaction, antiseptics must then be exhibited; but more frequently there is a prevailing acidity, which Dysepsia creates an intolerable heart-burn. To palliate this symptom, magnesia alba may be given; which is much preferable to the common tannaceous powders, as being purgative while dissolved in an acid, when the others are rather astringent. In the third volume of the Medical Observations, we have an account of two cases of dysepsia attended with a very uncommon degree of cardialgia, in which magnesia was so successful, that we can scarce doubt of its efficacy in lighter degrees of the disorder. They were communicated by Dr. Watson.

A woman, aged 34, the mother of several children, was taken, in the fourth month of her pregnancy, with violent vomittings; which growing daily worse, notwithstanding the endeavours of her apothecary to restrain them, brought on at the end of a month such severe pains in the stomach, and ipasms in her abdomen, as to occasion abortion. The vomitings were not lessened by this event, but grew worse and frequently brought on general convulsions to such a degree, that she was many times supposed to be at the point of death.

Scarce any medicine fluid with her; she brought up almost instantly whatever was given her as nourishment, either in a solid or a liquid form. She was exceedingly pale, and very much emaciated; her flesh was cold to the touch; and, though her urine was little in quantity, it was perfectly hlimpid. She had a continual thirst, and was, in a considerable degree, colicive. Her pulse was low and quick, and she was frequently tormented with the hicough. The pain in her stomach was severe and constant; and whatever she brought up was sharp to such a degree as to make her mouth and throat very sore. The parts upon examination appeared high-coloured, and in many places excoriated; and the pain she felt in her stomach upon swallowing any liquor that had the least degree of acrimony, or was more than Luke-warm, made it probable the stomach itself, in its internal surface, was affected in the same manner.

In this wretched state I was consulted; and must confess that I was much at a loss how to relieve a patient so debilitated, and whose stomach was in so dilated a state, that it seemed incapable of retaining any appropriated remedies long enough to correct the acrimony of the juices, and restore the secretions to a more mild and natural state. Anti-emetics of various kinds had been tried without effect, particularly saturated solutions of alkaline salt in juice of lemons. Stomachic medicines of the warm and aromatic kind she could not bear, on account of their piquancy; and, though nothing could so speedily correct the almost caustic acid of the gastric juice as solutions of alkaline salts, neither the tinctures nor gulett could bear their acrimony.

My expectations of relieving this patient, small as they were, depended upon my being able to neutralize, and thereby lessen, the stimulus of the acid of the stomach. To accomplish this was not very easy, as no medicine in small doses could in any considerable degree correct so intense an acid; and, in the present situation, it was difficult to get any medicine to stay long enough to exert its effects. To discharge however what acid matter might be already accumulated in
in the stomach, I directed that the patient should drink plentifully of small, warm, unaltered mutton-broth, and vomit with it so long that it should be discharged with no other taste than that of broth. This was complied with, and a large quantity drank. The pain in her stomach ceased upon this for more than two hours, and was after that time apparently coming on with the same violence as before. Upon which I ordered a draught of magnesia to be given in two ounces of veal-broth. This kept down, and eased her; I therefore directed the same dose to be repeated as often as the pain returned, without any regard to the quantity that the whole might amount to, supposing that the pain continued severe. This was done; and in three days she took three ounces of magnesia, of which very few doses were vomited up, and she was purged considerably.

"This medicine was continued in a somewhat less quantity for three days longer, in which she took two ounces more of magnesia; by this time the vomitings ceased, the convulsions left her, she had no pains in the stomach, and her mouth and fauces lost their intensely red colour and forefhe; nor did even her eructations longer indicate any acidity.

"Besides veal-broth she was allowed boiled rice, and now and then some rice gruel with a small quantity of brandy; and after a few days more she could retain boiled chicken, and other light, solid, animal food.

"When her stomach was in this state, she took literally of decoct corn. Peruvian, with a small portion of French brandy; by which and her nourishment she recovered her strength surprizingly. To this medicine, as she was during the latter part of her illness considerably anaferacous, were added some preparations of steel; and in about a month she perfectly recovered.

"When this patient's stomach was relieved, the thirst, the general and partial pains, and other complaints, which were merely symptomatic, soon ceased; and what remained of her cure was by no means difficult.

"Since the above-recited case, I was consulted in another almost in every respect similar, except that the former began in pregnancy. The vomitings attended with acidity had continued more than a month; the patient's stomach rejected every kind of food and medicine; she was debilitated to a great degree, and universally anaferacous.

"Upon being sent for, I directed for her magnesia, much in the same manner as for the former patient; and in a very few days her vomitings ceased, her stomach became stronger, and in less than a fortnight the anaesthesia disappeared. But it was a considerable time, as this person was more advanced in years than the former, before she recovered her strength, notwithstanding my best endeavours for that purpose. She at length, however, perfectly recovered."

"But although acidity may often be successfully obviated in this manner, yet the best way of counteracting this symptom, as well as of obviating colicines, flatulence, and a variety of others, is by regaining the tone of the stomach in particular, and indeed of the system in general. With this intention, recourse is had to a variety of tonics both from the mineral and vegetable kingdom; particularly chalybeates in different forms, gentian, colombo, and the like; but of all the tonics which can be employed in this affection, none are attended with greater benefit than exercise and cold bathing; and the proper and prudent employment of these is no less effectual in removing the disease, than in preventing the return of it after it is once removed."

Genus XLVI. HYPOCHONDRIASIS.

HYPOCHONDRIAC AFFECTION.

Morbus hypochondriacus, Borbh. 1098.

Malum hypochondriacum, Hoff. III. 65. Funck. 36.

Although some of the nofological writers, particularly Sauvages, have considered this genus as confiting of different species, Dr Cullen is of opinion, that there is only one idiopathic species, the hypochondriasis melancholica. He considers not only the hypochondriasis hysteric, phthisica, and athmatica, but also the biliosa, fanguinea, and pittuitosa, as being only symptomatic; but he views the true melancholic hypochondriasis as being a proper idiopathic disease, perfectly distinct from hysteric, with which it has often been confounded.

Description. The symptoms of hypochondriasis are, stretching, preffing, griping, and tormenting pains, under the ribs, and chiefly in the left side; which sometimes are exasperated, and become pungent, burning, or lancinating. Frequently there is an inflation of the left hypochondrium, which sometimes becomes flatonymous, and by Hippocrates was taken for a symptom of an enlarged spleen. When these symptoms take place in the right hypochondrium, they are commonly attended with colic-pains, uncertain flying heats, especially in the head, with a transient redness of the face, and very frequently an oedematus swelling of the feet succeeds. To these are superadded almost all the affections of the stomach occurring in dyspepsia, besides a variety of other symptoms, such as palpitations, sleepless nights, and the like. But besides these, there occurs also a particular depression of spirit and apprehenion of danger which may be considered as one of the great characterizing symptoms of the disease.

Causes, &c. The general causes of the hypochondriac affection are said to be a plethora, and preternatural thickness of the blood; suppressions of customary evacuations; high and full diet, together with a sparing quantity of drink; an hereditary disposition; indolence; atony of the intestines; violent passions of the mind, &c.

Prognosis. The hypochondriac affection, when left to itself, is more troublesome than dangerous; but, if improperly treated, it may bring on various diseases of a more fatal tendency, such as the melancholy, bloody urine and nephritis; jaundice, vertigo, palpity, apoplexy, &c.

Cure. This is to be attempted by such medicines as counteract occasional causes, and obviate urgent symptoms,
M E D I C I N E.

Order III. SPASMI.

SPASMI, SAW. Clas. IV. VOG. Clas. V. SAG. Clas. VIII.

Motorii, LIN. Clas. VII.

Morbi spasmolici et convulsivi, Hoffm. III. 9.

Spasmi et convulsiones, Junck. 45, 54.

Epilepsia, Boerh. 1071, 1088.

GENUS XLVII. CHLOROSIS.

Green Sickness.

Junck. 86.

Of this genus also Dr Cullen thinks there is but one idiopathic species: viz. what some distinguish by the title of chlorosis virginis, others of chlorosis ama
toria.

Description. This disease usually attacks girls a little after the time of puberty, and first shows itself by symptoms of dyspepsia. But a distinguishing symptom is, that the appetite is entirely vitiated, and afterwards turbid; while the same time there is not only a total inappetence to proper food, but it will even excite nausea and vomiting. In the beginning of the disease, the urine is pale, and afterwards turbid; the face becomes pale, and then assumes a greenish colour; sometimes it becomes livid or yellow: the eyes are sunken, and have a livid circle round them; the lips lose their fine red colour; the pulse is quick, weak, and low, though the heat is little altered; and the veins are scarcely felt; the feet are frequently cold, swelI at night, and the whole body seems covered with a soft swelling; the breathing is difficult: nor is the mind free from affections as well as the body; it becomes irritated by the slightest causes; and sometimes the patients love solitude, become sad and thoughtful. There is a retention of the menses throughout the whole course of the disorder; and at last all the bad symptoms increasing, a leucophaematia, ana
fatica, atrophy, and death, succeed.

Causes. The cause of chlorosis is thought to be an atony of the muscular fibres of the alimentary canal, especially of the stomatch, joined with a similar atony of the periphrastic vessels over the whole surface of the body, and the whole depending on an atony of those small arteries which pour out the menstrual blood. This atony may be occasioned by the same causes which bring on dyspepsia and hypochondriasis, but very frequently arises from love and other passions of the mind.

Prognosis. The chlorosis in all cases is tedious, though it does not generally prove fatal; but we can never promise a certain cure unless the menes make their appearance.

Cure. The remedies here in general are the same as in the dyspepsia and hypochondriasis; only in the chlorosis stronger purgatives may be made use of: those which dilate the rectum are useful by dilating also the vessels of the uterus; and for this reason indiglute, an venery has sometimes been said to produce a cure, particularly with love-dick maids. The cold bath is also extremely proper.
Spasm repeats them in another place; but the few symptoms he recounts do not show themselves with us. Galen, Cedius Aurelianus, Aretaeus, &c. seem only to have copied Hippocrates, with the addition of some sopphisticous symptoms, which really do not appear; and the little that Bontius says of it is very faulty.

Among the numerous clasps of spasmodic diseases, there are three which distinguish themselves in a very particular manner, on which the names of emphysematos, opthalmotonos, and tetanus, have been justly enough bestowed, as being expressive of the posture into which they throw and confine the patient. When therefore these muscles which bend the head, neck, and body forwards, suffer such involuntary, violent, and continued contractions, as to fix the chin to the breast, incurvate the spine and body, and retain the neck in this painful and prone posture, the disease is called emphysematous. When the posterior muscles are similarly affected, so that the head is drawn towards the spine, and the spine itself is recurvated, it has then the name of opthalmotonos: although in fact, in this, all those muscles which act in deglutition, bend the head forwards, or turn it to either side, are equally contracted with those which raise the head and spine. The tetanus differs from, or rather is compounded of, both the others; for in this the patient is found rigid and inflexible, being as it were braced between the opposite contractions of the anterior and posterior muscles; yet even here the head is much retracted.

I never saw the emphysematous; and shall only speak of the opthalmotonos and tetanus, the first being by far the most common, and in the last fngale of which the tetanus frequently supervenes. And let it be observed, that the following description by no means respects such symptomatic contractions as often happen immediately before death, both in acute and chronic diseases; neither will it agree with that furious opthalmotonos or tetanus which appear sometimes in the first and second stages of quotidienne intermittence in this country; however, they may emulate the true diseases in some of their symptoms.

Stad. I. The opthalmotonos, contrary to what Bontius afferts, often comes on gradually and by flight approaches, the patient complaining rather of an uneasy stifliness in the back-part of the neck, and about the shoulders, than of any acute pain, with some degree of a general altitude. They increase, and become so troublesome when he attempts to turn his head, or to bend it forward, as to oblige him to walk very erect; for he can by no means look downward nor to either side, without turning his whole body. He cannot open his jaws without pain; and has some difficulty in swallowing, which discourages him from attempting to eat. At times he feels a sudden and painful traction under the cartilago enformis, which strikes thro' to the back and instantly increases the rigidity about the neck and shoulders, draws the head backwards a little, and fluts the jaws closer. The pain under the sternum returns more frequently and with greater violence; and the other contractions become so strong, that the head from this time continues much retracted, and he now refuses nourishment, as swallowing is attended with great pain, and occasions a return of the spasm; which extends along the spine quite to the lower extremities, so that they will no longer support him, and he is under the necessity of going to bed.

In this manner passes over the first stage of the ophthalmotonos, which sometimes takes up three or four days; the patient, as well as those about him, mistaking the first appearances of it for that rheumatic complaint, which is commonly called a crick in the neck; but it sometimes forms itself much quicker and invades the unfortunate person with the whole train of its mildevous symptoms in a few hours: in which case, the danger may truly be estimated from the violence of the first attack; for such generally die in 24, 36, or 48 hours, and very rarely survive the third day. But when it is less acute, few are lost after the ninth or eleventh; which number of days it would not be possible for them to complete, unlefs the violence of the disease was in a good measure subdued; although I had one who recovered, after having been subject to its tyrannical attacks daily for six weeks. In this stage the pulse is slow, and very hard, and the belly is bound; blood taken away seems not to be altered from the natural state, fo that no indication can be deduced therefrom, and it only varies with regard to laxity or compaction, according to the age of the person and feaon of the year.

Stad. II. The spasm under the sternum (which is the pathognonomic symptom of this disease) becomes more violent, returning every 10 or 15 minutes; and never fails to be instantly succeeded by a stronger retraction of the head, with great rigidity and pain all round the neck, and along the spine to the lower extremities which are suddenly put to the stretch. The countenance is very pale and contracted; the jaws are that moment snapped together, and cannot afterwards be opened so wide as to receive the end of one's little finger; an attempt to do which, by way of experiment, surely hurries on the spasm. The malar, cheek, and sternohyoid muscles, as well as all the others concerned in deglutition, and the deltoid and pectoral muscles, are most violently contracted, so that the shoulders are strongly raised forward, and the arms are stretched out or drawn across the body; but the wrists and fingers seem not to be affected.

Such is the condition of the patient in the time of the spasm, which ceases in a few seconds: after which the shoulders and arms recline, and the inferior extremities relax; yet not so entirely, but that such a degree of rigidity for the most part remains as will not permit them to bend when this is attempted by another person, for as to the sick himself, he cannot at all move them. The muscles on the sides and forepart of the neck continue still contracted, although not so strongly; but their action is overcome by the number and strength of the posterior ones; so that the retraction of the head constantly remains. He breathes quick for some minutes, as if he had been excessively exercised; and the pulse is small, fluttering, and irregular, but both become more calm and slow. The face is sometimes pale in the intervals, but oftener flushed; and the whole countenance expresses strong appearances of the most melancholy diftress, as well because of the dread he has of a return of the spasm, which he is sure will soon happen, as from the pain he suffers by the present contractions, and the more general
in the stomach, even in the smallest quantity; and if the spasm should seize him at that time, which an attempt to swallow for the most part occasions, the liquor returns through the nose with some force. The patients desire to lie still as much as possible; and avoid drinking, speaking, or being moved, either of which are apt to occasion a return of the spasm.

"Stad. III. In this last stage, the patient is reduced to the most calamitous and distressful circumstances; for he is on a continual rack, according to the most literal meaning of that word; the spasm returning oftener than once in a minute, is much more violent, and holds him longer, so that he has scarcely any remission. The anterior muscles of the whole body now suffer equal contractions with the posterior; but the last overcome the force of the others, so that the spine is strongly recurvated, and forms a hollow arch with the bed, and he refts on the back part of the head and the heels. The belly is flat, and is drawn inward; and the muscles are so rigidly contracted, that they will not give way to pressure, and do not seem in the least to yield to the defect of the diaphragm in inspiration; the several muscles about the neck, sides, and abdomen, being plainly dilatible from each other. Although the lower extremities are always rigid in this state, yet are they so suddenly and violently dilated in the time of the spasms, that were it not for the flanders-by, he would be projected feet foremost off the bed; while others again are as if they were pushed upward with such a spring, that the head is struck with great force against whatever happens to be in the way, the thighs and legs being in this case no less rigid than the other parts. The tongue is spasmodically darted out, and is often miserably torn, as the teeth are that for most part locked fast, so that it is impossible to give drink or nourishment, nor could he swallow if anything was put into his mouth. In this state they are commonly delirious: and as they cannot subsist many hours under so great a fatiguing of the vital and natural functions, a mortal anxiety ensues and releases them; oftener a continued and severe spasm finishes the tragedy, when it was before almost at an end: but most frequently a general convolution puts a period to their sufferings; and whichever way this happens, they for the most part relax just before death.

"In the tetanus, the general symptoms are nearly the same as in the opillhotonos, except that from the first attack, the lateral, abdominal, and other anterior muscles, are equally contracted with the posterior ones; and the arms become rigid as well as the lower extremities. The abdomen is always flat and rigid as in the last stage of the opillhotonos, and its contents seem to be thrust up into the thorax, which at the same time appears to be much dilated. There are here also some intervals between the spasms, in the time of which the cheeks are drawn towards the ears, so that all the teeth may be seen as in the spasmus cynicus. Deglutition is more free in this than in the other disease; yet so far is the sick from being equally balanced between the contradictions of the opposite muscles, that the head is retracted and the spine is recurvated, although not quite so much as in the opillhotonos. And this spasm, which commences under the sternum, is likewise common to the tetanus, which terminates as the other, and on the same fatal days. But whoever recovers from either, labours long under a general atonia; and they cannot for some months raise themselves from a supine or recumbent posture without pain, nor without help for some time."

Prognosis and Cure. There has never been any thing like a crisis observed in these frightful cafes, or favourable termination from the mere efforts of nature; and therefore all the physician's dependence must be upon art. As in cases of tetanic affections, the disease often arises from some particular irritation, the removal of this must necessarily be an important object in the cure.; But where it cannot be removed, benefit may often be obtained by the prevention of its influence being communicated to the brain. When, however, that influence is communicated to the brain, a cure is to be expected only by diminishing and obviating it. This is principally brought about by the use either of those means which have a general tendency to diminish action, or of those which induce a different state of action. On these grounds the operation of those remedies which are employed with greatest success in this affension, may, we apprehend, be explained. Fortunately it has been found, that opium is capable of giving some relief, if administered in proper time, and if the disease happens not to be in the most violent degree; the warm bath must also be brought in aid; and the patients should lie horizontally in the bath, and while in it have the whole body extremely well rubbed; when taken out, they are not to be dried, but immediately put to bed wrapt in the softest blankets; and while they remain there, the belly ought either to be flaped, or two or three bladders filled with warm water kept constantly lying on it. The bowels at the same time must, if possible, be kept open, by solutions of manna and salt polycryst, or some other purging salt, mixed with deum ricini; or if that should not be at hand, with oil of sweet almonds and a little tincture of iena. The opiates are to be given in large and frequently repeated doses; such as a grain of the extatrum thebaicum, or 20 drops of the tincture, every second or third hour; and it will be safest not to truss to the thebaic tincture which is kept ready prepared in the shops, but order the necessary dose of solid opium, and either give it in pills or dissolve it in some other vehicle.
some convenient liquid. If swallowing should be difficult, or the jaws closed up, the opium must be given in clysters; for during the whole course of the disease it will be of service to order emollient clysters to be injected from time to time, since these will answer not only as a relaxing fomentation, but also contribute to keep the intestinal canal perfectly free.

When the patients recover, they continue for a long time very relaxed and weak; and no wonder, since it is the nature of all spasmodic affections to leave behind them extreme weaknesses and relaxation of the muscular fibres. In order to perfect the recovery, a course of the Peruvian bark, and the Peruvian balsam is to be tried; and the spine may be rubbed with spirituous fomentations, either internally or externally, during the violence of the spasms, mufli, in the opinion of some practitioners, be omitted, since all of them as well as blisters have been allledged to exasperate the disease.

This, in general, is the plan of treatment recommended by Dr Chalmers.

The same dreadful disorders frequently attack young children in the warm climates. Dr Hillary tells us, that they will there arise from the same causes which usually produce convulsions with children in Britain, viz. from a retention of the meconium or first excrement after birth; or from a glutinous matter which is too often found in the intestines of young children soon after the other is discharged; or from a cheesy matter from the coagulation of the milk by an acid in the stomach; or from hard excrements; or from something taken in by the mouth which is over acid, or too hard to digest, which irritates their tender bowels, and so produces startings and convulsive spasms, with all the other symptoms which precede and accompany convulsions in young children in Britain. And this shows how much more readily and easily the nerves are affected and irritated in that warm climate, and the tetanus produced from a much less cause there, than it is in Britain, where it is but seldom seen. But these causes not being timely removed, their acrimony is increased partly by the heat of the climate, and partly by the fever which they produce, which still renders them more acid, and so increases the irritation of their bowels, that it first brings on startings, then convulsive spasms, and regular convolution fits; which, if not soon removed, usually end in a perfect tetanus there, and the disease is but seldom cured in such young children when it arrives at that state: for when the child lies in this miserable, rigid, impossible condition, upon moving its hands or feet in the most gentle manner, or softly touching any part of its body, or giving it the least motion, even feeling its pulse in the most gentle tender manner, or the least noise, or even touching its clothes, will bring on the convulsive spasms, and cause it to be strongly convulsed backwards, or drawn into a rigid straight line, strongly extended and immovable like a statue, and will so remain immovable out of either of those postures for a considerable time, a minute or two; and when the disease is arrived at this degree, Dr Hillary thinks it is never cured. But if the physicians be called in time, before the tetanus has come on (which is too seldom the case there), though he finds strong convulsive spasms have seized the child, or that it has had a convulsive fit or two, it may most commonly be relieved, the coming of the tetanus be prevented, and the life of the babe saved, as Dr Hillary has more than once seen, by removing and carrying off the irritating cause which stimulates their tender bowels, by such gentle evacuations as are suitable to their age; and then quieting and composing the irritation of their nerves with proper anodynes, and correcting the remaining acrimony of the nutritious juices in the prime visa.

To answer these intentions, the following method, with variations pro re nata et pro ratione sitatis, as the cause is different, has been found to answer the desired effect the best: R. Sert. latiss. 3ij. Sapon. Venti. 3j. Manne Calab. 3ij. vel iiiij. Ol. amygd. dol. 3ij. Ol. farenici dul. gut. ij. Balf Peruv. gut. v. Mifia, si enema quem primum inijicendum.

And if the symptoms of the approaching tetanus will permit, he gives something of the following nature to all. This, Dr Hillary says, more than once exhibited to the eye, and to carry off the acrimony the sooner: R. Aq. fem. farenici 3ij. Magnes. alba 3s. Ocul. canum, præp. 3j. Syr. echior. cum rho, Ref. fan. flatus, et 3ij. Mifia. Or. R. Aq. fem. farenici 3ij. Sapem. amygdal. 3ij. Magnes. alba 3s. Syr. echior. cum rho, Manne op. et 3ij. Ol. amygd. dol. 3ij. Mifia : Exs. coch. paro. vel duo pro ratione sitatis omni falsa hora, donec respondat abusus. Two or three stools being obtained by these, the following is exhibited in order to abate the convulsive twitchings, and prevent the tetanus from coming on: R. Aq. fem. farenici 3ij. Magnes. alba 3s. Ocul. canum, præp. 3j. Mofchi orient. gr. iij. Spir. C. C. gut. xv. Syr. et mēcon 3s. Mifia : Exs. coch. paro. (a child's spoonful) ter quatero de die, vel susp. urgent. convuls. vel fpasmi.

But if the symptoms show that the tetanus is more immediately coming on, so that we have no time to wait till the operation of the clyster and opening the laxative be over, something of the following nature must be immediately given; or the tetanus will come on, and most probably prove fatal to such tender babes. R. Aq. farenici 3ij. Mofchi orient. gr. j. Tincl. Thēbaicis. gut. iij. Syr. et mēcon 3j. Mifia pro duobus def. de quiibus exhibe omnem quam primam, et alteram si convuls. spoym. reddant.

This, Dr Hillary observes, may be thought a bold attempt, to give tinct. thebaicis to such a tender young infant: but it is to be considered that the little patient will certainly die if the tetanus seize it, and that it will come on if this do not prevent it; and he has known a bold ignorant old midwife give four or five drops of that tincture to a very young infant without any prejudice more than its doing three or four hours, though not in this case, but in one much less violent.

The clyster may be given at the same time, and the opening laxative not long after it; though it may retard the operation of that for some time, yet it operates soon after, and gives relief; after which the other medicines, and fomenting the body and anointing it as before, may be used, if the physician finds it necessary; also a little of the laxative mixture may be given once or twice a day, if the above julep does not answer
Practice.

MEDICINE.

answer that intention of keeping the child's body open for a few days afterwards, which in this case is generally found necessary to be observed.

These methods and medicines may be varied according to circumstances. For neither the same method nor the same medicines will answer in all cases, though the disease be the same; but they must be changed as the causes differ, or the constitution of the sick, or the time of the disease, or as some other circumstances may require: which is a thing of great importance, not only in this, but in the cure of most other diseases; wherefore it is mentioned here chiefly to caution the practitioners in the West Indies.

When proper medicines are thus timely and judiciously given in this case, they seldom fail to carry off the irritant cause, quiet and ease the nerves, remove the convulsions and spasms; and consequently prevent the tetanus from coming on, and the death of the patient. But if calling in the physician be deferred till the tetanus has already strongly seized the child, as is too often the case here, neither warm bathing, fomenting, nor any other methods or medicines whatever, will remove it or its causes, nor save the life of the little tender patient.

Dr Chalmers gives an account of his having cured one child seized with a tetanus, by purging with an infusion of rhubarb; to which a few grains of mith, and a little d. tartar. per diem, were added, together with the warm bath, and the frequent injection of gyniers made with an infusion of camomile flowers, to each of which was added a small portion of Caffie soap. It is much to be regretted, however, that in those cases where the attendance of the medical art is most wanted, it most generally fails. We have been assured by a gentleman who practised for some time in the warm parts of America, that out of 50 cases of the tetanus he had seen, not one of the patients recovered, though he had given opium to the quantity of 20 grains thrice a-day; and others, he was assured, had taken 30 grains thrice a-day. In the beginning of the disease, the medicine produced a violent head-ach; but towards the end, it had no manner of effect whatever.

In two patients, the disease came on from the slightest cause imagined. The one accidentally fell in attempting to avoid a loaded cart, and put the heel of his foot upon one of his thumbs in rising; the other, in avoiding the same cart, lightly ruffled the skin of his nose. Both were seized with the tetanus; and both died, notwithstanding all possible assistance was given. The former had his thumb amputated without effect.

In the Edinburgh Physical and Literary Essays, Vol. III. Dr Donald Monro describes a new method of cure, communicated to him by a gentleman who was formerly a practitioner in Jamaica. While this gentleman practised in that island, he had under his care a great number of cases of tetanus attended with the locked-jaw. At first, he used to give very freely of opium, mith, and other medicines of this class; to bleed, and make other evacuations; while he used baths, fomentations, embrocations, and other external applications, but all without the least success; and, as he had lost a great many patients without being so lucky as to make one cure, he began to believe that this disorder always proved fatal, and was not to be cured by medicine, notwithstanding what some practitioners had alleged. However, having received an unexpected hint concerning the good effects of the mercurial ointment in such cases, he resolved to try it; and ordered the first patient that offered to be put into a warm room, and to be rubbed two or three times a-day with the ointment, till such time as a salivation was raised; when he with pleasure observed, that as soon as the mercury began to affect the mouth, the convulsions of the muscles of the jaws, as well as all the other spasms and convulsions, ceased, and the patient was freed of all his complaints. After this, he treated every case of this kind which came under his care in the same manner, and cured twelve, which were all who applied to him for advice so early in the disorder that there was time to bring the mercury to the mouth before the fatal period was expected. A few died, in whom the disease was so far advanced before he saw them that there was not time to raise a salivation. None of the cases which were under this gentleman's care in the West Indies were the consequences of wounds or capital operations; nor has he had any opportunity of trying it in cases of the locked-jaw, which sometimes follows capital operations, owing to his having given over his practice:

In the second volume of the Medical Transactions, we have an account of a cure performed by Dr William Carter of Canterbury, by means very different from any of those above related.—On the 17th of May 1757, the doctor was called to a strong healthy man, in the 21st year of his age, and who had been confined to his bed for three weeks. What gave rise to this present disorder was a wound on the inner ankle of his right leg, which he had receive six weeks before from a joiner's chisel. At that time his mouth was so far closed, as to admit only the most liquid nourishment, which he constantly sucked through his teeth: but his legs and jaw, and the whole length of the spine dorsal, were quite immovable, being as stiff and rigid as those of a person long dead; his head was drawn backward, and he was frequently strongly convulsed. The motion indeed of both his arms was but a little impaired. From the beginning to the end, his sight, hearing, and memory, continued perfect; his appetite was good; and his senses, in the day-time, entire, though sometimes wandering in the night. As to his pulse, that was regular; if it deviated at all from the pulse of a person in health, it was rather slow than quick, and somewhat fuller than natural. Such was the situation of his patient: a detail of which had been given before the doctor set out on his journey, which he undertook with a determined resolution to make use of the method recommended by Dr Silvester, in the first vol. of Medical Observations and Inquiries, published in the year 1757, (and which has been related from Dr Chalmers and Dr Hillary.) But, on his arrival at the house, he found great quantities of the extraflum tobaianum dissolved in K k had
had been already given him; and that, for the first 33 last days, he had taken no less than 28 grains of that medicine, with 50 grains of mulk, in the space of 24 hours, without any sensible effect, except the bringing on of a confused sleep, out of which he frequently awoke in great hurry, attended with a violent pain in the head, which almost deprived him of his senses. The doctor was afraid to extend the dose; and soon determined to take some other method, though at a loss what method to pursue, as, during a course of almost 30 years practice, nothing of the kind had ever fallen under his cognizance before. Reflecting, however, that this disorder had always been deemed of the spasmodic kind, and that the good effects produced by the extractum thebaicum must probably be owing to the relaxing and resolving faculty of that medicine, he directed a blister to be applied between the shoulders, the whole length of the spine; the jaw to be anointed with the oleum lateritium; and a purge consisting of the tinctura sarsa, tinctura jalepelli, and the forpus de rharno cathartico, to be given him. This was repeated three several times afterwards, at the distance of three or four days between each dose. On the intermediate days, he was ordered the oleum faccin, the ficdum gum, and the oleum amygadalum. Of the first he took 30 drops, of the gum 20 grains, and of the last four ounces, in 24 hours. By these means, and those only, the convulsions soon ceased; and he grew daily better and better, till at the end of a fortnight he was able to walk about his room, and in less than three weeks became in all respects well, some small weaknesses in the parts only excepted. The jaw was relieved first, after that the spine, and last of all the legs. A pain and uneasiness in the places affected, neither of which he had felt before, were the forerunners of his approaching amendment.

From all this it seems reasonable to conclude, either that there is no certain remedy for tetanus in all cases, or that the medicines which prove effectual in one constitution will fail in another. Thus, it is possible, that in cases where opium proves effectual, mercury may be a remedy; and on the contrary, where mercury fails, opium may be effectual; and even where both are ineffectual, the antimonial remedies recommended by Dr Cochrane may be of use. It is therefore necessary for physicians to be extremely careful to observe the effects of the first doses of their remedies: for if the symptoms show not the least appearance of remission after a large dose of opium, it is improbable that it can be cured by a repetition of the medicine; and as no time can be lost with safety, it will then be proper to apply mercurial ointment, or whatever else may be judged proper.—In the Edinburgh Medical Commentaries we have an account of the cold bath being used as a remedy, by Dr Thomas Cochrane, at that time physician at Nevis, now at Edinburgh. The patient was an Eal Indian boy, who had been shored by a cow, and afterwards exposed to a rainy damp air for some hours. Dr Cochrane ascribes his cure to the cold bath, which was applied by dashing the water upon his body; but as the patient at the same time got laudanum, at first in the quantity of 200 drops a day, and afterwards in still larger doses, and had besides his throat and shoulders anointed with warm oil of turpentine, was bled, and had lenient glyters and laxatives; it is by no means easy to say what share the cold bath had in his cure. Dr Cochrane, however, says he has heard of many cases being treated successfully by cold water and other remedies. The Prussian barking in St. Eustatia and St Kitt's, and in another letter mentions his having used the cold bath in other cases of tetanus with success. But since Dr Cochrane's publication, a more full and satisfactory account of the benefit of this practice has been communicated in a paper published by Dr Wright, in the sixth volume of the London Medical Observations. Dr Wright gives a particular account of six cases, in which the effects were obtained from dashing cold water upon the patient; and he observes, that since he first used this method of cure he has not failed in one instance to obtain a recovery, and that in a shorter time than by any other method hitherto proposed. This practice has on some occasions been adopted by practitioners in Britain, although here the disease is a much less frequent occurrence. It has particularly been employed with success by Dr Currie of Liverpool; and we hope that still more extensive practice will confirm the benefit to be derived from it, although not in every instance, yet in many cases of this affection.

Very lately a different mode of cure in this affection has been recommended by Dr Ruth, professor of medicine at Philadelphia, in a paper intitled Observations on the Cause and Cure of Tetanus, published in the second volume of the Transactions of the American Philosophical Society. Dr Ruth, viewing tetanus as being a disease occasioned by relaxation, thinks the medicines indicated to cure it are such only as are calculated to remove this relaxation, and to restore tone to the system. On this ground he recommends the liberal use of wine and the Peruvian bark; and tells us, that he has employed them with success in actual practice. When the disease arises from a wound of any particular part, he recommends stimulants to the part affected; such as dilatation of the wound, and filling it with oil of turpentine. How far this practice will be confirmed by more extensive experience, we cannot take upon us to determine. We may only observe, that a very contrary practice has been recommended as highly successful by some practitioners in Spain, where tetanic affections are a very frequent occurrence in consequence of slight accidents. There gentle emollients are strongly recommended, particularly immersing the wounded part in tepid oil for the space of an hour or so at a time, and repeating this application at short intervals. By this mode many cases, after very alarming appearances had taken place, are said to have been completely and speedily removed. While the practice is very simple, it appears at the same time in many respects very rational, and may perhaps be considered as well deserving a trial in the first instance.

GENUS XLIX. TRISMUS.

The Locked Jaw.

Sp. 1. TRISMUS NASCENTIUM.

Locked Jaw in children under two months old.

MEDICINE.

Pract. This distemper is so closely connected with the tetanus, that it ought rather to be accounted a symptom of the tetanus than a primary disease. We have accordingly discussed it under **tetanus**.

Sp. II. The **Trismus from Sounds or Cold.**

Convulso a nervi punctura, Saw. sp. 2.

The internal remedies proper in all cases of the locked jaw, from whatever cause it may proceed, have been already mentioned under **tetanus**: the external treatment of wounded parts which may give occasion to it belongs to the article Surgery. But of this also we have offered some observations under the head of tetanus; and, indeed, Trismus may be considered as being merely an incipient tetanus, or rather a slight degree of that disease.

Genus L. Convulsio.

Convulso universalis, saw. sp. 11.

Hierarhios, Lin. 144. Vog. 190.

Convulso habituales, Saw. sp. 12.

Convulso intermittens, Saw. sp. 16.

Convulso hemitomos, Saw. sp. 15.

Convulso abdominalis, Saw. sp. 10.

Convulso ab inani lib, Saw. sp. 11.

Convulso ab onanismo, Saw. sp. 13.

Sclotyrybe feffimans, Saw. sp. 2.

Description. When convulsions attack only particular parts of the body; they are generally attended with some kind of paralysis at the same time, by which means the affected parts are alternately convulsed and relaxed: a permanent convulsion, or unnatural contraction of particular muscles, is called a spasm or cramp. These partial convulsions may attack almost any part of the body; and are not unfrequently symptomatic, in fevers, the cholera morbus, &c.

The involuntary flutterings of the tendons, the picking of the bed-clothes, &c. in acute diseases, &c. are all of them convulsive disorders. Convulsions, even when most generally extended, differ from epilepsy in not being attended with any mental affection or abolition of sense, and not followed by the same torpid state.

Causes. Convulsions, not only of particular parts, but also over the whole body, often take place from causes not very evident. Sometimes they seem to depend on a certain delicacy or irritability of the nervous system, which is framed with such exquisite sensibility as to be strongly affected by the slightest causes. Delicate women are often subject to hysterical convulsions, and also hypochondriac people. Convulsions, however, often take their rise from wounds, irritations of the stomach and intestines by worms, poisons, violent cathartics and emetics, &c.; and very often they are symptomatic, as in dition, the small-pox, and many kinds of fevers.

Prognosis. Except in some few cases, convulsive disorders are always to be dreaded; but left in young people than in such as are advanced in life. Those which attack girls under the age of puberty, will generally cease on the appearance of the menses; and boys have likewise a chance of being relieved as they advance in life: but in grown up people, unless the cause be very evident, a cure is hardly to be expected, especially after the disease has been of long continuance.

Cure. The treatment is very much the same with that of epilepsy, afterwards to be considered: but a recovery is most frequently obtained by the removal of the existing cause.

Genus LII. Chorea.

St Vitus's Dance.

Chorea, Lin. 139.

Sclotyrybe chorea Viti, Saw. sp. 1.

Chorea St Viti, Sydenh. Sched. Monit.

Description. This disease shows itself first by a kind of lameness or inelasticity of one of the legs, which the patients draw after them in a ridiculous manner; nor can they hold the arm of the same side still for a moment; for if they lay it on their breast, or any other part of their body, it is immediately forced away by a convulsive motion. If they be delectious of drinking, they use a number of odd gymnastic before they can bring the cup to their mouths, because their arms are drawn this way and that by the convulsions which affect them.

Causes, &c. The general cause of St Vitus's dance is a debility of the system; and hence we find it attacks only weakly boys, and more especially girls, when under the age of puberty. But the particular causes determining the muscles to be affected in such and such a manner are entirely unknown.

Prognosis. As this disorder scarce ever attacks any persons but such as are under the age of puberty, there is almost a certain prospect of its being then cured, though generally the disorder is easily removed before that time.

Cure. See epilepsy.

Genus LIII. Raphania.

Convulso raphania, Saw. sp. 7.

Description. According to Sauvages, this distemper begins with a latitude of the limbs, transient colds and shiverings, pain of the head, and anxieties of the precordia. Then come spasmodic flutterings of the fingers and feet; also of the tendons and muscles, con-
Epilepsia a taburra, Sauv. sp. 5.
Epilepsia a pathemate, Sauv. sp. 7.
Epilepsia ab inanitio, Sauv. sp. 8.
Epilepsia neophytorum, Sauv. sp. 15.

Description. The epilepsy often attacks suddenly and without giving any warning; but more frequently is preceded by a pain in the head, loudness, some disturbance of the senses, unquiet sleep, unusual dread, dreams of flight, a noise in the ears, palpitation of the heart, coldness of the joints, and in some there is a sensation of formication, or a cold-air, &c. ascending from the lower extremities towards the head. In the fit, the persons fall suddenly to the ground (whence the name of the falling-fits), frequently with a violent cry. The thumbs are first up close in the palms of the hands, and are with difficulty taken out; the eyes are dilated, so that nothing but the whites are to be seen; all sensation is suspended, in such a manner, that by no smell, noise, or otherwise, nor even by pinching the body, can they be brought to themselves; they froth at the mouth, with a hissing kind of noise; the tongue is frequently lacerated by the teeth, and there is a violent convulsive motion of the arms and legs. Sometimes, however, the limbs, instead of being agitated by convulsive motions, are all stiff, and the patients are as immovable as a statue. In children the penis is erected; and in young men there is an emission of the semen, and the urine is often thrown out to a considerable distance. At length there is a remission of the symptoms, and the patients recover after a longer or shorter interval; when they complain of a pain, torpor, or heaviness of the head, with a latitude of all the joints.

Causes, &c. The dissection of the epileptic subjects has shown a variety of morbid appearances, which may be supposed to have contributed to the disease; such as indurations in the brain or meninges; carries of the internal surface of the cranium; projections of the bony substance of the same, pressing upon the brain; collections of ferum or purulent matter, and earthy concretions within the skull; besides many others which are registered by Bonet, Morgia, and Lietaud. But often the causes are imperceptible to be discovered; for even in those who have died of the disease, the brain and all other parts of the nervous system have been apparently found. The disease will attack strong as well as weak people; and in those who are subject to it, any considerable excess in drinking, a fever, violent passion, or venery, &c. will certainly be on a fit. Some have epileptic paroxysms returning periodically after considerable intervals; and the disease has been thought to have some dependence on the phases of the moon.

Prognosis. If the epilepsy comes on before the time of puberty, there are some hopes of its going off at that time. But it is a bad sign when it attacks about the 21st year, and will worsen if the fits grow more frequent; for then the animal-functions are often destroyed, as well as those of the mind, and the patient becomes stupid and foolish. Sometimes it will terminate in melancholy or madness, and sometimes in a mortal apoplexy or palsy. It has sometimes however, been observed, that epilepsies have been removed by the appearance of cutaneous diseases, as the itch, smallpox, measles,
measles, &c. While the disease is recent, therefore, we are not to despair of a cure; but if it be of long standing, or hereditary, there is very little reason to be expect that it can be removed.

Cure. From the symptoms occurring in epilepsy, which consist of involuntary convulsive motions, and an affection of the mental powers, there is reason to conclude, that the fit immediately depends on the induction of some peculiar action of the brain; but that convulsions may ensue from this cause, it would seem necessary that there should also occur a peculiar disposition to action in the moving fibres. On this ground then, we may suppose the cure to be chiefly expected on one of two principles; either by our being able to prevent the peculiar action of the brain, or to remove the disposition to action in the moving fibres. The first is chiefly to be accomplished by the removal of irritating causes, by preventing their influence from being propagated to the brain, when they are applied to remote parts; or by counteracting their influence from inducing in the brain a state of action different from that to which they give rise. The second is chiefly to be obtained by diminishing the mobility of the nervous energy, and by strengthening the tone of the moving fibres. It must, however, be allowed, that in all convulsive disorders, except those which are cured by nature about the time of puberty, the cure by artificial means is very difficult. Numberless specifics have been recommended, but all of them have failed of answering the expectation. When the cause can be discovered, that must be removed. In other cases, the cold bath, waterian root, cæter, musk, opium, the various gums, and antispasmodic medicines, have been recommended; but none of these, or indeed any combination of them, have been found generally useful; though the slighter, or symptomatic cases, may often be removed by them.

Of late the calx, improperly called the flowers, of zinc, have obtained such reputation in convulsive disorders as to be received into the Edinburgh Pharmacopoeia under the title of zinca umvum. They were proposed by Dr Gaubius as an antispasmodic, in his Adversaria, and their efficacy has since been confirmed by various observations. In an inaugural dissertation published by Dr Hart at Leyden, the medical virtues of the flowers of zinc are considered. He observes, that they have long been used externally, chiefly for inflammations of the eyes from acute lycph. Glauber first proposed the internal use of them; and Gaubius discovered them to be the remedy of a celebrated empiric Luddemannus, who styled his luna fixata. After this he exhibited them with success in convulsive and spasmodic diseases. Dr Hart supposes, that they act either as absorbents, or as posseffing a specific virtue; but is a strong advocate for their efficacy, on whatever principles they may operate; and, in favour of his opinion, relates several cases in which they proved successful. A girl of 17 years of age, was seized with a slight aura from a fright; and when the disease had continued six days, she began to take the flowers of zinc, by which her disorder was removed in less than three weeks. Her cure required only 16 grains of the calx. In a few months the complaints returned, from the same causes, and were removed by four grains of the medicine divided into ten doses.—A boy of about four years old, labouring under a real epilepsy, suspected to be hereditary, was cured by a grain of the flowers of zinc taken every day for some time.—A man 50 years old, thrown into convulsions from a violent passion, was cured by a grain of the calx taken every two hours. The disease had gone off under vision of the use of some other remedies; but returned again in two weeks, when it was finally removed by the zinc. The two last cases are related by Dr Gaubius, who affirms that he has used the flowers of zinc in cases of the chinchough, and the other spasmodic diseases; that they frequently did more than other medicines, but were by no means successful in every case. The other cases mentioned by Dr Hart are similar to those abovementioned. But it does not appear that he ever saw a confirmed epilepsy cured by this medicine.

In the first volume of Edinburgh Medical Commentaries, we have an account by Mr Benjamin Bell, of a man afflicted with a confirmed epilepsy, who was considerably relieved by the flowers of zinc. He was about 35 years of age, and had been subject to the disease for 10 years. At first the paroxysms did not return oftener than once a month; but becoming gradually more frequent, they came at last to be in a manner continual, inasmuch that he would have ten, eleven, or twelve attacks in a day, and very seldom had an interval of 24 hours. His memory and judgment were so much impaired, that he could scarce answer a question distinctly. He had used a great variety of medicines without any benefit. About three years before applying to Mr Bell, he had violent rheumatic pains in his limbs, which left such an extreme debility that he was never afterwards able to get out of bed without the assistance of two or three people.

On the 22d of October 1752, Mr Bell found him in the abovementioned condition, and prescribed as follows:

R. Flor. Zin. gr. xxiv. Ext. Gent. 5 gr. m. mat. et divid. in pill. xxiv. cap. 1. m. & v.

He continued to take two pills a-day till the first of November, without any sensible benefit. The dose was then doubled, and continued till the 12th; when the fits, though equally violent, became less frequent. The medicine was gradually augmented to ten pills thrice a-day; and the consequence was, that his memory and understanding returned, the fits became much lighter and less frequently repeated, though the disease could not be radically subdued.

In a young man labouring under the epilepsy, in whom the fits were preceded by an aura epileptica, or sensation like air arising from the inside of the knee-joint, the disease was also relieved, but not cured.

Dr Percival relates some cases of epilepsy which seem to have been cured by the flowers of zinc; and in other cases, where the disease was not entirely removed, the spasms were nevertheless much mitigated.

He did not observe that it promoted any evacuation; excepting that in some, upon being first taken, it occasioned a little sickness, which went off with a stool. He adds, that those apothecaries who do not prepare this,
The good effects of calcined zinc as an antispasmodic are also attested by Dr Haygarth of Chelter and Dr Wiltie of York. The former gives a tefl of their good efts which may be of use to those who do not prepare them; namely, that the true flowers of zinc, when strongly heated, become yellow, but reaffume their white colour on being allowed to cool. The latter gives a cafe of heintanosis, or крайне convulsions of almost all the muscles of the body, cured by zinc, after a number of other remedies had failed. The patient, however, had been formerly much relieved by Ward's antimonial pill.

In Dr Home's clinical experiments and histories, also calcined zinc is mentioned as having been found serviceable upon trial in the Royal Infirmary of Edinburgh. Of the other principal remedies which have been recommended for the epilepsy and other convulsive disorders allied to it, we have the following account by the same author.

1. The cold-bath was tried in one who had a convulsive disorder of one side, but the symptoms were rendered much worse by it.
2. Vomiflion. Not to be depended on in convulsions.
3. Electricity. In two convulsive cafes was of no service.
4. Epiftasicles. Do not seem to be powerful antispasmodics.
5. Valerian. In nine convulsive cafes, for which this remedy hath been reckoned almost a specific, it not only made no cure, but could scarcely be reckoned to do any good. Dr Home supposes that it acts as a bitter tonic, something like the herpentaria Virginiana. Though much used at present, he tells us it has always appeared to him a weak, oftentimes a hurtful, medicine.
6. Myrt. Six convulsive patients treated with large doses of this remedy, were neither cured nor in the least relieved.
7. Caffir seems to be unworthy of the confidence formerly put in it. It is indeed possessed of a sedative power, and therefore may be useful in spasmodic feverish cafes.
8. Afiatifrida has considerable antispasmodic powers, but is not always successful. It heats and quickens the pulse; and is therefore improper in cafes attended with inflammation. It disagrees with some from a peculiarity of constitution; exciting pain in the foftomach, and vomiting; but this can be known only after the exhibition of the medicine.
9. Cortex Peruviana. Of seven spasmodic cafes, six were either cured or mitigated. An epilepsy of eight years standing was very much relieved by taking the bark for a month, and one of two years standing by taking it for ten days. But the medicine is of a heating nature, and therefore is not to be employed in cafes attended with inflammatory symptoms.
10. Penny root was given to two epileptic patients without the least success.
11. Vifus quercinus, or mistletoe, was given in the quantity of two scruples five times a-day to an epileptic patient, without success.
12. Extradita bryceadi was given to an epileptic patient, to one afflicted with the hemitqnotos, and to one who laboured under the hysteric affection, without the least good effect.

Folia aurantiorum were exhibited with the like bad success. Five drachms of the powdered leaves were taken at once without any sensible effect.

14. Cardamimo pratensis, in three epileptic cafes, was not attended with any success.
15. Opium did no good.
16. Cuprum ammoniacale made no cure in four cafes of epilepsy in which it was tried.

That in many cafes all these remedies have been employed without success, is not to be denied; and indeed it may with confidence be affirmed, that a great majority of cafes of epilepsy are incurable by any remedy that has yet been discovered. At the same time, as there is incontrovertible evidence that some of them have succeeded at least in certain cafes, the more powerful may always be considered as deserving a fair trial. The cuprum ammoniacum, in particular, seems well intituled to the attention of practitioners; for though it be a medicine of great activity, yet under prudent administration it may be employed even with very young subjects without any hazard; and in several invertebrate cafes, which had obstinately resisted other medicines, it has brought about a complete recovery.

Palpitation of the Heart.

The palpitation of the heart is sometimes so violent, that it may be heard at a considerable distance. It may proceed from a bad constitution of the heart itself, or from the large vessels. It may also be occasioned by wounds or abscesses of that viscus, or from plethora, fear, or spasmodic affections of the nervous system. When it proceeds from diseases of the heart or large vessels, it is absolutely incurable. In spasmodic cafes, the remedies above related may be used. If the patient be phthisic, bleeding will probably remove the disorder, at least for the present.

The.
Pracliae.

forward; the inspiration is short and spasmodic; and derable number of years.

from, or purulent matter, but the fpeak or

On, and swelling of the stomach from flatulence, it has been known to

iteration In!!Iion.

the attack, from a languor, loss of appetite, breathing; and yet, notwithstanding all this apparent

Off, and the breathing becomes free, there is more or

lung, an inflammation here seldom or never

bein known to

the lungs, an inflammation here seldom or never

frequently. Thus, in the asthma with great success.

in the asthma, from the

made after the publication of his book upon that dif-
cafe. Dr Percival says he has frequently directed coffee in the asthma with great success.

In the intervals of the fits, persons subject to the asthma, especially the humid species, should take emetics from time to time. An infusion of tobacco is an emetic that has been said to be very serviceable in some asthmatic cafes; but its operation is both so distressing and so dangerous, that it will never probably be introduced into common use as an emetic; and smoking or chewing the same has been known to prevent the frequency and severity of the paroxysms. Asthmatic patients may also use the lac ammoniaci with a due proportion of oxynel faltilllicum and sinua cu-
tioniales, with a view to promote expectoration; or the gum ammoniaci, and others of similar virtues, may be formed into pills and combined with soap as mentioned for the dyspnea pyrithostis; or a maas may be composed of afafeetica and balsam of Tolu, with syrup of garlic; and these pills may be washed down by a medicated wine, impregnated with squills, hoars-radish root, and mustard seed; or a strong bitter infusion, with a little antimonial wine.

In some cafes crude mercury will be found serviceable; in others flowers of sulphur, made into an emetic, with honey or syrup of garlic; and if, notwithstanding the use of these things, a colitive habit should prevail, it will be necessary, from time to time, to give a few grains of pills of aloes and myrrh, soap and aloes, or a mafs of equal parts of rhubarb, scammony, and soap.

The dry or spasmodic asthma, during the extreme violence of the fit, is best relieved by opiates; and sometimes very large doses are required. But in order to obtain permanent relief, nothing is found to answer better than ipescaquinaba in small doses. Three, five, eight, or ten grains, according to the strength and constitution of the patient, given every other day, have been productive of the happiest effects; acting sometimes as an evacuant, pumping up the vitious phlegm; at others, as an antispasmodic or sedative. Iffues are generally recommended in both species, and will often be found useful.

Changes of weather are usually felt very sensibly by asthmatic people, who in general cannot live with tolerable ease in the atmosphere of large cities; though we shall sometimes meet with patients who agree better with this air, which is so replete with gross effluvia of various kinds, than with the purest that can be found in country situations. And some are found who breathe with the most ease in a crowded room, with a fire and candles.

A light diet of meats that are easy of digestion, and not flatulent, is requisite for asthmatic people; and the exercise of riding is indispenfibly necessary.

When the asthma is found to depend on some other disease, whether it be the gout or an intermittent fever, or when it proceeds from the flickering in of some cutaneous eruption, regard must always be had to the primary disease: thus, in the asthma arthusium, inflammation to the foot, or burning, will be absolutely necessary, in order, if it possible, to bring on a fit of the gout. And when the edges of an agar give rise to an asthma, which is termed febrikulosis, and invades at regular intervals, we must have recourse to the Pen-
MEDICINE.

292. GENUS LVI. DYSPEPSIA.

Habitual DIFFICULTY of Breathing.

Sp. 251. Juech. 32.

Sp. I. The Catarhhal Dyspepsia.

Asthma catarhal, Sauv. sp. 16.
Asthma pneumaticum, Willis. Pharm. rat. P. II.
feel. i. cap. 12.
Asthma pituitofum, Hoffm. III. feel. ii. cap. 2. § 3.
Asthma pneumodes, Sauv. sp. 17.

This is readily known by the symptoms of pneumonia and catarh attending it, and to the removal of these symptoms the care of the physician must be principally directed.

Sp. II. The Dry Dyspepsia.

Dyspepsia a tuberculis, a hydatibus, &c. Sauv. sp. 2.
4. § 20.
Orthopnea a lipomate, Sauv. sp. 18.

This is generally accompanied with a phthisis pulmonary; but Sauvages mentions one species of phthisis to which the dry dyspepsia seems more particularly to belong. The patients fall away by degrees, and have a great difficulty of breathing, continual thirst, and little or no spitting. When opened after death their lungs are found not to be ulcerated, but shrivelled and contracted as if they had been smoke-dried. Goldsmiths and chemists are said to be made in the vapours they draw in with their breath. Sauvages do not mention any particular remedy. Shortness of breath arising from tubercles, as they are termed, or a fibrinous enlargement of the lymphatic glands which are dispersed through the lungs, is commonly found in scrofulous habits, and may be distinguished by the comitancy of those external swellings and appearances which particularly mark the scrofula. This species of dyspepsia generally ends in a phthisis. Courtes of goat's whey, and of tea-water, have been known to do service; but it must be confessed, that a perfect cure is seldom obtained. Issues are of use in these cases, as they appear to prevent the ill effects of an over-fullness, if it should happen at any time to supervene.

Sp. III. Dyspepsia from Changes in the Weather. (Sauv. sp. 12.)

This seems to be a disease entirely spasmodic, and the antispasmodics already related are accordingly indicated.

Sp. IV. The Dyspepsia from Earthy Substances. formed in the Lungs.

Sauvages mentions this disease as much more common in brutes than in the human race; but Dr Cullen mentions his having seen some instances of it; and we have several accounts by different authors of calculous matters being coughed up by people labouring under a dyspepsia, and threatened with consumption. In three cases of this kind which fell under Dr Cullen's inspection, there was no appearance of earthy or vitious concretions in any other part of the body. The calcareous matter was coughed up frequently with a little blood, sometimes with mucus only, and sometimes with pus. In one of these cases, an exquisite phthisis came on, and proved mortal: in the other two the symptoms of phthisis were never fully formed; and after some time, merely by a milk diet and avoiding irritation, the patients entirely recovered.

Sauvages also greatly recommends milk in these cases, and soap for dissolving the concretions. The reason why brutes are more subject to these pulmonary calculus than mankind, is, that they very seldom cough, and thus the flagrating mucus of lymph concretes into a kind of gypseous matter.

Sp. V. The Watery Dyspepsia.

Dyspepsia pituitofa, Sauv. sp. 1.
Orthopnea ab hydropneumonia, Sauv. sp. 12.

This may arise from too great a defluxion of mucus on the lungs, or from an effusion of serum, as is mentioned under the pneumonia. The treatment of the disease may be gathered from what has been already said under the heads of pneumonia, catarh, empyema, &c.

Sp. VI. The Dyspepsia from Corpulency.

Orthopnea a pinguedine, Sauv. sp. 6.

There have been many inferences of suffocation and death occasioned by too great corpulency. These fatal effects, however, may be almost always avoided if the persons have resolution to perform in an active and very temperate course of life; avoiding animal-food, much sleep, and using a great deal of exercise. In the third volume of the Medical observations, however, there is an extraordinary instance of internal obesity which neither flowed itself externally, nor could be removed by any medicines.

Other species of dyspepsia have been considered under Phthisis. It is frequently symptomatic of diseases of the heart and large vessels, or swellings of the abdomen, &c.

GENUS LVII. PERTUSSIS.

Chincough.

Huxham, de acre, ad. ann. 1732.
Tuliss convulxis, live ferina, Hoffm. III. 111.
Tuliss ferina, Sauv. sp. 10. Sec. sp. 10.
Tuliss convulxis, Sauv. sp. 11. Sec. sp. 11.
Amphixerina tuculolis, Sauv. sp. 13.

Description. This disease comes on at first like a common cold; but is from the beginning attended with a greater degree of dyspepsia than is common in catarh; and there is a remarkable affectation of the eyes, as if they were swelled, and a little puffed out of their sockets. By degrees the fits of coughing become longer and more violent, till at last they are plainly convulsive, so that for a considerable time the patient cannot expire, and when at last he recovers his breath, inspiration is performed with a thrill kind of noise like the
MEDICINE.

Practice.

the crowing of a cock. This kind of inspiration serves only as an introduction to another convulsive fit of coughing, which is in like manner followed by another inspiration of the same kind; and thus it continues for many hours, very often till the patient vomits, which puts an end to the paroxysm at that time. These paroxysms are attended with a violent determination of the blood towards the head, so that the vessels become extremely turgid, and blood not frequently flows from the mouth and nose. The disease is tedious, and often continues for many months. It is not commonly attended with fever.

Canker, &c. The chinchough is an infectious disorder, and very often epidemic: but the nature of the contagion is not understood; at least it is not farther understood than that of small-pox, measles, or similar epidemics. We well know that it is from a peculiar and specific contagion alone that this disease, as well as the others abovementioned, can arise. But with regard to the nature of any of them, we are totally in the dark. It generally attacks children, or adults of a lax habit, making its attack frequently in the spring or autumn; at the same time, when this contagion is introduced into any town, village, or neighbourhood, it will rage epidemically at any season. Those alone are affected with this disease who have never before been subjected to it. For in this affection, as well as in small-pox, having had the disease once, gives defence against future contagion. Every individual, however, does not seem to be equally readily affected with this contagion; like other contagious diseases occurring only once in a lifetime, it may naturally be expected to be more frequent among children than at any other period of life. But many, though frequently exposed to contagion, are yet not affected with the disease; and those children who live upon unwholesome watery food, or breathe unwholesome air, are most liable to its attacks, and suffer most from them. In general it has been concluded, that whatever weakens the solids, or tends to bring on a dissolution of the fluids, predisposes to this disease.

Progress. The chinchough is not very often fatal. During one epidemic, however, it is often observed to be much more dangerous and more severe than during another. This is also remarked with regard even to particular periods of the same epidemic; and it is also observed, that on certain families this disease is much more feverish than on others. Its danger, however, is still more connected with the period of life at which it occurs. In children under two years of age it is most dangerous; and kills them by producing convulsions, suffocation, inflammation and suppuration of the brain or in the lungs, ruptures, and incurvation of the spine. In pregnant women it will produce abortion; and in adults inflammations of the lungs, and all the consequences of pneumonia, more frequently than in children. From a long continuance of the disease patients will become asthmatic, ricketty, and scrofulous. It is generally reckoned a good sign when a fit terminates by vomiting; for in this disease there seems to be a great increafe of the secretion of mucus, and the vomiting affords great relief.

Cure. Pertussis is one of those diseases which after the contagion has exerted its influence can be terminated only by running a certain course: but it is much less limited in its course than small-pox and measles, and often it runs on to a very great length, or at least it be very difficult to decide with certainty the sequel of this disease from the disease itself. And when it exists in the former of these states, it admits of an artificial termination. In the treatment of this affection, therefore, the objects at which a practitioner chiefly aims, are in the first place, the obviating urgent symptoms, and forwarding the natural termination of the disease; and secondly, the inducing an artificial termination. With these intentions various practices are employed on different occasions. The most approved remedies are vomits, purges, bleeding, and the attenuating pectorals; for the other kinds generally do hurt; but large evacuations of any kind are pernicious. In the Medical Observations, Vol. III. Dr Morris recommends cali fer and the bark; but in cases attended with any degree of inflammation, the latter must certainly do hurt, and the former will generally be insignificant. Dr Butter, in a dissertation expressly on the subject, relates 20 cases of this disease cured by the extract of hemlock. He directs half a grain a day for a child under six months old; one grain for a child from six months to two years; afterwards allowing half a grain for every year of the patient's age till he be 20: beyond that period, he directs ten grains to be given for the first day's consumption, gradually increasing the dose according to the effect. If the patient have not two stools a day, he advises magnesia or the rhinian citriatae pulvere to be added to the hemlock mixture. By this method he says the peculiar symptoms of the disease are removed in the space of a week; nothing but a slight cough remaining. The use of hemlock, however, has by no means become universal in consequence of this publication, nor indeed has this remedy been found equally successful with others who have given it a fair trial. The remedy must to be depended upon in this disease is change of air. The patient, as soon as the disease is fully formed, ought to be removed to some other part of the country; but there is no occasion for going to a distant place; a mile or two, or frequently a smaller distance, will be sufficient; and in this new habituation, the frequency of the cough is almost instantly diminished to a most surprising degree. After remaining there for some time, however, the cough will often be observed to become again more frequent, and the other symptoms increafed. In this stage, another change of air, or even a return to the former habitation, becomes necessary. Manifest benefit has even been derived by changing a patient from one room of a house to another. But although change of air has thus been advantageous, it must also be remarked, that when it has been had recourse to at very early periods it has often done mischief, particularly by aggravating the febrile and inflammatory symptoms. If the disease be attended with fever, bleeding and other antiphlogistic remedies are proper. Dr Buchan recommends an ointment made of equal parts of garlic and hog's lard applied to the soles of the feet; but if it have any effect, it is probably merely as an euphorium calidum. It ought to be put on a rag and applied like a plaster. Opiums may sometimes
be useful, but in general are to be avoided. They are chiefly serviceable where the cough is very frequent, with little expectoration. In these cases benefit has sometimes also been derived from vitriolic ether, and sometimes from the tincture of cantharides. An almost infalliable termination has on some occasions been put to this disease by exciting a high degree of fear, or by inducing another febrile contagion: But the effects of both are too uncertain and too dangerous to be employed in practice.

Genus LVIII. Pyrosis.

The Heart-Burn.

Pyrosis, Sauv. gen. 200. Sag. 158.

Soda, Lin. 47. Vog. 154.

Scottis, the Water-Brash.

Pyrosis Suecica, Sauv. sp. 4.

Cardialgia sputatoria, Sauv. sp. 5.

This disease, whether considered as primary or symptomatic, has already been fully treated under Dyspepsia.

Genus LIX. Colica.

The Colic.

Colica spasmodica et flatulenta, Hoffm. II. 284.

Rachalgia, Sauv. gen. 211. Sag. 168.

Iliaca, Lin. 185.

Dolor et spasmus iliacus, Hoffm. II. 263.

Pallio iliaca, Junk. 107.

Sp. I. The Spasmodic Colic.

Colica flatulenta, pituita, &c. Sauv. sp. 1. 2. 5. 6. 7. Ileus phylodes, volvulus, inflammatorius, &c. Ejus. sp. 1. 3. 5. 7. 8. 9.

Description. The colic is chiefly known by a violent pain in the abdomen, commonly about the umbilical region. The pain resembles various kinds of sensations, as of burning, twifling, boring, a ligature drawn very tight, &c. The belly is generally coltive, though sometimes there is a violent evacuation of bilious matters upwards and downwards. In these cases the disease is sometimes accompanied from the beginning with a weak and intermitting pulse, cold sweats, and fainting. In some the disease comes on gradually, beginning with an habitual coltiness; and if purgatives be taken, they do not operate. The pain comes on generally after a meal, and soon occasions nausea and vomiting. Sometimes the disease is attended with pyrexia, violent thirst, and a full pulse; the vomiting becomes more violent, and excrementitious matters are thrown up with most exquisite pain and tension of the abdomen; an hickup comes on, which continues obstinately; till at last a cessation of pain and feverish breath indicate a mortification of the intestines and approaching death. Sometimes the peristaltic motion of the intestines is so totally inverted, that all their contents are evacuated by the mouth, and even clysters will be vomited; which constituting that disease commonly called the iliac passion.
Practise.

Spasm.

Medicine.

Splanchnics. inches above the caecum. This cord formed a circle with the mesentery, large enough to admit a hen's egg to pass through it. The chord had formed a node in a manner difficult to be explained, which included a doubling of about two inches of the lower end of the ileum; and was drawn so tight, that it not only put a stop to the passage of every thing through the bowels and brought on a gangrene of the strangulated part, but it had even cut through all the coats of the intestine on the opposite side to the mesentery, and made an aperture about an inch long. In the Memoirs of the Academy of Surgery are mentioned several similar cases.

Prognostic. The colic is never to be reckoned void of danger, as it may unexpectedly terminate in an inflammation and gangrene of the intestines. Those species of it which are attended with purging must be considered as much less dangerous than those in which the vomiting is very violent. The lillac passion, or that attended with the vomiting of feces, is always to be accounted highly dangerous; but if the passage through the intestines be free, even though their peristaltic motion should be inverted, and clysters evacuated by the mouth, there is much more hope of a cure, than when the belly is obstinately colicky, and there is some fixed obstruction which seems to bid defiance to all remedies.

Cure. In the cure of the spasmotic colic, the recovery must ultimately depend on producing a resolution of the spasmotic affection. In order to accomplish this, it is in general necessary to evacuate the contents of the intestines, and to remove morbid irritability existing in that part of the system. But in order to preserve the life of the patient from the most imminent hazard, it is still more necessary to prevent and remove those inflammatory affections which often occur in this dilatation. As the chief danger in colics arises from an inflammation and consequent mortification of the intestines, it is essentially necessary, in the first place, to diminish the tendency to a pyrexia, if there should happen to be any. This is accomplished by bleeding, emollient injections, warm bathing, and cooling medicines taken inwardly. Dr Porter, in his essay abovementioned, strongly recommends the warm bath in those colics attended with violent evacuations of bile. He supposes it to do service by relaxing the contraction of the intestines, and thus preventing or removing the intestinal spasm. In the mean time opiates may be given to ease the pain, while every method is tried, by cathartics and glysters of various kinds, to procure a stool. In obstinate cases, where stimulating cathartics have proved ineffectual, the milder kinds, such as manna, senna, oleum ricini, &c. will succeed; but where every thing of this kind fails, recourse must be had to some of the more extraordinary methods. Some have recommended the swallowing of leaden bullets, on a supposition that by their weight they would force through the obstruction into the gut; but these seem much more likely to create than to remove an obstruction. It is impossible they can act by their gravity, because the intestines do not lie in a straight line from the pylorus to the anus; and though this was actually the case, we cannot suppose that the weight of a leaden bullet could prove very efficacious in removing either a spasmotic contraction or an obstruction from any other cause. But when we consider, not only that the intestines consist of a great multitude of folds but that their peristaltic motion (by which only the contents are forced through them) is inverted, the facility of this remedy must be evident. It might rather be supposed to aggravate the dilatation as the lead, by its preßure would tend to fix the intumescence more firmly, or perhaps push it still further on. The same thing may be said of quicksilver: not to mention the perilous consequences to be apprehended from swallowing large quantities of this mineral, even if it should prove efficacious in relieving the patient for the present. There are, however, some late cases on record, particularly one by Mr William Perry, published in the sixteenth volume of the Edinburgh Medical Commentaries, in which the hydrargyrum, swallowed in great quantities, was attended with the happiest effects after every other remedy had been tried in vain. Another method has been proposed, in the Medical Essays, for relieving the miserable patients in this disorder, which in many cases has been known to do service. The patient is to be taken out of bed, and made to walk about on the cold floor of a damp apartment. At the same time, purringers of cold water are to be dashed on his feet, legs, and thighs; and this must be continued for an hour or longer, if a stool be not procured before that time, though this will generally be the case much sooner. The exercise does not at all impair the patient's strength, but rather adds to it; and some very remarkable instances are adduced in the 6th volume of the Medical Essays, where this proved effectual after all other medicines had failed. In one person the dilatation had come on with an habitual colicivenes, and he had been for a week tormented with the most violent pain and vomiting, which could be stopped neither by anodynes nor any other medicines, the harpest glysters being returned unaltered, and all kinds of purgatives thrown up soon after they were swallowed; but by the abovementioned method, a stool was procured in 45 minutes, and the patient recovered. In some others the colicivenes had continued for a much longer time. Other remedies are, the blowing air into the intestines by means of a bellows, and the injecting glysters of the smoke of tobacco. But neither of these seems very capable of removing the dilatation. They can affect only the parts below the obstruction; while, to cure the dilatation, it is necessary that the obstructed parts themselves should be reached by the medicine, and therefore we have not many well-attested instances of their success. In some obstinate cases, however, benefit has certainly been derived from tobacco-smoke injections, and likewise from injections of tepid water to the extent of several pounds. For putting in practice these modes of cure a particular apparatus have been contrived; and in cases even apparently desperate, neither should be neglected. The cold water gives a general and very considerable shock to the system, checks the perspiration, and thus drives the humors inward upon the intestines, by which they receive a much more effectual stimulus than can be supposed to arise from any kind of glyster. But when all methods have failed, the only chance the patient can have for life is by a manual operation.

In those colics which are attended with faintings,

L I

&c.
SpafA'i

3 0 3

fary that the belly fail
pose
them
ly to be afcribed, and
ject.
plumbers, lead-miners, and fmelters of lead, are
rient to produce pernicious
fcription of the fymptoms of all thefe difeafes.
there is a dif!:enfion, as with wind; and frequent
pain at the pit of
small
they were drawn up towards the back; at other times
by
they are drawn into hard lumps, or hard rolls,
the inteftines
down
coftivenefs
the feces appear in little hard knots like fbeep's dung,
is di:charged in
however, nfually an obf!:inate coftivenefs; the urine
;
mnd
though fcmetimes a little quickened by the violence
occur. The extremities are often cold, and fometimes
the pains at la:ft
or thirty days fucceffively; nay, inHances have
ments,
patient:

patient's breath acqnires af!:rong fetid fmen like

ANOTHER
 evacuation
R~chialgia
Rachialgia
Pictonum,

R~chialgia
Colica

Picture
of

Sp. II. Colica Pictonum. The Colic of Poitou.

Rachialgia Pitchen, Sav. fp. 1.
Rachialgia metallica, Sav. fp. 3.
Colica Pitchen Citrii et succedentium autorum.

Another caufe to which violent colics are frequently
ly to be afcribed, and which often gives occasion to
them where it is very little fufpected, is lead, or fome
folution or fume of it, received into the body. To
this caufe is evidently owing the colics to which plumbers, lead-miners, and smelters of lead, are
infu:ient. To the fame caufe, though not fo apparent at
first fight, are we to afcribe the Devonshire colic,
where lead is received into the body diffolved in
cyder, the common drink of the inhabitants of that
country. This has been proved by experiment; for
lead has been extracted from cyder in quantity suffi-
cient to produce pernicious effets on the human body.
The colic of Poitou and what is called the dry
holy-ache in the Well Indies, are of the fame nature;
for which reafon we give the following general
description of the fymptoms of all these difeafes.

The patient is generally first feized with an acute
pain at the pit of the fjomach, which extends itself
down with griping pains to the bowels. Soon af:ter
there is a diflention, as with wind; and frequent reach-
tings to vomit, without bringing up any thing but
small quantities of bile and phlegm. An obfinate
colitiveves follows, yet fometimes attended with a
tenfious, and the bowels ftem to the patient as if
they were drawn up towards the back; at other times
they are drawn into hard lumps, or hard rolls,
which are plainly perceptible to the hand on the belly,
by ftrong convulflve fpafts. Sometimes the coat of
the intestines seem to be drawn up from the anus and
down from the pylorus towards the navel. When a
fiool is procured by artificial means, as clyflers, &c.
the feces appear in little hard knots like thief's dung,
called jyphalus, and are in small quantity. There is,
however, usually an obfinate colitiveves; the urine
is difcharged in small quantity, frequently with pain
and much difticulty. The pulse is generally low,
though fometimes a little quickened by the violence
of the pain; but inflammatory fymptoms very feldom
occur. The extremities are often cold, and fometimes
the violence of the pain caufes cold clammy fweats and
ftainting. The mind is generally much affected,
and the fpirits are funk. The difeafe is often tedious
especially if improperly treated, infomuch that the
patient will continue in this miserable state for twenty
or thirty days infeffively; nay, infances have been
known of its conitining for fix months. In this cafe
the pains at laft become almost intolerable: the pa-
tient's breath acquires a ftrong fetid fmen like excre-
ments, from a retention of the feces, and an abforp-
tion of the putrid effluvia from them by the laftmeal.
At laft, when the pain in the bowels begins to abate,
a pain comes on in the shoulder-joints and adjoining
muscles, with an unusual fenfation and tingling along
the spinal marrow. This foon extends itfelf from
thence to the nerves of the arms and legs, which
become weak; and that weakness increases till the
extreme parts become paralytic, with a total loss of
motion, though a benumbed fenfation oft en remains.
Sometimes, by a fudden metalafis, the brain becomes
affected, a fpuror and delirium come on, and the
nervous fystem is irritated to fuch a degree as to pro-
duce general convulfions, which are frequently followed
by death. At other times, the perifhalic motion of
the intestines is inverted, and a true iliac paflion is
produced, which also proves fatal in a fhort time.
Sometimes the paralytic affection of the extremities
goes off, and the pain of the bowels returns with its
former violence; and on the ceflation of the pain in
the intestines, the extremities again become paralytic
and thus the pain and paraly will alternate for a ver-
Y long time.

Cure. Various methods have been attempted for
removing this terribie difeafe. The obfinate colitive-
ves which attends it, made physicians at firft exhibit
very ftrong purgatives and stimulating clyflers. But
these medicines, by increafing the convufive fpafms of
the intestines, were found to be pernicious. Balm
of Peru, by its warm aromatic power, was found to
fucceff much better; and Dr Sydenham accordingly
precribed it in the quantity of 40 drops twice or
three a day taken on fugar. This, with gentle pur-
gatives, opiates, and fome drops of the h etter effential
oils, continued to be the medicine commonly em-
ployed in this difeafe, till a specific was publifhed by
Dr Lionel Chalmers of South Carolina. This recipi
t was purchafed by Dr Chalmers from a family where
it had long been kept a fecret. The only unusual
medicine in this receipt, and on which the efficacy of
it chiefly if not wholly depends, is vitriliated copper.
This must be difolved in water, in the quantity of
one grain to an ounce, and the dofe of the folution
is a wine-glaflful given falling for nine fucceffive
infpiffions. For the firft four or five days this me-
dicine difcharges much eruguous bile both ways;
but the excretions of this humour leffen by degrees
and before the course be ended, it has little other ef-
fect than to caufe fome degree of fquamifhes, or
promote a few bilious foools, or perhaps may not
move the patient at all. At the time of using this
medicine the patients fhould live upon broth made of
lean meat, gruel, or panada; but about the feventh
or eighth day, they may be allowed bread and boiled
chicken. Here the copper seems to do fervice by its
tonic power; and for the fame reafon, alum, recom-
mended by Dr Pereival, moft probably cures the
difeafe. He fays he has found this very efficacious
in obfinate affections of the bowels, and that it gene-
really proves a cure in the lighter cafes of the colica
pictonum. It was given to the quantity of fifteen
grains every fourth, fifth, or fixth hour; and the
third dofe feldom failed to mitigate the pain, and
sometimes entirely removed it. Among purgative
medicines, the eleum Rivini is found to be the moft
efficacious.

Sp. III,
M E D I C I N E.

Sp. III. The Colic from Cofiveness.

Colica fercorea, Sauv. fp. 3.
Ileus fecetus induratus, Sauv. fp. 2.

For the treatment of this species, see above.

Sp. IV. The Accidental Colic.

Colica Japonica, accidentalis, lachentium, a venen, Sauv. fp. 10, 14, 18, 20.
Cholora ficca auriginosa a fungis venenatis, gyfyl. fp. 2.

When cholics arise from acid poisonous matter taken into the stomach, the only cure is either to evacuate the poison itself by vomiting, or to swallow some other substance which may decompose it, and thus render it inactive. The most common and dangerous substances of this kind are corrosive mercury and arsenic. The former is easily decomposed by alkaline salts; and therefore a solution of lixivial salt, if swallowed before the poison has time to induce a mortification of the bowels, will prove a certain cure. Much more dangerous of this kind are corrosive mercury and arsenic. Milk has been considered as efficacious; and lately a solution of this medicine are so weak, that its qualities more obtunded by that than by any other known substance. Some of the fungi, when swallowed, are apt to produce colics attended with vomiting, or to be vomited, or to be expelled. But when once it has taken place, it cannot be removed till either a vomiting be induced, or the whole system is thrown into the utmost astonishment.

Sp. V. Colic of New-born Infants from a Retention of the Meconium. (Sauv. fp. 19.)

This disorder would be prevented were children allowed immediately to suck their mothers' milk at first; but as this is not commonly done, the child is frequently troubled with colics. These, however, may be removed by a few grains of specu-cuanha, or a drop or two of antimonial wine. By these means the stomach is cleansed by vomiting, and the belly is generally loosened; but if this last effect does not happen, some gentle purge will be necessary.

Sp. VI. Colic from a Callosity of the Colon.

It is in a manner impossible to discover this distemper before the patient's death; and though it should, it does not admit of a cure.

Sp. VII. The Colic from Intestinal Calculi (Sauv. fp. 10, 15.)

When certain indigestible bodies, such as cherry stones, plum-stones, small pieces of bones, &c. are swallowed, they frequently prove the basis of calculi, formed by an accretion of some kind of earthy matter; and being detained in some of the flexures of the intestines, often occasion very violent colics. These calculi do not discover themselves by any peculiar symptoms, nor do they admit of any particular method of cure. In the Medical Essays we have an instance of colics for six years, occasioned by calculi of this kind. The concretions were at last passed by stool; and their passage was procured by caufing the patient drink a large quantity of warm water, with a view to promote the evacuation of bile, a redundancy of which was supposed to be the cause of her disorder.

Genus I. Cholera, the Cholera Morbus.

Diarrhoea choleric, Junc. 112.

Sp. I. The Spontaneous Cholera, coming on without any manifest cause.

Cholora Indica, Sauv. fp. 7.

Sp. II. The Accidental Cholora, from acrid matters taken inwardly.

Cholora crapulosa, Sauv. fp. 11.
Cholora a venenis, Sauv. fp. 4. 5.

The cholera shows itself by excessive vomiting and purging of bilious matters, with violent pain, inflation and dilatation of the belly. Sometimes the patients fall into universal convulsions; and sometimes they are affected with violent spasms in particular parts of the body. There is a great thirst, a small and unequal pulse, cold sweats, fainting, coldness of the extremities, and hicouche; and death frequently ensues in 24 hours.

In this distemper, as the quantity of bile is deposited in the alimentary canal, particularly in the stomach, the first object is to counteract its influence, and to promote an easy discharge of it. It is next necessary to restrain that increased secretion of bile, by which a fresh deposition in the alimentary canal would otherwise be soon produced. And, in the last place, measures must often be employed to restore a found condition to the alimentary canal, which is frequently much weakened by the violence of the disease.

On these grounds, the cure of this distemper is effected by giving the patient a large quantity of warm water, or very weak broth, in order to cleanse the stomach of the irritating matter which occasions the disease, and injecting the same by way of syringe, till the pains begin to abate a little. After this, a large dose of laudanum is to be given in some convenient vehicle,
vehicle, and repeated as there is occasion. But if the vomiting and purging have continued for a long time before the physician be called, immediate recourse must be had to the laudanum, because the patient will be too much exhausted to bear any further evacuations. Sometimes the propensity to vomit is so strong, that nothing will be retained, and the laudanum itself thrown up as soon as swallowed. To settle the stomach in these cases, Dr. Douglas, in the Medical Essays, recommends a decoction of oat-bread toasting as brown as coffee; and the decoction itself ought to be of the colour of weak coffee. He says he does not remember that this decoction was ever vomited by any of his patients. An infusion of mint-leaves or good simple mint-water is also said to be very efficacious in the same case.

The tincture of opium is sometimes retained when given in conjunction with a portion of the vitriolic acid properly diluted. But when it cannot be retained in a fluid form by the aid of any addition, it will sometimes fit upon the stomach when taken in a solid state.

After the violence of the disease is overcome, the alimentary canal, and the stomach in particular, requires to be braced and strengthened. With this view recourse is often had with advantage to different vegetable bitters, particularly to the uce of the colocombo root; which, while it strengthens the stomach, is also observed to have a remarkable tendency in laying a disposition to vomiting, which often remains for a considerable time after the cholera may be said to be overcome.

Sp. I. The Fusculent Diarrhoea.

Diarrhoea fuscurosa & vulgaris, Saw. sp. 1. 2.

This is occasioned by the too great quantity of matter thrown into the alimentary canal; and what is discharged has not the appearance of excrements, but is much whiter, and of a thinner consistence. Voracious people who do not sufficiently chew their food, gourmandizers, and even those who bammer in their speech, are said to be liable to this disease. In lighter cases it is removed without any medicine, or by a dose of rhubarb; but where the matters have acquired a putrid taint, the disorder may be exceedingly protracted and become dangerous. In this case leucint and antisepctic purgatives are to be made use of, after which the cure is to be completed by astringents.

Sp. II. The Bilious Diarrhoea.

(Saw. sp. 8.)

This distemper shows itself by copious floods of a very yellow colour, attended with gripes and heat of the bowels, thirst, bitterness, and dryness of the mouth. Diarrhoea, yellowness of the tongue, and frequently follows an intermitting or bilious fever. When the fever is gone, the diarrhoea is to be removed by acidulated and cooling drinks, with small doses of nitre.

This kind of diarrhoea, besides the matters usually excreted, is attended with a copious dejection of the mucus of the intestines with great pain; while the patient daily pines away, but without any fever. Persons of all ages are liable to it, and it comes on usually in the winter-time; but is so obstinate, that it will sometimes continue for years. In obstinate loosenesses of this kind, vomits frequently repeated are of the greatest service. It is also very beneficial to keep the body warm, and rub the belly with stimulative ointments; at the same time that astringent elyters, rhubarb, and stomachic medicines, are to be exhibited. Starch elyters are very often efficacious. Some kinds of looefees are contagious; and Sir John Pringle mentions a soldier who laboured under an oblitinate diarrhoea, who infected all those that used the same privy with himself. In the looefees which frequently followed a dyfenter, the same author tells us that he began the cure with giving a vomit of pecanahna, after which he put the patients on a course of astringents. He used a mixture of three drachms of extract of logwood, diluted in an ounce and a half of spirit of cinnamon, to which was added seven ounces of common water, and two drachms of tincture of catechu. Of this the patient took two spoonsfuls once in four or five hours, and sometimes also an opiate at bed-time. He recommends the same medicine in oblitinate diarrhoeas of all kinds. A decoction of fimaruba bark was also found effectual, when the dysenteric symptoms had gone off. Dr. Hux, who used this article in North-America, also recommends it in diarrhoeas. Two or three ounces of the fimaruba are to be boiled in a pound and a half of water to a pound, and the whole quantity taken throughout the day. He began with the weakest decoction; and, when the stomach of the patient could easily bear it, he then ordered the strongest; but at the same time he acknowledges, that, unless the sick found themselves sensibly better within three days from the time they began the medicine, they seldom afterwards received any benefit from it. But when all astringents have failed, Sir John Pringle informs us, he hath known a cure effected by a milk and farinaceous diet; and he thinks in all cases the disorder would be much more easily removed, if the patients could be prevailed on to abstain entirely from spirituous liquors and animal-food. If the milk by itself should turn
Practise.

M E D I C I N E.

Sp. IV. The COELICAL PASSION.

Coeliac chylodes, Sauv. sp. 1.
Coeliac ladeus, Sauv. sp. 4.

There are very great differences among physicians concerning the nature of this disease. Sauvages says, from Aretæus, it is a chronic flux, in which the aliment is discharged half digested. It is attended with great pains of the loins, reeling the prickings of pins; rumbling and flatulency in the intestines; white fots because deprived of bile, while the patient becomes weak and lean. The disease is tedious, periodical, and difficult to be cured. Sauvages adds, that none of the moderns seem to have observed the disease properly; that the excrements indeed are white, on account of a deficiency of the bile, but the belly is bound as in the jaundice. Dr Cullen says there is a defecion of a milky liquid of the nature of chyle; but this is treated by Vogel as a vulgar error. He accuses the moderns of copying from Aretæus, who mentions white fots as a symptom of the distemper; from whence authors have readily fallen into the notion that they never appeared of any other colour in any person labouring under the coeliac passion. This error quickly produced another, which has been very generally received; namely, that the chyle was thrown out of the ladeals by reason of some obstruction there, and thus paffed along with the excrements; of which he says there is not the least proof, and agrees with Aretæus that the whiteness is only occasioned by the want of bile. He endeavours to prove at length, that the coeliac passion can neither be occasioned by an obstruc- tion of the ladeals, nor of the mesenteric glands; though he owns that such as have died of this disease and were diffected, had obstructions in the mesenteric glands; but he denies that all those in whom such obstruc- tions occur, are subject to the coeliac passion. He considers the diæmeter as arising from a cachexy of the stomachic and intestinal juices; and directs the cure to be attempted by emetics, purgatives, antiseptics and tonics, as in other species of diætaient.

Sp. V. The LIENTERY.

Lienetera spontanea, Sauv. sp. 2.

The lientery, according to Sauvages, differs from the coeliac passion only in being a lighter species of the disease. The aliment passes very quickly through the intestines, with scarce any alteration. The patients do not complain of pain, but are sometimes affected with an intolerable hunger. The cure is to be attempted by stomachics and tonics, especially the Peruvian bark. This disease is most common at the earlier periods of life; and then rhubarb in small quantities, particularly when combined with magnesia, is often productive of the best effects.

Sp. VI. The Hepatic FLUX.

Hepatica adventitia, Sauv. sp. 2.

The hepatic diætement is by Sauvages described as a flux of bloody serous matter like the washings of fish, which percolates through the coats of the intestines by means of the anatomomating vesicles. It is the coeliac passion of Trallianus; and which, according to Sauvages, rarely, if ever, occurs as a primary disease. It has, however, been observed to follow an inflammation of the liver, and then almost always proves fatal.

GENUS LXII. DIABETES.

A profuse discharge of Urine.

Diabetes, Sauv. gen. 263. Lit. 197. Fazg. 115.

Diurese, Fazg. 114.

Sp. I. The Diabetes with sweet Urine.

Description. The diabetes first shows itself by a dryness of the mouth and thirst, white frothy pittle, and the urine in somewhat larger quantity than usual. A heat begins to be perceived in the bowels, which at first is a little pungent, and gradually increases. The thirst continues to augment by degrees, and the patient gradually loses the power of retaining his urine for any length of time. It is remarkable, that though the patients drink much, the quantity of urine always exceeds what is drank. In Dr Home's Clinical Experiments we have an account of two patients labouring under this disease; one of them drank between 12 and 15 pints of urine in the day: the latter, 11 or 12; so that his urine always exceeded his drink by eight, or at least seven pints. When the urine is retained a little while, there is a swelling of the loins, illia, and tellæ; in this disease the strength gradually decays; the skin is dry and shrivelled; edematous swellings arise in various parts of the body, but afterwards subsides without relieving the diætem in the leafl; and the patient is frequently carried off by con- vulsions.

The most singular phenomenon in this disease is, that the urine seems, to be entirely or very much di-
MEDICINE.

Spasms veiled of an animal-nature, and to be largely impregnated with a saccharine salt scarce distinguishable from that obtained from the sugar-cane. This discovery was first made by Dr Dobson of Liverpool, who made some experiments on the urine of a person labouring under a diabetes, who dischargeth 28 pints of urine every day, taking during the same time from 12 to 14 pounds of solid and liquid food. Some of this urine being set a-fide, fell into a spontaneous effervescence, changed first into a vinous liquor, and afterwards into an acetoxy one, before it became putrid and offensive.

Eight ounces of blood taken from the same patient, separated into crassalementum and serum; the latter being sweet to the taste, but less so than the urine.

Two quarts of the urine, evaporated to dryness, left a white cake weighing four ounces two drachms and two scruples. This cake was granulated, and broke easily between the fingers; it smelled sweet like brown sugar; neither could it by the taste be distinguished from sugar, except that it left a slight tinge of coolness on the tongue. The experiment was repeated after the patient was recovered to such a degree as to pass only 14 pints of urine a-day. There was now a strong urinous smell during the evaporation; and the residuum could not be procured in a solid form, but was blackish, and much resembled very thick treacle.

In Dr Home's patients, the serum of the blood had no pterunal sweetness; in one of them the crassalementum was covered with a thick inflammatory crust. In one of these patients the urine yielded an ounce and a half, and in the other an ounce, of saccharine matter from each pound. It had, however, an urinous smell during the evaporation; and the residuum could not be procured in a solid form, but was blackish, and much resembled very thick treacle.

In Dr Home's patients, the serum of the blood had no preternatural sweetness; in one of them the crassalementum was covered with a thick inflammatory crust. In one of these patients the urine yielded an ounce and a half, and in the other an ounce, of saccharine matter from each pound. It had, however, an urinous smell during the evaporation; and the residuum could not be procured in a solid form, but was blackish, and much resembled very thick treacle.

These are exceedingly obscure and uncertain; spasms of the nervous system, debility, and everything inducing it, but especially strong diuretions and immediate venery, have been accused as producing on the diabetes. It has, however, occurred in persons where none of these causes could be suspected; nor have the best physicians been able to determine it.

Diuretions have only shown that the kidneys were in an enlarged and lax state. In one of Dr Home's patients, who died, they smelled sour, and the urine of one fermented with yeast, we are told, into a tolerable small-beer. Both these patients had a voracious appetite, and perpetual gnawing sense of hunger; as had also Dr Dobson's patient. The incontinent urine of those affected with diabetes has not been examined by physicians with sufficient accuracy to enable us to speak with confidence of its contents.

Causes. These are exceedingly obscure and uncertain; spasms of the nervous system, debility, and everything inducing it, but especially strong diuretions and immediate venery, have been accused as producing on the diabetes. It has, however, occurred in persons where none of these causes could be suspected; nor have the best physicians been able to determine it.

Diuretions have only shown that the kidneys were in an enlarged and lax state. In one of Dr Home's patients, who died, they smelled sour, and the urine of one fermented with yeast, we are told, into a tolerable small-beer. Both these patients had a voracious appetite, and perpetual gnawing sense of hunger; as had also Dr Dobson's patient. The incontinent urine of those affected with diabetes has not been examined by physicians with sufficient accuracy to enable us to speak with confidence of its contents.

Prognosis. The diabetes is rarely cured, unless when taken at the very beginning, which is seldom done; and in a confirmed diabetes the prognoses must therefore be unfavourable.

Cure. As there is reason to believe that in this affection the morbid secretion of urine, which is both preternatural in point of quantity and of quality, arises from a morbid diminution of tone in the kidney, the great object in the cure must be the restoration of due tone to the secreting vesicles of the kidney. But as even this diminished tone would not give rise to the peculiar vitiated secretion without a morbid sensibility of that organ, it is necessarily a second object to remove this morbid sensibility. But besides this, the morbid secretion of urine may also be counteracted both by a diminution of the determination of fluids to the kidney, and by preventing the occurrence of superfluous water in the general mass of blood.

On these grounds the principal hopes of a cure in this distemper are from altrient and strengthening medicines. Dr Dobson's patient was relieved by the following remedies; which, however, were frequently varied, as none of them produced their good effects for any length of time: The bark in substanence, with small doses of rhubarb; decoction of the bark, with the acid elixir of vitriol; the cold infusion of the bark, of which he drank from a quart to two quarts daily; Dover's powder; alum-whey; lime-water; antimonials combined with tinture Thebaica. The warm bath was used occasionally when the skin was remarkably hot and dry, and the patient complained of restlessness and anxiety. The tinture of cantharides was likewise tried; but he could never take more than 25 drops for a dose, without exciting great uneasinesses in his bowels. The body was kept constantly open, either with rhubarb or the infusion of fenna joined with rhubarb. His common drinks were rice-water, barley-water, lime-water, and milk; lime-water alone; fage, balm, or mint-tea; small-beer, simple water, and water acidulated with the vitriolic acid. In seven months, these remedies, in whatever manner varied, made no further progress in removing the disease. In Dr Home's patients, all these medicines, and many others, were tried without the least good effect; infomuch that he uses this remarkable expression: "Thus, these two patients have exhausted all that experience had ever recommended, and almost all that theory could suggest; yet, in both cases, the disease has refisted all the means of cure used." It is remarkable, that though septicism were given to both, in such quantity as evidently to produce a putrefaction in the praema, vie, the urine remained unaltered both in quantity and quality.

But although this disease be frequently in its nature so obstant as to reftit every mode of cure, yet there can be no doubt that particular remedies have succeeded in different cases. Dr Bribiane relates several cases cured by the use of tinture of cantharides; and Dr McCormck has related some in the 9th volume of the Edinburgh Medical Commentaries, which yielded to Dover's powder after a variety of other remedies had been tried in vain.

GENUS LXIII. HYSTERIA.

Malum hyystericum, Loff. III. 50. Fau. 36.

Affectio hysterica, Villis de Morb. Convulsiv. cap. 5.

Description. The hysteria is a convulsive disease, which comes on at uncertain intervals, sometimes longer and sometimes shorter, but at no flated time. The paroxysms commonly begin with a languor and debility
than at any other. It also more frequently affects young women and young widows than such as are bearing children.

Progress. Though the appearance of this disease be so very terrible, it seldom proves mortal unless by wrong treatment; but notwithstanding this it is extremely difficult of cure, and rarely admits of any thing efficacious, than being palliated; for though it should seem to be conquered by medicine for a time, it very quickly returns, and that from the slightest causes.

Cure. The ends principally to be aimed at in the cure of this disease are, in the first place, the removal of particular convulsive or spasmodic affections immediately producing various appearances in the disease, whether under the form of proper phlegmatic fits, or merely of what may be called hysterical symptoms; and in the second place, the prevention of the return of symptoms after they have been removed, by the employment of proper remedies during those intervals from complaints which patients often have when labouring under this affection.

The most powerful remedy hitherto discovered in hysterical cases is opium, or the mixture of it called laudanum. By this commonly the most violent paroxysms are stopt, though it is insufficient to accomplish a radical cure. In Dr Home's Clinical Experiments we find an instance of a cure performed by venefection, though this remedy has been generally condemned in hysterical cases. Afaetida seems to stand next in virtue to opium; though with some it disagrees, and occasions pains in the loins and vomiting. Ether will also frequently remove an hysterical fit; but its effects are of short duration; and if it do not effect a cure soon after its exhibition, no service is to be expected either by perseverance in the use of it or by increasing the doses; and with some constitutions it disagrees to such a degree as to occasion convulsions. If the patient be seized with a violent fit, so that he can swallow nothing, which is frequently the case, he will be proper to apply some strong volatile alkali to her nose; or if that be not at hand, the vapour of burning feathers is sometimes very efficacious. In some instances benefit is derived from the sudden application of cold water to the face or hands; but still more frequently the application of water in a tepid state, particularly the warm pediluvium, is found to be of very great service in bringing about a favourable termination of different violent hysterical symptoms. A plaster of galbanum and afaetida will also prove serviceable; but it must be remembered, that none of these things will prevent the return of the disease; and therefore a radical cure is to be attempted by exercise, the Peruvian bark, chalybeates, mineral waters, and other tonics; but particularly where the state of the patient is such as to be able to bear it, by the use of the cold bath, which, where it does not disagree with the constitution, is often of the greatest service in preventing returns of this affection.

GENUS LXIV. HYDROPHOBIA. 323

The Dread of Water.
MEDICINE.

Hydrophobia.

Practise.

Sp. I. Hydrophobia Rabiea, or Hydrophobia consequent on the Bite of a Mad Animal.

Hydrophobia vulgaris, Sauv. 1st. p. 1.

It is the opinion of some, that Dr Cullen has done wrong in employing the term hydrophobia as a generic name, under which canine madness is included: and it must be allowed, that the dread of water, while it is not universal, is also a symptom occurring only late in the disease, at least in the greater part of cases. Perhaps his arrangement would have been less objectionable, if, following Linnaeus, he had adopted rabies as a generic term, and had distinguished this particular species by the epithet of canina, contagiosa, or the like. Disputes, however, about names are in general not very important; and it is sufficient to observe, that the affection now to be treated of is canine madness, or that disease which arises from the bite of a mad animal.

Description. This disease commonly does not make its attack till a considerable time after the bite. In some few instances it has commenced in from five or six days from the accident; but generally the patient continues in health for 20, 30, or 40 days, or even much longer. The bite, if not prevented; will in general be healed long before that time; frequently with the greatest ease; though sometimes it refists all kinds of healing applications, and forms a running ulcer which discharges a quantity of matter run for many days. It has been said that the nearer the wounded place is to the salivary glands, the sooner the symptoms of hydrophobia appear. The approach of the disease is known by the eczema of the wound becoming hard, hard, and elevated, and by a peculiar sense of prickling at the part; pains shoot from it towards the throat; sometimes it is surrounded with livid or red streaks, and seems to be in a state of inflammation; though frequently there is nothing remarkable to be observed about it. The patient becomes melancholy, loves solitude, and has tickness at the throat. Sometimes the peculiar symptom of the disease, the dread of water, comes on all at once. We have an instance of one who having vomited a vomit of speeacanths for the tickness he felt at his stomach, was seized with the hydrophobia in the time he was drinking the warm water. Sometimes the disease begins like a common sore throat; and the forenes daily increasing, the hydrophobic symptoms show themselves like a convulsive spasm of the muscles of the fauces. In others, the mind seems to be primarily affected, and they have a real dread of water or any liquid before they try whether they can swallow it or not. Dr James, in his Treatise on Canine Madnefs, mentions a boy sent out to fill two bottles with water, who was so terrified by the noise of the liquid running into them, that he fled into the house crying out that he was bewitched. He mentions also the case of a farmer, who, going to draw some ale from a cask, was terrified to such a degree at its running into the vessel, that he ran out in a great haste with the spigot in his hand. But in whatever manner this symptom comes on, it is certain that the most painful sensations accompany every attempt to swallow liquids. Nay, the bare sight of water, of a looking-glass, of any thing clear or pellucid, will give the utmost uneasiness, or even throws the patient into convulsions.

With regard to the affection of the mind itself in this disease, it does not appear that the patients are deprived of reason. Some have, merely by the dint of resolution, conquered the dread of water, though they never could conquer the convulsive motions which the contact of liquids occasioned: while this resolution has been of no avail; for the convulsions and other symptoms increasing, have almost always destroyed the unhappy patients.

In this disease there seems to be an extreme sensibility and irritability of the nervous system. The eyes cannot bear the light, or the sight of anything white; the least touch or motion offends them; and they want to be kept as quiet and in as dark a place as possible. Some complain of the coldness of the air, frequently when it is really warm. Others complain of violent heat; and have a great desire for cold air, which yet never fails to increase the symptoms. In all there is a constant inclination to drink, which do not like the hollow barking of a dog, and which he conjectures might have given rise to the common notion that hydrophobous patients bark like dogs. They are in general unable to take any drink, except with the utmost difficulty, though sometimes they can swallow bread soaked in liquids, slices of oranges, or other fruits. There is a pain under the hyobrillus cordis, as in the tetanus; and the patients mournfully point to that place as the seat of the disease. Dr Vaughan is of opinion that it is this pain, rather than any difficulty in swallowing, which dismounts the patient on every attempt to drink. The voice is commonly plaintive and mournful; but Dr Vaughan tells us there is a mixture of peliacenfs and timidity in the countenance which he cannot describe, but by which he could know a hydrophobous person without asking any questions.

In this distemper, indeed, the symptoms are so various, that they cannot be enumerated; for we will seldom read two cases of hydrophobia which do not differ very remarkably in this respect. Some seem to have at times a furious delirium, and an inclination to spit at or bite the bystanders; while others show no such inclinations, but will even suffer people to wipe the inside of their mouths with the corner of a handkerchief in order to clear away the viscid saliva which is ready to suffocate them. In some male patients there is an involuntary erection of the penis, and emission of
Spasm is the frequent return of the spasms. In a letter from Dr Wolf of Warsaw to Henry Baker, F. R. S. dated Warsaw Sept. 26th, 1767, we have the following melancholy account of the cases of five persons who died of the hydrophobia: "None of them quite lost their right senses; but they were all talking without intermission, praying, lamenting, despairing, crying, listening, spitting a trothful saliva, screaming, sometimes belching, retching, but rarely vomiting. Every member is convulsed by fits, but most violently from the navel upwards to the breath and oesophagus. The fit comes on every quarter of an hour; the waves are not red, nor the tongue dry. The pulse is not at all feverish; and when the fit is over nearly like a found pulse. The face grows pale, then brown, and during the fit almost black; the lips livid; the head is drowsy, and the ears tingling; the urine limpid. At last they grow weary; the fits are less violent, and cease towards the end; the pulse becomes weak, intermittent, and not very quick; they sweat, and at last the whole body becomes cold. They compose themselves quietly as if to get sleep, and so they expire. The blood drawn a few hours before death appears good in every respect. A general observation was, that the hnt and dressings of the wounds, even when dry, were always black, and that when the pus was very good in colour and appearance." In one of Dr Wolf's patients who recovered, the blood spunk intolerably as it was drawn from a vein; and one of Mr Vaughan's patients complained of an intolerable fetid smell proceeding from the wounded part, though nobody but himself could perceive it. In general, the violent convulsions cease a short time before death; and even the hydrophobia goes off, so that the patients can drink freely. But this does not always happen; for Mr Vaughan mentions the cafe of a patient, in whom, "when he had in appearance ceased to breathe, the spasmus cynicus was observable, with an odd convulsive motion in the muscles of the face; and the strange contrariety which took place in the action of these produced the most horrid appearance of features that can well be conceived. Of this patient also it was remarkable, that in the last hours of his life he ceased to call for drink, which had been his constant request; but was perpetually asking for something to eat."

The hydrophobia seems to be a symptom peculiar to the human race; for the mad animals which communicate the infection, do not seem to have any dread of water. Dr Wolf, in the letter above quoted, says in general, that cattle bit at the same time and by the same animal (a mad wolf) which bit the persons whose cafes he related, died nearly with the same frightful raging as the men; but says nothing of their having any hydrophobia: nay, Dr James and some others assert, that the hydrophobia is not always an attendant on rabies canina in the human race; and indeed it is certain that the disease has proved mortal after this terrible symptom has been removed. With regard to the symptoms of madness in dogs, they are veryequivocal; and those particularly enumerated by some authors, are only such as might be expected in dogs much heated or agitated by being violently pursued and struck. One symptom indeed, if it could be depended upon, would determine the matter; namely, that all other dogs avoid and run away from one that is mad; and even large dogs will not attack one of the smallest size who is infected with this disease. Upon this supposition they point out a method of discovering whether a dog who has been killed was really mad or not; namely, by rubbing a piece of meat along the inside of his mouth, and then offering it to a found dog. If the latter eats it, it is a sign the dog was not mad; but if the other rejects it with a kind of howling noise, it is certain that he was. Dr James tells us, that among dogs the disease is infectious by staying in the same place; and that after a kennel has been once infected, the dogs put into it will be for a considerable time afterwards in danger of going mad also. A remedy for this, he says, is, to keep geese for some time in the kennel. He rejects as fallacious the opinion that dogs when going mad will not bark; though he owns that there is a very considerable change in their bark, which becomes hoarse and hollow.

a. In no disease whatever are we more at a loss to discover the causes than in the hydrophobia. In dogs, foxes, and wolves, it seems to come on spontaneously; though this is contested by some authors. It is said, that the causes commonly aaligned, viz. heat, feeding upon putrid flesh, want of water, &c. are not sufficient for producing the distemper. It does not appear that madness is more frequent among dogs in the warm than in the cold climates; may, in the island of Antigua, where the climate is very hot, and the water very scarce, this distemper has never, it is said, been observed. As to putrid aliment, it seems natural for dogs to prefer this to any other, and they have been known to subsist upon it for a long time without any detriment. For these reasons, they think the disease arises from a specific contagion, like the small-pox and measles among the human race, which, being once produced by cassets unknown, continues to be propagated by the intercourse which dogs have with each other, as the diseases just mentioned continue to be propagated among the human race by means of the intercourse which they have with one another.

With regard to the immediate cause among mankind, there is not the least doubt that the hydrophobia is occasioned by the saliva of the mad animal being mixed with the blood. It does not appear that this can operate through the cuticula; but, when that is rubbed off, the smallest quantity is sufficient to communicate the disease, and a slight scratch with the teeth of a mad animal has been found as pernicious as a large wound. It is certain also, that the infection has been communicated by the bites of dogs, cats, wolves, foxes, weasels, fwiens, and even cocks and hens, when in a state of madness. But it does not appear that the distemper is communicable from one hydrophobous person to another, by means of the bite, or any other way. Dr Vaughan inoculated a dog with the saliva of a hydrophobous child, but the animal continued free from disease for two months; and though the doctor promised to inform the public if it should happen to occur afterwards, nothing has hitherto appeared on that subject. A nurse also frequently killed the child during this time of his disorder, but no bad consequences ensued.

When we attempt to investigate the nature of the
case
cause of the hydrophobia by diffusion, our inquiries are commonly disappointed. In two bodies opened by Dr Vaughan, there was not the leaft morbid appearance; in the very fauces, where we might have expe- cted that the difease would have fhown itself moft evidently, there was not the leaft appearance even of inflammation. The stomach, intestines, diaphragm, oesophagus, &c. were all in a natural state: neither do we find in authors of credit any certain accounts of morbid appearances in the bodies of hydrophobous persons after death. Dr Vaughan therefore concludes, that the poison acts upon the nervous fystem; and is fo wholly confined to it, that it may be doubted whether the qualities of the blood are altered by it or not; and that it acts upon the nerves by impairing and disturbing their functions to a fuch a degree as speedily to end in a total extirpation of the vital principle. As to the difficulty in swallowing generally believed to accompany dread of the water, he treats it as a misre- preffentation, as well as that the oesophagus with the muscles subfervient to deglutition are especially concerned in this difeafe. The principal foundation of the evil, he thinks, refts on a morbid fensibility both of the external and internal fauces. For the fource of a liquid, or the application of any fubftance to the in- ternal fauces, but more especially of a fluid, infantly excites the moft painful feelings. Nay, the fame symptoms are produced by touching the external fauces with a fluid, or by the contact of cold air with thefe parts; and nearly in as great a degree. But a solid or a fluid fubftance being conveyed into the oesophagus, the transit into the stomach is accomplished with little or no impediment; fo that in fact the difficulty is furmouted before the patient be engaged in the action of swallowing. Nor is the excruciating pain, which never fails to be the companion of every attempt to drink, felt in the fauces and throat: it is, he fays, at the ferubculaii cordis; to which the fufferer applies his hand. From this laft circumftance, therefore, from the prefence of the rixos farciomites, from the muscles of the abdomen being forcibly con- tracted, and from the fenfe of suffocation which feems to threaten the patient with immediate death, Dr Vaughan has been led to think that in the hydrophobia a new sympathy was eftablifhed between the fauces, the diaphragm, and the abdominal muscles.

Prognofis. When a perfon is bit, the prognojis with regard to the ensuing hydrophobia is very uncertain. All thofe who are bit do not fall into the difeafe; nay, Dr Vaughan relates that out of go bit by a mad dog, only one was feized with the hydrophobia. During the interval betwixt the bite and the time the difeafe comes on, there are no symptoms by which we can judge whether it will appear or not. When once it hath made its appearance, the prognojis is exceedingly fatal.

Prevention and Cure. It has been generally allowed by practitioners, that though the hydrophobia may be prevented, yet it can feldom if ever be cured after it has made its appearance. The moft effential part of the treatment therefore depends on the proper use of means of prevention. The great objects to be aimed at in prevention, are, in the firft place, the complete removal of the contagious matter as foon as po- fible; or, secondly, means of destroying it at the part, where there is even the lighteft reafon to believe that it has not been completely removed. Of all the means of removal, the complete cutting out the part to which the tooth has been applied, is unquestionably the moft to be depended upon. This practice, therefore, should be had recourse to as fon as poifible. The sooner it can be accomplished, the better. But as it has been obferved, that a peculiar fenfation at the part aff- fected always precedes the accession of the difeafe, even when it takes place at a late period after the bite, there is good ground for believing that removal of the part may be of advantage even after a coniderable interval. But besides removal of the contagious matter, by cutting away the part to which it is attached, this fhould alfo be done by careful and long continued washing. This may be done, in moft infances, be- fore a proper opportunity can be had of having recourse to the knife. Cold water should particularly be poured upon the wound from a coniderable height, that the matter may be washed away with fome force. Even after removal by the knife, careful washing is still a neceffary and proper precaution. And after both thofe, to prevent as far as can be, the poifibility of any contagious matter lurking about the wounded part, it fhould not be allowed to heal, but a fufficient amount of matter fhould be supported for the fpace of feveral weeks, by ointment with cantharides, or fimilar applications. By thofe means there is at leaft the beft chance of removing the matter at a sufficiently early period. And this mode of prevention feems to be of more confequence than all others put together which have hitherto been difcovered. But besides removal, prevention may alfo be obtained by the deftitution of the contagious matter at the part; and where there is the leaft reafon to think that a complete removal has not been obtained, thofe fhould always be had recourse to. With this intention the actual cauterity and burning with gun-powder have been employed. And the action of fire is probably one of the moft powerful agents that can be ufed for this purpofe. But recourse has alfo been had to washing both with acids and with alkalies. Of the former kind, vinegar has been chiefiy ufed, but more may probably be expected from the latter; and particularly from the caufic alkali, fo far diluted that it can be applied with safety: for from its influence as a folvent of animal mucus, it gives a better chance of a complete removal of the matter, independent of any influence in changing its nature. It has been thought alfo, that oil applied to the part may be of fervice. But if recourse be had to it, more adive meafures fhould at leaft be previously employed; and even then, fome are of opinion that it is of ad- vantage to increafe the activity of the unctuous matter by combining it with mercury.

On thofe grounds, and by thofe means, we are in- clined to think that the action of this contagion on the fystem, after it has been applied by the bite of a rabid animal, may be moft effeclually prevented. But after this action has once taken place, no remedy has yet been difcovered on which much dependence can be put. A very great variety of articles indeed have at different periods been held forth as infallible, both in the prevention and cure of this affecfion; but their reputation has, perhaps, universally been founded on their being given to people, who, though really...
Practice.

MEDICINE. 277

bit by a mad dog, were yet not infected with the contagion. And this happily, either from the tooth being cleaned in making the bite, or not being covered with contagious matter, is by no means an unfrequent occurrence. Mankind, however, even from the earliest ages, have never been without some bailed specific, which has been held forth as an infallible remedy for this affection till fatal experience demonstrated the contrary. Dr Boerhaave has given a pretty full catalogue of those specifics from the days of Galen to his own time; and concludes, that no dependence is to be put in any of them. It is now, therefore, altogether unnecessary to take notice of burnt crabs, the hyana's skin, morihdrate with tin, liver of the rabid animal, or a variety of other pretended remedies for this disease, proved by experience to be totally inefficacious. But although no greater confidence is perhaps to be put on specifics of modern date, it will be proper that these should be mentioned in the annals of the art.

Bathing in cold water, especially in the sea, and drinking sea-water for a certain time, have been prescribed, and by some accounted a certain preventive. It should be put in any of them. It was prescribed, and by some accounted a certain preventive. It should be put in any of them. It was prescribed, and by some accounted a certain preventive. It should be put in any of them.

When this was known to fail, a long course of antiphlogistic regimen, violent submersion in water, even to danger of drowning, and keeping the wounded place open with cauteries, were recommended. To this regimen, violent submersion in water, even to danger of drowning, and keeping the wounded place open with cauteries, were recommended. To this regimen, violent submersion in water, even to danger of drowning, and keeping the wounded place open with cauteries, were recommended.

Another celebrated remedy is Palmarius's powder, composed of the leaves of rue, vervain, farge, polygypdy, wormwood, mint, mugwort, balm, betony, St John's-wort, and fefter centuary. These herbs must be gathered in their prime, dried separately in the shade, and then powdered. The dose is a drachm, or a drachm and an half, taken every day.

A remedy which might promise to be more efficacious than any of those hitherto mentioned is mercury. This hath been recommended in frictions, and to be taken inwardly in the form of calomel and turpentine, in order if possible to raise a flight faliation, on which the efficacy was thought to depend. Besides this, veneficton, opium, the bark, and camphor, have been tried in very large quantities; the warm bath; and, in short, every thing which human invention could suggest; but with what success, can best be judged from the following well authenticated Hydrophobia cases.

In the beginning of December 1728, a young gentleman, aged 17, was bit by a dog in the middle-finger of the right-hand about the middle of the nail. In the beginning of January 1729, he complained of pain in that finger reaching along the back of the hand to the elbow. In the night between the sixth and seventh days of that month he became hot and restless: emollient and anodyne fomentations were applied; but the pain became very sharp, and the hydrophobia came on in the night-time. He was blooded; but became worse every hour, and at last quite furious and outrageous. The bandage was thrown off from his arm, and he loosit about 20 ounces of blood besides what had formerly been taken from him. This, however, made no abatement of the symptoms, and he died the same night.

In 1733, a woman, feizd with the hydrophobia in consequence of the bite of a dog supposed to be mad, was treated in the following manner by Dr Nugent. First she was blooded to about 15 ounces; she took 16 grains of muk in powder, and alonit with it a pill of two grains of pure opium, every three hours. A platter of galbanum, with half an ounce of pure opium, was laid to her neck and throat. She began to take these medicines on a Saturday morning, an hour or two after the dread of water had commenced. In the evening she was a little easier at intervals. The muk and opium pill were continued as before, and the hand that was bit was ordered to be chased with warm salad oil several times a day. Only two papers of powder and two pills were taken in the night; for the laft made her feel and vomit. She had little or no sleep, but lay pretty quiet. On Sunday, 20 ounces of blood were taken away, and a clyster with antimonial wine injected: the pills and powders were continued as before. On Sunday morning she could swallow liquids a little better, and the lay quiet all night. On Monday her swallowing was greatly better. The muk and opium were continued, and twelve ounces more of blood were taken from her; the platter was renewed with only two drachms of opium, and the oil was used as before. At night she was better; her hand eafy; and by a continuance of these remedies she recovered.—This was the cafe which chiefly brought opium into reputation.

The following cases published by M. Deffault, a Frenchman, first brought mercury into reputation.—Four men were bitten by the same wolf, on the same day, at the same hour. They were dipped in salt-water, and came back persuaded that they had nothing to fear. Some days after, one of them felt a numbed pain about his fears, while the fears themselves grew hard and rofe like an embroidery: he was soon after feized with the usual symptoms, as was also another. The father of the former likewise began to feel a pain about the cicatrices, and a swelling with hardnes, as did also the fourth. They were ordered to rub a drachm and a half of the mercurial or blue ointment upon the cicatrices and about the whole arm. This was repeated three days successively, and then every other day: after the fifth friction, he allowed an interval of two days.

Besides this, they took every day: a drachm and a half of Palmarius's powder. After the third friction the cicatrices grew flat and soft, the pain
went off, their courage returned, and their mind resumed its former tranquillity.

But how far mercury, or indeed any thing else, is from being a specific in the hydrophobia, will appear from the following account of Dr Wolf's patients.

In the middle of April 1767, seventeen people, and a great number of cattle were bitten in the neighbourhood of Warsaw by a mad wolf. One of these, an officer, was brought into the city that same day, and had the best advice of the surgeons and physicians in that place; besides which, he took the barks very copiously with camphor. He continued well till the seventh week, when he became hydrophobous, and died.

Eleven of the others applied to Dr Wolf on the ninth day. Their wounds were all deeply scarified; diligently washed and fomented with vinegar, salt, and theriac; and kept open till the 80th day, in those who lived so long. Every two weeks they were blooded largely, and were purged every week with fauls and jalap. Their diet was mostly vegetable, and their drink whey and water. They all eat as much as could be got of the herbs materfiosus and anagallis flora funice; and they all took often the pulvis Palmari. The muticus cineusus terrestris could not be got, or it would also have been prescribed. Besides the general treatment, two were rubbed daily with a drachm of mercurial ointment, and had their purges with calomel. Two took every day four ounces of vinegar, three drachms mixture of poppies, and half an ounce of rob sambuci every night. One took every day 16 grains of camphor, with four scruples of salt-petre, and at night half an ounce of rob sambuci.

Two took 24 grains of musk, with 50 grains of cinchabar. Other two took from 40 to 60 drops of spirit of sal ammoniac, prepared with quicklime, and the milk took a scruple of crystallized salt of tartar made by the mixture of a little spirit of sal ammoniac with a solution of that salt.

One of the first who used the mercurial ointment was feized with the hydrophobia on the 23rd day, immediately after being well purged with calomel. He was blooded copiously, plunged abundantly in cold water, and had several clisters administered, without effect. Two pounds of oil, and as much of drink, were poured down by force; also a drachm of salt of tartar and half a drachm of musk were given in three doses. He then began to drink freely, but died the third day. His companion then left off the use of mercury, and took 80 drops a day of Dippel's animal oil, till he had taken six drachms of it; after which he went on with 100 drops daily of spirit of sal ammoniac made with alkali.

One of those who took the vinegar fell sick the 3rd day. He was immediately blooded, and vomited with speciaevanha. This man was too strong to make experiments on by force; he refused every thing, and died the third day. His companion, on old man, began to be feized in the same manner: he was purged with fauls, took the morulae balami Percuviani, and drank lemonade. He recovered, and used afterwards 100 drops of spirit of sal ammoniac daily. This was the patient formerly mentioned, whose blood had the fetid smell.

The man who used the camphor fell sick the 33rd day. He was thrice copiously blooded, was plunged forcibly into the coldest water for the space of two hours, and was nearly drowned. He was elythered with effect. He himself forced down with incredible aversion and labour, a great quantity of drink; by which he vomited more than 50 times abundance of frothy flume. He took several ounces of oil, and several boluses of salt and opium, of each four grains, without effect; and died the fourth day.

A girl who used the musk with cinchabar, fell ill the 62d day, and died the third day after. No further attempt was made to save her life, the being then at a distance. Her companion, a pregnant woman, then left off the musk, and took in its stead spirit of sal ammoniac.

A woman who had taken nothing fell ill on the 40th day. She suffered terribly in the night, but left in the day time. Besides the usual symptoms, she had great pain and swelling in her belly. In the space of two days she drank about two bottles of brandy, but would taste no other liquor. The Doctor ordered her to mix an equal quantity of oil with her brandy, and to take every day two boluses of salt and opium.—She recovered: and at half took two doses of turbish-mineral, by which she was vomited and purged.

After the 80th day, all the surviving people took thrice the turbish-mineral, except the pregnant woman; and they afterwards continued their alkaline medicines to the 100th day.

On these cases Dr Wolf makes the following observations.—"Thus we see, that the bark, the mercury, the acids, the musk, the feeding on the most famous herbs, the sweating, the cura antiphlogistica, are no specifics. I don't know what to say to the alkalies: the danger is not yet over; and there are still four people who used nothing, in as good health as my patients."

The following case by Dr Raymond of Marseille: shows the inefficacy of mercury even as a preventive.

—On the 10th of July 1765, Mr Boyer, aged 25, of a bloated cachectic habit, was bit by a mad dog in the inferior part of the leg: the wound extended half way round, bled freely, and was like a great frcatch. The patient's legs had been swelled for a considerable time before the accident; and there were also two ulcers in the other leg. Some hours after the accident, the actual cautery was applied to the wound. The Doctor was not present at this operation; but the part around the bite was rubbed with mercurial ointment immediately after, and the echar was drenched with the same ointment. The echar was separated on the first day, but the dressing was continued till the wound was cicatrized. The second day a bolus of four grains of turbish and eight grains of camphor was exhibited. This procured a considerable evacuation both by vomit and stool, and a spitting also came on. The third day the bitten leg was rubbed with mercurial ointment: in the space of a month the frictions were repeated five times on both legs, three drachms of mercurial ointment being used in each friction. During the same time the bolus was five times repeated; and this treatment kept up a slight salivation to the 40th day. The evening of the third day he took the Tanquin medicus; called also Sir George Cobb's powder, in a bolus; which vomited him briskly. This powder was repeated seven or eight times in the month, generally with the same effect. During the first seven or eight days he got four times,
ME D I C I N E.

Practice.

In the morning, a drachm of the angallia flore punico, freshly gathered and powdered. The 41st day, the turbith bolus was prescribed for the seventeenth time; he was bathed in the sea, and continued the bathing for two days more. On the 74th he was feized with the diarrhœa; and died on the 76th seemingly suffocated. About the middle of April the temperature of his body was still high. About the middle of the month he was bit by a mad dog, with mercurial f İstanbul; applying them as in the case of Mrs. Vaughan, he began to complain of a pain in the liver, which ascended the arm, and affected the temple on the same side. He was put into the warm bath for three hours, and had a feverish return. This was healed by the use of the same medicine. It was put in several times during the night; he had a feverish return, and took medicines every five minutes. He was then taken out again, and the same medicine was put in. He had a feverish return, and this was healed by the use of the same medicine.

Another instance is mentioned by the same author, of a pregnant woman bit by the same dog, and on the same day with Mr. Boyer, who was never seized with feverish return. About the middle of April, drops of laudanum, HC1, were put in, two pills of a grain of salt each, during which time he was feverish. About the middle of the day before Dr. Vaughan saw him, he began to complain of a pain in the part bitten, which ascended the arm, and affected the temple on the same side. He was put into the warm bath for three hours; and during which time he was feverish; he had a feverish return, and this was healed by the use of the same medicine.

In the following case all the foregoing remedies were tried. — In the afternoon of the 29th of Aug. 1778, Mr. Bellamy of Holborn, aged 40, was bit by a cat, which was killed by a cat, and from an apothecary. A servant maid who was bitten in the leg before her master was bitten, likewise took the same remedy. About the middle of April Mr. Bellamy complained of a pain in his right knee, which he supposed to be rheumatic, and which continued and increased till the 7th of June, when he got some pills of colchicum, ipecacuanha, and pil. sapon. from an apothecary, which hussam's time of the bark in small doses. In six days more he had a termination in the urethra, a contraction of the ferotum and penis to a degree of pain, and an emfion of semen after making water, to which he had frequent calls. The medicines were discontinued; and on the 10th of that month the hydrophobia came on, and Dr. Fothergill was called. Six ounces of blood were taken from his arm, and a bolus of a ferrule of native cinchona and half a ferrule of musk was given every four hours. The temperature increased through the day. In the evening a clyster was injected, and several times repeated during the night; he had been put into the warm bath, and two drachms of strong mercurial ointment rubbed into his legs and thighs by himself.
himself. He was greatly relieved by the warm bath while he continued in it, but the symptoms returned with increased violence in the night. The next day, being greatly worse, he was bled to as great a quantity as he could bear, had the warm bath and Clysters repeated, and half an ounce of mercurial ointment rubbed into his thighs and legs. Pills of opium were prescribed, but he did not take them. He died the same night, at half an hour after 12. This patient was a man of great resolution, and could in part conquer his aversion at water. He seemed to have totally forgot the accident of the bite; and cautiously said, that he thought this disorder resembled the hydrophobia, without supposing that he was afflicted with that distemper at the time. The bite on the girl’s leg refused to heal, buffled the art of a young surgeon who attempted to cure it, and continued a running ulcure for a long time. She did not fall into the hydrophobia. Hence Dr Fothergill thinks it probable, that plaster of Paris was kept for a long time. In the course of a month, without any further trouble, the wound was healed, excepting a small portion, which operated, when he first felt a pain in that hand and arm; for which he bathed in a river that evening, supposing that it had been a rheumatic complaint. The next day he was sick; and in the evening was seized with a violent vomiting, which continued all that night and till the middle of the next day, when it was succeeded by the hydrophobia. He was treated with the warm bath; had a purgative Clyster injected; and as far as it had operated, a second was given, consisting of four ounces of oil, and half an ounce of laudanum: half an ounce of strong mercurial ointment was rubbed upon the fauces, and the part was afterwards covered with the cataplasma & cymino, to which was added an ounce of opium. An embrocation was applied to the region of the stomach with continued friction, consisting of half an ounce of spirit of sal ammoniac, ten drachms olive oil, six drachms of oil of amber, and ten drachms of laudanum. Two ounces of strong mercurial ointment were rubbed upon the shoulders and back; and as a further means of kindling a pykæmia speedily, he received the smoke of cinnabar into the mouth by throwing a drachm of that substance now and then upon a hot iron; he was also directed to take every four hours a bolus of 15 grains of muk, three grains of turbit, and four grains of opium. He was easier while in the warm bath, and during the application of the ointment; but died the same night about two o’clock.

Many other instances might be adduced of the inefficacy of this pretended specific: the danger of acquiescing in which, will, it is hoped, create a due degree of caution in those to whom they are so unfortunate as to be bit by a mad animal may commit themselves. Another remedy may also be mentioned as having had the reputation of being sometimes successful in this disease; which is chiefly employed in different parts of India, particularly in the territory of Tanjore. The medicine to which we now allude contains indeed several articles which are altogether unknown in our materia medica: but it contains at least once very powerful substanee well known to us, viz. arfencic. This medicine, known by the name of the Snake Pills, as being principally employed against the bite of the most venomous snakes, is directed to be prepared in the following manner:

Take white arfencic, of the roots of neili navi, of nevi vilham, of the kernels of the ner valum, of pepper, of quicksilver, each an equal quantity. The quicksilver is to be rubbed with the juice of the wild cotton till the globules are perfectly extinguished. The
The atonic being first levigated, the other ingredients, reduced to a powder, are then to be added, and the whole beat together with the juice of the wild cotton to a consistence fit to be divided into pills.

Though these pills are principally used against the bite of the cobra de capello, yet they are said also to be successful in the cure of other venomous bites; and, for the prevention of rabies canina, one is taken every morning for some length of time. Of this remedy European practitioners have, we believe, as yet no experience; and if, in the accounts transmitted by Earl India practitioners, it cannot be said that we have: authentic evidence of its want of success, it can as little be pretended that there is indubitable evidence of its efficacy in any instances; and it is by no means improbable, that it will be found equally inefficient with others at one time considered as infallible.

Of the great variety of remedies which have had their day of reputation, there is not one which has not poached the credit, some time or other, of preventing the noxious effects arising from the bite of a mad dog. A more adequate experience has with all of them disconcerted the deception. It was above observed, that the hydrophobia is by no means the infallible consequence of being bit by a mad animal; and that of between 20 and 30 persons who were bit by the dog which gave the fatal wound to one of Dr. Vaughan's patients, not one felt the least ill effect but himself. In the above number (says the Doctor) were some who took the Ormus Kirk Medicine; others went to the salt-water; and a part of them used no remedy, who yet fared equally well with the most attentive to their injury. The same thing has often happened before; and much merit, I doubt not, has been attributed to the medicine taken, from that celebrated one of Sir George Cobb down to the infallible one which my good Lady Bountiful's receipt book furnishes.

From all that has been said, the reader will judge how far the hydrophobia is capable of being subdued by any of the medicinal powers which have yet been tried. Some eminent physicians assert, that it is totally incurable; and allege that the instances recorded by different authors of its cure have not been the genuine kind, but that which comes on spontaneously, and which is by no means so dangerous. Indeed two of Dr. Wolf's patients recovered, where the disease seems to have been perfectly genuine; but in these the poison seemed to vent itself partly on some other place besides the nervous system. In one the blood was evidently infected, as it had an abominable fetor, and the other had a violent pain and swelling in the belly. In all the others, it seemed to have attacked only the nervous system; which perhaps has not the same ability to throw off any offending matter as the vascular system.

There is, however, a possibility that the prodigious affections of the nerves may arise only from a vitiated state of the galenic juices; for it is well known, that the most terrible convulsions, nay the hydrophobia itself, will arise from an affection of the stomach, without any bite of a mad animal. This seems to be somewhat confirmed from one of Dr. Wolf's patients, who, though he vomited more than 50 times, yet still threw up a frothy matter, which therefore was evidently secreted into the stomach, just as a continual vomiting, of bilious matter flows a continual and extraordinary secretion of bile. Dr. Wolf himself adopts this hypothesis so far as to say, that perhaps the februm may become frothy; but in blood drawn from a vein not the least fault appears either in the fever or emunctum. He affirms, however, that the dogmum appears to be one of the parts first and principally affected; and as it is not informed, it would seem that the affection it sustains must arise from the vitiated state of its juices.

Be this as it will, however, in the hydrophobia, the stomach seems totally, or in a great measure, to lose the power which at other times it possessed. Two grains of *cuprum ammoniacatum* were repeatedly given to a child of eight years of age without effect; but this dose would occasion violent vomiting in a strong healthy man. Something or other therefore must have prevented this substance from acting on the nervous coat of the stomach; and this we can only suppose to have been the exceedingly disordered state of the galenic juice, which occasioned such violent irritation through the whole body that the weaker stimulus of the medicine was entirely lost. It would seem proper therefore to consider the stomach in hydrophobic cases as really containing a poisonous matter, which could not be expelled by vomiting, because it is renewed as fast as evacuated. The indication therefore must be, to change its nature by such medicines as are certainly more powerful than the poison; and this indication will naturally lead us to think of large doses of alkaline反思. These, it is certain, will destroy any animal-substance with which they come in contact, and render even the poison of serpents inactive. By exhibiting a few doses of them, larger no doubt than what could be safely done on other occasions, we would be certain to change the state of the stomachic juices; and thus might free the patient from those intolerable spasm which always occasion death in such a short time. Dr. Wolf seems inclined to think that volatile alkalies were of service; but the above hypothesis would incline us to use rather the fixed kind. At any rate, it seems vain for physicians to trust much to the power of opium, mercury, musk, or cinnabar, either singly or combined in any possible way. The bark has also failed, and the most celebrated specifics have been found inefficient. Alkalies are the next most powerful remedies which the materia medica affords and they cannot be more unsuccessful than the others have generally been.

Another remedy which seems adapted to change the nature of the galenic juices is ardent spirits. In one of Dr. Wolf's patients two bottles of brandy seem to have effected a cure. The oil mixed with it was of no efficacy in other cases, and the opium and turpith seem not to have been exhibited till the worst was past. In this case the disease seems to have attacked the vascular as well as the nervous system.

In all the patients the warm bath seems to have been a palliative, and a very powerful one, and as such it ought never to be omitted, though we can by no means trust it to it as a radical cure; and the above histories abundantly show, that though the warm bath and opium may palliate for a short time, the caufe
MEDICINE.

The symptoms depend on and increasing, till at last the symptoms become too strong to be palliated even for a moment by any medicine however powerful. At any rate, the abovementioned hypothesis suggests a new indication, which, if attended to, may perhaps lead to useful discoveries. In cases where putrefactive bile is abundantly secreted, colocynth root and vegetable acids are recommended to change the nature of the poison which the body is perpetually producing in itself. Where corrosive mercury has been swallowed, alkaline salt is recommended to destroy the poison which nature cannot expel by vomiting; and why should not something be attempted to destroy the poison which the stomach seems to fecrete in the hydrophobia, and which nature attempts to expel, though in vain, by violent efforts to vomit? But whatever plan may be pursued in the hopes of curing this dreadful malady after any of the symptoms have made their appearance, we ought in every instance of the accident that gives rise to it, to direct our immediate care to prevention, as being perhaps the only real ground of hope. And the most certain and efficacious way of preventing the ill consequences, is instantly (if it may be done) to cut out the piece in the place that happens to be bitten. Dr James, indeed, says, that he would have little opinion of cutting or cauterizing, if ten minutes were suffered to elapse from the receiving of the bite before the operation was performed. But in an inaugural dissertation lately published at Edinburgh by Dr Parry, the author is of opinion that excision will be of use a considerable time after the bite is received. He adopts this opinion from what happens in the small-pox, where the blood does not seem to receive the infection till some days after inoculation has been performed. A second inflammation, he tells us, then takes place, and the days after inoculation has been performed. A second inflammation which does all the mischief. Excision, or the cautery, will therefore be of service, especially as it readily yielded to venefaction, 30 drops of laudanum, and pills of a grain and a half of opium given every three hours, some bolus of musk and cinnabar, &c. while in some of the former cases as much opium was given to a boy as would have deprived of life the ilighest healthy man had he swallowed it; and yet this amazing quantity produced no effect. This patient also dreaded the sight of a dog.

ORDER IV. VESANIAE

Parenoia, Sauv. Clas IX.
Deliria, Sauv. Clas VIII. Ord. III. Sag. Clas XI. Ord. III.
Ideales, Lin. Clas V. Ord. I.

GENUS LXV. AMENTIA.

Folly, or Idiotism.

Morosis, Lin. 106.
Stupiditas, Morosis, Fatuitas, Vog. 336.
Memoria debilitas, Junct. 120.

GENUS LXVI. MELANCHOLIA.

MELANCHOLY MADNESS.

Demenstomania, Sauv. gen. 235. Sag. 348.
Demenstia, Lin. 69.
Vefania, Lin. 70.
Paraphobia, Lin. 75.
Athymia, Vog. 329.
Delirium melancholicum, Hoffm. III. 251.
Erotomania, Lin. 82.
Junct. 125.
Melancholia nervosa, Cl. Lorre de melancolia, P. I.

GENUS LXVII. MANIA.
Raving or Furious Madnese.

Paraphroyns, Lin. 66.
Amentia, Lin. 67.
Delirium maniacum, Hoffm. III. 251.

Although these distempers may be considered as difficult genera, yet they are so nearly allied, and so readily change into each other, that it sufficiently justifies the treating all of them together.

The distinguishing characteristic of madness, according to Dr Battie, is a false perception; and under this general character may be comprehended all kinds of what is called madness, from the most silly stupidity and idiocy to the most furious lunacy. Frequently the different kinds of madness are changed into each other by the casual excitement of some passion; thus, an idiot may become furiously mad, by being put in a violent passion; though this does not so often happen as the change of melancholy into the raving madness, and vice versa.

It is a very surprising circumstance, that mad people are not only less liable to be seized with infectious disease than those who are in perfect health; but even when labouring under other diseases, if the patient chance to be seized with madness, they are sometimes freed from their former complaints. Of this kind Dr Mead relates two very remarkable instances.

On the other hand, it has been known, that an intermitting fever, supervening madness of long standing, has proved a cure for the madness; the fries having returned when the fever terminated. Dr Monro saw two instances of this himself; and mentions it as an observation of his predecessor in the care of Bethlem hospital.

Another remarkable circumstance is, that immoderate joy, long continued, as effectually disorders the mind as anxiety and grief. For it was observable in the famous South-Sea year, when so many immense fortunes were suddenly gained, and as suddenly lost, that more people had their heads turned, from the prodigious flow of unexpected riches, than from the entire loss of their whole subsistence.

Mad people, especially of the melancholic kind, sometimes obliquely pervert in doing things which must excite great pleasure; wherein it should seem as if their minds were troubled with some disturbing notions, which make them patiently bear the present distresses, lest more severe tortures should follow; or possibly they may think, that, by thus tormenting the body, they render themselves more acceptable to the divine Being, and expiate the heinous sins of which they may imagine themselves to have been guilty.

It is, however, also highly probable, that their feelings differ exceedingly from what they are in a natural state; at least they are every day observed to endure apparently without the smallest uneasiness, watching, hunger, and cold, to an extent which in a state of health would not only be highly distressing, but to the greater part of individuals would even prove fatal. And this resistance of hunger, cold, and sleep, affords perhaps the best test for distinguishing cases of real insanity, from cases where the disease is only feigned, and appearances of it put on, to answer particular purposes; at least where this power of resistance is present, we have good reason to conclude that the affection is not feigned.

Cure. Although we are well acquainted with many of the remote causes of this disease, some of the principal of which have already been mentioned, yet we are still ignorant of the influence of these upon the system, as giving a derangement of the mental faculties, that no general principles on which the cure may be conducted, can with any confidence be pointed out.

It may, however, be observed, that while some remedies seem to operate by producing an artificial termination of this complaint, many others have effect only by aiding a natural termination. And where a recovery from this disease does take place, it most frequently happens in consequence of a natural convalescence. All the species and degrees of madness which are hereditary, or that grow up with people from their early youth, are out of the power of physic; and so, for the most part, are all maniacal cases of more than one year's standing, let them arise from what source soever. Very often mere debility, the dregs of some particular disease, such as an ague, the small-pox, or a nervous fever, shall occasion different degrees of foolishness or madness. In these cases, the cure must not be attempted by evacuations; but, on the contrary, by nourishing diet, clear air, moderate exercise, and the use of wine; whereas, in almost all the other maniacal cases, which arise from different causes, and which come on in consequence of intertemporal living, violent passions, or intense thinking, it is generally held, that evacuations of every kind are necessary, unless the constitution of the patient be such as absolutely forbids them.

Blood is most conveniently drawn either from the arm or jugulars; and if the weaknes be such as renders it improper to take away much blood, we may apply cupping-glasses to the occiput.

Vomiting, in weakly people, must be excited by the vinous ipecacuanha; but in the more robust by emetic tartar or antimonial wine: the most efficacious cathartics are the infusion or tincture of black hellebore, or infusion of fena quickened with tincture of jalap; but if there be suppression of the menses, or hemorrhoidal discharge, then aloe purges will be more proper; and in some instances cooling saline purgatives, such as liquified tartar, are of great service. In general, mad people require very large doses, both of the emetics and cathartics, before any considerable operation ensues.

Dr Monro affirms us, that the evacuation by vomiting is infinitely preferable to any other: the prodigious quantity of phlegm with which the patients in this disease abound, he says, is not to be got the better of but by repeated emetics; and he observes, that the purges have not their right effect, or do not operate to so good purpose, until the phlegm be broken
and attenuated by frequent emetics. He mentions the
case of a gentleman who had laboured under a melan-
choly for three years, from which he was relieved en-
tirely by the use of vomits and a proper regimen.
Increasing the discharge by urine, is also of the greatest
moment, especially when any degree of fever is pre-
sent. The cutaneous discharges are also to be pro-
moted; for which purpose the hot bath is of the highest
service in maniacal cases. Hoffman afferts, that he
has seen numerous instances, both of inveterate melan-
choly and raging madness, happily cured by means of
warm bathing; bleeding and nitrous medicines having
been premised. Camphor has also been highly com-
mended; but, if we can believe Dr Locker of Vienna,
not very defervedly. Having found very good effects
from a solution of this medicine in vinegar, he took it
for granted that all the success was owing to the
camphor; therefore, in order to give it a fair trial, he
collected seven patients, and gave it in large doses of half
a drachm twice a day. This was continued for two
months, and the doctor was surprized to find that
only one of his patients received any benefit. He then
returned the other six back to the camphorated julep
made with vinegar, and in a few weeks four of them
recovered the use of their reafon. This inclined him
to think that the virtue depended solely on the vine-
gar, and accordingly he began to make the trial.
Common vinegar was first given; but after a little while
he fixed on that which had been distilled, and gave
about an ounce and half of it every day; the patients
having been previously prepared by bleeding and pur-
ging, which was repeated according as it was found
necessary. He gives a lift of eight patients who were
cured by this method; some in six weeks, others in
two months, and none of them took up more than
three months in perfecting the cure. He does not in-
deed give the ages of the patients, nor mention the cir-
cumstances of the case; he only mentions the day on
which the use of the vinegar was begun and the day
on which they were discharged; and he adds, that
they all continued well at the time of his writing.

Dr Locker informs us, that this medicine acts
chiefly as a sudorific; and he observed, that the more
the patients sweated, the sooner they were cured: it
has by many been found to prove a cure,
the patients sweated, the sooner they were cured: it
has by many been found to prove a cure,
having been previously prepared by bleeding and
purging, which was repeated according as it was found
necessary. He gives a list of eight patients who were
cured by this method; some in six weeks, others in
two months, and none of them took up more than
three months in perfecting the cure. He does not in-
deed give the ages of the patients, nor mention the cir-
cumstances of the case; he only mentions the day on
which the use of the vinegar was begun and the day
on which they were discharged; and he adds, that
they all continued well at the time of his writing.

His operation consists of tying the sleeve-strings round the waist, he has no
use of his hands. A broad strap of girdle-web is then
carried across the breast, and fastened to the bedhead,
by which means the patient is confined on his back;
and if he should be so outrageous as to require further
refrain, the legs are secured by ligatures to the foot
of the bed; or they may be secured by being both
put into one bag not very wide, which may be more
easily fixed than the feet themselves, at least without
giving pain.

It is of great ufe in practice to bear in mind, that
all mad people are cowardly, and can be awed even by
the menacing look of a very expressive countenance;
and when those who have charge of them once impre
t them with the notion of fear, they easily submit to any
thing that is required. The physician, however,
should never deceive them in any thing, but more ef-
sically with regard to their dilhomer; for as they are
more particularly conscious of it themselves, they acquire a
kind of reverence for those who know it; and by
letting them fee that he is thoroughly acquainted with
their complaint, he may very often gain such an ad-
cendant over them that they will readily follow his di-
rections.

It is a more difficult matter to manage those whole
madness is accompanied either with excessive joy or
with great dejection and despondency, than those
who are agitated with rage: and all that can be done
is to endeavour to excite contrary ideas, by repressing
the immoderate fits of laughter in the one kind by chi-
ding or threatening (taking care, however, not
absolutely to terrify them, which can never be done without
danger, and has often added to the misery of the un-
happy sufferer); and dispelling the gloomy thoughts in
the other, by introducing pleasing concerts of muffic,
or any other species of entertainment which the pa-
tients have been known to delight in while they had the
use of their reason.

Though blistering the head has generally been
directed, Dr Mead says he has oftener found it to do
harm than service: but he recommends jiftus in the
back; and advises to keep the head always close
flaved, and to wash it from time to time with warm
vaguer. Opium has by many been forbidden in ma-
iacal cases, as supposing that it always increafes the
disturbance; but there are instances where large doses
of this medicine have been found to prove a cure,
and perhaps if they were tried oftener we should find
powerful effects from it: there certainly cannot much
harm enite from a few doses, which may be immedia-
tely diluted if they should be found to exasperate
the disease.

The diet of maniacal patients ought to be perfectly
light and thin: their meals should be moderate; but
they should never be suffered to live too low, especially
while they are under a course of phyfick: they should
be obliged to observe great regularity in their hours:
even their amusements should be such as are belt suited
to their disposition; and after the disease appears to
be subdued, chalybeate waters and the cold bath will
be highly proper to strengthen their whole frame and
secure them again a relapse.

The greatest uneasiness which people feel in sleep is that commonly called the incubus or night-mare. Those seized with it seem to have a weight on their breasts and about their preordial region. Sometimes they imagine they see spectres of various kinds which oppress or threaten them with suffocation. Neither does this uneasiness continue only while they are asleep; for it is some time after they awake before they can turn themselves in their beds or speak; nay, sometimes, though rarely, the incubus has proved mortal.—The incubus rarely seizes people except when the stomach is oppressed with aliment of hard digestion, and the patient lies on his back. It is to be cured by eating light suppers, and raising the head high; or, if it become very troublesome, anti-epileptic medicines are to be administered, and the body strengthened by chalybeates. The same method is to be followed by those who are subject to walking in their sleep; a practice which must necessarily be attended with the greatest danger; and somnambulism may justly be considered as merely a different modification of this disease. Accordingly Dr Cullen has distinguished the one by the title of oneirodynia activa, and the other by that of oneirodynia gravans.

Class III. Cachexiae.
Cacheria, *Sauv.* Cl. X. *Sag.* Cl. VIII. *Sag.* Cl. III.
Deformes, *Lin.* Cl. X.

Order I. Maciores.
Macies, *Sauv.* Cl. I. *Order I.* *Sag.* Cl. III. *Order I.
Emaciantes, *Lin.* Cl. X. *Order I.

Genus LXIX. Tabes.
Wasting of the Body.

This disorder is occasioned by the absorption of pus from some ulcer external or internal, which produces an hectic fever. The primary indication therefore must be to heal the ulcer, and thus take away the cause of the disease. If the ulcer cannot be healed, the patient will certainly die in an emaciated state. But the proper treatment of the tabes proceeding from this cause, falls to be considered under the head of *Ulcer in Surgery,* and likewise under the genera *Siphylis,* *Scrofula,* *Scorbustics,* &c. diseases in which ulcers are lead, a very common symptom.
constituent parts; or there is an uncommon tendency to the formation of oily matter. In these cases it is apt to accumulate in such quantities, that we may suppose it to burst those vessels which were originally designed to hinder it from spreading too far; or almost every cell of the membra adiposa, many of which are in ordinary cases altogether empty, may be completely filled with fat.

The increase of the omentum particularly, and the accumulation of fat about the kidneys and mesentery, swell the abdomen, and obstruct the motions of the diaphragm; whence one reason of the difficulty of breathing which is peculiar to corpulent people; while the heart, and the large vessels connected therewith, are in like manner so encumbered, that neither the systaltic nor sub systaltic motion can be performed with sufficient freedom, whence weakness and fowness of the pulse: but when the whole habit is in a manner overwhelmed with an oily fluid, the enlargement of the cellular interstices will necessarily interrupt the general distribution and circulation throughout the nervous and vascular systems; impeding the action of the muscular fibres, and producing insensibility, fomnolency, and death.

These cases are the more deplorable, as there is but little prospect of a cure. For the animal oil is of too gross a nature to be easily taken up by absorption; and we know, that when fluids are accumulated in the cellular system, there are only two ways in which they can be carried off or escape; namely, by the absorbents, which take their rise from the cellular interstices, and through the pores of the skin by transudation.

Another misfortune is, that the disease steals on so imperceptibly, that it becomes inextirpate before people begin to think of pursuing the proper means of relief.

In this disease the cure must turn upon two points: First, on preventing the farther deposition of fat, by avoiding the introduction of superfluous aliment, particularly of fatty matters, into the system; and, secondly, on promoting and forwarding the absorption of fat. On these grounds, besides what may be done by proper regimen, a variety of articles have been recommended in the way of medicine.

Soap has been proposed as a remedy to melt down and facilitate the absorption of the fat in corpulent people; and Dr Fleming some years ago published a little treatise, wherein he recommends this medicine, and relates the case of a gentleman who is said to have received considerable benefit from it. But perhaps the soap-leys would be more powerful, and might be more easily taken, heached, as directed when recommended as a diluent of the flone.

Lieutaud advises to take acutm fettiticum in small doses, with frequent purging and brisk exercise. But it will seldom happen that the patients will be found sufficiently steady to persif in any of these courses, it being the nature of the disorder to render them irrefolutive and inattentive to their condition. Therefore the principal use of rules must be with a view to prevention; and persons who are disposed to corpulency should take care in time to prevent it from becoming an absolute disease, by using a great deal of exercise, not indulging in sleep, and abridging their meals, especially that of supper. Salted meats are less fattening than Poultry, such as are fresh; and drinking freely of coffee is recommended to corpulent people.

But Dr Fothergill observes, that a strict adherence to vegetable diet reduces exuberant fat more certainly than any other means that he knows; and gives two cases wherein this regimen succeeded remarkably well. The famous Dr Cheyne brought himself down in this way, from a most unwholesome bulk to a reasonable degree of weight; as he himself informs us. It deferves, however, to be remarked, that every practice for the removal or prevention of fatness must be used with great caution and prudence: for not a few, anxious to prevent this affection, have had recourse to a regimen and to medicine which have proved fatal. This has particularly arisen from the excessive use of acids, probably operating by entirely destroying the action of the cholypoietic visera.

Genus LXXII. Pneumatosis.

Empyema, or Windy Swelling.

The emphysema sometimes comes on spontaneously; but more frequently is occasioned by wounds of the lungs, which giving vent to the air, that fluid inflates itself into the cellular texture, and often blows it up to a surprising degree. It must be observed, however, that it is only in cases of laceration of the lungs where this disease can take place; for in a simple wound, the effusion of blood always prevents the air from getting out. The cure is to be accomplished by scarifications and compresses; but in some cases only by the paracentesis of the thorax. When air introduced from the lungs is collected in a considerable quantity in the cavity of the thorax, the operation of the paracentesis is perhaps the only means of cure. Upon an opening being thus made, the air sometimes rushes out with incredible violence; and the patient receives at least immediate relief from circumstances the most distressing imaginable. In some instances it is followed even by a complete cure.

Genus LXXIII. Tympanites.

Tympany.

This is an inflation of the abdomen, and is of two kinds: 1. That in which the statys is contained in the intestines, in which the patient has frequent expulsions of wind, with a swelling of the belly frequently unequal. 2. When the statys is contained in the cavity of the abdomen; in which case the swelling is more equal, and the belly sounds when struck, without any considerable emission of statys. Of these two, however, the former disease is by much the most common; infomuch, that many, even extensively engaged in practice, have never met with an instance of true abdominal tympanites. In both cases the rest of the body falls away.
The typhany sometimes takes place in those who have been long troubled with flatulencies in the stomach and intestines. It happens frequently to women after abortion; to both sexes after the suppression of the haemorrhoids; and sometimes from tedious febrile disorders injudiciously treated.

Prognosis. This disease is generally very obstinate, and for the most part proves fatal by degenerating into an anæsthesia. Sometimes, if the patient be healthy and strong, the disease may terminate favourably, and that the more readily if it has followed from some disorder. A hectic consumption, dry cough, and emaciated countenance in a typhany, with a swelling of the feet, denote approaching death in a very short time.

Cura. With a view to the prevention of this affection, it is necessary, in the first place, to avoid, as far as can be done, causes giving rise to an uncommon extrication of air, by preserving the proper tone of the alimentary canal. After this affection has taken place, the indications are, first, to expel the air already extricated and confined in different cavities; and, secondly, to prevent further accumulation. On these grounds different remedies are employed. The cure, however, is principally attempted by carminative, reflexion, and stomachic medicines, gentle laxatives, and at lat tonics, especially chalybeates. In the Edinburgh Medical Essays, Vol. I. we have a very remarkable history of a typhany by Dr Monro senior. The patient was a young woman of 22 years of age, who fell into the diluter after having a tertian ague, in which she was badly treated. She became a patient in the Edinburgh Infirmary the 24th of March 1730; took several purgatives; and some doses of calomel; used the warm bath; and had an antiphyloric plaster applied over the whole belly, but with very little effect. She was monstrously distended, insomuch that the skin seemed to be in danger of bursting; her breathing was much strained; but the swelling sometimes gradually decreased without any evacuation. The returns and degree of this swelling were very uncertain; and when the belly was most distended, several unequal and protuberant balls could be felt over the whole abdomen, but especially at its sides. Her stomach was good, she had no thirst, and her urine was in proportion to the quantity she drank. She was very colicky, had her menses at irregular periods, but no edematous swellings appeared in the feet or any where else. In this situation she continued from the time of her admission till the 21st of June, during which interval she had only her menses twice. Throughout this space of time, the following circumstances were observed. 1. Several times, upon the falling of the swelling, she complained of a headache; once of pains throughout all her body, once of a giddiness, twice of a nausea and vomiting, and the last time threw up green bile; and once her stomach swelled greatly, whilst the rect of the abdomen subsided. 2. During the flowing of the menses she did not swell, but became very big upon their stopping. 3. Blood-letting and emetics, which were made use of for some accidental urgent symptoms, had no very sensible effect in making the typhany either better or worse. 4. She never had passage of wind either way except a little belching some days before the first monthly evacuation.

Some time before the last eruption of the menses, the purgatives were given more sparingly; and antiphylories of the strongest kinds, such as afafetida, oleum corn. cerv. &c. mixed with soap, were given in large doses, accompanied with the hotter anticorbutics as they are called, as horde-radishes and ginger-root infused in strong ale with steel. The patient was ordered to use frequent and strong frictionst to all the trunk of her body and extremities, and to use moderate exercise. Immediately before the menstruation began to flow, clysters of the same kind of medicines were injected. The menses were in sufficient quantity; but as soon as they ceased, her belly increased in its circumference four inches and a half, but soon subsided. She then complained of pains, which a gentle sweat carried off. Borborygmi were for the first time observed on the same day, June 25th; and having taken some tintura jaca at night, she passed a small quantity of blood by stool. This was the first appearance of the return of the haemorrhoids, to which she had been formerly subject.

The two following days her faponaceous, antiphyloric, and anticorbutic medicines being still continued, she had such explosions of wind upwards and downwards, that none of the other patients would remain in the same room, nay fear to come in with her. Her belly became lefs and softer than it had been from the first attack of the disease; her medicines, with a dose of syrup of buckthorn at proper intervals, still continued; only the proportion of steel was increased; her flatulent discharge went on successfully, and she gradually recovered her former health.

Genus LXXV. Physometra.

Physometra, Sauv. gen. 290. Sag. 119.
Hydraphyse, Vtg. 317.

The treatment of this is not different from that of the typhany. It is however, upon the whole, a very rare disease; and when it takes place, very seldom if ever admits of a cure.

Genus LXXV. Anasarca.

Waterny Swelling over the whole Body.

In this disease the feet first begin to swell, especially in the evening, after exercise, and when the patient has stood or lain long; which swelling-rises frequency to the thighs. By lying in bed, the swelling becomes less, or even almost disappears. In the progress of the disease, the swelling often rises to the hips, loins, and belly, and at last covers the whole body. This disease, besides the other symptoms afterwards mentioned under Ascites, is attended with a remarkable
Medicine.

In the cure of this, as well as other species of dropsy, the general intentions are, first, the evacuation of the water already effused either by natural or artificial outlets; and, secondly, the prevention of it from accumulation, which is chiefly to be expected from supporting a durance of the absorbents, and from keeping up a proper discharge by the secretory excretions.

The remedies employed with these intentions are much the same with what are employed against the more important genus of affections. Only it may be here noticed, that in anaemia it is usual to scatify the feet and legs. By this means the water is often discharged; but the operator must be cautious not to make the incision too deep; they ought barely to penetrate through the skin; and especial care must be taken, by spirituous fomentations and proper digestives to prevent a gangrene. Dr Fothergill observes, that the safest and most efficacious way of making these drains is by the instrument used for copping, called a cannifer; and he always orders it to be applied as to make the little wounds transversely; as they not only discharge better, but are also longer in healing, than when made longitudinally.

Notwithstanding every precaution, however, gangrene will often ensue; and it is upon the whole a much safer practice to evacuate the water by the natural outlets, the valvular lymphatic absorbents; and with this intention emetics and cathartics, but particularly diuretics, are often employed with success.

Genus LXXVII. HYDRORACHITIS. Spina bifida.

Spinola, Lin. 289.

Spina bifida, Vog. 386.

This disease, which consists in a soft tumor on the lumbar vertebrae, attended with a separation of the vertebrae themselves, though generally considered as approaching to the nature of rachitis, is commonly referred to the article Surgery, which may be consulted with regard to this affection.

Genus LXXVIII. HYDROTORAX. Dropsy of the breast.

This affection, particularly with respect to its causes, is in many circumstances similar to other kinds of dropsy, particularly to affections. But from the situation of the water which is here deposited in the cavity of the thorax, it may naturally be supposed that some peculiar symptoms will occur. Besides the common symptoms of dropsy, paleness of the countenance, icarity of urine, and the like, this disease is, in some instances, attended with a fluctuation of water within the breast, and when it does occur may be considered as a certain distinguishing mark of this affection. But besides this, it is also distinguished by the remarkable affections of circulation and respiration with which it is attended.

The breathing is peculiarly difficult, especially in a recumbent posture; and in many instances patients cannot breathe, with tolerable ease, unless when sitting erect, or even flopping somewhat forwards. The pulse is very irregular, and has often remarkable intermissions. But the disease has been thought to be principally characterized by a sudden starting from sleep, in consequence of an almost inexpressible uneasy sensation referred
referred to the breast, and attended with strong palpitation, which may probably arise from an affection either of circulation or of respiration.

That these symptoms are common attendants of this disease is undeniable; and they are certainly the best characteristics of this affection which we are yet acquainted: but it must be allowed that they are present in some cases where there is no water in the breast; and that in other instances where the disease exists, they are either altogether wanting, or occur only to a very slight degree. Certain diagnostics, therefore, of this disease full remain to be discovered.

When hydrothorax is present from the affection of the vital functions with which it is attended, it may readily be concluded that it is a dangerous disease, and in many instances it proves fatal. The cure, as far as it can be accomplished, is obtained very much on the same principle as in other dropies. Here, however, probably from the uncertainty of the diagnostics, the artificial abstraction of water, by paracentesis of the thorax, is less frequently had recourse to than in ascites; though in some instances, after other means have failed, it has been paid not only to give relief of symptoms highly urgent, particularly dyspnea, but even to produce a complete cure. Benefit is often obtained from an artificial discharge of water by the application of blisters to the breast; but in this, as well as other dropies, a discharge is chiefly effected by the natural outlets, particularly from the use of cathartics and diuretics. In this species of dropy, more perhaps than in any other, recourse has been had to the use of the digitalis purpurea, or fox-glove, so strongly recommended as a diuretic by Dr Withering in his "Treatise respecting the use of it. There can be no doubt that this article the sometimes producive of inconvenience from the disfrefling sickness and severe vomiting which it not unfrequently excites though used even in small doses, often operates as a powerful diuretic, and produces a complete evacuation of water, after other articles have failed. From the effects mentioned above, however, as well as from its influence on the pulse, which it renders much flower, it is necessary that it should be employed with great caution and in small doses. A dram of the dried leaves of the digitalis, macerated for hours in half a pint of warm water, forms an infusion which may be given in doses of an ounce, and the dried powder of the leaves in doses of one or two grains: these doses may be gradually increased, and repeated twice or oftener in the day: but this requires to be done with great caution, lest severe vomiting, or other disfrefling symptoms, should take place.

Genus LXXIX. ASCITES.

DROPSY OF THE ABDOMEN.

Description. This disease assumes three different forms: 1. When the water immediately washes the intestines. 2. When it is interposed between the abdominal muscles and peritoneum; or, 3. When it is contained in sacs and hollow vessels, in which case it is called the engorged dropsy. Some physicians of great reputation have asserted, that the water was often placed within the duplicature of the peritoneum: but this is alleged by Dr Milman to be a mistake, as that membrane is looked upon by the best anatomists to be sable; and he thinks that the abovementioned physi­cians have been led into this error from observing the water collected in the cellular substance of the peritoneum.

In the beginning of an ascites the patient becomes languid, breathless, and has an aversion at motion: his belly swells; and when bruised, the sound of fluctuating water is perceptible; there is a difficulty of breathing when the belly is pressed. There is an almost continual thirst, which in the progress of the disease becomes very urgent; the urine is thick, in small quantity, and red. The pulse is small and frequent; and as the body swells, the other parts whistle away. A fever at last arises, which, constantly increasing, in the end carries off the patient. These symptoms are most urgent where the waters are in immediate contact with the intestines; in the other kinds the rest of the body is left wasted; nor is there there for great thirst or difficulty of breathing.

Causes, &c. The immediate cause of dropsy is a greater effusion of serum by the exhalant arteries than the absorbents take up. This may be occasioned either by too great a quantity of liquid thrown out by the former, or by an inability of the latter to perform their office. This commonly happens in people whole bodies are of a weak and lax texture, and hence women are more subject to this malady than men; chlorotic girls especially are very apt to become dropical.

Sometimes, however, this disease is occasioned by a debility of the vital powers, by great evacuations of blood, or by acute diseases accidentally protracted beyond their usual period; and although this cause seems very different from a laxity of fibres, yet the dropsy seems to be produced in a similar manner by both. For the vital powers being debilitated by either of these causes, naturally bring on a certain debility and laxity of the solids; and on the other hand a debility of the solids always brings on a debility of the vital powers; and from this debility of the vital powers in both cases it happens, that those humours which ought to be expelled from the body are not, but accumulate by degrees in its cavities. There is, however, this difference between the two kinds of dropsy arising from these two different causes, That in the one which arises from laxity the solid parts are more injured than in that which arises from a debility of the vital powers. In the former, therefore, the water seems to flow out from every quarter, and the body swells all over. But when the disease is occasioned by a debility of the vital powers, though the solids be left damaged, yet the power of the heart being much diminished, and the humours scarce propelled through the extreme vessels, the thin liquids, by which in a healthy state the body is daily recruited, are carried by their own weight either into the cavities or into the cellular texture. Hence those aqueous effusions which follow great evacuations of blood, or vio...
MEDICINE.

This page contains a discussion on the production of dropsy, its causes, and various methods of treatment. The text mentions that dropsy can be caused by an obstruction of the circulation, and it discusses the effects of drinking large quantities of water, which can lead to a drop in blood pressure and the formation of ascites or fluid accumulation in the abdomen. The page also describes the symptoms of dropsy, such as a swelling in the abdomen, and the methods used to treat it, including the injection of water or other substances. The text references several medical practices and observations from the time, such as Fothergill's experiment on a dog to demonstrate the effects of drinking large quantities of water on the body, and the use of digitalis to treat heart conditions. The page concludes with a discussion on the prognosis of dropsy and the importance of early treatment.
that in a short time; those, however, are very frequently cured who fall into this disease without any preceding hemorrhagy.

Cure. In the cure of this disease authors chiefly mention two indications. 1. To expel the superfluous quantity of water; and, 2. To prevent its being again collected. But before we proceed to speak of the remedies, it is necessary to take notice, that by the animal economy, if a great evacuation of a fluid takes place in any part of the body, all the other fluids in the body are directed towards that part, and those which lie as it were lurking in different parts will be immediately absorbed, and thrown out by the same passage. Hence the humours which in hydroptic persons are extravasated into the different cavities of the body will be thrown into the interstines, and evacuated by purgatives; or by diuretics will be thrown upon the kidneys, and evacuated by urine. It is, however, not only necessary to excite these evacuations in order to remove this malady, but they must be ad libitum promoted and kept up till the abundant humour is totally expelled. For this reason Sydenham has advised purgatives to be administered every day, unless, either through the too great weakness of the body, or the violent operation of the purgative, it shall be necessary to interpose a day or two now and then; because if any considerable intervals be allowed to take place between the exhibition of the purgatives, an opportunity is given to the waters of collecting again. In this method, however, there is the following inconvenience, that, when the waters are totally evacuated, the strength is at the same time so much exhausted, that the diuretic commonly returns in a very short time. Hence almost our only hopes of curing a dropsy consist in gently evacuating the waters by means of diuretics. But the efficacy of these is generally very doubtful. Dr Friend hath long ago observed, that this part of medicine is of all others the most lame and imperfect; but a French physician, Mr Bacher, lately discovered, as he alleges, a method of making the diuretics much more successful. His reputation became at first so great, that the French king thought proper to procure his secret for a great sum of money. The basis of his medicine was hellebore-root, the malignant qualities of which he pretended to correct in the following manner. A quantity of the dried roots of black hellebore were pounded, and then put into a glass earthen vessel, and afterwards sprinkled with spirit of wine. They were suffered to stand for twelve hours, stirring them about twice or thrice during that space of time. They were then sprinkled again, and at last good Rhénish wine was poured on till it stood fix fingers above the roots. The mixture was frequently agitated with a wooden spatula; and as the wine was imbibed by the roots, more was poured on, so as to keep it always at the same height for 48 hours. The whole was then put on the fire and boiled for half an hour, after which the decoction was violently pressed out; the same quantity of wine was added as at first, and the mixture boiled as before. After the second expersion the woody relictum was thrown away as useless. Both the strained liquors are then mixed together with two parts of boiling water to one of the decoction. The whole is afterwards evaporated in a silver vessel to the confidence of a syrup. One part of the extract is again added with two parts of boiling water, and the whole infipidified as before.—By this means, says he, the volatile nauseous acid particles are separated by evaporation, and the fixed ones remain corrected and prepared for medicinal uses; adding, towards the end, a pinch of old brandy, and evaporating to the confidence of turpentine. Mr Bacher reasons a good deal on the way in which this process corrects the medicine; but tells us, that notwithstanding the improvement, his pills will not have the desired effect unless properly made up. For forming them, they ought to be mixed with matters both of an invicifying and indurating nature; yet so prepared that it will be readily soluble in the stomach, even of a person already debilitated. For answering these purposes, he chose myrrh and carduus beneditus, and then gives the following receipt for the formation of his pills.

"Take of the extract of hellebore prepared as above directed, and of solution of myrrh, each one ounce; of powdered carduus beneditus three drachms and a scruple. Mix them together, and form into a mass, dividing it into pills of a grain and an half each." To these pills Mr Bacher gives the name of the pilula tinctae, from an idea, that while they evacuate the water, they at the same time act as tonics; and thus from augmenting the action of the lymphatics, prevent the return of the disease. And if both these intentions could be effectually answered by the use of the same remedy, it would unquestionably be of great importance in practice.

The effects of these pills were, we are told, very surprising. Dr Daigman relates, that he gave them to 18 hydroptic patients at once; and these he divided into three classes, according to the degree of the disease with which they were affected. The first class contained those who laboured under an anasarca following intermittent fevers. The second class contained those who had an anasarca, together with some degree of aficites, arising from tedious febrile disorders. All these were cured; but these two classes consisted of such cases as are most easily removed. But the third contained those who were seized with a most violent anasarca and aficites, after being much weakened by tedious disorders, and of consequence in whom the disease was very difficult to be cured. Even of these, however, four were cured, and the other two died. The body of one of these being diffected, both sides of the cavity of the thorax were found to be full of a blackish-red water. The lungs were unfound; there was a polyposus concretion in the right ventricle of the heart; the liver and spleen were hard, and of a prettarnentium bulk; and the glands of the mesentery were oblitered and infalted. In the other, the liver and pancreas were febrishous, and the spleen very hard.

The same medicines were given by Dr lomme to eight persons, six of whom had both an anasarca and aficites, but the other two only an aficites. Four of these recovered; three died without being freed from the dropsy; one is whom the dropsy was cured died in a short time after, having for some time before his death become speechless.

By these patients 10 of the pills were taken at once;
and the same dose repeated to the third time, with an interval of an hour betwixt each dose. At first they proved purgative, and then diuretic; by which lait evacuation they finally cured the difeafed. But though Mr Bacher was firmly of opinion that his pills cured the dropfy by reason of the above-related correction; yet it is certain, that, in the hands of other practitioners, these very pills have failed, unlefs they made use of the fame regimen recommended by that physician; while, on the other hand, it is also certain, that different medicines will prove equally efficacious made ufe of.

As Infible ease was 'added that to dropfical patients to derive benefit from drink, and thus to the torments of their difeafe, that he fwallowed his thirft as much as poöible from drink, and thus to the torments of their diseafe. For a great number of ages it has been recommendedit to dropfical patients to abtain as much as poösible from drink, and thus to the torments of their disease was added that of an intolerable thirft; and how great this torment was, we may understand from an example of a friend of king Antigonus, who, having been closly watched both by order of the physicians and alio of the king, was fo unable to bear the raging thirft occasioned by his difeafe, that he swallowed his own excrements and urine, and thus speedily put an end to his life. Dr Milman fows at great length the perrnicious tendency of this practice. He maintains that it is quite contrary to the sentiments of Hippocrates and the beat ancient physicans. He afferts, that unlefs plenty of diluting drink be given, the blood diuretics can have no effect. He condemns alio the strongest terms of giving dropfical patients only dry, hard, and indigedible aliments. Thse would oppress the stomac even of the moö health; and how much more mušt they do fo to those who are already debilitated by labouring under a tedious disorder? By what means alio are thse aliments to be dilufed in the stomac when drink is with-held? By what means alio are these aliments to be dilufed in the stomac when drink is with-held? If the patient be not very much debilitated, he is now the common drink of hydropic patients in the hospital abovementioned, of which they drink at pleasure along with their medicines.

Among purgative medicines Dr Milman recommends the radix seneka; but says the decoction of it, according to the Edinburgh Pharmacopoeia, is too strong, as he always found it excite vomiting when prepared as there directed, and thus greatly to disturb the patient: but when only half an ounce or fix drachmas of the root are used to a pound of decoction, instead of a whole ounce as directed by the Edinburgh college, he finds it an excellent remedy: and though it may sometimes induce a little vomiting, and frequently a nauseas, yet it feldom fails to produce a plentiful flow of urine. This liquor is now the common drink of hydropic patients in the hospital abovementioned, of which they drink at pleasure along with their medicines.
be observed to succeed, after another, though commonly much more powerful, has been tried in vain. Accordingly various articles of this kind are often used in succession. Recourse is particularly often had to the roots of taraxacum, of colchicum, and of squills; the latter, especially when combined with calomel, is often found to be a very powerful diuretic. And according to various authors mercury in different forms probably from acting as a deobstruent, is often of very great use in drophical complaints. Among other diuretics, the laudanum, tinctura has of late been highly extolled by Dr Collins of Vienna, and the nicotine tabaccum by Dr Fowler of York: but neither has been extensively introduced into practice, although we have known some instances in which the latter has been used with great advantage.

The water having been drawn off, we are to put the patient on a course of strengtheners; such as the Peruvian bark, with some of the warm aromatics, and a due proportion of rhubarb infused in wine and chaly beates. Gentle exercise, and frictions on the belly, with such a course of diet as shall be light and nourishing, are also to be enjoined: and it may be observed, that the use of tonic medicines is by no means to be dispensed with. For the treatment of these two diseases, we chiefly, as before, till it

Description. This is one of the diseases peculiar to infancy. It seldom attacks children till they are nine months, nor after they are two years old; but it frequently happens in the intermediate space between these two periods. The disease shows itself by a flaccid tumor of the head and face, a loose flabby skin, a swelling of the abdomen, and falling away of the other parts, especially of the muscles. There are protuberances of the epiphyses of the joints; the jugular veins swell, while the rest decrease; and the legs grow crooked. If the child has begun to walk before he be seized with this disease, there is a flowery, debility, and tottering in his motion, which soon brings up sharp, while the extremities of the ribs are knotty. The abdomen is protubereat, and the teeth black and carious. In such patients as have died of this disease, all the solids appear foist and flaccid, and the fluids dissolved and mucous.

Cauies. The rickets may proceed from scrofulous or venereal taints in the parents, and may be increased by those of the nurse. It is likewise promoted by feeding the child with aqueous and mucous substances, crude summer-fruits, fish, unleavened farinaceous aliment, and too great a quantity of sweet things. Sometimes it follows intermittent fevers and chronic disorders; and in short is caused by any thing which tends to debilitate the body, and induce a vivid and unhealthy state of the juices.

Prognostics. The rickets do not usually prove fatal by themselves, but if not cured in time, they make the person throughout life deformed in various ways; and often produce very pernicious disorders, such as carious bones in different parts of the body.

Cure. This is to be affected by mild cathartics, alteratives, and tonics, such as are used in other diseases attended with a debility of the sytem and a vitiated state of the blood and juices. In the Western islands of Scotland, the medicine used for the cure of the rickets is an oil extracted from the liver of the skate-fish. The method of application is as follows: First, the wrists and ankles are rubbed with the oil in the evening: this immediately raises a fever of several hours duration. When the fever from the first rubbing subsides, the same parts are rubbed again the night following; and repeated as long as the rubbing of these parts continues to excite the fever.

When no fever can be excited by rubbing the wrists and ankles alone, they are rubbed again along with the knees and elbows. This increased union brings on the fever again; and is practised as before, till it no longer has that effect. Then the vertebrae and sides are rubbed, along with the former parts; and this.

Rachitis.

Genus LXXXII. RACHITIS.

The Rickets.

Rachitis. Sauv. gen. 120. *Bor. 1480. Hoffm. III. 487.*

Zevania. della Rachitide. *Gilf. ó Rachitide.*

Description. This is one of the diseases peculiar to infancy. It seldom attacks children till they are nine months, nor after they are two years old; but it frequently happens in the intermediate space between these two periods. The disease shows itself by a flaccid tumor of the head and face, a loose flabby skin, a swelling of the abdomen, and falling away of the other parts, especially of the muscles. There are protuberances of the epiphyses of the joints; the jugular veins swell, while the rest decrease; and the legs grow crooked. If the child has begun to walk before he be seized with this disease, there is a flowery, debility, and tottering in his motion, which soon brings up sharp, while the extremities of the ribs are knotty. The abdomen is protuberant, and the teeth black and carious. In such patients as have died of this disease, all the solids appear foist and flaccid, and the fluids dissolved and mucous.

Cauies. The rickets may proceed from scrofulous or venereal taints in the parents, and may be increased by those of the nurse. It is likewise promoted by feeding the child with aqueous and mucous substances, crude summer-fruits, fish, unleavened farinaceous aliment, and too great a quantity of sweet things. Sometimes it follows intermittent fevers and chronic disorders; and in short is caused by any thing which tends to debilitate the body, and induce a vivid and unhealthy state of the juices.

Prognostics. The rickets do not usually prove fatal by themselves, but if not cured in time, they make the person throughout life deformed in various ways; and often produce very pernicious disorders, such as carious bones in different parts of the body.

Cure. This is to be affected by mild cathartics, alteratives, and tonics, such as are used in other diseases attended with a debility of the sytem and a vitiated state of the blood and juices. In the Western islands of Scotland, the medicine used for the cure of the rickets is an oil extracted from the liver of the skate-fish. The method of application is as follows: First, the wrists and ankles are rubbed with the oil in the evening: this immediately raises a fever of several hours duration. When the fever from the first rubbing subsides, the same parts are rubbed again the night following; and repeated as long as the rubbing of these parts continues to excite the fever.

When no fever can be excited by rubbing the wrists and ankles alone, they are rubbed again along with the knees and elbows. This increased union brings on the fever again; and is practised as before, till it no longer has that effect. Then the vertebrae and sides are rubbed, along with the former parts; and this.

Rachitis.

Genus LXXXII. RACHITIS.

The Rickets.

Rachitis. Sauv. gen. 120. *Bor. 1480. Hoffm. III. 487.*

Zevania. della Rachitide. *Gilf. ó Rachitide.*

Description. This is one of the diseases peculiar to infancy. It seldom attacks children till they are nine months, nor after they are two years old; but it frequently happens in the intermediate space between these two periods. The disease shows itself by a flaccid tumor of the head and face, a loose flabby skin, a swelling of the abdomen, and falling away of the other parts, especially of the muscles. There are protuberances of the epiphyses of the joints; the jugular veins swell, while the rest decrease; and the legs grow crooked. If the child has begun to walk before he be seized with this disease, there is a flowery, debility, and tottering in his motion, which soon brings up sharp, while the extremities of the ribs are knotty. The abdomen is protuberant, and the teeth black and carious. In such patients as have died of this disease, all the solids appear foist and flaccid, and the fluids dissolved and mucous.

Cauies. The rickets may proceed from scrofulous or venereal taints in the parents, and may be increased by those of the nurse. It is likewise promoted by feeding the child with aqueous and mucous substances, crude summer-fruits, fish, unleavened farinaceous aliment, and too great a quantity of sweet things. Sometimes it follows intermittent fevers and chronic disorders; and in short is caused by any thing which tends to debilitate the body, and induce a vivid and unhealthy state of the juices.

Prognostics. The rickets do not usually prove fatal by themselves, but if not cured in time, they make the person throughout life deformed in various ways; and often produce very pernicious disorders, such as carious bones in different parts of the body.

Cure. This is to be affected by mild cathartics, alteratives, and tonics, such as are used in other diseases attended with a debility of the sytem and a vitiated state of the blood and juices. In the Western islands of Scotland, the medicine used for the cure of the rickets is an oil extracted from the liver of the skate-fish. The method of application is as follows: First, the wrists and ankles are rubbed with the oil in the evening: this immediately raises a fever of several hours duration. When the fever from the first rubbing subsides, the same parts are rubbed again the night following; and repeated as long as the rubbing of these parts continues to excite the fever.

When no fever can be excited by rubbing the wrists and ankles alone, they are rubbed again along with the knees and elbows. This increased union brings on the fever again; and is practised as before, till it no longer has that effect. Then the vertebrae and sides are rubbed, along with the former parts; and this.
this ulceration, which again brings on the fever, is repeated as the former. When no fever can be any longer excited by this ulceration, a flannel shirt dipped in the oil is put upon the body of the patient: this brings on a more violent and sensible fever than any of the former ulcerations; and is continued till the cure be completed, which it commonly is in a short time.

A German physician, Dr. Strack, has lately published a paper, in which he recommends the filings of iron as a certain remedy in the rickets. This disease, he observes, in general begins with children when they are about 16 months old. It is seldom observed with children before they be one year old, and seldom attacks them after they pass two; and it is very generally worse where it begins early than where it begins late.

For effecting a cure, it is, he affirms, a matter of the utmost consequence to be able to distinguish, very early, whether a child will be afficted with rickets or not. And this he assures us may be determined by the following symptoms: pallor and swelling of the countenance; and in that part of the cheeks which the following symptoms, paleness and swelling of the face.

When that is the case, he directs that a medicine should be immediately had recourse to which will retard the further progress of the disease and remove what has already taken place. For this purpose, he advises that five grains of the filings of iron, and as much rhubarb, should be rubbed up with ten grains of sugar, and given for a dose every morning fasting, and every evening an hour before supper. But if considerable looseness should be produced, it will be necessary, at first, to perforce in the use of one dose only every day.

After a month's continuance in this course, according to Dr. Strack, there in general enforces a keen appetite for food, quick digestion, and a copious flow of urine; by means of which the fulness of the face and yellowness of the complexion are gradually removed, while the natural colour of the countenance and firmness of the body in general are gradually restored. This practice, he assures us, has never failed of success in any one instance; not even in those children born of parents greatly afflicted with the rickets.

In addition to the use of字符beheas, great benefit is often also obtained in this disease from the use of the cold bath; which, under prudent administration, is perhaps one of the most effectual remedies for this complaint with which we are yet acquainted. When the bones of rickety children begin to bend, they may sometimes be restored to their natural shape by compresses, boiler, and proper supports. See the article Surgery.

MEDICINE.

Order III. Impetigines.

Impetigines, Sauv. Cl. X. Ord. V. Sag. Cl. III. Ord. V.

Genus LXXXIV. Scrofula.

King's Evil.

Description. This disease shows itself by hard, fir-
In indolent swellings of the glands from sickly humours, sea-water also has been strongly recommended by Dr. Rafæl.

Dr. Fothergill also acquaints us, that the cicuta even by itself is not without a considerable share of efficacy in removing sferoulous disorders. He mentions the case of a gentlewoman, about 28 years of age, afflicted from her infancy with sferulous complaints, fevere ophthalmies, glandular swellings, &c. cured by the extrædatum cicuta taken constantly for the space of a year. He observes, however, that when given to children even in very small doses, it is apt to produce spasmodic affections; for which reason he rarely exhibits it to them when very young, or even to adults of very irritable habits.

Dr. Fothergill gives several other instances of the success of cicuta in sferulous cases, and even in one which seemed to be not far removed from a confirmed phthisis; but owns that it seldom had such good effects afterwards; yet he is of opinion, that where there are symptoms of tubercles forming, a framous habit, and a tendency to phthisis, the cicuta will often be serviceable. It is aodyne, corrects acrimony, and promotes the formation of good matter. With regard to the quality of the medicine, he observes, that the extract prepared from hemlock before the plant arrives at maturity, is much inferior to that which is made when the hemlock has acquired its full vigour, and is rather on the verge of decline; whilst when the flowers fade, the rudiments of the seeds become observable, and the habit of the plant inclines to yellow. This, he thinks, is the proper time to collect the hemlock. It has then had the full benefit of the summer heat; and the plants that grow in exposed places will generally be found more active than those that grow in the shade. The leaf heat it undergoes during the preparation, the better. Therefore, if a considerable quantity of the dry powder of the plant gathered at a proper season be added, leaf boiling will be necessary, and the medicine will be the more efficacious.

But let the extract be prepared in what manner soever it may, provided it be made from the genuine plant, at a proper season, and be not destroyed by boiling, the chief difference observable in using it is, that a larger quantity of one kind is required to produce a certain effect than of another. Twenty grains of one sort of extract have been found equal in point of efficacy to thirty, nay near forty, of another; yet both of them made from the genuine plant, and most probably prepared with equal fidelity. To prevent the inconveniences arising from this uncertainty, it seems always expedient to begin with small doses, and proceed step by step till the extract produces certain effects, which seldom fail to arise from a full dose. These effects are different in different constitutions. But, for the most part, a giddiness affecting the head, and motions of the eyes as if something pulled them outwards, are first felt; a slight sickness, and trembling agitation of the body; a laxative flood or two. One or all these symptoms are the marks of a full dose, let the quantity in weight be what it will. Here we must stop till none of these effects be felt; and in three or four days advance a few grains more. For it has been supposed by most of those who have used this medicine to any good purpose, that the cicuta seldom procures

any
any benefit, though given for a long time, unless in as large a dose as the patient can bear without suffering any of the inconveniences above-mentioned. There is, however, reason to believe, that its effects as a difficulty are in no degree dependent on its narcotic powers: and we are inclined to think, that recourse is often had to larger doses than are necessary; or at least that the same benefit might be derived from smaller ones continued for an equal length of time.

Patients commonly bear a greater quantity of the extract at night than at noon, and at noon than in the morning. Two drachms may be divided into thirty grains, and three or four at night, with directions to increase each dose, by the addition of a pill to each, as they can bear it.

But after all, the best form under which the cicuta can, we think, be exhibited, is that of powder from the leaves. This, either in a flake of powder or made into pills, may be given at first to the extent of four or five grains, and the dose gradually rising till it amount to 15 or 20 grains twice or thrice a day. Given to this extent, particularly when conjugated with the Peruvian bark, it has often been found of great service in fcrifulous cases. At the same time it must be allowed, that such patients, after submitting every mode of cure, will have in some infames a spontaneous recovery in the progress of life, probably from the system acquiring additional vigour.

GENUS LXXV. SYPHILIS.

LUES VENEREA, or French Pox.

Dr. Arture, who writes a very accurate history of the lues veneraea, is fully convinced that it is a new disease, which never appeared in Europe till some time between the years 1494 and 1496, having been imported from America by the companions of Christopher Columbus; though this opinion is not without its opponents. Dr. Sanchis in particular has contended with much learning and ability, that it appeared in Europe at an earlier period: But it is at least certain, that it was altogether unknown to the medical practitioners of Greece and Rome, and that it was a very common disease in America when the Europeans first visited that country. But at whatever period it may have been introduced into Europe, or from whatever source it may have been obtained, there can be no doubt that, as well as small-pox or measles, syphilis depends on a peculiar specific contagion; or a matter sui generis which is alone capable of inducing this disease.

The venereal infection, however, cannot, like the contagious miasma of the small-pox and some other diseases, be carried through the air, and thus spread from place to place: for unless it is transmitted from the parents to the children, there is no other way of contracting the disease but from actual contact with the infectious matter. Thus, when a nurse happens to labour under the disease, the infant that the suckles will receive the infection; as on the other hand, when the child is infected, the nurse is liable to receive it:

and there have even been instances known of lying-in women being infected very violently, from having employed a person to draw their breasts who happened to have venereal ulcers in the throat. It may be caught by touching venereal sores if the cuticle be abraded or torn; and in this way accoucheurs and midwives have sometimes been infected severely. Dr. Macbride says, the most inveterate pox be ever faw was caught by a midwife, who happened to have a whitelow on one of her fingers when she delivered a woman ill of the lues venerea.

But by far the most ready way of contracting this disease is by coition, the genital parts being much more bibulous than the rest of the body. When the disorder is communicated, the places where the morbid matter enters are generally those where it first makes its appearance; and as coition is the most usual way of contracting it, so the first symptoms commonly appear on or near the pudenda.

The patient's own account will, for the most part, help us to distinguish the disease: but there are sometimes cases wherein we cannot avail ourselves of this information, and where instead of confessing, the parties shall conceal all circumstances; while, on the other hand, there are now and then people to be met with, who perfide themselves that symptoms are venereal, which in reality are owing to some other cause; and therefore it is of the utmost importance to inform ourselves thoroughly of the nature of those symptoms and appearances which may be considered as pathognomic signs of lues venerea.

In the first place, when we find that the local symptoms, such as chancres, buboes, ptyomas, and the like, do not give way to the usual methods; or when these complaints, after having been cured, break out again without a fresh infection; we may justly suspect that the virus has entered the whole mass of fluids; but if at the same time ulcers break out in the throat, and the face is deformed by callous tubercles, covered with a brown or yellow scab, we may be assured that the caufe is now become a confirmed lues, which will require a mercurial course.

When eruptions of the furfuraceous and superficial kind are venereal, they are not attended with itching; and the scale being picked off, the skin appears of a reddish brown or rather copper-colour, underneath; whereas leprous eruptions are itchy, throw off a greater quantity of scales, and rife in greater blotches, especially about the joints of the knees and elbows. Venereal tubercles or pultules are easily distinguished from carbuncles of the face, by not occupying the cheeks or the nose, nor as having a purulent apex, but are covered at top, either with a dry branny crust like the superficial eruptions just now mentioned, or else with a hard dry scab of a tawney yellow hue; they particularly break out among the hair or near to it, on the forehead or on the temples.

Venereal ulcers affecting the mouth are distinguishable from those which are scorbatic in the following manner: 1. Venereal ulcers first affect the tonsils, fauces, and uvula; then the gums but these very rarely: on the contrary, scorbatic ulcers affect the gums first of all; then the fauces, tonsil, and uvula. 2. Venereal ulcers frequently spread to the nose: scorbatic ones almost never. 3. Venereal ulcers are carious in the
Practice.

MEDICINE.

Impetignes the edges; scorbutic ones are not so. 4. Venereal ulcers are circumscribed, and, for the most part, are circular, at least they are confined to certain places; scorbutic ones are of more irregular form, spread wider, and frequently affect the whole mouth. 5. Venereal ulcers are for the most part hollow, and generally covered at bottom with a white or yellow scurf; but scorbutic ones are more apt to grow up into loose fungi. 6. Venereal ulcers are red in their circumference, but scorbutic ones are always livid. 7. Venereal ulcers frequently rot the subjacent bones, the scorbutic ones seldom.

Another sure sign of the confirmed lues is often afforded from certain deep-seated nocturnal pains, particularly of the thins, arms, and head. As for any superficial wandering pains that have no fixed seat, and which affect the membranes of the muscles and ligaments of the joints, they, for they most part, will be found to belong to the gout or rheumatism, and can never be considered as venereal unless accompanied with some other evident signs; but with regard to the pains that are deeply seat, and always fixed to the same place, and which affect the middle and more solid part of the ulna, tibia, and bones of the cranium, and rage chiefly and with greatest violence in the forepart of the night, so that the patient can get no rest till morning approaches, these may serve to convince us that the disease has spread itself throughout the whole habit, whether they be accompanied with other symptoms of the lues or not. Gummatæ in the flabby parts, nodæ in the periosteum, ganglia upon the tendons, tophi upon the ligaments, excoriæ upon the bones, and faciæ at the verge of the anus, are all of them signs of the confirmed lues: these are hard indolent swellings; but as they sometimes arise independently of any venereal infection, and perhaps may proceed from a scrofulous taint, unless they be accompanied or have been preceded by some of the more certain and evident symptoms of the lues, we must be cautious about pronouncing them venereal. When these swellings are not owing to the syphilitic virus, they are very seldom painful, or tend to inflame and suppurate; whereas those that are venereal usually do, and if they lie upon a bone generally bring on a caries.

These curious ulcers are most commonly met with upon the ulna, tibia, and bones of the cranium; and when accompanied with nocturnal pains, we can never hesitate about declaring their genuine nature. Frequent abortions, or the exclusion of scabby, ulcerated, filmant, and dead fetuses, happening without any manifest cause to disturb the fetus before its time, or to destroy it in the womb, may be reckoned as a sure sign that at least one of the parents is infected.

These then are the principal and most evident signs of the confirmed lues. There are others which are more equivocal, and which unless we can fairly trace them back to some that are more certain, cannot be held as signs of the venereal disease: Such are, 1. Obdurate inflammations of the eyes, frequently returning with great heat, itching, and ulceration of the eye-lids. 2. A snoring and hissing noise in the ears, with ulcers or caries in the bones of the meatus auditorius. 3. Obdurate head-aches. 4. Obdurate cutaneous eruptions, of the itchy or leprous appearance, not yielding to the milder methods of treatment. 5. Swellings of the bones; and, 6. Wandering and obdurate pains. None of these symptoms, however, can be known to be venereal, except they happen to coincide with some one or other of the more certain signs.

It may, perhaps, be considered as a singularity in this disease, that the diagnosis is often more difficult in the advanced than in the early periods of the affection. That is, with those who have been certainly subjected to syphilis, it is often very difficult to say whether certain symptoms, remaining after the ordinary modes of cure have been employed, be syphilitic or not. Very frequently, as appears from the sequel, nocturnal pains, ulcerations, and the like, remaining after a long course of mercury has been employed, are in no degree of a venereal nature, but are in reality to be considered as consequences rather of the remedy than of the disease; and are accordingly best removed by nourishing diet, gentle exercise, and tonics. But as long as any symptoms of any kind remain, it is often impossible to convince some patients that they are cured; and it is often impossible for a physician with certainty to affirm that the disease is altogether overcome.

Upon the whole, we are first to distinguish and consider the several symptoms apart; and then, by comparing them with each other, a clear judgment may be formed upon the general review.

Prognosis. Being thoroughly convinced that the case is venereal, we are to consider, first of all, whether it be of a longer or shorter date; for the more recent it is, it will, ceteris paribus, be less difficult to remove. But there are other circumstances which will assist us in forming a prognosis as to the event. As,

1. The age of the patient. This disorder is more dangerous to infants and old people than to such as are in the flower and vigour of life, in whom some part of the virus may be expelled by exercise, or may be subdued in some degree by the strength of the constitution.

2. The sex. Though women are for the most part weaker than men, and therefore should seem less able to resist the force of any disease, yet experience shows that this is easier borne by them than by men; perhaps owing to the menstrual and other uterine discharges, by which a good share of the virus may be carried off immediately from the parts where it was first applied; for it is observable, that whenever these discharges are obstreperous, or cease by the ordinary course of nature, all the symptoms of this disease grow worse.

3. The habit of body. Persons who have acrid juices will be liable to suffer more from the venereal poison than such as have their blood in a milder state; hence, when people of a scorbutic or scrofulous habit contract venereal disorders, the symptoms are always remarkably violent, and difficult to cure. And for the same reasons, the confirmed lues is much more to be dreaded in a person already inclined to an althma, phthisis, droopy, gout, or any other chronic differen-
inflammation of the uvula, or of the soft palate, and the patient seems suddenly to be in an apoplectic fit or sink under a consumption.

Cure. View this disease as depending on a peculiar contagious matter introduced into the syphilitic system, and multiplied there, it is possible to conceive that a cure may be obtained on one of three principles; either by the evacuation of the matter from the system; by the destruction of its activity, or by counteracting its influence in the system. It is not impossible that articles exist in nature capable of removing this complaint on each of these grounds: but we may venture at least to assert, that few such are yet discovered. Notwithstanding numbers of pretended infallible remedies, for syphilis, mercury is perhaps the only article on which dependence is placed among European practitioners; and with regard to its mode of operation, all the three different opinions pointed out have been adopted and supported by different theorists.

But although many ingenious arguments have been employed in support of each, we, upon the whole, inclined to think it more probable that mercury operates by destroying the activity of the venereal virus, than that it has effect either by evacuating it, or by exciting a state of action, by which its influence is counteracted. Some practitioners have affirmed, that the disease may be totally extirpated without the use of mercury: but, excepting in flight cases, it appears from the most accurate observations, that this grand specific is indispensable; whether it be introduced through the pores of the skin, in the form of ointments, plasters, washes, &c.; or given by the mouth, disguised in the different shapes of pills, troches, powders or solutions.

Formerly it was held as a rule, that a salivation ought to be raised, and a great discharge excited. But this is now found to be unnecessary: for as mercury probably acts by some specific power in subduing and correcting the venereal virus, all that is required is to throw in a sufficient quantity of the medicine for this purpose; and if it can be diverted from the salivary glands, or in the secretion, the inconvenience attending a spitting are such as we should always with to avoid.

Mercury, when combined with any saline substance, has its activity prodigiously increased; hence the great variety of chemical preparations which have been contrived to unite it with different acids.

Corroive sublimate is one of the most active of all the mercurial preparations, infomuch as to become a poison even in very small doses. It therefore cannot safely be given in sublimate; but must be dissolved in order to render it capable of a more minute division.

We may see, by looking into Widemann, that this is an old medicine, though seldom given by regular practitioners. How it came to be introduced into a remote part of the world as Siberia, is not easily found out; but Dr Clerc, author of the Histoire Naturelle de l'Homme Malade, affiures us, that the sublimated solution has been of late time out of mind.

It appears to have been totally forgotten in other places, until of late years, when the Baron Van Swieten brought it into vogue for that afoine period, if we credit Dr Locher, they used no other mercurial preparation at Vienna. The number of patients cured by this remedy alone in the hospital of St Mark, is under the care of this gentleman, from 1754 to 1771 inclusive, being 4880.

The way to prepare the solution is, to dissolve as much sublimate in any kind of ardent spirit (at Vienna they use only corn-brandy) as will give half a grain to an ounce of solution. The dose to a grown person is one spoonful mixed with a pint of any light pittan or barley-water, and this to be taken morning and evening; the patient should keep mostly in a warm chamber, and lie in bed to fast after taking the medicine: their diet should be light; and they ought to drink plentifully throughout the day, of whey, pittan, or barley-water. If the solution does not keep the belly open; a mild purge must be given from time to time; for Locher observes, that those whom it purges two or three times a-day, get well sooner than those whom it does not purge; he also says, that it very seldom affects the mouth, but that it promotes the urinary and cutaneous discharges. This course is not only to be continued till all the symptoms disappear, but for some weeks longer. The shortest time in which Locher used to let the patients out was six weeks; and they were continued on a course of decocation of the woods for some weeks after they left off the solution.

This method has been introduced both in Britain and Ireland, though by no means to the exclusion of others; but it appears, that the solution does not turn out to be the remedy for syphilis, either in these kingdoms, or in France, as they say it has been done in Germany. It was seldom if ever found to perform a radical cure, and the frequent use of it proved in many cases highly prejudicial. It has therefore been succeeded in practice, even at Vienna, by mercury exhibited in other forms; and, among these, by a remedy first recommended by Dr Plenck, and since improved by Dr Saunders; consisting of mercury united with mucilage of gum arabic, which is said to render its exhibition perfectly mild and safe. For particulars, we refer to Dr Saunders's treatise.

But a late French writer, supposed to be Dr Petit, in a small book, intitled A Parallel of the different methods of treating the venereal disease, infiuits, that there is neither certainty nor safety in any other method than the repeated frictions with mercurial ointment.

If therefore it is determined to have recourse to the mercurial frictions, the patient may with advantage be prepared by going into the warm bath some days successively; having been previously bledded if of a plethoric habit, and taking a dose or two of some proper cathartic.

The patient being fitted with the necessary apparatus of flannels, is then to enter on the course.
If the person be of a robust habit, and in the prime of life, we may begin with two dractions of the *u nagentum hydrargyrus fortunis* (Ph. Lond.) which is to be rubbed in about the ankles by an affilant whose hands are covered with bladders: then having intermitted a day, we may expend two dractions more of the ointment, and rest for two days: after which, if no symptoms of the mouth come on, use only one draction: and at every subsequent friction ascend till the ointment shall reach the trunk of the body; after which the rublings are to be begun at the wrists, and from thence gradually extended to the shoulders. In order to prevent the mercury from laying too much hold of the hands, the mercury should tend to raise a feeling, then, from time to time, we are either to give some gentle cathartic, or order the patient into a vapour or warm bath: and thus we are to go on, rubbing in a draction of the ointment every second, third, or fourth night, according as it may be found to operate; and on the intermediate days either purging or bathing, unless we should choose to let the fermentation come on, which, however it is much better to avoid, as we shall thus be able to throw in a larger quantity of mercury.

It is impossible to ascertain the quantity of mercury that may be necessary to be rubbed in, as this will vary according to circumstances; but we are always to continue the frictions for a fortnight at least, after all symptoms of the disease shall have totally disappeared; and when we have done with the mercury, warm bathing and sudorific decoctions of the woods, are to be continued for some time longer.

This is a general sketch of the methods of treatment for the confirmed cases; but for a complete history of the disease, and for ample directions in every situation, we refer to Altru, and his abridger Dr Chapman. — We have to add, however, that a method of curing this disease by fomentation has been lately recommended in France; but it is seems not to meet with general encouragement. One of the most recent proposals for the cure of the venereal disease is that of Mr Clare, and consists in rubbing a small quantity of mercury under the form of mercurialis muriatus niturus, or colonel as it is commonly called, on the inside of the cheek; by which means it has been suppos'd that we will not only avoid the inconveniences of union, but also the purgative effects that are often produced by this medicine when taken into the stomach. But after all, the introduction of mercury under the form of union, as recommended by the late and best writers in Britain on the venereal disease, Dr Sednam, Mr John Hunter, and others, is still very generally preferred in Britain to any mode that has yet been proposed.

Where, after a long trial of mercury, disfiguring symptoms still remain, particularly obliturate ulcerations and severe pains, benefit has often been derived from the use of opium: but there is little reason to believe, as has been held by some, that of itself it affords an infallible cure of this disease; at least we are inclined to think, that all the facts hitherto brought in support of the cure of syphilis by opium are at the utmost very doubtful.

In oblinitate ulcerations, remaining probably after the venereal virus has been overcome, and fulfilling the use of mercury, a complete cure has in many instances been obtained from the use of the root of the mezerone, the haphne mezerium of Linnaeus. This article has been chiefly employed under the form of decoction; and it now appears that it is the basis of an article at one time highly celebrated in venereal complaints, under the title of *Lepon d'isdrin*. But, upon the whole, the specific of this disease are perhaps more readily overcome by country air, gentle exercise and nourishing diet, particularly a milk diet, than by the use of any medicine whatever. It must indeed be allowed, that for combating different feaqueiras, various practices accommodated to the nature of these will on particular occasions be requisite. But into the consideration of these we cannot here proceed to enter.

Genus LXXXVI. SCORBUTUS.

Description. The first indication of the scorbutic distemper is generally a change of colour in the face, from the natural and healthy look to a pale and bloated complexion, with a little faintness, and aversion from every kind of exercise; the gums soon after become itchy, swell, and are apt to bleed on the slightest touch; the breath grows offensive; and the gums, dwelling daily more and more, turn livid, and at length become extremely fungous and putrid, as being continually in contact with the external air; which in every case favours the putrefaction of substances disposed to run into that state, and indeed is absolutely requisite for the production of actual rottenness.

The symptoms of the scorbuty, like those of every other disease, are somewhat different in different subjects, according to the various circumstances of constitution; and they do not always proceed in the same regular course in every patient. But what is very remarkable in this disease, notwithstanding the various and immense load of difeases under which the patients labour, there is no sicknees at the stomach, the appetite keeps up, and the faeces remain entirely moist, and at the very last, when lying at rest, they make no complaints, and feel little difeases or pain; but the moment they attempt to rise or sit themselves, the breathing becomes difficult, with a kind of headainesis or catching, and great oppression, and sometimes they have been known to fall into a syncope. This catching of the breath upon motion, with the loss of strength, dejection of spirit, and rotten gums, are held the essential or distinguishing symptoms of the disease. The skin is generally dry, except in the very last stage, when the patients become exceedingly subject to faintings, and then it grows clammy and moist: in some it has an anemic appearance; but much oftener it is smooth and thinning; and when examined, is found to be spread over with spots not rising above the surface, of a redish, bluish, livid, or purple colour, with...
Medicine.

Impetigo are spots for the most part small, but in time they increase to large blotches. The legs and thighs are the places where they are principally seen: more rarely on the head and face. Many have a swelling of the legs, which is harder, and retains the impression of the finger longer than the common drophial or truly oedematous swellings. The slightest wounds and bruises, in scurvy habits, degenerate into foul and unto-ward ulcers. And the appearance of these ulcers is so singular and uniform, that they are easily dis-tinguished from all others. Scurvy ulcers afford no good digestion, but give out a thin and fetid ichor mixed with blood, which at length has the appear-ance of coagulated gore lying caked on the surface of the fole, not to be separated or wiped off without some difficulty. The flesh underneath these ulcers feels to the probe soft and spongy, and is very putrid. Neither detergents nor escharotics are here of any service; for though such flows be with great length taken away, they are found again at the next dressing, where the fame fungidous putrid appearance always prelents itself. Their edges are generally of a livid colour, and pulsed up with excrescences of proud flesh arising from below the skin. As the violence of the diseafé increases, the ulcers shoot out a soft bloody fungus, which often rises in a night's time to a monstrous size; and although destroyed by cauteries, actual or potential, or cut away with the knife, is found at next dressing as large as ever. It is a con siderable time, however, before these ulcers, bad as they are, come to affect the bones with rottenness—These appearances will always serve to affire us that an ulcer is scurvy; and should put us on our guard with re spect to the giving mercurials, which are the most pernicious things that can be administered in these cases.

Scurvy people, as the diseafé advances are seldom free from pains; though they have not the fame feet in all, and often in the same person shift their place. Some complain of universal pain in all their bones; but most in the limbs, and especially the joints. The most frequent pain of their pain, however, is some part of the breast. The pains of this diseafé seem to arise from the dilatation of the fensible fibres by the extrava- sated blood being forced into the interelfes of the perifoleum and of the tendinous and ligamentous parts; whose texture being so firm, the fibres are liable to higher degrees of tension, and consequently of pain.

The states of the bowels are various: in some there is an obstinate colliciveness; in others a tendency to a flux, with extremely fetid ffools: the urine is also rank and fetid, generally high-coloured; and, when it has flood for some hours, throws up an oily film on the surface. The pulse is variable; but most commonly flower and more feeble than in the time of perfect health. A fifeft is in the tendons, and weakness in the joints of the knees, appear early in the diseafé: but as it grows more inveterate, the patients generally lose the use of their limbs altogether; having a contraction of the flexor-tendons in the hand, with a swelling and pain in the joint of the knee. Some have their legs monftrously swelled, and covered over with livid spots or ecchymofes; others have had tumors there; some, though without swelling, have the calves of the legs and the flesh of the thighs quite indurated. As per- fons far gone in the feurvy are apt to faint, and even expire, on being moved and brought out into the fresh air, the utmost care and circumfeption are requisite when it is neceffary to flir or remove them.

Scurvy patients are at all times, but more espe- cially as the diseafé advances, extremely subject to profuse bleedings from different parts of the body; as from the nofe, gums, intemines, lungs, &c. and likewise from their ulcers, which generally bleed plentifully if the fungus be cut away. It is not easy to conceive a more difmal and diversified scene of misery than what is beheld in the third and laft stage of this diftemper: it being then that the anomalous and more extraordinary symptoms appear, such as the boiling out of old wounds, and the dißolution of old fractures that have been long united.

Causes. The term feurvy has been indiscriminate-ly applied, even by physicians, to almost all the dif- ferent kinds of cutaneous feaftness; owing to some writers of the laft century, who comprehended such a variety of symptoms under this denomination, that there are few chronic diftempers which may not be so called, according to their scheme: but the diseafé here meant is the true putrid feurvy, to often fatal to feamen, and to people pent up in garrifons with out sufficient supplies of found animal-food and fresh vegetables; or which is commonly known to be endemic in certain countries, where the nature of the soil, the general state of the atmosphere, and the common course of diet, all combine in producing that singular species of corruption in the mafs of blood which constitutes this diseafé; for the appearances, on difsecting scurvy subjects, sufficiently shew that the feurvy may, with great propriety, be termed a diseafé of the blood.

Dr Lind has, in a postscript to the third edition of his traiíte on the feurvy, given the refult of his obervations drawn from the difsection of a confiderable number of victims to this fatal malady, from which it appears that the true feurvy state, in an advanced figure of the diftemper, confifts in a numerous effusion of blood into the cellular interllices of moft parts of the body, superficial as well as internal; particularly the gums and the legs; the texture of the former being almost entirely cellular, and the generally de-pendent state of the latter rendering thefe parts, of all others in the whole body, the moft apt to receive, and retain the fagnant blood, when its crafts comes to be decompy, and it lofes that glutinous quality which, during health, binds it from escaping thro' the pores in the coats of the blood-veffels or through exhalant extremities.

A drophical indisposition, especially in the legs and back, was frequently, but not always, observed in the subjects that were opened, and the pericardium was sometimes found dif tended with water: the water thus collected was often fo sharp as to fhrivel the hands of the difector; and in fome instances, where the skin happened to be broken, it irritated and fellered the wound.

The fleshy fibres were found so extremely lax and tender, and the bellies of the muscles in the legs and thighs fo tubbled with the effufed fagnating blood, that it was always difficult, and sometimes impossible,
The experiment of Dr. Hales, as well as many others made since his time, show that an aerial principle is greatly connected with, and remarkably abundant in, the gelatinous parts of animal bodies, and in the mucilage or farina of vegetables. But these are the parts of our food which are most particularly nutritive; and Dr. Cullen, whose opinion on this as on every other medical subject must be allowed of the greatest weight, affirms, in his Lectures on the Materia Medica, that the substances on which we feed are nutritious only in proportion to the quantities of oil and sugar which they respectively contain. This oil and sugar are blended together in the gelatinous part of our animal-food, and in the mucilaginous and farinaceous part of succulent vegetables; and, while thus intimately combined are not perceivable by our taste, though very capable of being developed and rendered distinct by the power of the digestive organs; for in consequence of the changes produced during digestion, the oily and the saccharine matter become manifest to our senses, as we may see and taste in the milk of animals, which is chiefly chyle a little advanced in its progress toward sanguification; the oil is observed to separate spontaneously, and from which a quantity of actual sugar may be obtained by a very simple process.

Thus much being premised, we can now readily comprehend how the blood may come to lose those qualities of smoothness, mildness, and tenacity, which are natural to it. For if, in the first place, the fluids, and organs subervient to digestion should be so far detempered or debilitated that the nutritious parts of the food, cannot be properly developed, the blood must be deprived of its due supplies; which will also be the case if the aliment should not originally contain enough of oily and saccharine matter, or should be so circumstanced, from being dried or salted, as to hinder the ready extrication of the nutritious parts; or lastly, if the natural discharges should be interrupted or suspended, so that the superfluous, acrid, and effete fluids are retained in the general mass; in all these instances the blood must of necessity run into proportionate degrees of depravation.

And hence we may understand how it may possibly happen, that the instances of the scurvy are so frequently connected with the consumption of salted meat; since, in the presence of salt, the necessity of increasing the amount of the nutritive principles absorbed is increased, and this, in its turn, is a cause of depravation, and therefore of the scurvy.
The phenomena of the disease than any conjecture can.

A close attention to these matters will, in general, prevent the scurvy from making its appearance at all, and will always hinder it from spreading its influence far. But when these precautions have been neglected, or the circumstances such that they cannot be put in practice, and the disease hath actually taken place, our whole endeavours must be to restore the blood to its original state of soundness: and happily, such is the nature of this disease, that if a sufficiency of new matter, of the truly mild nutritious sort, and particularly such as abounds with vital air, such as recent vegetables, or different acid fruits, can be thrown into the circulation while the fibrous fibres retain any tolerable degree of firmness, the patient will recover; and that in a surprisingly short space of time, provided a pure, comfortable lodging, sufficient clothing, cleanliness, and exercise lend, their necessary aid.

This being the case, the plan of treatment is to be conducted almost entirely in the dietetic way; as the change in the mafs of blood, which it is necessary to produce, must be brought about by things that can be received into the stomach by pints or pounds, and not by those which are administered in drops or grains, draughts or ounces. For here, as there is no disorder of the nervous system, we have no need of those active drugs which are indispensably necessary in febrile or nervous diseases; the scurvy diathesis being quite opposite to that which tends to produce a fever or any species of spasmodic disorders; nay, Dr. Lind says, he has repeatedly found, that even the infection of an hospital fever is long resisted by a scurvy habit.

It will now naturally occur to the reader, what those alimentary substances must be which bill the fairest to restore the blood to its healthy state; and he needs scarcely to be told, that they are of those kinds which the stomach can bear with pleasure though taken in large quantities, which abound in jelly or mulligano, and which allow those nutritive parts to be easily developed; for though the visera in scurvy patients may be all perfectly found, yet we cannot expect that either the digestive fluids or organs should possess the same degrees of power, which enable them, during health, to convert the crude dry farinaces, and the hard salted flesh of animals, into nourishment. We must therefore search for the antiscorbutic virtue in the tender sweet flesh of herbivorous animals; in new milk; and in the mucilaginous acid juices of recent vegetables, whether they be fruits, leaves, or roots.

The four juices of lemons, oranges, and limes, have been generally held as antiscorbutics in an eminent degree, and their power ascribed to their acid; from an idea that acids of all kinds are the only correctors of putrefaction. But the general current of practical observations...
observations show, and our experiments confirm it, that the virtue of these juices depends on their aerial principle; accordingly, while perfectly recent and in the unacclimated state, and especially if mixed with wine and sugar, the juices of any one of these fruits will be found a most grateful and powerful antiscorbutic.

Dr. Lind observing, "that the lemon-juice, when given by itself undiluted, was apt, especially if over-dosed, to have too violent an operation, by occasioning pain and sickness at the stomach, and sometimes a vomiting; therefore found it necessary to add wine and sugar. A pint of Madeira wine, and two ounces of sugar, were put to four ounces and a half of juice; and this quantity was found sufficient for weak patients to use in 24 hours; such as were very weak, a little of this frequently according as their strength would permit; others who were stronger took about two ounces of it every two hours; and when the patients grew still stronger, they were allowed eight ounces of lemon-juice in 24 hours."

While this very pleasant mixture, which is both a cordial and an antiscorbutic, may be had, it would be needless to think of prescribing any other; but when the fresh juice cannot be procured, we must have recourse to such other things as may be obtained. But the various modes of combining and administering these, so as to render them perfectly agreeable to the stomach, must always be regulated by circumstances, and therefore it will be in vain to lay down particular directions; since all that we have to do is, to fix on such fruits and other fresh vegetables as can be most conveniently had and taken, and contrive to give them in those forms, either alone or boiled up with flesh-meat into soups, that will allow the patients to consume the greatest quantities.

The first promising alteration from such a course is usually a gentle diarrhoea; and if, in a few days, the skin becomes soft and moist, it is an infallible sign of recovery; especially if the patient gain strength, and can bear being fuddled or carried into the open air without fainting.

But if the belly should not be loosed, by the use of the fresh vegetables, nor the skin become soft and moist, then they must be assisted by stewed prunes, or a decoction of tamarinds with cream of tartar; in order to abate the coltivenees; and by drinking a light decoction of the woods, and warm bathing, in order to relax the pores of the skin; for nothing contributes more to the recovery of scorbutic patients than moderate sweating.

With regard to particular symptoms, antiscorbutic mouth-waters composed of a decoction of the Peruvian bark and infusion of roves, with a solution of myrrh, must be used occasionally, in order to cleanse the mouth, and give firmness to the spongy gums. Swelled and indurated limbs, and stiffened joints, must be bathed with warm vinegar, and relaxed by the steam of warm water, repeatedly conveyed to them, and confined to the parts by means of close blankets; ulcers on the legs must never be treated with unfruitful applications nor sharp ecchymotises; but the dressing should consist of lint or soft rags, kept in a strong decoction of Peruvian bark.

This diæase, at no time requires, or indeed bears, large evacuations, either by bleeding or purging; and as has been already mention'd, the belly must only be kept open by the fresh vegetables or the mildest laxatives. But we are always to be careful that scorbutic persons, after a long abstinence from greens and fruits, be not permitted to eat voraciously at first, but they fall into a fatal dysentery.

All, however, that has now been laid down as necessary towards the cure, supposes the patients to be in situations where they can be plentifully furnished with all the requisites; but unhappily these things are not to be procured at sea, and often deficient in situations; therefore, in order that a remedy for the scurvy may never be wanting, Dr. Macbride, in the year 1762, first conceived the notion, that the infusion of mahl, commonly called Court, might be substituted for the common antiscorbutics; and it was accordingly tried.

More than three years elapsed before any account arrived of the experiments being made; at length ten histories of cafes were received, wherein the work had been tried, with very remarkable success; and this being judged a matter of great importance to the seafaring part of mankind, these were immediately communicated to the public in a pamphlet under the title of An historical account of a new method of treating the scurvy at sea.

This was in 1767; but after that time a considerable number of letters and medical journals, sufficient to make up a small volume, were transmitted to the author, particularly by the zealous efforts of his Britannic Majesty's ships who had been employed of late years for making discoveries in the southern hemisphere. Certain it is, that in many instances it has succeeded beyond expectation. In others it has fallen short; but whether this was owing to the untoward situation of the patients, or inattention on the part of the persons who were charged with the administration of the work, not preparing it properly, or not giving it in sufficient quantity, or to its own want of power, must be collected from the cafes and journals themselves.

During Captain Cook's third voyage, the most remarkable, in respect of the health of the crew, that ever was performed, the work is acknowledged to have been of singular use.

In a letter which this very celebrated and successful circumnavigator wrote to Sir John Pringle, he gives an account of the methods pursued for preserving the health of his people, and which were productive of such happy effects, that he performed "a voyage of three years and 18 days, through all the climates from 52° north to 71° south, with the loss of one man only by diæase, and who died of a complicated and lingering illness, without any mixture of scurvy. Two others were unfortunately drowned, and one killed by a fall; so that out of the whole number 118 with which he set out from England, he left only four."

He says, that much was owing to the extraordinary attention of the admiral, in causing such articles to be put on board as either by experience of conjecture were judged to tend most to preserve the health of men; and with respect to the work, he expresses himself as follows:

"We had on board a large quantity of mahl, of which
MEDICINE.

Cook had also a liberal supply of portable soup; of which the men had generally an ounce, three days in the week, boiled up with their peas; and sometimes it was served to them oftener; and when they could get fresh greens, it was boiled up with them, and made such an agreeable mefs, that it was the means of making the people eat a greater quantity of greens than they would otherwise have done. And what was still of further advantage, they were furnished with sugar in lieu of butter or oil, which is seldom of the sweetest sort; so that the crew were undoubtedly great gainers by the exchange.

In addition to all these advantages of being so well provided with every necessary, either in the way of diet or medicine, Captain Cook was remarkably attentive to all the circumstances respecting cleanliness, exercise, sufficient clothing, provision of pure water, and purification of the air in the closer parts of the ship.

From the effect of these different means, as employed by Captain Cook, there can be little doubt that they will with due attention be sufficient for the prevention and cure of the disease, at least in most situations: but besides these, there are also some other articles which may be employed with great advantage.

Newly brewed spruce-beer, made from a decoction of the tops of the spruce-fir and melafies, is an excellent antiscorbutic; it acts in the same way that the wort does, and will be found of equal efficacy, and therefore may be substituted. Where the tops of the spruce-fir are not to be had, this beer may be prepared from the essence of spruce as it has been called, an article which keeps easily for a great length of time. But in situations where neither the one nor the other can be had, a most salutary mefs may be prepared from oatmeal, by infusing it in water, in a wooden vessel, till it ferments, and begins to turn fourth; which generally happens, in moderately warm weather, in the space of two days.—The liquor is then strained off from the grounds, and boiled down to the confidence of a jelly, which is to be eat with wine and sugar, or with butter and sugar.

Nothing is more commonly talked of than a land-scurvy, as a distinct species of disease from that which has been now described; but no writer has yet given a description so clear as to enable us to distinguish it from the various kinds of cutaneous sores and eruptions, which indeed are vulgarly termed scorbutic, but which are akin to the itch or leprosy, and for the most part require mercurials. These, however, are very different diseases from the true scorbutus, which, it is well known, may prevail in certain situations on land as well as at sea, and is in no degree to be attributed to sea air.

Genus LXXXVII. ELEPHANTIASIS.

Elephantia Arabum, Vog. 332.

The best account of this disease is that by Dr. Heberden, published in the first volume of the Medical Transactions. According to him, frequently the first symptom is a sudden eruption of tubercles, or bumbs of different sizes, of a red colour, more or less intense (attended
Practice. M E D I C I N E.

attended with great heat and itching), on the body, legs, arms, and face; sometimes in the face and neck alone, at other times occupying the limbs only; the patient is feverish; the fever ceasing, the tubercles remain indolent, and in some degree firrhous, of a livid or copper colour, but sometimes of the natural colour of the skin, or at least very little altered; and sometimes they after some months ulcerate, discharging a fetid ichorous humor in small quantity, but never laudable pus.

The features of the face swell and enlarge greatly; the part above the eye-brows seems inflamed; the hair of the eye-brows falls off, as does the hair of the beard; but Dr Heberden has never seen any one whose hair has not remained on his head. The alna nasi are swollen and scarrous; the nostrils patulous, and sometimes affected with ulcers, which, corroding the cartilage and fpatium nasi, occasion the nose to fall off. The lips are tumid; the voice is hoarse; which symptom has been observed when no ulcers have appeared in the throat, although sometimes both the throat and gums are ulcerated. The ears, particularly the lobes, are thickened, and occupied by tubercles. The nails grow scabrous and rugosely, appearing something like the rough bark of a tree; and the surface of a tree; and the superfcies of thefe is remarkable for its shining appearance, as if it was varnished.

The breath is very offensive; the bowels in general weak and sluggish; the pulse in general weak and slow. The febile often attacks the patient in a different manner from that above described, beginning almost insensibly; a few indolent tubercles appearing on various parts of the body or limbs, generally on the legs or arms, sometimes on the face, neck, or breast, and sometimes in the lobes of the ears, increasing by very slow degrees, without any disorder, previous or concomitant, in respect of pain or uneasiness.

To distinguish the differen in its manner of attacking the patient. Dr Heberden styles the first by fluxion and the other by congestion. That by fluxion is often the attendant of a carapula, or furfeit from gross foods; whereby, perhaps, the latent seeds of the disease yet dormant in the mass of blood are excited, and probably from frequent observations of this kind (the last meal always having the blame laid on it), it is, that, according to the received opinion, either fif, (the tunny, mackerel, and shell-fish, in particular), melons, cucumbers, young garden-beans, or mulberries, eaten at the same meal with butter, cheese, or any preparation with milk, are supposed to produce the distemper, and are accordingly religiously avoided.

Violent commotions of the mind, as anger, fear, and grief, have more than once been observed to have given rise to the disorder; and more frequently, in the female sex, a sudden suppression of an accustomed evacuation, by bathing the legs and feet in cold water at an improper season.

The disorder by fluxion is what is the oftener endeavored to be remedied by timely application; that by congestion, not being so conspicuous, is generally either neglected or attempted to be concealed, unless perhaps it be too late to be cured, at least unless the patients would submit to a longer course of medicine and stricter regimen of diet than they are commonly inclined to do.

Several incipient disorders by fluxion have been known to yield to an antiphlogistic method, as bleeding, refrigerant salts, in the saline draughts, and a solution of crysftals of tartar in water, for common drink, (by this means endeavouring to precipitate part of the peecant matter, perhaps too gross to pass the pores by the kidneys); and when once the fever is overcome, the Peruvian bark combined with faithias is the remedy principally to be relied on. The only topical medicine prescribed by Dr Heberden, was an attenuating embrocation of brandy and alkaline spirit. By the same method some confirmed cases have been palliated. But, excepting in one patient he never saw or heard of a confirmed elephantiasis radically cured. He adds however, that he never met with another patient possessed of prudence and perseverance enough to prosecute the cure as he ought.

GENUS LXXXVIII. LEPRA.

This disease is but little known to physicians in the western parts of Europe. Wallis tells us, that it first begins with red pimples, or pustules, breaking out in various parts of the body. Sometimes they appear single; sometimes a great number arise together; especially on the arms and legs; as the disease increases, fresh pimples appear, which, joining the former, make a sort of chulters; all which enlarge their borders, and spread in an orbicular form. The superficies of these pustules are rough, whitish, and scaly; when they are scratched the scales fall off, upon which a thin ichor oozes out, which soon dries and hardens into a scaly crust. These chulters of pustules are at first small and few; perhaps only three or four in an arm or leg, and of the size of a silver penny. But if the disease be suffered to increase, they become more numerous, and the chulters increase to the size of a crown-piece, but not exactly round. Afterwards it increases to such a degree, that the whole body is covered with a leprous leuc. The cure of this distemper is very much the...
MEDICINE.

Impregnated with that of the ELEPHANTIASIS. Here, however, recourse is frequently had to antimonial and mercurial medicines, continued for a considerable length of time. In conjunction with these, warm bathing, particularly the vapour bath, has often been employed with advantage.

Although what can strictly be called leprosy is now at least, a very rare disease in this country, yet to this general head may be referred a variety of cutaneous affections which are there very common, and which in many instances prove very obstinate. These appear under a variety of different forms; sometimes under that of red pustules; sometimes of white scurf; sometimes of ulcerations; and not unfrequently a transition takes place from one form to another, so that they cannot be divided into different genera from the external appearance. These affections will often yield to the remedies already mentioned; but where antimonials and mercurials either fail, or from different circumstances are considered as unadvisable, a cure may sometimes be effected by others. In particular caules, purging mineral waters, the decoction of elm bark, the infusion of the ananthe crocata, and various external applications also have been employed with success. Different external applications also have sometimes been employed with advantage. An article used in this way, known under the name of Gowland's lotion, with the composition of which we are unacquainted, has been much celebrated, and has been said to be used with great success, particularly against eruptions on the face and nose.

GENUS LXXXIX. FRAMBOESIA.
The Yaws.

Frambezia, Saw. gen. 125. Sig. 125.

Definition. The description which is given of this disease by the anonymous author of a paper in the sixth volume of the Edinburgh Medical Essays (art. 76.) differs, in some circumstances, from that of Sauvages, received from M. Virgile, an adjutant surgeon of Montpelier, who practiced 12 years in the island of St. Domingo; and therefore he distinguishes the frambeia into two species, Guineensis and Americana.

The frambeia Guineensis is said by the first mentioned writer to be so common on the coast of Guinea and other parts of Africa, that it seldom fails to attack each individual of both sexes, one time or other in the course of their lives; but most commonly during childhood or youth. "It makes its appearance in little spots on the cuticle, level with the skin, at first no larger than a pin's head which increase daily, and become protuberant like pimples; soon after the cuticle frets off, and then, instead of finding pus or scurf, in this small tumor, only white floughs or fordes appear, under which is a small red fungus growing out of the cutis, increasing gradually to very different magnitudes, some less than the smallest wood strawberry, some as big as a raphberry, and others exceeding in size even the largest mulberries; which berries they very much resemble, being knobbled as they are." These protuberances, which gave the name to the disease, appear on all parts of the body; but the greatest numbers, and the largest fixed, are generally found in the groins, and about the pudenda or anus, in the arm-pits, and on the face, when the yaws are very large, they are few in number; and when remarkably numerous, they are less in size. The patients, in all other respects, enjoy good health, do not lose their appetite, and seem to have little other uneasiness than what the disease occasion.

M. Virgile describes the species of yaws that is common among the negroes of St. Domingo, and which Sauvages has termed frambeia Americana, as beginning from an ulcer that breaks out indeterminately in different parts of the body, though most commonly on the legs; at first superficial, and not different from a common ulcer in any other circumstances save in healing by the usual applications; sooner or later, numerous fungous excrescences break out on the surface of the body, as before described, like little berries, with a reddish mucous. Besides these, the soles of the feet and palms of the hands became raw, the skin fretting off, so as to leave the muscles bare; these excoriations are sometimes moist with ichor and sometimes dry, but always painful and consequently very distressful. They are mentioned also by the author of the article in the Medical Essays; and both he and M. Virgile observe, that there is always one excrescence, or yaw, of an uncommon size, which is longer in falling off than the others, and which is considered as the naffiver yaw, and so termed. An ingenious inguinal dissection on the subject of the yaws was lately published at Edinburgh by Dr. Jonathan Anderson Ludford, now physician in Jamaica. The author of that dissection considers Dr. Cullen as improperly referring frambeia to the class of cachexia. He thinks that this disease ought rather to be referred to the exanthemata; for, like the small-pox, he tells us it has its accession, height, and decline. It begins with some degree of fever, either more or less violent; it may be propagated by inoculation; and it attacks the same individual only once in the course of a lifetime, those who once recover from the disease being never afterwards affected with it. These particulars respecting frambeia are refted not merely on the authority of Dr. Ludford, but are supported also by the testimony of Dr. William Wright, a physician of distinguished eminence, who, while he resided in Jamaica, had, in the course of extensive practice, many opportunities of observing this disease, and to whom Dr. Ludford acknowledges great obligations for having communicated to him many important facts respecting it.

Dr. Ludford considers the yaws as being in every instance the consequence of contagion, and as depending on a matter sui generis. He considers no peculiar predisposition from diet, colours, or other circumstances, as being in any degree necessary. He views the disease as chiefly arising from contact with the matter, in consequence of sleeping in the same bed, washing in the same vessel with the infected, or the like. In short, the yaws may be communicated by any kind of contact; nay, it is even believed that flies often convey the infection, when, after having gorged themselves with the virulent matter by sucking the effusions of those who are diseased, they make punctures in the skin of such as are found, and thus inoculate them; in consequence of which the disorder will soon appear, provided the morbid disposition of body be present.

Prognosi. The yaws are not dangerous, if the cure
The cure of this disease, the four following indications are chiefly to be held in view:

1. To support the strength of the patient.
2. To promote excretion by the skin.
3. To correct the vitiated fluids.
4. To remove and counteract the injuries done either to the constitution in general, or to particular parts by the disease.

With the first of these intentions, a liberal diet, consisting of a considerable quantity of animal food, with a considerable proportion of wine, and gentle exercise, are to be employed: but the cure is principally to be effected by mercurial salivation, after the virulent matter has been completely thrown out to the surface of the body by sudorifics. The following are the particular directions given on this head by the author of the article in the Medical Essays. The yaws being an infectious disease, as soon as they begin to appear on a negro, he must be removed to a house by himself; or if it is not certain whether the eruption be the yaws or not, let him up seven days, and look on him again, as the Jews were commanded to do with their lepers, and in that time you may be commonly certain.

As soon as you are convinced that it is the yaws, give a bolus of flowers of sulphur, with camphor and theriaque. Repeat this bolus every night for a fortnight or three weeks, or till the yaws come to the height; that is, when they neither increase in size or number: then throw your patient into a gentle salivation with calomel given in small doses, without further preparation; five grains repeated once, twice, or thrice a-day, is sufficient, as the patient can bear it. If he spits a quart in 24 hours, it is enough. Generally, when the salivation is at this height, all the yaws are covered with a dry scaly crust or scab; which, if numerous, look terrible. These fall off daily in small white scales; and in ten or twelve days leave the skin smooth and clean. Then the calomel may be omitted, and the salivation permitted to go off of itself. A dram of corrosive sublimate dissolved in an ounce of rum or brandy, and the solution doused on the yaws, will, if it is laid, keep the yaws from coming back. The yaws will be cured in two days.

After the salivation, sweet the patient twice or thrice in a frame or chair with spirits of wine; and give an alterative electuary, of aniseed and gum guaiac. He may likewise use the decoction of guaiacum and saffranis fermented with melafles, for his constant drink while the electuary is taking, and a week or a fortnight after the electuary is finished.

The matter-yaw must be confumed an eighth or a tenth of an inch below the skin, with Mercur. corros. rub. & alum. aq. an. part. equal. and digested with Ung. bals. flav. 3l. and mercur. corros. rub. 3l. and cistisized with lint prepur'd out of spirits of wine, and with the vitriol of copper.

After the yaws are cured, some patients are afflicted with carbuncles in their feet; which sometimes render them incapable of walking, unless with pain. The method of cure is, by bathing and purging, to destroy the cuticle, and then proceed as in the matter-yaw. The gentle sudorifics are to be preferred, especially here; and all imaginable care is to be taken to avoid the tendons and periosteum.

To children under six or seven years old, at the proper time of salivating, when the yaws are come to their full growth, give a grain or two of calomel in white sugar, once a-day, once in two days, or once in three days, to keep their mouths a little open till the yaws dry, and, falling off in white scales, leave the skin clean. This succeeds always, but requires a longer time than in adults.

In St Domingo they salivated byunction: but it does not appear that success always followed this practice. It is also usual in that island to give the solution of corrosive sublimate along with a decoction of farapallita. Twelve ounces of this root, and 12 pounds of the coarsest sugar, macerated for 15 days in 12 quarts of water, is mentioned as a specific, and said to be the prescription of an English physician; the dose is four ounces every fifth hour.

Genus XC. TRICHOMA.

The Plica Polonica, or Platted Hair.

Trichoma, Sauv. gen. 311. Sag. 137.
Plica, Lin. 313.
Plica five Rhopolasia, Veg. 323.

This disorder is only met with in Poland and Lithuania, and consists of several blood-vessels running from the head into the ends of the hairs; which cleave together, and hang from the head in broad flat pieces, generally about an ell in length, but sometimes they are five or six yards long; one patient hath more or less of these, up to 20, and sometimes 50. They are painful to the wearer, and odious to every spectator. At the approach of winter an eruptive fever happens to many in these countries: the eruptions principally infect the head, and when at the height an ichorous humour flows from them. In this state they are too tender to admit of being touched, and the matter running down the hairs matt them together; the skin by degrees breaking, the ramifications of the capillary vessels following the course of the hair, or prolonged out of the skin are increased to a vast length.

No method of relief is yet known; for if the discharge be checked, or the vesseles cut off, the consequence is an increase of more miserable symptoms, and in the end death. Sensers says, when all the morbid matter is thrown out of the body the plica fall off spontaneously. He further observes, that the only safe practice in this case is, to solicit the pecent matter to the hairs, to which it naturally tends; and that this is best answered by lotions of bear's breech. Some say that a decoction of the herb club-moss, and its roots, with which the head is to be washed, is a specific.

Genus XCL ICTerus.

The Jaundice.

Cachexia Icterica, Hoffw. Ill. 301.

Q 2

Description.
MEDICINE.

The jaundice first shows itself by a lightening and want of appetite, the patient becomes dull, oppressed, and generally cold. These symptoms have continued but a very short time, when a yellow colour begins to diffuse itself over the tunic aterculina or white part of the eye, and the nails of the fingers; the urine becomes high coloured, with a yellowish sediment capable of giving a yellow tint to linen; the stools are whitish or grey. In some there is a most violent pain in the epigastric region, which is considered as being a paroxysm incapable of giving a yellow colour to the urine; and which can be cured by no means till the concretion is either passed entirely through the ductus communis or returned into the gall-bladder. Sometimes, in the opinion of many celebrated physicians, the jaundice is occasioned by spasmodic contractions of the ducts; but this is denied by others, and it is not yet ascertained whether these ducts are capable of being affected by spasm or not, as the existence of muscular fibres in them has not with certainty been discovered. It cannot, however, be denied, that violent fits of passion have often produced jaundice, sometimes temporarily, but frequently permanent. This has been by some deemed a sufficient proof of the spasmodic contraction of the ducts; but their opponents suppose, that the agitation occasioned by the passion might push forward some biliary concretion into a narrow part of the duct, by which means a jaundice would certainly be produced, till the concretion was either driven backward or forward into the duodenum altogether. But even supposing the ducts themselves to be incapable of spasm, yet there can be no doubt that by a spasm of the intestines biliary concretions may be retained in the ducts; and indeed it is principally where the duct entering obliquely into the intestines forms as it were a species of valve that these concretions are retained.

In a very relaxed state of the body there is also an absorption of the bile, as in the yellow fever; and in all putrid disorders there is a kind of yellowish tint over the skin, though much less than in the true jaundice. The reason of this is, that in these disorders there is usually some degenerated secretion of bile, commonly of a thinner consistence than in the healthy state, while the orifices of the lymphatics are probably enlarged, and thus ready to absorb a fluid somewhat thicker than what they ought to take up in a healthy state; but these diseases are of short duration in comparison with the real jaundice, which sometimes lasts for many years. These affections, however, cannot with propriety in any case be considered as real instances of jaundice; for to constitute that disease, bile must not only be present in the blood, but wanting in the alimentary canal.

It is observable, that women are more subject to jaundice than men, which probably arises from their more sedentary life; for this, together with some of the depressing passions of the mind, are found to promote the accidet of the disease, if not absolutely to produce it. Pregnant women are also frequently attacked by the jaundice, which goes off after their delivery.

Prognosis. As jaundice may arise from many different causes, some of which cannot be discovered during the patient's life, the prognosis must on this account be very uncertain. The only cases which admit of...
of a cure are those depending upon biliary concretions, or obstructions of the biliary ducts by viscid bile; for the concretions are seldom of such a size that the ducts will not let them pass through, though frequently not without extreme pain. Indeed this pain, though so violent, and almost intolerable to the sick person, affords the best prognostic; as the physician may readily assure his patient that there is great hope of his being relieved from it. The coming on of a gentle diarrhoea, attended with bilious stools, together with the effusion of pain, are signs of the disease being cured. We are not however, always to conclude, because the disease is not attended with acute pain, that it is therefore incurable; for frequently the passage of a concretion through the biliary ducts is accompanied only with a fenation of flight uneasiness.

Cures. The great object to be aimed at in the cure of jaundice is unquestionably the removal of the cause which obstructs the passage of bile into the intestine: But before this can be accomplished, practices are often necessary for alleviating urgent symptoms; which may be done sometimes by supplying the want of bile in the alimentary canal, sometimes by affording an exit for bilious matter from the general mass of blood, but most frequently by obviating the effects of distention and obstruction to the circulation in the system of the liver.

The measures to be employed for the removal of the obstruction must depend very much on the nature of the obstructing cause. When the jaundice arises from indurated swellings or fistula of the vifera, it is absolutely incurable; nevertheless, as these cannot always be discovered, the physician ought to proceed in every case of jaundice as if it arose from calculi. The indications here are, 1. To dissolve the concretions; and 2. To prevent their formation a second time. But unhappily the medical art has not yet afforded a solvent for biliary concretions when dried straw is involved; for the juice of common grass has indeed been tried out with no success; and in the same manner with vomits, which are often made use of in the jaundice, the patient is by no means equal to the common evacuation by food; nor can all the attempts to supply the want of bile in the intestines by bitters and other remedics restore the patient to his wonted appetite and vigour. If the pain be very violent, we must on all occasions have recourse to opiates; or if the blood has acquired a tendancy to distillation, it must be counteracted by proper antifeptics.

If the disease goes off, its return must be prevented by a course of tonic medicines, particularly the Peruvian bark and antifeptics: but we can by no means be certain that the jaundice will not return, and that at any interval; for there may be a number of concretions in the gall-bladder, and though one hath paffed, another may very quickly follow, and produce a new fit of jaundice; and thus some people have continued to be afflicted with the distemper, at short intervals, during life.

In the East-Indies, mercury has been lately recommended as exceedingly efficacious in disorders of the liver, especially those which follow intermitting and remitting fevers. Dr. Monroe, in his observations on the means of preserving the health of soldiers, acquaints us, that he has seen some sick cases which, he thought,
MEDICINE.

Practice.

It is received benefit from taking a few grains of mercurius dulcis at night and a purge next morning; and this repeated two or three times a week.

Infants are subject to a temporary jaundice, commonly called the gum, soon after birth, the cause of which is not well understood. It differs remarkably from the common jaundice; as, in the latter, the disease is first discoverable in the white of the eyes; but though the skin of infants in the gum is all over yellow, their eyes always remain clear. The disorder goes off spontaneously, or by the use of a gentle purgative or two.

CLASS IV. LOCALES.

VITIA, Sav. Clas I. Lin. Cl. XI. Veg. Cl. X. Seg. Cl. I.

Plagis, Sav. Cl. II.

Morni organici Autorum.

ORDER I. DYSÆSTHESIÆ.

Dysœsthesia, Sav. Cl. VI. Ord. I. Seg. Cl. IX. Ord. I.

GENUS XII. CALIGO.

The Catarract.

Catarrha, Lin. 169.

A catarrh is an obstruction of the pupil, by the interposition of some opaque substance which either diminishes or totally extinguishes the sight. It is generally an opacity in the crystalline humour. In a recent or beginning catarrh, the same medicines are to be used as in the gutta serena; and they will sometimes succeed. But when this does not happen, and the catarrh becomes firm, it must be coughed, or rather extruded; for which operation, see SURGERY.—Dr Buchan says he has resolved a recent catarrh by giving the patient some purges with calomel, keeping a poultice of fresh hemlock constantly upon the eye, and a perpetual blister on the neck.

There is, however, but little reason to suppose that these practices will frequently succeed. A resolution can only be effected here by an aborption of the opaque matter; and where this is possible, there is perhaps a better chance of its being effected by the agency of the electric fluid than by any other means. For this purpose electricity is chiefly applied under the form of the electric cure, as it has been called; but even this is very rarely successful.

GENUS XCIII. AMAUROSIS.

The Gutta Serena.

Amblyopia, Lin. 108. Veg. 236.

A gutta serena is an abolition of the sight without any apparent cause or fault in the eyes. In every case it depends on an affection of some part of the optic nerve. But the affections which may produce this disease are of different kinds. When it is owing to a decay or wasting of the optic nerve, it does not admit of a cure; but when it proceeds from a compression of the nerves by redundant humours, there may be in some measure drained off, and the patient relieved. For this purpose, the body must be kept open with the laxative mercurial pills. If the patient be young, and of a fanguine habit, he may be bled. Cupping with scarifications on the back part of the head will likewise be of use. A running at the nose may be promoted by volatile salts, stimulating powders, &c. But the most likely means of relieving the patient, are blisters or blisters kept open for a long time on the back part of the head, behind the ears, or on the neck; which have been known to restore sight even after it had been for a considerable time lost. Should these fail, recourse must be had to a mercurial fulivation; or, what will perhaps answer the purpose better, 13 grains of the corrosive sublimate mercury may be dissolved in an English pint and a half of brandy, and a table-spoonful of it taken twice a-day, drinking half a pint of the decoction of farfaparilla after it.—Oil of iodine has been much celebrated as efficacious, when no other thing could do service, and here it has in some degree the fame chance of success as in other cases of insensibility, depending on an affection of the nerves, in some of which it has certainly in particular cases been of use.

In the amaurosis, Dr Porterfield observes, that it is of the utmost consequence to know of how long standing the disease has been; which is not always easily done if one eye only be affected. This is a very essential point; because an amaurosis of long standing is altogether incurable. Mr Boyle mentions the case of a man who had a catarrh for several years without knowing it himself, though others did. He discovered it at last by happening to rub his sound eye, and was surprised to find himself in the dark. When a person therefore has a gutta serena only in one of the eyes, he may think that the eye has but lately lost the power of sight; though this perhaps has been the case for several years. On the other hand, he may imagine that a recent disease of this kind is really of long standing. But by inquiring at what time he first became subject to mistakes in all actions that require the distance to be exactly distinguished, as in pouring liquor into a glass, snuffing a candle, threading a needle, we may discover the age of the disease, and thence be assisted to form a more just prognostic with respect to its cure. Dr Porterfield gives an instance of his conjecturing in this manner concerning the case of a young lady who had discovered a loss of sight in one of her eyes only the day before. The disease was thought to be of long standing; but as the Doctor found that she had only been subject to mistakes of the kind abovementioned for about a month, he drew a favourable prognostic, and the disease was cured.

GENUS XCIV. DYSPHIA.

Diminished Vision.

Amblyopia, Sav. gen. 154. Seg. 258.

There are several species referred to this genus by Dr Cullen, viz.

1. Dysopia Tenebrarum; 2. Dysopia Luminalis.—The former of these is properly the nyctalopia, or night-blindness,
The functions of the ear may be injured by wounds, ulcers, or any thing that hurts its fabric. The hearing may likewise be hurt by excessive noise; violent colds in the head; fevers; hard wax, or other substances sticking in the cavity of the ear; too great a degree of moisture or dryness of the ear. Deafness is very often the effect of old age, and is incident to most people in the decline of life. Sometimes it is owing to an original fault in the structure or formation of the ear itself. When this is the case it admits of no cure; and the unhappy perfon not only continues deaf, but generally becomes dumb, for life.

When deafness is the effect of wounds or ulcers of the ears, or of old age, it is not easily removed. When it proceeds from cold applied to the head, the patient must be careful to keep his head warm, especially in the night; he should likewise take some gentle purges, and keep his feet warm, and bathe them frequently in lukewarm water at bed-time. When deafness is the effect of a fever, it generally goes off after the patient recovers. If it proceeds from dry wax sticking in the ears, it may be softened by dropping oil into them; afterwards they must be syringed with warm milk and water.

If deafness proceeds from dryness of the ears, which may be known by looking into them, half an ounce of the oil of sweet almonds, and the same quantity of camphorated spirit of wine, or tincture of aaffetida, may be mixed together, and a few drops of it put into the ear every night at bed-time, dropping them afterwards with a little wool or cotton. Some, instead of oil, put a small slice of the fat of bacon into each ear which is said to answer the purpose very well. When the ears abound with moisture, it may be drained by an infusion of aconite, which should be made as near the affected parts as possible.

Some, for the cure of deafness, recommend the gall of an eel mixed with spirit of wine, to be dropped into the ear; others, equal parts of Hungary-water and spirit of lavender. Etneller extols amber and musk; and Brookes says, he has often known hardness of hearing cured by putting a grain or two of musk into the ear with cotton-wool. Where, however, an application with considerate stimulant power is necessary, camphorated oil with the addition of a few drops of volatile alkaline spirit, may be considered as the best. It is proper however, to begin with a small quantity of the alkali, increasing it as the ear is found to bear it. In some infirmities, where deafness depends on a state of insensibility in the nerves, electricity, particularly under the form either of sparks or of the electric aura, has been employed with great success. But these and other applications must be varied according to the cause of the disorder.

Though such applications may sometimes be of service, yet they much oftener fail, and frequently they do hurt. Neither the eyes nor ears ought to be tampered with; they are tender organs, and require a very delicate touch. For this reason, what we would chiefly recommend in deafness, is to keep the head warm. From whatever cause this disorder proceeds, this is always proper; and more benefit has often been derived from it alone, in the most obdurate cases of deafness, than from any medicines whatever.
Anosnia, Sauv. gen. 156. **Genus C. ANESTHESIA.**

Defect of the Sense of Feeling.

Caus. &c. This sense may be hurt by any thing that obstructs the nervous influence, or prevents its being regularly conveyed to the organs of touching, as pressure, extreme cold, &c. It may likewise be hurt by too great a degree of sensibility, when the nerve is not sufficiently covered by the cuticle or scurf-skin, or where there is too great a tension of it, or it is too delicate. Whatever disorders the functions of the brain and nerves, hurts the sense of touching. Hence it appears to proceed from the same general causes as palsy and apoplexy, and requires nearly the same method of treatment.

In a fluxor, or defect of touching, which arises from an obstruction of the cutaneous nerves, the patient must first be purged; afterwards such medicines as excite the action of the nerves, or stimulate the system, may be used. For this purpose, the spirit of turpentine, either by itself or combined with essential oils, horse-radish, &c. may be taken inwardly; the disordered parts, at the same time, may be frequently rubbed with fresh nettles or spirits of salt ammoniac. Blisters and finapisms applied to the parts will likewise be of use; and also warm bathing, especially in the natural hot-baths.

Genera

DEFECT OF SMELLING.

Anosmia. Sauv. gen. 156. *Genus XCVIII. ANOSMIA.**

Defect of smelling.

S. 262.

Caus. Morbid affections in the sense of smelling, may be considered with respect to their causes, as arising from one of two sources; either from some organic affection of the parts here principally concerned, or from a mere atonic state of the parts without any obvious affection. The sense of smelling may be diminished or destroyed by various diseases of the parts; as, the moisture, dryness, inflammation or suppuration of that membrane which lines the inside of the nose commonly called the olfactory membrane; the compression of the nerves which supply this membrane, or some fault in the brain itself at their origin. A defect, or too great a degree of solidity of the small spongy bones of the upper jaw, the cavities of the forehead, &c. may likewise impair the sense of smelling. It may also be injured by a collection of fetid matter in those caverns, which keeps constantly exhalming from them. Few things are more hurtful to the sense of smelling than taking great quantities of off-flavours.

Cure. When the nose abounds with moisture, after gentle evacuations, such things as tend to take off irritation and coagulate the thin sharp serum may be applied; as the oil of anise mixed with fine flour, camphire dissolved in oil of almonds, &c. The vapours of amber, frankincense, gum-mastic, and benjamin, may likewise be received into the nose and mouth. For moistening the mucus when it is too dry, some recommend snuff made of the leaves of marjoram, mixed with oil of amber, and aniseed; or a fermentatory of calcined white vitriol, 12 grains of which may be mixed with two ounces of marjoram-water and filtrated. The steam or vapour of vinegar thrown upon hot iron received up the nostrils is likewise of use for softening the mucus, opening obstructions, &c.

If there be an ulcer in the nose, it ought to be dressed with some emollient ointment, to which, if the pain be very great, a little laudanum may be added. If it be a veneral ulcer, it is not to be cured without mercury. In that cafe, the solution of the corrosive sublimate in brandy may be taken, as directed in the gutta perena. The ulcer ought likewise to be washed with it; and the fumes of cinnamon may be received up the nostrils.

If there be reason to suspect that the nerves which supply the organs of smelling are inert or want stimulating, volatile fats, strong snuff, and other things which occasion freezing, may be applied to the nose. The forehead may likewise be anointed with balsam of Peru, to which may be added a little of the oil of amber.

DEFECT OF TASTE.

Ageustia. Sauv. gen. 157. *Genus XCIX. AGEUSTIA.**

Defect of tasting.

Apogeustia, *Vog. 449.*

Caus. This defect also may arise either from an organic affection, or an atomic state of the parts. The taste may be diminished by crafts, filth, mucus, ageutia, aphthae, pellicles, warts, &c. covering the tongue; it may be depraved by a fault of the salivary, which being discharged into the mouth, gives the same sensation as if the food which the person takes had really a bad taste; or it may be entirely destroyed by injuries done to the nerves of the tongue and palate. Few things prove more hurtful either to the sense of tasting or smelling than obstinate colds, especially those which affect the head.

Cure. When the taste is diminished by filth, mucus, &c. the tongue ought to be scraped, and frequently washed with a mixture of water, vinegar, and honey, or some other detergent. When the salivary is vitiated, which seldom happens unless in fevers or other diseases, the curing of the disorder is the cure of this symptom. To relieve it, however in the mean time, the following practices may be of use: if there be a bitter taste, it may be taken away by vomits, purges, and other things which evacuate bile; what is called a nidorous taste, rising from putrid humours, is corrected by the juice of citrons, oranges, and other acids; a salt taste is cured by plentiful dilution with watery liquors: an acid taste is destroyed by absorbents and alkaline salts, as powder of oyster-shells, salt of wormwood, &c.

When the sensibility of the nerves which supply the organs of taste is diminished, the chewing of horseradish, or other stimulating substances, will help to recover it.

DEFECT OF HEARING.

Deafness. Sauv. gen. 156. *Genus XC. DEAFNESS.*

Defect of hearing.

S. 262.

Caus. This defect may arise from the soft hinder parts of the head, or from some disordered parts of the middle ear, or from some affection of the nerves which supply the sense of hearing. This feeling of hearing is produced by the waves of the air, which are refracted or diffracted by a sound, and then converted into a sense of hearing.

Cure. When the sense of hearing is hurt by the noise of hunting, or a certain noise of machines, the following medicines may be used. To relieve the hearer, when the sense of hearing is most hurt, the patient may apply the following medicines: as a violent headache, or other things that affect the sense of hearing, is one of the causes that provoke the sense of hearing.

OF THE SENSES.

APPETITUS ERRONEI.

Sect. I. *APPETITUS ERRONEI.*

Morostates, Sauv. Clas. VIII. Order II. *Sag. Clas. XIII. Order II.*

Pathetici,
This disease is commonly owing to some fault in the stomach, by which the aliments are thrown out too soon; and unless the person be indulged in his desire for eating, he frequently falls into fainting fits. Sometimes it is attended with such a flate of the stomach, that the aliment is rejected by vomit almost immediately after being swallowed; after which the appetite for food returns as violent as ever. But there are many circumstances which seem to render it probable that it more frequently arises from a morbid condition of the secreted fluid poured into the stomach, by means of which the aliment is diffused. When the activity of this fluid is morbidly increased, it will both produce too sudden a solution of the solid aliment, and likewise operate as a powerful and peculiar stimulus to the stomach, giving an uneasy sensation, similar to that which takes place in natural hunger. Such things are proper for the cure as may enable the stomach to perform its office: chalybeates and other tonics will generally be proper. In some, brandy drunk in a morning has been useful; and frequent smoking tobacco has relieved others. Oil, fat meat, pork, opiates, and in short every thing which, in a found person would be most apt to pall the appetite, may also be used as temporary expedients, but cannot be expected to perform a cure. In some, the pylorus has been found too large; in which case the disease must have been incurable.

Genus CIV. NYMPHOMANIA.

Furor Uterinus.

Satyria is a violent desire of venery in men, even so that reason is deprived by it. The pulse is quick, and the breathing short; the patient is sleepless, thirsty, and loathes his food; the urine is evacuated with difficulty, and a fever soon comes on. These symptoms, however, are probably not so much the consequence of satyria, as merely concomitant effects resulting from the same cause. And indeed this affection is most frequently the concomitant of a certain modification, of infancy. The nature and cause of this affection are in most instances very little ascertained; but as far as we are acquainted with the treatment, it agrees very much with the affection next to be mentioned, which, of the two, is the most common occurrence.

Genus CV. PICA.

Longing, or False Appetite.

Pica, Sauv. gen. 222. Sag. 334.
Citta, Lin. 78.
Allo triophagia, Vog. 299.
Malacia, Vog. 300.

The pica is also very generally symptomatic of other diseases, as of worms, chlorosis, pregnancy, &c.; and is therefore chiefly to be combated by the removal of the primary affection. It may, however, be observed, that peculiar longings occurring in certain dis-
Genus CVI. NOSTALGIA.

Vehement Desire of Reviving one's Country.

This is to be reckoned a species of melancholy; and unless it be indulged, it very commonly proves not only incurable but even fatal. Although it cannot be confidered as altogether peculiar to any nation, yet there is reafon to believe that it happens more frequently in some than with others; and it has particularly been remarked among Swits soldiers in the service of foreign states.

Sect. II. APPETITUS DEFICIENTES.

Anepithymia, Sauv. Clafs VI. Ord. II. Sag. IX. Ord. II.

Privativi, Lin. Clafs VI. Order III.

Adynamie, Vog. Clufs VI.

Genus CVII. ANOREXIA.

Want of Appetite.

The anorexia is symptomatic of many difeafes, but seldom appears as a primary affection; and it is very generally overcome only by the removal of the affection on which it depends.

Genus CVIII. ADIPSIA.

Want of Thirst.

This by Dr Cullen is reckoned to be always symptomatic of some difterperation affecting the fenforium commun.

Genus CIX. ANAPHRODISIA.

Impotence to Venery.

Anaphrodisia, Sauv. gen. 164. Sag. 270.

Atenicia, Lin. 119.

Ageneia, Vog. 283.

For this, fee the article Impotence in the alphabetical order.

Order III. DYSCINESIÆ.

Genus CX. APHONIA.

Loo of Voice.

The loss of voice may proceed from various caufes. If one of the recurrent nerves, which are formed by the par vagum and the nervus accessorius, and reach the larynx, be cut the person is capable of only as it were a half-pronunciation; but if both be cut, the speech and voice are both loft. The loss of speech happening in hysteric patients is also called aphonia; but more properly that loss of speech is thus named which depends on some fault of the tongue.

Seeing that the motion of any part is destroyed, or leffened at leaft, by the interception of the nervous fluid in its passage thither, and that the nerves defigned for the motion of the tongue arife principally from the fifth pair, it appears that the feat of this disorder is in the faid fifth pair of nerves, and that the immediate caufe is a diminution or total deftruction of the nervous power in them. Hence a pally of the tongue, which is either antecedent or fubfequent to hemiplenic or apoplectic disorders, demand our utmost attention.

If an aphonia appears alone, it generally befits an approaching hemiplegia or apoplexy; but if it succeed these disorders, and is complicated with a weak memory and a sluggishness of the mental powers, it threatens their return. That aphonia usually terminates the fett which proceeds from a diaphragmation of the feroous humours comprifing the branches of the fifth pair of nerves, which run to the tongue; but it is no lefs afflactive to the patient, and is very obdurate of cure.

Other caufes of this disorder are, the striking in of eruptions on the skin, a congefion of blood in the fauces and tongue, obftructed periodical evacuations in plethoric habits, fpaftic affections, worms, a crum of bread falling into the larynx, fear, too free an ufe of spiritual liquor; aften whatever deftrays the ligaments which go from the artenuroid to the thyroid cartilages, will deftray the voice.

The prognofis vary according to the caufe or caufes. That species which is owing immediately to fpafts,foon gives way on the removal of them. If a pally of the tongue be the caufe, it is very apt to return, tho' relieved, but often continues incurable.

In order to the cure, we muft endanger first to remove whatsoever obftructs the influx of the nervous fluid into the tongue, and secondly to strengthen the weak parts. Thefe general intentions, in all cafses, being regarded, the particular caufes muft be removed as follows:

If worms be the caufe, anti-fpaftic medicines may give pre-"
MEDICINE.

Genus CXI. Mutitas, Dumbness.

Dumb people are generally born deaf; in which case the dilatation is incurable by medicae; though even such people may be taught not only to read and write, but also to speak and to understand what others say to them. For some observations on the method in which this has been accomplished, we may refer the reader to the article Dumbness in the alphabetical order. But in such cases, admitting of cure in the manner above alluded to, the dumbness proceeds principally, if not solely, from the deafness. For when it proceeds from a defect of any of the organs necessary for speech, the tongue for instance, it is always incurable; but if it arise from a palsy, the medicines applicable in that case will sometimes restore the speech.

Genus CXII. Paraphonia. Change in the Sound of the Voice.

Paraphonia. Sauv. gen. 168.
Cacophonía. Sag. 274.
Raucedo. Lin. 145.
Rancitás. Vog. 252.
Aphasia. &c. Sig. 250, 251, 254, 255, 256.

The voice may be changed from various causes. In males it becomes much more hard about the time of puberty; but this can by no means be reckoned a disease. In others it proceeds from a catarrh, or what we call a cold; it arises also from affections of the nose and palate, as polypi, ulcers, &c. in which case the cure belongs properly to surgery. In some it arises from a laxity of the velum pendulum palatii and glottis, which makes a kind of snoring noise during inspiration. The cure of this last case is to be attempted by tonics and such other medicines as are of service in diseases attended with laxity.

Genus CXIII. Pfellismus. Defect in Pronunciation.

Of this disease (if such it may be called), there are many different kinds. Some cannot pronounce the letter S; others labour under the same difficulty with R, L, M, K, &c.; while some can with sufficient ease pronounce all the letters, yet repeat their words, or the first syllables of them, in such a strange manner, that they can scarce be understood. Very frequently these defects arise entirely from habit, and may then be got the better of by those who have the resolution to attempt it; as we are told that Demosthenes the celebrated orator got the better of a habit of stammering by declaiming with pebbles in his mouth. Sometimes, however, pronunciation may be impeded by a wrong conformation of the tongue or organs of speech; and then it cannot by any pains whatever be totally removed.

Genus CXIV. Strabismus. Squinting.

Sag. 222.

Description. This disease flows itself by an uncommon contraction of the muscles of the eye; whereby the axis of the pupil is drawn towards the nose, temples, forehead, or cheeks, so that the person cannot behold an object directly.

Causes, Prognostic, &c. 1. This disease may proceed from custom and habit; while in the eye itself, or in its muscles, nothing is preternatural or defective.

Thus children by imitating those that squint, and infants by having many agreeable objects presented to them at once, which invite them to turn one eye to one and the other eye to another, do frequently contract a habit of moving their eyes differently, which afterwards they cannot so easily correct. Infants likewise get a custom of squinting by being placed obliquely towards a candle, window, or any other agreeable object capable of attracting their sight; for though, to see the object, they may at first turn both eyes towards it; yet because such an oblique situation is painful and laborious, especially to the most distant eye, they soon relax one of the eyes, and content themselves with examining it with the eye that is next it; whence arises a diversity of situation and a habit of moving the eyes differently.

In this case, which may admit of a cure if not too much confirmed, it is evident, that objects will be seen in the same place by both eyes, and therefore must appear single to other men; but because, in the eye that squints, the image of the object to which the other eye is directed falls not on the most sensible and delicate part of the retina, which is naturally in the axis of the eye, it is easy to see that it must be but faintly perceived by this eye. Hence it is, that while they are attentive in viewing any object, if the hand be brought before the other eye, this object will be but obscurely seen, till the eye change its situation, and have its axis directed to it; which change of situation is indeed very easy for them, because it depends on the muscles of the eyes, whose functions are entire; but, by reason of the habit they have contracted of moving their eyes differently, the other eye is at the same time frequently turned aside, so that only one at a time is directed to the object.

That all this may be the better perceived; for an object, cause them to look at the image of the upper part of your nose in a plain mirror, while you stand directly behind them, to observe the direction of their eyes.

II. The strabismus may proceed from a fault in the first conformation, by which the most delicate and sensible part of the retina is removed from its natural situation, which is directly opposite to the pupil, and is placed a little to a side of the axis of the eye; which obliges them to turn away the eye from the object.
When the eye has this conformation, no object to which it is directed can be clearly seen, because its image falls not on the retina at the axis of the eye; and therefore the eye turns aside from the object it would view, that its image may fall on the most sensible part of the retina.

When the strabismus proceeds from this cause, the prognostic and the phenomena that attend it will be much the same as in the case immediately preceding; from which nevertheless it may be distinguished by the obliquity of the cornea, which is manifest to the senses; and if the cornea be also more arched and prominent than what it is naturally, which is commonly the case, the eye will also be short-sighted.

V. This want of uniformity in the motions of our eyes, may arise from a defect, or any great weakness or imperfection, in the sight of both or either of the eyes; and this, according to Dr. Porterfield, is the most common cause of this disease. The prognostic in this case is the same with that of the disease from which it proceeds.

VI. Another cause from which the strabismus may proceed, lies in the muscles that move the eye. When any of those muscles are too short or too long, too tense or too lax, or are seized with a spasm or paralysis their equilibrium will be destroyed, and the eye will be turned towards or from that side where the muscles are faulty.

In this case, the disease frequently yields to medicine, and therefore admits of favourable prognostic; excepting only when, by a fault in the first conformation, any of the muscles are longer or shorter than their antagonists; in which case, if ever it should happen, no medicine can be of any use.

As to what concerns the optical phenomena, they are the same here as in the case first: only when the disease commences not till, by custom and habit, the uniform motion of the eyes has been rendered necessary, all objects do for some time appear double; but in time they appear single.

Lastly. This want of uniformity in the motions of our eyes may proceed from a preternatural adhesion or attachment to the eye-lids; of this we have an instance in Langius. And that the same thing may also be occasioned by a tumor of any kind within the orbit, pressing the eye aside, and restraining it from following the motions of the other, is so evident, that instances need not be brought to prove it. Here also the cafe may admit of a favourable prognostic; and as for what concerns the optical phenomena they must be the same as in the case immediately preceding.

The cure in confirmed cases, is to be effected by mechanical contrivances, by which the person may be obliged to look straight upon objects, or not see them at all; or at least that he may see with uneasiness and confusedly when he squints. In the 68th volume of the Philosophical Transactions we have an account of a confirmed case of squinting of a very uncommon kind. The patient was a boy of five years old, and viewed every object which was presented to him with but one eye at a time. If the object was presented on his right side, he viewed it with his left eye; and if it was presented on his left side, he viewed it with his right eye. He turned the pupil of that eye
Practice.

Medicine.

Dyschiasia eye which was on the same side with the object in such a direction that the image of the object might fall on that part of the bottom of the eye where the optic nerve enters it. When an object was held directly before him, he turned his head a little to one side, and observed it with but one eye, viz. that most distant from the object, turning away the other in the manner above described; and when he became tired of observing it with that eye, he turned his head the contrary way, and observed it with the other eye alone, with equal facility; but never turned the axis of both eyes on it at the same time. He saw letters which were written on bits of paper, so as to name them with equal ease, and at equal distances, with one eye as with the other. There was no perceptible difference in the diameters of the irises, nor in the contrariety of them after having covered his eyes from the light. These observations were carefully made by writing single letters on shreds of paper, and laying wagers with the child that he could not read them when they were presented at certain distances and in certain directions.

As from these circumstances it appeared that there was no defect in either eye, which is frequently the case with persons who squint, and hence that the disease was simply a depraved habit of moving his eyes, the disease seemed capable of a cure. A paper gnomon was made for this purpose, and fixed to a cap; and when this artificial nose was placed over his real nose, so as to project an inch between his eyes, the child, rather than turn his head so far to look at oblique objects, immediately began to view them with that eye which was next to them. But having the misfortune to lose his father soon after this method was begun to be followed, the child was neglected for six years, during which time the habit was confirmed in such a manner as seemed to leave little room to hope for a cure. The same physician, however, being again called, attempted a second time to remove the deformity by a similar contrivance. A gnomon of thin brass was made to stand over his nose, with a half circle of the same metal to go round his temples; these were covered with black silk, and by means of a buckle behind his head, and a cross-piece over the crown of his head, this gnomon was worn without any inconvenience, and projected before his nose about two inches and an half. By the use of this machine he soon found it less inconvenient to view all oblique objects with the eye next to them instead of the eye opposite to them.

After this habit was weakened by a week's use of the gnomon, two bits of wood, about the size of a goose-quill, were blackened all but a quarter of an inch at their summits; these were frequently presented to him to look at, one being held on one side the extremity of his black gnomon, and the other on the other side of it. As he viewed these, they were gradually brought forwards beyond the gnomon, and then one was concealed behind the other: by these means, in another week, he could bend both his eyes on the same object for half a minute together, and by continuing the use of the gnomon, he was in a very fair way of being cured when the paper was written.

Dr. Darwin, who writes the history of the above case, adds, that all the other squinting people he had occasion to attend, had one eye much less perfect than the other these patients, says he, are certainly curable by covering the best eye many hours in a day, as by a more frequent use of the weak eye it not only acquires a habit of turning to the objects which the patient wishes to see, but gains at the same time a more distinct vision; and the better eye at the same time seems to lose somewhat in both these respects, which also facilitates the cure.

Genus CXV. Contractura.
Contractions of the Limbs.

Obliptitas, Sauv. gen. 11.
Caput obliptum, Vog. 513.
Digitum, Vog. 221.

The contraction of various muscles of the body is generally the consequence of some other disease, as the rheumatism, gout, scurvy, or palsy, especially that species of the latter which follows the colica Pidi­num. It is exceedingly difficult of cure; though the warm medicinal waters are much recommended, and have sometimes done great service. Of late electricity has been found to perform surprising cures in this way.

Order IV. Apocenososes.

Apocenoles, Vog. Clas II. Ord. II.
Fluxus, Sauv. Clas IX. Sag. Clas V.
Morbi evacuatorii, Lin. Clas IX.

Genus CXVI. Profusio.
Flux of Blood.

Profusio, Lin. 239.

The disease commonly known by the name of bloody-flux, is the putrid or contagious dysentery, a disease which has already been treated of. But independent of the discharge of blood which then takes place, haemorrhagy may take place from the alimentary canal as well as from other parts of the system. In such instances, however, if we except the place from which the discharge occurs, the phenomena are very much the same as in menorrhagia, hæmoptysis, and other hæmorrhages already treated of; while the disease is to be combated on the same principles and by the same remedies.

Genus CXVII. Ephidrosis.
Excessive Sweating.

Ephidrosis, Sauv. gen. 258. Sag. gen. 194.
Sudor, Lin. 208.
Hydropeides, Vog. 121.

This is generally symptomatic; and occurs in almost all fevers, but especially in the latter stages of the hectic. Sometimes it is a primary disease, arising merely from weakness; and then early admits of a cure by the use of the Peruvian bark, the cold bath, and other tonics.

Genus CXVIII. Epiphora.
Flux of the Lachrymal Humour.

This by Sauvages is described as an involuntary effusion.
effusion of tears without any remarkable itching, heat, or pain. It follows long-continued ophthalmiae; or it may be occasioned by immoderate study, or any thing that weakens the eyes: hence it comes on about the age of 50 years, when the eyesight naturally becomes weak. It in general grows worse in the winter-time, and is very hard to cure. Some authors recommend purgatives, and blisters on the nape of the neck, in order to draw off the abundant humours; but as the disease evidently proceeds from weakness, it would rather seem proper to pursue a contrary method. Sauvages recommends to the patients to abstain from study, wine, and falted meats; and also to avoid smoke or wind, and at night to foment the eyes with an infusion of four cloves in two ounces of Hungary water, rose water with white vitriol dissolved in it; &c. have also been recommended.

GENUS CXIX. PTYALISMUS.

Salivation.

A salivation is often symptomatic, but rarely a primary disease. Dr Cullen is of opinion, that when the latter happens to be the case, it arises from laxity; and then it is to be cured by astringents and tonics. In the Medical Transactions we have the following account of a salivation brought on by a foreign substance irritating one of the parotid glands.

In the month of April 1751, a young lady about the age of 16 years, of a delicate habit, but subject to no particular complaints, perceived the beginning of a disease which afterwards proved most obstinate and loathsome, viz. an incessant spitting. The quantity of this discharge was different at different times, varying from one pint to two pints and an half in 24 hours. As to its quality, it seemed to be no other than the ordinary secretion of the salival glands. By so large and constant an evacuation, her strength became extremely impaired, and the most efficacious medicines had proved ufeless. She had taken large quantities of the Peruvian bark, both alone and combined with preparations of iron; and afterwards the fetid gum, opium, amber, alum, and the Neville-Holt-water, had in succession been given her. In the mean time an exact regimen had been prescribed: she had been ordered to ride constantly; and to confine herself into a mucilaginous diet, such as veal, calves' feet, &c. Likewise a gently opening medicine had now and then been interposed. The disease still continued unaltered, the had afterwards tried the *indura fatoria*; and had, at the same time, been encouraged to chew the Peruvian bark, and to swallow the saliva. But all these attempts had been vain; and after they had taken some or other of the medicines abovementioned until the end of September 1753, namely, above two years, it appeared to her physician, Sir George Baker, unreasonable to expect relief in such a cafe from any internal medicines whatever.

He now conceived a suspicion, that some extraneous body having accidentally found its way into the *necrus auditivus*, might possibly be the cause of this extraordinary secretion, by keeping up a continued irritation in the parotid glands. With this view he examined her ears, and extracted from them a quantity of fetid wool. How, or when, it came thicker, no account could be given.

To this salivation he attributed the beginning of the salivation, notwithstanding that the disease did not immediately abate on the removal of the wool; as it appeared to be no improbable supposition that the discharge might be continued by the force of habit, though the original cause no longer remained.

It seemed, therefore expedient to introduce some other habit, in the place of the increased secretion of saliva; which habit might afterwards be gradually left off. With this intention, he prevailed on the patient to chew perpetually a little dry bread, and to swallow it with her spittle. In a few weeks, it became necessary for her to chew the bread only at certain hours in the day; and thus, after two months, she became entirely free from a most disagreeable and tedious disorder.

It is worthy of observation, that, at first, the swallowing of so much saliva frequently occasioned a nausea; and that then, for a few hours, she was obliged to spit it out as usual; and that, during the greater part of the time, when she chewed the bread, she had a tooth or two every day more than common.

GENUS CXX. ENURESIS.

An Involuntary Flux of Urine.

This is a distemper which frequently affects children, other-wise healthy, when asleep; and is extremely disagreeable. Often it is merely the effect of laziness, and may be driven off by proper correction; but sometimes it proceeds from an atony or weakness of the sphinter of the bladder. Many ridiculous cures have been prescribed for it, and among the rest field-mice dried and powdered. Tonics are frequently of use; but sometimes the distemper proves obstinate, in spite of every thing we can use. In the London Medical Observations we find blisters much recommended in this disease, when applied to the region of the os facrum. A girl of 13 years of age had been subject to an enuresis for four years. She could retain her water but a very little time in the day-time, but it flowed continually in the night. She had taken Peruvian bark and elixir of vitriol in considerable quantities; also Valerian and the volatile julep, without effect. She was severely threatened, as the physician suspected it might arise from a bad habit; but this producing no effect, a blister was applied to the os facrum, which in 24 hours totally removed the disease. A managed 32, having been feized with an incontinence of urine and palsy of the lower extremities in consequence of taking a quack medicine, was cured of the incontinence of urine in 24 hours by one blister and of the palsy itself by another. A woman of 50 having been feized with an enuresis and paralytic affection of the right thigh and leg in consequence of a strain, was cured of both by a single blister. Several other cafes are there mentioned, by which the power of blisters in removing this distemper seems to exceed that of every other medicine whatever.
Practise.

GENUS CXXI. GONORRHoea.

The gonorrhoea is a flux of scititious matter of various colours, from the urethra in men and the vagina in women. It commonly proceeds from coition with a person infected with the venereal disease, and is one of the most common forms under which that disease shows itself.

Description. The first symptoms of the disease in men are commonly a sensation at the end of the penis not unlike a flea-bite, together with a fullness in the lips of the urethra, and some degree of tension in the penis, the urinary canal feeling as if tightened, and the urine flowing in a small and unequal stream: a little whitish mucus is to be seen about the orifice of the urethra, and oozing from it when slightly pressed, especially if the prepuce be made on the spot where the foreskin is most felt. The discharge soon increases in quantity, and varies in its colour according to the degree of inflammation. The patient feels a sensation of heat and pain in evacuating his urine, particularly at certain spots of the urethra, and above all towards its orifice; and the involuntary erections to which he is subjected from the stimulus, particularly when warm in bed, occasion a distortion or curvature of the penis, attended with exquisite pain. When the inflammation is violent, the glans appears tumid and transparent, and cannot be drawn back, occasioning what is called a phymosis; at other times, as in the paraphymosis, it remains in an inflamed state below the glans, so that it cannot be drawn forwards; and, if the stricture and inflammation be violent, may terminate in gangrene. Now and then, especially when there is a phymosis, we may perceive a hard chord extending along the back of the penis. This is an inflamed lymphatic, and may be considered as a prelude to a bubo. When, however, a bubo does appear, almost universally some ulceration is previously to be discovered about the praeputium, or glans penis; which gives ground to presume that some other contagious matter besides that of gonorrhoea may have been applied to the urethra. For it is certain that matter capable of communicating the contagion of gonorrhoea to a female, is often copiously applied to the whole glans penis of a male for several days together without giving either ulceration or bubo.

In many cases, the seat of the disease is in the urethra, not far from its orifice; but it frequently happens that the virus infinuates itself much higher up, so as to affect Cowper's glands, the prostrate, and parts very near to the neck of the bladder.

In the generality of cases, the inflammation goes on increasing for several days, commonly for a week or a fortnight; after which the symptoms begin to subside; and the running, when left to itself, gradually lessens in quantity, and becomes whiter and thicker, till at length it totally stops. The colour of the mucus, however, is by no means a certain guide in these cases; for in many patients it is of a yellowish, and sometimes of a greenish hue to the very last; but in general it becomes more confluent towards the close of the disease.

In women, the external parts of generation being fewer and more simple, the disease is less complicated than in men. Sometimes the vagina only is affected; and when this happens, the symptoms are very trifling; but in general it comes on with an itching and sensation of heat in the other sex; and is attended with inflammation of the nympha, inside of the labia, clitoris, cornuqué nortiformis, the orifice and sometimes the whole of the meatus urinarius. Very often the deep-seated glands of the vagina are affected, and it is sometimes difficult to distinguish the discharge of a gonorrhoea from that of the fluo albus.

Caujé, &c. Many ingenious arguments have of late been advanced to prove, that the gonorrhoea and the lues venerea are different affections, originating from two distinct species of virus; and this controversy still, perhaps, remains to be decided by future facts. Certain it is, that in 19 or 20 cases of gonorrhoea, no symptom whatever of syphilis appears; and that the disease readily admits of cure without having recourse to those remedies which are universally requisite for combating the contagion of syphilis. It is by no means wonderful, that in some cases both contiguities, supposing them different, should be communicated at the same time. Nay, cases are by no means rare, where the contagion of itch, though essentially different from both, has been communicated with either. But as undeniable proof that the contagion in both cases is precisely the same, it has been alleged by some, that the matter of a chancre introduced into the urethra will generate a gonorrhoea, and that the discharge from a gonorrhoea will produce chancres, bubo, and every other symptom of syphilis. On the other hand, however, it is contended, that when experiments of this nature are conducted with the greatest accuracy, the matter of syphilis uniformly produces syphilis, and that of gonorrhoea, gonorrhoea only. Without pretending to decide on which of these experiments the greatest dependence is to be put, we may only observe, that while an almost inconceivably small portion of syphilitic matter applied to the glans penis, from connection with an infected female, infallibly produces syphilis, if it be not speedily removed, the matter of gonorrhoea, in every instance of that disease, is applied to the whole surface of the glans penis for many days together without producing almost any bad effect whatever. From this, therefore, there is ground for inferring, either that it is not capable of being absorbed, or that if absorbed it is innocent.

But while there have been disputes with regard to the peculiar nature of the matter in gonorrhoea, there have also been controversies with respect to the source from whence it is derived. While some suppose it to be principally purulent matter arising from ulcerations, others affirm that no such ulceration is ever produced in the urethra by gonorrhoea. They contend that the increased secretion in these cases is exactly similar to what happens in the catarrh. But the comparison, will be by no means hold good in every particular; in the latter the whole membrane of the nose is equally irritated; whereas in the gonorrhoea, only particular parts of
...of the urethra seem to be affected. The disease, in the generality of cases, seldom extends more than an inch and a half along that canal, and in many is confined (at least in the beginning) to a small spot about an inch from the extremity of the glans. The discharge is produced from that part of the urethra where the pain is felt; and the patient, when he voids his urine, feels no smarting till it reaches the inflamed spot; but, as the disorder increases, the inflammation affects a greater number of points, just in the same manner as chancre affects different parts of the glans. It might be supposed that defecation would at once clear up this matter, and put an end to the dispute; but this is far from being the case. Dr. Simmons has seen several urethras opened in persons who had a gonorrhoea at the time of their death: in three of them the surface of the urethra, as in the cases related by Morgagni, appeared for some way down of a light red colour, and in all of them was covered with mucus; but without any appearance of ulceration, except in two dissections at Paris, in which most of the gentlemen present were convinced that they saw evident marks of it: but Dr. Simmons says that the appearances were to him not sufficiently satisfactory to enable him to decide with certainty on the subject. On the other hand, when we consider that the discharge in a gonorrhoea is sometimes tinged with blood, and that when this happens a little blood-vesel is no doubt ruptured, we can have no reason to doubt that an ulceration may, and sometimes does, happen in these cases; especially as we often observe an excoration near the orifice of the urethra. It is certain, that wherever there is considerable inflammation, there will be danger of ulceration. Besides, from a neglected or badly-treated gonorrhoea, we often see fistulas in perineum, and other ulcers of the urethra, penetrating through its substance, and affording a passage to the urine. And perhaps some of those fistulas are not sufficiently well known, and that from hence it is propagated upwards, particularly where the excretories of mucus are most numerous; and that on the parts to which it is applied, it operates as a peculiar irritating caufe. The consequences of this irritation will be inflammation and an increased secretion of mucus; and so far the complaint will be local. In ninety-nine cases of an hundred a local affection of this kind constitutes the whole of the disease; and of this inflammation, ulcerations within the urethra, fistulas, and other local affections, may be the consequence. But whether a disease of the habit ever takes place, unless when the contagion of syphilis is communicated with that of gonorrhoea, still remains to be determined by future observations and experiments.

Nothing can be more variable than the period at which the disease makes its appearance after infection. Perhaps, at a medium, we may place it between the 4th and 14th day; but in some cases it happens within 24 hours; and in others, not before the end of five or even six weeks: neither of these extremes, however, are common.

From what has been said of the manner in which the contagious matter in gonorrhoea acts, and of the influence it exerts on those parts with which it comes in contact, it follows, that the prevention of gonorrhoea must depend on the removal of the contagious matter as soon as it can be done; and where this is either altogether neglected or not properly accomplished, that the cure must depend on counteracting the inflammation which this contagious matter excites, and the consequences which result from it.

The first of these intentions may be most certainly and most easily accomplished by careful lotion of all the parts to which the contagious matter has any chance of being applied. These parts, at least on the first application of the matter, are readily accessible: for even in men there is no reason to believe that it at first penetrates to any extent in the urethra. This washing of the parts should be performed as soon as possible; because then the matter is both most accessible and least involved with mucus; but although washing cannot be accomplished at an early period, it should not be neglected afterwards; for from the disease uniformly commencing, even when it does not appear till a considerable time after the application of the contagious matter, with a peculiar sneeze of irritation at the external parts, particularly in men at the extremity of the urethra, there is reason to believe that the contagious matter attached to the mucus may remain latent there for a very considerable time. For the purpose of washing, with a view to the prevention of this disease, recours may be had to almost any watery fluid, provided it be not so stimulant as to produce bad effects from injuring the parts. Pure water, properly applied, is perhaps one of the best lotions; but there can be no doubt that its power in removing the contagious matter may be somewhat increased by such additions as render it a more powerful solvent of mucus. With this intention, one of the most powerful additions is the vegetable alkali, either in its mild or caustic state. In the latter state it is the most active, but in the former it is most safe; and the liquida purificata of the Edinburgh pharmacopoeia, to the extent of half a drachm, dissolved in fix or eight ounces of water, is one of the best lotions that can be employed. The purpose of removing the contagion may often also be effectually answered from washing with water impregnated with soap; for there the alkali, though in a caustic state, is prevented from exerting any disagreeable effects, in consequence of its being combined with oily matters.

With the view of preventing gonorrhoea, some have advised, that the alkali, either in its mild or caustic state, properly diluted with water, should be injected into the urethra; and there can be no doubt, that by this...
Practice.

MEDICINE.

Apericenofe this means the contagious matter, when it has entered the uretha may be removed. A removal may also be effected by the injection of a weak solution of corrosive sublimate, which seems to act not by dissolving the mucus but by producing an augmented secretion. But at a very early period of the disease, injections are probably unnecessary; and if it has made any considerable progress, they are dangerous: for from the augmented sensibility of the part, even very gentle ones are apt to excite a high degree of inflammation.

There are practitioners who, supposing that the body possesses powers to expel the virus, and that the disease has a certain period to run through its several fages of progress, acme, and decline, are for leaving the cure to nature; or at least content themselves with adlitng her by an antiphlogistic regimen, gentle evacuations, and the like.

That in many cases the disorder admits of a natural cure, there can be no doubt; the increased secretion of mucus carrying off the virus faster than it is formed, till at length the infection is wholly removed: But it is equally certain, that it every cafe, by the application of suitable remedies to the inflamed part, we may shorten the duration of the complaint, and abridge the sufferings of the patient, with the same certainty and safety as we are enabled to remove the effects of an ophthalmia or any other local inflammation, by proper topical applications. General remedies, such as occasional blood-letting, a cooling diet, the liberal use of diluting liquors, and mild purges, are by all allowed to be useful, and even necessary. All are was of opinion that in these cases blood-letting ought to be repeated five or six times; and there are still many practitioners who depend much on repeated evacuations of this sort for a removal of the inflammation. But there is, perhaps, not one cafe in ten in which it is at all requisite; and this small number of cases will consit of only fireng and plethoric in such, when the chordee is frequent and painful, and the pulse hard and full, the loss of from eight to twelve ounces of blood will be beneficial, but it will be seldom necessary to repeat the operation the inflammation in these cases is kept up by the local stimulus of the virus and the urine; and all that we can expect from veneration is to moderate the pain and the frequency of erition. In persons of a delicate habit, and of an irritable fibre, the evacuation will do no good; but if repeated will certainly be liable to do harm, by increasing irritability, and of course rendering the patient more susceptible of filthum.

The utility, and even the necessity, of a cooling regimen, are sufficiently obvious; wine and spirituous liquors, spiceries, a fish-diet, much animal-food, and failed and high seasoned dishes of every sort, will constantly add to the complaint. The patient should eat meat only once a day, and that sparingly. He should abstain from hot-supperers. Milk, mild vegetables, and fruit, should constitute the principal part of his diet while the inflammatory symptoms continue. Every thing that tends to excite the venereal imagination should be judiciously avoided; for whatever promotes erection of the penis will increase the inflammation, and of course add fuel to the disease. For the same reasons much walking or riding on horseback will be hurtful, from the irritation kept up in the perineum by such means. Violent exercise of any kind, or any thing that is liable to increase the heat and the momentum of the blood, will of course be improper.

The drinking freely of mild, cooling, mucilaginous liquors, such as linseed-tea, orceate, whey, milk and water, almond emulsion, and the like, will be extremely useful, by diluting the urine, and preventing its falls from stimulating the urethra. When the heat and pain in making water are very considerable, mucilaginous substances are found to have the best effect, particularly the gum tragacanth. It is a common practice to give equal doses of this gum or gum arabic and nitre, and to dissolve nitre in the patient's drink, with a view to lefus the inflammation. But in these cases nitre is always improper: it is known to be a powerful diuretic, its chieft action being upon the urinary passages; so that the stimulus it occasions will only serve to increase the evil it is intended to alleviate. Cream of tartar, on account of its diuretic quality, will be equally improper. Our view here is not to promote a preternatural flow of urine; for the virus, being insoluble in water, cannot easily be washed away by such means; but our object ought to be, to render the urine that is secreted as mild and as little stimulating as possible.

Mild purges, which constitute another material part of the general remedies, are no doubt extremely useful when exhibited with prudence; but it is well known that the abuse of purgative medicines in this disease has been productive of numerous evils. Formerly it was a pretty general practice to give a large dose of calomel at bed-time, three or four times a-week; and to work it off the next morning with a strong dose of the pilule cocceor, or some other drastic purge. This method was perfurred in for several weeks; in consequence of which the patient often found himself troubled with an obfolute gleet, and perhaps his constitution materially injured; the effect of such a method being (especially in irritable habits) to weaken the stomach and bowels, and lay the foundation of hypochondrical complaints. Violent purging likewise often occasioned stranguary, hernia humorals, and other troublesome symptoms.

The purges employed in these cases should be gentle; such as Rochelle salt, manna, tartarified alkali, and the like. They should be given only in a dose sufficient to procure two or three stools, and to be repeated only every two or three days. The daily use of the purgative electuaries that are full given by some practitioners, serves only to keep up a continual irritation on the bladder, and of course to prolong the inflammation.

The topical remedies that are used confilt chiefly of different sorts of injections, the ingredients of which are extremely various; but their modes of operation may in general be referred to their mucilaginous and sedative, or to their detergent, stimulating, and abrin gent qualities. In the hands of skilful practitioners, great advantages may doubtless be derived from the use of these remedies; but, on the other hand, the improper and unfeafonable administration of them may prove a source of irreparable mischief to the patient.

We know that mucilaginous and oily injections will tend to allay the local inflammation; and that a seda-
A deterrent injection, such as a solution of opium, will lessen the irritability of the parts, and of course produce a similar effect; the utility of such applications is therefore sufficiently obvious.

A deterrent injection, or one that will act upon the mucus of the urethra, increase the discharge of it, wash it away, and with it the venereal virus that is blended with it, can only be used as a prophylactic before the symptoms of infection have made their appearance. But great circumdiction is necessary in the use of this kind of injection. It it be too weak, it can be of no efficacy; and if it be too strong, it may prove dangerous to the patient. A supposition of urine has once made their appearance, the stimulus of this kind of mucus of the urethra, increases the discharge of it, washes it away, and an injection, containing it, can of no efficacy; and if it be too strong, it may prove dangerous to the patient. But every thing that stimulates it must be hurtful. The injection excites a painful sensation in the urethra, as irritation and astringent effects; and, in some it degenerated into a gleet, the running be checked and the inflammation abates, he may add some of the medicinal compounds, as calomel., and thereby the bowels, and so the discharge be properly checked before the virus that excited the discharge be properly subdued, the patient will be exposed to fresh dangers; and perhaps to a variety of local complaints, such as obstructions in the urethra, and ulcers of the pelvic organs, which are well known to be sometimes owing to applications of this sort improperly managed.

When the inflammation has subsided, gently stimulating and astringent injections may be used with safety, and with considerable advantage: for as the inflammation is at first excited by the stimulus of the venereal virus, so when the former begins to lessen, we may be assured that the activity of the latter has abated in proportion; and, in general, when the inflammatory symptoms are entirely removed, it will be found that the mucus is no longer of an infectious nature but is merely the effect of an increased secretion and of relaxation. Mild astringents will therefore serve to brace and strengthen the vessels secreting mucus, and in this way will lessen the discharge, and greatly promote the cure. It is certain, that in the greater number of cases, a gonorrhoea, which is treated by internal remedies alone, would continue for five or six weeks, or longer, may, when judiciously treated with injections, be cured in a fortnight, and very often in less time. The great aim, therefore, of the practitioner ought to be at first to make use of such injections only as will tend to lubricate the surface of the urethra, and to counteract and destroy the stimulus of the virus: as the inflammation abates, he may add some gently astringent preparation to a mucilaginous and sedative injection; taking care that its astringency be united to the state of the digestive, and to the irritability of the patient. Amongst a great variety of substances, mercury in different forms is one of those that is the most frequently employed in injections. All these mercury injections have more or less of astringency: and according to Dr. Simmons, is solely to this property that we are to ascribe their effects; for the idea of correcting the venereal virus was originally introduced, and has, he thinks, been continued upon mistaken principles.

Calomel, mixed with the mucus discharged in a gonorrhoea, has no more power in destroying the infectious properties of that mucus than cerule or any other preparation would have. A diluted solution of sublimate injected into the urethra, will like a solution of verdigris, or blue vitriol, or any other astringent, render the mouths of the lumen; but this is all that it will do, for it will never lessen the infectious nature of the virus. The same thing may be observed of crude mercury extinguished by means of mule, or of mercurial mucus, blended with the yolk of an egg, and which, when thrown up into the urethra, will act nearly in the same manner as balsam of copaiva, or any other stimulating injection. The stimulus of calomel, however, has often been found of considerable efficiency; and in women, when the vagina, only was affected, after washing the parts well, the cure has been accomplished by rubbing them repeatedly with mercurial ointment.

As the gonorrhoea is only a local affection, it may be inferred, that the internal use of mercury is unnecessary towards the cure. Very often indeed the complaint may be removed without having recourse to mercurials. Sometimes patients have been met with whose general health has been greatly impaired by a long continued use of mercury in such cases, while the original disease, the gonorrhoea, was rendered much worse by it. In some it degenerated into a gleet, that was cured with extreme difficulty; in others it brought on a variety of distressing symptoms. In cases of gonorrhoea, therefore, whenever mercury is administered, it ought to be, not with a view to expedite the cure, but merely to obviate the dangers of syphilis. When the infection is apparently flight, and the inflammation and the symptoms trifling, we may proceed without the assistance of mercury, especially if the patient be of a weak relaxed, and irritable habit, likely to be injured by mercurial medicines. On the other hand, when the discharge is violent, the inflammation considerable, or the lesion of the disease high up in the urethra, it is perhaps the most prudent plan to give mercurials in small doses, and in such forms as seem the best adapted to the constitution of the patient.

The pilula hydrargyri, as prepared according to the receipts in the last edition of the London or Edinburgh pharmacopoeias, in both of which the mercury is rendered active merely by trituration, may perhaps be considered as one of the mildest and most efficacious forms under which mercury can be exhibited by the mouth. Its efficacy will depend on its not irritating the bowels, and so passing off by stool; care must likewise be taken to prevent its affecting the mouth. Of the chemical preparations of mercury, the mildest and least irritating is calomel. It may be given from gr. i. to gr. iii. at bed-time, occasionally proposing a mild purgative to prevent it from exciting; but in general the mercurial pill just mentioned is to be preferred.

When there is no chancre or bubo, no appearance in short of syphilitic infection, it would be improper to
Practice.

To administer corrosive sublimate, the mercurius calcinatus, or any other of the more acrid preparations of mercury.

After a gonorrhoea proceeding from venereal causes has been removed, another kind of running without pain, called the gonorrhoea mucosa, or gleet, sometimes remains. Sometimes it arises from a conflation and excoriatio of the urethra, and frequently it is the effect of an enlargement and diseased state of the prostate. In each of these cases, as the gleet is the effect of irritation, the cure will depend on the removal of the local disease that occasions it. But there is another species of gleet that seems to depend chiefly on relaxation. It is in general free from infection, and is most common in those who have had long and frequent gonorrhoeas. It is likewise often the effect of a debilitated habit, from severe purging, or a long continued use of mercurials. A discharge of this kind is more frequent in women than in men; or, at least, the fluent albus, after a gonorrhoea, will often be mistaken for a gleet.

When there is no reason to suspect remaining contagion, altringent injections will be of the greatest service. It will be necessary, at the same time, to attend to the health of the patient, by employing the Peruvian bark, chalybeate waters, cold bathing, and such other remedies as will tend to strengthen the phlegm: and indeed by the use of these, particularly by the Peruvian bark, such runnings are often successfully combated in those who from apprehension of dangerous consequences cannot be prevailed upon to employ injections. When there is no tendency to inflammation, the balm of copaiba may be prescribed with advantage in large doses. Dr. Simmons says he once saw a complaint of this sort removed by applying a blister to the perineum, after it had resisted a variety of other remedies. In the Medical Observations also we have an account of a gleet and incontinence of urine removed at once by a blister to the os facrum. In general, however, the other methods abovementioned will be sufficient to remove it, though sometimes it will continue for a long time in spite of all our endeavours to check it. — Other kinds of gonorrhoea, in which the femen itself is ejected, especially during sleep, may be cured by tonics and a mild cooling regimen.

Order V. Epischeeses.

Genus CXXII. Obstipatio. Costiveness.

Obstitution, Lin. 166. Vag. 128. Sag. 221.

Costiveness is sometimes occasioned by debility in dyspeptic persons, sometimes it is the effect of rigidity, and sometimes it is symptomatic of the colic. It may proceed from an excessive heat of the liver; drinking rough red wines, or other altringent liquors; too much exercise, especially on horseback: it may likewise proceed from a long use of cold infipid food, which does not sufficiently stimulate the intestines. Sometimes it is owing to the bile not depending to the intestines, as in the jaundice; and at other times it proceeds from diseases of the intestines themselves, as a palsy, spams, tumors, a cold dry state of the intestines, &c.

Excessive costiveness is apt to occasion pains of the head, vomiting, colics, and other complaints of the bowels. It is peculiarly hurtful to hypochondriac and hysterical persons, as it generates wind and other distressing symptoms.

Persons who are generally costive should live upon a moistening and laxative diet; as roasted or boiled apples, pears, flewed prunes, raisins, greuels with curants, butter, honey, sugar, and such like. Broths with spinach, leeks, and other soft pot-herbs, are likewise proper. Rye-bread, or that which is made of a mixture of wheat and rye together, ought to be eaten. No person troubled with costiveness should eat white bread alone, especially that which is made of fine flour. The best bread for keeping the belly soluble is what in some parts of England they call moliin. It is made of a mixture of wheat and rye, and is very agreeable to those who are accustomed to it.

Costiveness is increased by keeping the body too warm, and by every thing that promotes the perpiration; as wearing flannel, lying too long a-bed, &c. Intense thought and a sedentary life, are likewise hurtful. All the secretions and excretions are promoted by moderate exercise without doors, and by a gay, cheerful, sprightly temper of mind.

The drink should be of an opening quality. All ardent spirits, balsamic and altringent wines, as port, claret, &c. ought to be avoided. Malt liquor that is fine and of a moderate strength is very proper. Buttermilk, whey, and other watery liquors, are likewise proper, and may be drank in turns, as the patient’s inclination directs.

Those who are troubled with costiveness ought, if possible, to remedy it by diet, as the constant use of medicines for that purpose is attended with many inconveniences, and often with bad consequences. In time the custom becomes necessary, and generally ends in a total relaxation of the bowels, indigestion, loss of appetite, watling of the strength, and death.

The learned Dr. Arbuthnot advises those who are troubled with costiveness to use animal-oils, as fresh butter, cream, marrow, fat broths, &c. He likewise recommends the expressed oils of mild vegetables, as olive, almonds, pistaches, and the fruits themselves; all oily and mild fruits, as figs; decoctions of mealy vegetables; their lubricate the intestines; some sapoaceous substances which stimulate gently, as honey, hydromel, or boiled honey and water, unrefined sugar, &c.

The doctor observes, that such sapoaceous substances are proper for persons of dry astrabiliarian constitutions, who are subject to airdation of the belly and the piles, and will operate when stronger medicinal substances are sometimes ineffectual: but that such sapoaceous diet hurts those whose bowels are weak and lax. He likewise observes, that all watery substances are sapoaceous: that even common water, whey, four milk, and butter milk, have that effect. — That new milk, especially after milk, stimulates still more when it forms on the stomach: and that whey, turned four, will purge strongly. — That most part of fruits are likewise sapoaceous: and that some of them, as grapes, will throw such
MEDICINE.

Practice.

Epilepsies, such as take them immediately, into a cholera morbus, or incurable diarrhoea.

When the body cannot be kept open without medicine, gentle doses of rhubarb may be taken twice or thrice a week. This is not near so injurious to the stomach as aloe, jalap, or other drastic purges so much in use. Infusions of fenas and mana may likewise be taken, or half an ounce of tartarized alkali dissolved in water-gruel. About the size of a nutmeg of laudanum was taken twice or thrice a day, generally answers the purpose very well.

GENUS CXXIII. ISCHURIA.

Suppression of Urine.

This distemper is distinguished into various species, according as the seat of it is in the kidneys, the ureters, the bladder, or the urethra; and hence these species are named renales, ureterica, vesicalis, and urethralis.

Ischuria renales, or a suppression of urine from an affection of the kidneys, happens but rarely; however, Dr. Home in his clinical experiments describes such a case. In the end of December 1774, a man of a full habit, aged 35, was feized with shivering, coldness, and feverish cough. Three days after, his urine appeared high-coloured, was passed with pain, and in small quantity. About the 8th of January 1775, he was attacked with violent pains in the small of his back, over the whole abdomen, and in the ankles, with pain in the region of the liver when pressed. A general swelling was afterwards observed all over the body, but mostly in the ankles and abdomen, which lasted ten and a half months. These were attended with vomiting, bad appetite, and considerable thirst. When he entered the clinical ward (January 21st), the cough, sickness, and vomiting, had gone off, but the suppression of urine remained. The urine, which he had made, was passed with his ffools, so that Dr. Home saw it but once; and then it was pale, and had a white powder at bottom. The pains and swellings, which retained the impression of the finger, continued; he had a head-ache, and a very low pulse, beating only 48 strokes in a minute. He had taken a great many diuretic medicines before he came in. The day after his reception, he was feized with a spontaneous diarrhoea, which continued during the remainder of his life. Crystals of tartar were exhibited in doses of half an ounce each morning; at bed-time he took 20 drops of tincture of opium with a fperule of nitre, and continued this course for eight days without any increase of urine. The stronger and heating diuretics were then tried, as an infusion of juniper berries and pills of garlic; but they were attended with no sensible advantage. Whenever the pulse became so strong that he could bear bleeding, eight ounces of blood were taken away, which was easy. This was thrice repeated; he appeared eafier after each bleeding, his pulse bore it well, and the swellings and other symptoms abated. The heating diuretics, in this state, were given up; and a mixture of vinegar and nitre was substituted in their place, in each dose of which, taken every two hours, there was a copious of nitre. Measurements were applied to the region of the kidneys, and camphorated oil was afterwards rubbed on the part. He was ordered the semicium, which from a deficiency of water in the hospital at that time he got only once; and which then seemed to have a good effect, as he passed a full of urine when he was in it. Notwithstanding this, however, the diuretic continually gained ground; he became comatose, delirious, and died ten days after his admission. On diuresis, the kidneys were found of an irregular form; some watery vesicles appeared on their surface, containing black gritty particles like fine sand; and the lower part of the right kidney was considerably inflamed. The pylorus, part of the duodenum, and a considerable part of the small intestines, were much inflamed. In the abdomen were found about five pounds of fluid, and in the cavities of the thorax about half a pound. The lungs were a little inflamed, and full of small tubercles on their surface and in their substance; the heart was large, and a polypus in each ventricle. About six ounces of fluid were found in the pericardium: in the brain nothing preternatural appeared, except about an ounce of water in each ventricle.

Dr. Home seems to have been at a loss for the remote cause of this suppression of urine, which manifestly had its immediate origin from the kidneys having lost the power of performing their functions. He thinks the inflammation which appeared in the right kidney was scarce sufficient to have occasioned the diuretespersion, as the other would have supplied its place: for which reason also he thinks that the ischuria was owing to a general affection of the system; and that it was of an arthritic nature, the patient having been troubled with complaints of that kind for a long time before.

The indications of cure are, to exclude the stone as easily as possible, and prevent the breeding of others. If the patient be of a sanguineous temperament, Sydenham recommends to take away ten ounces of blood from
Medicine.

Practice.

325

Epistaxis from the affected side; and then to give the patient a gallon of poult-drink in which two ounces of marshmallow roots have been boiled, injecting at the same time an emollient glycerin. After the poult-drink has been vomited up, and the clyster returned, give a pretty large dose of an opiate. But if the patient be old or weak, or subject to nervous affections, bleeding may be omitted, especially if his urine at the beginning of the fit be coffee-coloured, and mixed with gravel; but as to other things, the cure is the same. — Huxham greatly recommends an emollient bath prepared of a decoction of marshmallow root, linseed, fennugreek seed, and flowers of chamomile, to which may be added a few white-poppy seeds.

By the use of this bath he says he has seen the most cruel fit of the gravel suddenly ended, when neither copious bleeding nor opiates had the least effect. Mild diuretics are also of service. Hoffman recommends dulcized spirit of nitre as proper to relax the spasm.

It is to be taken with suitable distilled waters and syrup of poppies; or in broth, with a few spoonfuls of oil of sweet almonds. Turpentine glyniers are also accounted very serviceable; and may be prepared by mixing with sufficient quantity of honey. The fand diuretics, or acetated alkalii, is much esteemed by some, when taken along with an opiate. But when the stone is too big to pass, Arbuthnot recommends a cool and diluent diet to hinder the further growth of it. Whey, infusio of linseed, decoction of marshmallows, and gently resolving diuretics, are also proper. To put a stop to the vomiting, balsamum traumaticum may be used with success when almost every other means have failed.

3. The ichuria vesicul is may arise from a stone in the bladder; and this indeed is the most common cause of it; but there are certain cases in which, though the usual quantity of urine, or perhaps more, be passed, the patient dies from the retention of a still greater quantity in the bladder. Of this Dr Home gives the following instances. A man of 58 years of age, of a strong spare habit, and never subject to the gravel, had, during the winter of 1777, a cough with expectoration, which went off in the beginning of 1778. About the 17th of February 1778 he felt some difficulty in passing his urine, and much pain about the region of the bladder. He continued in this way for ten days, after which he became easier on application of some medicines. The abdomen then swelled, and he had pains in his loins and thighs.

On the 3d of March he was admitted into the clinical ward: his abdomen was then swelled and tense; and an evident fluctuation was felt, which some that touched him thought was honorious and produced by wind. A tumor was discovered between the navel and spine of the os ilium on the left side, which gave him much pain, especially when pressed. This tumor became more easily felt after the swelling of the abdomen decreased, seemed round, and very near as large as the head of a child. It appeared very much on the left side; and when the patient lay on the right, and the tumor then became dependent. He passed urine frequently, and rather more in health, as it was computed at four pints a-day. It was always clear, and of a light colour. His body had a strong disagreeable smell; his skin was dry, belly bound, and his appetite entirely gone, so that he had hardly taken any food for 12 days. His legs swelled slightly for some days in the evening. His pulse was generally regular, sometimes lower than natural, and sometimes a little quicker; being once felt at 64, and another time at 52. He was often feized, especially after eating or drinking, with hicough; which increased and lasted till his death. On the 20th day of his disease, after some doses of squills, the general swelling of his abdomen fell; became much softer; and more distinctly discovered the swelling of the left side. The next day a vomiting came on; he became delirious, and died the day following. The body being opened, it appeared that the tumor which was so distinctly felt on the left side of the abdomen, was owing to a dilatation of the bladder with urine. Its fundus reached to about the division of the aorta into the iliacs; it entirely filled the pelvis, and contained between five and six pounds of urine of a pale colour. On examining the external surface, its neck, and the beginning of the urethra, were found to be surrounded with a chrosoity, which impeded the evacuation of the urine. The bladder itself was much thickened, but not more in one part than another. The ureters entered naturally; but were much thickened in their upper half near the kidney. The kidneys were somewhat enlarged; particularly the left, which had several watery vehicles on its external surface. These organs were not in their usual situation; but lay close on each side of the spine, and very near the aorta; so that the renal vessels were very short. What was very singular, the lower end of each rose over the spine, and they were united together by their membranes and sublimices, the aorta passing beneath the union.

The bladder had professed considerably on this part; and the peritoneum covering them was considerably thicker than natural. The lungs adhered every where to the pleura, and in some places very firmly; they were of a loose texture and black colour; and the veins of the lower extremities were turgid with blood. It does not appear that this patient got any medicines further than a few dried squills, which diminished the swellings and brought off much wind. He also got a mixture of musk, and afterwards of opium, for his hicough; but without success. His disease was mistaken for an ascites; and the catheter was not tried; but in another case the use of this instrument was apparently of more service than any internal medicines.

This last patient was about 90 years of age, and laboured under symptoms very similar to those already mentioned. When admitted into the clinical ward, he had the hypogastric region swelled, and difficulty of passing his water; but without pain, vomiting, or hicough. He had lost all appetite; was thirsty, and colitive. His pulse was 110, and weak. In the evening about three English pints of pale clear urine were drawn off by means of the catheter: the next day all the symptoms were gone off or abated. After this he continued to pass some urine, sometimes voluntarily, sometimes involuntarily and inefhible; but so much always remained behind, that his bladder was constantly full, unless when the urine was drawn off,
M E D I C I N E.

Episcopes

off, which was done twice every day. The urine was
sometimes pale, sometimes of a deep red colour; and
once there was some blood mixed with it, which
perhaps might have been occasioned by the catheter.
About the sixth day the urine was very putrid, with
much purulent matter at the bottom, and was
passed with more pain. About the 11th, the putrid
smell went off. The next day all the urine passed in-
sensibly except what was drawn off; and an hiccough,
though not very severe, had come on. In this way he
continued without fever, though frequently troubled
with the hiccough, especially during those nights in
which the urine had not been drawn off. A month
after admittance, the bladder, with the assistance of
the catheter, was almost entirely, though insufficiently
evacuated, and the hiccough had left him; he had no
other complaint but that of voiding his urine in-
sensibly, the natural effect of a cicatrized bladder, and
which was probably incurable. With this patient:
the hot bath and mercurials were tried, in order to
soften the cicatrix of the bladder, but without effect.

4. The icterus uræthralis arises from some tumour
stopping up the passage of the urethra, and thus
hindering the flow of urine. It is an uncommon dis-
temper, and generally follows a gonorrhœa. Dr Home
gives us an example of this also.—The patient was a
man of 60 years of age, who had laboured under a
gonorrhœa six months before, and which was stopped
by some medicines in two or three days. He felt
soon afterwards, a difficulty in passing his urine, which
gradually increased. About 10 days before his ad-
mittance into the clinical ward, it was attended with
pains in the glans, and arder urine; he had passed
only about eight ounces the day before his admission,
and that with very great difficulty; and the hypo-
gastric region was swelled and pained. On introduc-
ing the catheter, three pounds of urine were drawn
off, by which the pain and swelling were removed.
The instrument required force to make it pass the
neck of the bladder, and blood followed the opera-
tion; and the finger, introduced into the anus, felt a
hard tumour about its neck. He was treated with
mercurial pills and ointment, by which the swelling
about the neck of the bladder soon began to decrease;
but at the same time a swelling of the right testicle
appeared. He was vomited with four grains of
turbith-mineral, which operated gently; and here Dr
Home observes, that though these vomits are little

Since, from a mistaken notion of their severity, he
never saw them operate with more violence than other
vomits, or than he could have wished. The swelling
diminished in consequence of the vomits and some ex-
ternal applications; and the cure was completed by
bleeding and a decoction of meconem-root.

Genus CXXIV. Dysuria.

Dysurias, Sag. gen. 265. Lin. 57. Vsl. 164
Stranguria autorum.

A difficulty of making water may arise from many
different causes; as from some acid matter in the
blood, cantharides, for instance; and hence a stran-
gury very often succeeds the application of blisters.

In many cases it arises from a compression of some
of the neighbouring parts; of the uterus, for instance,
in a state of pregnancy. Or it may arise from a par-
modic affection of the bladder, or rather its sphincter;
or from an inflammation of these parts, or others near
them. Hence the disease is distinguished into so many
species, the cure of which depends upon the remedies
indicated by their different causes.

But the most common, as well as the most dangerous
species is that arising from a calculous concretion, or

Stone in the Bladder.

Dysuria calculosa, Sauv. fp. 12.

The signs of a stone in the bladder are, pain, espe-
cially about the sphincter; and bloody urine, in con-
sequence of riding or being jolted in a carriage; a ten-
fé of weight in the perineum; an itchiness of the glans
genis; slimy sediment in the urine; and frequent flop-
pages in making water; a tenesmus also comes on
while the urine is discharged: but the most certain
sign is, when the stone is felt by the finger intro-
duced into the anus, or by the catheter.

Causes, &c. It is not easy to say what the part-
cicular causes are that occasion the apparently earthly
particles of the fluids to run together, and form those
calculous concretions which are found in different parts
of the body, and especially in the organs for straining
off and discharging the urine.

The gout and stone are generally supposed to have
some affinity, because gouty people are for the most
part afflicted with the gravel. But perhaps this is
in part owing to their long confinement, and to the
lying on the back, which people who labour under
the gout are often obliged to submit to; since the
want of exercise, and this posture, will naturally fa-
avour the flagration of gross matters in the kidneys;
besides, there are many instances of people severely
afflicted with the stone for the greatest part of a long
life, who have never had the least attack of the
gout.

There is, however, good reason for believing, that
some farther connexion takes place between the two
diseases; and when treating of the gout we have al-
ready given some account of the opinion of an inge-
nious anonymous author, who has endeavoured to
prove, that both the one and the other depend on a
peculiar acid, the concreting or lithic acid, which is
always present in blood; and which may be precipi-
tated from thence by various causes, such as the intro-
duction of other acids, or the like. When thus precipi-
tated, he supposes it to produce the whole pheno-
mena of both diseases. The objections we formerly fta-
ted to his theory of gout, do not equally militate against
that of calculus; and it is at least certain, from the
best chemical analysis, that what are commonly called
urinary calculi, and have been considered as entirely
an earthly matter, consist principally of acid in a solid
state united only with a small proportion of earth or
mucus. We may, therefore, whether this hypothe-
sis be altogether well founded or not, justly view lithi-
fis as depending on the separation of an acid from
the blood.

Whatever may be the particular cause of the dis-
position
Practice.

position to lithiasis, the kidneys appear to be the most likely places for particles to concret or run together, because of the great quantity of blood which passes through the renal arteries, and which comes immediately from the heart, fraught with various newly-received matters, that have not undergone much of the action of the vesicles, and therefore cannot as yet be supposed to be thoroughly assimilated.

Anatomists who have carefully examined the kidneys in the human subject, particularly M. Bertin, inform us, that there are two sets of tubuli uriniferi; the one continued directly from the extremities of the renal artery, and the other springing from that vesicular texture which is conjunctive in the kidneys.

It is in this vesicular part of the kidney that we presume the particles of the concreting matter first agitate and coalesce: for it is hardly to be supposed, that such solid matters could be allowed to stop in the extremities of the renal arteries, since the blood, and the urine separated from it, must flow through these vesicles with great degrees of force and velocity; but in the intermediate vesicles the particles may lie, and then attracting each other, soon come to acquire sensible degrees of magnitude, and thus become sand or gravel. As long as this sand or gravel formed in the vesicular part of the kidney lies quiet, there will be no pain or uneasiness, until the concretions become large enough to press either on the adjoining tubuli, or on the blood-vesicles; then a sense of weight, and a kind of obscure pain in the loins, will be felt. But when the small pieces of concreting matter shall be dislodged and washed off by the force of the circulating fluids, or loosened by some sfammodic action of the moving fluids in these parts, they will in their passage create pain, raise different degrees of inflammation, or perhaps lacerate some blood-vesseils, and cause bloody urine. When these little concretions happen to be detained in the pelvis of the kidney, or any other place where a flow of urine continually passes, they soon increase in size, and become calculus, from the concretion of particles, which are attracted by the original bit of sand, which thus become the nucleus of a stone.

It is an opinion which Hippocrates first advanced, and which has been almost universally adopted by his followers, and has remained till lately uncontroverted, that the stone and gravel are generated by the use of hard water. And from this quality, which the waters of certain springs possess, of depositing a large earthy sediment, either in the aqueducts thro' which they are conveyed, or in the vesicles in which they are boiled or preferred, it was conjectured, that in passing through the kidneys, and especially whilst retained in the bladder, they would let fall their rougher particles, which by the continued apposition of fresh matter, connected by the animal gluten, and compactered by the muscular action of that organ, would in time form a calculus sufficiently large to produce a train of the most excruciating symptoms. And this reasoning a priori has been supposed to be confirmed by facts and experience; for not to mention the authority of Hippocrates, Dr Lister has observed, that the inhabitants of Paris are peculiarly subject to the stone in the bladder. Nicholas de Blegny has related the history of one who was dissected at Paris, in whom the pylorus, a great part of the duodenum, and the stomach itself, were found incrusted with a fomy matter, to the thickness of a finger's breadth. And it is well known, that the water of the river Seine, with which that city is supplied, is so impregnated with calcareous matter, as to incrustulate, and in a short time to choke up, the pipes through which it runs. But on the other hand it is objected, that the human calculus is of animal origin, and by chemical analysis appears to bear very little analogy to the fomy concretions of water; and though it be allowed, that more perceive are cut for the stone in the hospitals at Paris than in most other places; yet upon inquiry it is found, that many of those patients come from different provinces, and from towns and villages far distant from the Seine.

Dr Percival conjectures, that though this disease may chiefly depend upon a peculiar disposition to concret in the animal fluids, which in many instances is hereditary, and in no instances can with certainty be impu­ted to any particular cause; yet hard water is at least negatively favourable to this diathesis, by having no tendency to diminish it. The urine of the most healthy person is generally loaded with an apparently terrestrial matter, capable in favourable circumstances of forming a calculus; as is evident from the thick crust which it deposits on the sides of the vessels in which it is contained. And it seems as if nature intended by this exertion to discharge all the superfluous salts of the blood, together with those earthy particles, which are either derived from our aliment, and fine enough to pass thro' the ladtteals, though inappreciable by the powers of circulation, or which arise from the abrasion of the solids, or from the dissolution of the red globular part of our fluids. Now water, whether used as nature presents us with it, or mixed with wine, or taken under the form of beer or ale, is the great diluter, vehicle, and menstruum, both of our food, and of the saline, earthy, and excrementitious parts of the animal juices. And it is more or less adapted to the performance of these offices, in proportion to its degree of purity. For it must appear evident to the most ordinary understanding, that a menstruum already loaded, and perhaps saturated with different contents, cannot act so powerfully as one which is free from all sensible impregnation. Nor is this reasoning founded upon theory alone; for it is observed, that Malvern water, which lies from a spring in Worcestershire remarkable for its uncommon purity, has the property of dissolving the little fabulous stones which are often voided in nephritic complaints. And the solution too, which is a proof of its being complete, is perfectly colourless. Hence this water is drunk with great advantage in disorders of the urinary passages. And during the use of it the patient's urine is generally limpid, and seldom deposits any sandy sediment. Yet notwithstanding this appearance of transparency, it is certainly at such times loaded with impurities, which are so diluted and dissolved as not to be visible. For it is attended with a strong and fetid smell, exactly resembling that of asparagus. Hoffman mentions a pure, light, simple water in the principality of Henneberg, in Germany, which is remarkable for its efficacy in the stone and gravel; and a water of similar virtues was discovered not many years ago.
MEDICINE

Practi ce.

In nephritic cases, distilled water would be an excellent substitute for Malvern water, as the following experiment evinces.

Two fragments of the fame calculus nearly of equal weight, wereimmerfed, the one in three ounces of distilled water, the other in three ounces of hard pump-water. The phials were hung up close together in a kitchen-chimney, at a convenient distance from the fire. After 14 days maceration, the calculi were taken out, and carefully dried by a very gentle heat. The former, viz. that which had been immerfed in distilled water, was diminished in its weight a grain and a half; the latter had lost only half a grain.

It is the passage of these calculi from the kidneys down into the bladder, which occasions the pain, vomiting, and other symptoms, that constitute what is usually termed a fit of the gravel or stone.

When an inflammation is actually raised, the disease is known by the name of nephritis, and has been already treated of.

As soon as the stone passes through the ureter, and falls into the bladder, the pain and other nephritic symptoms ceases; and every thing will remain quiet, either till the stone be carried into the urethra, or until it has remained long enough in the bladder to acquire weight sufficient to create new difficulties.

If a stone happens to be smooth and of a roundish form, it may lie in the bladder and acquire considerable bulk before it can be perceived by the patient; but when it is angular, or has a rugged surface, even though it may be small in size, yet it seldom fails to raise pain, and occasion bloody urine, or the discharge of a slimy fluid, with tenesmus, and difficulty in making water.

There have been various attempts made to dissolve the stone; and there are certainly some articles which have this effect when applied to them out of the body; but the almost total impossibility of getting these conveyed to the kidneys, renders it extremely doubtful whether a solvent ever will be discovered. Of all the articles employed for this purpose, no one perhaps has had greater reputation than fixed alkaline salt in its medicinal state, particularly under the form of the aqua liti-ervica; but this being of a very acrid nature, it requires to be well heathed by means of some gelatious or mucilaginous vehicle. Veal broth is as convenient as any for this purpose; and accordingly it is used by those who make a secret of the caustic alkali as a solvent of calculus.

Mr Blackkie, who has taken much pains in this inquiry, has proved very satisfactorily, that Chitrick's nostrum is no other than soap-lees given in veal-broth, which the patients fend every day to the doctor, who returns it mixed up with the medicine, in a close vessel secured by a lock.

It is not every case, however, that either requires or will bear a course of the caustic alkali. Some calculi are of that soft and friable nature, that they will disolve even in common water; and there are cases wherein it appears that the confluent use of some very simple decoction or infusion of an insignificant vegetable, has brought away large quantities of earthy matter, in flakes which apparently have been united together in layers to form a stone. Dr Macbride assures us, that a decoction of raw coffee, only 30 berries in a quart of water, boiled till it acquired a deep greenish colour, taken morning and evening to the quantity of eight or ten ounces, with ten drops of sweet spirit of nitre, had the powerful effect of bringing away, in the course of about two months, as much earthy matter in flakes as filled a large tea-cup. The patient was far advanced in years; and, before he began this decoction, had been reduced to great extremities by the continuance of pain and other distressing symptoms: he was purged occasionally with oleum ricini.

Very lately the alkali in a mild state, and in a different form, has been much used by many calculous patients and with great advantage, under the form of what is called alkaline aerated water. For the introduction of this medicine, or at least for its extensive use, we are chiefly indebted to that ingenious physician Dr William Falconer of Bath. He has lately published an account of the Aqua Mephitica Alkalis, or Solution of fixed alkaline falt, faturated with fixable air, in calculous disorders; which contains a number of cases strongly supporting the benefit to be derived from it. But whether the good effects obtained in these instances are to be explained from its operating as a solvent of calculus, seems to be extremely doubtful.

There are indeed cases in Dr Falconer's treatise of patients in whom, after using it for a considerable time, no stone could be detected by sounding, although it had been discovered in that way before they began the employment of it. But in many instances, the relief has been so sudden, that it may be concluded, that, notwithstanding the cafe obtained, the calculus still remained. In such cases, it probably removed from the urine that quality by which it gives to the calculus fresh accretions, producing that roughness of its surface by which it is chiefly capable of acting as a Himulus. For the distrefling symptoms resulting from stone, are more immediately to be attributed to the inflammatory and spasmotic affections which it induces; and when its surface is least capable of operating as a Himulus, these of course will be least considerable. It is therefore not improbable, that this remedy produces relief, by preventing fresh additions, being made to the calculus.

An infusion of the seeds of daucus fylvestris sweetened with honey, is another simple and much celebrated remedy;
remedy: it has been found to give considerable ease in cases where the stomach could not bear any thing of an acrid nature: the leaves of the *wu urf* were strongly recommended by the late very celebrated De Haen; and, whatever its way of operating may be, seems to have been productive of good effects in some instances. There is no reason to believe that it has any influence in dissolving calculus; and indeed it seems to be chiefly useful in these instances where ulcerations take place in the urinary passages.

In the *Edinburgh Medical Commentaries*, vol. 3, we have an account of a method used by the inhabitants of Arabia Petraea for curing the stone, to which they are very much subject, and which the author (an English gentleman of experience and candour) affirms he has frequently performed with never-failing success. By means of a catheter they inject into the bladder a weak ley of alkali with the purified fat of a sheep's tail, and a proper quantity of opium all put together. Their catheters are made of gold; and in performing the operation they introduce them quite into the bladder; so that the composition is safely conveyed to the stone without hurting any other part. But when a stone is situated in the kidney, they have no method of cure.

If this method of curing by injection could be safely practiced, it would no doubt greatly have the advantage over that of taking alkalis by the mouth, where the medicine is not only much weakened, but the constitution of the patient runs the risk of being greatly injured. But from some experiments mentioned in the second volume of the *Medical Transactions*, it appears that the human calculi are very different from one another in their natures. Some, for instance, will easily yield to an alkaline menstruum, and very little to an acid; while others are found to resist the alkali, and yield to the acid; and some are of such a compact nature, that they yield neither to acids nor alkalis. An attention, however, to the fragments, stones, or films, which the stone may cast off, and also to the contents and sediment of the urine, may lead to the discovery of what solvent is proper, or whether the stone can be dissolved by any. To use either alkalis or acids improperly may be hurtful; though there may be such kinds of calculi as demand the alternate use of acids and alkalis: may, there may be found calculi of opposite kinds in the same subject.

In such cases as will not allow us to think of dissolving the flinty concretions, and where the only scheme is to palliate and procure ease from time to time, little more can be done than to keep the bowels open occasionally by some gentle cathartic, and wash off as much of the loose gravelly matter and stone as can be removed by such mild diuretic infusions and decoctions as shall be found to pass freely and fit well on the stomach. Persons afflicted with the stone should be careful in respect of their diet, and studiously avoid all heavy and flatulent food, as well as high sauces that are apt to turn rancid. For the same reason, butter and acids are to be shunned; for these often create heart-burning, and every thing that offends the stomach rouses the nephritic pain: such is the sympathy that obtains between the digestive and the uropoietic organs.

Vol. XI.

There have been surgeons bold enough to entertain an idea of cutting even into the kidney, in order to extract a stone: this, however, except in cases where an abscess has been formed, and nature points out the way is merely chimerical. But cutting into the bladder for the same purpose, is an ancient and well-known operation, and often crowned with successes. A description, however, of this operation belongs to the article *Surgery*, to which we refer; and here shall only make this remark, that a surgeon should never begin his operation, until he and his assistants are perfectly satisfied, from actually feeling the stone, that there is one in the bladder; because it has sometimes happened, that when the incision has been made, no stone could be found: and the patient having died in consequence of the operation, and the body being opened, it has appeared that the symptoms which occasioned the belief of a stone in the bladder arose from some other cause.

When a dysuria proceeds from any acrimonious matter thrown into the blood, it may be readily cured by biching, emollient cyphets, cooling and diluting drinks with gum, arabic or gum tragacanth, linseed tea, or the warm bath. When it arises from inflammations of the bladder or parts adjoining to it, we are to regard it only as a symptomatic affection; and the remedies used to remove the primary disease will also remove the dysuria. Sometimes it may arise from an ulcer of the bladder; in which case it is generally incurable; a mild nutritious diet will, however, protract the patient's life.

Genus CXXV. Dyspermatismus.

Dyspermatismus, Sauv. gen. 260.

Sterilitas, Lin. 171. Sag. 211.

Agenesis, Vog. 283.

This impediment proceeds generally from obstructions in the urethra, either by tumors in itself, or in the cavernous bodies of the penis; in which case the treatment is the same as in the itchuris urethralis; sometimes it is owing to a kind of epileptic fit which seizes the man in the venereal act; and sometimes the semen, when excited from the proper receptacles, is again absorbed by them, or flows into the bladder and is expelled along with the urine. The last case is very difficult, or indeed impossible to cure; as proceeding from scirrhous, or other indissoluble tumors of the vesicoumamentum, or the neighbouring parts. In some it proceeds merely from too violent an eredion: in which case emollient and relaxing medicines will be of service; and we have an example of a cure performed by means of these in the first volume of the *Edinburgh Medical Essays*.

Genus CXXVI. Amenorrhoea.

Amenorrhoea, Vog. 130.

Dyfmennorrhoea, Lin. 168. Sag. 218.

This, with some other symptoms, as dyspepsia, yellowish or greenish colour of the skin, unusual appetites, &c. constitutes the *cholera* already treated of, and which seldom or never appears without a suppression of the menses. In Dr Home's Clinical Experi-
MEDICINE.

APPENDIX.

ANGINA PECTORIS.

Dr Heberden was the first who described this disease, though it is extremely dangerous, and, by his account not very rare. It occurs those who are subject to it when they are walking, and particularly when they walk soon after eating, with a most disagreeable and painful sensation in the breast, which seems to threaten immediate death; but the moment they stand still, all the uneasiness vanishes. In all other respects the patients at the beginning of this disorder are well, and have no shortness of breath; from which the angina pectoris is totally different. After it has continued some months, the fits will not cease instantaneously on standing still; and it will come on not only when the patients are walking, but when they are lying down, and obliges them to rise up out of their beds every night for many months together. In one or two very invasive cases, it has been brought on by the motion of a horse or carriage, and even by swallowing, coughing, going to sleep, speaking, or by any disturbance of mind. The persons affected were all men, almost all of whom were above 50 years of age, and most of them with a short neck and inclining to be fat. Something like it however, was observed in one woman, who was paralytic; and one or two young men complained of it in a flight degree. Other practitioners have observed it in very young persons.

When a fit of this sort comes on by walking, its duration is very short, as it goes off almost immediately upon stopping. If it comes on at night, it will last an hour or two. Dr Heberden met with one in whom it once continued for several days; during all which time the patient seemed to be in imminent danger of death. Most of those attacked with the delirium died suddenly; though this rule was not without exceptions; and Dr Heberden observed one who sunk under a lingering illness of a different nature.

The azileni is usually pointed to as the seat of this malady; but it seems as if it was under the lower part of that bone, and at other times under the middle or upper part, but always inclining more to the left side; and in many cases there is joined with it a pain about the middle of the left arm, which appears to be seated in the biceps muscle.

The appearance of Dr Heberden's paper in the Medical Transactions very soon raised the attention of the faculty, and produced other observations from physicians of eminence; namely, Dr Fothergill, Dr Wall of Worcester, Dr Haygarth of Chester, and Dr Percival of Manchester. It also induced an unknown sufferer under the disease to write Dr Heberden a very sensible letter, describing his feelings in the most natural manner; which, unfortunately, in three weeks after the date of this anonymous epistle, terminated in a sudden death, as the writer himself had apprehended.

The youngest subject that Dr Fothergill ever saw was afflicted with...
Appendix.

MEDICINE.

Angina Pectoris.

afflicted with this disorder was about 30 years of age; and this person was cured. The method that succeeded with him was a course of pills, composed of the mias of gum pill, soap, and native cinnauber; with a light chalybetic bitter: this was continued for some months, after which he went to Bath several successive feasons, and acquired his usual health: he was ordered to be very sparing in his diet; to keep the bowels open; and to use moderate exercise on horseback, but not to take long or fatiguing walks.

The only symptom in this patient that is mentioned, was a frieure about the chest, which came on if he was walking up hill or a little faster than ordinary, or if he was riding a very brisk trot; for moderate exercise of any kind did not affect him: and this uneasy sensation always obliged him to stop, as he felt himself threatened with immediate death if he had been obliged to go forward.

It is the sharp constrictive pain across the chest, that (according to Dr Fothergill's observation) particularly marks this singular disease; and which is apt to supervene upon a certain degree of muscular motion, or whatever agitates the nervous system.

In such cases as fell under the inspection of Dr Fothergill, he very seldom met with one that was free from pain and at rest; but Dr Heberden observes, that the pulse is, at least sometimes, not with the only morbid change, that the pulse appears white, not unlike a ligament; as it should seem, in both cases, from the vessels and force of the spasms squeezing the blood out from the cavities.

If this hypothesis be allowed, we must conclude that the spasm can only take place in an inferior degree, as long as the patient continues to survive the paroxysm; and accordingly, as far as could be traced, the persons who have been known to labour under this disease have in general died suddenly.

The differences also show, that whatever may be the true seat of the spasm, it is not necessary for the bringing of it on, that the heart, or its immediate appendages, should be in a morbid state; for in three out of the six that have as yet been made public, these parts were found in a found state.

On opening the body of the poor gentleman who wrote the letter to Dr Heberden, "upon the most careful examination, no manifest cause of his death could be discovered; the heart, in particular, with its vessels and valves, were all found in a natural condition."

In the case communicated by Dr Percival to the publishers of the Edinburgh Medical Commentaries, "the heart and aorta descended were found in a found state."

And in Dr Haygarth's patient, "on opening the thorax, the lungs, pericardium, and heart, appeared perfectly found." Not to mention Dr Fothergill's patient (R. M.), in whose body the only morbid appearance about the heart was a small white spot near the apex. So that the cause, whatever its nature might have been, was at too great a distance, or of too subtle a nature, to come under the inspection of the anatomist. But there was a circumstance in two of the subjects that is worthy of remembrance; and which shows that the crafts of the blood, while they were living, must have been greatly injured, namely, its not coagulating, but remaining of a cream-like nature; but though it should be admitted, that the whole difference in these cases arise from spasm, it may not be so easy to ascertain the particular muscles which are thus affected.

The voluntary sense of strangling or choking, which flows the circulation through the lungs to be interrupted during the height of the paroxysm; and the peculiar constrictive pain under the sternum, always inclining (according to Dr Heberden's observation) to the left side; together with that most disturbing and alarming sensation, which, if it were to increase or continue, threatens an immediate extinction of life; might authorize us to conclude that the heart itself is the muscle affected: the only objection to this idea, and, if it had been constantly observed, it would be insurmountable, is, that the pulse is not always interrupted during the paroxysm. The appearances in two of the differences, favour the opinion that the spasm affects the heart; as in one subject the left ventricle (and, though it be not mentioned, we may presume the right one also) was found as empty of blood as if it had been washed; and in another, the substance of the heart appeared whitish, not unlike a ligament; as it should seem, in both cases, from the vessels and force of the spasms squeezing the blood out from the cavities.
does not appear: that any considerable advances have been made towards the actual cure of this anomalous

The very judicious and attentive Dr Heberden (to whom the public are highly indebted for first making the disorder known) confesses, that bleeding, vomits, and other evacuations, have not appeared to do any good: wine and cordials, taken at bed-time, will sometimes prevent or weaken the fits; but nothing does this so effectually as opiates: in short, the medicines usually called nervos or cordial, such as relieve and quiet convulsive motions, and invigorate the languishing principle of life, are what he recommends.

Dr Wall mentions one patient, out of the 12 or 13 that he had seen, who applied to him early in the disease, and was relieved considerably by the use of antimonial medicines joined with the fiddle gums: he was still living at the time the Doctor wrote his paper, (November 1772), and going about with tolerable ease. Two were carried off by other disorders; all the rest died suddenly.

Dr Fothergill's directions are chiefly calculated with the view to prevent the disorder from gaining ground, and to alleviate present distress. Accordingly he enjoins such a kind of diet as may be most likely to prevent irritability: in particular, not to eat voraciously: to guard against irritability: in particular, not to eat voraciously: to guard against

Dr Fothergill's directions are chiefly calculated with the view to prevent the disorder from gaining ground, and to alleviate present distress. Accordingly he enjoins such a kind of diet as may be most likely to prevent irritability: in particular, not to eat voraciously: to guard against irritability: in particular, not to eat voraciously:

_"A. B. a tall, well made man: rather large than otherwise; of healthy parents, except that there had been a little gout in the family; temperate; being very attentive to the business of his trade (that of a watch-maker), led a life uncommonly sedentary; had, from his boyhood upwards, been remarkably subject to alarming inflammations of this throat, which pleased him, at least, once in course of the year; in all other respects well.

In 1767, (then 48 years of age), he was taken, without any evident cause, with a sudden and very distressing throbbing under the sternum. It soon afterwards increased, and returned upon him every third or fourth week, accompanied with great anxiety, very laborious breathing, choking, a sensation of fulness and distension in the head, a bloated and flushed countenance, turgid and watery eyes, and a very irregular and unequal pulse. The paroxysm invaded, almost constantly, while he was sitting after dinner; now and then he was seized with it in the morning, when walking a little faster than usual; and was then obliged to stop, and rest on any object at hand. Once or twice it came on in bed; but did not oblige him to fit up, as it was then attended with no great difficulty in breathing. In the afternoon fits his greatest ease was from a supine posture; in which he used to continue motionless for some hours, until, quite spent and worn out with anguish, he dropped into a slumber. In the intervals between these attacks, which at length grew so frequent as to return every fourth or fifth day, he was, to appearance, in perfect health.

"Thus matters continued for more than two years; and various anti-paesthesiaes were ineffectually tried for his relief. In 1769, there supervened a very sharp constrictory pain at the upper part of the sternum, stretching equally on each side, attended with the former symptoms of anxiety, dysphoria, choking, &c. and with an exciting cramp, as he called it, that could be covered with a crown-piece, in each of his arms, between the elbow and the wrist, exactly at the infection of the prominent teres; the rest of the limbs was quite free. The fits were sometimes brought on, and always exacerbated, by any agitation of mind or body. He once attempted to ride on horseback during the paroxysm; but the experiment was not approving fatal to him. The difference of season or weather made no impression upon him. Still, in the intervals, his health was perfectly good; except that his eyes, which before his illness were remarkably strong and clear, were now grown extremely tender; and that his sight was much impaired. He had no flatulence of stomach, and his bowels were regular.

"In this situation, February 22, 1770, he applied to me for assistance. I had seen, I believe, eight or ten of these frightful cases before. Two of the patients dropped dead suddenly. They were men between 40 and 50 years of age, and of a make somewhat flabby. The fate of the others I was not informed of; or, at least, cannot now recollect.

"Having found the total inefficacy of blisters and the whole class of nervous medicines in the treatment of this anomalous fits, I thought it right to attempt the correcting or draining off of the irritating fluid in the cafe now before us. To this purpose, I ordered a mixture of lime-water with a little of the compound juniper-water, and an alternative proportion of Huxham's antimonial wine: I put the patient on a plain, light, imperishable diet; and restrained him from all vile, flatulent, and acrimonious articles. By purusing this course, he was soon apparently mended; but after he had persifled regularly in it for at least two months, he kept for some time at a stand. I then ordered a large infus to be opened on each of his thighs. Only one was made. However, as soon as it began to discharge, his amendment manifestly increased. The frequency and severity of the fits abated considerably; and he continued improving gradually, until, at the end of 18 months he was restored to perfect health; which he has enjoyed, without the least interruption, till now, except when he has been tempted (perhaps once in a twelvemonth) to transgress rules, by making a large meal on salted meat, or indulging himself in ale or rum-punch, each of which never failed to dis-order
order him from the beginning of his illness: and even on these occasions he has felt no more than the lightest motion of his former sufferings; insomuch that he would despise the attack, if it did not appear to be of the same flocks with his old complaint. No other cause has had the least ill effect on him.

"Though rum was constantly hurtful, yet punch made with a maceration of black currants in our vulgar corn-spirit, is a liquor that agrees remarkably well with him.

"He never took any medicine after the issue began to discharge; and I have directed that it shall be kept open as long as he lives. The inflammations of his throat have disappeared for five years past: he has recovered the strength and clearness of his sight; and his health seems now to be entirely restored.

Dr Macbride, in a letter to Dr Duncan, published in the Edinburgh Medical Commentaries, gives the following additional observations on this disease.

"Within these few weeks I have, at the desire of Dr Smyth, visited, three or four times, a very ingenious man who keeps an academy in this city, of about 34 years of age, who applied to the Doctor for his advice in January last.

"I shall give you his symptoms as I had them from his own mouth, which appear to me to mark his case to be an anginapectoris, and as deplorable as any that I have read of. It was strongly distinguished by the exquisite constrictive pain of the sternum, extending to each of his arms as far as the insertion of the deltoid muscle, extreme anxiety, laborious breathing, strangling, and violent palpitation of the heart, with a most irregular pulse. The paroxysms were so frequent, that he scarcely ever escaped a day, for six or seven years, without one. They were usually excited by any agitation of mind or body, though flight. He had clear intervals of health between the fits. The dieterper seems hereditary in him, as he says his father was affected in the same manner some years previous to his death. He has a strong, guilty taint, which never showed itself in his limbs; and he has led a life of uncommon sedentaries, from intense application to the mental and mechanical work of mind, and passion, even from his boyish years. These circumstances may, perhaps, account for his having been taken with this disease at so early an age as 17.

"A large issue was immediately opened in each of his thighs. In a month afterwards he began to mend, and has gone on improving gradually. He has now been totally free from them for six years past."

The PUERPERAL, or CHILD-BED FEVER.

This species of fever, as its name imports, is peculiar to women in child-bed; and is usually the most fatal of all the disorders to which the sex is liable. But, notwithstanding the prevalence of it in all ages, its real nature has remained, to the present time, a subject of much dispute and uncertainty. The critical period of its invasion, when febrile commotions are apt to be excited by various accidents, and equivocal symptoms which accompany it, have even afforded room for questioning whether it be a primary or a secondary disease. Some writers have considered it as proceeding entirely from an inflammation of the uterus; others have imagined it to be the consequence of an obstruction to the secretion of the milk; while the greater number has been inclined, for reasons equally if not more plausible, to impute it to a supposition of the lochia. If we examine this fever attentively, however according to its natural course, and independently of all the accidental concomitant symptoms with which it is not essentially connected, we may safely pronounce it to be a primary disease of a particular character, and perhaps not the necessary consequence of any of the causes abovementioned.

This fever is most generally incident to women within 48 hours after delivery, though it may supervene on the fourth or fifth day, and sometimes considerably later. It is preceded, like other fevers, by a rigor, which is commonly violent; and, when happening during the time of labour, may be confounded with the pains of parturiency. In its earlier stage it is attended with the signs of inflammation. A great pain is felt in the back, hips, and the region of the uterus; which, in the part last mentioned, is accompanied with the sense of heat and throbbing. A sudden change in the quality or quantity of the lochia now also takes place; the patient is frequently troubled with a tenesmus; and the urine, which is very high coloured, is discharged in small quantity and with pain. At the first attack of the fever, the woman is generally feized with vomiting of porridge matter, as in the cholea morbus, to which disfaste it then bears a strong resemblance. But instead of this symptom, there is sometimes only
PUERPERAL FEVER.

A nausea, or loathing at the stomach, with a disagreeable taste in the mouth. The belly swells to a considerable bulk, and becomes susceptible of painful sensations from the slightest impression. The tongue is generally dry, though sometimes moist, and covered with a thick brownish fur. When the fever has continued a few days, the symptoms of inflammation usually subside, and the disease acquires a more putrid form. At this period, if not at the very beginning of the disorder, a bilious or putrid diarrhoea, of a dangerous and obnoxious nature, supervenes, and accompanies it through all its future progress; each motion to stool being preceded by a temporary increase, and followed by an alleviation of pain. The patient usually nauseates all kind of food and drink, except what is cold and acidulated. A brown or blackish froth, the consequence of putrid exhalations, adheres to the edges of the teeth; a troublesome hicough is at length produced, which greatly exacerbates the pains of the abdomen; petechiae or vibices also appear, with sometimes a miliary eruption, but which produces no mitigation of the disease. Through the whole course of the fever the patient is affected with great anxiety and dejection of spirits.

Such in general is the course of the puerperal fever; the symptoms of which, however, may be often varied according to the constitution of the patient, the degree of the disease, and its earlier or later invasion. When the woman is naturally weak, or her strength has been greatly reduced by longcontinued evacuations after delivery; when the disease is violent, and immediately follows that period; its progress and termination are proportionably rapid and fatal. In such unfortunate circumstances, many have been known to expire within 24 hours from the first attack of the disease; nay, there are some instances where the rigor has concluded the scene. The catastrophe, however, is most generally suspended for some days; and the number of these is variable, though the 11th from commencement of the fever may justly be fixed as the period which is usually decisive. In whatever stage of the disease an unfavourable termination may happen, it would seem as if the commencement of the puerperal fever was not marked by any critical renovation of the fever, as depending on an alteration of the humors; but that the cure is gradually effected, either by a spontaneous vomiting, or a long-continued discharge by stool of that putrid matter, the existence of which in the stomach is usually evinced at the first attack of the disease. The most unfavourable prognostic, therefore, arises from such a weakness of the patient as renders her unable to support so tedious an evacuation as that by which the fever is overcome. When the lochia return to their former state, when the swelling and tenderness of the abdomen abate, and there is a moisture on the skin, we have reason to hope for a happy termination of the disease.

Though the puerperal fever may generally be ascertained from the description which has been given, and chiefly by that remarkable tenderness of the abdomen; which particularly distinguishes it; yet, as some of its symptoms may be confounded with those arising from other diseases, and which require a different method of cure, it will be proper to mention here the circumstances whereby it may be known with greater certainty.

The pains of the abdomen, attending the child-bed fever, may be distinguished from those called after-pains, by their uninterrupted continuance through the course of the disease, though sometimes they suffer exacerbations; whereas, in the latter, they often totally intermit. They are also distinguishable by the absence of fever with concomitant symptoms in the one, and their evident existence in the other.

Many circumstances evince a dissimilarity between the puerperal and miliary fevers, notwithstanding the symptoms of anxiety and oppression are common to both; infomuch that the nature of the approaching disease may be ascertained at the very commencement of its attack. In the puerperal fever the rigor is more violent, of longer duration, and not interrupted, as in the other. The pulse is fuller and stronger; the skin is more hot; and the tongue, whether moist or dry, though generally the latter, is not of a white, but brownish appearance; and the urine is also of a more coloured. Eruptions, which are critical in miliary fevers, procure no mitigation of the puerperal fever, and cordials generally increase it.

When the original attack of the puerperal fever happens to coincide with the febrile commotion which is excited in child-bed women by the milk, the nature of it may at first be misapprehended; but the concomitant symptoms, and greater violence of the disease, must in a short time dissipate such an error.

From all the most accurate accounts of this disease, and from the period at which it generally commences, there seems reason to conclude, that it owes its rise more immediately to accidents after delivery. For it is allowed that it may follow a labour under the best and most favourable circumstances, though endeavours to dilate the os internum are supposed frequently to produce it. The more immediate causes generally assigned by authors are a stoppage of perspiration, the too free use of spices, and the neglect of procuring floths after delivery; sudden frights, too hasty a separation of the placenta, and binding the abdomen too tight. The putrid appearance, however, which this disease so soon assumes, affords ground to suspect that the predisposing cause of it is a vitiated state of the humors; for it is generally observed to be most prevalent in an unhealthy season, and among women of a weak and febrotic constitution.

Within these few years this fever has been treated of by several writers, most of whom have differed from each other in their sentiments of the nature of the disease. The first in the order of publication is Dr Dennman, who seems to be of opinion, that it may derive its origin either from a redundancy or too great acrimony of the bile, the secretion of which appears to be much interrupted in the time of gestation. In Dr Manning's treatise on this fever, he mentions it as being highly probable that such a cause contributes greatly to produce the disease, especially where the putrid tendency of the humors is increased by unwholesome air and diet.

It has likewise been the fate of the puerperal fever, that no disease has more divided the sentiments of physicians in regard to the method of cure. The apparent
rent indications and contra-indications of bleeding, and other remedies, arising from the complication of inflammatory and putrid symptoms; the equivocal appearance of the vomiting and purging, as whether they be critical or symptomatical; and the different causes whence symptoms similar to each other may arise in pregnant women; all these circumstances concur to involve the subject in great obscurity and illusion. If we carefully attend to the several characteristics of the disease, however, so as to be able to distinguish it from every other puerperal complaint, and observe at the same time the usual manner of its declension, our judgment may be guided in the method of cure by the salutary efforts of nature. But, in order to obtain a clearer view of the genuine indications, it will be proper to consider them under the several lights in which they have been generally agitated by authors.

One of the most essential points to be ascertained in the course of the child-bed fever, respects the propriety of bleeding. A free use of the lancet has been generally regarded as the most successful expedient in practice; and there are some instances of critical haemorrhagies which would seem to confirm its utility. But Dr Denman thinks we may safely affirm from experience, that for one who will be benefited by large bleedings, a much greater number will be injured, and that even almost irretrievably. Nor can this seem surprising, when we consider the situation of child-bed women. In most, the evacuations consequent upon delivery are sufficient to diminish any undue superabundance of the fluids; and if, as frequently happens, the disease be produced by too haughty a separation of the placenta, the consequence of which is generally a very copious discharge of blood, we cannot suppose that nature will be affiicted in overcoming the febrile commotion, by the farther evacuation of the vital fluid, through the defect of which she is now rendered unequal even to the ordinary support of the animal economy. We may appeal to every practical physician, how much he has known the pulse to sink, and what a train of nervous symptoms he has observed to succeed an excess of the discharge abovementioned.

Besides, it is an axiom in phitie, that a remedy which cures any disorder, will always prove sufficient to prevent it; and therefore, if bleeding were the proper cure in the child-bed fever, the disease ought to have been prevented by a large evacuation of blood, when that happened previous to its seizure. Experience, however, in this, as in all other diseases, is the only unerring guide we can follow; and whoever regulates his practice by fact and observation, will be convinced that bleeding, especially in a larger quantity, is, in general, very far from being attended with success. Bleeding is seldom proper, except in women of plethoric constitutions, and in whom the signs of inflammation rise high. Nor even in such patients ought it to be repeated without great caution, and the existence of strong indications. Bleeding, when used in proper circumstances, may unquestionably palliate the fever; but that it often shortens the duration of it, appears to be a matter of much doubt. On this account the practice becomes still more inquisitive and exceptionable, when we consider that by venefaction improperly used the person's strength may be so far reduced as not to support the tedious loofeness by which the disease is generally carried off. Though bleeding, however, ought in general to be used with great caution, there are certainly many cases in which it is both necessary and advantageous.

The genuine nature and effects of the looseness in this disease, is another controverted point of the highest importance, and which merits the most attentive inquiry. Physicians, observing that women who die of the puerperal fever are generally molested with that evacuation, have been induced to consider this symptom as of the most dangerous and fatal tendency; and what, therefore, we should endeavour by every means to restrain. In this opinion, however, they would seem to have been governed by too partial an observation of facts. For experience certainly authorizes the assertion, that more women appear to have recovered of the child-bed fever, through the intervention of a diarrhoea, than have been destroyed by that cause. It is also considered, that purging is usually almost the only sensible evacuation of the more advanced state of the disease, and that which accompanies it to its latest period, we shall have the strongest reason to think that it is critical rather than symptomatical, and ought therefore to be moderately supported, instead of being unwarily restrained. Nay, the advantage which is found to attend vomiting as well as purging, in the earlier stage of the disease, would seem to evince that the matter discharged by these evacuations is what chiefly foments the disease. Emetics and purgatives, therefore, in the opinion of Dr Manning, are the only medicines on which any rational dependence is to be placed in the fever; at least, they are certainly such as are found the most successful. It is an established rule in practice, to prescribe a vomit at the beginning of every fever attended with any nausea or loathing of the stomach, and where there is not any reason to apprehend an inflammation of that organ. Nor does the state of child-bed women afford the smallest ground for prohibiting our recourse to the same expedient in answering a similar indication.

It is so seldom a physician is called during the rigor preceding the puerperal fever, that he has few opportunities of trying the effects of remedies in that early stage of the disease. When such occur, however, we should endeavour as much as possible to abate and shorten that period, as the succeeding fever is generally found to bear a proportion to the violence and duration of it. For this purpose, warm diluting drinks should be plentifully used, with a small quantity of volatile spirits or brandy. When Dr Manning apprehended such an accident, he sometimes ordered the nurse to give immediately a diph or two of warm vinegar, taking care that it was not too strong, which is a caution that ought always to be remembered; for though a freer use of the more cordial and spiritual kinds of liquors might perhaps soon abate the rigor, there is danger to be feared from their influence on the approaching fever, especially in women of a strong and healthy constitution. In all cases, warm applications to the extremities, such as heated bricks, towels, or toasted grains in a linen bag, may be used with perfect safety, and some advantage.

When the hot fit is advanced, the first thing Dr Manning orders is some emollient injection, as chicken-
MEDICINE

Puerperal Fever.

water, or water and milk, which ought to be frequently repeated through the course of the diseased. These prove beneficial, not only by promoting the discharges from the intestines, which seems in fact to be the solution of the disease; but also by acting as a kind of fomentation to the uterus and adjacent parts. With this intention they are particularly serviceable when the lochia are suppressed. Great care, however, is requisite in administering them, on account of the tenderer and inflammatory disposition, which at that time renders the parts in the pelvis extremely susceptible of pain.

The next step in the method of cure ought to be to promote the discharge of the morbid matter both by the stomach and intestines. This intention is best answered by the remedy prescribed by Dr. Denman, of which the following is the receipt.

R. Tartar, emetic, gr. ii.

Of a powder thus prepared, Dr. Denman gives from two to six grains, and repeats it as circumstances require. If the first dose do not procure any sensible operation, he repeats it in an increased quantity at the end of two hours, and proceeds in that manner; not expelling any benefit but from its sensible evacuation.

Should the disease be abated, but not removed, (which sometimes happens), by the effect of the first dose, the same medicine must be repeated, but in a less quantity, till all danger be over. But if any alarming symptoms remain, he does not hesitate one moment to repeat the powder, in the same quantity as first given; though this be seldom necessary, if the first dose operates properly.

It is to be observed, says Dr. Denman, that as the certainty of cure depends upon the proper repetition of the medicine, the method of giving it at stated hours does not appear eligible. If the first dose produce any considerable effect by vomiting, procuring stools, or plentifully sweating, a repetition of the medicine in a less quantity will seldom fail to answer our expectations; but great judgment is required in adapting the quantity first given to the strength of the patient and other circumstances. We are not to expect that a disease which from the first formation carries so evident marks of danger, should infinitely cease, even though a great part of the case be removed.

Frequent doses of the saline draughts ought also to be given, which not only promote the evacuation by the intestines, but likewise increase the salutary discharges of urine and perspiration. These medicines are particularly serviceable in subsisting the remains of the fever, after its violence has been broken by the more efficacious remedies abovementioned; but when they are used even in the decline of the disease, gentle laxatives of rhubarb and magnesia, as advised by Dr. Denman, ought to be frequently interposed, since, as he justly observes, without stools we can do little service.

Notwithstanding the discharge by the intestines appears to have the most salutary effect in this disease, yet when the stomach has not been properly unloaded of offensive matter, though a great nausea and sickness had indicated the expediency of such an evacuation at the beginning of the fever, the continuance of the looseness is sometimes so long protracted as in the end to prove fatal. In this alarming state of the disease, when the stools are very frequent and involuntary, and all appearances threaten danger, Dr. Denman says, that a glass of chicken-water injected every one, two or three hours, or as often as possible without fatiguing the patient too much, with the following draught taken every fix hours, has produced better effects than could be expected.

R. Pulv. rad. ipecacuan. gr. i.

Conf. Daunocrat. ſi.

Aq. alexiter. simp. vel.

Cinnamom. simp. ſit. M. f. Hauflus.

While these medicines are using, we should endeavour to mitigate the pains of the belly by relaxing applications. During the course of the disease, the patient ought to drink freely of diluting liquors, and abstain from every thing of a heating quality, unless great faintness should indicate the use of a small quantity of some cordial medicine.

Such is the practice recommended in this disease by Dr. Denman. We shall now take a cursory view of the sentiments of succeeding writers on this subject.

According to Dr. Hulme, the proximate cause of the puerperal fever is an inflammation of the intestines and omentum; for the confirmation of which opinion he appeals to observations. He supposes the chief predisposing cause of the disease to be the pressure of the gravid uterus against the parts abovementioned. The omentum, says he, in the latter stage of pregnancy, must either be flat, which is its natural situation, or be rumpled or carried up by the gravid uterus in folds or doublings. When the latter is the case, which he observes is probably not seldom, the danger of a strangulated circulation will be greater.

Mr. White, who has also written on this disease, judiciously remarks, that were Dr. Hulme's hypothesis well founded, the disorder ought rather to take place before delivery, and be immediately removed at that period: That it would likewise most generally happen to women at their first labour, when the abdominal muscles are less yielding, and the pains more violent; the contrary of which is most frequently experienced to be the case.

It also deserves to be remarked, that upon Dr. Hulme's supposition, we cannot account for the disease being more common and fatal in large towns and in hospitals, than in the country and private practice, while other inflammatory disorders are more endemic among those who live in the latter than the former situation. Even admitting the friction of the intestines and omentum against the uterus to be as violent as Dr. Hulme supposes, is it not highly improbable, that any inflammation could be occasioned by the pressure of such soft substances upon each other? Or, were this effect really produced, ought not the puerperal fever to be more common and fatal after the most laborious deliveries? But this observation is not supported by experience.

Dr. Hulme, in favour of his own hypothesis, alleges that it gives a satisfactory answer to the question, "Why all lying-in women have been, and ever will be, subject to this disease?" In this proposition, however, the Doctor supposes such an uniformity of the disease as is not confirmed by observation. It is affirmed
Appendix.

MEDICINE.

Puerperal Fever. formed upon undoubted authority, that in many parts of Britain the puerperal fever is hardly known; whereas, were it really produced by the causes he assigns, it would be equally general and unavoidable.

But how peculiar ever this author's sentiments are in respect of the proximate cause of this disease, they have not led him to any method of cure different from the established practice. On this subject Dr Hulme divides his observations into two parts, comprehending under the former the more simple method of treatment, and under the latter the more complex. He set out with remarking, that the patient being generally colitive at the beginning of the disease, an emollient opening clyster will often give immediate relief; but if this should not prove effectual, recourse must be had to cathartics. Those which he found answ'er his purpose best, were the sal carbonate of ammonia, the oleum ricini, emetic tartar, and antimonial wine. When the bowels have been sufficiently cleared and the pain abated, he advises encouraging a gentle diaphoresis by medicines which neither bind the body nor are heating; such as a small dose of ipecacuan, emetic tartar, and antimonial wine, combined in a moderate dose, and given once or twice in the course of 24 hours; administering the saline draughts in the intermediate spaces. If, preceding or during this course, a faintness at throat or vomiting attend, he advises affisting the efforts of nature, by drinking plentifully of camomile tea, warm water, or any other diluting liquor. He concludes with recommending a cooling regimen, rest of body, and tranquillity of mind; prohibiting all kinds of bandages upon the abdomen, and enjoining particular attention to the state of the bowels, which ought to be kept gently open for some time, even after the disorder seems to be gone off, till the patient be quite out of danger.

So much for this simple treatment; we now proceed to the second part, where he describes the method of practice when the disease is in its more irregular and complicated state.

When a diarrhoea accompanies the disease, he observes that it ought by no means to be checked, but supported, by ordering the patient to drink plentifully of mild aperient liquors. If the pain of the hypo-gastric region be attended with stitches in the sides or on the pit of the stomach, and a pulse that resists the finger pretty strongly, he remarks that bleeding would then be highly necessary: declaring, however, his opinion, that in the puerperal fever, bleeding is to be considered only as a secondary means of relief, though the first in point of time; that it ought to be advised with great caution; and that the greatest dependence is always to be placed upon evacuations by stool.

Mr White, abovementioned, imputes the puerperal fever to a putrid disposition of the humours, contracted during pregnancy, and fomented by the hot regimen commonly used by women in child-bed. In conformity to this opinion, the chief means which he recommends for preventing the disease is a cool regimen and free circulation of air, which he evisces to be of the greatest importance. In respect of bleeding, he informs us, that, upon the strictest inquiry, he cannot find that those who have bled the most copiously have had the greatest success, either in private or hospital practice. He even seems to question the propriety of this evacuation in any case; but approves of emetics, cathartics, and clysters, for clearing the prime vis, and likewise of such medicines and diet as will correct the putrid humours; adding, that an upright posture and free ventilation are at all times useful, and absolutely necessary, both for the prevention and cure of the disease.

Another writer who treats of the child-bed fever is Dr Leake, who has published the result of his observations on this disease from April 1768 to the autumn of the year 1770; but chiefly from December 1769 to May 1770, during which period the child-bed fever prevailed much about London.

Dr Leake tells us that this fever generally commenced the evening of the second or morning of the third day after delivery, with a rigor or shivering fit. Sometimes it invaded soon after delivery; and at other times, though rarely, it has lasted so late as the fifth or sixth day. Now and then it seemed to be occasioned by catching cold, or by errors in diet; but oftener by anxiety of mind. Sometimes the thirst was great; tho' the tongue had, in general, a better appearance at the beginning than is common in fever. The lochia, from its more irregular and putrefcent disposition, is changed into a putrid nature; and no longer can be prevented by that mechanical draughts of the midwife, which he found answer his purpose best; the patient being restrained by those who attend. When the disease proved mortal, the patient generally died on the 1st or 11th day from the first attack. In those who died of the fever, the omentum was found suppurated; an inflammation of which part, or of the intestines, Dr Leake concludes to be the proximate cause of the disease.

In consequence of this idea of the cause of the disease, Dr Leake affirms that venesection is the only remedy which can give the patient a chance for life. But, though it be the principal resource to be depended upon at the beginning of the fever, he observes that it will seldom prove of service after the second or third day; and, if directed yet later, will only weaken and exhaust the patient; when, matter having begun to form in the omentum, the progress of the disease can no longer be prevented by that exhaustion. At this period the blood begins to be tainted by the absorption of the purulent fluid; and the fever, from being inflammatory, is changed into a putrid nature.

After bleeding in such a quantity as the symptoms require, he advises that the corrupted bile be evacuated and corrected as soon as possible; that the diarrhoea
MEDICINE.

Appendix.

Of this disease also, as it appeared in Derbyshire and some of the adjacent provinces, an account has been published by Dr. Butter. Concerning the causes and nature of the disease, he observes, that pregnancy seems to add much to the natural susceptibility of the female constitution; because at this period women are often subject to a train of nervous symptoms, which never molest them at other times. During gestation likewise, the appetite is for the most part keen, while the digestion appears to be impaired; and this weakness is increased not only by improper food, of which the woman is frequently debauched, but also by the inactivity attending her situation. To these circumstances, it is added, that the intestinal passage being interrupted by the uterine formation, constipation generally prevails. From the several observations here enumerated, Dr. Butter concludes, that the proximate cause of the puerperal fever is a spasm either of the first passages, with a morbid accumulation in their vicinity; and upon this supposition he endeavours to account for the various symptoms of the disease.

In treating of the method of cure, he lays down two indications; the former of which is to promote two, three, or four stool daily, in manner suited to the strength of the patient, till such time as they resume a natural appearance. The second indication is to relieve all uneasy symptoms, such as heat, thirst, head-ache, &c.

With respect to the opinion entertained by Dr. Butter of the cause of the puerperal fever, it nearly coincides with that of Mr White. But however plausible it may appear, we are not entirely satisfied that a disease attended with so peculiar symptoms as the puerperal fever can depend principally upon an irritability, which is not restrained either to the pregnant or puerperal state.

The late Dr Thomas Young professor of midwifery in the university of Edinburgh, although he published nothing on the subject of the puerperal fever, wrote a very ingenious dissertation refpecting it, which was read in the Philosophical Society of Edinburgh. In that dissertation, after giving a very accurate account of the symptoms of the disease, which coincides very nearly with the account given by others, he endeavours to show, that the puerperal fever, firstly so called, is in every instance the consequence of contagion; but he contends, that the contagious matter of this disease is capable only of producing its effect, in consequence of a peculiar predisposition given by delivery and its consequences. In support of this doctrine, he remarks, that for many years the disease was altogether unknown in the lying-in ward of the Royal Infirmary at Edinburgh; but that after it was once accidentally introduced into the hospital, almost every woman was in a short time after delivery attacked with it; although prior to her delivery, the may have lain even for weeks together, not only in the same ward with the infected, but even in the very next bed. He remarks, that it was only eradicated from the hospital in consequence of the wards being entirely emptied, thoroughly ventilated, and new painted. After these procedures, puerperal females in the hospital remained as free from this disease as formerly. The puerperal fever, according to Dr Young, has very generally a strong tendency to the typhoid type; although he allows, that in
in the beginning it is not unfrequently attended with inflammatory symptoms, and even with topical inflammation, particularly in the intestinal canal. On this idea, he considers the puerperal fever as admitting of the same variety of treatment with other affections depending on contagion, in which sometimes an inflammatory, sometimes a putrefactive tendency, prevails; such, for example, as small-pox or erysipelas. But from the prevailing putrefactive tendency in this affection, he considers the free access of cool air, with the liberal use of antifeptics, as being very generally requisite.

It deserves to be remarked, that though the several writers who treat of this subject have conducted their method of cure conformably to their particular idea of the cause of the disease, respecting which their sentiment are very different, they seem to have been equally successful in the treatment of their patients. Indeed, the several writers differ less from each other in their method of cure than might be expected, where so great an opposition of theoretical sentiments prevails. For after endeavouring to establish indications correspondent to their particular systems, those who contend for the expediency of promoting the intestinal discharge, diffuse not from a recourse to phlebotomy when the disease is attended with inflammatory symptoms; while, on the other hand, the most strenuous advocates for bleeding admit the utility of the former evacuation. It appears, therefore, that a due regulation of the alvinate discharge is necessary through the whole course of the fever, but venefaction only sometimes.

CEPHALALGIA.

Head-Ach

The head-ach is symptomatologic of very many distempers, but is rarely an original disease itself. Dr Home acquaints us, that his report-books only furnish four instances of it; and of these four, three were women. The disease proved fatal to the man; and after death, a considerable effusion of blood was found on the brain, together with some hydatids, and water in the ventricles.

Head-achs appear frequently to be occasioned by effusions of blood or serous; as well as by ulcers, and abscesses of the brain, dura and pia mater. Accretions and obliterations of different parts of the dura mater, falx, and brain, are also frequently discovered. An obliteration of the falx, however, does not always produce head-ach; for Dr Home mentions a patient who had the falx obliterated without head-ach; but he had been observed to be very furious when drunk. Congestions of blood in the vesicles of the brain are also discovered from obliteractions to be a frequent cause of the head-ach; and nervous irritation alone will frequently produce it, as we see in the clausus hystericus.

In the cure of this disease we have little or no power over obliteractions, effusions, or ulcerations; and hence the head-ach is frequently incurable. In congections, and nervous affections, medicines may indeed be of some service. Congestion may be relieved by an evacuation of blood, either general or topical; as venefaction, cupping, or leeches: by erthines; which, however, Dr Home thinks are little to be depended upon: by topical evacuations near the head by blisters, infusions, or foment; by purgatives; or by determining the fluids to other parts, by rubefaciens applied to the temples, pedulivus, &c.

Nervous irritation may be diminished. 1. By a great quantity of cold water drunk every morning. This is recommended by Hoffman; and will wash off all acrid particles from the stomach, while the cold strengthens and diminishes the sensibility of the part. This remedy was tried for a considerable time in one of Dr Home’s patients without any effect. 2. Nervous and tonic medicines; as the bark, valerian, &c. These were tried in two of Dr Home’s patients, but also without success. In a third the valerian succeeded. 3. By cold water applied to the head, immersion, or the shower-bath. 4. Cephalics; as lavender, rosemary, &c. In flight cases, the smell of cam de toc, or any strong volatile alkali, will generally prove a cure.

A Dangerous Affection of the Oesophagus.

This distemper has only been treated of by Dr Muncley, who reckons it one of the most deplorable diseases of the human body. Its beginning is in general so flight as to be scarce worth notice, the patients perceiving only a small impediment to the swallowing of solid food: they usually continue in this state for many months; during which, all liquid foods, and even solids themselves, when cut small and swallowed leisurely, are got down without much difficulty: by degrees the evil increases, and the passage through the esophagus becomes so narrow, that not the smallest solid whatever can pass through it; but, after having been detained for some time at the part where the obstacle is formed, is returned again with a hollow noise of a very peculiar kind, and with the appearance of convulsion.

The seat of this malady is sometimes near the top of the oesophagus, and at other times farther down, nearer the inferior orifice of the stomach. In this last case, the part of the alimentary tube which is above the obstruction is frequently fo dilated by the food which is detained in it as to be capable of containing a large quantity; and the kind of vomiting, by which it is again returned through the mouth, comes on sooner or later after the attempt to swallow, in proportion to the nearness or remoteness of the part affected. In the last stage of this disease, not even liquids themselves can be swallowed so as to pass into the stomach, and the patient dies literally starved to death.

On the obstitutions of such as have died in this manner, the esophagus is found to be considerably thickened; and in some so contracted within at the diseased part, as scarcely to admit the passing of a common probe; in others, to adhere together in such a manner as entirely to close up the passage, and not to be separated without great difficulty.

He comes next to show what he has found to be the most efficacious method of treating this disease, which, though not uncommon, yet in general has been considered as incurable.

He claims not the merit of having discovered the method of cure, but hopes that some service may arise from publishing what his experience has confirmed to him; having first received the hint from another eminent physician.
The only medicine, then, from the use of which he has ever found any service, is mercury; and in cases which are recent, and where the symptoms have not risen to any great height, small doses of mercury given every right, and prevented, by purgative medicines, from affecting the mouth, have accomplished the cure.

But where the complaint has been of long standing, and the symptom has come on of the food's being returned through the mouth, a more powerful method of treatment becomes necessary. In this case he has never found anything of the least avail in removing any of the symptoms, but mercury, used in such a manner as to raise a gentle but constant spitting; and this method he has pursued with the happiest success. If this method be commenced before the complaint has gained too much ground upon the constitution, the case is not to be despaired of; and of those who have come under his care in this state, by much the greater part have received considerable benefit from it, and many have been entirely cured.

The complaint itself he observes, is not very uncommon; but there is no instance, to his knowledge, recorded, of success from any other manner of treating it, than that he has recommended.

WORMS.

Those infesting the human body are chiefly of three kinds: the ascarides, or small round and short white worms; the teres, or round and long worm; and the tertia, or tape worm.

The ascarides have usually their seat in the rectum.—The teretes or lumbrici are about a span long, round and smooth: they are feated for the most part in the upper small intestines; but sometimes they are lodged also in the stomach, and in any part of the intestines, even to the rectum.—The tape worms are from two to forty feet long, according to the testimony of Platerus; they generally fill the whole tract of the intestines, but especially the ileum: they very much resemble a tape in their appearance, whence the name of tape-worm: but another species of this genus, from the resemblance of each joint to a gourd seed, has the name of gourd worm.

In the Medical Transact. Vol. I. Dr Heberden gives a very accurate account of the symptoms produced by the ascarides, from an eminent physician who was troubled with them all his life. They brought on an unaesthetic in the rectum, and an almost intolerable itching in the anus; which sensations most usually came on in the evening, and prevented sleep for several hours. They were attended with heat, sometimes so considerable as to produce a swelling in the rectum both internally and externally; and if these symptoms were not soon relieved, a tenesmus was brought on, with a mucous defecation. Sometimes there was a griping pain in the lower part of the abdomen, a little above the os pubis. If this pain was very severe, a bloody mucus followed, in which there was often found ascarides alive. They were also sometimes inspected of occasioning disturbed sleep, and some degree of head-ache.

On this case Dr Heberden observes, that the general health of the patient did not seem to have suffered from the long continuance of the disease, nor the immediate inconvenience of the disorder itself to have increased. "It is (says he) perhaps universally true, that this kind of worms, though as difficult to be cured as any, yet is the least dangerous of all. They have been known to accompany a person through the whole of a long life, without any reason to suspect that they had hastened its end. As in this case there was no remarkable sickness, indigestion, giddiness, pain of the stomach, nor itching of the nose, possibly these symptoms, which have happened to be joined with the ascarides, did not properly belong to them, but arose from some other causes. There is indeed no one sign of these worms, but what in some patients will be wanting."

The abovementioned patient used purging and irritating cathartics with very little success. One drachm and an half of tobacco was infused in six ounces of boiling water; and the strained liquor being given as a clyster, occasioned a violent pain in the lower part of the abdomen, with faintness and a cold sweat; this injection, though retained only one minute, acted as a smart purg, but did little or no good. Lime water was also used as a clyster; which brought on a colic, but had no good effect. Six grains of salt of mercury were dissolved in six ounces of water, and injected. This clyster in a few minutes occasioned an aching in the rectum, gripped a little without purging, and excited a tenesmus. Some few ascarides were brought off with it; but all of them were alive. The uneasy sensation in the rectum did not abate till some warm milk was thrown up. Whenever the tenesmus or mucus stools were thought worth the taking notice of, warm milk and oil generally gave immediate relief. If purging was necessary, the lienient purges, such as manna with oil, were, in this particular case, made use of; rhubarb was found too stimulating.—But, in general, the most useful purge, and which therefore was most usually taken, was cinnabar and rhubarb, of each half a drachm: this powder seldom failed to bring away a mucus as transparent as the white of an egg, and in this many ascarides were moving about. The cinnabar frequently adhered to this mucus, which did not come off in large quantities, when a purge was taken without cinnabar. Calomel did no more than any other purge which operates briskly would have done; that is, it brought away ascarides, with a great deal of mucus. Oil given as a clyster sometimes brought off these animalcules: the oil swam on the surface of the mucus, and the ascarides were alive and moving in the mucus itself, which probably hindered the oil from coming in contact with them and killing them.

The doctor also observes, that mucus or slime is the proper seat of the ascarides, in which they live, and is perhaps the food by which they are nourished; and it is this mucus which preserves them unhurt, though surrounded with many other liquors, the immediate touch of which would be fatal. It is hard to satisfy ourselves by what instinct they find it out in the human body, and by what means they get at it; but it is observable in many other parts of nature, as well as here, that where there is a fit foil for the hatching and growth of animals and vegetables, nature has taken sufficient care that their feeds should find the way thither. Worms are said to have been found in the intestines of infants born dead. Purges, by
Appendix.

MEDICINE.

by lessening this time, never fail to relieve the patient; and it is not unlikely, that the worms which are not forced away by this quickened motion of the intestines, may, for want of a proper quantity of it, languish, and at last die; for if the aercariaes are taken out of their mucus, and exposed to the open air, they become motionless, and apparently die in a very short time.

Dr Heberden supposes that the kind of purge made use of is of some consequence in the cure of all other worms as well as aercariaes; the animals being always defended by the mucus from the immediate action of medicines: and that therefore those purges are the belt which act briskly, and of which a repetition can be most easily borne. Purging waters are of this sort, and jalap especially for children; two or more grains of which, mixed with sugar, are most easily taken, and may be repeated daily.

From the case above-mentioned, and from Dr Heberden's observations, we may easily see why it is so difficult to destroy these animals; and why anthelmintics, greatly celebrated for some cures, are yet so far from being specific in the disease. As the worms which reside in the cavities of the human body are never exposed to the air, by which all living creatures are invigorated, it is evident, that in themselves they must be the most tender and easily destructible creatures imaginable, and much less will be requisite to kill them than of any of our common infincts. The most pernicious substances to any of the common infincts are oil, caustic fixed alkali, lime, and lime-water. The oil operates upon them by flattening up the pores of their bodies; the lime-water, lime, and caustic alkali, by dissolving their very substanee. In the case of intestinal worms, however, the oil can have very little effect upon them, as they are defended from it by the moisture and mucus of the intestines; the like happens with lime-water; and therefore it is necessary that the medicine should be of such a nature as to destroy both mucus and infincts together: for which purpose the caustic fixed alkali is at once safe and efficacious; nor is it probable that any caie of worms whatever could refist the proper use of this medicine.

A very large dose of any salt indeed will also destroy the mucus and destroy the worms; but it is apt to inflame and excoriate the stomach and intestines, and thus to produce worse dillempers than that which it was intended to cure. Dr Heberden gives the following remarkable case of a patient cured of worms by enormous doses of common salt, after trying many other remedies in vain. In February 1757, the patient was seized with uncommon pains in his stomach, attended with nausea, vomiting, and copulation of bowels, and an almost total loss of sleep and appetite. He soon became much emaciated, and could neither stand nor walk upright; his belly grew small and hard, and closely retracted, insomuch that the sternum covered the navel, and the latter could scarce be discovered or felt by the finger: his urine was always milky, and soon deposited a thick white sediment; his excrements were very hard and lumpy, resembling those of sheep, only of a brown colour; nor had he ever a fcool without some medicine or other to procure it. In this situation he continued four years; during which time he had been in an infirmary, attended by eminent physicians, but was diffirmed as incurable. At last he was advised by a neighbour to drink salt and water, as he said he knew one cured by it who had for many years been afflicted with the same kind of pains in the belly and stomach. As his diflemper was now almoft infupportable, he willingly tried the experiment. Two pounds of common salt were dissolved in as little water as possible, all which he drank in less than an hour. Soon afterwards he found himself greatly oppressed at the stomach, grew extremely sick, and vomited violently; on the fourth fasting he brought up about half a pint of small worms, part aercariaes, and the rest rehmming those worms which are called the bots, and frequently mixt with in the stomach of horses, but much smaller, and about the size of a grain of wheat. The salt soon began to operate downwards, and he had five or fix very copious fetid flobes, tinged with blood; and in them discharged near an equal quantity of the fame kind of worms he had vomited. Being greatly fatigued with the violence of the operations, he fell into a calm sleep, which lasted two hours, during which, he sweated profusely, and awoke much refreshed. Instead of his usual pains, he now only complained of a rawness and foreness of his gullet, stomach, and bowels, with an almost unquenchable thirst; to allay which, he drank large quantities of cold water, whey, butter-milk, or whatever he could get. The urine he now passed was small in quantity, and rendered with very great difficulty, being highly saturated with the salt, from whence arose a molt troublesome dysuria and irregulaty. However, these symptoms gradually abated by a free use of the liquors abovementioned; and on the third morning he was so well recovered, that he took two pounds more of salt, dissolved in the like quantity of water. The effects were nearly similar to the former; only that most of the worms were now burst, and came away with a considerable quantity of flime and mucus. The drought, irregulaty, ceased, returned with their former violence, but soon yielded to the old treatment. He sweated very copiously for three days, slept easily, and by that time could extend his body freely; on the fifth day he left his bed, and, though very weak, could walk upright; his strength and appetite soon returned, and he became robust and well.

The anthelmintic medicines which have been recommended by one person or other, are in a manner immemorable; but the principal are,

1. Quickfiver. This is very efficacious against all kinds of worms, either taken in the form of calomel or corrosive sublimate. Even the crude metal boiled in water and the water drunk, has been recommended as an almost certain cure. But this, it is evident, can receive no impregnation from the mercury. If, therefore, it have any effect, it must be from some foreign and accidental impregnation. In most instances there can be no objection to mercury, but only that it is not endowed with any attenuating quality whereby the mucus in which these infincts reside can be dissolved. It therefore fails in many cases, though it will most certainly destroy worms where it can get at them.

2. Powder of tin. This was for some time celebrated as a specific; and indeed we may reasonably expect good effects from it; as by its weight and grittiness
grittiness it rubs off the mucus and worms it contains from the coats of the intestinal canal, in which case they are easily evacuated by purgatives. In order to produce any considerable effects, it must be given in a large dose.

3.

Geoffrsea-inermis, or cabbage bark. This remedy is used by the inhabitants of Jamaica. The first account of it which appeared in Britain was published in the Physical and Literary Essays, vol. ii. by Mr Duguid surgeon in that island. He acquaints us, that the inhabitants of Jamaica, young and old, white and black, are much infested with worms, especially the long round sort; the reason of which, he thinks, is the quantity of sweet viscid vegetables which they eat. On dissecting a child of seven months old, who died of vomiting and convulsions, twelve large worms were found; one of them filled the appendix vermiformis, and three of them were intertwined in such a manner as to block up the valva tulpis, so that nothing could pass from the small to the great guts.—The cabbage-bark, however, he tells us, is a safe and effectual remedy, and the most powerful vermifuge known; and that it frequently brings away as many worms by stool as would fill a large hat. He owns that it has sometimes violent effects; but this he ascribes to the negroes who make the decoction (in which form the bark is used), and not to the remedy itself.

Mr Anderson, surgeon in Edinburgh, has also given an account of this bark and its operation, in a letter to Dr Duncan, published in the Edinburgh Medical Commentaries, volume iv. p. 04. From this account it appears, that there are two different kinds of bark; the one much paler than the other; the pale kind operates much more violently than the other. It often occasions loofe stools, great nausea, and such like symptoms, attended with great uneasiness in the belly; in one or two instances it was suspected of inducing fyncope. The darker coloured kind resembles the caffia lignea, though it is of a much coarser texture. This kind, Mr Anderson thinks, may be exhibited in any case where an anthelmintic is necessary; the dangerous symptoms might have followed either from the use of the first kind, or from an over-dose of the second. The usual method of preparing the medicine is by boiling two ounces and a half of the bark in two quarts of water to a pint and a half. Of this a tea-spoonful may be given at first in the morning, gradually increasing the quantity till we come to four or five table spoonfuls in a day. When exhibited in this manner, Mr Anderson informs us, that he never saw it produce any violent symptoms, and has experienced the best effects from it as an anthelmintic.

After the use of this decoction for eight or nine mornings successively, a dose of jalap with calomel must be given, which seldom fails to bring away the worms, some dead, some alive. If at any time the decoction produces more than one or two loose stools, a few drops of liquid laudanum may be given; and, in general, Mr Anderson gave 15 or 20 drops of the spirit of lavender with each dose.

In a letter from Dr Ruth, professor of chemistry at Philadelphia, to Dr Duncan of Edinburgh, the following account is given of another preparation of this medicine. "It has long (says he) been a complaint among physicians, that we have no vermifuge medicine which can be depended upon. Even calomel fails in many cases where there are the most pathognomonic signs of worms in the bowels. But this complaint, it is hoped, is now at an end. The physicians of Jamaica have lately found, that the cabbage-bark, as it is called in the West Indies, made into a syrup with brown sugar, is an infallible antidote to them. I have used above 30 pounds of it, and have never found it fail in one instance. The syrup is pleasant; it sometimes pukes, and always purges, the first or second time it is given."

Notwithstanding these encomiums, however, the cabbage-bark (A) hath not come into general use in Britain. But diseases from the teretes, or lumbrici as they are often called, the species of worm against which this bark is employed, much less frequently occur than in some other countries. When they do occur, in almost every instance they readily yield to more gentle and safe anthelmintics; and the worms may not only be expelled by calomel, but by the vegetable bitters; as the powder of the femen fantonicum, or the like.

4.

Cowslip, or cow-itch. This is the Dolichos urceus or purpureus of Linnaeus; and the principles on which it acts have been already explained under the article Dolichos. It is somewhat similar to the powder of tin, but bids fair for being more efficacious. It might at first appear to occur as objections to this medicine, that by the hairs of it entangling themselves with one another, calculi might be formed in the intestines, or obstructions equally bad; or if the sharp points and hooks with which it abounds were to adhere to the nervous coats of the intestines themselves, they might occasion a fatal irritation, which could not be removed by any means whatever. But from the experience of those who have employed it extensively in practice, it would appear, that these objections are entirely theoretical; and that it may be employed with perfect safety. The spicules, gently scraped off from a single pod, and mixed with syrup or molasses, are taken for a dose in the morning fasting. It is repeated in this manner for two or three days without any sensible operation; but even a very slight purgative taken afterwards has been found to discharge an almost incredible quantity of worms. And according to Dr Bancroft, who has given a very particular account of its use in his Natural History of Guiana, it is one of the safest and most certain anthelmintics yet discovered; but, as well as the bark of the Geoffrsea, it has hitherto been very little used in Britain, probably from its not being necessary.

5.

Indian pink. The plant, which in the Spigelia marilandica

(a) The most accurate account of this vegetable, and its effects, has been given by Dr Wright in the Philosophical Transactions, of which the reader will find a short view under the article Geoffrsea, in the order of the alphabet.
after which the excreta followed. The next day she was extremely low; her pulse could scarcely be felt; the extremities were cold; and there was a considerable discharge from the wound, which had already begun to mortify. She got a decoction of the bark with wine, which alleviated the symptoms; but in removing the mortified parts a worm was found among them nine inches long, and as thick as an eagle's quill. By proper applications, the discharge of excrements ceased, and the recovered perfect health. She was sensible of no accident giving rise to the inflammation; so that in all probability it arose entirely from the worm itself.

The _tenia_, or tape-worm, as it is called, is one of those most difficult to be removed from the human body. It is of two kinds, _tenia folum_ and _tenia lata_; for a description of which see the article _Tenia_.

The reason of its being so difficult to cure, is, that though portions of it are apt to break off and be dischargin, it is endowed with a power of reproduction, so that the patient is little or nothing better. The symptoms occasioned by it are not different from those above described. A specific against the _tenia lata_ hath been lately so much celebrated in France, that the king thought proper to purchase it from the proprietor (Madam Noufer), and the account of it has been translated into English by Dr. Simmons. The patients are required to observe no particular regimen till the day before they take the specific. That day they are to take nothing after dinner till about 7 o'clock; after which, they are to take the following soup: "Take a pint and an half of water, two or three ounces of good fresh-butter, and two ounces of bread cut into thin slices; add to this salt enough to season it, and then boil it to the consistence of panada." About a quarter of an hour after this, they take a diffick and a glass of white-wine, either pure or mixed with water; or even water alone, if they have not been accustomed to wine. If the patient has not been at stool that day, (which, however, is not usual with patients in this way), the following clyster is to be injected. "Take a small quantity of the leaves of mallows, and boil them in a sufficient quantity of water, mixing with it a little salt, and when drained off add two ounces of oil olive." Next morning, about eight or nine hours after the supper abovementioned, the specific is to be taken. This is no other than two or three drachms of the root of male fern, _polypodium filix mas_ of Linnaeus, gathered in autumn, and reduced to fine powder. It is to be taken in any distilled water, or in common water. This medicine is apt to occasion a nausea: to avoid which, Madam Noufer allows her patients to chew any thing that is agreeable, but forbids any thing to be swallowed; or they may smell to vinegar, to check the sicknese: but if, notwithstanding this, the specific be thrown up, a fresh dose must be swallowed as soon as the sicknese is gone off, and then they must try to sleep. About two hours after this the following bolus is to be taken. "Take of the panacea of mercury 14 times sublimed, and elect reflex of lammony, each ten grains; of freth and good gamboge, fix or seven grains; reduce each of these subfluences separately into powder, and then mix them with some conifere into a bolus." This composition is to be swallowed at two different times, washing it down with
Worms.

MEDICINE.

Appendix.

Worms.

with one or two dillies of weak green-tea, after which the patient must walk about his chamber. When the bolus begins to operate, he is to take a dill of the same tea occasionally, until the worm be expelled; then, and not before, Madame Noufier gives him broth or boug, and he is directed to dine as is usual after taking physic. After dinner he may either lie down or walk out, taking care to conduct himself discreetly, to eat but little supper, and to avoid every thing that is not of easy digestion.

The cure then is complete; but it is not always effected with the same quickness in every subject. He who has not kept down the whole bolus, or who is not sufficiently purged by it, ought to take, four hours after it, from two to eight drachms of Epfom salt dissolved in boiling water. The dose of this salt may be varied according to the temperament and other circumstances of the patient.

If the worm should not come away in a bundle, but in the form of a thread (which particularly happens when the worm is involved in much tenacious mucus), the patient must continue to sit upon the close floor without attempting to draw it away, drinking at the same time warm weak tea: sometimes this alone is not sufficient, and the patient is obliged to take another dose of purging salt, but without varying his position till the worm be wholly expelled.

It is unusual for patients who have kept down both the specific and purging dofe, not to discharge the worm before dinner-time. This, however, sometimes happens when the dead worm remains in large bundles in the intestines, so that the feces become more limpid towards the end of the purging, pass by it without drawing it with them. The patient may in this case eat his dinner; and it has been observed, that the food, joined to the ufe of a clyster, has brought about the expulsion of the worm.

Sometimes the worm is brought away by the action of the specific alone, before the patient has taken the purging bolus: when this happens, Madame Noufier gives only two-thirds of it, or substitutes the salt in its stead.

Patients must not be alarmed by any fenfation of heat or uneasiness they may feel during the action of the remedy, either before or after a copious evacuation, or just as they are about to void the worm. These fenfations are transitory, and go off of their own accord, or by the alliament of the vapour of vinegar drawn in at the nofe.

They who have vomited both the specific and bolus, or who have kept down only a part of them, sometimes do not vomit the worm that day. Madame Noufier therefore directs them to take again that night the sopp, the wine and bifeuit; and if circumstances require it, the clyster. If the worm do not come away during the night; he gives them early the next morning another dose of the specific, and, two hours afterwards, fix drachms or an ounce of purging salt, repeating the whole process of the preceding day; excepting the bolus, which she supprefles.

She observes, that very hot weather diminishes in some degree the action of her remedy; she therefore prefers the month of September for administering it; but as she has not been always able to choose the feafon, and has been sometimes obliged to undertake the cure of patients in the hottest days of summer, she then gave her specific very early in the morning; and with this precaution the flaw no difference in its effects.

On the day appointed for the trial of this medicine before the commissioners nominated by the king of France, it was exhibited to five different persons; but only one of them was certainly known to have the tenia lutea by having discharged parts of it before. That person was cured; the second voided a portion of the tenia folium; the third some ascarides, with a part of the tenia folium; the fourth and fifth voided no worms; but the last confidered much of the vivid flime he voided to be worms in a disolved flate.

This trial was thought sufficient to ascertain the efficacy of the medicine, and further trials were made by thofe to whom the fecret was communicated. The fift voided two tenia, after much vomiting and 18 or 20 foofs; the fefond had no vomiting, but was as violently purged, and discharged two worms; the third had 20 copious foools during the night, and discharged the worm in the morning; and the fifth was effected in much the fame manner. Some others who were not relieved, were suppofed not to have a tenia.

This specific, however, is not to be confused as a new discovery; the efficacy of fern in cafes of tenia having been known long ago. Theophratus prefcribes its root, in doses of four drams, given in water sweetened with honey, as ufeful in expelling flat worms.

Diocorides orders it in the fame dofe, and adds, that its effects are more certain when it is mixed with four oboli (40 grains) of scammony or black hellebore; he particularly requires that garlic should be taken before hand. Pliny, Galen, Oribafius, and Aëlius, afcribe this fame virtue to fern; and are followed in this by Avicenna, and the other Arabians, physicians. Dorothenius, Valerius Cordus, Dodonæus, Mathiæus, Dallechampius, who commented on Diocorides, or copied him in many things, all mention the fern-root as a specific against the tenia. Sennertus, and Burnet after him, recommended in fimilar cafes an infamce of this plant, or a dram of its powder for young persons, and three drams for adults. Simon Paulus, quoted by Ray and Geoffroy, coniders it as the moft efficacious of all poifons againft the flat worm, and as being the baft of all the secret remedies extolled by emperors in that difafe. Andry (général des Vers, p. 246, 249) prefers distilled fern-water to the root in powder, or he employs it only in the form of an opiate, or mixed with other substances.

These are not the only authors who have mentioned the tenia; many others have described this worm, the symptoms it excites, and the treatment proper to expel it. Almost all of them mention the fern-root, but at the fame time they point out other remedies as poiffling equal efficacy. Amongf these we find the bark of the root of the mulberry tree, the juice of the auricula murus, the roots of chamæleon niger, ginger, zedoary; decoctions of mugwort, footherwood, wormwood, penny-royal, origanum, hyssop, and in general of all bitter and aromatic plants, &c. Some of them direct the specific to be fimply mixed and taken in wine or honey and water; others join to it the ufe of some purgative remedy, which they say adds to its efficacy. Oribafius, Silvius, &c. distinguish the specific
M E D I C I N E.

Practice.

Worms.

Worms.

cific that kills the worm, from the purgative that evacuates it, and direct them to be given at different times. Semnertus gives a very satisfactory reason for adopting this method. If we give, says he, the purgative medicine and the specific at the same time, the latter will be hastily carried off before it can have exerted its powers on the worm: whereas, if we give the specific first, and then weaken the worm, it will collect itself into a bundle, and being brought away by means of the purge, the patient will be cured. The cure will be more speedy if the prima via have been previously lubricated. These precautions are all of them essential to the success of the remedy, nor are they neglected by Madame Nouffer in her method of treatment. The purgative and injection she prefers the night before, to lubricate the intestines, and prepare the prime via. The fen-root, taken in the morning, kills and detaches the worm: of this the patients are sensible by the cessation of the pain in the stomach, and by the weight that is felt in the lower belly. The purgative bolus administered two hours after this, procures a complete evacuation: it is composed of substances that are at once purgative and vermifuge, and which, even when administered alone, by different physicians, sometimes succeeded in expelling the worm. If this purgative appear to be too strong, the reader is desired to recollect, that it produced no ill effects in either of the cases that came under the observation of the physicians appointed to make the trials, and that in one of those cases, by diminishing the dose, they evidently retarded the evaucations.—

Regard however, they observe, is to be had both to the age and the temperament of the patient, and the treatment should always be directed by a prudent and experienced physician, who may know how to vary the proportions of the dose as circumstances may require. If the purgative be not of sufficient strength, the worm, after being detached by the specific, remains too long a time in the intestines, and becoming soon corrupted is brought away only in detached portions: on the other hand, if the purgative be too strong, it occasions too much irritation, and evacuation that cannot fail to be inconvenient.

Madame Nouffer's long experience has taught her to distinguish all these circumstances with singular acuteness. This method of cure is, as we have seen, copied in a great measure from the ancients: it may be possible to produce the same effects by varying the remedies; but the manner of applying them is by no means indifferent: we shall be always more certain of success, if the intestines be previously evacuated, and if the specific be given some time before the purgative bolus. It is to this method that Madame Nouffer's constant success is attributed.

Her remedy has likewise some power over the tertia folium; but as the rings of this worm separate from each other more easily than those of the tenia lata, it is almost impossible for it to be expelled entirely. It will therefore be necessary to repeat the treatment several times, till the patient can't avoid any portions of worms. It must likewise be repeated, if, after the expulsion of one tertia folium, another should be generated in the intestinal canal. This last caution is so rare, that it has been supposed that no person can have more than one of these worms; and for this reason it has been named solitary worm, which, being once removed, could never be renewed or replaced by a second: but experience has proved, that this notion is an ill-founded prejudice, and we know that sometimes these worms succeed each other, and that sometimes many of them exist together. Two living teniae have frequently been expelled from the same patient.

Dr De Haen (Rat. Med. tom. viii. p. 157.) relates an instance of a woman who voided 18 teniae at once. In these cases the symptoms are usually more alarming; and the appetite becomes excessive, because these worms derive all their nourishment from the chyle. If too auteurs ill judged a regiment deprives them of this, they may be expected to attack even the membranes of the intestines themselves. This evil is to be avoided by eating frequently.

Such are the precautions indicated in this disease. The ordinary vermifuge remedies commonly procured only a palliative cure, perhaps because they were too often improperly administered. But the efficacy of the present remedy, in the opinion of the French physicians, seems to be sufficiently confirmed by experience. To the above account, however, it seems proper to subjoin the following observations by Dr Simmons.

"A Swiss physician, of the name of Herrenachwand, more than 20 years ago, acquired no little celebrity by distributing a composition of which he styled himself the inventor, and which was probably of the same nature as Madame Nouffer's. Several very eminent men, as Tronchin, Hovius, Bonnet, Crammer, and others, have written concerning the effects of this remedy. It seems that Dr Herrenachwand used to give a powder by way of preparation, the night before he administered his specific. Nothing could be said with certainty concerning the composition either of one or the other. The treatment was said sometimes to produce most violent effects, and to leave the patients in a valetudinary state. Dr De Haen was dissuaded by his friends from using it, because it disordered the patients too much. It will be readily conceived, now that we are acquainted with Madame Nouffer's method that these effects were occasioned wholly by the purgative bolus. It is not strange, that refins of feammony or jalap, combined with mercurius dulcis and gamboge, all of them strong poisons, should in many subjects occasion the greatest disorders. It seems likely, however, that much of the success of the remedy depends on the use of a drastic purge. Some of the ancients who were acquainted with the virtues of the sen-root, observed that its efficacy was increased by feammony. Refinous purges especially when combined with mercury, have often been given with success in cases of tenia. Dr De Haen saw a worm of this sort five ells long expelled by the resins of jalap alone. Dr Gaulius knew a woman who had taken a variety of anthelmintic remedies without any effect, though he had voided a portion of tenia an ell and an half long previous to the use of these medicines: but at length, after taking a purge of singular strength, he voided the worm entire. Many other instances of the same kind are to be met with in authors. Other remedies have occasionally been given with success. In Sweden, it has been a practice to drink several
Of POISONS.

These have all been treated of already, except the bites and stings of serpents, scorpions, &c. According to Dr Mead, the symptoms which follow the bite of a viper are, an acute pain in the place wounded, with a swelling, at first red, but afterwards livid, which by degrees spreads farther to the neighbouring parts; with great faintness, and a quick, low, and sometimes interrupted pulse; great sickness at stomach, with bilious convulsive vomitings, cold sweats, and sometimes pains about the navel. Frequently a fanious liquor runs from the small wound, and little putrefactions are raised about it: the colour of the whole skin in less than an hour is changed yellow, as if the patient had the jaundice. These symptoms are very frequently followed by death, especially if the climate be hot, and the animal of a large size. This is not, however, the case with all kinds of serpents. Some, we are assured, kill by a fatal sleep; others are said to produce an universal hemorrhagy and dissolution of the blood; and others an unquenchable thirst. But of all the species of serpents hitherto known, there is none whose bite is more expeditiously fatal than that of the rattlesnake. Dr Mead tells us, that the bite of a large serpent of this kind killed a dog in a quarter of a minute; and to the human species they are almost equally fatal. Of this serpent it is said, that the bite makes the person's skin become spotted all over like the skin of the serpent; and that it has such a motion as if there were innumerable living serpents below it. But this is probably nothing more than a dissolution of the blood, by which the skin becomes spotted as in pectinal fevers, at the same time that the muscles may be convulsed as in the distemper called hieranos, which was formerly thought to be the effect of evil spirits: but it is even not improbable that observers have been somewhat aided by fancy and superstitition when they thought that they detected such appearances.

It has juftly appeared surprizing to philosophers, how such an incomprehensible quantity of matter as the poison emitted by a viper at the time of biting should produce such violent effects. But all inquiries into this matter must necessarily be uncertain; neither can they contribute any thing towards the cure. It is certain that the poison produces a gangrenous disposition of the part itself, and likewise seemingly of the rest of the body; and that the original quantity of poison contains some time before it exerts all its power on the patient, as it is known that removing part of the poisonous matter by suction will alleviate the symptoms. The indications of cure then are three, 1. To remove the poisonous matter from the body; Or, 2. If this cannot be done, to change its destructive nature by some powerful and penetrating application to the wound; And, 3. To counteract the effects of that portion already received into the system.

The poisonous matter can only be removed from the body by sucking the wound either by the mouth, or by means of a cupping-glass; but the former is probably the more efficacious, as the saliva will in some measure dilute and perhaps obtund the poison. Mead directs the person who sucks the wound to hold warm oil in his mouth, to prevent inflammation of the lips and tongue: but as bites of this kind are most likely to happen in the fields, and at a distance from houses, the want of oil ought by no means ought to retard the operation, as the delay of a few minutes might prove of the most fatal consequence; and it appears from Dr Mead's experiments, that the taking the poison of a viper into the mouth undiluted, is attended with no worse consequences than that of raising a flight inflammation. A quick excitement of the part might also be of very great service.

The only way of answering the second indication is, by destroying the poisoned part by a red-hot iron, or the application of alkaline fluids, which have the power of immediately altering the texture of all animal-substances to which they are applied, provided they are not covered by the skin; and as long as the poison is not totally absorbed into the system, these must certainly be of use.

To answer the third indication, Dr Mead recommends a vomit of ipecacuanha, encouraged in the working with oil and warm water. The good effects of this, he says, are owing to the shake which it gives to the nerves, whereby the irregular pangs into which their whole system might be drawn are prevented. After this the patient must go to bed, and a sweat must be procured by cordial medicines; by which the remaining effects of the poison will be carried off.

It has been confidently asserted by many, that the American Indians are possessed of some specific remedy by which they can easily cure the bite of a rattlesnake. But Mr Cateby, who must have had many opportunities of knowing this, positively denies that they have any such medicine. They make applications indeed, and sometimes the patient recovers; but these recoveries he ascribes to the strength of nature overcoming the poison, more than to the remedies made use of.

He says, they are very acute in their prognostics whether a person that has bit will die or not; and when they happen to receive a bite in certain parts of the body, when the teeth of the animal enter a large vein, for instance, they quietly resign themselves to their fate, without attempting any thing for their own relief. Indeed, so violent and quick is the operation of this poison, that unless the antidote be instantly applied, the person will die before he can get to a house. It would seem therefore eligible for those who are in danger of such bites, to carry along with them some strong alkaline key, or dry alkaline salt, or both, which could be instantly clapt on the wound, and by its dissolving power would destroy both the poison and the infected parts. Strong cordials also, such as ardent spirits, volatile alkali, &c. might possibly excite the languid powers of nature, and enable her to expel
Appendix.

MEDICINE.

Poisons. expel the enemy, which would otherwise prove too powerful. This seems to be somewhat confirmed from the account we have in the Philosophical Transactions of a gentleman bit by a rattle-snake, who was more relieved by a poultice of vinegar and vine-ailies put to the wound than any thing else. The vine-ailies being of an alkaline nature, must have fatuated the vinegar, so that no part of the cure could be attributed to it: on the other hand, the ailes themselves could not have been fatuated by the small quantity of acid necessary to form them into a poultice; of consequence they must have operated by their alkaline quality.

Soap-leaf, therefore, or very strong salt of tartar, may reasonably be thought to be the best external application, not only for the bites of vipers, but of every venomous creature; and in fact we find dry salt universally recommended both in the bites of serpents and of mad dogs. Dr Mead recommends the fat of vipers prefently rubbed into the wound; but owns that it is not safe to trust this remedy alone.

Some years ago the volatile alkali was strongly recommended by M. Sage of the French academy, as a powerful remedy against the bite of the viper: and, by a letter from a gentleman in Bengal to Dr Wright, it would appear that this article, under the form of the eau de lucis, which is very little if any thing different from the spiritus ammoniaci fuscatus of the London Pharmacopoeia, has been employed with very great success against this affection in the East Indies: but from the trials made with it by the Abbé Fontana, published in his Treatise on the poison of the Viper, it would appear that it by no means answered his expectation: and the efficacy of this, as well as of the snake pills mentioned under the article Hydrophobia, still requires to be confirmed by further experience.

MELENÉ.

This is a distemper not very common, but it has been observed by the ancient physicians, and is described by Hippocrates under the name of morbus niger. It shows itself by a vomiting and purging of black tar-like matter; which Hippocrates, Boerhaave, and Van Swieten, supposed to be occasioned by ater bilis. But Dr Home, in his Clinical Experiments, shows that it is owing to an effusion of blood from the mæteric vessels, which by its inflammation and corruption affumes that strange appearance. The disease, he says, frequently follows hemorrhaps; and those of a febbrific habit are most subject to it. It is an acute disease, and terminates soon; yet is not attended with any great degree of fever. In one of Dr Home's patients the crisis happened on the eighth day by diarrhœa; in another, on the 14th, by sweat and urine; and a third had no evident critical evacuation.

As to the cure, Dr Home observes, that bleeding is always necessary where the pulse can bear it; nor are we to be deterred from it by a little weakness of the pulse, more than in the interitis. Emetics are hurtful, but purgatives are useful. But the most powerful medicine for checking this hemorrhage is the vitriolic acid: and, that this might be given in greater quantity, he mixed it with muscall γ gum arabic; by which means he was enabled to give double the quantity he could otherwise have done. The cold bath was tried in one instance, but he could not determine whether it was of any service or not. The cure was completed by exercise and the bark.

Of the DISEASES of CHILDREN.

Dr Buchan observes, that from the annual registers of the dead it appears, that about one half of the children born in Great Britain die under twelve years of age; and this very great mortality he attributes in a great measure to wrong management. The particulars of this wrong management enumerated by him are,

1. Mothers not suckling their own children. This, he owns, is sometimes impossible for them to do; but where it can be done, he affirms that it ought never to be omitted. This, he says, would prevent the unnatural custom of mothers leaving their own children to suckle those of others; on which he passes a most severe censure, and indeed scarce any censure can be severe enough upon such inhumanity. Dr Buchanan informs us, "He is sure he speaks within bounds, when he says not one in an hundred of these children live who are thus abandoned by their mothers." For this reason he adds, that no mother should be allowed to suckle another's child till her own be fit to be weaned. A regulation of this kind would save many lives among the poorer sort, and would do no harm to the rich; as most women who make good nurses are able to suckle two children in succussion upon the same milk.

2. Another source of the diseases of children is the unhealthiness of parents: and our author infils that no per son who labours under an incurable malady ought to marry.

3. The manner of clothing children tends to produce diseases. All that is necessary here, he says, is to wrap the child in a soft loose covering: and the softness of every part of the infant's body sufficiently shows the injury which must necessarily ensue by pursuing a contrary method.

4. A new-born infant, instead of being treated with syrups, oils, &c. ought to be allowed to suck the mother's milk as soon as it comes into the world. He condemns the practice of giving wines and spirituous liquors along with the food soon after birth; and says, that if the mother or nurse has a sufficient quantity of milk, the child will need little or no other food before the third or fourth month. But to this it may reasonably be objected, not only that the nursing would thus be very severe on the mother; but if the child be left thus long without food, it will not easily relish it for some time, and its stomach is apt to be easily hurt by a slight change of diet after it has been long accustomed to one thing. Neither can it be shown, that the strongest and most healthy infants are those which get no other food but the mother's milk during the first months of their life. In fact, children are evidently of a weak and lax habit of body, so that many of their diseases must arise from that cause; all directions which indiscriminately advise an antiphlogistic regimen for infants as soon as they come into the world, null of necessity be wrong. Many infants in fact might be brought to thrive, that by the preposterous method ofstarving infants, and at the same time treating them with vomits and purges, they are
which afterwards mixing with the mucus of the gullet and stomach, render the milk of a flimsy confidence, by which means it is not so readily absorbed into the intestines; and as in most infants there is too great an acidity in the stomach, the milk is thereby curdled, which adds to the load; hence sickness and spasms, which, being communicated by sympathy to the nerves of the gullet and fauces, produce the convulsive motions above described, which go commonly by the name of inward fits. The air, likewise, which is drawn in during suction, mixing with the milk, &c. in the stomach, perhaps contributes towards increasing the spasms above-mentioned. Dr Armstrong is the more induced to attribute these fits to the causes now assigned, that they always appear immediately after sucking or feeding; especially if the child has been long at the breast, or fed heartily, and has been laid down to sleep without having first broken wind, which ought never to be done. Another reason is, that nothing relieves them so soon as belching or vomiting; and the milk or food they throw up is generally either curdled, or mixed with a large quantity of heavy phlegm. In case they are not relieved by belching or vomiting, the fits sometimes continue a good while, and gradually abate, according as the contents of the stomach are pushed into the intestines; and as soon as the former is pretty well emptied, the child is waked by hunger, cries, and wants the breast; he fixes, and the same process is repeated.

Thus, some children for the first weeks are kept almost always in a daze, or seemingly so; especially if the nurser, either through laxness or want of skill, do not take care to rouse them when they perceive that it is not a right sleep, and keep them awake at proper intervals. This dozing is reckoned a bad sign amongst experienced nurses; who look upon it as a forerunner of the then, as indeed it often is; and therefore, when it happens, we ought to be upon our guard to use the necessary precautions for preventing that disorder.

For these disorders, the only remedy recommended by Dr Armstrong is antimonic wine, given in a few drops, according to the age of the infant. By this means the superabundant mucus will no doubt be evacuated; but at the same time we must remember, that this evacuation can only pass in cases where the disease was not produced by any interruption of the child in the menses, do not cure the disease. This can only be effected by nurses; and a decoction of the Peruvian bark, made into a syrup, will readily be taken by infants, and may be safely exhibited from the very day they come into the world, or as soon as their bowels are emptied of the meconium by the mother's milk or any other means.

Dr Clarke observes, that fractures of the limbs, and compressions of the brain, often happen in difficult labours; and that the latter are often followed by convulsions soon after delivery. In these cases, he says, it will be advisable to let the navel-string bleed two or three spoonfuls before it be tied. Thus the oppression of the brain will be relieved, and the disagreeable consequences just mentioned will be prevented. But if this has been neglected, and fits have actually come on, we must endeavour to make a revolution by all the means in our power; as by opening the jugular vein, procuring an immediate discharge of the urine and meconium, and applying small blisters to the back, legs, or behind the ears. The semicupium, too, would seem to be useful in this case, by driving the oppressive load of fluids from the head and upper parts.
Appendix.

Medicine.

It sometimes happens after a tedious labour, that the child is so faint and weak as to discover little or no signs of life. In such a case, after the usual cleansing, the body should be immediately wrapped in warm flannel, and briskly towed about in the nurse's arms, in order, if possible, to excite the languid circulation. If this fail, the nurse should rub her back with brandy or other spirits; or the child may be provoked to cry, by whipping, or other stimulating methods, as the application of onion, or salt and spirit of hartshorn, to the mouth and nostrils. But after all these expedients have been tried in vain, and the recovery of the child absolutely defpaired of, it has sometimes been happily revived by introducing a short catheter or blow-pipe into the mouth, and gently blowing into the lungs at different intervals. Such children, however, are apt to remain weak for a considerable time, so that it is often no easy matter to rear them; and therefore particular care and tenderness will be required in their management, that nothing may be omitted which can contribute either to their preservation or their cure. This at least certainly holds with regard to some cathartics; such, for example, as the infusion of fenna, particularly if a very weak infirnbe be employed, and not used to such an extent as to be a purgative to the nurse.

When cathartics are necessary, but the child seems too tender and weak to bear their immediate operation, they should be given to the nurse; in which case they will communicate so much of their virtues to the milk as will be sufficient to purge the infant. This at least is certain, and is often the effect of giving a dose to the mother before she gives the child her breast. When cathartics are not so immediately necessary, but it is known that something is amiss when they begin to be used too much, the nurse is to communicate them to her doctor, and be especially cautious in the circumstances of the case.

There is no complaint more frequent among children than that of worms, the general symptoms of which have been already enumerated; but it must be observed, that all the symptoms commonly attributed to worms alone, may be produced by a foulness of the bowels. Hence practitioners ought never to rest satisfied with administering to their patients such medicines.
inMES.

Diseases of Children.

Cines as are possessed only of an anthelmintic quality, but to join them with those which are particularly ad-
apted for cleansing the prime vix; as it is uncertain
whether a foulness of the bowels may not be the cause
of all the complaints. This practice is still the more
advisable, on account of vivid humors in the inte-
lines affording lodgment to the ova of worms; which,
without the convenience of such a receptacle, would be
more speedily discharged from the body.

The difficulty of curing what is called a "worm-fever,
arises, according to Dr Muirgrave, from its being fre-
quently attributed to worms, when the cause of the
disorder is of a quite different nature. He does not
mean to deny that worms do sometimes abound in the
human body, nor that the irritation caused by them
does sometimes produce a fever; but he apprehends
these cases to be much more uncommon than is gen-
erally imagined, and that great mischief is done by treat-
ing some of the disorders of children as worm-cases,
which really are not so. Dr Hunter, it is ob-
erved, is of the same opinion on this point; and he has,
we are told, dissected great numbers of children who have
been supposed to die of worm-fevers, and whose com-
plaints were of course treated as proceeding from worms,
whom however, there appeared, upon dissection, to be
not only no worms, but evident proofs of the disor-
der's having been of a very different nature.

The "furious worm-fever," as Dr Muirgrave terms it,
has, in all the instances he has seen of it, arisen evi-
dently from the children having been indulged with
too great quantities of fruit; though a poor cold diet
may, he thinks, occasionally give birth to it. Every
fort of fruit eaten in excess will probably produce it;
but an immediate use of cherries seems to be the most
common cause of it. The approach of this disorder has a
different appearance, according as it arises from a ha-
babit of eating fruit in rather too large quantities, or
from an excessive quantity eaten at one time. In the
former case, the patient gradually grows weak and
lagritudinous; his colour becomes pale and livid; his belly
swells and grows hard; his appetite and digestion are
destroyed; his nights grow restless, or at least his sleep
is much disturbed with fluctuations, and then the fever
soon follows; in the progress of which, the patient
grows pale and atrophies, and at times convulses; in which
state, when it takes place to a high degree, he often dies.
The pulse at the wrist, though quick, is never strong or hard;
the carotids, however, beat with great violence, and el-
evate the skin so as to be distinctly seen at a distance. The
heat is at times considerable, especially in the trunk;
though at other times, when the brain is much oppressed,
it is little more than natural. It is sometimes accom-
panied by a violent pain of the epigastric region, though
more commonly the pain is at the back, and terminates in a
coma; some degree of pain, however, seems to be infe-
pammable from it, so as clearly to distinguish this disor-
der: from other comatose affections.

When a large quantity of fruit has been eaten at
once, the attack of the disorder is instantaneous, and its
progress rapid; the patient often pails away in the
space of a few hours, from apparently perfect health,
to a stupid, comatose, and almost dying state. The
symptoms of the fever, when formed, are in both cafes
nearly the same; except that, in this latter fort, a little
purulent matter is sometimes discharged, both by vo-
mit and stool, from the very first day. The stools, in both
cases, exhibit sometimes a kind of curd resembling
curdled milk, at other times a floating substance is ob-
served in them; and sometimes a number of little threads
and pellicles, and now and then a single worm.

Strong purgatives, or purges frequently repeated, in
this disorder, are greatly condemned by Dr Armstrong,
as they in general not only aggravate the symptoms
already present, but are sometimes the origin of con-
volutions. Bloodletting is not to be thought of in any
stage of the disorder.

Although frequent purging, however, be not recom-
manded, yet a single vomit and purge are advised in
the beginning of the disorder, with a view to evacuate
such indigested matter and mucus as happens to remain
in the stomach and bowels. These having operated
properly, there is seldom occasion for repeating them;
and it is sufficient, if the body be colicky, to throw up,
every second or third day, a clyster, composed of one
grains of aloes, dissolved in five ounces of infusion of
chamomile.

The principal part of the cure, however, depends
upon external applications to the bowels and stomach;
and as the cause of the disorder is of a cold nature,
the applications must be warm, cordial, and invigorating;
and their action must be promoted by constant
actual heat.

The following is the form recommended.

"Take of leaves of wormwood and rue, equal
goods: make a saturated decoction in a sufficient quan-
tity of water, with which foment the region of the
stomach; and the bowels to be long persisled in, though
sometimes
"Tome of rue and wormwood, is much re-
dissolved; mixed with an equal quantity of

"Take of spirituous

Strong decoction of rue and worm-wood, is much re-
commended. It is a perfectly safe remedy, and, by
invigorating the bowels, may thereby have some
influence in rendering them capable of expelling such
worms.
wounds as they happen to contain. After the fomentation, it is advised to anoint the belly with a liment composed of one part of essentia! oil of rue, and two parts of a decoction of rue in sweet oil. It is, however, a matter of great doubt whether these external applications, in consequence of the articles with which they are impregnated, exert any influence on the worms themselves.

The diet of children disposed to worms, should be warm and nourishing, consisting in part at least of animal food, which is not the worse of being a little seasoned. Their drink may be any kind of beer that is not so necessary, perhaps, as is generally imagined. Well hopped, with now and then a small draught of porter or negus. The appetite returns, the diet here recommended will, perhaps, be found serviceable. Their drink may be any kind of beer that is not so necessary, perhaps, as is generally imagined. A total abstinence from butter is not so necessary, perhaps, as is generally imagined. Poor cheese must by all means be avoided; but such as is rich and pungent, in a moderate quantity, is particularly serviceable.

The toothache, occasioned by cold, rheumatism, or inflammation, is generally relieved by drawing the electric fluid with a wooden point, immediately from the part, and also externally from the face. But when the body of the tooth is affected, electrization is of no use; for it seldom or never relieves the disorder, and sometimes increases the pain to a prodigious degree.

Swellings in general, which do not contain any matter, are frequently cured by drawing the electric fluid with a wooden point. The operation should be continued for three or four minutes every day. It is very remarkable, that in some cafes of white swellings, quite cured by means of electricity, the bones and cartilages were in some measure disfigured.

Inflammations of every sort are generally relieved by a very gentle electrization.

In inflammations of the eye, the throwing of the electric fluid by means of a wooden point is often attended with great benefit; the pain being quickly abated, and the inflammation being generally dissipated in a few days. In these cases, the eye of the patient must be kept open; and care should be taken not to bring the wooden point very near it, for fear of causing any spark. Sometimes it is sufficient to throw the fluid with a metal point; for in these cases, too great an irritation should be always avoided. It is not necessary to continue this operation for three or four minutes without intermission, but after throwing the fluid for about half a minute, a short time may be allowed to the patient to rest and to wipe his tears, which generally flow very copiously; then the operation may be continued again for another half minute, and so on for four or five times every day.

The gutta pernosa has been sometimes cured by electrization; but at the same time it must be confessed, it has proved ineffectual in many such cases, in which it was administered for a long time and with all possible attention. However, it has never been known that any body was made worse by it. The best method of administering electricity in such cases, is first to draw the electric fluid with a wooden point for a short time, and then to send about half a dozen of shocks of one-twentieth of an inch from the back and lower part of the head to the fore head, very little above the eye.

A remarkable disfigure of the eye was some time ago perfectly cured by electrization; it was an opacity of the vitreous humour of the eye.
All these cases of fibula lacrymalis which Mr. Cavallo
has known to have been electrified by persons of
ability for a sufficient time, have been entirely cured.
The method generally practised has been that of
drawing the fluid with a wooden point, and to take
very small sparks from the part. The operation may
be continued for about three or four minutes every day.
It is remarkable, that in those cases, after curing the
fibula lacrymalis, no other disease was occasioned by it,
as blindness, inflammations, &c. by supposing that
diseases.
Polyps are seldom perfectly cured by means of elec-
tricity, especially when they are of long standing; but
they are generally relieved to a certain degree. The
method of electrifying in those cases, is to draw the
fluid with the wooden point, and to draw sparks thro'
flannel, or through the usual coverings of the part if
they are not too thick. The operation may be con-
tinued for about five minutes per day.
Ulcers, or open sores of every kind, even of a long
standing, are generally disposed to heal by electriza-
tion. The general effects are a diminution of the in-
flammation, and a promotion of the discharge
of properly formed matter; which discharge gradually
lessens, according as the limits of the sore contract,
till it be quite cured. In these cases the gentlest elec-
trization must be used, in order to avoid too great an
irritation, which is generally hurtful. To draw or
throw the fluid with a wooden or even with a metal
point, for three or four minutes per day, is fully
sufficient.
Cutaneous eruptions have been successfully treated
with electrization; but in these cases it must be ob-
erved, that if the wooden point be kept too near the
skin, so as to cause any considerable irritation, the
eruption will be caused to spread more; but if the
point be kept at about six inches distance, or farther
if the electrical machine be very powerful, the erup-
tions will be gradually diminished, till they are quite
cured. In this kind of disease, the immediate and ge-
eral effect of the wooden point is to occasion a
warmth about the electrified part, which is always a
sign that the electrization is rightly administered.
The application of electricity has perfectly cured
various cases of St. Vitus's dance, or of that disease
which is commonly called so; for it is the opinion of
some very learned physicians, that the real disease cal-
ced St. Vitus's dance which formerly was more frequent
than it is at present, is different from that which now
goes under that name. In this disease the shocks of about
one-tenth of an inch may be sent through the body in
many directions, and also sparks may be taken. But
this treatment prove very disagreeable to the patient
then the shocks must be leftened, and even omitted; in-
stead of which some other more gentle applications
must be substituted.
Sarcomata tumors, when they are at first beginning,
are generally cured by drawing the electric fluid with
a wooden or metal point from the part. This is one
of those kinds of diseases in which the action of elec-
tricity requires particularly the aid of other medicines
in order to effect a cure more easily; for sarcomatous
affections commonly accompany a great laxity of the
habit, and a general cachexy, which must be ob-
viated by proper remedies.
In cancers, the pains only are commonly alleviated by
drawing the electric fluid with a wooden or metal point.
Mr. Cavallo, however, mentions one case in which a most
confirmed cancer of very long standing, on the breast
of a woman, had been much reduced in size. It is re-
markable, that this patient was so far relieved by draw-
ing the fluid with a metal point from the part, that
the excruciating pains she had suffered for many years
did almost entirely disappear; and also, that when the
electric fluid was drawn by means of a wooden point,
the pains did rather increase.
Albications, when they are in their beginning, and in
general whenever there is any tendency to form mat-
ter, are dispersed by electrization. Lately, in a case
in which matter was formed upon the hip, called the
lumbar albications, the disease was perfectly cured by
means of electricity. The fistatica has also been often
cured by it. In all such cases, the electric fluid must
be sent through the part by means of two directors
applied to opposite parts, and in immediate contact
either with the skin, or with the coverings, when these
are very thin. It is very remarkable, that the mere
pallage of the electric fluid in this manner is generally
felt by the patients afflicted with those disorders,
neither as much as a small shock is felt by a person in
good health. Sometimes a few shocks have been also
given, but it seems more proper to omit them: be-
cause sometimes, instead of dispersing, they rather ac-
celerate the formation of matter.
In cases of pulmonary inflammations, when they are
in the beginning, electrization has been sometimes be-
neficial; but in confirmed diseases of the lungs, it does
not seem to have ever afforded any unquestionable be-
nefit; however, it seems that in such cases the power
of electricity has been but seldom tried.
Nervous headaches, even of a long standing, are
generally cured by electrization. For this disease, the
electric fluid must be thrown with a wooden, and some-
times even with a metal point, all round the head suc-
cessively. Sometimes exceedingly small shocks have
been administered; but these can seldom be used, be-
cause the nerves of persons subject to this disease are so
very irritable, that the shocks, the sparks, and some-
times even the throwing the electric fluid with a wooden
point kept very near the head, throw them into
convulsions.
The application of electricity has often been found
beneficial in the dropsy when just beginning, or ra-
er in the tendency to a dropsy but it has never
been of any use in advanced dropies. In such cases,
the electric fluid is sent through the part, in various
directions, by means of two directors, and sparks are
also drawn across the flannel or the cloaths; keeping
the metal rod in contact with them, and shifting it con-
tinually from place to place. This operation should
be continued at least ten minutes, and should be re-
peated once or twice a day—Perhaps in these cases, a
simple electrization (viz. to inflate the patient, and
to connect him with the prime conductor whilst the
machine is in action), continued for a considerable time,
as an hour or two, would be more beneficial.
The gout, extraordinary as it may appear, has cer-
tainly been cured by means of electricity, in various
instances. The pain has been generally mitigated, and
sometimes the disease has been removed so well as not
to
to return again. In those cases, the electric fluid has
been thrown by means of a wooden point, although
sometimes, when the pain was too great, a metal point
only has been used.

Attempts have not unfrequently been made by electricity,
so that sometimes one electricity or two have been
sufficient. The most effectual and sure method has been
that of drawing sparks through the Netherlands, or
the cloths, for about ten minutes or a quarter of an
hour. The patients may be electrified either at the
time of the fit, or a short while before the time in
which it is expected.

The suppression of the menses, which is a disease of
the female sex that often occasions the most distressing
and alarming symptoms, is often successfully and
specifically cured by means of electricity, even when
the disease is of long standing, and after the most
powerful medicines used for it have proved ineffectual.
The cases of this sort in which electrization has
proved useful are few, and the successful ones far
numerous, that the application of electricity for this disease
may be justly considered as an efficacious and certain remedy.
Great attention and knowledge is required, in
order to distinguish the arrest of the menses from a
state of pregnancy. In the former, the application of
electricity, as we observed above, is very beneficial;
whereas, in the latter, it may be attended with very
disagreeable effects: it is therefore a matter of great
importance to ascertain the real cause of the disease,
before the electricity be applied in these cases. Pregn­
ant women may be electrified for this disease, but
always using very gentle means, and directing the
electric fluid through other parts of the body distant
from those subverted to generation. In the real sup­
pression of the menses, small shocks, that is, of about
one-twentieth of an inch, may be sent through the pelvis;
sparks may be taken through the cloths from the parts adjacent to the seat of the disease; and also
the electric fluid may be transmitted by applying the
metallic or wooden extremities of two directors to the
hips, in contact with the clothes; part of which may
be removed in cases they be too thick. Those various
applications of electricity should be regulated accord­
ing to the constitution of the patient. The number of
shocks may be about 12 or 14. The other applica­
tions may be continued for two or three minutes;
repeating the operation every day. But either strong
shocks, or a stronger application of electricity than the
patient can conveniently bear, should be carefully
avoided; for by those means, sometimes more than a
sufficient discharge is occasioned, which is not safely
cured. In cases of uterine hemorrhages, it is not
known that the application of electricity was ever ben­
eficial. Perhaps a very gentle electrization, so as to
keep the patient inflamed and connected with the
prime conductor whilst the electrical machine is in ac­
tion, may be of some benefit.

In respect to urinary discharges and fluxes in gen­
eral, it may be observed, that those discharges are
quite uncommon or adventitious, as the filth into which
the discharges were made, and some species of the venereal disease; but oth­
er species are only increased natural discharges, such as the
urinary perversion, &c. Now the power of electricity in general has been found more beneficial for the
first than for the second sort of discharge, which are mostly increased by it.

In the general disease, electrization has been generally
forbidden; having commonly increased the pains, and
other symptoms, rather than diminished them. Indeed,
considering that any sort of stimulus has been found
hurtful to persons afflicted with that disorder, it is no
wonder that electricity has produced some bad effects,
especially in the manner it was administered some time
ago, viz. by giving strong shocks. However, it has
been lately observed, that a very gentle application of
electricity, as drawing the fluid by means of a wooden
or metal point, is peculiarly beneficial in various cases
of this kind, even when the disease has been of long
standing. Having remarked above, that tumors, when
just beginning, are dispersed, and that unnatural dis­
charges are gradually suppressed by a judicious elec­
trization, it is superfluous to describe particularly those
flares of the venereal disease in which electricity may
be applied; it is only necessary to remind the oper­
atore to avoid any considerable stimulus in cases of
this sort.

The application of electricity has been found also
beneficial in other diseases besides those mentioned a­
bove; but as the facts are not sufficiently numerous, so
as to afford the deduction of any general rules, we
have not thought proper to take any particular notice
of them.

We may add, that, in many cases, the help
of other remedies to be prescribed by the medical
practitioner will be required to obtain the action of
electricity, which by itself would perhaps be useless;
and, on the other hand, electrization may often be
applied to assist the action of other remedies, as of
affo­rriage, strengthening medicines, &c.

Of Fixed Air as a Medicine.

The antiseptic qualities of fixed air, or as it is now
more generally called of the aerial or carbolic acid,
have of late introduced it as a medicine in cases of
patri disorder, and various other complaints.—
Dr Percival observes, that though fatal if inspired in
a very large quantity, it may in smaller quantities be
breathed without danger or uneasiness. And it is a
confirmation of this conclusion, that at Bath, where
the waters copiously exhale this mineral spirit, the
bathers inspire it with impunity. At Duxton also, where
the bath is in a close vault, the effects of such effluvia,
if noxious, must certainly be pernicious.

Encouraged by these and some other considerations,
he has administered fixed air in more than 30 cases of
the phthisis pulmonalis, by directing his patients to in­
spire the rooms of an effervescing mixture of chalk and
vinegar through the spout of a coffee-pot. The hec­
tic fever has in several instances been considerably ab­
ated, and the matter expectorated has become less of­
fensive and better digested. He has not, however,
been so fortunate in any one case as to effect a cure;
although the use of mephitic air has been accompanied
with proper internal medicines. But Dr Withering
has been more successful. One phthisical patient un­
der his care, by a similar course, entirely recovered; an­
other was rendered much better; and a third, whose
cafe was truly deplorable, seemed to be kept alive by
it
Fixed Air. It may be proper to observe, that fixed air can only be employed with any prospect of success in the latter stages of the phthisis pulmonalis, when a purulent expecoration takes place. After the rupture and discharge of a vomica allo, such a remedy promises to be a powerful palliative. Antiseptic fumigations and vapours have been long employed, and much extolled, in cases of this kind. The following experiment was made to determine whether their efficacy in any degree depends on the separation of fixed air from their substance.

One end of a bent tube was fixed in a phial full of lime-water; the other end in a bottle of the tincture of myrrh. The junctures were carefully luted; and the phial containing the tincture of myrrh was placed in water, heated almost to the boiling point, by the lamp of a tea-kettle. A number of air-bubbles were separated, but probably not of the mephitic kind; for no precipitation ensued in the lime-water. This experiment was repeated with the tinct. Tobitana Ph. Ed. and with sp. winof. camph. and the result was entirely the same. The medicinal action therefore of the vapours raised from such tinctures, cannot be ascribed to the extraction of fixed air; of which it is probable bodies are deprived by chemical solution as well as by mixture.

If mephitic air be thus capable of corroding purulent matter in the lungs, we may reasonably infer it will be equally useful when applied externally to foul ulcers; and experience confirms the conclusion. Even the fancies of a cancer, when the carrot-poultice failed, has been sweetened by it, the pain mitigated, and much extolled, in cases of this kind. The already mentioned; but those of the softer sex who have already suffered from the uterine scour and the restult was entirely the same. The medicinal action therefore of the vapours raised from such tinctures, cannot be ascribed to the extraction of fixed air; of which it is probable bodies are deprived by chemical solution as well as by mixture.

In the ulcerous sore throat, much advantage has been experienced from the vapours of effervescing mixtures drawn into the fauces. But this remedy should not supercede the use of other antiseptic applications.

In malignant fevers, wines abounding with fixed air may be administered to check the septic ferment, and sweeten the putrid colliquiae in the prime vitæ. If the laxative quality of such liquors be thought an objection to the use of them, wines of a greater age may be given, impregnated with aerial acid.—The patient's common drink might also be medicated in the same way. A putrid diarrhoea frequently occurs in the latter stage of such disorders; and it is a most alarming and dangerous symptom. If the discharge be flopped by asprings, a putrid faeces is retained in the body, which aggravates the delirium, and increases the fever. On the contrary, if it be sufffered to take its course, the strength of the patient must soon be exhausted, and death unavoidably ensue. The injection of mephitic air into the intelines, under these circumstances, bids fair to be highly serviceable. And in some cases of this kind the gas emitted from a mixture of chalk and oil of Fixed Air, vitriol conveyed into the body by the machine employed for tobacco-clysters, quickly retrained the diarrhoea, corrected the heat and fetor of the bowels, and in a short time removed every symptom of danger.

As a solvent of the calculi, its virtues have been already mentioned; but the experiments made on that subject do not determine the matter with sufficient accuracy.

I. Rules for the management of Valetudinarians.

That part of the medical system which lays down rules for the preservation of health, and prevention of diseases, termed Hygiene, is not to be strictly understood as if it respected only those people who enjoy perfect health, and who are under no apprehensions of disease, for such seldom either desire or attend to medical advice; but should rather be considered as relating to valetudinarians or to such as, though not actually sick, may yet have sufficient reason to fear that they will soon become so: hence it is that the rules must be applied to correct morbid dispositions, and to obviate the various things that were shown to be the remote or possible causes of diseases.

From the way in which the several temperaments are usually mentioned by systematic writers, it should seem as if they meant that every particular constitution must be referred to one or other of the four; but this is far from being reducible to practice, since by much the greater number of people have constitutions so indistinctly marked, that it is hard to say to which of the temperaments they belong.

When we actually meet with particular persons who have evidently either, 1. Too much strength and rigidity of fibre, and too much sensibility; 2. Too little strength, and yet too much sensibility; 3. Too much strength, and but little sensibility; or, 4. But little sensibility joined to weakness; we should look on such persons as more or less in the valetudinary state, who require that these morbid dispositions be particularly watched, lest they fall into those diseases which are allied to the different temperaments.

People of the first-mentioned temperament being liable to suffer from continued fevers, especially of the inflammatory species, their scheme of preserving health should consist in temperate living, with respect both to diet and exercise; they should studiously avoid immoderate drinking, and be remarkably cautious lest any of the natural discharges be checked. People of this habit bear evacuations well, especially bleeding; they ought not, however, to lose blood but when they really require to have the quantity lefened; because too much of this evacuation would be apt to reduce the constitution to the second-mentioned temperament, wherein strength is deficient, but sensibility redundant.

Persons of the second temperament are remarkably prone to suffer from painful and spasmodic diseases, and are easily ruffled; and those of the softer sex who have
Appendix.

MEDICINE.

But in opposite circumstances, where the fluids have been exhausted, we are to attempt the prevention of further waste by the use of strengthening tonics, nourishing diet, and indulgence from fatigue of body or mind.

Vitiated fluids are to be considered as affected either with the different kinds of general acrimony, or as betraying signs of some of the species of morbific matter which give rise to particular diseases, such as gout, rheumatism, calculus, fever, &c.

During the state of infancy, we may sometimes observe a remarkable acidity, which not only shows itself in the first passages, but also seems to contaminate the general mass of fluids. As it takes its rise, however, from weak bowels, our views, when we mean to prevent the ill consequences, must be chiefly directed to strengthen the digestive organs, as on their soundness the preparation of good chyle depends; and hence small doses of rhubarb and chalybeats (either the natural chalybeate waters mixed with milk, or the flores mariales in doses of a few grains, according to the age of the child), are to be administered; and the diet is to be so regulated as not to add to this acid tendency: brisk exercise is likewise to be enjoined, with frictions on the stomach, belly, and lower extremities.

Where the fluids tend to the putrescent state, which shows itself by putrid breath, epistaxis, and bleeding of the gums, a light diet and vivifying cafe, the diet then should be chiefly of fresh vegetables and ripe fruits, with wine in moderation, brisk exercise, and strengthening bitters.

Where acrimony shows itself by itching eruptions, uncommon thirst, and flushing heats, nothing will answer better than such sulphureous waters as the Harrowgate and Moffat in Britain, or the Lucan and Swadlinbar in Ireland; at the same time using a course of diet that shall be neither acid nor heating.

So far with respect to those kinds of morbific matter which do not invariably produce a particular species of disease: but there are others of a specific nature, some of which are generated in the body spontaneously, and seem to arise from errors in diet, or other circumstances of ill management with respect to the animal economy; and hence it is sometimes possible, in some degree if not altogether, to prevent the ill consequences. Thus, there are infirmities where returns of the gout have been prevented by adhering fridly to a milk diet.

The rheumatism has also been sometimes warded off by wearing a flannel shirt, or by using the cold bath without interruption.

Calculus may be retarded in its progress, and prevented from creating much distress, by the internal use of soap and lime-water, by soap-lees taken in milk or in veal-broth, or by the use of aerated alkaline water, which may perhaps be considered as being both more safe and more efficacious, and at the same time more pleasant, than any of the other practices.

The acrimony may be prevented by warm clothing and perseverance in brisk exercise, by drinking wine or cyder, and eating freely of such vegetable substances as can be had in those situations where this disease is most apt to show itself.

In constitutions where there is an hereditary disposition...
The infection of a putrid fever or dysentery is best prevented by immediately taking an emetic on the first attack of the sickness or shivering; and if that do not completely answer, let a large blister be applied between the shoulders: by this method the nurses and other attendants on the sick in the naval hospitals have often been preserved. As to other infectious morbid matter, we must refer to what has already been said when treating of hydrophobia, fevers, &c.

The ill effects which may arise from the different species of saffurra, are to be avoided, in general by the prudent administration of emetics, and carefully abstaining from such kinds of food as are known to occasion the accumulation of noxious matters in the first passages.

Crude vegetables, milk, butter, and other oily substances, are to be avoided by persons troubled with a sordes in the stomach; brisk exercise, especially riding, is to be used, and they are to refrain from fermented liquors: the common drink should be pure water; or water with a very little of some ardent spirit, such as rum or brandy. Seltzer and Vahls water are to be drunk medicinally; and aromatic bitters, infusions, or tinctures, with the acid elixir of vitriol, from 10 to 20 drops, will be found serviceable, in order to strengthen the fibres of the stomach, and promote the expulsion of its contents, thereby preventing the too hasty fermentation of the alimentary mixture. In order to procure immediate relief, magnesium alba, or ereta preparata, will seldom fail; the magnesia, as well as the chalk, may be made into lozenges, with a little sugar and mucilage; and in that form may be carried about and taken occasionally by people afflicted with the acid saffurra.

In constitutions where there is an exubrance or flagration of bile, and a troublesome bitterness in the mouth, it is necessary to keep the bowels always free, by taking occasionally small doses of pure aloes, alum victini, cream of tartar, fome of the common purging salts, or the natural purging waters.

When there is a tendency to the empyreumatic and rancid saffurra, people should carefully avoid all the various kinds of those oily and high-seasoned things generally termed made-dishes and eat sparingly of plain meat, without rich sauces or much gravy; and in these cases the most proper drink is pure water.

II. RULES FOR THOSE WHO ENJOY PERFECT HEALTH.

There can be no doubt, that, in general, temperance is the true foundation of health; and yet the ancient physicians, as we may see in the rules laid down by Celsus did not scruple to recommend indulgence now and then, and allowed people to exceed both in eating and drinking; but it is safer to proceed to excess in drink than in meat: and if the debauch should create any extraordinary or distressing degree of pain or sickness, and a temporary fever should ensue, there are two ways of shaking it off, either to lie in bed and encourage perspiration, or to rolling-back and by brisk exercise reduce the body to its natural state. The choice of these two methods must always be determined by the peculiar circumstances of the parties concerned, and from the experience which they may before have had which agrees best with them.

If a person should commiss excess in eating, especially on high-seasoned things, with rich sauces, a draught of cold water, acidulated with vitriolic acid, will take off the sense of weight at the stomach, and afflit digestion, by moderating and keeping within bounds the alimentary fermentation, and thus preventing the generation of too much flatus. The luxury of ices may be here of real service at the tables of the great, as producing similar effects with the cold water acidulated. Persuad in these circumstances ought not to lay themselves down to sleep, but should keep up and exercise until they are sensible that the stomach is unloaded, and that they no longer feel any oppressive weight about the preocular region.

If a man be obliged to fast, he ought, if possible, during that time, to avoid laborious work: after suffering severe hunger, people ought not at once to gorge and fill themselves; nor is it proper, after being overfilled, to enjoy an absolute fast: neither is it due to rely totally immediately after excessive labour, nor suddenly fall hard to work after having been long without motion: in a word, all changes should be made by gentle degrees; for though the constitution of the human body be such that it can bear many alterations and irregularities without much danger, yet, when the transitions are extremely sudden, they cannot fail of producing some kind of degree of disorder.

It is also the advice of Celsus to vary the scenes of life, and not confine ourselves to any settled rules: but as inaction renders the body weak and listless, and exercise gives vigour and strength, people should never long omit riding, walking, or going abroad in a carriage; fencing, playing at tennis, dancing, or other similar engagements, which afford both exercise and amusement, as each shall be found most agreeable or convenient, are to be used in their turns, according to the circumstances and tendency to any particular species of disease. But when the weakness of old age shall have rendered the body incapable of all these, then dry frictions with the flesh-brush will be extremely requisite to preserve health, by accelerating the flow of humours through the smallest orders of vessels, and preventing the fluids from stagnating too long in the cellular interstices of the thirsty parts.

Sleep is the great restorer of strength; for, during this time, the nutritious particles appear to be chiefly applied to repair the waist, and replace those that have been abraded and washed off by the labour and exercise of the day; but too much indulgence in sleep has many inconveniences, both with respect to body and mind, as it blunts the senses, and encourages the fluids to stagnate in the cellular membrane; whence corpulence, and its necessary consequences languor and weakness.

The proper time for sleep is the night season, when
Appendix.

Means of黑暗 and silence naturally bring it on: therefore a day-sleep in general is not so refreshing; and to some people is really distressful, causing an unusual giddiness and languor, especially in persons addicted to literary pursuits. Custom, however, frequently renders sleep in the day necessary; and in those constitutions where it is found to give real refreshment, it ought to be indulged.

INDEX.

M E D I C I N E.

With regard to the general regimen of diet, it has always been held as a rule, that the fatter and milder kinds of aliment are most proper for children and younger subjects; that grown persons should eat what is more substantial; and old people lessen their quantity of solid food, and increasethat of their drink.

Acute Rheumatism, 205.
Aerynomy of the blood, 103.
Adynamie, 271.
Adipsia, 376.
Egyptian Physician, 2.
Alasphilus, 4.
Albis, 43.
Ague, 366.
Alexander, 43.
Anemia, 220.
Amaurosis, 360.
Ammon, 402.
Amphimera cardinale, 151.
Amphimera paludosa, 152.
Amenorrhea, 379.
Anchylis, 367.
Ancepsis, 377.
Anginapectoris, 403.
Animal fat, 72.
Anxiety, 76.
Aphysia, 233.
Aphonia, 379.
Aposeeres, 385.
Aphasia, 215.
Apotheca, 385.
Serenus, 257.
Hydrocephalus, 225.
From ataraxia, 225.
From external violence, 260.
From poisons, 261.
From pallsions of the mind, 262.
From catalepsy, 263.
From fuscilation, 264.

B. Baffard pluvius, 208.
Bleeding at the nose, 235.
Bloody flux, 235.

Braek's, n° 182.
Buffaloed crust on the blood, 99.
Bulimia, 369.
Burning fever, 140.
C.
Cacoxenia, 330.
Caligo, 359.
Canine appetite, 369.
Canine madness, 322.
Cardiac syncope, 273.
Cardiitis, 188.
Catarrh, 263.
Cataract, 359.
Catechus, 271.
Cataract, from cold, 252. From contagion, 253.
Causes of affections of the solids, 70.
Caustis, 140.
Cefis, 40.
Cellular texture, 71.
Cephalalgia, 405.
Chemical analysis of the animal solid, 68.
Chicken pox, 226.
Child-bed fever, 204.
Children, diseases of, 410.
Chinfluence, 209.
Chlorosis, 277.
Chorea, 114.
Chorea, 308. Spontaneous, 309. Accidental, 310.
Chorea, 225.
Chronic rheumatism, 209.
Circulation, 95.
Colic, 315.
College of Salernum, 48.
Colica, 301. Piletonum, 303.
Spermatia, 304. Mecconialis.
Conformed blisters, 239.
Continued fever, 164.
Contrabas, 384.
Confanstt, 49.
Consumption, pulmonary, 237.
Convulsus, 283.
Convulsive tertian, 133.
Corpus, 335.
Coffreves, 108, 393.

Cough, n° 105.
Croup, 180.
Cynanche, 177.
Tonfillis, 178.
Maligna, 179.
Trenchers, 180.
Pharynx, 181.
Parotidea, 182.
Cystitis, 201. From internal causes, 202.
From external causes, 203.

D.
Dyspepsia, 363.
D. d'Ette, 91.
D. simmer's, 85.
Diarze, 318.
D. d'Ette, 319.
D. d'Ette, with infipid urine, 320.
Diarreia, 311.
Feculent, 312.
Sympathetic, 238.

D. dePuritus, 238.
Epiphora, 387.
Epiphora, 286.
Cerealis, 28.

Dissolution, 107.
Depraved, 275.
Epithet, 235.

Dysenteria, 370.
Epithet, 392.

Dysenteria, 370.
Epithet, 392.

Dystrope tertian, 134.
D. from accident, 65.
Erythema, 174.

D. from pallsions of the mind, 218.
With blisters, 66.
From age and sex, 63.
With phytolacte, 220.
From climate, 64.
In the muscular power, 87.

Dystrophy, 370.
Excursus, 370.

Dyspepsia, 368.
Dyspepsia, 275.
Dyspepsia, 401.

Dry, 294. From changes of weather, 295.
From earthy substances, 296.
Water, 297.
From corpulence, 298.

E.
Eplepsia, 352.
Empetus, 336.
Empyema, 187.
Epistaxis, 195.
Phlegmonoea, 196.
Epipeltalosis, 197.

Epsiloptia, 357.
Epsiloptia, 286.
Cerealis, 28.

Epsiloptia, 286.
Cerealis, 28.

F.
Falls appetite, 371.

G.
Galen, 41.
Gallei, 192.
Phlegmonoea, 193.
Epirptalosis, 194.

NDEX.

Gonorrhœa, n° 391.

Gout, 211.

Greek physicians, 3.

Green lichen, 277.

Gutta perena, 360.

H.

Hemoptysis, 236.

Hemorrhagia, 234.

Hemorrhoids, 240.

Head-ache, 455, and p. 352.

Hearing, 80. Drapped, 364.

Heart-burn, 300.

Héctic fever, 170.

Hepatia, 198.

Herpes, 317.

Hereditary diseases, 32. Leucorrhœa, 329.

Herpetit, 13.

Hippocrates, 6. His writings, 6.

Hysteria, 321.

Hydrocele, 267.

Hydrophobia, 170.

Hydrothorax, 182.

Hysteria, 135.

I.

I. Of the brain, 176.

Idiotism, 113.

Impetigo, 183.

Inspiration and expiration, 238.

Incontinence of urine, 120.

Irritans, 102.

Irruption of the bladder, 201.

I. Of the brain, 176.

I. Of the heart, 188. Of the intestines, 195.

II. Of the kidneys, 200. Of the liver, 198.

II. Of the lungs, 183. Of the menses, 191. Of the omentum, 190. Of the peri toneum, 189. Of the stomach, 192.

II. Of the uterus, 204.

Inflammatory tertian, 135.

Influenza, 178.

Inoculation, 225.

Intemperance, 125.

I. Measles, 334.

Irregular tertian, 127.

I. Purple, 394. Renalis, 395.

I. Uteritis, 396. Veitis, 397.

I. Urethritis, 398.

I. I. I. Amputation, n° 393.

I. Of the intestines, 215. Of the kidneys, 204.

I. Of the liver, 274. Of the lungs, 274.

I. Of the spleen, 204.

EDICINES, whether simple or compound; the
former being prepared by nature alone; and the latter
owing to the industry of man, by variously mixing
the simples together. See PHARMACY.

MEDICINES are likewise distinguished from the man­
er of using them, into external and internal; and with
regard to their effects, they are said to be emetic, ca­
tonic, aromatic, astringent, &c. See MAXIMA Medica.

Pocket Medicines, in surgery, those which a sur­
geon ought always to carry about with him, in a box
or convenient case.

These, according to Heister, are the common di­
gestive ointment, and some detergent ointment, for
cleaning and digesting foul ulcers; to which must
also be added a tablet or two fitted for defence or
adhesion, since one or other of these is almost
constantly wanted. Neither should there be want­
ing a piece of blue vitriol for the taking down
luxuriant flesh, and to stop hemorrhages: but if
vitriol is wanting, burnt alum, red precipitate, the
infernal bone, or any other corrosive medicine, will
supply its place in corrosive intentions; and the last
will also serve to open abscesses, to make ious, and
perform many other operations of that kind.

With these there should always be kept in readiness
also a quantity of scraped lint, that the surgeon may
give to be able to give immediate assistance to wounded
persons; since, if he is unprepared for this, they may
easily be taken off by an hemorrhage; a circumstance
which ought also to prevail with him to be always
provided with suitable bandages.

MEDICIS (Cosimo de), called the Elder, son of John
de Medicis, was born at Florence Sept. 1389. Altho' in
a private station, he appeared with the splendor of the
molt powerful sovereign; and his fortune, accumu­
lated by successful commerce, was surpassed by the
revenue of few princes. He was partial to the sciences,
and liberal to men of genius. His library consisted
of a vast number of books of his own collecting, and he
enriched it with many scarce and valuable manuscripts.
Banished from his native country by the envy which
his riches inspired, he went to Venice, where he was
received with the honours due to a sovereign prince.
His counsylmen soon perceived their error, and re­
called him from banishment. For 34 years he was
the supreme judge of the republic; and his advice was fo­
licited by the greater part of the cities and sovereig­
ties of Italy. This great man died August 1464, in
the 77th year of his age, full of happiness and glory.
On his tombstone he is styled, "Father of the people,
and deliverer of his country.”

MEDICIS (Laurence de), styled the Great and the
Father of learning, was born A. D. 1448. He was
the son of Peter, the grandson of Cosmo, and the
brother of Julian de Medicis. These two brothers,
who were in possession of absolute power at Florence,
exited the jealousy of Ferdinand of Naples and Pope
Sixtus IV. The first hated them, because they had
ruined his influence in Florence; and the second,
caufe they opposed the advancement of his nephew.
It was at their instigation that the Pazzi conspired
against them. Julian was murdered while he heard
mass April 26th 1478; and Laurence, who was only
wounded, was carried back to his houfe in the midst
of the shouts and acclamations of the people. Heir to
the greater part of his grandfather's virtues, he was,
like him, the Mænas of his age. It was equally a
flonishing (lays an historian of that country) and for­
reign to our manners, to see the same man engaged in
commerce, and supporting the burden of the public
affairs; conversing with factors, and receiving ambas­
adors; giving shews to the people; affording an afy­
llum to the unfortunate; and adorning his country with
many magnificent buildings. He was so much be­
lowed by the Florentines, that they appointed him chief
magistrate of the republic. By his unbounded lib­
erality, he drew to his court a great number of learned
men. He sent John Lascaris into Greece to recover
manuscripts, with which he enriched his library. He
cultivated learning himself, and was the author of the
following works: 1. Des Postes Italianes. Venice, 1554,
12mo. 2. Cammeone à ballo, 1568, 4to. 3. La Com ­
pagnia del Manteluccio Beoni, with the sonnets of
Burchiello.
Medici. Burchiello, 1558 or 1568, 8vo. Laurence de Medicis was so universally admired, that the princes of Europe did him the honour to appeal their differences to his decision. It is even reported, that Bajazet emperor of the Turks, to show him a mark of esteem and regard, caused search, for the murderer of his brother Julian in Constantinople, and fent back one of them who had concealed himself in that city. Pope Sixtus IV. was the lait of his enemies; but he opposed him with so much ability, that he brought him to terms of accommodation. This illustrious man died April 9th 1492, aged 44. His reputation was fullied by his passion for women and by his infidelity. His two sons, Peter who succeeded him and who was expelled from Florence in 1494, and John who went by the name of Pope Leo X. were like their father remarkable for their generosity and their love of learning. Peter died in 1559, leaving Laurence, the last male issue of this branch. Laurence was the father of Catharine de Medicis, who married Henry II. king of France.

Medici (John de), on account of his bravery and knowledge in military affairs was sworn the Iuveinelli. He was the son of John, otherwise called Joue dain, de Medicis. His only son Cofno I. styled the Great, was chosen duke of Florence after the murder of Alexander de Medicis. A. D. 1537. He first carried arms under Laurence de Medicis against the duke of Urbino, afterwards under Pope Leo X. Upon the death of Leo, he entered into the service of Francis I. which he quitted to follow the fortunes of Francis Sforza duke of Milan. When Francis I. formed an alliance with the pope and the Venetians against the emperor, he returned to his service. He was wounded in the battle at Governois, a small town in the Mantuan territory, by a musket-ball; and being carried to Mantua, he died the 29th of November 1528, aged 28. Brantome relates, that when his leg was to be cut off, and when he was informed that he needed some person to support him, "Proceed without fear (said he), I need nobody!" and he held the candle himself during the operation. This anecdote is also mentioned by Varchi. John de Medicis was above the middle stature, strong, and nervous. His fiddlers, to express their affection for him and their concern for his loss, assumed a mourning dress and standards, which gave the name of the black band to the Tuscian troops whom he commanded.

Medici, (Laurence, or Laurenein de), was descended from a brother of Cofino the Great, and affected the name of popular. In 1537, he killed Alexander de Medicis, whom Charles V. had made duke of Florence, and who was believed to be the natural son of Laurence de Medicis duke of Urbino. He was jealous of Alexander’s power, and disguised this jealousy under the specious pretext of love to his country. He loved men of learning, and cultivated literature. His works are, 1. Lamenti, Modena, 12mo. 2. Avicia Commedia, Florence 1557, 12mo. He died without issue.

Medici, (Ippolitus de), natural son of Julian de Medicis and a lady of Urbino, was early remarkable for the brilliancy of his wit and the graces of his person. Pope Clement VII. his cousin, made him cardinal in 1529, and sent him as legate into Germany to the court of Charles V. When that prince went into Italy, Medici, yielding to his warlike disposition, appeared in the dress of an officer, and advanced before the emperor, followed by several respectable gentlemen of the court. Charles, naturally suspicious, and afraid that the legate intended to do him some ill offices with the pope, sent after him and caused him to be apprehended. But when he understood that it was a mere fally of humour in the young cardinal, he set him at liberty in a few days. The character which Medici obtained by the happy success of this appointment, was of essential service to him. He was considered as one of the supports of the Holy See; and a little before Clement’s death, when the colport Barbarossa made a descent into Italy to the great terror of Rome, which was only defended by 200 of the pope’s guards, Medici was dispatched to protect the coasts from the fury of the barbarians. On his arrival at the place of destination, he was fortunate enough to find that Barbarossa had withdrawn himself at that critical moment; which allowed him to claim the honour of the retreat without exposing his person or his army. When he returned to Rome, he was of great service in the election of Paul III., who nevertheless refused to make him legate to Ancona, though that office had been promised to him in the conclave. Enraged also that the pope had belittled the principality of Florence on Alexander de Medicis, supposed to be the natural son of Laurence duke of Urbino, he was promptily by his ambition to believe that he might succeed to that dignity by the destruction of Alexander. He entered into a conspiracy against him, and determined to carry him off by a mine; but the plot was discovered before he had accomplished his purpose. Ottavian Zanga, one of his guards, was arrested as his chief accomplice. Hypolitus de Medicis, apprehensive for his own safety, retired to a castle near Trivoli. On his road to Naples, he fell sick at Irvi in the territory of Fondi, and died August 15th 1535, in his 24th year, not without suspicion of being poisoned. His house was an asylum for the unfortunate, and frequently for those who were guilty of the blackest crimes. It was open to men of all nations; and he was frequently addressed in 20 different languages. He had a natural son named Afdrubal de Medicis, who was a knight of Malta. This anecdote proves that his manners were more military than ecclesiastic. He wore a sword, and never put on the habit of cardinal except on occasions of public ceremony. He was wholly devoted to the theatre, hunting, and poetry.

Medici, (Alexander de), first duke of Florence in 1550, was natural son of Laurence de Medicis and named the Younger, and nephew of pope Clement VII. He owed his elevation to the intrigues of his uncle and to the arms of Charles V. This prince having made himself master of Florence after an obstinate siege, conferred the sovereignty of this city on Alexander, and afterwards gave him in marriage Margaret of Austria his natural daughter. According to the terms of capitulation granted to the Florentines, the new duke was to be only hereditary doge, and his authority was tempered by councils; which left them at least a shadow of their ancient liberty. But Alexander,
Alexander, who felt himself supported by the emperor and the pope, was no sooner in possession of his new dignity, than he began to govern like a tyrant; being guided by no law but his own caprice, indulging the most brutal passions, and making light of dishonouring families, and of violating even the asylum of the cloisters to gratify his lust. Among the confidants of his debauchery was a relation of his own, Laurence de Medici. This young man, who was only 22 years of age, at the instigation of Philip Strozzi, a zealous republican, conceived the design of affalinating Alexander, and thereby of delivering his country from oppression. From the moment when he first became attached to him, he tried to gain his confidence, for no other reason but that he might the better have in his power to take away his life. A considerable time elapsed before he found such an opportunity as he desired. At length, under pretence of procuring the duke a tite à tête with a lady of whom he was deeply enamoured, he brought him alone and unattended into his chamber, and put him under his bed. He went out, under pretence of introducing the object of his passion; and returned along with an affalinator by profession, to whom alone he had entrusted his design, only to stab him. This cruel scene happened on the night between the 5th and 6th of January 1537. Alexander was only 26 years of age. The glory. In 1562 he instituted the military order of

Alfred: in law, signifies a jury, or inquest impanelled, of which the one half are natives of this land and the other foreigners. This jury is never used except when one of the parties in a plea is a stranger and the other a denizen. In petit-treason, murder and felony, foreigners are allowed this privilege; but not in high-treason, because an alien in that case shall be tried according to the rules of the common law, and not by a mediata lingua. A grand jury ought not in any case to be of a mediata lingua; and the person that would have the advantage of a trial in this way, is to pray the same, otherwise it will not be permitted on a challenge of the jurors.

Medimnus, in Grecian antiquity, a measure of Capacity. See Measure.

Medina-Talarni, a famous town of Arabia Petraea, between Arabia Deserta and Arabia the Happy; celebrated for being the burial-place of Mahomet. It stands at a day's journey from the port of Jamb. It is of moderate size, surrounded by wretched walls, and situated in the midst of a sandy plain. It belongs to the Scherif of Mecca, although it had of late times a particular soveraigny of the family of Dacel Barkad. At present, the government is confined by the Scherif to a vizir, who must be taken from the family of the sovereign. Before Mahomet, this city was called Lathreb; but it got the name of Medina Nabi, “the City of the Prophet,” after Mahomet, being driven from Mecca by the Koreichites, had taken refuge there, and paffed in it the rest of his days. The tomb of Mahomet at Medina is respected by Mussulmans, but they are under no obligation to visit it for the purposes of devotion. The caravans of Syria and Egypt alone, which on their return from Mecca pass near Medina, go a little out of their way to see the tomb. It stands in a corner of the great square, whereas the Kaba is situated in the middle of that at Mecca. That the people may not perform some superstitious worship to the relics of the prophet, they are prevented from approaching the tomb by grates, through which they may look at it. It consists of a piece of plain motion-work in the form of a chefc, without any other monument. The tomb is placed between two others, where the ashes of the two first caliphs repose. Although it is not more magnificent than the tombs of the greater part of the founders of mosques, the building that covers it is decorated with a piece of green silk stuff embroidered with gold, which the pacha of Damasius renewes every seven years. It is guarded by 40 eunuchs, who watch the treasure-guarded to be deposited there. It is seated in a plain abounding with palm-trees, in E. Long. 39. 55. N. Lat. 25. See (History of) Arabia.

Medina-Celi, an ancient town of Spain, in Old Castile, and capital of a considerable duchy of the same name; seated near the river Xalon, in W. Long. 2. 9. N. Lat. 41. 15.

Medina-de-la-Torre, a very ancient town of Spain, in Estremadura, with an old castle, and the title of a duchy. It is seated on the confines of Andalusia, at the foot of a mountain near Bajadoz.

Medina-del-Campo, a large rich, and ancient town of Spain, in the kingdom of Leon. The great square is very fine, and adorned with a superb fountain. It
MEDINA (Sir John), a very eminent painter, was son of Medina de L'Auffrias, a Spanish captain who had settled at Brussel, where the son was born in 1660. He was instructed in painting by du Chatel; under whose direction he made good progress; and applying himself to the study of Rubens, that eminent master his principal model. He painted both history and portrait; and was held in extraordinary esteem by most of the princes of Germany, who distinguished his merit by several marks of honour. He married young, and came into England in 1686, where he drew portraits for several years with great reputation; as he painted those subjects with remarkable freedom of touch, a delicate management of iver, and strong resemblance of the persons. The Earl of Lennox encouraged him to go to Scotland, and procured him a subscription of 500 l. worth of buffets. He went, carrying a large number of bodies and pictures, to which he painted heads. He returned to England for a short time; but went back to Scotland, where he died, and was buried in the church-yard of the Greyfriers at Edinburgh in 1711, aged 52. He painted most of the Scotch nobility; but was not rich, having 20 children. The portraits of the professors in the surgery's-hall at Edinburgh were painted by him, and are commended. At Wentworth-castle is a large piece containing the first duke of Argyle and his sons, the two late dukes of Gordon too was drawn by him, with his son the marquis of Huntly, and his daughter Lady Jane, in one piece. Medina was knighted by the duke of Queensberry, lord high commissioner; and was the last knight made in Scotland before the union. The prints in the octavo edition of Milton were designed by him; and he composed another set for Ovid's Metamorphoses, but they were never engraved.

MEDINE, an Egyptian piece of money, of iron silvered over, and about the size of a silver threepence.

MEDILONUM, an ancient city, the capital of the infubres, built by the Gauls on their settlement in that part of Italy. A municipality, and a place of great strength. The seat of the liberal arts; when it had the name of Nova Athenae. Now Milan, capital of the Milanese, situated on the rivers Olana and Lombro, E. Long. 9° 30'. N. Lat. 45° 25'.

MEDILONUM Acebronum (anc. geog.), a town of Gallia Celtica, which afterwards took the name of the Eburovicii Civitas (Antonine), corrupted to Civitas Eburovonum, and this last to Eburovon; whence the modern appellation Evora, a city of Normandy. E. Long. 1° 12'. N. Lat. 49° 21'.

MEDITLANUM Gasterorum (anc. geog.), a town of Mediomatrici, now the village Meyland, not far from Cologne.

MEDITLANUM Ordovicum (anc. geog.), a town of Britain, now Lan Feleni, a market-town in Montgomery in Wales.

MEDITLANUM Santonum (anc. geog.), which afterwards taking the name of the people, was called Sanctia Urbi; allo Sancta; and Sotonum; a town of Aquitaine. Now Saintes, capital of Saintonge in Guienne, on the river Charente.

MEDIOMATRICI, anciently a territory of Belgia. Now the diocese of Metz.

MEDITATION, an act by which we consider anything closely, or wherein the soul is employed in the search or consideration of any truth. In our religion, it is used to signify a consideration of the objects and grand truths of the Christian faith.

Mythic divines make a great difference between meditation and contemplation: the former consists in discursive acts of the soul, considering methodically and with attention the mysteries of faith and the precepts of morality; and is performed by reflections and reasonings, which leave behind them manifest impressions on the brain. The pure contemplative has no need of meditation. He is free from all things in God at a glance, and without any reflection. When a man, therefore, has once quitted meditation, and is arrived at contemplation, he returns no more; and, according to Alvarez, never resumes the oar of meditation, except when the wind of contemplation is too weak to fill his sails.

MEDITERRANEAN, something inclosed within land; or that is remote from the ocean.

MEDITERRANEAN is more particularly used to signify that large sea which flows between the continents of Europe and Africa, entering by the straits of Gibraltar, and reaching into Asia, as far as the Euxine Sea and the Palus Moeotis.

The Mediterranean was anciently called the Grecian Sea and the Great Sea. It is now cantonned into several divisions, which bear several names. To the west of Italy it is called the Liguric or Tuscan Sea; near Venice, the Adriatic; towards Greece, the Ionian and Aegean; between the Hellespont and the Bosphorus, the White Sea, as being very safe; and beyond, the Black Sea, its navigation being dangerous.

The British trade carried on by means of the Mediterranean Sea is of the last consequence to Great Britain; and the permanent preservation therefore depends on the possession of the town and fortification of Gibraltar.

The counterfeiting of Mediterranean pales for ships to the coast of Barbary, &c. or the seal of the admiralty office to fish pales, is felony without benefit of clergy; Stat. 4 Geo. II. c. 18.

MEDITRINALIA, a Roman festival in honour of the goddess Mediitrini, kept on the 30th of September. Both the deity and the festival were so called a medena, because on this day they began to drink new wine mixed with old by way of medicine. The mixture of wines, on this festival, was drunk with much form and solemn ceremony.

MEDITULLUM, is used by anatomists for that spungy
M E D

Medium

Medium

spungy substance between the two plates of the cranium, and in the interlucines of all laminated bones. See Anatomy, n° 1, 11.

MEDIUM, in logic, the mean or middle term of a syllogism, being an argument, reason or consideration, for which we affirm or deny anything; or, it is the cause why the greater extreme is affirmed or denied of the less in the conclusion.

MEDIUM, in arithmetic, or arithmetical medium or mean, called in the schools medium rei; that which is equally distant from each extreme, or which exceeds the lesser extreme as much as it is exceeded by the greater, in respect of quantity, not of proportion; thus 9 is a geometrical medium between 6 and 12.

Geometrical MEDIUM, called in the schools medium perpensa, is that where the same ratio is preferred between the first and second as between the second and third terms; or that which exceeds in the same ratio or quota of itself, as it is exceeded: thus 6 is a geometrical medium between 4 and 9.

MEDIUM, in philosophy, that space or region through which a body in motion passes to any point: thus ether is supposed to be the medium through which the heavenly bodies move; air, the medium wherein bodies move near our earth; water, the medium whereof many species, being an argument, reason or consideration, for which we affirm or deny anything; or, it is the cause why the greater extreme is affirmed or denied of the less in the conclusion.

MEDIUM, in optics, any substance through which light is transmitted.

MEDULAR, in botany. See Mesplius.

MEDULLA OSSIUM, or Marrow of the Bone. See Anatomy, n° 5.

Medulla cerebri and cerebelli, denotes the white soft part of the brain and cerebellum, covered on the outside with the cortical substance, which is of a more dark or airy colour. See Anatomy, n° 131—133.

Medulla oblongata, is the medullary part of the brain and cerebellum, joined in one; the fore-part of it coming from the brain, and the hind-part from the cerebellum. See Anatomy, n° 134.

It lies on the basis of the skull, and is continued through the great prolongation thereof into the hollow of the vertebra of the neck, back, and loins; though only so much of it retains the name oblongata as is included within the skull. After its exit thence, it is dilated by the name of medulla spinalis. Ibid. n° 135.

Medusa (fab. hist.), one of the three Gorgons, daughter of Phorcys and Ceto. She was the only one of the Gorgons who was subject to mortality. She is celebrated for her personal charms and the beauty of her locks. Neptune became enamoured of her, and obtained her favours in the temple of Minerva. This violation of the sanctity of the temple provoked Minerva; and she changed the beautiful locks of Medusa, which had inspired Neptune's love, into serpents, the fight of which turned the beholders into stones: but Perseus, armed with Mercury's axe with which he killed Argus, cut off Medusa's head, from whose blood sprang Pegasis and Chrysaor, together with the innumerable serpents that infest Africa. The conqueror placed Medusa's head on theegis of Minerva, which he had used in his expedition; and the head still retained the same petrifying powers as before.

Medusa, in zoology, a genus of vernes, belonging to the order of molulacea. The body is gelatinous, roundish, and depressed; and the mouth is in the centre of the under part of the body. Many species, being handled, affect with a nettle-like burning, and excite a redness. The ancients, and some of the moderns, add that they have an aphrodisiac property, and in several languages they are called by an obscene name. They were known to the Greek and Romans by the name of Typhoe, or Typhoeus, and Cassius, or Cassius-von. They attributed medicinal virtues to them. Dioscorides informs us, that, if rubbed fresh on the diseased part, they cured the gout in the feet, and kibed heels. Ælian says, that they were depilatory; and, if macerated in vinegar, would take away the beard. Their phoshoric quality is well known; nor was it overlooked by the ancients. Pliny observes, that if rubbed with a stick it will appear to burn, and the wood to shine all over. The same naturalist observes, that when they linking to the bottom of the sea, they portend a continuance of bad weather.

On Plate CCXCIV, are figured several specimens, viz. 1. The aurita, or aurited medusa, which appears, as floating on the water, to be a mere lifeless lump of jelly. It is of a whitish colour, with a cast of bluish grey, and is of an orbiculated figure, elevated into a convexity in the middle on the upper side, flat on the under, and furnished with a fringe of fine and some what rigid filaments round the edge, resembling white hairs: on the under surface there are four cavities near the centre, each of an arcuated figure, and surrounded with an opaque line, formed of about 24 parallel points or dots: from the very centre of the under side there arise four crooked appendages, which have each a row of hairy filaments on the exterior edge; and on the upper surface there is an appearance of fine vesicles of a pale colour. This species is frequent, floating on the surface of the sea, or adhering to rocks about our own coasts; and when the fun-flines on them, they have a very beautiful lucid appearance. It is called by the name of sea nettles, it being one of those animals that when touched occasions a very disagreeable tingling in the hand.

2. The capillata, or capitulated medusa, is a very Hold, singular and odd animal: it seems a mere lump of a whitish semi-pellucid jelly; and is as easily broken and destroyed by a touch as the common jellies brought to our tables; its shape is rounded, rising into a convexity in the middle, where it is therefore thickest, and whence it becomes gradually thinner to the sides; on the under side it is plain, and on this there is visible a rough, or as it were circinate circle, within which
there run eight pairs of rays from the centre toward
the circumference; and from the centre there arise
also a number of curled appendages, which are some-
times reddish, but more usually whitish, and a vast
number of slender filaments: the edge or the circum-
ference of the body is regularly divided into eight por-
tions, and each of them is emarginated, so that on the
whole verge there are 16 fins. This species is to be
met with in vast abundance floating on the surface of
the water about Sheppy island in Kent, England, and el-
sewhere on that coast: great quantities of it are de-
stroyed by being thrown on shore with the waves,
whence it has no power of getting off again; and in
the open seas, many fish skim near the surface, and
prey on them. This is the species called by many
authors *palma marinus*, on the sea lungs. The mar-
ked.

Fig. 3. *n* 3.

Fupialis, or purbe medufa, is semi-oval, with four ten-
tacula on the edge. It inhabits the Mediterranean.

Ibid. *n* 4.

4. The waved medufa, has the edges waved, with
the tings on the projecting parts; four filaments beneath,
between which rides a ftem divided into eight large
ragged tentacula.

These animals swim in large companies in search
of food, with their tentacula in continual motion, with
which they seize their prey, and convey it to their
mouths: they vary in size, the largest being generally
about eight inches in diameter. They vary likewise
in the number of their tentacula; some having only
two, others four, six, and some eight, but they rarely
exceed that number. So powerful is their embrace,
that whatever prey comes within their reach never
echapés. They suck in onsets, finall filis, &c.

Mr. Banks, in his passage from Madeira to Rio de
Janeiro, discovered a new species, which, when brought
aboard by the passing net, had the appearance of metal
violently heated, and emitted a white light. With
these animals were taken small crabs of three different
species, altogether new, each of which gave as much
light as the glow-worm, though the creature was not
so large by nine-tenths. These luminous animals are
one of the caufes of that appearance to the sea which
has been mentioned by many navigators, and of which
various reafons have been assigned. It appeared to
emit flashes of light exactly resembling thofe of light-
ing, only not fo confiderable, but fo frequent, that
sometimes eight or ten were visible at the fame mo-
moment.

MEDWAY, a river of England, rises in the Weald
of Sussex, and entering Kent near Ashbury runs by
Tunbridge, and thence continues its course towards
Maidstone. It is navigable for large ships to Rochef-
ter bridge, and thence for vessels and barges to Maid-
stone, the tide flowing up to that town. The diftance
between the mouth of this river, where the fort at
Sheernefs is erected, and Rochester bridge, is between
16 and 18 miles. In this part of the river, the chan-
nel is fo deep, the banks fo foft, and the reaches fo
short, that it is one of the belt and safest harbours in
the world; and ships of 80 guns ride a-float at low-
water, within musket-shot of Rochester-bridge. Nor
is there a fingle infance upon record, that any of the
British navy ever fuffered here by florms, except in the
dreadful tempeft which happened in November 1703,
when the Royal Catharine was driven on fhire, where
the funk and was loft. On the shore of this river are
two cattles, one at Uppor, which guards two reaches
of the river, and is fpoodooed to defend all the ships
which ride above, between that and the bridge; on
the other side of the river is Gillingham cattle, built
for the fame purpofe, and well ruined with cannon
which commands the river. Besides thefe, there is a
platform of guns at a place called the Swam, and an-
other at Cockham-wood. But the principal fortification
on this river is the castle at Sheernefs.

MEEREN, or MEER, (John Vander,) called the
Old, an efteemed painter, was born in 1627; but the
mafter under whom he learned the art of painting, is
not mentioned. His genius directed him to choofe for
his subje&s sea-pieces, landscapes, and views of the sea
and its fleers; which he painted with great truth, as
he had accustomed himself to fketch every fcene after
nature. The fituations of his landscapes, are agreeably
chofen, frequently they are solemn, and generally
pleading. The forms of his trees are easy and natural,
his diftances well observed, and the whole fcenery has
a striking eflect, by a happy pofition of his lights
and shadows. He alfo very often painted battles
in fuch a fìle as, met with approbation; as they
showed good composition, were touched with spirit,
and had a great deal of tranfparenfe in the colouring.
But the fault imputable to Vander Meer is, that in
fome of his pictures the back-gounds are a little too
blue, and fome of his landscapes have a tint which
appears rather too yellifh. He died in 1690.

MEEREN, or MEER, (John Vander,) called De Jonghe,
an eminent landscape-painter, is fuppofed to have been
the fon of the old John Vander Meer, and of whom,
he learned the ftrft rudiments of the art; but being
in his youth deprived of his inftutor before he had
made any great progress, he became a disciple of Ni-
holas Bergham, and was accounted the belt of thofe
who were educated in the fchool of that admired ma-
fier. In the manner of his mafter, he painted land-
scape and cattle; and his ufual fubje&s are cottages,
with peafants at their rural occupations and divereions.
It is obferved of him, that he very rarely introduced
cows, hofes, or any other fpecies of animals, except
goats and fheep; the latter of which are fo highly fi-
nifhed, that one would imagine the wood might be felt
by the defign of its appearance. His touch is fcarce
perceptible, and yet the colours are admirably united.
He died in 1688. The genuine works of this Van-
der Meer bear a very high price, and are fteemed even
in Italy, where they are admitted into the belt collec-
tions; but the scarcity of them has occasioned many
moderate copies after his works to be pafted on the
market for originals.

MEGACLES POLIS, (anc. geog.) dividedly (Ptole-
my, Paufanius) or conjuntly MEGALEPOLIS. (Strabo):
A town of Arcadia, built under the auipices of Epa-
minondas; after the battle of Leuctra; many incon-
siderable towns being joined together in one great city
the better to withfand the Spartans. It was the
greatefl city of Arcadia, according to Strabo.

MAGALESIA, and MEGALENSÆ LUDI, fefts
and games in honour of Cybele or Rhea the mother
of the gods, kept on the 12th of April by the Ro-
mans, and famous for great rejoicings and divereions
of various forts. The Galli carried the image of the
goddes along the city, with found of drums and other
MEGARA

music, in imitation of the noise they made to prevent Saturn from hearing the cries of his infant son Jupiter, when he was doped to devour him.

MEGARA (anc. geog.), a noble city, and the capital of the territory of Megarides, which for many years carried on war with the Corinthians and Athenians. It had for some time a school of philosophers, called the Megarics, successors of Euclid the Socrates, a native of Megara. Their dialect was the Doric; changed from the Attic, which it formerly used; not being durable, may be reckoned among the causes of the desolation at Megara, which is so complete, that one searches in vain for vestiges of the many public edifices, temples, and sepulchres, which once adorned the city.

Megara was engaged in various wars with Athens and Corinth, and experienced many vicissitudes of fortune. It was the only city of the Greek cities which did not re-flourish under their common benefactor Hadrian; and the reason assigned is, that the avenging anger of the gods pursued the people for their impiety in killing Athenocritus a herald, who had been sent to them in the time of Pindar. The Athenian generals were sworn on his account to invade them twice a-year. Hadrian and Atticus were followed by another friend, whose memory is preserved by an inscription on a stone lying near a church in the village. — "This too is the work of the most magnificent count Diogenes son of Archelaus, who, regarding the Greek cities as his own family, had bestowed on that of the Megarensians one hundred pieces of gold toward the building of their town, and also one hundred and fifty more with two thousand two hundred feet of marble towards re-ediifying the bath; deeming nothing more honourable than to do good to the Greeks, and to restore their cities." This person is not quite unnoticed in history. He was one of the generals employed by the emperor Amilcar on a revolution in Iberia. He captured the capital Cadiopolis, and sustained a siege with great bravery, A. D. 494.

Megara retains its original name. It has been much infected by cemeteries; and in 1676 the inhabitants were accustomed, on being in a boat approach in the daytime or hearing their dogs bark at night, immediately to erect their effects and run away. The Vr nullable or Turkish governor, who resided in a forlorn tower above the village, was once carried off. It is no wonder, therefore, that Nilea has been long abandoned. The place was burned by the Venetians in 1687.

MEGARA (anc. geog.), formerly called Hybla, a town towards the east coast of Sicily; extinct in Strabo's time, though the name Hybla remained on account of the excellence of its honey. It was a colony of Megareans from Greece. Rhus Megaricus denotes a heart-ease.

MEGARIS (anc. geog.), the country of the Megareans, is described as a rough region, like Attica; the mountain called Oenian or the Alpheius, now Maresias or "the long Mountain," extending through it toward Boeotia and mount Citharon. It belonged to Ionia or Attica, until it was taken by the Peloponnesians in the reign of Codrus, when a colony of Dorians settled in it. This territory had Attica to the east, Boeotia to the north and west, and the Ilissus of Corinth to the south.

MEGARIS, a small island in the Tidcan sea, joined to Naples by a bridge. Now called Castello dell'Ovo.

MEGASTHENES, a Greek historian in the age of Seleucus Nicanor, about 350 years before Christ. He wrote about the oriental nations, and particularly the Indians. His history is often quoted by the ancients. What now passes as his composition is fictitious.

MEIGDISO (anc. geog.), a town of Galilee, erected (Joshua xvii. 11.) among the cities of Manaeith, in the tribe of Issachar or Aser, on the west side of Jordan. Famous for the defeat of Ahaziah and Jehu, who perished there (2 Kings xxii. 29.): near it was
MEL [366]

MELANTHEMUM, an open plain, fit for drawing up an army in battle array. It was situated to the north, contrary to its position in the common maps. The Canaanites, a name of several learned Germans.—John Henry Melanocn was professor of phyfic at Helmut, where he was born, and at Lubec; he wrote the Life of Method, published at Leyden in 1653, with several other learned works. Henry, his son, was born at Lubec in 1638; became professor of phyfic at Helmmt; and, besides works in his own profession, published Scriptores rerum Germanicarum, 3 vol. folio, 1688; a very useful collection, first begun by his father.—Marcus Melanion, of the same family, published a collection of seven Greek authors who had written upon ancient music, with a Latin version by himself; dedicated to Queen Christina of Sweden. But this edition is added, besides works of his own, by himself; dedicated to Queen Christina of Sweden.

HELLEBORES. Melampsorium, in botany: A genus of the polygamia necessaria order, belonging to the syngefeia class of plants, and in the natural method ranking under the 49th order, Compositae. The receptacle is pericarpos and conical; the pappus is monophyllous and valve-like; the calyx pentaphyllous. Melampus (Iab. hist.), a celebrated tooth-fayer and physician of Argos, son of Amythas and Idomea or Dorippe. He lived at Pylos in Peloponnesus. His servants once killed two large serpents who had made their nests at the bottom of a large oak; and Melampus paid so much regard to their remains, that he raised a burning pile and burned them upon it. He also took particular care of their young ones, and fed them with milk. Some time after this, the young serpents crept to Melampus as he slept on the grass near the oak, and, as if sensible of the favours of their benefactor, they wantonly played around him, and softly licked his ears. This awoke Melampus, who was astonished at the sudden change which his fences had undergone. He found himself acquainted with the chirping of the birds, and with all their rude notes, as they flew around him. He took advantage of this supernatural gift, and soon made himself perfect in the knowledge of futurity, and Apollo also instructed him in the art of medicine. He had soon after the happiness of curing the daughters of Perseus, by giving them hellebore, which from that circumstance has been called melampodium; and as a reward for his troubles, he married the eldest of these princesses. The tyranny of his uncle Neleus, king of Pylos, obliged him to leave his native country; and Perseus, to show himself more sensible of his services, gave him part of his kingdom. About this time the personal charms of Hero, the daughter of Neleus, had gained many admirers; but the father promised his daughter only to him who brought into his hands the oxen of Iphiclus. This condition displeased many; but Bias, who was also one of her admirers,
MELAMYRUM, COW-WHEAT: A genus of the angiopermia order, belonging to the dinandinae class of plants; and in the natural method ranking under the 40th order, Peronata. The calyx is quadripart; the upper lip of the corolla is compressed, with the edges folded back; the capsule is bilocular and oblique, opening at one side; and there are two gibbous seeds. There are four species, all of them natives of Britain, and growing spontaneously among corn-fields. They are excellent food for cattle; and Linnaeus tells us, that where they abound the yellowwell and buttermilk is made. Their seeds, when mixed with bread, give it a dunty colour; and according to some authors, produce a vertigo, and alters the ideas of the head; but this is denied by Mr Withering, though he allows that they give it a bitter taste.

MELANCHOLY, a kind of delirium attended with gloomy thoughts, heaviness, and sorrow. See Medicine, no. 85, 327.

MELANCHTHON (Philip), born at Bretten in 1495, was one of the wisest and most able men of his age among the Reformers, though of a mild temper, and dispense to accommodate rather than to inflame disputes. In his youth he made an admirable progress in learning, and was made Greek professor at Wittenberg in 1509. Here he lectured upon Homer, and the Greek text of St Paul's Epistle to the Titus, drew to him a great number of auditors, and entirely effaced the contempt to which his low stature and mean appearance had exposted him. Melanchthon reduced the sciences to systems; and acquired such reputation, that he had sometimes 2000 auditors. He soon entered into an intimate friendship with Luther, who taught divinity in the fame university; and in 1519 they went together to Leipzic, to dispute with Eriugena. The following years he was continually engaged in various employments; he compos'd several books; he taught divinity; took several journeys, in order to found colleges and visit churches; and in 1530 drew up a confession of faith, whi'ch goes by the name of the Confession of Augsburg, because it was presented to the emperor at the diet held in that city. All Europe was convinced, that he was not, like Luther, backward to accommodate the differences between the various sects of Christians. He hated religious disputes, and was drawn into them only through the necessity of the part he was called to act in the world; and therefore would have facrificed many things to have produced an union among the Protestants. For this reason, Francis I. the French king, wrote to desire him to come and confer with the doctors of the Sorbonne, in order to agree with them about putting an end to all controversies; but though Luther endeavoured to persuade the elector of Saxony to consent to that journey, and though Melanchthon himself desired it, that prince, whether he disliked Melanchthon's moderation, or was afraid of quarrelling with the emperor Charles V., would never grant his permission. The king of England also in vain desired to see him. Melanchthon, in 1529, assisted at the conferences of Spires. In 1541, he was at the famous conference at Ratibon. In 1543, he went to meet the archbishop of Cologne to assist him in introducing the reformation into his diocese; but that project came to nothing; and in 1548, he assisted at seven conferences on the subject of the interim of Charles V., and wrote a cenfure on that interim, and all the writings presented at these conferences. He was extremely affected at the differences raised by Faccius Illiricus. His last conference with those of the Roman communion was at Worms, in 1557. He died at Wittenberg in 1560, and was interred near Luther. Some days before he died, he wrote upon a piece of paper the reasons which made him look upon death as a happiness; and the chief of them was, that it "delivered him from theological persecutions." Nature had given Melanchthon a peaceable temper, which was but ill suited to the time he was to live in. His moderation served only to be his cross. He was like a lamb in the midst of wolves. Nobody liked his mildness; it looked as if he was luke-warm; and even Luther himself was sometimes angry at it.

Melanchthon was a man in whom many good as well as great qualities were wonderfully united. He had great parts, great learning, great sweetness of temper, moderation, contentedness, and the like, which would have made him very happy in any other times but those in which he lived. He never affected dignities, or honours, or riches, but was rather negligent of all these things; too much so in the opinion of some, considering he had a family; and his son-in-law Sarinus, who was of a more ambitious make, was actually at variance with him upon this very article. Learning was infinitely obliged to him on many accounts; on none more than this, that, as already observed, he reduced almost all the sciences which had been taught before in a vague irregular manner, into systems. Considering the distractions of his life, and the infinity of disputes and tumults in which he was engaged, it is astonishing how he could find leisure to write so many books. Their number is prodigious, inasmuch that it was thought necessary to publish a chronological catalogue of them in the year 1582. His works indeed are not correct, and he himself owned it; but as he found them useful, he chose rather to print a great number, than to finish only a few; "which, however (as Bayle says), was polishing his own glory to the advantage of others." His constitution was very weak, and required great tenderness and management; which made Luther, as hot and zealous as he was, blame him for labouring too earnestly in the vineyard.

MELANIPPIDES.
MELANTIPIDES (fab. hist.), a Greek poet about 520 years before Christ. His grandson of the same name flourished about 60 years after at the court of Perdicas the Second, of Macedonia. Some fragments of their poetry are still extant.

MELANTERIA, in natural history, a very beautiful fossil, of a dense, compact, and regular texture, and of an extremely bright pale yellow, resembling nothing so much as the purest gold. It is remarkably heavy and is sometimes found in little irregular masses of the bigness of a pigeon's egg, which are broken with a slight blow: but it is usually met with in the form of a fine gold-coloured efflorescence on vitriolic and pyritic bodies; or in loose, shattery, and friable masses of a more dusty yellow; in which latter state it so much resembles a native sulphur, that it is frequently mistaken for one; however, it is not inflammable; but calcines in the fire to a purple.

Melassae. See Molasses.

MELASTOMA, the American Gooseberry-tree, in botany. A genus of the monogynia order, belonging to the decandria class of plants; and in the natural method ranking under the 17th order, Calycanthene. The calyx is quinquefid and campanulated; the petals are five, inserted into the calyx; the berry is quinquelocular, and wrapped in the calyx. There are a great many species, all of them natives of the warm parts of America, and very beautiful on account of the variegation of their leaves. Most of the leaves are of two different colours on their surfaces; the under side being either white, gold-coloured, or rufset, and their upper parts of different shades of green: so that they make a fine appearance in the hot-house all the year round. There are but few of these plants in the European gardens which may perhaps have been occasioned by the difficulty of bringing out growing plants from the West Indies; and the seeds being small when taken out from the pulp of their fruits, rarely succeed. The best way is to have the entire fruits put up in dry sand as soon as they are ripe, and forwarded by the quickest contrivance to England. They should be immediately taken out when they arrive, and the seeds sown in pots of light earth, and plunged into a moderate hot-bed of tanner's bark. When the plants come up, and are fit to be removed, they must each be planted in a small pot, and plunged into the tan-bed; and afterwards treated as other exotic plants.

MELCHA, a small village of Barbary, situated about 30 miles from the city of Tunis, built on the ruins of Carthage, some of which are still visible.

MELCHITES, in church-history, the name given to the Syriac, Egyptian, and other Christians of the Levant. The Melchites, excepting some few points of little or no importance, which relate only to ceremonies and ecclesiastical discipline, are in every respect professed Greeks; but they are governed by a particular patriarch, who resides at Damas, and assumes the title of patriarch of Antioch. They celebrate mass in the Arabian language. The religious among the Melchites follow the rules of St Basil, the common rule of all the Greek monks. They have four fine convents, distant about a day's journey from Damas, and never go out of the cloister.

MELCHISEDÉC, or Melchizedek, king of Salem, and priest of the Most High. The scripture tells us nothing either of his father, or of his mother, or of his genealogy, or of his birth, or of his death. And in this sense he was a figure of Jesus Christ, as St Paul affirms, who is a priest for ever, according to the order of Melchisedec, and not according to the order of Aaron, whose original, life, and death, are known. When Abraham returned from pursuing the four confederate kings who had defeated the kings of Sodom and Gomorrah, and had taken away Lot Abraham's nephew along with them (Gen. xiv. 17, 18, 19, &c.), Melchisedek came to meet Abraham as far as the valley of Shaveh, which was afterwards named the king's valley, presented him with the refreshment of bread and wine (or he offered bread and wine in sacrifice to the Lord, for he was a priest of the most high God), and blessed him. Abraham being desirous to acknowledge to him the quality of priest of the Lord, offered him the tythes of all he had taken from the enemy. After this time, there is no mention made of the person of Melchisedek; only the Psalmist (ex. 4.) speaking of the Messiah, says, "Thou art a priest for ever after the order of Melchisedec." St Paul, in his epistle to the Hebrews, unfolds the mystery which is concealed in what is said of Melchisedek in the Old Testament. See Heb. v. 6–10. An infinite number of difficulties and scruples have been started upon the subject of Melchisedek.—St Jerome thought that Salem, of which Melchisedek was king, was not Jerusalem, but the city of Salem near Scythopolis, where they full pretended to show the ruins of the palace of this prince. The greatness and extent of these ruins are a sufficient proof of the magnificence of this ancient building. He thinks it was at this city of Salem or Shalem, that Jacob arrived after his passage over Jordan, and his return from Mesopotamia (Gen. xxxviii. 18.) Some believe that Salem, where Melchisedek reigned, is the same as Salim spoken of in the gospel of St John, chap. iii 23. From the time of Epiphanes there were names invented for the father and mother of Melchisedek. To his father was given the name of Heracles or Hercules, and to his mother that of Aftaroth or Aftaria. It is generally agreed on by the learned, that when the apostle says, he was "without father and without mother," no more is meant, than that he is introduced into the history of Abraham without acquainting us who he was, or whence he came, where he lived, or when he died. Nevertheless, some have taken St Paul's words literally, and contended that he was not of human but divine nature. Origen and Didymus took him to be an angel; and the author of the Epitomes upon the Old and New Testament pretended that he was the Holy Ghost, who appeared to Abraham in a human form. The Arabic Catena, upon the ninth chapter of Genesis, makes Melchisedek to be descended from Shem by his father, and from Japheth by his mother.
MELCHIZEDEC.

MELCHIZEDEC.

Melchizedec was the son of Phileg and the son of Heber; and his mother named Salathiel, was daughter of Gomer son of Japheth. Cendresus and others derive Melchizedec from an Egyptian flock. They say his father was called Sidon or Sida, and was the founder of the city of Sidon the capital of Phoenicia. Suidas says he was of the cursed race of Canaan; for which reason the scripture does not mention his genealogy. The Jews and Samaritans believed Melchizedec to be the same with the patriarch Shem; which opinion has been followed by a great number of modern writers. M. Jurieu has undertaken to prove that he is the same as Cham or Ham. It would be endless to set down all the opinions upon this matter; therefore we shall only add, that Peter Cuneus and Peter du Moulin have asserted, that Melchizedec who appeared to Abraham was the Son of God, and that the patriarch worshipped him and acknowledged him for the Messiah.

About the beginning of the third century arose the history of the Melchizedecians, who affirmed that Melchizedec was not a man, but a heavenly power, superior to Jesus Christ: for Melchizedec, they said, was the intercessor and mediator of the angels, but Jesus Christ was so only for men, and his priesthood only a copy of that of Melchizedec, who was the Holy Ghost.

We shall only beg leave to add here one opinion more concerning Melchizedec, which is that of the learned Heidegger, who, as the author of the Historia Patriarcalis, has taken the right method of explaining the accounts of Moses and the apostle Paul relating to this extraordinary person. He supposes a twofold Melchizedec; the one historical, whereof Moses gives an account in the sixth chapter of Genesis; as that he was king as well as high-priest of Jerusalem; the other allegorical, whom St Paul describes, and this allegorical person is Jesus Christ.

As the history of this prince and priest is so little known, it is no wonder, as Selden observes, that many fabulous accounts have been invented of him; of which the following may suffice as a specimen. Eutychus of Alexandria relates, that the body of Adam having been embalmed according to his order, was deposited in a cave under a mountain of the children of Seth; but that Adam before his death had commanded that they should take away his remains from that place, and transport them to the middle of the earth: that Noah, to follow the orders of his ancestors, had preferred the bodies of Adam and all the patriarchs with him in the ark; that finding himself near his death, he ordered his son Shem to take the body of Adam, to furnish himself with bread and wine for his journey, to take with him Melchizedec the son of Phileg, and go to the place in which an angel would show them where to bury the first man; that Noah added this order, "Command Melchizedec to fix his residence in that place, and to live unmarried all his lifetime, because God has chosen him to do service in his presence; command him, that he build no temple, nor shed the blood of birds, nor four-footed beasts, or any other animal; and that he offer no other oblations to God but bread and wine." This is the reason, according to this author, why, Melchizedec, when he met Abraham, brought forth only bread and wine.

A Greek author, under the name of Athanatus, relates, that Melchizedec was the son of an idolatrous king called Melch and of a queen called Salem. Melch, having resolved to offer a sacrifice to the gods, sent his son Melchizedec to fetch him seven calves. In the way the young prince was enlightened by God, and immediately returned to his father, to demonstrate to him the vanity of idols. Melch, in wrath, sent him back to fetch the victims. While he was absent, the king sacrificed his eldest son, and a great many other children to his gods. Melchizedec returning, and perceiving great horror at this butchery, retired to mount Tabor, where he lived seven years, without clothes, and fed only on wild fruits. At the end of seven years, God appeared to Abraham, bid him go up to mount Tabor, where he should find Melchizedec. He ordered him to clothe him, and to ask his blessing; which Abraham having done, Melchizedec anointed him with oil, and they came down together from the mountain.

MELCOMB-BEGIS, a town of Dorsetshire, in England, 150 miles from London, is situated at the mouth of the river Wey, by which it is parted from Weymouth. It appears from the name to have been anciently the king's demesne, and from the records to have paid quit-rent to the crown all along after king Edward I. till it was brought off by the inhabitants before they were united to Weymouth. It lies on the north side of the haven, on a peninsula surrounded by the sea on all sides except on the north. The streets are broad and well paved, and many of the houses large and high. It sent members to parliament in the reign of king Edward I. before Weymouth had that privilege. It was by parliament appointed a staple in the reign of Edward III. In the next reign the French burnt it; and it was thereby rendered so desolate, that the remaining inhabitants prayed and obtained a discharge from customs. On account of its quarrels with Weymouth, in the reign of Henry VI. it lost its privileges as a port were removed to Poole: but in that of queen Elizabeth they were restored to it by act of parliament, which was confirmed in the next reign, on condition that Melcomb and Weymouth should make but one corporation, and enjoy their privileges in common; and so this was owing the flourishing state of both. In the two reigns last mentioned, a wooden bridge with seventeen arches was built from hence to Weymouth; to which, as well as its church, the chief contributors were certain citizens of London; and upon its decay it was rebuilt in 1770. Here is a good market-place and town-hall, to which the members of the corporation of Weymouth come to attend public business, as the inhabitants do to its church for public worship. For several years past the sea has retired from it on the east, the priory, formerly being bounded by the sea, but there is now a street beyond it, from which it is several paces to the high-water-mark. The priory was situated in the east part of the town, in Maiden-street, whose site occupied about an acre, now covered with tenements. On the south side are the remains of an ancient
MELEAGER (fab. hist.) a celebrated hero, son of Oeneus king of Calydonia, by Althaea daughter of Thetis. The parcae were present at the moment of his birth, and predicted his future greatness. Clotho said that he would be brave and courageous; Lachesis foretold his uncommon strength and valor; and Atropos said that he should live as long as the firebrand which was on the fire remained entire and unconfined. Althaea no sooner heard this, than she snatched the flick from the fire, and kept it with the most jealous care, as the life of her son totally depended upon its preservation. The fame of Meleager increased with his years; he signalized himself in the Argo彜cian expedition, and afterwards delivered his country from the neighbouring inhabitants, who made war against his father at the instigation of Diana, whose altars Oeneus had neglected. But Diana punished the negligence of Oeneus by a greater calamity. She sent a huge wild boar, which laid waste all the country, and seemed invincible on account of its immense size. It became soon a public concern: all the neighbouring princes assembled to destroy this terrible animal; and nothing is more famous in mythological history, than the hunting of the Calydonian boar. The princes and chiefs that assembled, and which are mentioned by mythologists, were Meleager son of Oeneus, Idas and Lynceus sons of Aphareus, Dryas son of Mars, Callot and Pollux sons of Jupiter and Leda, Pirithous son of Ixion, Theseus son of Aegus, Aeneus and Cepheus sons of Lycurgus, Admetus son of Phereus, Jason son of Aeson, Peleus and Thessalom sons of Aeacus, Iphicles son of Amphitrion, Eurysthen of Aetes, Atalanta daughter of Sceiron, Iolas the friend of Hercules, the sons of Theseus, Amphitrion son of Oileus, Protus, Cometes, the brothers of Alcmen, Hippothous son of Cercyon, Leucippus, Adractus, Ceenus, Thileus, Echion, Lelex, Phoenix son of Amytides, Panpeus, Hylecta, Hippias, Nessor, Menodorus, the father of Patroclus, Anchises, Laertes the father of Ulysses, and the four sons of Hippocoon. This troop of armed men attacked the boar, and it was at last killed by Meleager.—The conqueror gave the skin and the head to Atalanta, who had first wounded the animal. This irritated the reft, and particularly Toxeus and Plexipus the brothers of Althea, and they endeavoured to rob Atalanta of the honored present. Meleager defended her, and killed his uncles in the attempt. Mean time the news of this celebrated conquest had already reached Calydon, and Althaea went to the temple of the gods to return thanks for the victory which her son had gained: But being informed that her brothers had been killed by Meleager, she in the moment of returnment threw into the fire the fatal flick on which her son’s life depended, and Meleager died as soon as it was consumed. Homer does not mention the firebrand; whence some have imagined that this fable is posterior to that poet’s age. But he says, that the death of Toxeus and Plexipus so irritated Althea, that she uttered the most horrible curses and imprecations upon her son’s head.

MELEAGRIS, in ornithology, the TURKEY; a genus of birds belonging to the order of gallinifers. The head is covered with spongy caruncles; and there is likewise a membranous longitudinal caruncle on the throat.

There is but one (A) species, viz. the gallopavo, or North American turkey of Ray. It has a caruncle both on the head and throat; and the breast of the male is bearded or tufted. He lives upon grain and infests: when the cock struts, he blows up his breast, sprays and erects his feathers, relaxes the caruncle on the forehead, and the naked parts of the face and neck become intensely red. Barbot informs us that very few turkeys are to be met with in Guinea, and those only in the hands of the chiefs of the European forts; the negroes declining to breed any on account of their tenderness; which sufficiently proves them not to be natives of that climate. He also remarks, that neither the common poultry nor ducks are natural to Guinea any more than the turkey. Neither is that bird a native of Asia: the first that were seen in Peru were brought

(A) Two others were formerly enumerated; but in the late edition of the Syll. Nat. by Gmelin, they have been transferred to a new genus. See Perdops.
MELEAGRIS, Meles. They are bred in Ceylon, but not found by them taken by means of dogs, though they run faster for feed on acorns; they are frequently met with by wild-fowl in the northern birds soon grow fatigued, and take to the height. The fowl was first seen in trees, where they will suffer themselves to be shot one bird found in India, which some writers have ed to be the turkey; but Mr Gefner, that it was either the peacock, or some bird grey allured thereto by putting often have from fourteen to seventeen for one brood; as the several hundreds, which are countenances, the inhabitants of which think it well worth cottages about Norfolk, their while to attend carefull

ty was once esteemed as a great rarity, and the breed tured by the end of a

t.uft black. There is also a beautiful variety of a fine deep spots, or rather freckles. She fits well, and is

counties, the inhabitants of which think it well worth

careful during the breeding

season. It is pleasing to see with what facility the driver manages them, by means of a bit of red rag faithed to the end of a flick, which, from their antipathy to it as a colour, acts with the same effect as a fences to a quadruped.

Of the turky there are several varieties, which have arisen from domestication. The most common is dark grey inclining to black, or barred duney white and black. There is also a beautiful variety of a fine deep copper colour, with the greater quills pure white, and the tail of a dirty white; it is often a old a most beautiful bird. A variety with a pure white plumage is also now not uncommon, and appears very beautiful. It was once esteemed as a great rarity, and the breed supposed originally to have arisen in Holland. In the Leverian Museum is also a common turky, with a large set of feathers on its head, much resembling one figured by Albin.

MELEAGRI, in zoology. See UREUS.

MELEAE (anc. geog.), a fine river running by the walls of Smyrna in Ionia, with a cave at its head, where Homer is said to have written his poems. And from it Homer takes his original name Melageone, given by his mother Critheis, as being born on its banks, (Herodotus.)

MELETIANS, in ecclesiastical history, the name of a considerable party who adhered to the cause of Meleitus bishop of Lycopolis, in Upper Egypt, after he was deposed, about the year 306, by Peter bishop of Alexandria, under the charge of his having sacrificed to the gods, and having been guilty of other horrid crimes; though Epiphanius makes his only failing to have been an excessive severity against the lapsed. This dispute, which was at first a personal difference between Meleitus and Peter, became a religious controversy; and the Meleitan party subsisted in the fifth century, but was condemned by the first council of Nice.

MELIA, Azaderach, or the Bael tree, in botany: A genus of the monogynia order, belonging to the decidua class of plants; and in the natural method ranking under the 23rd order Tribulaceae. The calyx is quinquennated: the petals five; the nectarium cylindrical, as long as the corolla, with its mouth ten-toothed: the fruit is a plum with a quinquelocular kernel. There are three species, all of them exotic trees of the Indies, rising near 20 feet high; adorned with large pinnated or winged leaves, and clusters of pentaphalous flowers. They are all propagated by seeds sown on hot-beds.

MELEANTHUS, Honey-flower, in botany: A genus of the angiosperma order, belonging to the dicynnia class of plants; and in the natural method ranking under the 24th order Corydaleaceae. The calyx is pentaephyllous, with the lowermost leaf gibbous: there are four petals, with the nectarium under the lowest one. The capsule is quadrilocular. There are two species.

1. The major hath a thick, ligneous, spreading root; many upright, ligneous, durable stalks, rising fix or eight feet high; garnished with large pinnated, of four or five pair of serrated lobes terminated by an odd one; and, from the fides and tops of the stalks, long spikes of chocolate-coloured flowers. 2. The minor hath a root like the former; upright, ligneous, soft, durable stalks, rising four or five feet high; garnished with smaller pinnated leaves; and from the sides and ends of the branches, long, loose, pendulous bunches of flowers tinged with green, faffron colours, and red.—Both the species flower about, June: but rarely produce seeds in this country. They are very ornamental, both in foliage and flower, and merit admittance in every collection. They are easily propagated by suckers and cuttings. They thrive best in a dry soil, and in a sheltered warm exposure.

MELIBOEIA (anc. geog.), an island of Syria, at the mouth of the Orontes; which, before it falls into the sea, forms a spreading lake round it. This island was famous for its purple dye. Thought to be a colony of the Thessalians; and hence Lucretius's epithet, Thyeddias.

MELICA, Ropegrass: A genus of the digynia order, belonging to the triandria class of plants; and in the natural method ranking under the 4th order Gramineae. The calyx is bivalved, biflorous, with an embryo of a flower between the two florets. There are three species; of which the most remarkable is
MELICERES, in surgery, a kind of encysted tumors, so called when their contents are of the consistence of honey.

MELICERTA, MELICERES, or MELICERTUS (fab. hist.), a son of Athamas and Ino. He was saved by his mother from the fury of his father, who prepared to dash him against a wall as he had done his brother Leucrus. The mother was so terrified that she threw herself into the sea with Melicerta in her arms. Neptune had compassion on the misfortunes of Ino and her son. He changed them both into sea deities. Ino was called Leuceolus or Matuta; and Melicerta was known among the Greeks by the name of Palomen, and among the Latins by that of Portunus. Some suppose that the Thibmen games were instituted in honour of Melicerta.

MELILLA, an ancient town of Africa in the kingdom of Fez, and in the province of Garet. It was taken by the Spaniards in 1409, but returned back to the Moors. W. Long. 2°. 9' N. Lat. 35° 20'.

MELILOT. See TRIFOLIUM.

MELINDA, a kingdom on the east coast of Africa, situated, according to some, between the third and fourth degree of south latitude; though there is great disagreement among geographers as to its extent. It is allowed by all, however, that the coasts are very dangerous; being full of rocks and shelves, and the sea at some seasons very liable to tempests. The kingdom of Melinda is for the most part rich and fertile; producing almost all the necessaries of life except wheat and rice, both which are brought thither from Cambaya and other parts; and those who cannot purchase them make use of potatoes in their stead, which are here fine, large, and in great plenty. They likewise abound with great variety of fruit-trees, roots, plants, and other esculents, and with melons of exquisite taste. They have also great plenty of venison, game, oxen, sheep, hens, geese, and other poultry, &c. and one breed of sheep whose tails weigh between 30 and 40 pounds.

The capital city is also called Melinda.

MELINUM, in natural history, the name of an earth famous in the earliest ages of painting, being the only white of the great painters of antiquity; and, according to Pliny's account, one of the three colours most used in painting. It is frequently found forming a stratum in the earth, lying immediately under the vegetable mould. It is of a very smooth but not glossy surface; is very soft to the touch; adheres firmly to the tongue; is easily broken between the fingers; and flakes the skin in handling. It melts readily in the mouth, and is perfectly fine; leaving not the least grittiness between the teeth: thrown into water, it makes a loud bubbling and hissing noise, and moulders away into a fine powder. It does not ferment with acids; and suffers no change in the fire. These are the characters by which the melinium of the ancients is distinguished from all other white earths. It is still found in the same place from which the painters of old had it, viz. the isle of Milo or Melos, from whence it had its name; and is common in most of the adjacent islands. It has of late been tried here; but is found not to make such a bright paint as the other substances now employed. It is not, however, liable, like them, to turn yellow; hence it would seem to be worth the consideration of painters in the colour-trade; especially as it might be had in any quantities for the carriage.

MELISSA, in natural history, a daughter of Melleus king of Crete, who with her sister Amalthaea fed Jupiter with the milk of goats. She first found out the means of collecting honey; whence it has been said that she was changed into a bee, as her name is the Greek word for that insect.

MELISSA, BAUM: A genus of the gymnospermia order belonging to the didynamia class of plants; and in the natural method ranking under the 42d order Verticillate. The calyx is aird, a little plane above, with the upper lip having its dents nearly of equal height; the upper lip of the corolla is arched and bifid; the under one, with the middle lobe, cordated. There are several species; but the most remarkable are the following. 1. The officinalis, or common baum, has fibrous perennial roots; many upright, square, branchy, annual stalks, rising two or three feet high: garnished with oblong, indented, opposite leaves, by pairs, two or three inches long, and half as broad; and from the upper axillas verticillate clusters of small white flowers upon fingle footstalks. There is also a kind with variegated leaves. 2. The grandiflowa, or Hltrurian calamint, hath fibrous perennial roots and annual stalks, rising about a foot high, garnished with oblong, oval, indented, hairy, opposite leaves; and from the upper axillas verticillate clusters of large purple flowers on forked footstalks. 3. The calamintha, or common calamint of the shops, has fibrous perennial roots; upright, square, branchy hairy footstalks, rising a foot high; roundish, indented, opposite leaves; and verticillate clusters of small bluish flowers, on forked footstalks as long as the flowers. All these species are easily propagated by offsets.

Medicinal use. The first species, when in perfection, has a pleasant smell, somewhat of the lemon kind; and a weak, roughish, aromatic taste. The young shoots have the strongest flavour: the flowers, and the herb itself when old or produced in very rich moist soils or rainy seasons, are much weaker both in smell and taste. Baum is appropriated, by the writers on the materia medica, to the head, stomach, and uterus; and in all disorders of these parts is said to do extraordinary service. So high an opinion have some chemists entertained of this plant, that they have expected to find in it a medicine which should prolong life beyond the usual period. The prentice practice, however, holds it in no great esteem; and ranks it (where it certainly deserves to be) among the weaker corroborants. Infusions of the leaves in water smell agreeably of the herb, but have not much taint, though on being impregnated they leave a considerable quantity of a bitterish astringent extract. Infusions of baum do not, like other aromatics, offend.
offend the head, as is complained of from figs, &c. Cold infusions in water or spirit are far better than the cohabated distilled water, and are the best preparations from the plant. On distilling the fresh herb with water, it impregnates the first running pretty strongly with its grateful flavour. When large quantities are subjected to the operation at once, there separates and rises to the surface of the aqueous fluid a small portion of essential oil, which some call al. Syria, and others al. Germanis. It is of a yellowish colour, and of a very fragrant smell.

MELISSUS of Samos, a Greek philosopher, was the son of Rhaegines and the disciple of Parmenides; and lived about 440 B. C. He pretended that the universe is infinite, immovable, and without a vacuum. The fathers of education among his pupils.

MELITE, an island referred to Africa by Scylax and Ptolemy; but nearer Sicily, and allotted to it by the Romans: commended for its commodious harbours; for a city well built, with artificers of every kind, especially weavers of fine linen; all owing to the Phoenicians the first colonists. Now Malta; remarkable for St Paul's shipwreck. See MALTA.

MELITENSIS TERRA, the Earth of Malta: an earth of which there are two very different kinds; the one of the genus of holes, the other of the marles. The latter is that known by medicinal authors under this name; the former is the Malta earth now in use: but both being brought from the same place, are confusedly called by the same name. The Maltese marle, which is the terra Melitensis of medicinal authors, is a loose, crumbly, and very light earth, of an unequal and irregular texture; and, when exposed to the weather, soon falls into fine soft powder: but when preferred and dried, it becomes a loose, light mass, of a dirty white colour, with a greyish cast: it is rough to the touch, adheres firmly to the tongue, is very easily crumbled to powder between the fingers, and flains the hands. Thrown into the water, it swells, and afterwards moulders away into a fine powder. It ferments very violently with acid menstrua. Both kinds are found in great abundance on the island of Malta, and the latter has been much esteemed as a remedy against the bites of venomous animals. The other has supplied its place in the German shops; and is used there as a cordial, sudorific, and astringent.

MELITO (canonized), bishop of Sardis in Lydia, in the second century; remarkable for the apology he presented to the emperor Aurelius, in favour of the Christians; on which Eusebius and the other ancient ecclesiastical writers bestowed great praises: but that apology and all Melito's other works are lost.

MELITUS, a Greek orator and poet, the accuser of Socrates. The Athenians, after the death of Socrates discovering the iniquity of the sentence they had passed against that great philosopher, put Melitus to death, 400 B. C.

MELLAN (Claude), an engraver of considerable note, was a native of Abbeville in Picardy, and born in 1601. His father was the receiver of the customs in that town; and he took great care of the education of his son. His genius for drawing discovering itself very early in life, he was sent to Paris, and placed under the direction of Simon Vouet in order to perfect himself in that art, and his studies promised success; but he was diverted from his application to them by the desire he had of learning the management of the graver, which he acquired with much facility. From Paris, at the age of sixteen, he went to Rome; where he engraved a considerable number of plates, many of which are held in great estimation; particularly those for the Juliiian Gallery, the portrait of the Marquis Julian, and that of Pope Urban VIII. Returning to France, he married at Paris and settled there in 1654. The king of France being made acquainted with his merit, assigned him apartments in the Louvre, in the double quality of a painter and an engraver. He acquired a competent fortune, and was greatly esteemed by all who knew him. He died in 1688, aged 87.

Florent le Comte tells us, "That Charles II. was so much pleased with his performances, that he invited him to come into England, making him at the same time very advantageous offers. But the love of his country (continues that author) prevented his accepting of them."

It is remarked, that most of the plates which he engraved at Rome, and before he went thither, are executed in the usual manner; that is, with parallel strokes, crossed with second and third strokes, as the depth of the shadows might require. But afterwards he adopted a new mode of working with single strokes only, without any second strokes laid upon them; and the shadows are expressed by the same strokes being made stronger and brought nearer to each other. The effect which he produced by this method of engraving was soft and clear. In single figures and small subjects he succeeded very happily; but in large compositions, where great depth of shadow was required, he has failed. His neatest plates in this style have an unifiified appearance, by no means suitable to large engravings; but at the same time a lightness exceedingly agreeable when confined to small ones. According to Le Comte, the works of this master amount to 342.

MELLER, a lake of Sweden, 50 miles long, and 50 broad; on which stands the city of Stockholm.

MELLIL, with the country of the Mundingoes, in Africa. The country formerly called Melii, now chiefly inhabited by the Mundingoes, who still retain pretty much of the character ascribed to the people of Melii, lies to the south of the river Gambia; on the west it borders on the kingdom of Kabo; on the south it has Melii, properly so called, and the mountains that part it from Guinea; and on the east it extends to the kingdom of Gago. A great part of this country we are little acquainted with; as is the case with regard to most of the inland territories of Africa, but towards the sea coast this country is a little better known.

The first place of note we meet with is Kannha, a Portuguese colony, situated on the river of St Domingo, which falls into the sea about 25 leagues below
Melmoth, one may trade for about this town. About 26 leagues above Kachao, on the same side of the river, is another trading town called Fariji, where, in the months of October and November, one may trade for about half the quantity of wax and ivory which is traded for at Kachao. Here are also some flaves to be bought. But is a village near the mouth of the river Gelves, where most of the traders buy rice; which is in a great plenty there, and very good. Gelves is a village on a river of the same name, on which the Portuguese have a factory.

At Gelves one may trade yearly for 250 flaves, 80 or 100 quintals of wax, and as many as ivory. Near the mouth of the river Gelves is a village called Karbali, where there is a considerate trade for salt; here are also some flaves and ivory. Rio Grande, or the Great River, runs about 10 or 12 leagues to the south of the river Gelves. About 80 leagues from the mouth of it is a nation of Negroes, who are good traders in ivory, rice, millet, and some flaves. They are called Andrones. Over-against the mouth of Rio Grande is a cluster of islands called Bifago Ilhes; the most considerable of which is Calafagt, being about six leagues long and two broad; its soil is very good, and produces millet, rice, and all kinds of pulse, besides orange and palm-trees, and many others. This island, with those of Carache, Canbac, and La Gallina, are the only ones where the Europeans may trade with some security. They trade, however, sometimes at the other islands, but they must be extremely cautious; and yet after all their precautions, they will be robbed and murdered if they venture to go afloat. The river Nunho runs 16 leagues to the south of Rio Grande; it is very considerable, and comes from a vast distance inland. One may buy here 300 quintals of ivory and 100 flaves a-year. Rice grows here admirably well, and is very cheap. There are everywhere sugar-canes which grow naturally; and plants of indigo, which might turn to good account. The trade is carried on here from March till August. In the river of Sierra Leone, the late Royal African company of England had, in the year 1728, two islands; the one, called Tanfo, a large flat island, near three leagues in circumference, in which the company’s flaves had a good plantation; the rest of the island is covered with wood, amongst which are fillet-cotton trees of an uncommonly fine. The other island is Benfo, whereon stood a regular fort. It was formerly the residence of one of the English chiefs.

MELMOTH (William, Esq.), a learned and worthy bencher of Lincoln’s Inn, was born in 1666. In conjunction with Mr Peere Williams, Mr Melmoth was the publisher of Vernon’s Reports, under an order of the court of chancery. He had once an intention of printing his own Reports; and a short time before his death advertised them at the end of those of his coadjutor Peere Williams, as then actually preparing for the press. They have, however, not yet made their appearance. But the performance for which he justly deserves to be held in perpetual remembrance is, “The Great Importance of a Religious life,” concerning which it may be mentioned, to the credit of the age, that notwithstanding many large editions had before been circulated, 42,000 copies of this useful treatise have been sold in the last 18 years. It is a somewhat singular circumstance, that the real author of this most admirable treatise should never before have been publicly known (it having been commonly attributed to the first earl of Egmont, and particularly by Mr Walpole in his Catalogue); which is the more surprising, as the author is plainly pointed out in the following short character prefixed to the book itself: “It may add weight, perhaps, to the reflections contained in the following pages, to inform the reader, that the author’s life was one uniform exemplar of those precepts which, with so generous a zeal, and such an elegant and affecting simplicity of style, he endeavours to recommend to general practice. He left others to contend for modes of faith, and inflame themselves and the world with endless controversy: it was the wiser purpose of his more ennobled aim, to act up to those clear rules of conduct, which revelation hath graciously prescribed. He poised by temper every moral virtue; by religion every Christian grace. He had a humanity that melted at every diftress; a charity which not only thought no evil, but suspected none. He exercised his profession with a skill and integrity which nothing could equal but the disinterested motive that animat ed his labours, or the amiable modesty which accompanied all his virtues. He employed his industry, not to gratify his own desires; no man indulged himself less: not to accumulate useless wealth; no man more disdainfully unworthy a puririt: it was for the decent advancement of his family, for the generous affistance of his friends, for the ready relief of the indigent. How often did he exert his distinguished abilities, yet refuse the reward of them, in defence of the widow, the fatherless, and him that had none to help him! In a word, few have ever passed a more useful, not one a more blameless life; and his whole time was employed either in doing good or in meditating it. He died on the 6th day of April 1743, and lies buried under the cloister of Lincoln’s Inn Chapel. MEM. PAT. OPT. M. F. L. D. C. The son, by whom this character is drawn, is William Melmoth, Esq; the celebrated translator of Pliny and of Cicero’s Letters; and author of those which pass under the name of Sir Thomas Fitzgibbons. MELOCHIA, JEW’S MALLOW, in botany : A genus of the pantanaria order, belonging to the monadelphia class of plants; and in the natural method ranking under the 37th order, Columniferae. The capsule is quinquilocular and monospermaeous. There are several species; but the only remarkable one is the olitorius, or common Jew’s-mallow, which is a native of the warm parts of Asia and America. It is an annual plant, which rifes about two feet high, dividing into several branches, garnished with leaves of different sizes and forms: some are pear-shaped, others are oval, and some almost heart-shaped: they are of a deep green, and lightly indented on their edges, having near their base two brily reflexed segments. They have very long slender footstalks, especially those which grow on the lower part of the branches. The flower fits close on the opposite side of the branches to the leaves, coming out tingly; they are composed of five small yellow petals, and a great number of filaments surrounding the oblong germen, which is situated in the centre of the flower, and afterwards turns to a rough swelling capsule two inches long, ending in a point, and
and having four cells filled with angular greenish seeds. This species is cultivated about the city of Aleppo in Syria, and in the East Indies, as a pot-herb; the Jews boiling the leaves, and eating them with their meat. It is supposed by Rauwolf to be the *alis tympani* of Avicenna, and the *corchorum of Pliny.*

MELODUNUM, (anc. geog.) a town of the Cnones in Gallia Celta above Ludens, now Melun, in the isle of France, on the Seine.

Melody, in music, a succession of sounds ranged in such a manner, according to the laws of rhythm and modulation, that it may form a sentiment agreeable to the ear. Vocal melody is called *finging*, and that which is performed upon instruments may be termed *symphonic melody.*

The idea of rhythmus necessarily enters into that of melody. An air is not an air but in proportion as the laws of measure and quantity are observed. The fame succession of sounds is susceptible of as many different characters, as many different kinds of melody, as the various ways by which its emphatic notes and the quantities of those which intervene, may be diversified; and the change of duration of the notes alone, may diffuse that very sensation in such a manner that it cannot be known. Thus, melody in itself is nothing; it is the rhythmus or measure which determines it, and there can be no air without measure. If then we abstract measure from both, we cannot compare melody with harmony; for to the former it is essential, but not at all to the latter.

Melody, according to the manner in which it is considered, has a relation to two different principles. When regarded only as agreeable to the ear according to the laws of modulation, it has its principle in harmony; since it is a harmonic analysis, which exhibits the different gradations of the scale, the chords peculiar to each mode, and the laws of modulation, which are the sole elements that compose an air. According to this principle, the whole power of melody is limited to that of pleasing the ear by agreeable sounds, as the eye may be pleased with an agreeable assemblage of fitable colours. But when considered as an imitative art, by which we may affect the mind with various images, excite different emotions in the heart, inflame or soothe the passions; by which, in a word, we produce different effects upon our moral faculties, which are not to be effectuated by the influence of external sense alone, we must explore another principle for melody: for in our whole internal frame there appears to be no power upon which either harmony alone, or its necessary results, can seize, to affect us in such a manner.

What then is the second principle? It is as much founded on nature as the first; but, in order to discover its foundation in nature, it will require a more accurate though simpler observation, and a more exquisite degree of sensibility in the observer. This principle is the same which varies the tone of the voice, when we speak according as we are interested in what we say, and according to the different emotions which we feel in expressing it. It is the accent of languages which determines the melody of every nation; it is the accent which determines as to employ the emphasis of speaking while we sing, and to speak with more or less energy according as the language whose accents are the most sensible ought to produce a more passionate and more lively melody; that which has little accentuation, or none at all, can only produce a cold and languid melody, without character and without expression. These are the true principles: in proportion as we depart from them, when we speak of the power of music upon the human heart, we shall become unintelligible to ourselves and others, our words will be without meaning.

If music does not impress the soul with images but by melody, if from thence it obtains its whole power, it must follow, that all musical sounds which are not pleasing by themselves alone, however agreeable to harmony they may be, is not an imitative music and being incapable, even with its most beautiful chords, either to present the images of things, or to excite the finer feelings, very soon cloys the ear, and leaves always the heart in cold indifference. It follows likewise, that notwithstanding the parts which harmony has introduced, and which the present taste of music has only abus’d, wherever two different melodies are heard at the same time, they counteract each other, and destroy the effect of both, however beautiful each may be when performed alone; from whence it may be judged with what degree of taste the French composers have introduced in their operas the miserable practice of accompanying one air with another, as well in finging, which is the native expression of passion and sentiment, as in instrumental performances; which is the same thing as if whimsical orators should take it in their heads to recite two orations at the same time, that the elegance of each might derive more force from the other.

So much for Rousseau. The translator, however, has reason to fear, that the canons by which national melody is diversified and characterized, are more profound and permanent than the mere accentuation of language. This indeed may have great influence in determining the nature of the rhythmus and the place of emphatic notes; but very little in regulating the nature of the emphasis and expression themselves. If Rousseau’s principle be true in its full extent, he must of necessity acknowledge, than an air which was never felt or intended for words, however melodious, cannot be imitative: we must likewise confess that what is imitative in one nation cannot be such in another: nor can it be denied upon his hypothesis, that the recitative, which is formed upon the mode of speaking, is the most forcible of all melodies; which is absurd. His other observations are at once judicious and profound. Though it is impossible to exhibit the beauty and variety of harmony by playing the same melody at the same time upon different keys, admitting those keys to form among themselves a perfect chord, we must be uniform in pleasing the ear. We must therefore, of necessity introduce less perfect chords to vary and increase the pleasure, and those chords in any complex system of music must of necessity produce dissonances. It then becomes the business of the composer to be careful that these discord may arise as naturally from, and return as naturally to, perfect har-
MELOE, in zoology; a genus of insects of the order of coleoptera. The antennæ are jointed, the last joint being oval; the breast is roundish; the elytra are soft and flexible; and the head is inflected, and gibbous. The insects of this genus are divided into two families; one without wings, and having the elytra shorter than the abdomen; and the other winged, with elytra shorter than the body and wholly covering the wings.—The most remarkable species are,

1. **The procarabæus**: the colour of which is black, but without brightness, though intermixed with a small degree of purple, especially towards the under part of the body. Its head, which is large, is dotted; as is the thorax, which is narrower, round, and without a margin. The elytra are as soft as leather, flagegreen, and cover but part of the abdomen. They are, as it were, cut off obliquely, from the inner to the outer part, being shorter towards the future, longer on the side. There are no wings under the elytra. The abdomen, is large, especially that of the female, in which it far exceeds the elytra.—This insect makes its abode on the sides of wet roads and in woods. Its food are insects, violet leaves, and delicate herbs. There oozes from its body a fat, viscid, and flexible; and the head is unlike that of mice, beeps their approach; which pass through the skin, they first inflame, and afterwards excoriate the part, raising a more perfect blister than any of the vegetable acids, and occasioning a more plentiful discharge of serum. All the blistering compositions have cantharides for their basis. The external application of cantharides is often followed by a strangury, accompanied with thirst and feverish heat: this inconvenience may be remedied by soft unctuous or mucilaginous liquors liberally drank.

Cantharides: taken internally often occasion a discharge of blood by urine, with exquisite pain. If the dose is considerable, they seem to inflame and exacerbate the whole intestinal canal; the fluids become mucuous and purulent; the breath fetid and cadaverous; intense pains are felt in the lower belly; the patient faints, grows giddy, raging mad, and dies. All these terrible consequences have sometimes happened from a few grains. Herman relates, that he has known a quarter of a grain inflame the kidneys, and occasion bloody urine with violent pain. There are nevertheless cafes in which this stimulating fly, given in larger doses, proves not only safe, but of singular efficacy for the cure of diseas that yield little to medicines.-Cantharides, taken in very small doses, may be given with safety also in other cafes. Dr. Mead observes, that the obinate greetings which frequently remain after the cure of venereal maladies, and which rarely yield to balsamic medicines are effectually remedied by cantharides; and that no one remedy is more efficacious in leprous disorders; in which laft, proper purgatives are to be occasionally taken during the use of the cantharides. The current and safe preparation of cantharides for these purposes, is a spirituous tincture; and indeed, in all cafes, the tincture is far preferable, for internal use, to the fly in substance.

The virtues of cantharides are extracted by rectified spirit.
MEL [377]

Melon.
spirit of wine, proof spirit, and water; but do not
arise in distillation. The watery and spirits of
extracts blister as freely as the fly in substance; whil
the fly remaining after the several menstrua hepat
formed their office, is to the taint insipid, and does
not in the least blister or inflame the skin.

*See Cicu

Melon, in botany, a species of cucumis *, in
the Linnaean system. The female flowers have no fla
mina or stamens, but have a very large oval germin
situated below the flower, which turns to an oval
fruit with several cells, filled with oval, acute-pointed,
compresse seeds, included in a soft pulp. There is
a great variety of this fruit cultivated in different parts
of the world, many of them of no value, few being
regarded too much in the markets. The Cantaloupe
so called from a place in the neighbourhood of
Rome, where this fruit has been long cultivated, and
whether it was brought from Armenia, is the great
seem among the curious in every part of Europe.
Besides this, there are also the roman, the succado, the
Zatte, the small Portuguese or dorner, and the black Galloway
melons, most of which are cultivated for an early crop.
The management and culture of melons in England are
as follows; the seeds should be procured from good
melons, of the fouleest and highest quality, pro
duced, as some have advised, in a distant garden; for
if found on the place where it was raised and ripened,
itis very apt to degenerate. This seed should be kept
three years before it is sown but not more than six
and if it should be sown at two seasons, or at
three it will be still better; the first for the early
crop, to be raised under frames. Should be sown about
the middle of February; the second, to be raised in
the fame manner, is to be sown about the middle of
March; and those which are designed for hand or
bell-glasses, or to be covered with oil-papers, should
not be sown till about a week in April.

For those of the first lea.nn, the seeds may be sown
on the upper side of a cucumber-bed, if there be any;
or, a proper quantity of new loofe dung must be pro
vided, and thrown on a heap to ferment, and turned
over, that it may acquire an equal heat; and the plants
must be raised and managed like cucumbers, until they
are planted where they are to remain. The beds or
ridges, where the plants are to remain, should be placed
in a warm situation, so that they may be decaed
from all cold and strong winds, and enclosed in a good
reed fence. In preparing the earth for these plants,
the Dutch and German gardeners form a mixture of
a third part of loam, a third part of the pouring
of ditches and ponds, and the same quantity of
very rotten dung; which they mix up at least one,
and often two years, before they make use of it, fre
quently turning it over, so that the parts may be well
incorporated; but the compost in which Mr. Miller
has found melon plants to succeed best in England is
two thirds of fresh gentle loam, and one-third of ro
ten near's dung; if these are mixed together one
year before it is wanted, so as to have the benefit
of a winter's fruit and summer's heat, observing to turn
it over often, and never allowing weeds to grow upon
it. Before the plants appear, there should be a quantity
of new dung thrown in a heap, allowing about 15
ears, as it is raised up to each light which must be turned
during two or three times, and in a fortnight it will be
fit for use; when the trench must be dug to receive
the dung where the bed is designed to be made, which
in a dry ground should not be less than a foot or
and a half deep. The frames should then be
placed over the bed to keep out the wet; but no
earth should be laid upon it for three or four days,
till it is found of a proper temperature of heat. When
this is the case, the earth may be laid upon it, about
two inches thick, except in the middle of each light,
where the plants are to be placed, which must be
raised into a hill 1 foot high or more, terminating
in a flat cone; in two or three days after the earth is
put on the bed, it will be a proper temper to receive
the plants; which should be carefully taken up
with a trowel, so as to preserve all the fibres of
their roots; or if the beds cannot be ready for them in
time, soon after the third or rough leaf is put out,
it will be a good method to put each plant into a
small pot while they are young, and these may
be plunged into the hot-bed where they were raised,
or in a cucumber-bed, where there is room; and when
the bed is ready, the plants may be turned out of
the pots with the whole ball of earth to their roots:
and this is the best method for the Cantaloupe melon.

When the plants are placed on the top of the hills,
they should be gently watered once or twice, till they
have taken good root; and when they are well fixed
in the new beds, a greater quantity of earth should
be laid on the beds, prefixed down as close as possible,
and raised at least a foot and a half thick upon the dung
all over the bed; observing also to raise the frames,
that the glasses may not be too near the plants lest
the sun should scorch them. When the plants have
four leaves, the top of the plants should be pinched
off with the finger and thumb, that they may put
out lateral branches for producing the fruit; and when
two or more of these lateral shoots are produced, they
must also be pinched to force out more. The manage
tment of these beds is much the same as that of cucum
bers, except that melons require more air and very
little water. In five or six weeks, the plants will spread
over the bed, and reach to the frames, when the alleys
between the beds should be dug out; or in case of
one bed, a trench should be made on each side about
four feet wide, as low as the bottom of the bed; and the
hot dung wheeled in for a lining, to the same
height as the dung of the bed; this should be trodden
down close, and covered with the same earth that was
Laid on the bed, to the thickness of a foot and a half
or more, treading it down as close as possible. In
this way the bed will be extended to the width of 12
feet, that the roots of the plants may spread quite
through it; and the beds will also require a fresh
warmth, which will be of great service in setting
the fruit. When the vines have extended fo as to fill
the frames, and want more room, the frames should
be raised up with bricks about three inches high, to
admit the shoots of the vines to run out under them.
When the fruit appears, the vines should be carefully
looked over three times a week; and one should be
chopped upon each runner that is situated nearest
the item, having the largest foot-mark, and appearing
to be the strongest fruit; then pinch off all the other
fruits which may appear upon the main runner, and pinch
off the end of the runner at the third joint above the
fruit; and if the runner is gently pinched at the next
joint
There is also another method practised by some gardeners to set this fruit, which is the taking off some of the male flowers, whose farina is just ripe and fit for the purpose, laying them over the female fruit, and gently tying them with the nails the male flowers, to shake the farina into the female flowers; whereby the plants are impregnated, and the fruit will soon after swell, and manifest visible signs of being perfectly set; so that where the plants are under frames, and the wind excluded from them, which is wanted to convey the farina from the male to the female flowers, this practice may be very necessary. The glaishes of the hot-bed should also be raised high to admit a large share of air to the plants, otherwise the fruit will not set; and if the season should prove very warm, the glaishes may be frequently drawn off, especially in an evening, to receive the dew, provided there is little wind firing: but they should not remain off the whole night; the cold should prove too great. When the plants have extended themselves from under the frames, in cold weather their extremities should be covered every night with mats, and the plants should be watered once in a week in dry weather, in the alleys between the beds.

For these melons that are raised under bell or hand-glaishes, the plants should be raised in the manner already directed, and about the latter end of April, in a forward season, the beds may be made. For this purpose, a sufficient quantity of hot-dung should be provided allowing eight or nine good wheel-barrows of dung to each glaish. For one bed extended in length, the trench should be cut out three-one-half feet wide, and of such a length, that the glaishes may not be placed nearer than four feet to each other; in digging the trench, it should be so situated, as to allow for the widening of the bed three or four feet on each side; the depth must depend on the nature of the soil; and when there is no danger of the beds being injured by the wet, the lower it is made the better. When the dung prepared as before is laid on the bed, there should be a hill for each plant, one foot and a half high, and the other part need not be covered more than four inches thick; the glaishes should then be placed over the hills, and in two or three days after the beds are made they will be fit for receiving the plants, which should be removed in the manner already directed. These plants must be watered at first, to settle the earth to their roots, and shaded every day, till they have taken new root; and if the nights prove cold, it will be proper to cover the glaishes with mats, in order to preserve the warmth of the bed. If several beds are made, they should be placed at eight feet distance from each other. When the plants have taken good root, their tops must be pinched off, and the pruning must be the same as for those under frames. In the day-time, when the weather is warm, the glaishes should be raised on the opposite side to the wind, to admit fresh air to the plants; and when they reach the sides of the glaishes, in favourable weather the glaishes must be set up on three bricks, that the vines may have room to run out under them; but when this is done, the beds should be covered all over with earth to the depth of one foot and an half, and trod down as close as possible; and in cold nights, the beds should be covered with mats. And as the vines of the Cantaloupe melons cannot bear wet without injury, it will be necessary to arch the beds over with props to support the mats, that they may be ready for covering at all times when they require it. If the weather should prove cold, hot dung may be laid to these beds in the manner directed for those under frames. Some have lately raised their melons with considerable success under celled paper; but great care must be taken not to keep their coverings too close over the plant. And Mills advises to bring up the plants under hand or bell glaishes, till they begin to extend themselves under the glaishes, and then, instead of the covering of mats, to put over them the paper done over with linseed oil.

The farther management of melons, after their fruit is set, is to keep pulling off all the superfluous fruit, and to pinch off all weak runners; and also to turn the fruit gently twice a week, that each side may have equal benefit of the sun and air. When the fruit is fully grown, care should be taken to cut it at a proper time; for if it is left a few hours upon the vines, it will lose much of its delicacy: therefore the vines should be looked over at least twice in a day; and if the fruit intended for the table is cut early in the morning, before the sun has warmed it, it will be much better flavoured; but if it should be necessary to cut any afterwards, it should be put into cold spring-water or ice to cool it, before it is brought to table; and that cut in the morning should be kept in the coolest place till it is used. The signs of this fruit's maturity is, its beginning to crack near the footstalk, and its beginning to smell, which never fail: but the Cantaloupe melons seldom change their colour till they are too ripe.

Mr. Reynolds has communicated to the Society of Arts the following method of raising melons without earth, dung, or water. About a month before the seeds are sown, he prepares a bed of cut-off tanner's bark, four feet deep, six feet wide, and twelve feet in length; this he covers with four lights, so as not to admit rain or water. March (he says) is a proper season for this purpose. When the bed becomes warm, which generally happens in about 20 days, a few melon seeds are put into warm milk in an earthen vessel, which is prefied down into the bark-bed, where it remains 36 hours, in order to promote the vegetation of the seeds. Then, at equal distances, he directs to open four holes in the bed, each nine inches in diameter, and five inches deep; having in readiness about a peck of pounded bark, like sawdust, some of it to be put at the bottom of the holes, to the thickness of three inches; on this bark some of the seeds are to be placed, and prefied down with the fingers; then the seeds are to be covered with two inches more of the powdered bark, prefiding the whole down with the hand. When the plants are advanced to a proper size, the beet are chosen and the others cast away; those that are received are ordered to be properly pruned, and to have as much warm air as possible during the summer. In this way (he says) he has raised as good melons as can be desired.

When a melon is perfectly fine, it is full without any vacuity; this is known by knocking upon it; and when cut, the flesh must be dry, no water running
Large melons are not to be coveted, but firm and well-flavoured ones. Our gardeners who raise melons for sale, few the seeds of the larger rather than the good kinds, and they increase the size of these by much watering the roots; but this spoils the taste. Some of the French raise at this time particularly fine melons, by a method kept as a secret, but which we find, on a strict enquiry, is no other than the ingenious Mr Quintiny's of that nation, published near 80 years ago in the Philosophical Transactions.

The melons particularly proper to be treated in this manner, are those which have a thin and somewhat embroidered skin, not divided by ribs, and have a red pulp, dry and melting on the tongue, not mealy, and of a high flavour. These are what succeed in the following method, and are greatly improved in size and flavour by it.

When the seeds of this melon are placed in the ground, the first thing that appears is a pair of seminal leaves, or ears, as the gardeners call them. Between these two leaves there shoots, some days after, a leaf called the first leaf or knot; and out of the same place, after some days more, there shoots another leaf, called the second knot. Out of the midst of this leaf of the second knot, there shoots a third knot; this third knot must be cut off at its insertion, without hurting the branch of the second knot from whence it grows. Out of this place there will grow, after this cutting, a branch, which will be what the gardeners call the frut or stem; and this arm will, in the same manner as the first plant, shoot out, first one, then a second, and then a third knot; this third knot must be cut again as before, and thus the third knots are all along to be cut off, and arms or branches will grow up in the places of them all the way in the same manner as the first; and it is at these arms that the melons will be produced, and they will be always good, if the foot or root be well nourished in good earth, and cherished by a good hot-bed and the sun. The foot of the melon must never be suffered to pass into the dung, and the earth must not be watered but moderately, when it is seen to grow too dry; but in this case, it must be moderately moistened in the same, so that the shoot suffer by it. Twice or thrice a week is often enough to water in the driest weather, and this must always be done about sunet; and when the heat of the sun is too violent, the melons must be covered with straw mats from 11 in the morning to about two in the afternoon. When it rains much, the melons must also be covered, lest it harm them by too much moisture. (Philosoph. Tran. n. 45.)—

If the root produce too many branches, the weakest are to be cut off, and only three or four left; and those which are left are to be such as have their knots closed to one another. When the plants are removed from the seed-bed to the places where they are to stand, if they are very strong, they should be planted single; but if otherwise, two are to be set in each hole.

When they are planted single, the two branches, which always grow on each side from the base of the seed-leaves, are to be left on; but when two plants are set together, these branches are to be cut off, otherwise all the branches will be too numerous, and they will entangle and trip one another.

When the melons are kept, two of them only are to be left upon each foot, choosing those which are best placed, and next to the first and principal leaf, that is, to the heart of the foot. None but fair fruits are to be left, and such as have a thick and florid stem; and the foot of the melon must be short, well trusses, and not far distant from the ground. Melons of a long stem, and having the stalk of the leaf too long and slender, are never vigorous. All the superfluous branches must be cut off from time to time, as they shoot out. There sometimes shoots out a branch more than is here mentioned, between the two seed-leaves or ears. If this is strong and vigorous, it is to be kept on, but if weak, it is best to take it off, for it will never bear good fruit.

Water-Melon. See Anguria.

Melos (anc. geog.), an island between Crete and Peloponnesus, about 24 miles from Scyllamus. It is about 60 miles in circumference, and of an oblong figure. It enjoyed its independence for above 700 years before the time of the Peloponnesian war. This island was originally peopled by a Lacedaemonian colony, in 1116 years before the Christian era. For this reason the inhabitants refused to join the rest of the islands and the Athenians against the Peloponnesians. This refusal was severely punished. The Athenians took Melos, and put to the sword all such as were able to bear arms. The women and children were made slaves, and the island left desolate. An Athenian colony repeopled it, till Lyfander reconquered it and re-established the original inhabitants in their possessions.

Melothria, in botany: A genus of the monoga- nia order, belonging to the triandria class of plants; and in the natural method ranking under the 34th order, Cucurbitaceae. The calyx is quinquelobed; the corolla campanulate and monopetalous; the berry tri­locular and monoperymous. There is only one species, viz. the pendula, a native of Carolina, Virginia, and also many of the American islands. The plants strike out roots at every joint, which fallen down and extend into the ground thereby which means their stolons extend to a great distance each way. The flowers are very small, in shape like those of the melon, of a pale sulphur colour. The fruit in the West Indies grows to the size of a pea, is of an oval figure, and changes to black when ripe: these are by the inhabitants sometimes pickled when they are green. In Britain the fruit are much smaller, and are so hidden by the leaves that it is difficult to find them. The plants are too tender to be reared in that country without artificial heat.

Melpomene (Fab. Hist.), one of the muses, daughter of Jupiter and Mnemosyne. She presided over tragedy. Horace has addressed the finest of his odes to her, as to the patroness of lyric poetry. She was generally represented as a young woman with a serious countenance. Her garments were splendid; she wore a bukkin, and held a dagger in one hand and in the other a sceptre and crown.

Melrose, a town of Scotland, in the count ry of Selkirk, and on the confines of Tweeddale.
This abbey was founded by king David I. in 1136. He peopled it with Cillertians brought from Rivale abbey in Yorkshire, and dedicated it to the Virgin Mary. At the reformation James Douglas was appointed commendator, who took down much of the building, in order to furnish materials for a large house to himself, which still remains, and is dated 1590. Nothing is left of the abbey excepting a part of the cloister walls elegantly carved; but the ruins of the church are of most uncommon beauty. Part is at present used for divine service, the rest uncovered; but every part does great honour to the architect.—Alexander II. was buried beneath the great altar, and it is also the place of interment of the Douglases and other potent families.—Its situation is extremely pleasant.

MELT or **FISHES.** In the melt of a living cod there are such numbers of thoe animalcules fail to be found in the bodies of all male animals, that in a drop of its juice, no larger than a grain of sand, there are contained more than 10,000 of them; and considering how many such quantities there are in the whole melt of one such fish, it is not incredible, that there are more animals in one melt of it than there are living men at one time upon the face of the earth. However strange and romantic such a conjecture must appear, a serious consideration and calculation will make it appear very plain. An hundred such grains of sand, if those just mentioned will make about an inch in length; therefore in a cubic inch there will be a million of such sands; and if there be 10,000 animals in each of those quantities, there must be in the whole 150,000 millions, which is a number vastly exceeding that of mankind, even supposing the whole as populous as Holland.

MELTING CONE, in effaying, an hollow cone of brass or cast iron into which melted metallic substances are thrown, in order to free them from their floe. When a small quantity of matter is melted, it will be sufficient to rub the inside of the cone with grease; but when the quantity is very large, especially if it contains any thing fulaceous, this caution of hollowing the moulds is not sufficient. In this case the effayer has recourse to a tube reduced to thin pap with water, which effectually prevents any injury to the cone.

MELTON-MOUBRAY, a town of Leicetershire, 108 miles from London. It is a large built place, in a fertile soil; with a market on Tuesday, the most considerable for cattle of any in this part of the island. It is almost encompassed with a little river called the Eye, over which it has two fine bridges; and has a large handloome church, with a free-school. Here are frequent horse-races, and three fairs in the year.

MELVIL (Sir James), descended from an honourable Scots family, being the third son of the laird of Kaeth, was born about the middle of the 16th century. He went to France very young; in the capacity of page to Queen Mary, then married to the dauphin; and on the death of her husband, followed her to Scotland, where he was made gentleman of her chamber, and admitted a privy-councillor. She employed him in her most important concerns, till her unhappy confinement in Lochleven, all which he discharged with the utmost fidelity; and, from his own accounts, there is reason to conclude, that, had she taken his advice, she might have avoided many of her misfortunes. When she was prisoner in England, he recommended him strongly to her son James; with whom he continued in favour and employment until the death of Queen Elizabeth: James would then have taken him to England; but Melvil, now grown old, was desirous of retiring from business, and in his retirement he drew up the memoirs of his past life for the use of his son. These Memoirs were accidentally found in Edinburgh castle in the year 1660, though nobody knew how they came to be deposited there were published in folio in 1683.

MEMBERS, in anatomy, the exterior parts, arising from the trunk or body of an animal, like the boughs from the trunk of a tree. **MEMBER,** in architecture, denotes any part of a building; as a frieze, cornice, or the like. **MEMBER,** is sometimes also used for mouldings. **MEMBER,** in grammar, is applied to the parts of a period or sentence. **MEMBER,** is also used to denote some particular order or rank in a state or government; thus we say "member of a corporation, member of parliament, member of the council," &c.

MEMBRANE, MEMBRANA, in anatomy, a similar part of animal body; being a thin, white, flexible, expanded skin formed of several sorts of fibres interwoven together, and serving to cover or wrap certain parts of the body. See anatomy **pauca.**

MEMEL, or **MEMMEL,** a town of Prussia, situated on the northern extremity of the Curische Haf, an inlet of the sea about 70 miles in length, which is here joined to the Baltic by a narrow strait. It is an ill-built town, with narrow dirty streets; but remarkable for its extensive commerce, being provided with the finest harbour in the Baltic. In 1784, 996 ships, amongst which were 900 English, arrived here. The imports chiefly are, salt, iron, and salted herrings; the exports, which greatly exceed the imports, are amber, corn, hemp, flax, and particularly timber. An English consul resides here. The trade is daily increasing, on account of the high duties which the court of Russia has laid on the imports of Riga.

MEMNON (fab. hist.), a king of Ethiopia, son of Tithonus and Aurora. He came with a body of 10,000 men to assist his uncle Piam, during the Trojan war. He behaved with great courage, and killed Antilochus, Neitor's son. The aged father challenged the Ethiopian monarch; but Memnon refused it on account of the venerable age of Neitor, and accepted that of Achilles. He was killed in the combat, in the fight of the Grecian and Trojan armies. Aurora prayed Jupiter to grant her son such honors as might distinguish him from other mortals. The god consented; and immediately a numerous flight of birds issued from the burning pile on which the body was laid and dividing themselves into two separate bodies fought with such fury that above half of them fell down in the fire as victims to appease the means of Memnon. These
These birds were called Memnonidei; and it has been observed by some of the ancients, that they never failed to return yearly to the tomb of Memnon in Thebes, and repeat the same gaudy engagement in honour of the hero from whom they received their name. The Ethiopians or Egyptians, over whom Memnon reigned, erected a celebrated statue to the honour of their monarch. This statue had the wonderful property of uttering a melodious sound every day at sun-rising like that which was heard at the breaking of the string of a harp when it is wound up. This was effected by the rays of the sun when they fell upon it. At the setting of the sun, and in the night, the found was lugubrious. This is supported by the testimony of the geographer Strabo, who confesses himself ignorant whether it proceeded from the basis of the statue, or the people that were then around it. This celebrated statue was dismantled by order of Cambyses when he conquered Egypt; and its ruins fell into the hands of modern travellers by their grandeur and beauty.

Memnon of Rhodes, one of the generals of Darius king of Persia, advised that prince to lay waste the country, in order to deprive Alexander the Great's army of support, and afterwards to attack Macedon; but this counsel was disapproved by Darius's other generals. Memnon behaved at the passage of the Granicus like an experienced general. He afterwards defended the city of Mileum with great courage; seized the islands of Chio and Lesbos; spread terror throughout all Greece; and would have put a stop to the conquests of Alexander, if he had not been prevented by death. Bardina, Memnon's widow, was taken prisoner with Darius's wife, and Alexander had a son by her named Hercules.

Memoirs, in matters of literature, a species of history, written by persons who had some share in the transactions they relate; answering to what the Romans called Commentarii — The journals of the proceedings of a literary society, or a collection of matters transacted therein, are likewise called Memoirs.

Memory, a faculty of the mind, which presents to us ideas or notions of what is past, accompanied with a sensation that things themselves were formerly real and present. What we distinctly remember to have perceived, we as firmly believe to have happened, as what is now present to our senses.

The opinions of philosophers concerning the means by which the mind retains the ideas of past objects, and how those ideas carry with them evidence of their objects having been actually perceived, shall be laid before our readers in another place: (See Metaphysics Part I. chap. ii.) At present we shall throw together some observations on the Memory, which, being of a practical rather than of a speculative nature, cannot be admitted into the article where the nature of the faculty itself is discussed.

When we remember with little or no effort, it is called remembrance simply, or memory, and sometimes passive memory*. When we endeavour to remember what does not immediately and (as it were) of itself occur, it is called active memory, or recollection. A ready recollection of our knowledge, at the moment when we have occasion for it, is a talent of the greatest importance. The man possessed of it seldom fails to distinguish himself in whatever sort of business he may be engaged.
Our thoughts have for the most part a connection; so that the thought which is just in the mind, depends partly upon that which went before, and disposed in a certain order. These you are connected.

As the mind is not at all times equally disposed for the exercise of this faculty, such scenes should be made choice of as are most proper for it. The mind is seldom fit for attention precisely after meals; and to call off the spirits at such times from their proper employment in digestion, is apt to cloud the brain, and prejudice the health. Both the mind and body should be easy and undisturbed when we engage in this exercise, and therefore retirement is most fit for it; and the evening, just before we go to sleep, is recommended as a very convenient season, both for the fullness of the night, and because the impressions will then have a longer time to settle before they come to be disturbed by the accession of others proceeding from external objects; and to call over in the morning what has been committed to the memory over-night, must, for the same reason, be very serviceable. For, to review those ideas while they continue fresh upon the mind, and unmixed with any others, must necessarily imprint them more deeply.

Some ancient writers speak of an artificial memory, and lay down rules for attaining it. Simonides was told that two young men were without, and must needs speak with him. He had scarce got out of the house, when the room where the company was fell down, killed all the persons in it, and so muffled the bodies, that, when the rubbish was thrown off, they could not be known one from another: upon which Simonides recollecting the place where every one had lain, by that means distinguished them. Hence it came to be observed, that to fix a number of places in the mind in a certain order, was a help to the memory: As we find by experience, that, upon returning to places once familiar to us, we not only remember them, but likewise many things we both said and did in them. This action therefore of Simonides was afterwards improved into an art; and the nature of it is this: They bid you form in your mind the idea of some large place or building, which you may divide into a great number of distinct parts, ranged and disposed in a certain order. These you are frequently to revolve in your thoughts, till you are able to run them over one after another without hesitation, beginning at any part. Then you are to impress upon your mind as many images of living creatures, or any other sensible objects which are most likely to affect you, and be fpent revived in your memory. These, like characters in short-hand, or hieroglyphics, must stand to denote an equal number of other words, which cannot so easily be remembered. When therefore you have a number of things to commit to memory in a certain order, all that you have to do is, to place these images regularly in the several parts of your building. And thus they tell you, that, by going over several parts of the building, the images placed in them will be revived in the mind; which of course will give you the things or words themselves in the order you desire to remember them. The advantage of the images seems to be this; that, as they are more likely to affect the imagination than the words for which they stand, they will for that reason be more easily remembered.

Thus, for instance, if the image of a lion be made to signify strength, and this word strength be one of those I am to remember, and is placed in the porch; when, in going over the several parts of the building, I come to the porch, I shall sooner be reminded of that image than of the word strength.

Of this artificial memory, both Cicero and Quintilian speak; but we know not of any modern orator that has ever made use of it. It seems indeed to have been a laborious way of improving the memory, if it serves that end at all, and sifter for assisting us to remember any number of unconnected words than a continual discourse, unless so far as the remembrance of one word may enable us to recollect more. It is, however, in allusion to it: that we still call the parts of a discourse places or topics, and say, in the first place, in the second place, &c.

But, doubtsless, the most effectual way to gain a good memory, is by constant and moderate exercise of it; for the memory, like other habits, is strengthened and improved by daily use. It is indeed hardly credible, to what a degree both active and passive remembrance may be improved by long practice. Scaliger reports of himself, that in his youth he could re-
The image contains text from a book discussing the ancient city of Memphis in Egypt. The text describes the history, architecture, and significance of various sites and buildings in the city. It mentions the temple of Venus, a large Circus, and other notable structures. The text also references the art of memory and the methods used to preserve knowledge. The author, Edward T. Martin, reflects on the ruins and the importance of understanding the past. The passage is part of a larger discussion on the decline of memory as a result of the passage of time and the neglect of ancient knowledge.
MENAGE (Fr.) denotes a collection of animals; we have derived the word menagerie.

MENAGE (Giles), in Latin Epistulae, a celebrated French writer, born at Angers in 1614. He finished his studies in that city, was made advocate, and pleaded for some time at Angers, Paris, and Poitiers; but, becoming at length disquieted with the bar, turned eclectic, and gave himself up entirely to the study of polite literature. He at length entered into the family of the cardinal de Retz; but disagreeing with some person belonging to his Eminence, went to live in the cloister of Notre Dame, where he held an assembly of learned men every Wednesday. He read a great deal; had a prodigious memory; and was incessantly quoting in his conversation verses in Greek, Latin, Italian, French, &c. on which account he was often turned into ridicule by the wits, especially towards world. Menage died in the 3d year of the 122d Olympiad, as we are taught by the same old inscription and preserved from the pleroma, or ecclesiastical study, that he was a very superior interest of his competitor Mr Bergent; for there was not one member of all those who gave their votes against them, but owned that he deserved the place. He would not suffer his friends to propose him again. He died at Paris in 1632, aged 79. He wrote a great number of books in prose and verse; the principal of which are, 1. Miscellaneous works. 2. The Origin of the French Language. 3. The Origin of the Italian Tongue; the belt edition of which is that of Geneva, in 1687, folio. 4. An edition of Malherbes' Poems, with Notes. 5. An edition of Diogenes Laertius, with Observations. 6. Remarks on the French Tongue. 7. Greek, Latin, Italian, and French poems.

MENANDER, an ancient Greek poet, was born at Athens in the same year with Epicurus, which was the third of the 109th Olympiad. His happiness in introducing the new comedy, and refining an art which had been so gross and licentious in former times, quickly spread his name over the world. Pliny informs us, that the kings of Egypt and Macedon gave a noble testimonies of his merit, by sending ambassadors to invite him to their courts, and even fleets to bring him over; but that Menander was so much of a philosopher, as to prefer the free enjoyment of his fludies to the promised favours of the great. Of his works, which amounted to above 100 comedies, we have had a double loss, the originals being not only vanished, but the greatest part of them, when copied by Terence, having unfortunately perished by shipwreck before they saw Rome. Yet the four plays which Terence borrowed from him before that accident happened, are still preserved in the Roman habit; and it is chiefly from Terence that most people form their judgment of Menander, the fragments that remain of him not being sufficient to enable them to do it. The ancient men have laid high things of Menander; and we find the old masters of rhetoric recommending his works as the true patterns of every beauty and every grace of public speaking. Quintilian declares, that a careful imitation of Menander only, will satisfy all the rules he has laid down in his Institutions. It is in Menander that he would have his orator search for a copiousness of invention, for a happy elegance of expression, and especially for that universal genius which is able to accommodate itself to persons, things, and affections.—But Julius Cesar has left the loviest as well as the juftest praise of Menander's works, when he calls Terence only a Half-Menander. For while the virtues of the Latin poet are so defervedly admired, it is impossible we should raise a higher notion of excellence than to conceive the great original full shining with half its lustre unreflected, and preserving an equal part of its graces, above the power of the best copier in the world. Menander died in the 3d year of the 122d Olympiad, as we are taught by the same old inscription from which we learn the time of his birth. His tomb, in Pauflanias's age, was to be seen at Athens, in the way from the Piraeus to the city, close by the honorary monument of Euripides. Quintilian, in his judgment, of Afranius the Roman comedian, who imitated him, censures Menander's morals as much as he commends his writings; and his character, according to Suidas, is, that he was a very "mad fellow after women." Phaedrus has given him the gait and drefs of a most affected fop:

"Unguento delibitus, velitut adduxens.
"Veniebat gresefu delicatulo & languido."

LIB. v. fab. 2.

MENANDRIANS, the most ancient branch of Gnostics; thus called from Menander their chief, said by fome, without sufficient foundation, to have been a disciple of Simon Magnus, and himself a reputed magician.

He taught, that no perfon could be saved, unless he was baptized in his name: and he conferred a peculiar form of baptism, which would render those who received it immortal in the next world: exhibiting himself to the world, with the phrensy of a lunatic more than the founder of a sect, as a promised favour. For it appears by the testimonies of Irenaeus, Justin, and Tertullian, that he pretended to be one of the Aërons sent from the pleroma, or ecclesiastical regions, to succour the souls that lay groaning under bodily oppression and servitude; and to maintain them against the violence and frights of the demons that hold the reins of empire in this fabulous world. As this doctrine was built upon the same foundation with that of Simon Magnus, the ancient writers looked upon him as the inductor of Menander. See Simonians.

MENASSEH (Ben Israel), a celebrated rabbi, born in Portugal about the year 1604, was the son of Joseph Ben Israel, and followed his father into Holland. Here he was educated by rabbi Isaac Uvrid, under whom he in a short time made such progress in the Hebrew tongue, that at 18 years of age he succeeded him in the synagogue of Amsterdam. In this palt he continued several years, and married Rachel of the
MEN

[385]

MENCKE, Mendel- thon, Mendel-

the family of the Aba
tbanels, whom the Jews imagine
to be descended from king David. He afterwards
grew to his brother Ephraim, a rich merchant, who
had settled at Batavia; by whose advice he entered into
trade. Some time after, the hopes of a more agree-
able settlement induced him to come into England,
under the protectorship of Cromwell; who gave him a
very favourable reception, and one day entertained him
at his table with several other learned divines. However,
he soon after passed into Zealand; and died at
Middleburg about the year 1657. The Jews at Am-
tterdam obtained his body, and interred it at their
expense. He was of the 1st of the Pharisées; had
a lively wit, a solid judgment, great learning, and all
the virtues that can adorn private life. He wrote
many works in Hebrew, Latin, Spanish, and Eng-
lisli. The principal of those published in Latin, are
1. His Conciliator; a learned and curious work, in
which he reconciles those passages of Scripture which seem to contradict each other. 2. De rejec-
tione mortuorum. 3. De verbo vico. 4. Differtatio de fragilitate hominis, ex lapso Adamis, deinde Divino in bono opere au-
xilio. 5. Spes fidel. Dr Thomas Pococke has writ-
ten, his life in English.

MENCKE (Lewis Otto), in Latin Menchenius, a
learned professor of morality at Leipzig, was born at
Oldenburg in Westphalia in 1644. He studied in sev-
eral universities of Germany; and became an able phil-
osopher, civilian, and divine. He was made professor
of morality at Leipzig in 1668; and enjoyed that po

t to his death. He was five times rector of the univer-
sity of that city, and seven times dean of the faculty of
philosophy. He published several works; but his most
considerable, and what alone is sufficient to perpetuate
his memory, is the Acta Eruditorum of Leipzig, of
which he was the first author, and in which he was en-
gaged till his death. The first volume was published
at Leipzig, in 140, in 1682.

MENCKE (John Burchard), son to the preceding.
After his studies he travelled into England and Hol-
lund; and upon his return was appointed professor of
history at Leipzig in 1699. He gained great reputation
by his lectures as well as his writings. He died in 1732,
aged 58. He wrote many pieces. His De Charlatania
eruditorum declamationes, is an excellent fatire, de-
signed to expose the artifices used by false scholars to
raise themselves a name. As he named and pointed
at certain perfons, it exasperated them, and they pro-
cured his book to be seized; but it spread, and edi-
tions of it were multiplied. He likewise published
Methodus pour studier l'Histoire, avec un catalogue des
principaux historiens, &c. He made a great many ad-
tions to Mr Linglet's book, especially with regard
to the German historians.

MENDELSON (Mosé), that is, Mosés the son
of Mendel; a Jew of Berlin, and one of the most cele-
brated writers in Germany, died there in the year 1785
at the age of 57. His first attempt as an author was
in 1755, by a work intitled jeryel-sed; in which, be-
sides other bold and unjustifiable opinions, he main-
tains, that the Jews have a revealed law but not a re-
vealed religion; that opinions are not subjects of re-
velation; and that the only religion of the Jewish na-
tion is that of nature. He acquired great honour by
his Phisok, or " Discourse on the Immateriality and
Immortality of the Soul," translated into French 1773;
8vo; in which he unfolds this important truth, the
great foundation of all morality, with the wisdom of
an enlightened philosopher and the charms of an ele-
gant writer. In consequence of this excellent work,
he was invited the Jewishes Socrates by some of the pe-
riodical writers; but he wanted the firmness and cou-
rage of the Grecian philosopher. His timidity, and
even pusillanimity, defects too common in speculative
men, prevented him from being of any essential service
to his nation; of which he might have become the be-
 nefactor by being the reformer. The pliancy of his
character, his soft, modest, and obliging disposition,
gained him the esteem alike of the supercilious and of
the incredulous. After all, he could never procure
admission to the Berlin society, or to the conversation
of the king of Prussia. At his death he received from
his nation those honours which are commonly paid to
their first rabbins. Contrary to an imprudent custom
prevailing among the Jews of burying their dead be-
fore sunset, his interment was delayed till 24 hours af-
fter he expired. Though Mendelsson was defended
from a respectable family, he was very poor. In ear-
ly life he entered into a counting-house of his natu-
ation, wherein he greatly recommended himself by his
capacity and integrity in business. But philosophy
and literature soon became his principal occupation
; and to the famous Lessing he was indebted for coun-
sels which, without diverting his attention from those
purposes that were necessary to his sublimity, accel-
rated his progress in his literary career. Even after
the death of his benefactor, Mendelsson retained for
him the sincerest regard and the most lively gratitude.

Notwithstanding the very strict regimen which he ob-
erved, he survived him only a few years; for his feeble
frame and weak constitution were gradually and in-
cessantly undermined by intense application to study.

MENDEZ PIÑERO (Ferdinand), was born at Monte-
mer-o-velho in Portugal, and was at first servant to a
Portuguese gentleman. In the expectation of making a
fortune, he embarked for India in 1737. He was being
taken by the Turks on his passage; he was carried to
Modica, and sold to a Greek renegade, and afterwads
a Jew, in whose possession he continued till he was redeemed by the governor of Ormus, a Por-
tuguese fort. The governor procured him an oppor-
tunity of going out to India, agreeable to his first de-
sign. During a residence of twenty-one years in that
country, he was witness to very important transactions,
and experienced many singular adventures. He re-
turned to Portugal in 1758, where he enjoyed the re-
ward of his labours, after having been thirteen times
a slave and sixteen times fold. A very curious ac-
count of his travels was written by himself, and pub-
lished at Lisbon, A. D. 1674, in folio. This work
was translated into French by Bernard Piguyer, a Por-
tuguese gentleman, and printed at Paris 1655, in 4to.
It is written in a very interesting manner, and in a
style more elegant than might have been expected
from a man whose whole life was spent in the camp
and in slavery. It elucidates a great variety of par-
culars relating to the geography, history, and man-
ners of the inhabitants of China, Japan, Pegu, Siam,
Achern, Java, &c. Many of his facts appeared fabu-
los, but their truth has been since ascertained.
M. de Surzi compiled an interesting history from the most singular facts in Mendic Pinto's relation, which he published in the "Vieigidades de la Fortune" Paris 2 vols. 8vo.

MENDICANTS, or BEGGING PRIESTS, several orders of religious in Popish countries, who having no settled revenues, are supported by the charitable contributions they receive from others.

This sort of society began in the 13th century; and the members of it, by the tenor of their institution, were to remain entirely destitute of all fixed revenues and possessions; though in process of time their number became a heavy tax upon the people. Innocent III. was the first of the popes who perceived the necessity of instituting such an order; and accordingly he gave such monastic societies, as made a profession of poverty, the most distinguishing marks of his protection and favour. They were also encouraged and patronized by the succeeding pontiffs, when experience had demonstrated their public and extensive usefulness. But when it became generally known, that they had such a peculiar place in the esteem and protection of the rulers of the church, their number grew to such an enormous and unwieldy multitude, and swarmed so prodigiously in all the European provinces, that they became a burden, not only to the people, but to the church itself. The great inconvenience that arose from the excessive multiplication of the mendicant orders was remedied by Gregory X. in a general council, which he assembled at Lyons in 1272. For here all the religious orders that had sprung up after the council held at Rome in 1215, under the pontificate of Innocent III. were suppressed; and the extravagant multitude of mendicants, as Gregory called them, were reduced to a smaller number, and confined to the four following societies or denominations, viz. the DOMINICANS, the FRANCISCANS, the CARMELITES and the AUGUSTINS or HERMITS of ST. AUGUSTIN.

As the pontiffs allowed these four mendicant orders the liberty of travelling wherever they thought proper, of conversing with persons of every rank, of instructing the youth and multitude wherever they went; and as these monks exhibited, in their outward appearance and manner of life, more striking marks of gravity and holiness than were observable in the other monastic societies, they arose all at once to the very summit of fame, and were regarded with the utmost esteem and veneration through all the countries of Europe. The enthusiastic attachment to these frigidimonious beggars went so far, that, as we learn from the most authentic records, several cities were divided or cantoned out into four parts, with a view to these four orders; the first part being assigned to the Dominicans, the second to the Franciscans, the third to the Carmelites, and the fourth to the Augustinians. The people were unwilling to receive the sacraments from any other hands than those of the mendicants; to whose churches they crowded to perform their devotions, while living, and were extremely diligent to deposit there also their remains after death; nor did the influence and credit of the mendicants end here; for we find in the history of this and of the succeeding ages, that they were employed, not only in spiritual matters, but also in temporal and political affairs of the greatest consequence, in composing the differences of princes, concluding treaties of peace, concerting alliances, presiding in cabinet councils, governing courts, levying taxes, and other occupations, not only remote from, but absolutely inconsistent with, the monastic character and profession. However the power of the Dominicans and Franciscans greatly surpassed that of the other two orders: insomuch that these two orders were, before the reformation, what the Jesuits have been since that happy and glorious period, the very soul of the hierarchy, the engines of the church, the secret springs of all the motions of the one and the other and the authors and directors of every great and important event, both in the religious and political world. By very quick progression their pride and confidence arrived at such a pitch, that they had the preumption to declare publicly, that they had a divine impulse and commission to illustrate and maintain the religion of Jesus; they treated with the utmost insolence and contempt all the different orders of the priesthood; they affirmed without a blush, that the true method of obtaining salvation was revealed to them alone; proclaimed, with ostentation, the superior efficacy and virtue of their indulgences, and contended beyond measure their interest at the court of heaven, and at their familiar connections with the supreme Being, the Virgin Mary, and the saints in glory. By these impious wiles, they so deluded and captivated the miserable, and blinded the multitude, that they would not intrust any other but the mendicants with the care of their souls. They retained their credit and influence to such a degree, towards the close of the 14th century that great numbers of both sexes, some in health and others at the point of death, earnestly desired to be admitted into the Mendicant order, which they looked upon as a certain passport for obtaining mercy from Christ, at the day of judgment, if they appeared before his tribunal associated with the Mendicant friars.

About this time, however, they fell under an universal odium; but being sedulously protected against all opposition, whether open or secret, by the popes, who regarded them as their best friends and most effectual supports, they suffered little or nothing from the efforts of their numerous adversaries. In the 15th century, besides their arrogance, which was excessive, a quarrelsome and litigious spirit prevailed among them, and drew upon them justly the disfavour and indignation of many. By affording refuge at this time to the Beguins in their order, they became offensive to the bishops, and were hereby involved in difficulties and perplexities of various kinds. They lost their credit in the 16th century by their rash imprudence, their ridiculous superstitions, their ignorance, cruelty, and brutal manners. They discovered the most barbarous aversion to the arts and sciences and expressed a like abhorrence of certain eminent and learned men, who endeavoured to open the paths of science.
MEN

MENDOZA, a Greek philosopher, born at Erythreum, was the son of Callithenes, and one of Phidias's followers. He was in greatest esteem, and enjoyed several important posts, in his own country. He several times defended Erythreum with great bravery, and died of grief when Antigonus became master of it. A person one day saying to him, "It is a great happiness to have what we desire," he replied, "It is a much greater to desire nothing but what we have."

He flourished about 350 B.C.

MENELAUS, the son of Atreus, and the brother of Agamemnon, reigned at Sparta, when Paris deprived him of his wife Helen. This rape occasioned the famous war of Troy. See Helen.

MENELAUS, a mathematician in the reign of the emperor Trajan, wrote three books on the Spheres, which have been published by father Marianne.

MENES, born at This, a town of Thebais in Upper Egypt, was the founder of the Egyptian empire. He had three sons, viz. Athotis, who ruled after him at This and Thebes; Curudes, who in Lower Egypt founded the kingdom of Heliopolis, which afterwar was the kingdom of Diospolis; and Necherophes, who reigned at Memphis. It is thought this Menes reigned 115 years after the birth of Phalag, son of Heber, which was the very year of the dispersion of the people throughout the whole earth. In building Memphis he stopped the Nile near it, by the invention of a cauway 100 furlongs broad, and caufed it to run through the mountains.

MENESTRIER (John Baptist le), a native of Dijon, and one of the most learned and curious French antiquaries of his time, wrote, 1. A Treatise on the Medals, Money, and Ancient Monuments, of the Roman Emperors, in folio. 2. The most famous Medals of the Ancient Roman Emperors and Emperesses, in quarto. He died in 1634, aged 70.

MENGS (Anthony Raphael), first painter to the king of Spain, was born at Audig, in Bohemia, A. D. 1728. His father, painter to Augustus III. king of Poland, perceiving his superior talents, carried him from Dresden to Rome in 1741. After having there purified his art for four years, and copied the principal monuments of that capital, he returned to Dresden, where he executed different works for Augustus with very uncommon success. During his abode in Italy, he became acquainted with Don Carlos king of Naples; and when this prince succeeded to the crown of Spain in 1761, he was careful to engage Mengs in his service, by granting him an yearly pension of 2000 doubloons, together with a house and equipage. He lived, however, chiefly at Rome; where in 1779 he fell a sacrifice to his confidence in a German quack, who pretended to cure him of a disease which he had contracted partly by his intense application, and partly by grief for the loss of his wife. His natural timidity and great ignorance of the world, the distrust which seemed to be expressed in his air and manners, and his melancholy constitution of body, by no means lessened the envy of his rivals. Under this rude appearance, he had a heart full of kindness and humanity. On one occasion, when he perceived that he had offended a certain person by his bluntness (excessive only in a great genius), he was not only sorry for his inattention, but he affiled with his advice the painter whom he had offended. He made no mystery of his art any more than his sentiments. Clement XIV. submitted to his judgment some pictures of no great value, and in excuse told him that he had bought them in the recommendation of an eminent painter. "This man and I (replied Mengs) are two artists, one of whom praiseth every thing which he cannot equal, and the other blames every thing which he can surpass."

His manners
MEN

MEN (fattia Menippea), a kind of satire consisting of prose and verse intermixed. It is thus called from Menippus a cynic philosopher who delighted in composing satirical letters, &c. In imitation of him, Varro also wrote satires under the title of Satire Menippea; whence this sort of composition is also denominated Varroonian satire.

Among the moderns there is a famous piece under this title first published in 1594, against the chiefs of the league, called also the Catholicion of Spain. It is esteemed a master-piece for the time.

MENISCUS, in optics, a glais or lens, concave on one side and convex on the other; sometimes also called lens. See OPTICS.

MENISPHERMUM, moonseed: A genus of the decandria order, belonging to the diecias class of plants; and in the natural method ranking under the third order, Sarmentaceae. The male has four exterior and eight interior petals; there are 16 stamina; the corolla of the female is the same as in the male; there are eight barren stamens, and two mononemous berries. There are three species, all of them climbing plants, rising 14 feet high, and natives of warm climates; but no way remarkable for beauty. The seeds of a kind which grows in the Levant, being formed into a paste, are regarded by the inhabitants as specific against lice and cutaneous eruptions. The same paste is likewise used for the purpose of intoxicating filies. See Coccus Indicus.

MENNITH, or MINNITH, Judges xi. 33. a town near Heshbon (Jerome), in Arabia Petraea; in a district named Ecezipol, or twenty-towns, (Cellarius). There is also a Minnith mentioned Ezekiel xxvii. as being in a good wheat country; but whether the name with the foregoing is uncertain; though some think that the first-Minnith lay in the country of Ammon, (Wells).

MENNONITES, a sect in the United Provinces, in most respects the same with those in other places called Anabaptists.

They had their rise in 1536, when Menno-Simon, a native of Frieland, who had been a Romish priest, and a notorious profligate, refigned his rank and office in the Romish church, and publicly embraced the communion of the Anabaptists.

Menno was born at Witmarsum, a village in the neighbourhood of Baliwert in Frieland in the year 1505, and died in 1561 in the duchy of Holstein, at the country seat of a certain nobleman not far from the city of Oldfield, who, moved with compassion by a view of the perils to which Menno was exposed, and the snares that were daily laid for his ruin, took him with certain of his associates into his protection, and gave him an asylum. The writings of Menno, which are almost all composed in the Dutch language, were published in folio at Amsterdam in the year 1651. About the year 1537, Menno was earnestly solicited by many of the sect with which he connected himself, to assume among them the rank and functions of a public teacher; and as he looked upon the persons who made this proposal to be exempt from the fanatical frenzy of their brethren at Munster (though according to other accounts they were originally of the same stamp, only rendered somewhat wiser by their sufferings), he yielded to their entreaties. From this period to the end of his life, he travelled from one country

MENISPERMUM, moonseed: A genus of the decandria order, belonging to the diecia class of plants; and in the natural method ranking under the third order, Sarmentaceae. The male has four exterior and eight interior petals; there are 16 stamina; the corolla of the female is the same as in the male; there are eight barren stamens, and two mononemous berries. There are three species, all of them climbing plants, rising 14 feet high, and natives of warm climates; but no way remarkable for beauty. The seeds of a kind which grows in the Levant, being formed into a paste, are regarded by the inhabitants as specific against lice and cutaneous eruptions. The same paste is likewise used for the purpose of intoxicating filies. See Coccus Indicus.

MENNONITES, a sect in the United Provinces, in most respects the same with those in other places called Anabaptists.

They had their rise in 1536, when Menno-Simon, a native of Frieland, who had been a Romish priest, and a notorious profligate, refigned his rank and office in the Romish church, and publicly embraced the communion of the Anabaptists.

Menno was born at Witmarsum, a village in the neighbourhood of Baliwert in Frieland in the year 1505, and died in 1561 in the duchy of Holstein, at the country seat of a certain nobleman not far from the city of Oldfield, who, moved with compassion by a view of the perils to which Menno was exposed, and the snares that were daily laid for his ruin, took him with certain of his associates into his protection, and gave him an asylum. The writings of Menno, which are almost all composed in the Dutch language, were published in folio at Amsterdam in the year 1651. About the year 1537, Menno was earnestly solicited by many of the sect with which he connected himself, to assume among them the rank and functions of a public teacher; and as he looked upon the persons who made this proposal to be exempt from the fanatical frenzy of their brethren at Munster (though according to other accounts they were originally of the same stamp, only rendered somewhat wiser by their sufferings), he yielded to their entreaties. From this period to the end of his life, he travelled from one country

MENISPERMUM, moonseed: A genus of the decandria order, belonging to the diecia class of plants; and in the natural method ranking under the third order, Sarmentaceae. The male has four exterior and eight interior petals; there are 16 stamina; the corolla of the female is the same as in the male; there are eight barren stamens, and two mononemous berries. There are three species, all of them climbing plants, rising 14 feet high, and natives of warm climates; but no way remarkable for beauty. The seeds of a kind which grows in the Levant, being formed into a paste, are regarded by the inhabitants as specific against lice and cutaneous eruptions. The same paste is likewise used for the purpose of intoxicating filies. See Coccus Indicus.

MENNONITES, a sect in the United Provinces, in most respects the same with those in other places called Anabaptists.

They had their rise in 1536, when Menno-Simon, a native of Frieland, who had been a Romish priest, and a notorious profligate, refigned his rank and office in the Romish church, and publicly embraced the communion of the Anabaptists.

Menno was born at Witmarsum, a village in the neighbourhood of Baliwert in Frieland in the year 1505, and died in 1561 in the duchy of Holstein, at the country seat of a certain nobleman not far from the city of Oldfield, who, moved with compassion by a view of the perils to which Menno was exposed, and the snares that were daily laid for his ruin, took him with certain of his associates into his protection, and gave him an asylum. The writings of Menno, which are almost all composed in the Dutch language, were published in folio at Amsterdam in the year 1651. About the year 1537, Menno was earnestly solicited by many of the sect with which he connected himself, to assume among them the rank and functions of a public teacher; and as he looked upon the persons who made this proposal to be exempt from the fanatical frenzy of their brethren at Munster (though according to other accounts they were originally of the same stamp, only rendered somewhat wiser by their sufferings), he yielded to their entreaties. From this period to the end of his life, he travelled from one country
country to another with his wife and children exercising his ministry, under prelatures and calamities of various kinds, that succeeded each other without interruption, and constantly exposed to the danger of falling a victim to the severity of the laws. East and West Friesland, together with the province of Henning, were first visited by this zealous apostle of the Anabaptists; from whence he directed his course into Holland, Gelderland, Brabant, and Westphalia, continued it through the German provinces that lie on the coasts of the Baltic Sea, and penetrated so far as Livonia. In all these places his ministerial labours were attended with remarkable success, and added to his feet a prodigious number of followers. Hence he is deservedly considered as the common chief of almost all the Anabaptists, and the parent of the sect that still subsists under that denomination. Menno was a man of genius, undirected by a very sound judgment; he polished a natural and perorativ eloquence, and such a degree of learning as made him a par for an oracle in the estimation of the multitude. He appears, moreover, to have been a man of probity, of a meek and tractable spirit, gentle in his manners, pliable and obsequious in his commerce with persons of all ranks and characters, and extremely zealous in promoting practical religion and virtue, which he recommended by his example as well as by his precepts. The plan of doctrine and discipline drawn up by Menno was of a much more mild and moderate nature than that of the curious and fanatical Anabaptists, whose tumultuous proceedings have been recited under that article, but somewhat more severe though more clear and consistent than the doctrine of the wilder branches of that sect, who aimed at nothing more than the restitution of the Christian church to its primitive purity. Accordingly he condemned the plan of ecclesiastical discipline that was founded on the prospect of a new kingdom, to be miraculously established by Jesus Christ on the ruins of civil government and the destruction of human rulers, and which had been the fatal and pernicious source of such dreadful commotions, such execrable rebellions, and such enormous crimes. He declared publicly this dislike of that doctrine, which pointed out the approach of a marvellous reformation in the church by the means of a new and extraordinary effusion of the Holy Spirit. He expressed his abhorrence of the licentious tenets, which several of the Anabaptists had maintained, with respect to the lawfulness of polygamy and divorce; and finally, considered as unworthy of toleration those fanatics who were of opinion that the Holy Ghost continued to descend into the minds of many chosen believers, in an extraordinary manner as he did at the first establishment of the Christian church, and that he testified this peculiar presence to several of the faithful by miracles, predictions, dreams, and visions of various kinds. He retained indeed the doctrines commonly received among the Anabaptists, in relation to the baptism of infants, the millennium, or 1,000 years reign of Christ upon earth, the exclusion of magistrates from the Christian church, the abolition of war, and the prohibition of oaths enjoined by our Saviour, and the vanity as well as the pernicious effects of human science. But while Menno retained these doctrines in a general sense, he explained and modified them in such a manner as made them resemble the religious tenets that were universally received in the Protestant churches; and this rendered them agreeable to many, and made them appear inoffensive even to numbers who had no inclination to embrace them. It however so happened, that the nature of the doctrine, when considered in themselves, the eloquence, of Menno, which set them off to such advantage, and the circumstances of the times, gave a high degree of credit to the religious system of this famous teacher among the Anabaptists, so that it made a rapid progress in that sect. And thus it was in consequence of the ministry of Menno, that the different forts of Anabaptists agreed together in excluding from their communion the fanatics that dishonoured it, and in renouncing all tenets that were detrimental to the authority of civil government, and by an unexpected coalition formed themselves into one community.

Though the Mennonites usually pass for a sect of Anabaptists, yet M. Herman Schyn, a Mennonite minister, who has published their history and apology, maintains, that they are not Anabaptists either in principle or by origin. However, nothing can be more certain than this fact, viz. that the first Mennonite congregations were composed of the different forts of Anabaptists, of those who had been always inoffensive and upright, and of those who, before their conversion by the ministry of Menno, had been sedulous fanatics: besides it is alleged, that the Mennonites do actually retain, at this day, some of those opinions and doctrines, which led the sedulous and turbulent Anabaptists of old to the commission of so many and such enormous crimes: such particularly is the doctrine concerning the nature of Christ's kingdom, or of the church of the New Testament, though modified in such a manner as to have lost its noxious qualities, and to be no longer pernicious in its influence.

The Mennonites are subdivided into several sects; whereof the two principal are the Flemings or Flemingsians, and the Waterlanders. The opinions, says Mosheim, that are held in common by the Mennonites, seem to be all derived from this fundamental principle, that the kingdom which Christ established upon earth is a visible church or community, into which the holy and just alone are to be admitted, and which is consequently exempt from all those institutions and rules of discipline that have been invented by human wisdom, for the correction and reformation of the wicked. This principle, indeed, was avowed by the ancient Mennonites, but it is now almost wholly renounced: nevertheless, from this ancient doctrine, many of the religious opinions that distinguish the Mennonites from all other Christian communities, seem to be derived: in consequence of this doctrine, they admit none to the sacrament of baptism but persons that are come to the full use of their reason; they neither admit civil rulers into their communion, nor allow any of their members to perform the functions of magistracy; they deny the lawfulness of compelling force by force, and consider war, in all its shapes, as unchristian and unjust; they entertain the utmost aversion to the execution of justice, and more especially,
especially to capital punishments; and they also refuse to confirm their testimony by an oath. The particular sentiments that divided the more considerable societies of the Mennonites are the following: The rigid Mennonites, called the "Flourishing," maintain, with various degrees of rigour, the opinions of their founder Menno, as to the human nature of Christ, alleging that it was produced in the womb of the Virgin by the creating power of the holy Ghost; the obligation that binds us to wash the feet of strangers, in consequence of our Savior's command; the necessity of communicating and avoiding, as one would do the plague, not only avowed sinners, but also those who depart, even in some light infinences pertaining to dreefs, &c. from the simplicity of their ancestors; the contempt due to human learning, and other matters of less moment. However this authors fyllem declines, and the rigid Mennonites are gradually approaching towards the opinions and discipline of the more moderate or Waterlandians.

The first settlement of the Mennonites, in the United Provinces, was granted them by William prince of Orange, towards the close of the 16th century; but it was not before the following century that their liberty and tranquillity were fixed upon solid foundations, when, by a confession of faith published in the year 1626, they cleared themselves from the imputations of those pernicious and detestable errors that had been laid to their charge. In order to appease their intestine difcars, a considerable part of the Anabaptists of Flanders, Germany, and Friesland, concluded of the moon over the bodies of women. This association was renewed and confirmed by new resolutions, in the year 1649; in conquence of which the rigorous laws of Menno and his successors were, in various respects, mitigated and corrected.

MENOCHIUS, vulgarly Menochia, (James), a famous lawyer, meanly born at Pavia, but who became so skilful in the law, that he was called the Baldus and Bartolus of his age; all the princes of Italy soliciting him to their universities. He read at Padua 23 years together; and for love of his country removed to Pavia, and succeeded Nicholas Gratiani. He hath got an immortal fame by his works, De recuperanda poiffione; De adiupcenda poiffione; De presupptionibus; De arbitrarior Judicium questionibus & caufis conciliorum, tom. 13 &c. He died in 1607, aged 75.

MENOLOGY Menology, (from μης, month, and καινά, discover), is much the same as martyrology, or callendar, in the Latin.

The Greek menologium is divided into the severall months in the year; and contains an abridgment of the lives of the saints, with a bare commemoration of the names of such whole lives were never written. The Greeks have various menologies; and the Romans tax them with inferring divers heretics in their menologies as saints.—Buttlet treats of them at large.

MENSA, in law-books, a term that includes in it all patrimony, and necessaries for livelihood.

MENSES, mensalia, in church-history, such livings as were formerly united to the tables of religious houses, and hence called mensal benefices. See the article Benefice.

MENSES, Catamenia, in medicine, the monthly evacuations from the uterus of women not with child or not giving suck. They are so called from mensis, "month," the period wherein they return. They are also called ferns, courtes, &c. By the Jewish law a woman was unclean while the menstrual blood flowed; and the man who touched her, or the moveables she had touched, was declared unclean.—Levit. xv.

The menes make one of the most curious and difficult phenomena in the whole human body; for the explanation whereof, many hypotheses have been framed, though the matter is yet scarcely ascertained.

It is generally agreed by all, that the necessity of women are under for some extraordinary supply to compensate the expense, and support them during the time of gestation, was the final reason why this redundance at other times was given them, which continues whilst this necessity subsists, and ceases when, according to the constitution of the female frame, it is no longer required: but this is all they agree in. Some, not content with this occasion alone, will have the menstruous blood offend in quality more than quantity; which they argue from the pain it gives many women in the evacuation; with many other idle notions.

Others ascribe this effect to an imaginary dominion of the moon over the bodies of women. This was formerly the prevailing opinion; though the smallest reflection would have shown the weakness of it; for, had this purgation been owing to the influence of the moon, all women of the same age and temperament would have found it at the same periods and revolutions of the moon, i.e. at the same time; which all experience shews to be false.

There are two other opinions which carry with them great probability, and are argued with a great deal of strength and reason; in both which, the quality of the blood is allowed to be innocent, but they still differ about the reason of its issue. The former is that of Dr. Bohn and Dr. Friend, who maintain this flux to be the result of a plethora or plenitude; and to be evacuated only for relief against the quantity.

Dr. Friend, who has maintained the caufe of a plethora with the greatest strength and clearness, supposes, that this plethora arises from a coacervatio in the blood-veffels of a superfluity of aliment, which, he thinks, remains over and above what is expended by the ordinary ways; and that women have this plethora, and not men, because their bodies are more humid, and their veffels, especially the extremities of them, more tender, and their manner of living generally more inactive than that of men; and that these things concurring, are the occasion that women do not perspire sufficiently to carry off the superfluous alimentary parts, till they be accumulated in such quantities as to distend the veffels, and force their way thro' the capillary arteries of the uterus. It is supposed to happen to women more than the females of other species, which have the same parts, because of the erect posture of the former, and
the vagina and other canals being perpendicular to the horizon; so that the preflure of the blood is directed towards their oriaces; whereas in brutes, they are parallel to the horizon, and the preflure wholly is on the sides of those vessels. The discharge, he thinks, happens in this part rather than in any other, as being more favoured by the structure of the vessels: the arteries being very numerous, and the veins finous and winding, and therefore more apt to retard the impetus of the blood; and consequently, in a plethoric state, to occasion the rupture of the extremities of the vessels, which may leak, till, by a sufficient discharge, the vessels are eafed of their overload.

This is the fulbutance of Dr Freind's theory; from whence he very mechanically and very philosophically accounts for the symptoms.

To his argument, why women have menfes rather than men, we may add from Boerhave, that, in the fion of matter, which should, in an hour or a day's time, be effed of their overload, do not make such regular approaches as a gradual accumulation necessarily requires. If we confider what violent symptoms come on in an hour, we shall be extremely puzzled to find the mighty accession of matter, which should, in an hour or a day's time, make such great alterations. According to the hypothesis, the half hour contributed no more than the first; and of confequence, the alteration should not be greater in the one than in the other, left the bare eruption.

This is the fulftance of what is argued against Dr Freind's theory: which, is must be owned, notwithstanding these objections, is still the most rational and confcient that has yet been advanced.

Thofe who oppofe it, give into the doctrine of fermentation, and maintain the evacuation of blood in those parts to be an effed of an effervescence or ebullition of the blood. This opinion has been maintained by many, particularly by Dr Charleston, Bale, Dr Graaf, and Drake; the two first of whom fuppofe a ferment peculiar to the women, which produces this flux, and affects that part only, or at leat principally. Dr Graaf, lefs particular in his notion, only fuppofes an effervescence of the blood, raifed by some ferment, without affigning how it acts, or what it is. The fudden turgefcence of the blood occafioned them all to think, that it arose from fomething till then extraneous to the blood, and led them to the parts principally affected to fearch for an imaginary ferment, which no anatomeical inquiry could ever find, or find any receptacle for, nor any reafoning necessarily infer. Again, that heat which frequently accompanies this turbulence, led them to think the cafe more than a plethoras, and that there was some extraordinary infenfible motion at that time.

Dr Drake improves on the doctrine of a ferment; and contends, not only that it is neceffary there should be a ferment, but a receptacle also for this ferment; concluding, from the fuddenfees and violence of the symptoms, that a great quantity must be conveyed into the blood in a fhort time, and confequently, that it must have been ready gathered in fome receptacle, where, while it was lodged, its action was retained. But he goes farther still, and pretends to afcertain the place, &c. both of the one and the other, making the gall-bladder to be the receptacle, and the bile the ferment. This liquor he thinks well adapted to raife a fermentation in the blood, when defcharged, into it in a quantity; and, as it is contained in a receptacle that does not admit of a continual fuite, it may be retained, till in certain periods of time, etc.
MEN [392]

the bladder becoming turgid and full, through the compulsion of the incumbent vitæra, it emits the gall; which, by the way of the laticies, infinuating itself into the blood, may raise that effervescence which occasions the rupture of the uterine arteries. To confirm this, he alleges, that persons of a bilious constitution have the menses either more plentifully, or more frequently, than others; and that diuretics manifestly bilious, are attended with symptoms resembling those of women labouring under difficult menstruation.

If it be objected, that on this principle men should have menses as well as women, he answers, that men do not abound in bile so much as women, the pores of the former being more open, and carrying off more of the ferous part of the blood, which is the vehicle of all the other humours, and consequently a greater part of each is discharged through them than in women, wherein the superfluity must either continue to circulate with the blood, or be gathered into proper receptacles, which is the case in the bile. The same reason he gives why menstruation should not be in brutes: the pores of these being manifestly more open than those of women, as appears from the quantity of hair which they bear, for the vegetation whereof a large cavity, and a wider aperture of the glands, is necessary, than where no such thing is produced: yet there is some difference between the males and females even among these, some of the latter having their menses, though not so often, nor in the same form and quantity, as women.

He adds, that the several phenomena of the menses, whether in a natural, a regular, or diseased case, flow naturally and readily from this hypothesis; and that whatever may be accounted for from a plithora, or from any particular ferment, may without any strain be applied to this.

Females generally begin to menstruate about the age of fourteen or fifteen, and cease about fifty; though instances have occurred of their commencing sooner and continuing longer. There are, therefore, two critical periods in the lives of females which require their particular attention. In order to escape the chlorosis, and other similar diseases, incident to that period of life when the menses commence, they should avoid indolence and inactivity, and accent themselves to exercise in the open air as much as possible. Unwholesome food, dulness of disposition, and frail cloaths, are very injurious to females at this season. The discharge in the beginning is seldom fo insinuant as to surprise them unawares. The eruption is generally preceded by symptoms that indicate its approach; such as a sense of heat, weight, and dull pain in the loins, distention and hardness of the breasts, head-ach, loss of appetite, latitude, paleness of the countenance, and sometimes a flight degree of fever. When these symptoms occur, every thing should be carefully avoided which may obstruct the menstrual flux, and all means used to promote it; as sitting frequently over the steams of warm water, drinking warm diluting liquors, &c. When the menses have begun to flow great care should be taken to avoid every thing that tends to obstruct them; such as fish, and all kinds of food that are hard of digestion, and cold acid liquors. Cold is likewise hurtful at this period; as also anger, fear, grief, and other affections of the mind. From whatever cause this flux is obstructed, except in the state of pregnancy, proper means should be used to restore it; and if exercised in a dry, open, and rather cool air, wholesome diet, generous liquors in a weak and languid state of the body, cheerful company, and amusement, must be had to medicine.

When obstructive proceed from a weak relaxed state of the solids, such medicines as tend to promote digestion, to brace the solids, and assist the body in preparing good blood, ought to be used. See Medicine.

When the menstrual flux is too great, the patient becomes weak, the colour pale, the appetite and digestion are bad, and emaciated swellings of the feet, dropsies, and consumptions, often ensue. This frequently happens to women about the age of forty-five or fifty, and is very difficult of cure. It may proceed from a sedentary life; a full diet, conflicting chiefly of salted, high seasoned, or acid food; the use of spirituous liquors; excessive fatigue; relaxation; a diffused state of the blood; violent passions of the mind, &c. In order to restrain the flux, the patient should keep very little in body and mind. If it be very violent, the ought to lie in bed with her head low, to live upon a cool and slender diet, as veal or chicken-broth with bread, and to drink decoctions of nett-leaves or the greater comfrey. If these fail, recourse must be had to stronger astringents, &c. See Medicine no. 246.

The discharge of the menses is interrupted naturally during pregnancy: but this is not always the case, because some have them three months, some six months, and some during the whole time of gestation, though in less quantity than at other times. The menses are mostly interrupted during the time of giving suck, though many women have a return about the third or fourth month after delivery, and almost all have them again in the ninth or tenth month. In cases of obstruction, the menstrual blood hath discharged itself by other outlets.

It usually happens that this periodical discharge ceases between the age of forty and fifty; and the reason in which this takes place is critical to the sex. However, those who survive this period without contracting any chronic disease, become more healthy and vigorous than they were before. About this time, some are afflicted with the well known symptoms of plithora, heat, flushings, restless nights, troublesome dreams, and unequal spirits; others are attacked with inflammations of the bowels, or other internal parts; spasmodic affections of various parts, stiffness in the limbs, swelling ankles, with pain and inflammation, the pales, and other effects of pleurisy. Those of full pleshetic habits, accustomed to copious evacuations, will find great relief by bleeding frequently in moderate quantities, keeping the bowels lax, moderating their diet, and using sufficient exercise that is not too heating. If an immoderate flux of the menses happen at this period, it should be restrained by gentle laxatives, cooling medicines, rest, anodynes, a more sparing not too liquid diet, rather than by very copious bleedings and astringents of any kind. Dr Fothergill observes, that various purgations of aloe, the tinctura facra, pil. Ruffi, elixir proprietatis, and other compositions of this kind, are recommended as proper purgatives.
purging medicines, as the piles, confumptions of the lungs, and other similar complaints. Rhubarb, fenna, magnesia, sulphur medicines, small doses of jalap, and various combinations of these, may be sublimed in the room of the others, and will supply sufficient variety to the prescriber and patient. When the medicines are about to go off, they appear for the most part irregularly both in time and quantity; once in a fortnight, three, five, or six weeks; sometimes very sparingly, at other times in immoderate quantities. Great loves of this kind are often prevented by taking away four or five ounces of blood a few days after the first menstrual suppression. If a patient has in early life been soon after carried Sick of the menfes, rackmg other times in immoderate quantities. Great care must be taken that the medicines prescribed are taken at the right time and in the right quantity. The corolla is nearly equal, standing erect, and standing against the sun, it appears red. The virtues of mint are those of a warm and carminative: in loss of appetite, nausea, and convulsions, this plant frequently does good. These affords an aperient and carminative: in lofit of appetite, nausea, and constipation, or by day-light or by candle-light, but a large quantity of it seems impervious to common day-light; however, when held betwixt the eye and a candle, or betwixt the eye and the sun, it appears red.

The virtues of mint are those of a warm and carminative: in loss of appetite, nausea, and convulsions, this plant frequently does good. These affords an aperient and carminative: in loss of appetite, nausea, and constipation, or by day-light or by candle-light, but a large quantity of it seems impervious to common day-light; however, when held betwixt the eye and a candle, or betwixt the eye and the sun, it appears red.

Pennyroyal has the same general characters with the mint, but is more acrid and less agreeable when taken into the stomach. It has long been held in great esteem, and not underviated, as an aperient and obstruant, particularly in hysterical complaints and suppers of the menes. For these purposes the distilled water is generally made ufe of, or, what is of equal efficacy, an infusion of the leaves. It is observable, that both water and rectified spirit extract the virtues of this herb by infusion, and likewise elevate the greatest part of them by distillation. The expressed juice, with a little sugar, is not a bad medicine in the chinch."
on the north. It is about 60 miles in length from north-east to south-west, and about 50 in breadth. A considerable part of the Elector's revenue arises from the toll on the Rhine and the Main, and from the tax on the excellent wines produced in this country. The chief towns of any trade are, 1. Mentz; (see the next article.) In its neighbourhood is Hockheim, so celebrated for good wines, that the best Rhenish is from thence called old back. It is a pretty village, containing about 300 families; and belongs to the chapter of Mentz, the dean of which enjoys the revenue of it: in a good year he makes from twelve to fifteen thousand guilders of his wine. He and the Augustines of Mentz and Francfort have the exclusive enjoyment of the best Hockheimer wine, of which, in good years, a piece, consisting of 100 measures, sells for from 500 to 1000 guilders from the press. "This (fays the Baron Riebeck) is certainly one of the dearest wines in the world. Having a desire to taste it on the spot, we were obliged to pay a rix-dollar; it was, however, of the best vintage in this century, viz. that of 1766. Nor should we have had it, but for an advocate of Mentz, to whom the Hoffel's meant to shew favour. This was the first German wine I had met with which was entirely without any sour taste: it was, quite a perfume to the tongue; whereas the other wine of Hockheim, let it be as good as it may, is not quite clear of vinegar; though for this also, if it has any age, you are forced to pay a guilder and a half." 2. Bingen is a pleasant town, which stands in the district called Rheingau. This town, which, together with the toll on the Rhine, is worth about 300,000 guilders, belongs to the chapter of Mentz, is extremely beautiful, and contains about 4500 inhabitants. A great part of the corn which is carried into the Rhinegau from the neighbouring Palatinate, comes through this place, which, on the other hand, supplies the Palatinate with drugs, and various foreign commodities. This traffic alone would make the place very lively; but besides this, it has very fruitful vineyards. The hill, at the foot of which it lies, and one side of which is made by the gullet, through which the Nahe runs into the Rhine, forms another deep rock behind this gullet parallel to the Rhine and the golden Rudeheimmer mountain; it therefore enjoys the fame fun as this does, which makes the Rudeheimmer wine that grows on it little inferior to the Rudeheimmer. See Rudehheimmer. The rising grounds about it produce wines that are esteemed preferable to those of Baccharach, so much in vogue heretofore.—

2. Eifeld, five miles west from Mentz, is a strong town, on the north-side of the Rhine, and the chief of the Rheingau. — Here is Rudeheimmer, a place noted for the growth of the best wines in these parts. 4. Wetzbaden lies between six and seven leagues from Francfort, and about five or six miles north of Mentz; it is the metropolis of a country belonging to the branch of Naflau-Saarbrak, and is famous for its mineral waters.

After the pope, there is no doubt but the archbishop of this place is the most considerable and richest prelate in all Christian countries. According to Baron Riebeck, the fee is indebted for its increase of riches to St Boniface, who may be called, with great justice, the apostle of the Germans. It was this man, an Eng-
nearly as much as all the mines of Salzburg put together, excepting only the salt mine at Halle. The tax on wine, here and in the country round, produces the court above 100,000 guilders, or 10,000l. a-year in which sum we do not reckon the customs of the countries which lie at a greater distance. Upon the whole, the income of the present archbishop may be valued at 1,700,000 guilders, or 1,700,000l.

If the hands of the elector lay all together, they would produce a sufficiency of corn and all the prime necessaries of life; but as several parts of them lie wide a-finder, the people are compelled to purchase a great deal from foreigners. The capital itself, as well as the adjacent Rhineland, depends on the Palatinate for its corn, notwithstanding the great abundance of that and every other species of grain in its own possessions in Wetterau. The noblest production of the elector's territory on the Rhine is the wine, which is almost the only true Rhenish. Connoisseurs, indeed, allow the wines of Neirinfel, Bacharach, and a very few other places out of this country, to be true Rhenish: but they do not give this name to the wines of the Palatinate, of Bardon, and of Al施tia. There is a great deal of wine made in the countries which lie on the south and west of the Rhine, at Laubenheim, Bodenheim, Budeheim, and Bingingen; but the true Rhenish, that which inspires so many who are and so many who are not poets, comes only from the Rhineland, which lies on the northern banks of the Rhine. See RHINEGAU.

The civil list of the archbishop (according to Baron Rielbeck), is by much too improper and expensive. "He has his ministers, his councilors of state, and eighty or ninety privy councilors of various denominations. The expense of this establishment is very disproportionate to the revenue of the state. This is owing to the large number of poor nobility, who can only accept of employments of this kind. Ignorance of the true principles of government are the causes of this evil. The consequences are, that a great number of persons, who might be usefully employed, live in idleness. Even the military establishment of the country appears to be more calculated for the purpose of feeding a hungry nobility than for real use. At the accession of the present elector, the whole army, only confided of 22,000 men, there were six generals. The regular establishment paid for and supported by the country is 8000 men; but though there are only 2000 men kept up, the money expended for their support, particularly that given to numberless unstable officers, might be made use of more for the benefit of the country. The army of the archbishop consists of a German guard of 50 men and 25 horses, a Swiss guard, a squad of horsemen of the guard, and some companies belonging to the armies of Franconia and the Upper Palatinate. Of the fortifications of the capital we may say much the same as of the army. Were they, indeed, improved and kept up as they ought to be, they would vie with Luxemburg, and be the most powerful of all the barriers against France. It is true, that the nature of the ground does not allow of a regular plan; but for single parts, I have seen no place of the same capabilities, where greater advantages have been taken of the ground for the erection of the several works. The beauty, as well as size of them, is indeed an object of great wonder; but though the circle of the Upper Rhine, and even the empire in general, has laid out great sums on the building these fortifications, parts of them are not finished, and parts of them are ready to fall to pieces. Their extent, indeed, would require a great army to man them. But this, as well as the maintaining and keeping them up, is evidently beyond the power of this court, or indeed of the whole circle of the Upper Rhine united. They are, therefore, also to be looked upon as one of the things which serve more for magnificence than real use."

MENZ is a considerate town of Germany, in the circle of the Lower Rhine, and capital of the electorate of the same name, is situated on the Rhine near its confluence with the Mayne, 15 miles west of Worms, 15 miles west of Fransfort, and 75 miles south of Tricy, in E. Long. 8° 20'. N. Lat. 49° 51'. This city claims a right to the invention of the art of printing; (see History of Printing). Here is a very beautiful quay along the river, defended by several works well fortified with cannon. That part of the city which extends towards the river is most populous. The best vineyards for Rhenish wine being in this neighbourhood. Menz has a flourishing trade in that commodity more particularly; and its commerce is the brisker, by reason that all the merchandise which passes up and down the Rhine stops in its harbour to change bottoms.

The northern part of the city, in which the archbishop resides, is full of very regular buildings. Here are three regular streets, called the Bresten, which run parallel to each other from the bank of the Rhine to 600 yards within the city, and are cut almost regularly by very pretty cross streets. The archbishop's palace has a moat commanding view of these streets, the Rhine and the Rhineland. There are also some good buildings in the old part of the city. The market of beets is extremely well worth seeing: and you here and there meet with other agreeable spots. The market in the middle of the town, though not regular, is one of the prettiest places in Germany. The cathedral is well worth notice. It is an immense large old Gothic building, the spire of which was struck with lightning about 20 years ago, and entirely laid in ashes. As it was made of a forest of wood; it burned 14 hours before it was entirely consumed. To prevent these accidents for the future, the chapter had the present one built to the same height in stone, an undertaking which cost them 40,000 guilders or L. 4000. It is a great pity (Baron Rielbeck observes) that it is overloaded with small ornamentation; and a full greater, that this wonderful edifice is so choked up with shops, and houses as to be barely more than half visible. As, however, houses and shops are very dear in this part of the town, one cannot be very angry with the chapter for choosing rather to make the most of its ground than to throw off the church to the least advantage. The rent of a shop and a dwelling room to live in is 150 guilders or L. 15 per annum in this part of the town.
There is hardly another church in Germany of the height and length of this cathedral; and the inside of it is decorated with several magnificent monuments of princes and other great personages. Besides the cathedral, the city of Mentz contains several other churches in the modern style, very well worth seeing. St Peter's, and the Jésuits church, though both too much loaded with ornament, are among this number. The church of the Augustines, of which the inhabitants of Mentz are so proud, is a matter-piece of bad taste; but that of Ignatius, though little is said about it, would be a model of the antique, if here likewise there had not been too much ornament lavished. Upon the whole, the palaces of the nobility want that noble simplicity which alone constitutes true beauty and magnificence. In another century the externals of the whole, the palaces of the nobility, are made broader and straighter, the whole will have no bad appearance.

Upon the Augustines, which contain so rich a library, there is hardly a man who together with the garrifon is compelled to read it through without the advice of their confessors. For a long time superfluous has been hunted through its utmost recesses; and though it is not quite possible to get entirely clear of pilgrimages and wonder-working images, you will meet with no priest bold enough to exorcize or to preach such nonsense as we hear in the pulpits of other German churches.

The clergy of this place are the best in Germany. A canary brings in 3500 Rhenish guilders in a moderate year. The canary of the provost brings him in 45,000 guilders a-year; and each of the deaneries is worth 2500 guilders. The income of the chapter altogether amounts to 350,000 guilders. Though it is forbidden by the canons of the church for any one to have more than a single prebend, there is not an ecclesiastic in this place but what has three or four; so that there is hardly a man amongst them who has not at least 8000 guilders a-year. The last provost of Eltz, had prebends enough to procure him an income of 75,000 guilders. Exclusive of the cathedral, there are several other choirs in which the canons bring in from 1200 to 1500 guilders a-year. For the sake of the riches of the monasteries of this place, Baron Riebeck informs us, that at the destruction of the Jésuits, their wines, which was reckoned to fall extremely cheap, produced 120,000 rixdollars. A little while ago the elector abolished one Carthusian convent and two nunneries, in the holy cellars of which there was found wine for at least 500,000 rixdollars.

MENZEL (Christian), born at Furthlenwall in the Mittel-mark, is celebrated for his skill in medicine and botany, in pursuit of which he travelled through many countries. He had correspondents in the most distant parts of the world. He died A. D. 1701, about the 75th year of his age. He was a member of the academy des Curieux de la Nature. His works are: 1. Index nominum plantarum, printed at Berlin in folio, 1699; and reprinted with additions in 1715, under the title of Lexicon plantarum polyglottum universale. 2. A Chronology of China, in German, printed at Berlin, 1636 in 4to. The following manuscripts of his composition are preserved in the royal library at Berlin, 1. Sur l'Histoire Naturelle du Brésil, in four volumes folio.
MEN

MENUS (anc. geog.), a river of Germany; now the Maine, rising in Francia, and running from east to west into the Rhine at Mentz.

MENUTHIAS (anc. geog.), an island adjoining to the north-east of the promontory Prafin of Ethiopia beyond Egypt. Some take it to be Madagascar, or the island of St. Lawrence. Isaac Vouisi will have it to be Zanzibar; Madagascar being at a greater distance from the continent than the ancients ever failed to, whereas Menuthias was nearer; yet though Zanzibar be nearer the continent, it is however nearer the equator than Poland's Menuthias, placed in south latitude 13° 4 degrees.

MENYANTHESES, Marsh-trefoil, or Buckbean: A genus of the monogyne order, belonging to the pantandria class of plants; and in the natural method ranking under the 2nd order, Precise. The corolla is hairy; the stigma bifid; the capsule unilocular. This plant grows wild in moist marshy places in many parts of Britain. It has three oval leaves standing together upon one pedicle; which issue from the root; their tale is very bitter, and somewhat nauseous. According to Mr Lightfoot, the flowers of this plant are so extremely beautiful, that nothing but their native soil could exclude it from a place in every garden. They grow in an elegant spike; are white, dafted with pink, and fringed internally with hairs. The Highlanders esteem an infusion or decoction of the leaves as good to strengthen the stomach. According to Dr Withering, an infusion of the leaves is prescribed in rheumatisms and dropsies; a dram of them in powder purges and vermifs, and is sometimes given to destroy worms. In a fever of Rhospes, the plant is used in the north of Europe to bitter the ale. The powdered roots are sometimes used in Lapland instead of bread, but they are unpalatable. Some people say, that sheep will eat it, and that it cures them of the rot; but from the Upsal Experiments it appears, that though goats eat it, sheep sometimes will not. Cows, hares, and swine, refuse it.—Dr Lewis informs us, that it is an efficacious aperient and debulbrant; promotes the fluid secretions; and, if liberally taken, gently looens the belly. It has of late gained great reputation in scorbutic and scrophulous disorders; and its good effects in those cases have been warranted by experience. Invertrate cutaneous diffcures have been removed by an infusion of the leaves, drank to the quantity of a pint a day, at proper intervals, and continued for some weeks. Boerhaave relates, that he was relieved of the gout by drinking the juice mixed with whey.

MENZIKOFF (Alexander), was originally an apprentice to a pastry-cook near the palace of Moscow; but by a fortunate circumstance was drawn from that station in early life, and placed in the household of Peter the Great. Having made himself master of several languages, and being formed for war and for business, he first rendered himself agreeable, and afterwards became necessary to his master. He affifted Peter in all his projects; and was rewarded for his services with the government of Ingria, the rank of prince, and the title of major-general. He signalized himself in Poland in 1706 and 1709; but in 1713 he was accused of embezzling the public money, and confined in 300,000 crowns. 'The Czar remitted the fine; and having restored him to favour, gave him the command of an army in the Ukraine in 1719, and sent him as his ambassador into Poland in 1722. Constantly employed about the means of preserving his influence after the death of his master, who was then evidently on the decline, Menzikoff discovered the perfon whom the Czar intended to leave the succession. The emperor was highly offended, and his penetration made him the principal by of Pletcoff. Under the Czarina Katharine, however, he was higher in favour than ever; because, on the death of the Czar in 1725, he was active in bringing different parties in Raffia to agree to her succession. This prince was not ungrateful. In appointing her son-in-law Peter II. to be her successor, he commanded him to marry the daughter of Menzikoff, and give the Czar's sister to his son. The parties were actually betrothed; and Menzikoff was made duke of Cozcl and grand-steward to the Czar. But this summit of elevation was the prelude to his fall. The Dolgoroukis, favourites of the Czar, had influence enough to procure his banishment, together with that of his family, to one of his own estates at the distance of 250 leagues from Moscow. He had the imprudence to leave the capital with the splendor and magnificence of a governor going to take possession of his province. His enemies took advantage of this circumstance to inflame the indignation of the Czar. At some distance from Moscow he was overtaken by a detachment of soldiers. The officer who commanded them made him alight from his chariot, which he sent back to Moscow; and placed him and his whole family in covered wagons, to be conducted into Siberia, in the habit of peasants. When he arrived at the place of his declaration, he was presented with cows and sheep big with young, and poultry, without knowing from whom he received the favour. His house was a simple cottage; and his employment was to cultivate the ground, or to superintend its cultivation. New causes of sorrow were added to the severities of exile. His wife died in the journey; he had the misfortune to lose one of his daughters by the small-pox; and his other two children were seized with the same disease. One day when his daughter was returning from the village, she heard herself accosted by a peasant from the window of a cottage, and to her great surprise, recognized in this peasant the perfident of her family, Dolgorouki; who, in his turn, had fallen a sacrifice to the intrigues of the court. She communicated this intelligence to her brother, who could not behold, without emotion, this new instance of the vanity and intability of honours and power. Young Menzikoff and his sister were soon after recalled to Moscow by the Czarina Ann; and left Dolgoroucki in possession of their cottage. He was made
MEQ [398] MER

MEZIN [Benedetto], a celebrated Italian poet, born at Florence, was, professor of eloquence at the college Della Sapienza at Rome, where he died in 1704. He wrote, 1. The art of poetry. 2. Satires, elegies, hymns, and the Lamentations of Jeremiah. 3. Academia Tusculana, a work in verse and prose, which passes for his masterpiece.

MEOTIS, or PALUS MOOTIS, a sea of Turkey, which divides Europe from Asia; and the ocean. They have a fair complexion, with fine black eyes, and white teeth. I have sometimes seen them take the air on the terraces; they do not hide themselves from Europeans, but retire very quickly on the appearance of a Moor.

MEPHITIC, a name expressing any kind of noxious vapour; but generally applied to that species of vapour called fixed air. See Air, Fixed Air, Gas, &c.

MEPHITIS FANUM, a temple erected to the goddess Mephitis, near Lacus Amfianet; who was worshipped also at Cremona. Figuratively, Mephitis denotes a noisome or pestilential exhalation, (Virgil).

MEQUINEZ, or Miquinez, the northern capital of the Morocco empire, stands at the extremity of the province of Beni-Hafen, 80 leagues north from the city of Morocco (which is the southern imperial city), and 20 to the east of Salee and the ocean. Maknaffa, its founder, built it at the bottom of a valley; but Muley Ismael extended it considerably over the plain that lies to the west of the valley. It is surrounded with well cultivated fields and hills, adorned with gardens and olive plantations, and abundantly watered with rivulets. Accordingly, fruits and kitchen stuffs thrive here exceedingly, and even the superior urbanity of the inhabitants announces the temperature of the climate. The winter indeed is very inconvenient, on account of the dirtiness of the town; the streets not being paved, and the soil being filthy.

Mequinez is surrounded with walls; the palace itself is fortified with two bastions, on which formerly some small guns were mounted. Muley Ismael, and Muley Abdallah, often in this city refuted the efforts of the Brebes, the sworn enemies of their tyranny. To the west are seen some walls of circumvallation, six feet in height, which were probably mere intrenchments for the infantry; the attacks of the Brebes being only sudden and momentary inroads, which did not require a long defence. There is at Mequinez, as well as at Morocco, a walled and guarded suburb for the Jews. The houses are nearer here than at Morocco. The Jews here are more numerous; and they can turn their industry to greater account, because the Moors in this city are more polished, and (being nearer Europe) more visited, than those in the southern parts. Near the Jewry, there is another enclosed and separate quarter, called the Negro-town. It was built by Muley Ismael, for the accommodation of those black families which composed his foldieries. This town is now uninhabited, as are all those defined for the same use through the rest of the empire.

At the south-east extremity of the city stands the palace of the emperor, which was built by Muley Ismael. The space occupied by this palace is very great; it includes several gardens, elegantly disposed, and well watered. There is a large garden in the centre, surrounded by a vault and pretty regular gallery, resting on columns, which communicates with the apartments. Those of the women are very spacious, and have a communication with a large chamber which looks into the garden. As you pass from one apartment to another, you find at intervals regular courts paved with square pieces of black and white marble; in the middle of these courts is a marble bason, from the centre of which riche un jet d'eau, and the water falls down into this bason. These fountains are numerous in the palace; they are useful for domestic purposes, and serve for the ablutions, which the serpules of the Mahometans have exceedingly multiplied. The palaces of the Moorish kings are large, because they are composed only of one range of apartments; there are long and narrow, from 18 to 20 feet high; they have few ornaments, and receive the light by two large folding doors, which are opened more or less as occasion requires. The rooms are always lighted from a square court in the centre, which is generally accompanied with a colonade.

The Moors here are more courteous than those in the southern parts; they are civil to strangers, and invite them into their gardens, which are very neat. The women in this part of the empire are beautiful; they have a fair complexion, with fine black eyes, and white teeth. I have sometimes seen them take the air on the terraces; they do not hide themselves from Europeans, but retire very quickly on the appearance of a Moor.

MERA-DE-ASTA, formerly a large town of Andalusia, seated on the river Guadalete, between Arcos and Xeres de la Frontera, but now only a large heap of ruins. Here the Arabs conquered Roderick the last king of the Goths, and by that victory became masters of Spain in 713.

MERCATOR (Gerard), one of the most celebrated geographers of his time, was born at Ruremonde in 1512. He applied himself with much industry to geography and mathematics, that he is said to have frequently forgot to eat and drink. The emperor Charles V. had a particular esteem for him, and the duke of Juliers made him his cosmographer. He composed a chronology, some geographical tables, an Atlas, &c. engraving and colouring the maps himself. He died in 1594. His method of laying down charts is still used, and bears the name of Mercator's charts.

MERCATOR (Nicholas), an eminent mathematician in the 19th century, was born at Holstein in Denmark; and came to England about the time of the reformation, where he lived many years. He was fellow of the Royal Society; and endeavoured to reduce astrology to rational principles, as appeared from a MS. of his in the possession of William Jones, Esq. He published several works, particularly Cosmographia. He gave the quadrature of the hyperbola by an infinite series; which was the first appearance in the learned world of a series of this fort drawn from the particular nature of the curve, and that in a manner very new and abstraited. MERCATOR'S SAILING, that performed by Mercator's chart. See NAVIGATION.

MERCATORUM
MERCATORUM PESTIS, was a festival kept by the Roman merchants on the 15th of May in honour of Mercury, who presided over merchandise. A sow was sacrificed on the occasion, and the people present sprinkled themselves with water fetched from the fountain called aqua Mercuoria; the whole concluding with prayers to the god for the prosperity of trade.

MERCHANT, a person who buys and sells commodities in gross, or deals in exchanges; or that traffic in the way of commerce, either by importation or exportation. Formerly every one who was a buyer or seller in the retail way was called a merchant, as they still are both in France and Holland; but here shopkeepers, or those who attend fairs or markets, have left that appellation.

Previous to a person's engaging in a general trade, and becoming an universal dealer, he ought to acquire such a fund of useful knowledge as will enable him to carry it on with ease to himself, and without risking such losses as great ill-concerted undertakings would naturally expose him to. A merchant should therefore be acquainted with the following parts of commercial learning. 1. He should write properly and correctly. 2. Understand all the rules of arithmetic that have any relation to commerce. 3. Know how to keep books of double and single entry, as journals, a leger, &c. 4. Be expert in the forms of invoices, accounts of sales, policies of insurance, charter-parties, bills of lading, and bills of exchange. 5. Know the agreement between the money, weights, and measures of all parts. 6. If he deals in silk, woollen, linen, or hair manufactures, he ought to know the places where the different sorts of merchandizes are manufactured, in what manner they are made, what are the materials of which they are composed, and from whence they come, the preparations of these materials before working up, and the places to which they are sent after their fabrication. 7. He ought to know the lengths and breadths which silk, woollen, or hair-flufs, linen, cotton, fustains, &c. ought to have according to the several statutes and regulations of the places where they are manufactured, with their different prices, according to the times and seasons; and if he can add to his knowledge the different dyes and ingredients which form the various colours, it will not be useless. 8. If he confines his trade to that of oils, wines, &c. he ought to inform himself particularly of the appearances of the succeeding crops, in order to regulate his disposing of that he has on hand; and to learn as exactly as he can what they have produced when got in for his direction in making the necessary purchases and engagements. 9. He ought to be acquainted with the sorts of merchandize found more in one country than another, those which are scarce, their different species and qualities, and the properest method for bringing them to a good market either by land or sea. 10. To know which are the merchandizes permitted or prohibited, as well on entering as going out of the kingdoms or states they are made. 11. To be acquainted with the price of exchange, according to the course of different places, and what is the cause of its rise and fall. 12. To know the customs due on importation or exportation of merchandizes, according to the usage, the tariffs, and regulations, of the places to which he trades. 13. To know the best manner of folding up, embalming, or turning, them merchandizes for their preservation. 14. To understand the price and condition of freighting and insuring ships and merchandize. 15. To be acquainted with the goodness and value of all necessaries for the construction and repairs of ships, the different manner of their building; what the wood, the masts, cordage, cannons, sails, and all requisite may cell. 16. To know the wages commonly given to the captains, officers, and sailors, and the manner of engaging with them. 17. He ought to understand the foreign languages, or at least as many of them as he can attain to; these may be reduced to four, viz., the Spanish, which is used not only in Spain but on the coast of Africa, from the Canaries to the Cape of Good Hope; the Italian, which is understood on all the coasts of the Mediterranean, and in many parts of the Levant: the German, which is understood in almost all the northern countries; and the French, which is now become almost universally current. 18. He ought to be acquainted with the confular jurisdiction, with the laws, customs, and usages of the different countries he does or may trade to; and in general all the ordinances and regulations both at home and abroad that have any relation to commerce. 19. Though it is not necessary for a merchant to be very learned, it is proper that he should know something of history, particularly that of his own country; geography; hydrography, or the science of navigation; and that he be acquainted with the discoveries of the countries in which trade is established, in what manner it is settled, of the companies formed to support those establishments, and of the colonies they have sent out.

All these branches of knowledge are of great service to a merchant who carries on an extensive commerce; but if his trade and his views are more limited, his learning and knowledge may be so too; but a material requisite for forming a merchant is, his having on all occasions a strict regard to truth, and his avoiding fraud and deceit as corrosive cankers that must inevitably destroy his reputation and fortune.

Trade is a thing of so universal a nature, that it is impossible for the laws of Britain, or of any other nation, to determine all the affairs relating to it: therefore all nations, as well as Great Britain, show a particular regard to the law-merchant, which is a law made by the merchants among themselves: however, merchants and other strangers are subject to the laws of the country in which they reside. Foreign merchants are to sell their merchandize at the port where they land, in gross, and not by retail; and they are allowed to be paid in gold or silver bullion, in foreign coin or jewels, which may be exported. If a difference arises between the king and any foreign state, the merchants of that state are allowed six months time to sell their effects and leave the kingdom; during which time they are to remain free and un molested in their persons and goods. See the articles Commerce, and Merchants Law.

MERCHANT (Mercatorum), a fine or composition paid by inferior tenants to the lord, for liberty to dispose of their daughters in marriage. No baron, or military tenant, could marry his sole daughter and heir, without such leave purchased from the king, pro meridiis.
MERCIA. And many of our servile tenants could neither send their sons to school, nor give their daughters in marriage, without express leave from the superior lord. See Kennet’s Glossary in maritajium. See also MARSHET.

MERCIA, the name of one of the seven kingdoms founded in England by the Saxons. Though the latter formed, it was the largest of them all, and grew by degrees to be by far the most powerful. On the north it was bounded by the Humber and the Mersey; which separated it from the kingdom of Northumberland; on the east by the sea, and the territories of the East-Angles and Saxons; on the south by the river Thames and on the west by the rivers Severn and Dee. It comprehended well nigh 17 of our modern counties, being equal in size to the province of Languedoc in France; very little, if at all, less than the kingdom of Arragon in Spain; and superior in size of a superior lord. Mi11itanda filia.

Penda is regarded as its first monarch; and the kingdom is thought to derive its name from the Saxon word mære, which signifies “a march, bound, or limit,” because the other kingdoms bordered upon it on every side; and not from the river Mersey, as some would persuade us. Penda assumed the regal title A.D. 626, and was of the age of 50 at the time of his accession; after which he reigned near 30 years. He was of a molt furious and turbulent temper, breaking at different times with almost all his neighbours, calling in the Britons to his assistance, and shedding more Saxon blood than had been hitherto spilled in all their intestine quarrels. He killed two kings of Northumberland, three of the East-Angles, and compelled Kenwall king of the West-Saxons to quit his dominions. He was at length slain, with most of the princes of his family, and a multitude of his subjects, in a battle fought not far from Leeds, by Olufy king of Northumberland. This battle, which the Saxon chronicl tells us was fought at Winwifield, A.D. 655, made a great change in the Saxon affairs, which the unbridled fury of Penda had thrown into great confusion. He had the year before killed Anna king and the splendor of these residences constantly kept up the obedience of the people. But his death left the kingdom in confusion. He had the year before killed Anna king and the splendor of these residences constantly kept up the obedience of the people. But his death left the kingdom in confusion.

Penda, who was almost continually in a state of war, lived as his military operations required. Penda built a castle or fortified palace for his own residence, which bore his name.—Ofa kept his court at Sutton Walls near Hereford.

In each of the provinces there resided a chief magistrate; and if he was of the royal blood, had usually the title of king. Penda, at the time he married Olufy’s daughter, had the title of king of Lindsey. Ethelred made his brother Merewald king of Hereford; who, dying without issue, bequeathed it to his younger brother Mercelm. The like honours were sometimes conferred upon the princesses; and hence, in Mercia especially, we occasionally read of vice-regresses. By these means the laws were better executed and the obedience of the subjects more effectually secured, and the splendor of these residences confantly kept up and augmented.

In length, the crown devolving sometimes on minors and sometimes on weak princes, intestine factions also prevailing, the force of this hitherto mighty kingdom began sensibly to decline. This falling out in the days of Egbert, the most prudent as well as the most potent monarch of the West-Saxons, he took advantage of these circumstances; and having encouraged the East-Angles to make an attempt for the recovery of their independance, he, in a conjuncture every way favourable to his design, broke with the Mercians, and after a short war obliged them to submit. But this was not an absolute conquest, the kings of Mercia being allowed by him and his successors to retain their titles and dominions, till the invasion of the Danes put an end to their rule, when this kingdom had subsisted above 350 years; and when the Danes were afterwards expelled by the West-Saxons, it sunk into a province, or rather was divided into many.

MERCURIAL, something consisting of, or relating to, mercury.

MERCURIALIS (Jerom), an eminent Italian physician.
physician, born at Forli in 1530, where he first practiced; but afterwards was professor of medicine successively at Padua, Bologna, and Pisa. His writings in phyllic are very numerous; besides giving an edition of Hippocrates in Greek and Latin, with notes, which, however, did not answer the expectations of the learned. He died in 1606; and in 1644 some select pieces of his were published at Venice in one volume folio.

MERCURIALIS, MERCURY, in botany: A genus of the emendaria order, belonging to the dicotyledonous class of plants; and in the natural method ranking under the 38th order, Triones. The calyx of the male is tripartite; there is no corolla, but nine or twelve stamens; the anther globular and twin. The female calyx is tripartite; there is no corolla, but two styles; the capsule bicoccous, bilocular, and monosperous. There are three species. 1. The annua, or French mercury, with spikset flowers, male and female. This is an annual plant, with a branching stalk about a foot high, garnished with spear-shaped leaves of a pale or yellowish green colour. The male plants have spikes of herbageous flowers growing on the top of the stalks; these fall off soon; but the female plants, which have tectillated flowers proceeding from the side of the stalks, are succeeded by seeds, which, if permitted to scatter, will produce plenty of plants of both sexes. 2. The annua sibirica, or Siberian or dog's mercury, with spikset and tectillated flowers, grows under hedges and in woods in many parts of Britain. This has a perennial root, which creeps in the ground; the stalks are single, and without branches, rising 10 or 12 inches high, garnished with rough leaves, placed by pairs at each joint of a dark green colour, indented on their edges; these have their male flowers growing in spikes, upon different plants from those which produce seeds. 3. The tomentosa, or shrubby hairy mercury, is a native of the south of France, Spain, and Italy. It has a shrubby branching stalk, growing 2 and half feet high, garnished with oval leaves placed by pairs, and beyond which are scattered with a white down on both sides. The male flowers grow in short spikes from the side of the stalks upon different plants from the first. All the species are easily propagated by seeds, and are apt to become troublesome weeds where they have once got a footing.

Properties. The perennis, according to Mr Lightfoot, is of a fooporic deleterious nature, noxious both to man and beast. There are instances of those who have eaten it by mistake instead of chenopodium, bonns Henricus, or English mercury, and have thereby slept their life. In the Isle of Skye, it is called hagden-bracadale; and an infusion of it is sometimes taken to bring on a salivation; but as the author knows not how the experiment answers. Tournefort informs us, that the French make a syrup of the juice of the annua, two ounces of which is given as a purge; and that they use it in pears and clysters, mixing one quantity of honey to one and a half of the juice. Mr Withering differs greatly from Lightfoot concerning the qualities of the perennis. "This plant (says he), dressed like spinach, is very good eating early in the spring, and is frequently gathered for that purpose; but it is said to be hurtful to sheep. Mr Ray relates the case of a man, his wife, and three children, who experienced highly deleterious effects from eating it fried with bacon; but this was probably when the spring was more advanced, and the plant become acrimonious. Steeped in water, it affords a fine deep blue colour. Sheep and goats eat it; cows and horses refuse it.

MERCURIFICATION, in metallurgic chemistry: the obtaining the mercury from metallic minerals in its fluid form. For the effecting this, those who have been engaged in these researches have proposed three methods. The first is by means of a certain mercury, so prepared as to have a dissolving power, by which it could take up the mercury of metals in the same manner as water dissolves salt from salt. The second is by means of certain regenerating salts, such as sal ammoniac, which are to detain the more earthy parts of metals, and leave their mercury separate or separable from them by sublimation or otherwise; and the third method is by means of a large lens or burning-glass, in the focus whereof, if any metal be applied, its mercurial part is said to separate and go off in fume, which when collected and condensed, appears to be running mercury.

The first of these methods would be very easy if the proper mercury were to be readily produced; the second is extremely laborious, and requires much patience and repetition. But the third seems easy enough, and practicable to advantage, when a glass of three or four feet in diameter is at hand, the sky clear, and the sun shines strong.

For other processes, the reader may consult Junker's Confectus Chemie. But these mercuriurised metals, or their mercurial principle rendered sensible, are a kind of philosophical mercury, which although they resemble ordinary mercury, are nevertheless said by persons exercised in such studies, to differ from it considerably, by having a greater specific gravity, by more effectually penetrating and dissolving metals, by a stronger adhesion to these, and by a less volatility.

MERCURY, in natural history. See Chemistry-Index. See also Metallurgy, and Quicksilver.

The use of mercury in medicine seems to have been little known before the 15th century. The ancients looked upon it as a corrosive poison, theo'f itself perfectly void of acrimony, taste, and smell; there are examples of its having been lodged for years in cavities both in bones and fleshly parts, without its having injured or affected them. Taken into the body in its crude state, and undivided, it passes through the intelliines unchanged, and has not been found to produce any considerable effect. It has indeed been recommended in athmas and disorders of the lungs; but the virtues attributed to it in these cases have not been warranted by experience.

Notwithstanding the mildness and inactivity of crude quicksilver undivided; yet, when resolved by fire into the form of fume or otherwise divided into very minute particles, and prevented from re-uniting by the interposition of proper substances, or combined with mineral acids, it has very powerful effects; affording the most violent poisons, and the most excellent remedies with which we are acquainted.

The mercurial preperation, either given internally or introduced into a habit by external application,
Mercury, as used in medicine, has been employed in a vast variety of different forms. But there is reason to believe, that every useful purpose to be answered by mercury may be obtained from a very few. The mercurial preparations in general, with a view to their use both externally and internally, may be divided into two great classes, the mild and the acrid. Almost every purpose to be answered by the former, may be accomplished by the unguentum hydrargyro and pilulæ ex hydrargyro of the London and Edinburgh pharma­copiae; while most of the effects to be obtained from the latter may be derived from the proper use of those preparations, hitherto generally known under the title of calomel, and corrosive sublimate mercury.

The marks of pure mercury are, its globules not times indeed by its weight. But it is seldom attended with (and may be managed so as to promote excretion through all the emunctories. Hence their common use in inveterate chronic disorders, and oblitinate obstructions of the excretory glands; in scrophulous and cutaneous diseases; and in the venereal ones. If their power be not restrained to certain emunctories, they tend chiefly to affect the mouth, and occasion a plentiful evacuation from the faecal glands.

The fatal effects of mercurials do not depend on the quantity of sensible evacuation. This medicine may be gradually introduced into the habit, so as, without occasioning any remarkable discharge, to be productive of very happy effects. To answer this purpose, it should be given in very small doses, in conjunction with such substances as determine its action to the kidneys or the pores of the skin. By this method, inveterate cutaneous and venereal diseases have been cured, without any other sensible excretion than a gentle increase of perspiration or urine. Where there are ulcers in any part, they discharge for some time a very fetid matter, the quantity of which becomes gradually less, and at length the ulcer kindly heals. If the mercury should at any time, from cold, or the like, affect the mouth, it may be restrained by omitting a dose, and by warmth, or suitable medicines promoting the perspiration.

Cooling purgatives are also often employed with advantage; but perhaps the most effectual means of giving with safety a sudden check to a mercurial salivation, is by the application of a large blister to the back.

Mercury, as used in medicine, has been employed in a vast variety of different forms. But there is reason to believe, that every useful purpose to be answered by mercury may be obtained from a very few. The mercurial preparations in general, with a view to their use both externally and internally, may be divided into two great classes, the mild and the acrid. Almost every purpose to be answered by the former, may be accomplished by the unguentum hydrargyro and pilulæ ex hydrargyro of the London and Edinburgh pharmacopœias; while most of the effects to be obtained from the latter may be derived from the proper use of those preparations, hitherto generally known under the title of calomel, and corrosive sublimate mercury.

The marks of pure mercury are, its globules not falling their spherical figure when poured on wood; its not communicating a tinge to water, or sweetness to vinegar, when rubbed with them; its evaporating entirely in an iron spoon over the fire; and its having a thinning appearance without any pellicle on its surface. Mercury is best purified by distillation in an iron pot, with a long neck bent and immered in vinegar.

Quicksilver has sometimes been used in its pure metallic state, with the view of removing obstructions in the alimentary canal from an idea that it would operate by its weight. But it is seldom attended with a good effect, and sometimes it must do harm.

Whole volumes have been written respecting its operation and use in different diseases, and particularly in venereal affections. Some refer its operation to an evacuant power, others to its operating as a peculiar stimulus, and a third set to its poising a power of destroying or neutralizing the venereal virus. Of their opinions, the latter is the most generally received, and perhaps the best founded. But for a more full view of the controversy, we may refer our readers to later publications on the venereal disease, and on mercury, by Mr John Hunter, Dr Schwede, and Dr Duncan.

In virulent gonorrhœa, it is doubted whether mercury be necessary. This disease is commonly treated like any similar inflammation: and the chief things attended to are cleanliness of the parts, a regular belly, and an abstinence from everything stimulant in food, drink, &c. An injection of oil with calomel, or white precipitate, is much used, and some prefer a watery solution of opium. The more active injections have sometimes very disagreeable consequences.

When the constitution is affected, which is known by ulcers on the glands, buboes, ulcers in the mouth or throat, copper-coloured spots and ulcers on the surface, nodes, &c. mercury is thrown into the body either by friction or by the mouth. The general rule is, to keep up a light former of the gums for some short time after the symptoms disappear; at the same time it is to be remembered, that mercury sometimes continues gleet, and induces ulcers, that are difficultly distinguished from venereal ones; and that these last only yield to warm bathing, diaphoretic diluents, opiate, country air, and milk diet. Corrosive sublimate is sometimes used, as more speedily arresting disagreeable, spreading, or dangerous ulcers; but the completion of the cure should always be trusted to the mild preparations alone. Mercury is also used in rashes canina, in worms, in hydrocephalus internus, in tetanus, and is by some considered as an antidote to the variolous matter.

Mercury, in the heathen mythology. See Hor­nes.

Most of the actions and inventions of the Egyptian Mercury have likewise been ascribed to the Grecian, who was said to be the son of Jupiter and Maia, the daughter of Atlas. No one of all the heathen divinities had so many functions allotted to him as this god: he had constant employment both day and night, having been the common minister and messenger of the whole Pantheon; particularly of his father Jupiter, whom he served with indefatigable labour, and sometimes indeed in a capacity of no very honourable kind. Lucian is very pleasant upon the multitude of his avocations; and, according to the confession of the emperor Julian, Mercury was no hero, but rather one who inspired mankind with wit, learning, and the ornamental arts of life, than with courage. The pious emperor, however, omits some of his attributes; for this god was not only the patron of trade, but also of theft and fraud.

Amphion is said, by Pausanias, to have been the first that erected an altar to this god; who, in return, invested him with such extraordinary powers of music (and maeniany), as to enable him to fortify the city of Thebes in Bocotia, by the mere sound of his lyre.

Horace gives us the best part of his character.

Then god of wit, from Atlas sprung,
Who by persuasive pow'r of tongue,
And
Mercury.

And graceful exercise, refrain'd
The savage race of human kind,
Hail! winged messenger of Jove,
And all th'immortal pow'rs above.
Sweet parent of the bending lyre,
Thy praise shall all its sounds inspire.
Artful and cunning to conceal
Whatever in sportive theft you steal,
When from the god who gilds the pole,
'Tis yet a boy, his herds you fleote;
With angry voice the threatening pow'r
Bade thee thy wanton play restore;
But of his quiver too beguil'd,
Please'd with the cheift, Apollo smil'd.

You were the wealthy Priam's guide,
When safe from Agamennon's pride,
Through hostile camps, which round him spread
Their watchful fires, his way he sped.
Unspotted spirits you confign
To blissful seats and joys divine;
And, pow'rful, with thy golden wand,
The light, unbounded crowd command;
Thus grateful does thy office prove
To gods below, and gods above.

This ode contains the substance of a very long hymn
to Mercury, attributed to Homer. Almost all the ancient poets relate the manner in which the Grecian Mercury discovered the lyre; and tell us that it was an instrument with seven strings; a circumstance which makes it essentially different from that said to have been invented by the Egyptian Mercury, which had but three. However, there have been many claimants besides Mercury to the seven-stringed lyre. See Lyre.

His most magnificent temple was on mount Cylene, in Arcadia. He is described by the poets as a fair beardless youth, with flaxen hair, lively blue eyes, and a smiling countenance. He has wings fixed to his cap and sarcards, and holds the caduceus (or staff surrounded with serpent; with two wings on the top) in his hand; and is frequently represented with a purse, to show that he was the god of gain. The animals sacrificed to him, were the dog, the goat, and the cock. In all the sacrifices offered to him, the tongues of the victims were burnt; and those who escaped imminent danger sacrificed to him a calf with milk and honey.

Mercury, y in astronomy. See Astronomy, Index.

This planet is brightest between his elongations and superior conjunction, very near to which last he can generally be seen. He becomes invisible soon after he has found his elongation, going towards his inferior conjunction; and becomes visible again a few days before his next elongation. The brightnes of this planet alters sometimes very considerably in 24 hours. It has been observed when less than three degrees distant from the sun, and may, perhaps, sometimes be seen even in conjunction with it.

Mercury and Venus appear brightest and most beautiful in the opposite parts of their orbits: the first, between his elongations and superior conjunction; and the other, between her elongation and inferior conjunction. Therefore, Venus is seen in great perfection as a crescent, particularly in her inferior conjunction, whilst Mercury is seldom seen in such perfect phases. Mercury should always be observed on or near the meridian. When farthest from the sun, he always appears with a very faint light; and when he has a great south declination, or the atmosphere is not perfectly clear, he seldom can be seen in those parts of his orbit, where he only begins to recover his brightness, or where it is much diminished. He has frequently been seen on the meridian even with a small telescope and small power; and it appears from the above statement that he may be observed in a clear day rather more than half his orbit, or near one hundred and four score days in the year.

Mercury, in heraldry, a term used in blazing by planets, for the purple colour used in the arms of sovereign princes.

Mercy, a virtue that inspires us with compassion for our brethren, and which inclines us to give them alacrity in their necessities. Mercy is also taken for those favours and benefits that we receive either from God or man, particularly in the way of forgivenesses of injuries or of debts. Nothing can be more beautiful than the description of mercy given us by Shakespear, in the pleading between Portia and the Jew:

Por. Then must the Jew be merciful.
Shy. On what compulsion must I? tell me that.
Per. The quality of mercy is not strain'd;
It droppeth as the gentle rain from heaven.
Upon the place beneath. It is twice blest;
'Ftwas made on earth to bless and comfort man;
'Tis mightied in the mighty; and it is
The crowned monarch better than his crown;
The sceptre shows the force of temporal power,
The attribute to awe and majesty,
Wherein doth sit the dread and fear of kings;
But mercy is above this sceptred sway,
It is enthroned in the hearts of kings;
It is an attribute of God himself,
And earthly power doth then show like God's;
When mercy seales justice. Therefore, Jew,
Though justice be thy plea, consider this,
That in the course of judgement none of us
Should feel salvation. We do pray for mercy;
And that same prayer doth teach us to render
The deeds of mercy.

Mercury-seat, or propitiatory, in Jewish antiquity, the covering of the ark of the covenant.—The Hebrew name of this cover, which we transliterate mercy-seat, is Capporeth (Exod. xxv. 17, 22.), from Cappir, which signifies to cover, to stop up, to expiate, to pay. This cover was of gold, and at its two ends were fixed the two cherubims of the same metal, which by their wings extended forwards, seemed to form a throne for the majesty of God, who in scripture is represented to us as sitting between the cherubims, and the ark itself was as it were his footstool. It was from hence that God gave his oracles to Moses, or to the high priest that consulted him, (Exod. xxv. 22. Numb. vii. 39.)

Meretrix, among the Romans, differed from the profibula. The profibula were common courtezans, with bills over their doors, signifying their profession, and

and
The merganser, or crested diver of Catesby, has a globular crest, white on each side; and the body is brown above and white below. This elegant species inhabits North America. It appears at Hudson's Bay the end of May, and builds close to the lakes—The nest is composed of grass, lined with feathers from the breast; the number of eggs from four to six. The young are yellow, and are fit to fly in July. They all depart from thence in autumn. They appear at New York, and other parts of Virginia and Carolina, in November, where they frequent fresh waters. They return to the north in March; and are called at Hudson's Bay Omija jeep.

2. The merganser, or goosander, weighs four pounds: its length is two feet four inches; the breadth three feet. The bill is three inches long, narrow, and finely toothed or ferrated; the colour of that and of the irides is red. The dun-diver, or female, is less than the male: the head and upper part of the neck is ferruginous; the throat white: the feathers on the hind part of the neck is of a deep grey, the legs of a lead colour; the greater quill-feathers are black, the lesser white; the breast and middle of the belly are white, tinged with yellow. The goosander seems to prefer the northern situations to those of the south, not being seen in the last except in very severe fawsions. It continues the whole year in the Orkneys: and has been shot in the Hebrides in summer. It is common on the continent of Europe and Asia, but most towards the north. It is found also in Iceland and Greenland, and breeds there, retiring southward in winter, at which time it is found about the lake Baikal. It is frequent in America; inhabits the flate of New York in winter; retires from thence in April, probably to Hudson's Bay; and, if it be the bird called a Fissermanduck, found also in Carolina.

3. The ferraror, or red-breasted merganser, weighs about two pounds: the length is one foot nine inches, the breadth two feet seven; the bill is three inches long; the lower mandible red; the upper duckly; the irides a purplish red; head and throat a fine changeable black and green; on the former a long pendent crest of the same colour; the tail short and brown; the legs orange-coloured. The head and upper part of the female are of a deep rusky colour, and the tail ash-coloured. These birds are most frequent in the northern parts of Great Britain. They are observed to breed on Loch Mari, in the county of Ross, and in the lily of Ilay. The species is common in most parts of Europe and the continent; and as high as Iceland, where it is called Vetus-aur: also in the Russian dominions, about the great rivers of Siberia, and the lake Baikal. It is likewise frequent in Greenland in the summer, where it breeds on the shores. The eggs are like those of a wild duck, but smaller and whiter. It dives well, and is very active in the water; but the Greenlanders often take it by darts thrown at it, especially in August, being the time when it is in nurse. It is frequent in the daytime, and often appears at Hudson's Bay in small flocks, but is observed to be of a larger size there than in Europe. They generally come in pairs the beginning of June, as soon as the ice breaks up; make the nest soon after their arrival, chiefly on dry spots of ground in the islands, and lay from eight to thirteen white eggs, the size of those of a duck: the nest made of withered grass, and lined with the down of the breast. The young are of a dirty brown, like young goslings. They all depart south in October to the lakes, where they may have open water. They are known at Hudson's Bay by the name of As-fick.

4. The albellus, or fnew, weighs about 34 ounces: its length 18 inches; its breadth 26; the bill is near two inches long, and of a lead colour; the head is adorned with a long crest, white above and black beneath: the head, neck, and whole under part of the body, are of a pure white; the tail is of a deep ash-colour, the legs of a bluish grey. The female loth-diver, is less than the male: the back, the scapulars, and the tail, are dusky; the belly is white. The fnew is seen in England only in winter, at which season it will sometimes be met with at the southern parts of it; as also in France, in the neighbourhood of Picardy, where it is called la Piette: similar to this, we have heard it is called in Kent by the name of magpie-diver. On the continent we find it as far south as Carniola; frequents also Iceland, at which place or some other arctic region, it passes the summer; and where it in course breeds, probably along with the other Merganers; as it has been observed to migrate, in company with those birds, several kinds of ducks, &c. In their course up the Wolga, in February. It also inhabits America, having been sent from New York, where it is probably a migratory species, as in Europe.

5. The minutus, or red-headed fnew, weighs about 15 ounces; the length one foot four inches, the breadth one foot eleven: the bill is of a lead colour; the head slightly crested, and of a ruff colour: the hind part of the neck is of a deep grey, the forepart clouded with a lighter colour of the same kind: the back and tail are of a dusky ash-colour, the legs of a pale ash-colour. It is a native of Europe. Birds of this genus (Mr Latham observes) "are in general not so well-flavoured as those of the duck kind; yet we have often met with the last species in the London markets, and by some they are thought to be very little inferior to the wild duck; which last now and then partakes of the fifty haut gout, a flavour not disagreeable to the palates of the connoisseurs in good eating."

MERIAN (MARIA SYBILIA), a celebrated painter, born at Frankfort in 1647, was the daughter of Matthias Merian, a noted engraver and geographer. As she showed a very early fondness for painting, she was instructed by Abraham Mignon; from whom she learned great neatness of handling and delicacy of colour.
M E R

Merida. Her genius particularly led her to paint reptiles, flowers, and insects, which she designed after nature, and studied every object with a most curious and inquisitive observation; so that her works rose every day more and more into reputation. Frequently she painted her subjects in water-colours on vellum, and finished an astonishing number of designs, as she was equally indefatigable in her work and her enquiries into the curiosities of nature. She drew the flies and caterpillars in all the variety of changes and forms in which they successively appear from their quaintest state till they become butterflies; and also drew frogs, toads, serpents, ants, and spiders, after nature, with extraordinary exactness and truth. She even undertook a voyage to Surinam, to paint those insects and reptiles which were peculiar to that climate; and at her return to her own country published two volumes of engravings after her designs, which are well known to the curious. She died in 1717. Her daughter Dorothea Henrietta Graff, who painted in the same style, and had accompanied her mother to Surinam, published a third volume collected from the designs of Sibylla; which complete work has been always admired by the learned, as well as by the professors of painting.

MERIDA, a strong town of Spain, in Estremadura, built by the Romans before the birth of Christ. Here are fine remains of antiquity, particularly a triumphal arch, but not now what it was formerly. It is seated in a fertile and fertile plain, 47 miles east of Elva, and 45 south by east of Alcantara. W. Lon. 6° 4'. N. Lat. 38° 42'.

MERIDA, a town of North America, in New Spain, and capital of the province of Yucatan, where the bishop and the governor of the province reside. It is inhabited by Spaniards and native Americans; is 30 miles south of the sea, and 120 N. E. of Campeachy. W. Lon. 89° 25'. N. Lat. 20° 15'.

MERIDA, a town of South America, in the kingdom of New Granada, seated in a country abounding with all kinds of fruits, 120 miles N. E. of Pampeluna. W. Lon. 71° c. N. Lat. 8° 30'.

MERIDEN, or MIREDEN, a town of Warwickshire, 97 miles from London, in the London road, near Coventry. It is pleasantly situated, though in a wet clayey situation, and is not ill built. The church stands on an elevated spot, and contains some good monuments. There is an inn here, about half way from St. Clement's forest to Coventry, one of the finest in this part of England, being built like a nobleman's seat.

MERIDIAN, in geography, a great circle supposed to be drawn through any part on the surface of the earth, and the two poles; and to which the sun is always perpendicular at noon. See Geography.

In astronomy, this circle is supposed to be in the heavens, and exactly perpendicular to the terrestrial one. See Astronomy.

MERIDIANI, in antiquity, a name which the Romans gave to a kind of gladiators who entered the arena about noon after the beastiarii (who fought in the morning against beasts) had finished. They were thus called from meridies, i. e. noon, the time when they exhibited their fhes. The meridiani were a sort of artless combatants, who fought man with man, sword in hand. Hence Seneca takes occasion to obverse, that the combats of the morning were full of humanity compared with those which followed.

MERIDIONAL DISTANCE, in navigation, the fame with departure, or ealling and westing; being the difference of longitude between the meridian, under which the ship now is, and any other meridian which she was under before.

MERIDIONAL parts, miles, or minutes, in navigation, are the parts by which the meridians in a Mercator's chart do increase, as the parallels of latitude decrease.

MERIONETHSHIRE, a county of North Wales, is bounded on the north by Caernarvonshire and Denbighshire; on the east by Montgomeryshire; on the west by St. George's Channel, or the Irish sea; and on the south by the river Dyfi, which parts it from Cardiganshire; extending 40 miles in length and 36 in breadth. It is divided into six hundreds, in which are four market-towns, 37 parishes, about 2550 houses, and 17,100 inhabitants. It lies in the diocese of Bangor, and sends one member to Parliament. The air is very sharp in winter on account of its many high barren mountains; and the soil is as bad as any in Wales, being very rocky and mountainous. However, this county feeds many sea-flocks of sheep, many goats, and large herds of horned cattle, which find pretty good pasturage in the valleys. Besides these, among their other commodities may be reckoned Welsh cotton, deer, fowl, fish, and especially herrings, which are taken on this coast in great plenty.

MERIT, signifies desert. This term is more particularly applied to signify the moral goodness of the actions of men, and the rewards to which those actions intitle them.

MERLIN (Ambrose), a famous English poet and reputed prophet, flourished at the end of the 5th century. Many surprising and ridiculous things are related of him. Several English authors have represented him as the son of an incubus, and as transporting from Ireland to England the great stones which form Stonehenge on Salisbury plain. Extravagant prophecies and other works are also attributed to him, on which some authors have written commentaries.

MERLIN, in ornithology. See Falco.

MERLON, in fortification, is that part of a parapet which is terminated by two embrasures.

MERLUCIUS, the HAKE, in ichthyology.

MERLIN, in fortification, is that part of a parapet which is terminated by two embrasures of a battery.

MERLUCIUS, the Hake, in ichthyology. See Gadus.

MERMAID, or MERMAN, a sea-creature frequently talked of, supposed half human and half a fish.

However naturalists may doubt of the reality of mermen or mermaids, we have testimony enough to establish it; though, how far these testimonies may be authentic, we cannot take upon us to say. In the year 1187, as Larray informs us, such a monster was fished up in the county of Suffolk, and kept by the governor for six months. It bore so near a conformity with man, that nothing seemed wanting to it but speech. One day it took the opportunity of making its escape; and plunging into the sea, was never heard of. Hist. de Anglet. P. 1. p. 403.

In the year 1430, after a huge tempest, which broke down the dikes in Holland, and made way for
Mermaid

The sea into the meadows, &c. Some girls of the town of Edam in West-Fryzeeland, going in a boat to milk their cows, perceived a mermaid embrazed in the mud, with a very little water. They took it into their boat, and brought it with them to Edam, drest it in women apparel, and taught it to sing. It fed like one of them, but could never be brought to offer at speech. Some time afterwards, it was brought to Haarlem, where it lived for some years, though still showing an inclination to the water. Parival relates, that they had given it some notion of a Doity, and that it made its reverences very devoutly whenever it passed by a crucifix. *Delicia de Hollandica.*

In the year 1560, near the island of Manar, on the western coast of the island of Ceylon, some fishermen brought up, at one draught of a net, seven mermen and mermaids; of which several Jefuits, and among the rest F. Hen. Henriques and Dimas Boquez, physicians to the vicerey of Goa, were witnesses. The phyician who examined them with a great deal of care, and made dissection thereof, afferts, that all the parts both internal and external were found perfectly comparable to those of men. See the *Hiift. de la compagnie de Tefus,* P. II. T. IV. n° 276, where the relation is given at length.

We have another account of a merman, seen near the great rock called the *Diamond,* on the coast of Martinico. The persons who saw it, gave in a precise description of it before a notary. They affirmed that they saw it wipe its hand over its face, and even heard it speak.

Another creature of the same species was caught in the Baltic in the year 1531, and sent as a present to Sigismund king of Poland, with whom it lived three days, and was seen by all the court. Another very young one was taken near Rocca de Sintra, as related by Damian Goes. The king of Portugal and the scientists to the viceroy of Goa, were supplied with the evidences of its ancient existence by Gojam, on the eastern coast of Abyssinia.

The name Merode, or Merodach, is by some derived from *Merodach, son of Nebuchadnezzar the Great,* and had for his successor the wicked Belshazzar. Merodach-baladan, son of Baladan king of Babylon, hearing that Hesekiah had been cured miraculously (1 K. xxxiii.), and that the fun had gone backwards to give him an assurance of his recovery, sent him presents, and made him compliments upon the recovery of his health. Ptolemy calls him *Mardocempadus*; and says, that he began to reign at Babylon 26 years after the beginning of the era of Nabonassar, that is, in the year of the world 2283.

MEROE (anc. geog.), an Island of Ethiopia beyond Egypt, in the Nile; with a cognominal town, the metropolis of the Ethiopians.

The Jesuits have endeavoured to prove, that the province of Gojam in Abyssinia is the Meroë of the ancients; but this is strongly contested by Mr Bruce, who is of opinion that it must be looked for somewhere between the source of the Nile and its union with the Atbara. The latter, he thinks, is very plainly the Attharbas of the ancients; and Pliny says that this stream indoles the left side of Meroë as the Nile does the right, in which case we must suppose him looking southward from Alexandria, otherwise the words would not apply.

We are told by Diodorus Siculus, that Meroë had its name from a sister of Cambyses king of Persia, who died there in the expedition undertaken by that prince against the Ethiopians. His army perished with hunger and thirst in the deserts beyond Meroë, which could not have happened if they had reached Gojam, the latter being one of the most plentiful countries in the world. A further proof that Gojam cannot be the ancient Meroë is, that the latter was included between the rivers Nile and Attharbas, while Gojam is almost entirely surrounded by the Nile. If the ancients were acquainted with Gojam, they must also have been acquainted with the fountains of the Nile, which we certainly know they were not. Pliny says that Meroë, the most considerable of all the islands of the Nile, was called *Athusara,* from the name of its left channel, which cannot be supposed any other than the junction of the Nile and Atbara. He informs us moreover, that the fun was vertical twice in the year, viz. when proceeding northward he entered the 18th degree of Taurus, and when returning he came to the 14th degree of Leo; but this could never be the case with Gojam, which lies in about 10 degrees north latitude.

Again, the poet Lucan describes Meroë by two circumstances which cannot apply to any other than the peninsula of Atbara. One is, that the inhabitants were black; which was the case with the Gymnoi and first inhabitants, and which has been the case with all the rest down to the Saracen conquest; but the inhabitants of Gojam, as well as the other Abyssinians, are fair, at least greatly different in complexion from the blacks; they are also long-haired, and
and nobody imagined that they ever had philosophers or sages among them, which was eminently the case with the ancient inhabitants of Meroe. The other circumstance is, that the ebony tree grew in the island of Meroe, which at this day grows plentifully in the peninsula of Atbara, and part of the province of Kuara, but not in Gojum, where the trees could not subsist on account of the violent rains which take place during six months of the year. Mr Bruce mentions another circumstance quoted from the poet Lucan, which likewise tends to prove the identity of Meroe and Atbara; viz. that though there are many trees in it, they afford no shade. This our traveller found by experience, when returning from Abyssinia through Atbara; "The country (says he) is flat, and has very little water. The forest, though thick, afforded no foot of shade, the hunters for the sake of their sport, and the Arabs for destroying the flies having set fire to all the dry graps and shrubs; which passing with great rapidity in the direction of the wood from east to west, though it had not time to destroy the trees, did yet wither, and occasion every leaf that was upon them to fall, unless in those spaces where villages had been and where water was. In such spots a number of large spreading trees remained full of foliage, which from their great height and being cleared of underwood, continued in full verdure, loaded with large, projecting, and exuberant branches. But even here the pleasure that their shade afforded was very temporary, so as to allow us no time for enjoyment. The sun, so near the zenith, changed his azimuth so rapidly, that every few minutes I was obliged to change the carpet on which I lay, round the trunk of the tree to which I had fled for shelter; and though I lay down to sleep perfectly screened by the trunk or branches, I was presently awakened by the violent rays of a scorching sun, the shade having failed beyond me. In all other places, though we had travelled constantly in a forest, we never met with a tree that could shelve us for a moment, the fire having deprived them of all their leaves."

The heat of Atbara is excessive, the thermometer having been observed at 119°; two of Mr Bruce's company died of thirst, or at least of the consequences of drinking after extreme thirst. The inhabitants live in the greatest misery, and are continually in danger from the neighbouring Arabs, who, by destroying and burning their corn, are able to reduce them to a starving condition. Notwithstanding all their disadvantages, however, they have a manufacture of coarse cotton towels, of a size just sufficient to go round the waist, which pass current as silver money throughout the whole country, with a tree.

MEROM (anc. ggog.) The waters of Merom at which place Jacob and the other confederate kings met to fight Joshua (xii. 5.), are generally supposed by the learned to be the lake Simchon, which lies between the head of the river Jordan and the lake Genefareth; since it is agreed on all hands, that the city Hazor, where Jacob reigned, was situated upon this lake. But others think, that the waters of Merom or Meroms were somewhere about the brook Kihon, since there is a place of that name mentioned in the account of the battle against Sihon (Judg. v. 21.) And it is more rational to think, that the confederate kings advanced as far as the brook Kihon, and to a point which led into the country, to hinder Joshua from penetrating it, or even to attack him in the country where he himself lay encamped, than to imagine that they waited for him in the midst of their own country; leaving all Galilee at his mercy, and the whole tract from the brook Kihon to the lake Simchon.

MEROP (lab. hilt.) one of the Atlanteans. She married Bathyllus the son of Zeus, and like her sisters was changed into a constellation after death. It is said that in the constellation of the Pleiades the star of Merope appears more dim and obscure than the rest, because she, as the poets observe, married a mortal, while her sisters married some of the gods or their descendants.

MEROPS (lab. hilt.) a king of the island of Cos, who married Clymene, one of the Oceanides. He was changed into an eagle, and placed among the constellations. Also a celebrated footstrayer of Perseus in Troas, who foretold the death of his sons Acradius and Amphius, who were engaged in the Trojan war. They fulfilled their father's advice, and were killed by Diomedes.

MEROPS, in ornithology, a genus belonging to the order of pigeons. The bill is crooked, flat, and carinate; the tongue is jagged at the point; and the feet are of the walking kind. 1. The apias, or bee-eater, has an iron-coloured back; the belly and tail are of a bluish green; and the throat is yellow. This bird inhabits various parts of Europe, on the continent, though not in England; yet is said to have been seen in Sweden, and flocks of them have been met with at Anspach in Germany in the month of June. They are now and then seen in Lorraine, though only in pairs; and are not unfrequent in other parts since Kramer talks of their building the nest in the sandy cags of the Danube. They are met with in Italy and the south of France; and in Candal and other islands of the Mediterranean, they are in plenty, as well as in Palestine and Arabia, being very common in the woods about Yemen, where they are called Schegghagh. It takes the name of bee-eater from its being very fond of those insects; but, besides these, it will catch gnats, flies, cicadae, and other insects, on the wing, like the swallow. Willughby tells us, from Belon, "that its singular elegance invites the Candy boys to hunt for it with cicades, as they do for their greater swallows called faviets after this manner:—Bending a pin like a hook, and tying it by the head to the end of a thread, they thrust it through a cicada (as boys bait a hook with a fly), holding the other end of the thread in their hands: the cicada, fo fastened, flies nevertheless in the air; which the Merops flying, flies after it with all her force; and catching it, swallows pin and all, whereon the cicada is caught."—This bird is said to be in most plenty in the isle of Candia; and, in defect of insects, to eat seeds of many kinds; and Ray fuppofes, from its similarity to the kingsifher, it may possibly feed on fish. Most probably some think it good to eat, as Willughby saw many of them exposed for sale in the markets of Rome. These birds make their nests in deep holes in the banks of rivers, like the sand martin and kingsifher, at the end of which the female lays from five to seven white eggs, rather less than those of
of a blackbird. The nest itself is composed of moss.

2. The virides, or Indian bee-eater, is green, with a black belt, on the breast; and the throat and tail are black. It inhabits Bengal. 3. The congener is yellowish, with a green rump. If inhabits the south of Europe.

4. The superciliosus is green, with a white line both above and below the eyes, and a yellow throat. It is found in Madagascar, where the natives give it the name of Patirrh Tircich. 5. The cinereus is variegated with red and yellow, with the two longest quill-feathers of the tail red. It is a native of Mexico.

6. The erythropterus, or red-winged bee-eater, is the size of a cuckow, in length about 14½ inches. The feathers on the upper part of the head, being longer than the rest, give the appearance of a crest; those of the under part are smooth; the plumage for the most part is brown; the feathers are long and pointed and each feather has a streak of white down the middle; under the eye, on each side, is a kind of wattle, of an orange colour; the middle of the belly is yellow; the tail is wedge-shaped, similar to that of the magpie, and the feathers are tipped with white; the bill and legs are brown.—This bird is supposed to be peculiar to New Holland. There are 14 or 15 other species.

MEROVINGIAN CHARACTER, derives its name from Meroûée, the first king of France of that race, which reigned 333 years, from Pharamond to Charles Martel. This race is said by some to have terminated in Childeric III. A.D. 751. There are many MSS. in the French libraries still extant in this character.

MEROZ, (anc. geog.), a place in the neighbourhood of the brook Kifton, whose inhabitants refusing to come to the assistance of their brethren when they fought with Sifera, were put under an anathema (Judg. v. 23). “Curie ye Meroz, says the angel of the Lord; curie ye bitterly the inhabitants thereof: because, &c.” Some have thought that Meroz is the same as Merus or Merom; and this F. Calmet thinks the most probable opinion in this matter. Others will have it, that Meroz was a mighty man, who dwelt near the Kifton and not caring to come, to the assistance of Barak and Deborah, was excommunicated by the angel of the Lord by the sound of 400 trumpets. The angel of the Lord, according to some, was Barak, the general of the Lord’s army; but according to others he was the high-priest for the time being, or a prophet.

MERSÀ, a town of Barbary, pleasantly situated about 11 miles from the city of Tunis, and two from Melcha the site of ancient Carthage. The Bay has here two country-houses, one of them very cooly. work, built by Hassan Bey surnamed the Good. From there are orange gardens reaching almost to the foreshore; on the edge of which is a famous well of sweet water, esteemed the best and lightest in the kingdom. Close to this is a coffee-house, whither numbers of people from the neighbouring places resort to drink coffee, and a glafs of this natural luxury is peculiarly enjoyed in the easterm countries. In the middle of the court is a large mulberry tree, under the shade of which they sit and smoke and play at chess; inhaling the comfortable sea breeze that refreshes this delightful spot. The water is drawn up by a camel with the Persian wheel.

Here are the remains of an ancient port, or couthou, (supposed to be an artificial one), built by the Carthaginians after Sapi had blocked up the old port, nothing but the turret or light-house being left.

MERS or MERSÉ, a county of Scotland, called also Berwickshire. This last name it derives from the town of Berwick, which was the head of the shire before it fell into the hands of the English, and obtained the appellation of Mers or March, because it was one of the borders towards England. It is washed on the south and east by the river Tweed and the German Ocean, bounded on the west by Tweeddale, and on the north by Lothian. It extends 44 miles from east to west, and the breadth amounts to 16. The face of the country is rough and irregular, exhibiting hills, moors, and mooses, with intermediate valleys, which are pleasant and fruitful. It is watered by many streams; and particularly by the famous Tweed, which rising from the same hills that give birth to the Clyde and Aman, runs with a rapid course though Tweeddale forest and Teviotdale, and after a course of 50 miles demerges itself into the German Ocean. Notwithstanding the length of its course, it is not navigable above Berwick, where there is a noble bridge over it, consisting of 15 arches. There is another fine one, called the Union Bridge, at Coldstream. There is a third at Melrofs, a fourth at Pechles, and a fifth at Kelso. The shire of Berwick is generally distinguished into the three divisions of Mers, Lammermuir, and Lauderdale. The Mers is low, pleasant, and tolerably fruitful in corn. Lammermuir is a hilly country, abounding with game, and yielding good pasture for sheep and black cattle. Lauderdale is a tract of land lying on each side of the river Lauder, agreeably varied with hill, dale, and forest, producing good store of corn and pasturage, and giving the title of earl to the family of Maitland; but the most fruitful and populous parts of Berwickshire, are those that lie along the Tweed, and on both sides of the leffer rivers White Water, Black Water, and Eye. The feats of noblemen and gentlemen abound in this county.

MERSÉNE, (Marin), a learned French author, born at Oyè, in the province of Maine, anno 1588. He studied at La Fleche at the same time with Des Cartes; with whom he contracted a strict friendship, which lasted till death. He afterwards went to Paris, and studied at the Sorbonne; and in 1611 entered himself among the minors. He became well skilful in Hebrew, philosophy, and mathematics. He was of a tranquil, sincere, and engaging temper; and was universally esteemed by persons illustrious for their birth, their dignity, and their learning.
learning. He taught philosophy and divinity in the convent of Nevers, and at length became superior of that convent; but being willing to apply himself to study with more freedom, he resigned all the posts he enjoyed in his order, and travelled into Germany, Italy, and the Netherlands. He wrote a great number of excellent works: the principal of which are, 1. Opera philosophica in Genres. 2. Harmonicorum libri. 3. De generatione rerum. 4. Cogita physico-mathematica. 5. La verite des Sciences. 6. Les quorums insomiae. He died at Paris in 1648. He had the reputation of being one of the best men of his age. "No person was more curious in penetrating into the secrets of nature, and carrying all the arts and sciences to their utmost perfection. He was in a manner the centre of all the men of learning, by the mutual correspondence which he managed between them. He omitted no means to engage them to publish their works; and the world is obliged to him for several excellent discoveries, which, had it not been for him, would perhaps have been lost.

MERSEY, a river of England, that runs through the counties of Lancaster, York, and Chelten, and empties itself into the Irish sea at Liverpool. By the late inland navigation, it has communication with the rivers Dee, Ribble, Ouse, Trent, Darwent, Severn, Humber, Thames, Avon, &c.; which navigation, including its windings, extends above 500 miles, in the counties of Lincoln, Nottingham, York, Lancaster, Westmoreland, Chelten, Stafford, Warwick, Leicelle, Oxford, Worcester, &c.

Meseta-Island, an island of Efez, at the mouth of the Coln, south of Colchester. It was seized by the Danes in the reign of King Alfred, for their winter-quarters. It had eight parishes, now reduced to two, viz. eaf and west Mersey. The island had a block-house; and, in the Dutch war, the parliament put 1000 men in it.

MERULA (George), an Italian of extraordinary parts and learning, born at Alexandria in the duchy of Milan about the year 1420. He taught youth at Venice and Milan for 40 years, and laboured abundantly in reforming and correcting ancient authors. He wrote, and addressed to Lewis Sforza, Antiquitates Vitae Dominii; or "The Actions of the Dukes of Milan," in 10 books, with some other things in the same way. His death, in 1494, is said not to have grieved any body; as he lived in a state of war with, and abus'd, almost all his contemporaneous scholars.

MERULA (Paul), born at Dort in Holland, a famous lawyer, historian, and linguist, was professor of history in the university of Leyden after Lipius. He wrote, 1. Commentaries on Ennius; 2. The life of Erafimus and Junius; 3. A cosmography; 4. A treatise of law; and died in 1607.

MERULA, or Blackbird, in ornithology. See Turdus.

MERUS, (anc. geogr.), a mountain of the Hither India, hanging over the city Nydia, built by Bacchus, and situated between the rivers Cophen and Indus. The name, denoting the thigh, gave rise to the fable of Bacchus being injured into Jupiter's thigh, and being born twice; because in this mountain he and his army are said to have been preserved, when disease and pestilence raged in the place below.

MESAB, in the general sense, are the fame with Mesenteric.

In common life, mesenteric is more frequently applied to the veins, and mesenteric to the arteries, of the mesentery. See Anatomy.

MESCHED, a considerable town of Persia, and in the province of Khorasan; fortified with several towers, and famous for the magnificent palace of Imam Rida, of the family of Ali, to whom the Persians pay great devotion. It is seated on a mountain near this town, in which are fine torquoise-tons; in E. Long. 50. 25' N. Lat. 37. 0.

MESABANTHEMUM, Fig-marigold, in botany: A genus of the pentagyna order, belonging to the icusancla class of plants; and in the natural method ranking under the 13th order, Suultu, The calyx is quinquefid; the petals are numerous and linear; the capsule is fleshy, inferior, and monoperous. There are between 40 and 50 species; all African plants, from the Cape of Good Hope; near 40 of which are retained in our gardens for variety. Of these only one is annual, and the most remarkable of them all. It is called the eystallinum, diamond ficoides, or ice-plant. It rifes with a ftiff, thick, fucculent stalk, dividing low into many trailing, very thready, fucculent branches, bafangled all over with icy pimpls; very pellicul and glittering; ovul, undulate, alternate, papuloid or pimply, glittering leaves; and from the fides of the branches, numerous, almost close-fitting, white flowers, tinged with red or crimion; succeeded by plenty of feed in autumn. This singular and curious plant, being closely covered with large pellicid pimpls, full of moisture shining brilliantly like diamonds, is in great esteem. It is a very tender plant while young; and is raised annually from feed by means of hot-beds. In June it will endure the open air till October, when it perifes; but if placed in a hot-house in autumn, it will often live all winter. It is commonly planted in pots for the convenience of removing from place to place: but if planted in the full ground, it grows considerably stronger, even to luxuriance: however, when confined in pots, it flowers more abundantly.

The other species are most durable in the, and foliage. Some are shrubby; others pendulous, with look drooping stems, and branches inclining to the ground; while others have no flakks at all; their leaves are universally very thick, fucculent, fleshy: and of many various shapes, situations; and directions while some are curiously punctured, or dotted with transparent points, and some have pellicid pimpls, as already mentioned; they afford a very agreeable variety at all times in the year, and merit a place in every collection. They are geen-house plants, and are propagated by cuttings of their flakks and branches.

MESABENTHETITIS, or inflammation of the Mesentery. See Medicine.

MESABENTHY, MESENTERIUM, (formed of μεσος, middle.)
ME, in anatomy, a fatty membro

nous body, thus called as being placed in the middle of the intelle

tions, which it connects to one anoth

er. See Anatomy, n° 94.

MESHEES of NETS, the openings or interstices between

the threads.

MESH, or MESS, a term in law, signifying

him who is lord of a manor, and so hath tenants holding of him; yet he

holds himself of a superior lord.

The word is properly derived from maius, quasi minor nates; because his tenure is derived from another, from whom he holds.

MESS also denotes a writ, which lieth where there is lord me

and tenant; and the tenant is dis
tained, on the ground

of the writ, he shall be forejudged of his me

alty, and shall

forthwith pay the

services due from the me

to the superior lord.

MESOCHEM, were musicians among the ancients who presided in concerts, and by beating a wooden disk regularly with their feet, directed the measure of the music. For the purpose of beating time, they wore wooden clogs, called by the ancients crux expeisa; which occasioned the found to be better heard.

MESOCOLON, in anatomy, that part of the me

tery, which, having reached the extremity of the ileum, contracts and changes its name. See Anatomy, n° 94.

SELOGARITHMS, according to Kepler are

the logarithms of the co-sines and co-tangents; the former of which were called by Baron Napier anti-logarithmus, and the latter differentials.

MESOPERATA, the ancient name of the prov

ince of DIAEBECK, in Turky in Asia. It is situated between the rivers Euphrates and Tigirs; having Affyria on the east, Armenia on the north, Syria on the west, and Arabia Deserta with Babylonia on the south. The Hebrews called it Padua-aram (Gen. xxxviii. 2. &c.), and Aram Naharaim (title of Plal. lx.) or Aram of the two rivers, because it was first peopled by Aram father of the Syrians, and is situated between the two rivers already mentioned. This country is much celebrated in scripture, as being the first dwelling of men both before and after the deluge; and because it gave birth to Phaleg, Heber, Terah, Abraham, Nahor, Sarah, Rebekah, Rachel, Leah, and to the sons of Jacob. Babylon was in the ancient Mesopotamia, till by waft labour and industry, the two rivers of the Tigirs and Euphrates were united into one channel.

The plains of Shinar were in the same country. Often they gave it the name of Meopotamia (Deut. xxiii. 4. &c.); and sometimes that of Syria, (Hofra xii. 12.). Balaam son of Beor was of Meopotamia, Deut. xxiii. 4. Chuffan-nihathain king of Meopotamia kept the Hebrews in subjection some time after the death of Josha, Judg. iii. 8.

MESOPERYGUS, in ichthyology, a term ap

plied to fish fishes as have only one back-fin, and that situated in the middle of the back.

MESPELUS, the Medlar, in botany: A genus

of the pentagynia order, belonging to the icobandia class of plants; and in the natural method ranking under the 46th order, pomaces. The calyx is quinque

quef; the petals are five; the berry is inferior and pentasperaceous. There are seven species, viz.

1. The Germanica, German mefplius, or common mefpliar, ripes with a deformed tree-item, branching ir

regularly 15 or 20 feet high spear-shaped leaves, downy underneath; and large close fitting, white flowers, fingly from the sides of the branches; succeeded by large roundish brown fruit, the size of middling apples, which ripen in October, but are not eatable till beginning to decay. The varieties are, common German mefpliar—smaller Nottingham mefpliar—spear-shaped Italian mefpliar. This species and varieties are all cultivated in the English gardens for the fruit; but the German or Dutch mefpliar, and the Nottingham kind, are the most common; and the latter of which two, though a smaller fruit, is rather preferable for richness and poignancy of flavour. These kinds of fruit are never eatable until they begin to rot; for when firm and sound, they are of a singularly auferle disagreeable taste; yet having lain some time after being gathered, till they begin to assume a flate of decay and became soft, they acquire a delicious flavour, extremely agreeable to many, though to others altogether unpalatable. All these sorts ripen in the latter end of October, or beginning of November; when being gathered, some should be laid in moist bran, in several layers, to forward their decay; others on straw in the fruitery; those in the bran will begin to be ready for use in about a fortnight, and those laid on straw will come gradually forward in succession.

2. The arbutifolia, arbutus-leaved mefpliar, hath a shrubby item, branching erectly five or six feet high lanceolate, crenated, alternate leaves, downy underneath; and from the fides and ends of the branches, small white flowers in clusters; succeeded by small, roundish, purple fruit, like haws.

3. The amelanchier, or shrubby, mefpliar, with black fruit, ripes with several shrubby, slender, hairy items, branching moderately about four feet high, having purplish branches; oval; serrated leaves, downy underneath; and small white flowers, in clusters at the ends of the branches; succeeded by small black fruit.

4. The chame-mefpliar, or dwarf mefpl iar, commonly called baifard quince, hath a shrubby item, branching weakly four or five feet high, having purplish branches; oval, serrated, smooth leaves, on long foot-talls; and from the axillas, purplish flowers, collected into round heads, with narrow, purplish, deciduous bracttes; succeeded by small red fruit.

5. The cotoneaster, commonly called donf quince, ripes with a shrubby, smooth item, branching four or five feet high, the branches slender and reddish; oval entire leaves on short foot-talls; and from the axillas, small close-fitting purple flowers, two or three together succeeded by small roundish, bright-red fruit.

6. The Canadenfis, Canada snowy mefpliar, hath a shrubby, smooth item, branching four or five feet high, with smooth, purplish branches; oval-oblong, serrated, smooth leaves, on long foot-talls; and all the
M E S

Mepilus
Mepilina

[411]

MES

Mepilus
Mepilina

the branches terminated by clusters of snow-white flowers, succeeded by small, purplish fruit, like haws.

7. The pyracantha, or ever-green thorn, rises with a shrubby, spineous stem, branching diffusely 12 or 14 feet high, the branches slender and flexible, with a dark greenish bark, armed with long, sharp spines; spear-shaped-oval, crenated, ever-green leaves; and all the shoots terminated by numerous clusters of white flowers; succeeded by large bunches of beautiful red berries, remaining all winter, and exhibiting a very ornamental appearance.

All these seven species of mepilus are of the tree and shrub kind: the first six sorts are deciduous, the seventh an ever-green; the leaves are universally simple; those of the mepilus Germanica very large, the others mostly of moderate size, and which in most of the sorts grow upon short footstalks. They all flower abundantly every summer, the flowers universally hermaphrodite, and consisting of each of five large roundish petals, 20 stamens, and five styles. They are all very hardy, and succeed in any common soil and situation, and their propagation and culture is very easy.

The first sort and varieties are cultivated as fruit-trees, principally as standards, sometimes also as espaliers for variety. The other species are very proper furniture for any ornamental plantation, where they will make an agreeable variety with their different foliage; and their flowers make a fine appearance, as also their fruit in autumn and winter, which, if not devoured by birds, remain long on the branches, and afford a fine variety in those feasons. The pyracantha, being rather of flexible growth, is most commonly trained against walls or the fronts of houses, both for the supply of any ornamental plantation, where they particularly the apple and pear; and are raised either by those modes of training nearly as other fruit-trees, particularly the plum, cherry, and others, and always in readiness to be sent with all dispatches foreign and domestic.

When it is designed to have any of the common medlar sort of fruit-trees, they may be trained either as dwarfs, for dwarf standards, or for espaliers, or trained as half or full standards, and managed in either of those modes of training nearly as other fruit-trees, particularly the apple and pear; and are raised either by seed, by grafting, or by budding; but either of the two latter methods are most certain for continuing the sorts without variation: observing, after shortening their first shoots from the graft or bud, where it shall seem necessary to form out a proper supply of wood to form a head, to train the branches afterwards principally at full length, and let the standards branch out in their own way.

MESS, in a military sense, implies a number of soldiers, who, by laying away a certain proportion of their pay towards provisions, make together: six or eight is generally the number of each mel. Experience proves, that nothing contributes more to the health of a soldier, than a regular and well-chosen diet, and his being obliged every day to boil the pot: it corrects drunkenness; and in a great measure prevents gaming, and thereby defertion.

MESSALINA (Valeria), a daughter of Meffala Barbatas. She married the emperor Claudius, and disgraced herself by her cruelties and incontinence. Her husband's palace was not the only seat of her licentiousness, but the prostituted herself in the public streets, and few men that were at Rome who could not boast of having enjoyed the favours of the impure Meffalina. Her extravagancies at last irritated her husband, who commanded her to appear and answer all the accusations which were brought against her: upon which she attempted to destroy herself; and when her courage failed, one of the tribunes who had been sent to her dispatched her with his sword. It is in speaking of her debaucheries and lewdness that Juvenal says, Et lasciva virus, medusus satiata, reciit.

Her name has become a common appellation to denote a woman of flameless and inordinate lust.

MESSANA, (anc. geog.), the first town of Sicily on crofing over from Italy, situated on the Eastr called the Faro, (Italics). Anciently called Zancle, according to Diiodorus Siculus, from king Zancus; or, according to others, from the Sicilian term Zonon, denoting a fickle, alluding to the curvity of the coast: a name appropriated by the poets; and hence Zancle, the people, (Herodotus, Pausanias). The other name Meffenia is from the Meffeni of Peloponnesus, (Strabo). Thucydides assigns its origin to Anaxillas the Meffenian, tyrant of Rhegium, who received all comers, calling the town after the name of his country. The Greeks always call it Meffene; the Romans Meffenia constantly, to distinguish it from Meffene of Peloponnesus. Now Messina, lately ruined by earthquakes.

MESSENA, or Messene, an inland town, and the capital of Meffenia, a country of Peloponnesus; erroneously placed by Ptolemy on the coast. It was built by Epaminondas, who recalled all the Meffenian exiles, and gave the town the name of Meffene. A place vying in point of strength and situation with Corinth, according to Strabo; and therefore Demetrius Phalerus advised Philip, father of Perseus, that if he wanted to have Peloponnesus in his power, he should make himself master of these two towns, as thus he would have the ox by both horns.

MESSENGERS, are certain officers chiefly employed under the direction of the secretaries of state, and always in readiness to be sent with all kinds of dispatches foreign and domestic. They also, by virtue of the secretaries warrants, take up persons for high treason, or other offences against the state. The prisoners they apprehend are usually kept at their own house, for each of which they are allowed 6s. 8d. per day by the government; and when they are sent abroad, they have a stated allowance for their journey, viz. 30l. for going to Paris, Edinburgh, or Dublin; 25l. for going to Holland; and to other places in the same proportion; part of which money is advanced to the expense of their journey. Their standing salary is 15l. per annum; and their polls, if purchased, are esteemed worth 300l. The messengers wait 20 at a time, monthly, and are distributed as follows, viz. four at court, five at one secretary's office, five at another, two at the third for North Britain, three at the council-office, and one at the lord chamberlain's of the household.

MESSENGERS, in Scotland. See Law, Part III. p. 654. par. 16.

MESSengers of the Exchequer, are four officers who attend the exchequer, in the nature of pursuivants and carry the lord treasurer's letters, precepts, &c.

MESSENGER of the Privy, a person who, by author-
of the court, searches printing-houses, bookfellers' shops, &c. in order to discover the printers or publishers of libellous books, pamphlets, &c.

MESSENIA, a country in the south of Peloponnesus, mostly maritime, situated between Elea to the west, and Laconia to the east. Anciently a part of Laconica under Menelaus, and called Messena by Homer; interpreted by the scholiast, Messenae Regia. Messini, the people reduced to a state of slavery and subjection by the Spartans; Messenius, the epithet.

This country is famous in history, on account of the resistance made by the Messenians against the Spartans, and the exploits of their hero Aristomenes. The first hostilities commenced about the year 652 B.C. on what occasion is uncertain. Though the Messenians were inferior in the knowledge of the art of war to the Spartans: yet, by keeping for some time on the defensive, they improved so much, that in three years time they found themselves in a capacity of giving battle to their enemies in the open field; nor did they appear to be in any degree inferior either in courage or conduct: the war was therefore protracted, with various successes, on both sides. At last, both consulted the oracle at Delphi; and received for answer, "that whoever should first dedicate one tripos in the temple of Jupiter at Ithome, a strong-hold of the Messenians, should be masters of the country." The inhabitants of Messenia, on hearing this, having no money to make the tripos of brass, fell to cutting them out in wood; but before this could be accomplished, a Spartan having got into the city by stratagem, dedicated one little tripos of clay: which threw the Messenians into such despair, that they at last submitted to the Spartans.

The new subjects of Sparta were treated with the utmost barbarity by these cruel tyrants; so that a new war commenced under Aristomenes, a man of unconquerable valour, and enthusiastically fond of liberty. He perceived that the Argives and Arcadians, who were called the allies of the Lacedaemonians, adhered to them only through fear of their power; but that in reality they hated them, and wished to revenge the injuries they had done them. To these Aristomenes applied; and receiving an answer conformable to his wishes, he engaged his countrymen unanimously to take up arms. About a year after the revolt began, and before either party had received any auxiliaries, the Spartans and Messenians met at a village called Dera, where an obstinate engagement ensued. Aristomenes was conceived to have performed more than mortal achievements: in gratitude therefore, respect being also had to his royal descent, his countrymen unanimously saluted him king; which title he modestly waved, alleging, that he took up arms to set them free, and not to make himself great; he contented however, to accept the title of general, with a power of doing whatsoever he thought requisite for the service of the public. Knowing well the superhuman age in which he lived, he resolved to intimidate the Spartans, by showing them what he was, and what they would take for an ill omen. Dismounting himself therefore, he went privately to the city, where, in the night, he hung up a shield on the wall of the temple of Minerva, with this inscription: Aristomenes dedicates this...
Messenian prisoner: however, he soon afterwards made his escape, and rejoined his forces. In the third year of the war, the Spartans with a great force entered Messenia, whether Arilochares king of Arcadia was come, with a great body of troops, to the assistance of his allies: Arilochares therefore made no difficulty of fighting when the Spartans approached; but they entering privately into a negotiation with Arilochares, engaged him with bribes and promises to betray his confederates. When the battle began, the deceitful Arcadian represented to the forces under his command the mighty danger they were in, and the great difficulty there would be of retreating into their own country in case the battle should be lost: he then pretended that the sacrifices were ominous; and, having terrified his Arcadians into the dispositions of flight, he not only drew them off from both wings, but, in his flight, forced the Messenians to form to the plot, and surrounded them on all sides. Fortune was, on this occasion, too powerful either for the courage of the conduct of the Messenians; so that, notwithstanding their utmost efforts, most of their army were cut to pieces and amongst them the chief of their nobility. Arilochares, with the poor remains of his shattered forces, retired as well as he could; and, perceiving that it was now impossible to maintain the war against the Lacedemonians upon equal terms, he converted his countrymen to fortify Mount Era, and to make the best dispositions possible for a long defence. He likewise placed garrisons in Pylus and Methone on the sea-coasts; and to these three places he gathered all the inhabitants, leaving the remnant of Messenia to the mercy of the Spartans. They, on the other hand, looked on the war as now in a manner finished; for which reason they divided the lands among their citizens and caused them to be carefully cultivated, while they besieged Era. But Arilochares quickly convinced them that the war was far from being over: he choose out of all the Messenians 300 men, with whom he ravaged all the adjacent country; carried off corn, wine, cattle, and whatever else was necessary to the subsistence of his countrymen; thus began in Era: so that at last the Spartans were constrained to issue a proclamation, forbidding the cultivation, not only of the Messenian territory in their hands, but also of Lacedemon in its vicinity; whereby they dispirited themselves more than their enemies, inducing at last a famine in Sparta itself; which brought with it its usual attendant, faction. Here again all things had gone wrong; if the wisdom of the poet Tyrtaeus had not supported the Spartan courage; nor was it without much difficulty that he influenced them to continue the blockade of Era; and to maintain a flying camp for the security of the country.

Arilochares, in spite of all these precautions, committed terrible depredations with his small corps of 300 men. Amongst other places which he plundered, the city of Amyclae was one; from whence he carried not only a great quantity of riches, but also many carriages laden with provisions. The kings of Sparta, lying with their troops in its neighbourhood, as soon as they heard of this expedition, marched after Arilochares with the utmost diligence; and, as the Messenians were encumbered with their baggage, came up with them before they could reach Era. In this situation of things, Arilochares, prompted rather by despair than prudence, disposed his troops in order of battle; and, notwithstanding they were so few, made a long and vigorous resistance against the whole Lacedemonian army. At length, however, numbers prevailed: the greatest part of the Messenians were slain on the spot; and Arilochares, with about 50 of his men who survived the slaughter, were taken prisoners; that chief having received so many wounds, that he was senseless when they carried him away. The Lacedemonians expressed the loudest joy at the sight of this illustrious captive; who for so many years, by his single abilities, had enabled his exhausted country to defend itself against the whole force of Sparta. When he was recovered from his wounds, they doomed him and all his fellow-prisoners to be thrown together into a deep cavern which was the common punishment of the least kind of offenders. This judgment was executed with the utmost severity, excepting that Arilochares had leave to put on his armour. Three days he continued in this dismal place, lying upon and covered over with dead bodies. The third day, he was almost famished through want of food, and almost poisoned with the stench of corrupted carcasses, when he heard a fox gnawing a body near him. Upon this he uncovered his face, and perceiving the fox jutting at him, he with one hand seized one of its hind legs, and with the other defended his face, by catching hold of its jaw when it attempted to bite him. Following as well as he could his fragging guide, the fox at last thrust his head into a little hole; and Arilochares then seizing his leg, he forced his way through, and opened a passage to the water contents, from which the noble Messenian had been so long debarred. Feeble as he was, Arilochares wrought himself an outlet with his nails; and travelling by night with all the expedition he could, at length arrived safe at Era, to the great joy and amazement of his countrymen. When this news was first blazed abroad, the Spartans would have had it pass for a fiction; but Arilochares soon put the truth of it out of doubt, by falling on the posts of the Corinthians, who, as allies of the Spartans had a considerable body of troops before Era. Most of their officers, with a multitude of private men, he flew; pillaged their camp; and, in short did so much mischief, that the Spartans, under the pretence of an approaching festival, agreed to a cession of arms for 40 days, that they might have time to bury their dead. On this occasion, Arilochares for the second time celebrated the hecatomphonia, or the sacrifice appointed for those who had killed 100 of the enemy with their own hands. He had performed the same before and after his second battle; and he lived to do it a third time: which must appear wonderful to the reader, when he is informed, that notwithstanding this truce, certain Cretan archers in the service of the Spartans
The Arcadians, when they heard that Era was taken were very disconsolate, and galling their old federates in this deep distress: they therefore intreated their king Aristeocles to lead them into Messenia. But he, corrupted by the Lacedaemonians, persuaded them that it was too late; that the Messenians were all cut off; and that such a step would only expose them to the fury of the conquerors. When the thing appeared to be otherwise, and it was known that Aristeocles was on the frontiers of Arcadia, they went in crowds to carry him provisions, and to testify their readiness to afford him and those under his command all the assistance in their power. Aristeocles desired to be heard before a general assembly; which being accordingly convened, he there opened one of the boldest and best-laid schemes recorded in history: he said, that he had yet 500 undaunted soldiers, who, at his command, would undertake any thing; that it was very probable most of the Spartans were employed in pillaging Era, and that therefore he determined to march and surprise Sparta: which appeared so feasible that all the assembly loudly commended his great capacity and unshaken courage. Aristeocles, however, took care to betray nothing; having, by various pretences, retarded the execution of the project. The Arcadians, who began to suspect him, waited for and surprised the messengers as they came back. They took the letters from him and read them openly in the assembly. The purport of them was, that they acknowledged his great kindness both now and in the battle; and promised, that the Lacedaemonians would be grateful. As soon as the letters were read, the Arcadians fell tostoning their king, frequently calling upon the Messenians to affit them; which, however, they did not, waiting for Aristeocles's orders; who, far from triumphing in this spectacle, looked with his eyes fixed on the ground, which he wet with his tears, his soul pierced with sorrow to see a crowned head so shamefully and so defervedly put to death. The Arcadians afterwards erected a monument over him, with an inscription to perpetuate his infamy. As for the Messenians under the command of Gorgus and Mantius, they passed over into Sicily; where they founded the city of Messene, one of the most famous in the island. Aristeocles remained, however, in Greece; where he married all his daughters, except the youngest, to perfons of great rank. A prince of Rhodes, inquiring of the oracle at Delphi whom he should espouse, that his subjects might be happy under his polttery, was directed
coming of the Messiah, being infatuated with the notion of a temporal Messiah, who is to be a mighty conqueror, and to subdue all the world. Most of the modern rabbins, according to Buxtorf, believe that the Messiah is already come, but that he keeps himself concealed, and will not manifest himself because of the sins of the Jews. Some of the Jews, however, in order to reconcile those prophecies that seem to contradict each other as to the character and condition of the Messiah, have had recourse to the hypothesis of two M essiahs, who are yet to succeed each other; one in a state of humiliation and suffering; the other of glory, splendor, and power. The first, they say, is to proceed from the tribe of Ephraim, who is to fight against Gog, and to be slain by Amnilus, Zech. xii. 10. The second is to be of the tribe of Judah, and lineage of David, who is to conquer and kill Amnilus, and restore the kingdom of Israel, reigning over it in the highest glory and felicity.

Jesus Christ affords himself the Messiah. In St John iv. 25. the Samaritan woman fays to Jesus, I know that when Messiah comes who is called the Christ, he will tell us all things. Jesus answered her, I that speak to thee am he.

There are several impostors, who have endeavoured to pass for Messiahs, as Christ himself predicted. J. Lent, a Dutchman, has written a history of false Messiahs. "Of false Messiahs." The first he mentions was one Barcochab, who appeared under the empire of Adrian. The last was rabbi Mordecai, who began to be talked of in 1682. A little before him, viz. in 1666, appeared Sabbethai Sebi, who was taken by the Turks, and turned Mahometan.

MESSINA, an ancient, large, handsome, and strong city of Sicily, and in the Vall-di-Demona, with a citadel, several forts, a fine spacious harbour, and an archbishop’s see. It is seated on the sea-side, 110 miles eait of Palermo, 260 south of Rome, and 180 south-east of Naples. E. Long. 15. 50. N. Lat. 38. 10.

The public buildings and the monasteries were numerous and magnificent, and it contained about 60,000 inhabitants; the harbour is one of the safest in the Mediterranean, and extremely deep; the vicerey of Sicily resides here six months in the year; and it was a place of great trade in silk, oil, fruit, corn, and excellent wine, especially since it was declared a free port. This city in the beginning of the year 1783 suffered most dreadfully by the earthquakes, which shook great part of Calabria and Sicily to their foundations, overturned many rich and populous towns, and buried thousands in their ruins: (see Calabria and Earthquakes.) The following account of Messina, as it stood before the above period, is extracted from Mr. Swainburne’s Travels in Sicily.

A large chain of mountains presides upon the shore, and part of the city stands upon elevated ground. The mountains are many of them nobly wooded; the hills before them finely sprinkled with groves and fields. As the town runs in a curve along the edge of a decline, every building consequently is faced to advantage, while the less noble parts are hidden by the Parasutie. This is a regular ornamental range of lofty houses, with 19 gates, answering to as many streets: it follows the semicircular bend of the port for one mile and five poles, and would have been the handsomest line of buildings in Europe had the design been
M E S [416] M E S

There is another church in this city that deserves particular notice, not so much on account of its architecture or ornaments, as for its being the last refuge of the Greek liturgy, which was once the predominant service of the island, but gradually abolished by different conquerors. It is dedicated to the Virgin Mary de Grafico, or of the Letter, which denomination may perhaps have furnished Lascaris with the idea of his letter. It is known at present by the name of la Cattolica. According to the Greek canons, the entrance of monastic churches was reciprocally forbidden to each sex, and the cathedrals were the only places of worship where a daily sacrifice was offered up by the bishop and clergy, and where both men and women were present at the same time, but in different parts of the church. From this general admittance the building acquired the title of Catholic or universal.

Meffina is all paved with lava, cut into large flags of two feet square: a material which the vicinity of lavas renders it easy to procure, and which being very hard resists friction better than any other.

During a series of ages, notwithstanding the various revolutions and calamities to which it has been exposed, this city has still maintained its original situation; while most other cities have shifted their ground more or less from the place where they were first founded. But its situation enjoys advantages which have still tempted such of its inhabitants as escaped from the ravages of war and the destruction of earthquakes, to prefer it to every other spot, however delightful or secure. It is of very ancient origin; and has been under many different races of monarchs; and its name has been repeatedly changed: it has been at different times called Zancle, Mancertina, Mefbeta. Its first name Zancle, which in the old language of Sicily meant 'a sickle', alluding, as some authors suppose, to the form of the port; or, according to authors, to the

(A) The story is as follows: After St Paul had made some stay at Mefbeta (a circumstance of his travels unnoticed by St Luke), the Mefbetaeans prevailed upon him to return to Jerusalem with an embassy of four perfons sent by the city to the Virgin Mary. Their excellencies were graciously received by her, and brought back a letter written with her own hand in the Hebrew tongue, which St Paul translated into Greek. By the irruption of the Saracens this invaluable treasure was lost, and utterly forgotten till the year 1457, when Constantine Lascaris, a refugee Greek, found a copy of it, and turning it into Latin, made it known to the citizens, and then to all the Catholic world. Its authenticity is now so well established at Mefbeta, that Regina the historian candidly acknowledges, that whoever was to confess even a doubt on the subject in that city would be treated as an infidel.

This curious epistle is conceived in these terms: Maria Virginum filia, Dei humillima Christi filia crucificata Mater, ex tribu Iudae Iliphe David, Messanensibus omnibus salutem, et Dei patris omnipotentis benedictiolem. Vos omnes ade magnae largos ac nuncios per publicum docuentem ad nos missive comitam. Ei- hium nostrum Dei genitum Deum et hominem, et ipsum habemus eft patrem et in calum post ilnum reparationem ascendisse, Pauli apostoli electi, praedicato, mediante viam veritatis agnoscere. Ob quod vos et ipsum civitatem beneficium cujus perpetuum proteccrim nos eft volumus. Anno filii nostri XLII. Indici. I. III. Nonas Junii, luna XXVII. feria V. ex Hyerofolymis.

Thus translated:— "The Virgin Mary, daughter of Joachim, most humble mother of God, Jesus Christ crucified, of the tribe of Juda and the family of David, health and the blessing of God the Father Almighty to all the people of Mefbeta. Out of the abundance of your faith, you have, in consequence of a public declaration, sent a deputation to me; and since you acknowledge that my Son is both God and man, and that he ascended into heaven after his resurrection, as you have learned from the preaching of St Paul the apostle, I give my blessing to you and all your city, and agree to become your protector. In the 42d year of my Son, the 18 of the Indiction, the 5d day of June, and the 27th of the moon, at Jerusalem."
of its situation, the Cumes, a commercial and enterprising people, invaded the island and drove the Siculi from this settlement; they were in their turn overpowered by a band of Samian adventurers, who made way for a colony of citizens of Messana, and under these masters it changed its name to Messana. Their government was of short duration; for in the 29th year before Christ it was destroyed by the Mamertines, a warlike unprincipled nation inhabiting the fourth part of Bruttium. These settlers being received into Messana on their return to Italy from Syracusè, who had served as mercenaries in the army of Agathocles, took an opportunity of inflicting upon the inhabitants and usurping their possessions. The city was now called Mamertina; and, in order to support them selves against the resentment of the Sicilian powers, the Mamertines implored the protection of the Romans, who eager to extend their dominion beyond the limits of Italy, and jealous of the growing power of Carthage, made no scruple to succour their affidants with a confiderable army. This step brought on the first Punic war. The Mamertines reaped no other fruit from the alliance but a more honourable degree of slavery; for such was the real nature of their connection with Rome, whatever name it might be dignified under.

Messana was, however, always distinguished by particular attentions and favours from the senate, and, excepting a short period during the wars of the triumvate, appears to have shared all the sweets of Roman prosperity, without partaking of the bitter draughts of adversity. Its fate, in the ruin of the empire, was similar to that of the rest of Sicily. In 829 Messana fell into the hands of the Saracens, but obtained very honourable terms of capitulation; for half the city was left to the Christians, where they were to be governed by their own laws, and profes their own religion undisturbed. In the other refided the bey of the Saracens, and in his palace the Almoravides had divided the island. Notwithstanding this indulgence, Messana was the first to cast off the yoke in 1037, when George Maniaces landed an army of Greeks and Normans on the shore of the Faro. It afterwards held out against the whole Musulman force till the feeble state of a distracted empire that all hopes of assistance from Constantinople. This unfortunate city then opened its gates to the army of the caliph, and felt very severely the weight of his renven- tions; but it did not long groan under the yoke; for in less than 20 years Roger the Norman took it by surprize and delivered it from Mahometan oppression. During the crusade our Richard Cœur de Lion and Philip Augustus king of France wintered here in their way to palestine; a foijourn marked by continual quarrels, confusion, and bloodshed. The Melisene were particularly tardy in entering into the national conspiracy of 1282, but afterwards exceeded the rest of the insurgents in deeds of cruelty: This and the importance of their situation tingled them for the first object of Charles's vengeance. He invaded their city very closely; and declared to openly his determination to refuse all terms whatever to the beguiled that they saw no hopes of safety but in an obstinate defence. Their courage, perseverance, and sufferings were excessive; at length their strength and resources began to fail rapidly, and every circumstance seemed to denounce their speedy destruction, when Roger Lauria appeared off the harbour with the Aragonian fleet, forced the king to retire with precipitation across the straits, and in his flight defeated and destroyed his naval armament. Robert, grandson of Charles I. also made a fruitless attack; but in the disturbed reign of Frederick III. Messina was delivered up to Louis king of Naples and his consort queen Joan, who entered it in triumph. In a few years it returned to its former possessors. The year 1672 was remarkable for the revolt of the Messines.—They threw off the Spanish yoke, and swore allegiance to Louis XIV. king of France. They were for some time vigorously afflicted by the French; but before the Spaniards had gained the least advantage to excite any hopes of recovering to valuable a possession, Louis found himself necessitated from motives of political interest to defeat his new subjects, and leave them to the mercy of their old incensed masters. The horror of being thus abandoned, and the chastisement inflicted by Spain, broke the fierce spirit of the Messines; they were still stunned with the remembrance and effects of this blow, when the plague in 1743 was introduced from the Levant and swept away more than half the inhabitants. From this chain of calamities, the opulence, trade, and population of Messina, have been gradually sinking; and unless very favourable circumstances happen, will very year fall lower. The number of its inhabitants does not now exceed 50,000.

The following particulars are added from M. Houdel, who visited this city since the late earthquakes, which completed its destruction.

On the front of the cathedral there is a square, which though not regular, is far from being mean. This was not the largest square in Messina before its overthrow; but it was the most elegant, the most splendidly adorned, and the best frequented. There stands in this square an equestrian statue of Charles II. of Spain, in bronze, which has been spared by the earthquake. It stands on a marble pedestal, in the middle of the square. Opposite to this statue is an elegant marble fountain, ornamented with a variety of figures representing men and other animals, all of them spouting out water in great abundance; which, instead of being a disagreeable and refreshing coolness over the square, that induced company to assemble here. Seven streets terminated here. The cathedral forms a part of the square. It is dedicated to the blessed Virgin; the occasion of which has been already mentioned.

There is an anniversary feast celebrated in Messina, which is called the feast of the Letter. A lock of the Virgin's hair, which the bent to the Messenians at the same time with the letter, is carried through the city in procession in a crystal vessel. She made also present of her picture to the Messenian deputies. It is placed over the tabernacle. None but the canons of the cathedral are permitted to touch, or take up on their shoulders, the silver frame in which the crystal vessel with the Virgin's hair is deposited. Eight of these canons, with mitres on their heads, bear this frame in the procession. The canons suspended over it is supported by fix senators in their robes. The picture
The procession and the hair are shown to strangers. This
precedence and the other religious ceremonies of this
festival are followed by horse races. The spirits of
the people being already elevated by their religi­
ous exercises, they engage with amazing celerities
in these and the other diversions with which they are
accompanied: a tumultuous joy reigns over the city;
and the evening concludes with illuminations and fire­
works. The ships in the harbour pay the citizens the
compliment of entertaining them with a discharge of
their guns on the occasion.

Through a square called the Square of the Great
Hospital, runs a large and impetuous torrent, the Porto
delle Legni. It is precipitated from those lofty moun­
tains which overlook this city on the south side. The
channel which it has cut out for itself is at times en­
tirely full. It would, on such occasions, overflow the
square and other parts of the city, were it not confined
by walls which have been built on both sides to
prevent such accidents. Another stream of a similar
origin, called the Torrent of La Boccetta, runs through
another part of the city; it is also confined within the
walls to prevent it from overflowing.

The Square of St John of Malta is one of the largest
in Messina. In the middle of this square is a fine
mahogany fountain, ornamented with a variety of sculp­
tured figures and jets d'eau. Besides the fountain there
used to stand a large reservoir for horses to drink out of.

In the time of the annual festivals, there used to be
exhibited on the waters of the reservoir a galley, or ra­
ther a fictitious representation of a galley, with gal­
ley-slaves, soldiers, officers, and a commander on board,
all in arms, and the galley properly equipped as a ship
of war. This galley was decorated with great art;
and by night the masts, and every other furnishable part,
were hung with lamps, which illumined it in a very
splendid manner. Everything around was so artifi­
cially disposed, that when the fire-works were played off, the
spectator was led to think, though he perceived only one galley,
that the noise which he heard was produced by a naval combat; and that the other
ships were concealed from his view by the smoke oc­
casioned by the guns and fire-works. This, when
properly conducted, was a noble spectacle. The fe­
nects repaired thither from the cathedral, attended with a
guard and a numerous company. In one carriage
fix senators, the governor of the city, and sometimes
the archbishop. It was exceedingly large, and drawn by
six white horses very richly harnessed. Other car­
riages followed, with the train who attended the gover­
nor and the senators.

Almost all festivals owe their origin to some extra­
nordinary event, or some singular story either true or
fictitious. It is said, that when the splendid with which the
fall of the Assumption de la Bera was celebrated at
Messina, first began to attract foreigners to the city, on that occasion such crowds repaired thither as to
alarm the inhabitants with the fears of a famine: But
one year, when the number of strangers was greater
than usual at the time of this festival, the magistrates
were very much at a loss how to supply them with
provisions; and at length, every other resource failing
no hopes of relief remained but from the kindness of
the Blessed Virgin. Fervent prayers were addressed to
their patroness: and next morning by day-break three
brigantines appeared entering the harbour with full
fails. They proved to be loaded with corn. It was
eagerly purchased; and the people of the city hailed
it as a God-send. But when they came after
relishing themselves to pay the corn-merchants their
money, neither ships nor merchants could be found.
After their first emotions of surprise had subsided,
they naturally concluded that such a reasonable sup­
ply must undoubtedly be a present from the Virgin,
who, being pleased with the zeal of her Messinian vo­
taries, and desiring to prevent the concourse of stran­
gers who attended the festival from diminishing, had
termed in this miraculous manner to save them from
the diftreusses of famine. A new festival was celebrated
in gratitude to their generous benefactress. Three
small vessels of silver were made, and dedicated to the
Virgin in memory of the event; and these are at pre­
sent used as lamps in the cathedral. The senate like­
wise decreed, that the clergy should pay annually a
small tax, to be laid out in constructing a small galley
for the fleet, which witnessed the fire-works and in defraying the expenses of the fire-works. The profits of the clergy
are considered on the occasion of the festival, that they may be
appropriated to pay the tax with great cheerfulness.

In Messina, as in the other cities of Sicily, the
women wrap themselves in a large black mantle above
the rest of their dresses. The stuffs are richer or plainer ac­
cording to rank and circumstances. People who are
not rich enough to have fine cloths of their own,
hire them at so much an hour. There are women
who make a livelihood by lending out their clothes.

The mantle covers the wearer from head to foot. It
reduces the old and the young, the ill-shaped and the
handsome, pretty much to an equality in point of
appearance. This must naturally appear very unfa­
vourable to the influence of beauty. But yet, on pro­
per occasions, at church or in a public walk, the la­
dies of Messina find means to open and adjust the
mantle so as to display all their beauties of face and
shape, and to attract the affections of lovers, perhaps
more powerfully than if their dresses were suited
to display their charms in a more ostentatious manner.

Between Messina and the tower of Faro there stands
a small church called the Madonna del Grezzo. It
was anciently a temple of a round structure, and orna­
mented with columns like the temple of the sun at
Rome. Modern columns now supply the place that
was occupied by the ancient. There are large niches
in the rock adjoining to the temple, which are thought
to be of equal antiquity. These contain no sculptured
figures; but in Pagan times they might possibly contain
some.

Messina being situated between the Etna and the
gulf of Charybdis, and being likewise at no great dis­

tance from the volcanoes of Lipari and Stromboli,
must have been in all ages liable to suffer by earth­
quakes. Such terrible events, however appear to have
been more frequent in ancient than in modern
times, and have actually alarmed the present generation
more than any other. In 1693 a fourth part of the
cities of Sicily was destroyed by an earthquake. Me­
sic builders merely felt the shock: all its buildings, however,
suffered. In the year 1742 it suffered another equal­
ly violent. A plague which followed in 1743 retarded
the repairs necessary after the earthquake. In the
The succeeding day scarce alleviated the distresses of this dismal night; the few wretches who still survived found themselves destitute of every necessity. At length order was in some degree re-established; and in two days after every person was supplied at least with some small portion of the necessaries for subsistence.

None yet thought of returning to take up their abode among the ruins. The common people fixed their residence on the plain of Porta Salvo, near the town of Salco. The nobles, magistrates, and merchants, took up their abode on another plain, on the other side of the stream Porta de Legno; the soldiers at Terra Nova.

Some violent shocks which were again felt on the 7th of February and the 28th of March completed the destruction of the city. The corn magazines, however, escaped without damage; and the public ovens and the aqueducts were but little injured. From these facts it may perhaps be inferred, that had not the houses of Messina been, in general, hastily built at the first, and afterwards carelessly repaired, fewer of them would have been overthrown by the earthquake.

The neighbouring villages having suffered but little, were the first to relieve the remaining inhabitants of Messina in their distresses. Materse galleys for some days supplied necessaries to the poor and the sick with a generosity which merits the highest praise. They brought surgeons and whatever was needful for the cure of the wounded. The supplies sent by the king of France were refused, for what reason we know not.

What money was needed for the support of the people was taken from the treasury of the city of Messina; for what the king of Naples sent was seized and spent by the garrison.

It is said that not more than 800 or 900 persons perished by this earthquake. The sea during that convulsion of the land was slightly agitated in the harbour. Farther out the sea was more violently agitated; but none of the ships in the harbour were dashed to pieces. The waters rose so high as to be injurious in a very considerable degree to Pharo, as well as along the coast of Scylla and Bagnara.

This earthquake was not of a momentary duration like that by which Lisbon was destroyed, and like many others: for more than fifty days, from the 5th of February to the beginning of April, Messina continued to be shaken; and in that time fell more than 200 shocks. And ever after that period the alarm was again and again renewed. Not only the magistrates, the soldiers, and the people, but the priests likewise, with their tabernacle and altar, retired to the barracks. The nuns, too, deserted their cloister, and sought a retreat without the walls. Some of them confined themselves to the gardens of their convents; others mixed indiscriminately with the people.

The chief damage which the public buildings within the city suffered was the fall of the dome of the church of Purgatory. Only the walls were left standing; and even these had suffered considerably. One half of the steeple of the cathedral was beaten to the ground. The magazines of Porto Franco were likewise very much shattered. The fort of St. Salvator, being built on an artificial foundation, the sides next the sea being still fallen down; but on the other side where it is founded...
founded on a rock, it has stood unmoved by all the shocks of the earthquake.

On the 5th of February, when the earthquake was more violent than at any time afterwards, a strong smell of sulphur was felt. The earth was affected in the same way as if it had been borne up on a fluid; and seemed to roll with the shocks much like a ship tossed with the waves. This tremendous motion was felt all over Sicily; but towards Pharos it became weaker. On the following days the sky was cloudy; the mountains of Sicily and the shores of Calabria continued covered with a thick fog like smoke. North and north-east winds raged with the most violent impetuosity.

The diarrhetic year of this earthquake was scarce concluded, the chimneys which it had opened in the ground were still yawning, and the poor inhabitants of the adjacent country still trembled with terror, when the elements again renewed their fury to ravage this miserable land.

On Tuesday the 6th of January 1784, about nine o'clock, the wind began to blow softly from the north-east, the sea gradually swelled, rose beyond its bed, and was felt. It increased and displaced many of the stones of the mole, spread over the whole street, and attacked the pedestals of the fountains which had been spared by the earthquake, and still stood firm among the ruins. The same furious wind which swelled the sea in so extraordinary a manner, ravaged the whole coast from Messina all the way to Syracuse.

MESSUAGIUM, in law, a cottage, chamber, cellar, or the like, passed for the house, with some land adjoining assigned for its use. In the common painting of arms those metals are represented by white and yellow, which are the natural colours of those metals. In engraving, gold is expressed by dotting the coat, &c. all over; and silver, by leaving it quite blank.

It is a general rule in heraldry, never to place metal upon metal, nor colour upon colour: so that if the field be of one of the metals, the bearing must be of some other colour; and if the field be of any colour, the bearing must be of one of the metals.

METALLURGY, in natural history, a simple, ponderous, bunting, fixed, opaque body, that fuses and becomes fluid by fire, and by cold congeals and hardens into a solid mass capable of being divided under the hammer. See Metallurgy, and Chemistry.

Metal, in heraldry. There are two metals used in heraldry, by way of colours, viz. gold and silver, in blazon called or and argent.

In the common painting of arms those metals are represented by white and yellow, which are the natural colours of those metals. In engraving, gold is expressed by dotting the coat, &c. all over; and silver, by leaving it quite blank.

It is a general rule in heraldry, never to place metal upon metal, nor colour upon colour: so that if the field be of one of the metals, the bearing must be of some other colour; and if the field be of any colour, the bearing must be one of the metals.

METAGITNION, the second month of the Athenian year, answering to the latter part of our July and the beginning of August, and so called from metagitias a festival in honour of Apollo which was kept in it. The Boeotians called this month panemus, and the Syracusans, carmus.

METAL, in natural history, a simple, ponderous, bunting, fixed, opaque body, that fuses and becomes fluid by fire, and by cold congeals and hardens into a solid mass capable of being divided under the hammer. See Metallurgy, and Chemistry.

Metal, in heraldry. There are two metals used in heraldry, by way of colours, viz. gold and silver, in blazon called or and argent.

In the common painting of arms those metals are represented by white and yellow, which are the natural colours of those metals. In engraving, gold is expressed by dotting the coat, &c. all over; and silver, by leaving it quite blank.

It is a general rule in heraldry, never to place metal upon metal, nor colour upon colour: so that if the field be of one of the metals, the bearing must be of some other colour; and if the field be of any colour, the bearing must be one of the metals.

METAL, Solution of. See Chemistry-Index.

On this subject Mr Keir has some curious observations in the Philosophical Transactions for 1790. He takes notice, that the word solution has two meanings; one expressive of the act of dissolving, as when we say that "solution is a chemical operation!" and the other, when it is put for the substance dissolved in the acid, as a solution of silver in the nitrous acid." To avoid confusion, therefore he uses the word solution to express the substance dissolved, together with its solvent: dissolution being the term made use of when the act of dissolving is meant. He continues the use of the terms phlogificated and dephlogisticated to express certain states of the acids, but without reference to theory of any kind.

In dissolving metals, our author observes, that the properties of the several acids have been investigated with considerable success; and even one compound, viz. that of spirit of nitre and spirit of salt, commonly called aqua regis, is well known on account of its quality of dissolving gold. A vast field, however, yet remains for examination in the other acids, whether mixed together, or possessing various degrees of concentration, temperature, or phlogistication. Thus, tho' no two substances are more frequently in the hands of chemists than vitriolic acid and nitre, yet the properties of the mixture had not been investigated before Mr Keir made his experiments; and upon trial he found, that this mixture possessed certain properties which neither the vitriolic nor nitrous acids singly possessed. The results of his experiments on this subject are as follow.

1. In a long-necked retort containing 1400 grain measures, 100 grains of oil of vitriol of the specific gravity of 1.844 were put along with 100 grains of pure nitre, and the falt dissolved in the acid by means of a water bath. On applying a boiling heat, the silver began to dissolve, and the solution assumed a purple
of more water, nor was any air extracted; but no air was met with the different quantities of powder. Nickel was also partly calcined and partly dissolved without the addition of more water, nor did any further di solución of the metal take place than two grains. The same phenomena took place in various proportions, according to the different quantities of acid and metal made use of.

On dissolving tin for silver, none of the metal was dissolved or calcined by mixtures in the proportion of 200 grain measures of oil of vitriol to as much nitre, nor by 200 of the vitriolic acid to 150 of nitre: but with a proportion of 200 measures of the acid to 100 grains of nitre, the tin soon began to be extricated, and 73 grains of the metal reduced to a white powder. On pouring into the retort 200 grains of fresh water, a new effervescence took place between the water, and white powder, by which 4600 grain measures of nitrous gas were thrown off. The action of the menestronium was greatly promoted by augmenting the quantity of oil of vitriol, and adding water to the mixture.

By this mixture quicksilver was calcined to a grey powder, nickel was also partly calcined and partly dissolved; but no other metal was much affected, tho' the surfaces of some of them were tarnished. The mixtures themselves were very apt to congeal, especially where there was a large proportion of nitre; and their properties are much altered by the addition of water. Thus, in their concentrated state, they do not act upon iron; but by adding water, it acquires the property of acting upon that metal, and in different degrees according to the quantity of water added. Thus, by adding two measures of the compound acid to one of water, the liquor is rendered capable of calcining iron, and forming with it a white powder, but without any effervescence. An equal measure of water produces effervescence; and with a larger proportion of water the iron acquires a yellow or brown colour, such as phlogilicated nitrous acid acquires from iron, or communicates to a solution of marial vitriol in water. Dilution with water renders this compound acid capable of dissolving copper and zinc, neither of which it will touch in its concentrated state.

From this property of the compound acid not dissolving copper, but very readily silver, we have an easy method of separating the two metals from each other. This might be useful in many cases; but it is particularly so in Birmingham, where great numbers of copper vessels covered with silver are manufactured. Thus there are always a great number of cuttings or small bits called flages, which are of no use but to separate the two metals from one another. The easiest method of doing this is an object of some consequence. Two methods have been generally practised for this purpose: one is by melting the whole mass of metal with lead, and separating them by means of elevation and tending; the other is by dissolving both metals in vitriolic acid, and then separating the solution of copper from the vitriol of silver. The disadvantage of the former method is, the quantity of lead and copper wasted; and of the latter, that of vitriolic acid. The virtues of a mixture of oil of vitriol and nitre were some time ago communicated by Mr. Keir to an artist at Birmingham; and it is now generally used there to effect the separation of the two metals. The method of using it is very easy; nothing more being requisite than to put the pieces of plated metal into a glazed earthen pan, and to pour upon them some of the acid liquor, which may contain about one pound of nitre to eight or ten of oil of vitriol. Stir them about, and allow the action by a heat from 100 to 200 of Fahrenheit's scale. When the liquid is nearly saturated, the silver may be precipitated in the form of luna cornua by common salt; or it may be obtained in its metallic form by adding to the liquor some pieces of copper, and as much water as will enable it to act upon them. He is of opinion, that the menestronium may be useful in all separations of silver from other metals. The name he seems to wish to impose upon it is aqua regia. The following are the conclusions drawn from the experiments on these mixtures by our author.

1. A mixture of the vitriolic and nitrous acids dissolves silver plentifully.

2. It acts upon tin, and mostly calcines it, as well as mercury and nickel; having little or no action upon other metals.

3. The quantity of gas produced while the metal is dissolving, is greater, relatively to the quantity of the metal dissolved, when the proportion of nitre to the vitriolic acid is small, than when it is large; and when the metals are dissolved by mixtures containing much nitre with a small production of gas, the solution itself, or the metallic salt formed in it, yields an abundance of gas when mixed with water.

4. Dilution with water renders the concentrated mixture less capable of dissolving silver, but more so of acting upon other metals.

5. This mixture of highly concentrated vitriolic and nitrous acids, acquires a purple or violet colour when phlogilicated, either by the addition of inflammable substances as sulphur, or by its action on metals, or by very strong impregnation of oil of vitriol with nitrous gas.

6. By means of this phlogilication the mixture acquires a property of dissolving, though in small quantities, copper, iron, zinc, and regulus of cobalt.

7. Water expels a small quantity of nitros gas from a concentrated mixture of vitriolic acid and nitre impregnated with it; but this fluid unites with a mixture of oil of vitriol and nitre without any considerable effervescence.

By adding to the mixture of oil of vitriol and nitre a solution of common salt, a very powerful aqua regia is formed, capable of dissolving gold and platinum; and which
which, though perfectly free from all metallic matter, acquires at once a deep yellow colour. Dry common salt added to the concentrated mixture produces an effervescence, but no yellow colour.

METALLURGY. According to Boerhaave, comprehends the whole art of working metals, from the globe or ore to the utensil ; in which sense alloying, smelting, refining, parting, smithery, gilding, &c. are only branches of metallurgy. But, in the present work, Gilding, Parting, Purifying, Refining, Smithery, &c. are treated under their proper names. With others, therefore we have chosen to restrain Metallurgy to those operations required to separate metals from their ores for the uses of life. These operations are of two kinds: the smaller, or Alloying; and the larger, or Smelting. But a particular description of the ores themselves seemed likewise necessary to be given; and to this place, too, we have referred a general account of metals, metallisation, mines, and ores, as a proper introduction to the subject. Hence the following division into three parts. The first treating; 1. Of metals and metallisation. 2. Of mines and ores in general. 3. Of the pyrites. 4. Of the alloying of ores in general. The second, Of the particular ores, and the methods of alloying them. The third, Of smelting of ores, or the methods of extracting metals from large quantities of ores for the purposes of commerce or manufacture.

PART I. OF METALS AND METALLISATION.

Under the general name metal, we comprehend here not only the metals properly so called, but also the fémimetals, or all matters which have the essential metallic properties which we shall here recount. Thus the word metal and metallic substance will be synonymous in this article.

Metals and fémimetals form a class of bodies, not very numerous, of very great importance in chemistry, medicine, arts, and the ordinary affairs of life. These substances have very peculiar properties, by which they differ from all other bodies.

The natural bodies from which metals differ the least are, earthly and pyritous matters, on account of their solidity and density. Metals and fémimetals are, nevertheless, very different; the heaviest fémiflones which are unmetallic being much lighter than the lightest metals. A cubic foot of marble weighs 252 pounds; and an equal bulk of tin, the lightest of metals, weighs 516 pounds. The difference is much greater when the weight of such fémiflon is compared with that of gold, a cubic foot of which is 1396 pounds.

Opacity is another quality which metals possess eminently, the opacity of metals being much greater than that of any unmetallic substance.

This great opacity of metals is a consequence of their density; and these two properties produce a third, peculiar also to metals, namely, a capacity of reflecting much more light than any other body; hence metals whose surfaces are polished, form mirrors representing the images of bodies more clearly than any other matter. Thus looking-glaes produce their reflection merely by the silvering, which is a covering of metal upon their surfaces. To this reflective property metals owe their peculiar luire, called the metallic luire.

Although the several metallic substances differ considerably in hardness and fusibility, we may say in general, that they are less hard and less fusible than pure earths.

Metals cannot unite with any earthly substance, not even with their own earths, when these are deprived of their metallic state: hence, when they are melted, they naturally run into globes, as much as the absolute gravity of their mass, and their prehure upon the containing vessels, will allow. Accordingly, the surface of a metal in fusion is always convex. A metal in that state always endeavours to acquire a spherical form, which it does more perfectly as the mass is less. This effect is very sensible in quicksilver, which is nothing but a metal habitually fluid or fusil. A mass of several pounds of mercury, contained in a shallow wide-mouthed vessel, is to spread out, that its upper surface is almost flat, and the convexity is not very sensible but at its circumference; on the contrary, if we put very small masses of mercury into the same vessel, as, for instance, masses weighing a grain each, they become so round as to seem perfect globes. This effect is partly occasioned by the inaptitude of metals to unite with the vessels containing them when in fusion, by which quality the whole affinity which subsists between the integrant parts of these metals is capable of acting; and partly also by this affinity, which disposes the integrant parts to come as near to each other as they can, and consequently to form a sphere.

This property is not peculiar to melted metals, but to all fluids, when contiguous to bodies solid or fluid, with which they have no tendency to unite. Thus, for instance, masses of water upon oily bodies, or oily masses upon bodies moistened with water, assume always a form so much nearer to the spherical as they are smaller. Even a large drop of oil poured upon a watery liquor, so that it shall be surrounded with this liquor, becomes a perfect sphere.

All metals are in general soluble by all acids; but often these solutions require particular treatment and circumstances, which are mentioned under Chemistry. With acids, they form a kind of neutral falks, which
have all more or less causticity. The affinity of metals is less than of absorbent earths and alkaline salts to acids; and therefore any metal may be separated from any acid by these substances.

Alkaline salts are capable of acting upon all metallic substances, and by proper management will keep them dissolved.

Metals may in general be united with sulphur and liver of sulphur. With sulphur they form compounds resembling the peculiar substance of ores, which are generally nothing else than natural combinations of sulphur and metal. Metals have less affinity with sulphur than with acids; hence sulphur may be separated from them by acids. Some exceptions from these general rules, concerning the affinity of metals to sulphur and liver of sulphur, and concerning their separation from sulphur by acids, may be seen under the articles of the several metals. But these exceptions do probably take place, only because we have not yet found the method of furnishing some obstacles which occur in the ordinary methods of treating certain metals.

All metals may in general be united with each other, with which they form different alloys which have peculiar properties; but this rule also is not without some exceptions.

Metals have a strong affinity with the inflammable principle, and are capable of receiving it superabundantly.

Lastly, oily substances seem to be capable of acting upon all metals. Some metals are easily and copiously dissolved by oils; and perhaps they might all be found to be entirely soluble in oils, if the methods known in chemistry were tried for the accomplishment of these solutions.

The properties abovementioned agree in general to all metallic substances: but, besides the properties peculiar to each metal, some properties are common to a certain number of them; and hence they have been divided into several classes.

Those metallic matters which, when struck by a hammer, or strongly compressed, are extended, lengthened, and flattened, without being broken (which property is called ductility or malleability), and which also remain fixed in the most violent and long continued fire, without diminution of weight, or other sensible alteration, are called perfect metals. These perfect metals are three; gold, silver, platina.

The metallic matters which are ductile and fixed in the fire to a certain degree, but which are destroyed by the continued action of fire, that is, changed into an earth deprived of all the characteristic properties of metals, are called imperfect metals. Of this kind are four; copper, iron, tin, lead.

The metallic substances which, as well as the imperfect metals, lose their metallic properties by exposure to fire, but which also have no ductility or fixity, are distinguished from the others by the name of semi-metals. Of this class are seven: regulus of antimony, bismuth, zinc, nickel, regula of cobalt, regula of arsenic, and of manganese.

Lastly, mercury, which has all the general properties of metals, makes a class separate from the others; because in purity and gravity it is similar to the perfect metals, and in volatility to the semi-metals. Its fusibility also is far surpasses that of any other metallic matter, that it is not sufficient to distinguish it from all, and to give it a distinct class. We have enumerated, therefore, in all, 15 metallic substances; four of which were unknown to the ancients, namely, platina, regulus of cobalt, of manganese, and nickel.

As chemists can compound bodies by being capable of separating the principles of such bodies, and even of reuniting their principles so as to reproduce such compounds as they were originally; and as hitherto they have not been able to accomplish any such decomposition upon the perfect metals; hence, if all the other metallic substances were equally unalterable, we should be very far from having certain notions concerning metals in general; but if we except gold, silver, and platina, all the other metallic matters are susceptible of decomposition and of recombination, at least to a certain degree; and experiments of this kind have thrown much light on the subject.

We may observe, that even if we had not been able to decompose any metallic substance, we might still, by reflecting on the essential properties of metals, discover sufficiently well the nature of their principles.

The solidity, the consistence, and especially the gravity, which they possess in a degree so superior to all other bodies, would not have allowed us to doubt that the earthy element, of which there are the characteristic properties, enters largely into their composition, and makes their basis.

The facility with which they combine with almost all inflammable matters, and with all those which have great affinity with phlogiston, such as acids; joined to their incapacity of being alloyed with meagre matters that are purely earthy or purely watery, which have no disposition to unite with phlogiston; would also have furnished very strong motives to believe, that the inflammable principle enters largely into the composition of metals.

The destructible metals present exactly the same phenomena as all other bodies containing the inflammable principle do, in the state of combustion. When exposed to fire, without access of air, that is, in close vessels, they become red-hot, melt, or sublime, according to their nature; but they receive no alteration in their composition from fire applied in this manner, and they are afterwards found to be exactly in the same state as before. In this respect, they resemble perfectly all bodies which contain no other inflammable matter than pure phlogiston.

But when imperfect metals are exposed to fire, with access of air, as, for instance, under a muffle in a furnace which is made very hot, then they burn more or less sensibly, as their inflammable principle is more or less abundant, or more or less combined. Some of them, as iron and zinc, burn with a very lively and brilliant flame; but this flame is of the same nature as that of charcoal, of sulphur, of all bodies, the combustible principle of which is pure phlogiston, and is not in an oily state, that is, furnishes no foot capable of blackening.

The imperfect metals detonate with nitre, and their phlogiston is consumed by this method much more.
more quickly and completely than by ordinary calcination or combustion. Their flame is also much more lively and brilliant: and some of them, as iron and zinc, are used in compositions for fireworks from their very vivid and beautiful flame.

Nitre is alkaliized by these metallic detonations exactly in the same manner as in its detonation by coals.

Lastly, imperfect metals being treated with acids which have an affinity with phlogiston, that is, with the vitriolic and nitrous acids, and deprived of these acids of a more or less considerable part of their inflammable principle; they give a sulphurous quality to vitriolic acid, and are even capable of producing sulphur with that acid.

Although the experiments now mentioned were the only proofs of the existence of an inflammable principle in metallic substances, they would be sufficient to establish it incontrovertibly. But we shall see, when we continue to examine the phenomena attending the decomposition of metals, that these are not the only proofs.

If the inflammable matter which shows itself so evidently in the burning of metals, is really one of their constituent parts, their essential properties must be altered in proportion to the quantity of it taken from them: and this evidently happens upon trial: for the residue of metallic matters, after calcination, departs from the metallic character, and approaches to the nature of mere earth. The opacity, brilliancy, ductility, gravity, fusibility, volatility, in a word, all the properties by which metallic substances differ from simple earths, diminish or entirely disappear, by taking from them their inflammable principle; so that when their calcination has been carried as far as is possible, they resemble mere earths, and have no longer any thing in common with metals. These earths can no longer be combined with acids or with metals, but are capable of uniting with pure earths. They are then called calxes or metallic earths. See Chemistry.

We must observe concerning the decomposition of metals, 1. That when a small quantity of inflammable principle is taken from metal, only a small quantity of calx is formed, and the remaining part continues in the metallic state: hence, as the portion of calcined matter can no longer remain united with that which is destroyed, it separates in form of scales from the surface of the metal when the calcination has been performed without fusion, as generally happens to iron and to copper: or these scales float upon the surface of the melted matter when the calcination is performed during fusion, because the calx is specifically lighter than the metal; as happens to the very fusible metals, as tin, lead, and most of the semimetals.

2. The imperfect metals are not all equally easily and completely calcinable. In general, as much of their phlogiston may be easily taken from them, as is sufficient to deprive them of their metallic properties; but the remaining portion of their phlogiston cannot be so easily driven off. Some of them, as copper, need the first calcination more than the rest; and others, as lead and bismuth, may be very easily calcined, but only to a certain degree, and retain always obstinately the last portions of their inflammable principle; lastly others, as tin and regulus of antimony, may not only be easily and quickly calcined, but also much more completely. All the other metals partake more or less of the properties relating to their calcination. In general, if we except the labours of alchemists, which are not much to be depended upon, we have not yet made all the proper efforts to arrive at a perfect calcination of the several metallic substances; which however is absolutely necessary, before we can arrive at a complete knowledge of the nature of their earths, as we shall afterwards see.

When metallic earths have lost but little of their phlogiston, and are exposed to strong fire, they melt, and are reduced to compact masses, still heavy and opaque; although much less so than the metals, and always brittle and absolutely unmeltable. If the calcination has been more perfect, the metallic earths are still fusible by fire, but less easily, and convertible into brittle and transparent masses possessed of all the properties of glafs, and are accordingly called metallic glases. These glases do not possess any of the properties of their metals, excepting that they are specifically heavier than other glases, that they are capable of being attacked by acids, and that the glases of the semimetals are somewhat less fixed than unmetallic glases. Lastly, when the calcination of metals has been carried to its greatest height, their earths are absolutely fixed, and insusceptible in the fire of our furnaces, and possess no longer the solubility in acids by which metals are characterized.

These are the principal changes which metals suffer by losing their phlogiston. They are thus changed into substances which have no properties but those of earth. This is a certain proof that the inflammable principle is one of their constituent parts. But we have also other proofs of this important truth. The reduction of metallic calxes into metal, by the addition of phlogiston alone, completes the proof; and the whole forms one of the clearest and most satisfactory demonstrations in all the sciences. This reduction is effected in the following manner:

If the earth of a metal be mixed with any inflammable matter, which either is or can be changed into the state of coal, together with some salt capable of facilitating fusion, but which, from its quantity and quality, is incapable of receiving the inflammable principle; and if the whole be put into a crucible, and the fusion promoted by a fire gradually raised; than an occurrence will happen, accompanied with a hissing noise, which continues a certain time, during which the fire is not to be increased; afterwards, when the whole has been well fused, and the crucible taken from the fire and cooled, we shall find at the bottom, upon breaking it, the metal, the earth of which was employed for the operation, possessed of all the properties which it had before calcination and reduction.

We cannot doubt that this transformation of an earthy substance into a metal, is solely caused by the phlogiston passing from the inflammable matter to the metallic earth. For, first, in whatever manner and with whatever substance metallic earths be treated, they cannot be ever reduced into metals without a consequence of some substance containing phlogiston. Secondly, The nature of the substance which is to furnish phlogiston is quite indifferent, because this principle is the same in all bodies containing it. After
SECT. I.

METAL

LURGY.

Of metalurgical operations, the substance furnishing the phlogiston should be examined, we shall find that it has lost all but that principle as the metallic earth has received. See PHLOGISTON.

The facts related concerning the decomposition and the recombination of metals, prove incontrovertibly that they are all composed of earth and phlogiston. But we do not yet certainly know whether these two be the only principles of metals. We might affirm that, if we could produce metals by combining phlogiston with somematter which is certainly known to be simple earth. But this hitherto has not been accomplished; for if we try to treat any earth, which has never been metallic, with inflammable matters, we shall perceive that the simple earths are not combinable with phlogiston to form metals. We shall even perceive that the metallic earths resist this combination, and are incapable of reduction into metal, when they have been so much calcined as very nearly to approximate the nature of simple earths.

These considerations, added to this, that we cannot easily conceive how, from only two certain principles, to make very different compounds as the several metallic substances are, should refute, are capable of inducing a belief that some other principle is added to these two already mentioned in the composition of metals.

Many great chemists, and particularly Becher and Stahl, seem to be of this opinion. Chiefly from the experiments concerning the mercurification of metals, they believe that this third principle exists copiously in mercury; that it is of a mercurial nature; that it also exists in marine acid, to which it gives its specific character; that, by extruding this mercurial principle from marine acid, or any other body containing it copiously, and by combining it with simple earths, these may acquire a metallic character, and be rendered capable of receiving phlogiston, and of being completely metallified.

These chemists admit also, and with probability, a different proportion of metallic principles in the several metals; and believe, that particularly the principle which they call mercurial earth, exists more copiously and febibly in certain metals than in others. The most mercurial metals, according to them, are mercury, silver, lead, and arsenic. Most chemists distinguish them from the other metals, which they call white metals, lunar metals, or mercurial metals.

All these considerations being united, and others too many to be mentioned, give some probability to the existence of the mercurial principle in metals. We must, however, acknowledge, that the existence of this principle is merely probable; and, as Stahl observes, is not nearly so well demonstrated as that of the inflammable principle: we may even add, that we have strong motives to doubt of its existence.

To produce metals artificially has justly been reckoned one of the most difficult problems in chemistry. Metallic substances, although they resemble each other by their general properties, differ nevertheless from each other very evidently by the properties peculiar to each. Do these differences proceed from the different proportion, and from the more or less intimate connection of the inflammable principle with the earthy principle, supposing that this latter should be essentially the same in all metals? or ought they to be attributed to the difference of earths, which in that case would be distinct and peculiar to each metal? or, lastly, do metals differ from each other, both by the nature of their earths, and by the proportion and mixture of connection of their principles? All these things are entirely unknown; and we may easily perceive, that till they are known, we cannot discover what method to pursue in our attempts to accomplish the combinations we are now treating of.

The most essential point then is, to arrive at a knowledge of the true nature of the earths which are in metals; and the only method of arriving at this knowledge is, by reducing them to their greatest simplicity by a perfect calculation. But this cannot be accomplished but by long and difficult operations. We have seen above, that all metals are not combinable with equal ease; that the perfect metals have not hitherto been calcined truly by any process; and that, in general, the least portions of phlogiston adhere very strongly to calculateable metals.

Some metals, however, as tin and regulus of antimony, may be easily calcined so as to be rendered irreducible. By carrying the calculation still further, we might obtain their earths so pure, that all their essential properties may be discovered, by which they might be easily compared together. This comparison would decide whether their nature be essentially different or not.

If they were found to be composed of earths essentially the same, we might next proceed to compare metallic with unmetallic earths. If the former were found similar to some of the latter kind, we should be then assured that the earth of metals is not peculiar to them, and that ordinary unmetallic earths are susceptible of metallification. From some late experiments, it was imagined that lime and magnesia alba were capable of being converted into metallic substances, but the processes are now found to be erroneous.

The greater the number of metals operated upon, the more general and certain the consequences resulting from these would be: so that, for instance, if the operation were extended to all calcinable metals; and if the result of each of these operations were, that the cakes, when perfectly dephlogiticized, do not differ from each other, and are similar to earths already known; we might conclude from analogy, and we should be almost certain, that the earths of the perfect metals are also of the same nature.

They who know the extent and difficulties of chemical operations, will easily perceive that this would be one of the most considerable. Nevertheless, after having determined this essential point, we should only have done half our work: For a knowledge of the nature of the earth of metals, and where it is to be found, would not be sufficient; we must further endeavour to find a method of combining with this earth a sufficient quantity of phlogiston, and in a manner sufficiently intimate, that a metal might be formed by such a combination. But this second difficulty is perhaps greater than the former.

We must observe here, that some famous chemical processes have been confidered by many as metallifications, but which are really not so. Such is Becher's famous experimental of the minim avenaria porpeta, by which that chemist proposed to the States-General to extract gold from any kind of sand. Such also is the proc ess of Becher and of Geoffroy, to obtain iron from
We have no reason to believe that any other principle enters into the composition of metals than those above-mentioned: no vestige is perceptible of either air or water. Some chemists have nevertheless advanced that they contain a saline principle. If that were true, they would also contain a watery principle. But all the experiments adduced to prove this opinion are either false, or only shew the presence of some saline particles extraneous to the metals, or contained unknown to the chemists in the substances employed in the experiments. For metals perfectly pure, subjected to all trials with substances which do not contain and which cannot produce any thing saline, do not discover any saline property. We must however except arsenic, and even its regular, the being singular substancess, in which the salines are as sensible as the metallic properties.

Arsenic seems to be one of those intermediate substances which nature has placed in almost all its productions between two different kinds, and which partake of the properties of each kind. Arsenic, placed between metallic and saline substances, has properties common to both these kinds of substances, without being either entirely a metal or salt. See ARSENIC.

As water seems to act to a certain degree upon iron, even without the concurrence of air, as the operation of martial elixirs shows, we might hence suspect something saline in that metal. Nevertheless, what happens in that operation has not been so well explained, that any certain consequences can be deduced. 1. The water employed ought to be perfectly pure; that is, distilled rain-water. 2. The iron employed ought also to be perfectly pure, and such is very difficult to be procured. 3. The operation ought to be performed in a bottle accurately closed, that we may be assured that the air contributes nothing to the action upon the iron. 4. After the water has remained a long time, suppose a year, upon the iron, it ought to be carefully filtered and examined, to ascertain whether it really has dissolved any part of the metal.

In the meantime, we may conclude that metals do not seem to contain any saline principle. And when we consider well their general properties, they seem to be nothing else than earths combined more or less intimately with a large quantity of phlogiston. Although we can demonstrate that their inflammable principle is not in an oily state, and that it is pure phlogiston, they have nevertheless an oily appearance, in this circumstance, that they adhere no more than oils to earthy and aqueous substances and that they always assume a globular figure when supported by these substances entirely free from phlogiston.

This resemblance is so sensible, that chemists, before they knew the nature of phlogiston, believed that metals contained an oily and fat matter. The cause of this quality of metals is the quantity of phlogiston which they contain. Sulphur, phosphorus, oils, and even fats, have this appearance merely from the inflammable principle which enters into their composition: for this property is communicated by that principle to every compound which contains a certain quantity of it. See PHLOGISTON.

When the phlogiston combines copiously and intimately with earthy matters so as to form metals, it probably
1. METALurgy.

Of Metal-Itation.

probably to dispenses them, that the primitive inte-
grant parts of the new compound, that is, of the
metal, approximate and touch each other much more
than the integrant parts of simple earths can. This
is proved by the great density or specific gravity, and
other general properties, of metals.

In fact, as we cannot conceive that a body should
be transparent, unless it have pores and interfaces
through which rays of light can pass; therefore the
more dense a body is, that is, the fewer such inter-
fices it has, the less transparent it will be; so that
the densest bodies ought to be the most opaque as in metals.
The disposition of the pores of bodies contributes also
much to their greater or less transparency; and bodies,
the pores of which are continued and straight, are
more transparent than those whose pores are inter-
rupted, transverse, or oblique; so that a body may
be much more transparent than another which is less
dense, as we see that glass is more transparent than
charcoal. But when other circumstances are equal,
the densest bodies are the most opaque. Therefore the
opacity of bodies is proportional to their density,
and to the deviation of their pores from right and par-
allel lines.

From the great opacity of metals, they probably
possess both these qualities in an eminent degree. We
have seen, at the beginning of this article, that the
lustre of metals, and their property of reflecting light
much better than any other substance, are necessary
consequences of their opacity. This is also self-evi-
dent, because the fewer rays any body can transmit,
the more it must reflect.

Lately, the dulness of metals proceeds also from
their density, from the disposition of their pores,
and from the action of latent heat; for even the most
brittle bodies, such as glass, sealing-wax, &c, become
dulcible by heat. The softness, fusibility, and volatility,
of which all metals partake more or less, and which
many of them possess in a superior degree, being pro-
properties entirely contrary to those of the earthly
principle, probably proceed from the inflammable
principle.

The order in which metals compared with each
other possess most eminently their principal properties,
is the same as that in which they are here enumerated,
beginning always with that metal in which the pro-
erty is most considerable.

1. Specific gravity or density. Platina, gold, mercur-

y, lead, silver, copper, iron, and tin.

2. Opacity. We cannot well compare metals with
each other in this respect, because it is so considerable
in all, that it seems complete. If, however, they differ
in this respect, the same order will serve for opacity
as for density.

3. Metallic luster or brilliancy. The same observa-
tion which was made concerning the last mentioned
property is applicable to this also. We must, how-
ever, observe, that as by polish bodies are rendered
brighter, and that as whiteness contributes much to
the reflection of light, the whiter and harder metals
therefore reflect best. Hence according to Mr Mac-
quer, platina ought to be placed first; and then iron,
or rather steel, silver, gold, copper, tin, lead.

Hardness of metals may contribute much to the du-
ration of their polish; but certainly soft metals, if their
texture be equally compact, are no less capable of re-
ceiving a polish than hard metals. Some hard metal-
lc alloys have been found to be less liable to tarnish
than softer compounds, and have for this reason also
been chiefly used for speculums. The property of re-
flacting light seems chiefly to depend on the closeness
of the particles or on the density, on the smoothness
of the surface, and on the colour being most similar to
the colour of the light to be reflected. The white
metals, silver, mercury, tin, reflect light more abun-
dantly than others. Gold, being the densest metal next
to platina, and perhaps because the colour of solar
light has a slightly yellowish tinge, does also reflect
light very copiously. Hence speculums made of leaf-
gold have been found to be very powerful. Iron or
steel reflects much less light than any of the above-
mentioned metals, although Mr Macquer has con-
dered it as capable of a greater reflective power.
Platina is generally in so small grains, that its reflective
power cannot easily be determined. The precise
degrees of that power which ought to be assigned
to each of the abovementioned metals, cannot without
accurate experiments be ascertained. Perhaps, how-
ever, their reflective powers will be found to be more
nearly in the following order, than in that aboven-
mentioned from Mr Macquer. Silver, quicksilver, tin,
gold, copper, iron, lead.

4. Ductility. Gold, silver, copper, iron, tin, lead.
The ductility of mercury and that of platina are not yet
determined.

5. Hardness. Iron, platina, copper, silver, gold, tin,
and lead.

6. Tenacity. By tenacity we understand the force
with which the integrant parts of metals resist their
separation. This force appears to be in a compound
ratio of their dulness and hardness. The compara-
tive tenacity of metals is measured by the weight
which wires of the same diameter, made of the several
metals, can sustain without breaking. Gold is the
most tenacious; then iron, copper, silver, tin, lead.
The tenacity of mercury is unknown; that of platina
is not yet determined, but is probably consider-
able.

7. Fusibility. Mercury, tin, lead, silver, gold, cop-
per, iron, and lastly platina, which cannot be fused by
the greatest fire of our furnaces, but only by the solar
focus, or by a fire excited by dephlogisticated air.

SEC. II. Of Mines and Ores in general.

The substances found naturally combined with met-
als in the earth, are, particularly sulphur and arsenic,
sometimes separately, but generally conjointly. Met-
tals combined with these substances are called metals
mineralized by sulphur, or by arsenic, or by sulphur and
arsonic; and their matters are called mineralized sub-
stances.

Besides the sulphur and arsenic with which metals
are bireeily combined in the mineral state, they are also
pretty intimately combined with earthy substances, of
different natures, and more or less divided.

These different matters united together form masses
which are compact, heavy, brittle, and frequently pos-
sessed of much metallic lustre. These substances are
properly called ores, or the matter of mines.

These
These ores are found in earths and stones of different kinds, as sands, flints, crystals, flares, and certain clays, according to the ground in which they are contained.

But of stones of flares in particular seem to accompany ores; and have therefore been considered by several mineralogists as matrices in which metals are formed. One of these stones is a kind of crystal, generally white, milky, and semi-opaque, residing fire with steel, and of the class of vitrifiable earths. It is called QUARTZ.

The other stone is less hard, which does not strike fire with steel, and is sometimes milky like quartz; sometimes transparent and of different colors; consisting of rhomboidal crystals, which are composed of plates and faces. This stone becomes more soft and friable by being exposed to fire. It is called SPAR. Spar is more like gypsey flares than to any other, but it differs from gypsey flares in polishing a much greater density. Some spars are so heavy, that they exceed in this respect all other stones. See SPAR.

These earthy and flaky substances form the matrix of the ore.

Ores are natural compounds, containing metals alloyed with different substances.

Excepting gold, and a very small quantity of each of the other metals found in some places so pure as to possess all their characteristic properties, nature exhibits to us metals and minerals differently alloyed not only with each other, but also with several heterogeneous substances, which to alter and disguise their qualities, that in this state they cannot show for any of the purposes for which they are proper when they are sufficiently pure.

Ores consist: 1. Of metallic substancess calcined; or, 2. Of those substances combined with other matters, with which they are said to be mineralized.

Calcined metallic substances, or calciform ores, are metallic substances deprived of phlogiston, and in the state of a calx or metallic earth. Such are all ferruginous ores, which are called iron.

Mineralized ores are, 1. Simple, containing only one metallic substance; or, 2. Compound, containing two or more metallic substances.

Of the simple, and also of the compound ores, four kinds may be distinguished:

1. Ores consisting of metallic substances mineralized by sulphur. Such is the lead ore called galena, composed of lead and sulphur.

2. Ores consisting of metallic substances mineralized by arsenic. Such is the white pyrites, containing iron and arsenic.

3. Ores consisting of metallic substances mineralized by sulphur and by arsenic. Such is the red flax ore, containing silver, arsenic, and sulphur.

4. Ores consisting of metallic substances mineralized by saline matters. Such are the native vitrines. Such also is probably the common flax ore, which, according to Mr Cronstedt’s opinion, is a translucent, or silver combined with marine acid. Of this kind of ores, or native metallic salts, is perhaps the feladine salt of borax, which from Mr Cadet’s experiments, published in the Memoirs of the Royal Academy for the year 1766, is conjectured to be copper combined with marine acid, and which has been said to be found native. To this class also may be referred the flax mineralized by an alluvial salpunct, which Mr von Juli pretends to have discovered.

Heinckel, and after him Cramer, and the author of the Dictionary of Chemistry, pretend, that in mineralized ores, besides the abovementioned metallic and mineralizing substances, are also contained a metallic and an unmetallic earth. But Wallerius affirms, that the existence of such earths cannot be shown, and that sulphur is incapable of dissolving unmetallic earths, and even the calcines of all metallic substances, excepting those of lead, bismuth, and nickel.

Metals and metaliferous ores are found in various places.

1. Under water; in beds of rivers, lakes, and seas, and chiefly at the fissures of these; such are the nitric and ferruginous sands, grains of native gold, ochres, and fragments of stones washed from mines.

2. Dissolved in water; such are the vitrifiable waters containing iron, copper, or zinc.

3. Upon the surface of the earth. Such are many ochres; metallic flares, sands, and clays; and lumps of ores. Mr Gmelin says, that in the northern parts of Asia these are almost always found upon or near the surface of the ground.

4. Under the surface of the earth. When the quantity of these collected in one place is considerable, it is called a mine.

Subterranean metals and ores are differently disposed in different places.

1. Some are infixed in flares and earths, forming nodules or spots diversely coloured.

2. Some are equally and uniformly diffused through the substance of flares and earths, to which they give colour, density, and other properties. Such are the greatest part of those earths, flares, sands, clays, crystals, flints, gems, and flours, which are coloured.

3. Some form strata in mountains. Such are the strata containing pyrites, copper-ore, lead-ore, silver-ore, or blend. These lie in the same direction as the strata of flares between which they are placed; but they differ from the ordinary strata in this circumstance, that the thickness of different parts of the same metallic stratum is often very various; whereas the thickness of the flaxon strata is known to be generally very uniform.

4. Fragments of ores are frequently found accumulated in certain subterranean cavities, in fissures of mountains, or interposed between the strata of the earth. These are loose, unconnected, frequently involved in clay, and not accreted to the contiguous rocks or strata; immediately, nor by intervention of spar or of quartz, as the ores found in veins are. Tin and iron mines are frequently of the kind here described.

5. Large entire masses of ores sometimes found in the flaxon strata of mountains. These are improperly called accumulated veins, because their length, relatively to their breadth and depth, is not considerable.

6. Some infusions are mentioned of certain mountains containing ore. Such is the mountain Taberg in Smoldan; and such are the mountains of Kerunavara and Koosaflavara in Lapland, the former of which is 1400 perches long and 100 perches broad. These mountains consist of iron-ore.

7. Lastly, and chiefly, metals and ores are found in oblong...
Metalurgy.

Sect. III.

Of Pyrites.

Pyrites is a mineral resembling the true ores of metals, in the substances of which it is composed, in its colour or luster, in its great weight, and, lastly, in the parts of the earth in which it is found, since it almost always accompanies ores. It is, like ores, composed of metallic substances, mineralized by sulphur or by arsénie, or by both these matters, and of an unmetallic earth intimately united with its other principles.

Notwithstanding the conformity of pyrites with ores properly so called, some chemists and metalurgists distinguish the former from the latter minerals; because the proportion and connection of the materials composing the pyrites differ much from those of ores. Thus, although sometimes pyrites contains more metal than some ores, yet generally it contains less metal, and a larger portion of mineralizing substances, sulphur and arsénie, and particularly of unmetallic earth. The connection of these matters is also much stronger in pyrites than in ores, and they are accordingly much harder; so that almost every pyrites can strike sparks from steel.

From the above property of striking sparks from steel, they have been called pyrites; which is a Greek word signifying fire-flone. Pyrites was formerly used for fire-arms, as we now use flints: hence it was called carbone-flone. It is still named by some, marcasite. Perhaps no other kind of natural body has received so many names. Perfons curious to know the other names of pyrites used from thence we have mentioned, may find them in Henckel's Pyritologia. We think, with that celebrated chemist, that the subject has been perplexed by this multiplicity of names; for before his great and excellent work, the notions concerning pyrites were very confused and inaccurate.

Pyrites differs also from ores by its forms and positions in the earth. Although pyritic metals generally precede, accompany, and follow veins of ores; they do not, properly speaking, themselves form the oblong and continued masses called veinis, as ores do; but they form masses sometimes greater and sometimes smaller, but always distinct from each other. Large quantities of them are often found unaccompanied by ores. They are formed in clays, chalk, marl, marbles, plasters, slates, shales, flints, flints, quartz, granites, crystrals, in a word, in all earths and flones. Many of them are also found in peat-coals and other bituminous matters.

Pyrites is also distinguishable from ores by its luster and figure; which is almost always regular and uniform, externally or internally, or both. Some ores indeed, like those of lead, many ores of silver, and some others, have regular forms, and are in some manner crystallized; but this regularity of form is not so universal and so conspicuous in ores as in pyrites. The luster of pyrites seems to be caused by its hardness, and the regularity of its form by the quantity of mineralizing substances which it contains.

By all these marks we may easily, and without analysis, distinguish pyrites from true ores. When we see a mineral that is heavy, pelllected of metallic luster, and of any regular form, the mass of which appears even, of pyrites, dently to be entire, that is, not to have been a fragment of another mass, and which is so hard as to be capable of striking sparks from steel, we may be assured that such a mineral is a pyrites, and not an ore.

The class of pyrites is very numerous, various, and extensive. They differ one from another in the nature and proportions of their component parts, in their forms, and in their colours. The forms of these minerals are exceedingly various. No solid, regular or irregular, can easily be conceived, that is not perfectly imitated by some kind of pyrites. They are spherical, oval, cylindrical, pyramidal, prismatical, cubic; they are solids with 5, 6, 7, 8, 9, 10, etc. sides. The surface of some is angular, and consists of many bases of small pyramids; while their substance is composed of these pyramids, the points of which all unite in the centre of the mass.

Pyritic minerals differ also in their component substances. Some of them are called sulphureous, martiaL, arsenious, arsénical, as one or other of these fundamental substances predominate. We must observe with Henckel, whose authority is very great in this subject, that in general all pyrites are martiaL; as ferruginous earth is the essential and fundamental part of every pyrites. This earth is united with an unmetallic earth, with sulphur or arsénie, or with both these matters; in which case, the sulphur always predominates over the arsénic, as Henckel observes. He considers these as the only essential principles of pyrites; and believes that all the other matters, metallic or unmetallic, which are found in it, are only accidental; amongst which he includes copper, although so much of it exists in some kinds of pyrites, that these are treated as ores of copper, and sometimes contain even 50lbs. of copper each quintal. Many other metals, even gold and silver, are sometimes combined in pyrites; but these are less frequent, and the precious metals always in very small quantities; they are therefore justly to be considered as accidental to pyrites. The different substances composing pyrites sensibly affect its colours, Henckel distinguishes them in general into three colours, white, yellowish, or a pale yellow, and yellow. He informs us, that these three colours are often so blended one with another, that they cannot be easily distinguished unless when compared together.

The white pyrites contain most arsénie, and are similar to cobalt and other minerals abounding in arsénie. The Germans call them mifbach, or misbfld. Iron and arsénic form the greatest part of this pyrites. As arsénic has the property of whitening copper; some pyritic minerals almost white, like that of Chemins in Misnia, are found to contain 40 pounds of copper per quintal, and which are so much whitened by the arsénie, that they are very like white pyrites. But Henckel observes, that these pyritic matters are very rare, and are never so white as the true white pyrites, which is only ferruginous and arsénical.

Yellowish pyrites is chiefly composed of sulphur and iron. Very little copper and arsénic are mixed with any pyrites of this colour, and most of them contain none of these two metallic substances. This is the most common kind of pyrites; it is to be found almost everywhere. Its forms are chiefly round, spherical, oval, flattened, cylindrical; and it is composed internally of needles.
M E T A L L U R G Y.

Of Pyrites. needles or rapi, which unite in the centre, or in the axis of the solid.

Yellow pyrites receives its colour from the copper and sulphur which enter into its composition. Its colour, however, is inclined to a green; but is sufficiently yellow to distinguish it from the other two kinds of pyrites, particularly when they are compared together. To make this comparison well, the pyrites must be broken, and the internal surfaces must be placed near each other. The reason of this precaution is, that the colour of minerals is altered by exposure to the air.

Persons accustomed to those minerals can easily distinguish them. The chief difficulty is, to distinguish white pyrites from cobalt and other minerals, which also contain some copper and much arsenic.

Hence then we see, that arsenic is the cause of whiteness in pyrites, and is obtained in every pyrites of that colour; that copper is the principal cause of the yellow colour of pyrites; and that every pyrites which is evidently yellow contains copper; that sulphur and iron produce a pale-yellow colour, which is also produced by copper and arsenic; hence some difficulty may arise in distinguishing pyrites by their colours. We may also observe, that sulphur and arsenic, without any other substance, form a yellow compound, as we see from the example of orpiment or yellow arsenic. Thus, although the colours of the pyrites enable us to distinguish its different kinds, and to know their nature at first sight, particularly when we have been accustomed to observe them; yet we cannot be entirely certain concerning the true nature of these minerals, and even of all minerals in general; that is to know precisely the kinds and proportions of their component substances, but by chemical analysis and decomposition.

Besides the abovementioned matters which compose pyrites, it also contains a considerable quantity of unmetallic earth; that is, an earth which cannot by any process be reduced to metal. Henckel, Cramer, and all those who have examined this matter, mention this earth, and prove its existence.

We ought to observe, that this earth is combined with the other principles of the pyrites, and not merely impregnated between its parts. It must therefore be distinguished from other earthy and fliny matters mixed accidentally with pyrites, and which do not make a part of the pyrites, since they may be separated by mechanical means, and without decomposing that mineral: but the earth of which we now treat is intimately united with the other constituent parts of the pyrites, is even a constituent part of pyrites, and essential to the existence of this mineral, and cannot be separated but by a total decomposition of it.

According to Henckel, this unmetallic earth abounds much in the white pyrites, since he found from the analysis which he made, that the iron, which is the only metal existing in these pyrites, is only about one-fourth of its weight of sulphur, and the rest is of pyrites.

The quantity of unmetallic earth contained in the yellow or cuprous pyrites, which are also martial, since, as we have observed, iron is an essential part of every pyrites, has not yet been determined. They probably contain some of that earth, though perhaps less of it than the others.

The nature of this unmetallic earth of pyrites has not been well examined. Henckel thinks that it is an earth disposed already by nature to metallification, but not sufficiently elaborated to be considered as a metallic earth. This opinion is not improbable; but as alum may be obtained from many pyrites, may we not suppose that this unmetallic earth is of the nature of the basis of alum or argillaceous earth? Perhaps also this earth is different in different kinds of pyrites. The subject deserves to be well examined.

Although pyrites are not so valuable as true ores, because in general it contains less metal, and but exceedingly little of the precious metals; and because its metallic contents are so difficult to be extracted, that, excepting cuprous pyrites, which is called pyritic copper ore, it is not worked for the sake of the contained metal; yet it is applied to other purposes, and furnishes us with many useful substances; for from it we obtain all our green and blue vitriols, much sulphur, arsenic, and orpiment. See the principal processes by which these substances are extracted from pyrites, under the section Smelting of Ores.

As all pyrites contain iron, and most of them contain also sulphur; as the pyrites most frequently found contains only these two substances with the unmetallic earth; and as iron and sulphur have a singular action upon each other when they are well mixed together and moistened; hence many kinds of pyrites, particularly those which contain only the principles now mentioned, sustain a singular alteration, and even a total decomposition, when exposed during a certain time to the combined action of air and water. The moisture gradually penetrates them, divides and attenuates their parts, the acid of the sulphur particularly attacks the martial earth, and also the unmetallic earth; its inflammable principle is separated from it, and is dissipated. While these alterations happen, the pyrites changes its nature. The acid of the sulphur which is decomposed, forms with the first principles of the pyrites, vitriolic, aluminous, and selenitic salts; so that a pyrites, which was once a shining, compact, very hard mineral, becomes in a certain time a greyish, flaly, powdery mass, the tale of which is slimy, and flaly.
METALURGY.

Sect. III._Effaying of Ores in general.

Essays are chemical operations made in small, to determine the quantity of metal or other matter which is contained in minerals; or to discover the value or purity of any mafs of gold or silver. The former kind of essaying is the subject of the present section; the latter is treated under the word Essays, in the order of the alphabet.

Before essays of ores can be well made, a preliminary knowledge of the nature of the several metallic minerals ought to be attained. Each metal has its proper and improper ores, which have peculiar characters and appearances; hence persons accustomed to see them, know pretty nearly by the appearance, weight, and other obvious qualities, what metal is contained in a mineral. A good essay ought to be very intelligent in this matter, that he may at once know what the proper operations are which are requisite to the essay of any given mineral.

As metals are very unequally distributed in their ores, we should be apt to make false and deceitful essays, if we did not use all possible precautions that the proportionable quantity of metal produced by an essay shall be nearly the medium contained in the whole ore. This is effected by taking pieces of the mineral from the several veins of the mine if there be severals, or from different places of the same vein. All these minerals are to beoken together with their mattrises. The whole is to be well mixed together, and a convenient quantity of this mixture is to be taken for the essay. This is called the mixing of the ore.

As essays, particularly the first, are generally made in small, essays have very small weights corresponding to the weights used in the great; that is, to the quintal or hundred pounds weight, to pounds, ounces, drams, &c. The essay quintal and its subdivisions vary according to the difference of weights in different countries; and this occasions some confusion when these weights are to be adjusted to each other. Tables of these weights are found in treatises of essaying; and particularly in that written by Schlatter, and translated and rendered more complete by Hellot, which contains all the details necessary for the subject.

The custom is to take, for the essay quintal, a real weight of a gross, or a dram, which in France is equal to 12 grains; but as the whole dram represents 100 pounds, each grain represents a pound and a fraction of a pound; and hence some difficulty and a confusion arise in making the subdivisions. A better method is that of Mr Heliot, which is to make the fictitious or essay quintal equal to 100 real grains, and then each grain represents a real pound. This essay quintal, is sufficiently exact for ores of lead, tin, copper, iron, antimony, bismuth, and mercury. But for ores of silver and gold, another representation is convenient: for these metals, as Mr Heliot says, are generally in so small quantity, that the button or small piece of metal obtained in the essay could not be accurately weighed if it were made to represent a quintal; and the difficulty of separating the gold from so small a quantity would be still greater. These motives have induced Mr Heliot to use for these ores a fictitious quintal 16 times bigger; that is, equal to 1600 real grains, which represent 1000 ounces; that is, 100 lb. or quintal. The ounce being represented by a grain, its several subdivisions must be represented by fractions of
METALLURGY.

Part I.

Effaying of Ores.

§ 1. Properly speaking, no ores of gold exist: for as this metal cannot be alloyed with arsenic, nor with sulphur, it is never found directly metalized by these substances, as the other metals are. In the second place, if it be mineralized indirectly by the union it contracts with other metals naturally combined with sulphur and arsenic, so small a quantity of it only is found in these ores, that
they scarcely even deserve the name of improper ores of gold.

Hence gold is found either in its natural state, of a certain degree of purity, possessed of all its properties: or engaged with some other metals in certain minerals. The gold which is found alone is called native or virgin gold. This is generally incrustated, and fixed in different kinds of stones, principally in flints and quartzes. Mr Cramer says, that the yellow brilliant spots of the blue flints called lapis lazuli, are native gold; but these are very small.

Gold is also found in fat and muddy earths; and Mr Cramer affirms, that scarcely any sand can be found which does not contain gold; but he acknowledges, at the same time, that the quantity is too small to compensate for the expense of obtaining it.

Lastly, the largest quantity of native gold is to be found in the sands of some rivers. It is chiefly collected in hollows at the bottom of these rivers, and at their several bendings. The gold is collected in these places by a natural operation, similar to that of washing ores.

A considerable quantity of gold is in the sands of several rivers in France: to that persons who collected it find enough to compensate their trouble. Mr Reaumur, in a memoir that he gave in the year 1718 concerning the rivers of France which contain gold, enumerates ten of them: namely, the Rhine, the Rhone, the Doux, the Ceze, and the Gardon; the Arriege; the Garonne; two streams which flow into the Arriege, called Garret and Bonnevay; lately, the Salat, the source of which is in the Pyrenean mountains.

The Ceze is the river which furnishes the largest quantity of gold at certain times. Mr Reaumur observes, that its particles are larger than those of the Rhine and of the Rhone; and says, that in some days a peafant will find gold to the value of a pithole, and in others scarcely find any.

The native gold found in rivers or elsewhere is never perfectly pure, or of 24 karats. It always contains a certain quantity of alloy, which is generally silver. The gold of the French rivers, according to Mr Reaumur's trials, was found to be from 18 to 22 karats, that of the Ceze being the lowest, and that of the Arriege the purest.

Although gold, however, as above observed from Macquer, cannot be directly dissolved by sulphur, yet it probably may be mineralized by the intervention of other metallic matters. Thus, although no proper ore of gold exists, yet it is found in several mineral substances, in which it is always accompanied, as Cramer affirms, with a much larger quantity of silver; to which latter metal that author attributes its mineralized state. The minerals containing gold are blend, cupreous and arseneous pyrites, ore of antimony, cinnabar, white ore of arsene, virose and other silver ores, and the lead ore called galena.

Gold is more frequently embedded in quartz than in any other matrix, but is also found in limestone and in hornblend. Gold mines are in general very precarious, as they do not form regular veins, nor is the gold uniformly distributed through a matrix.

Becher and Cramer think, that no sand is entirely free from gold. The yellow, red, black, and white-coloured ferruginous sands, are said to contain gold. Mr Hellet relates, that in 11 effays of one kind of sand, from a quintal or 92,000 grains, were obtained each time from 848 to 844 grains of noble metal, exclusive of the gold which remained in the fiorcia; and that of the metal thus obtained two thirds were gold, and the remaining third was silver. He says, that parcels of sand taken up at very small distances from each other contained very unequal proportions of gold.

The gold found in sands is generally less pure than that which is imbedded in a solid matrix. Reaumur says, that a piece of gold, weighing 448 ounces, was shown to the Royal Academy at Paris, which was found upon effay to have different fineness in different parts of the mass.

§ 2. Ores and earths containing gold may be separated by the methods directed for the extraction of gold from large quantities of these auriferous matters, (see Part III.) or they may in general be separated by being fused in a cupel or taff, placed under the muffle of an effay-furnace, or in a crucible placed in an air furnace, with eight or ten times their quantity of lead if they be easily fusible, and with a larger quantity of lead if they be difficultly fusible; and by scorifying the earthy matters, while the lead becomes impregnated with the noble metals. These operations are entirely similar to those employed for the separation of silver from its ores by precipitation with lead; a detail of which is fully described under the title ORES OF SILVER, [Proceses I. III. IV. V. VI.]. These metals are afterwards to be separated from the lead by cupellation, in the manner directed in the article Essay (of the value of silver and gold). The gold is then to be separated from the silver by the processes described in the article PARTING.

The quantity of lead to be added to the ore in this effay must be such as renders the fiorcia very thin, that the whole gold may be imbibed by the lead. Some iron ores containing gold cannot be reduced into a fiorcia sufficiently thin with 16 times their quantity of lead, unless the heat be at the same time considerably increased. When the ore is exceedingly refractory, the fiorcification ought to be promoted by adding to it four times its quantity of tartar, twice its quantity of nitre, and four times its quantity of sulphur. This mixture is to be put into a good crucible, and covered with the sea-fall. The crucible is to be set in a forge-hearth, and exposed gradually to heat, till the fiorcia has acquired sufficient fluidity, and the lead has imbibed the noble metal.

See the methods which have been used for effaying auriferous sands, under Part III.

Sect. II. Ores of Platina.

Platina is very rare, and has been but lately discovered. As, like gold, it cannot be alloyed with sulphur or with auriferous metals, probably no ore properly so called, exists of this metal. According to the only mines of platina which we know, namely, the gold mines of Santa Fe near Carthagena, the platina is found native like the gold, and in its metallic state.
§ 1. Next to gold, silver is the metal most frequently found in its metallic state, that is, not mineralized by sulphur or by arsenic. This silver, called also native or virgin, generally affects some regular form, and consists of filaments or veinings of various figures. It is found in form of plates, of fibres, or of grains, or crystallized. It lies generally in quartz, flint, spar, flake, cobalt, and in silver ores. It is sometimes enveloped in a thin flinty crust. It is generally alloyed with some gold; but silver, like all the other metals, is much more frequently found mineralized by sulphur and by arsenic.

Three principal proper ores of silver are known, which are very rich, but very rare. These are:

1. The vitreous silver ore. This ore has no determinate figure, and has nearly the colour, softness, and fusibility of lead. It is very heavy, and contains three quarters of its weight of pure silver. In this ore the silver is mineralized by sulphur alone. Some expert artists imitate it very well by combining sulphur with silver by fusion in a crucible.

This ore, according to Cronstedt, is either in form of plates or of fibres, or is crystallized, or has no determinate figure. It may be imitated by adding about five parts of sulphur to one part of melted silver; in which operation most of the sulphur is consumed; or it may be imitated by exposing a plate of silver red-hot to the fumes of burning sulphur.

2. The bony or corneous silver ore. This ore is so called from its colour and semitransparentness, by which it resembles horn or colophony. When suddenly heated, it crackles, as almost all ores do, and melts with a gentle heat. Two-thirds of it are silver, which is mineralized by sulphur and arsenic. This ore is very rare. Wallerius says, after Woodward, that it is found at Johanna-Georgen-Stadt in Saxony.

Corneous ore has various colours: white, pearly, brown, yellow, greenish, or reddish. It is foliated and semitransparent. It is somewhat brittle, and fusible with the flame of a candle. When heated, it emits, as Wallerius says, a sulphurous and blue flame, and, according to Cramer, also a very small quantity of an arsenical smoke. Wallerius found that it contains two thirds of silver, with a considerable quantity of sulphur, and a small quantity of arsenic. Lehman thinks that it is silver united with a little arsenic. But Mr Cronstedt says, that it is a luna cornea, or silver combined with marine acid; and that it is incapable of being decomposed but by substances which can unite with that acid. This latter opinion seems to be the most probable; as the ore, according to its description, is similar to luna cornes, and as it cannot be imitated by any mixture of sulphur and of arsenic with silver. The blue flame, and the smell slightly arsenical, which are emitted from heated corneous ore, are also observable from every combination of marine acid with a substance containing phosphilian.

Red silver ore, called also refelare. Its colour is more or less red; it is sometimes crystallized, very heavy, and is fusible like the abovementioned ores. In this ore the silver is mineralized by arsenic and by sulphur, but chiefly by the former. It also contains a little iron, and furnishes two-thirds of its weight of silver. Its red colour may proceed either from the iron it contains; or from the mixture of arsenic and sulphur; or, lastly, from the particular manner in which the arsenic is united with the silver, an example of which we have in the red precipitate of silver made by the neutral arsenical salt.

Red silver ore is either plated or solid, or crystallized, and frequently semitransparent. Its colour is various, from a dark grey to a deep red, according to the proportions of the two mineralizing substances. It crackles and breaks in the fire, exhales an arsenical flame, and is readily fused. It is found generally in quartz, flint, crystal, hornblend.

Besides the three silver ores above described, the following ores contain silver mixed with other metals:

1. Grey silver ore. This contains copper and silver mineralized by arsenic and sulphur, and generally more of the former than of the latter metal; but as it is valued chiefly for the silver, it has been generally enumerated among silver ores.

2. White silver ore is an arsenical pyrites containing silver.

3. Black silver ore contains sulphur, arsenic, iron, sometimes lead, and about a fourth part of silver, according to Wallerius.

4. Plumpa silver ore is white or black, friatted like plum-alum, or like ore of antimony. It is silver mineralized by sulphur, arsenic, and antimony.

5. Pech-blanc. In this blend silver, gold, and zinc, are mineralized by sulphur, probably by intervention of iron, by which the gold and zinc are rendered capable of uniting with the sulphur.

6. Silver is frequently found in galena; and sometimes in marial pyrites; in the red ore of arsenic in various ores of copper, lead, tin, iron, and especially cobalt; in blends; in yellow or red earths; in black and blue balsates; and also in filata of stones which do not appear externally to contain any mineral substance.

7. Liquid silver ore or guhr of silver, is a grey or whitish liquid mass, which contains, as Wallerius says, either native silver, or some fluid substances capable of producing it. Mr Cronstedt mentions, in the Swedish Memoirs, a water flowing through a mine in Norway containing silver. Another instance is also mentioned of a silver guhr, in the Act. Erud. Upsal. 1720.

8. Mr Von Jufti pretends, that he has found silver mineralized by an alkaline substance; but he has not spoken sufficiently distinctly concerning it, to know whether he means a saline or earthy alkaline matter. Henckel also pretends, that by treating calcareous earth or certain clays with pyrites, silver may be obtained.

§ 2. Ores of silver may be effayed by the same methods which are employed for the extraction of that metal from large quantities of ores; which methods are different, and suited to the different qualities of the different ores. See Part III. Or, in general, ores and earths containing silver may be effayed by the following processes, which are copied from Dr Mortimer's English
Sect. III.

METAL LURGY.

I. Proces. I.

To precipitate Silver by means of Lead from fusible.

"Pound the ore in a very clean iron mortar into fine powder; of this weigh one decimatical centner or quintal, and eight of the like centners of granulated lead.

Then have at hand the decimatical telt, which must not as yet have served to any operation; pour into it about half of the granulated lead, and spread it with your finger through the cavity of it.

"Put upon this lead the pounded ore; and then cover it quite with the remainder of the granulated lead.

"Put the telt thus loaded under the muffle of an assay-furnace, and in the hinder part of it; then make your fire, and increase it gradually. If you look thro' the holes of either of the fliders, you will soon see that the pounded ore will be raised out of the melted lead, and swim upon it. A little after, it will grow clammy, melt, and be thrown towards the border of the telt; then the surface of the lead will appear in the middle of the telt like a bright dif, and you will see it smoke and boil: fo soon as you see this, it will be proper to diminish the fire a small matter for a quarter of an hour; so that the boiling of the lead may almost cease. Then again, increase the fire to such a degree, that all may turn into a thin fluid, and the lead may be seen, as before, smoking and boiling with great violence. The surface of it will then diminish by degrees, and be covered over with a mass of scorias. Finally, have at hand an iron hook ready reason, the fixed part of the are, which is no

"The ore in a very clean iron mortar into and received

"Put

"Pou
METALLURGY.

Part II.

Liftving of
Ores of
Silver.

PRO" CE:SS II.

The regulus obtained by the process I. contains all the silver of the ore, and the unincorpurated part of the lead. The silver may be afterwards separated from the lead, and obtained pure by cupellation; which process is described under the article ESSAY (of the value of Silver.)

PRO" CE:SS III.

If the silver-ore cannot be washed clean, or if it be rendered refractory by a mixture of unmetallic earths and stones, the scorification of these earthy matters frequently cannot be completed by the process I. Cramer therefore directs, that such ores shall be treated in the following manner.

"Bruise the ore into an impalpable powder, by grinding in a mortar; to a decimatical center of it add a like quantity of glafs of lead finely pulverized; for the more exactly these two are mixed together, the more easily the scorification afterwards succeeds. Put this mixture together, with 12 centners of lead, into the tefl, according to process I. then put the tefl under the muffle.

"Make first under it a strong fire, till the lead boils very well, when you see it fo, diminish the violence of the heat, as was directed in the firft process; but keep it thus diminished a little longer: then, finally, again increase the fire to such a degree, till you perceive the signs of a perfect scorification and fusion. See the whole process I. Now this process lasts a little longer than the foregoing, and requires a greater fire towards the end.

"It sometimes happens that a very refractory ore cannot be difolved by litharge; and that a mass, which has the clamminefs of pitch, fmims upon the regulus and upon the scorias themselves which are already subdued in part: when you fee this, flutt the vents of the furnace to diminish the fire; then gently touch this refractory body with a small iron cold hook, to which it will immediately flick; take it off softly, not to lose any thing; pound it into a fine powder, adding a little glafs of lead, and put it again into the tefl; then continue the scorification till it is brought to its perfection. But you must always examine the scorias of your refractory ore, to fee whether there may not be some grains of regulus dispersed in it; for sometimes the scorias that grow clammy retain something of the metal; which if you suspect, pound the scorias into a fine dust, and thus the grains of metal will appear if there are any left, because they can never be pounded fine. The silver is separated from this regulus by cupelling, as in Process II.

"All earths and stones are refractory in the fire: for although some of them melt naturally in the fire, as those that are vitriifiable do; nevertheless all the others, a very few excepted, melt much more diffi- cultly than metals, and never become fo thin in the fusion as is required for the sufficient precipitation of a precious metal. But litharge itself does not conveniently difsolv the refractory matters by the help of fire alone, unless you add some mechanical mixture to them; for the very moment the said litharge penetrates through the interfaces of the refractory ore, and begins to difsolv it, a tenacious mass is produced, which hardly admits any farther dilution by the litharge. You may fee it plain, if you make coloured glases with metallic cales: if you pour carelessly upon them a cafl that gives a colour, you will never obtain that they may be equally dyed on every side, even although you should torture them for whole days together in a great fire. Nay, glaf already made can never be diluted by only pouring salts and litharge upon it. Wherefore you must use the artifice of glafs-makers, who, in the making of the most perfect glases, take great care, before they put the species of their ingredients into the fire, to have a mechanical mixture prepare, or at leat accede, during the fusion itself, which is done here by pounding glafs of lead mixed with the ore; but if you think that your glafs of lead is not sufficiently fusible, you may add to it litharge melted first, and then pounded into a fine powder.

"As this scorification requires a longer and a greater fire than the foregoing, and as a greater quantity of litharge is moreover requisite to subdue the refractory scorias; it is easy to see why a much greater quantity of lead must be used here than in Process I.; and, although less lead is often sufficient it is nevertheless proper always to use the greatest quantity that can be necessary; left, for instance, it should be necessary to try so many times the lead alone to make it evident how much silver the lead alone would leave in the coppe1. Nor need you fear letting any thing of the silver be taken away by the lead, provided the coppels be good, and the coppelling duly put in the execution; for you can hardly collect a ponderable quantity of silver out of the collected fume of the lead, which rises during the coppelling, as well as out of the litharge that is withdrawn into the coppe1."

PRO" CE:SS IV.

If the ore be rendered refractory by pyrites, Cramer directs, that the silver should be precipitated by lead in the following manner. (Art of Alloying, Part II. proc. 4.)

"Break
Break your ore into a rough powder, and put a center of it into the telf; put upon this another telf in the manner of a telf; put it under the muffle hardly red hot; increase the fire by degrees. There will always be a crackling: which being ended, take away the upper telf; for when the vessels have been red hot about one minute, the ore ceases to split. Leave the ore under the muffle till the arsenic and the sulphur are for the most part evaporated: which you will know from the effusion of the visible smoke, of the smell of garlic, or the acrid; then take away the telf, and leave it in a place not too cold, that it may cool of itself.

Pour out, without any diffusion, the roasted ore, and with a knife take away what is adherent to the vessel; pound it to a mott fe拙bile powder, and grind it together with an equal weight of glafs of lead; and, finally, fcorify the whole collected ore in the fame telf wherein the fcorification was made, unlefs it has contracted chinks, as was defcribed in Process III.

Remarks: Yellow pyrites-ores contain a very great quantity of sulphur, even greater than is neceffary to faturate the metal that lies hidden in them. For which reafon these ores must be previously roasted, that the sulphur and arsenic may be diffipated. Nor need you fear what is adherent to the ore under the muffle till the arsenic and the sulphur are for the most part evaporated; which you will know from the effusion of the visible smoke, of the smell of garlic, or the acrid; then take away the telf, and leave it in a place not too cold, that it may cool of itself.

The silver that was in the ore and in the lead will remain in the coppel. If you deduct from it the bead proceeding from the lead, you will have the weight of the silver contained in the ore. If the ore employed was early to be molted, all the fcoria vanishes; but if it was refradory or not fufible, all the fcoria does not always go away, but their remains something of it now and then in the form of dust. A great many ores and metals may be tried in this way, except only such as split and correde the coppels.

There are likewise some of them which must be previously prepared in the fame manner as is required to render them fit for going through a fcorification. See the foregoing Procefs.

Remarks: The ore thrown at several times upon lead boiling in a coppel may be diffipated without the foregoing fcorification; but this is very far from having an equal fucceffe with all kinds of ores; for there are ores and metals which refift very much their difflation by litharge; and which being on this account thrown on the border, are not sufficiently diffipated; becaufe the litharge steals away foon into the coppel. Nevertheless, there are some others which vanifh entirely by this method, except the silver and gold that was contained in them.

A previous roasting is neceffary, firft, for the reafons mentioned, and then becaufe the ore thrown upon lead boiling should not crackle and leap out; for, having once passed the fire, it bears the molt fudden heat.

Process VI.

Silver may be precipitated out of the fame bodies as were mentioned in the foregoing procefs by fcorification in a crucible. [Cramer, Procefs 15.]

The body out of which you intend to precipitate silver must be previously prepared for a fcorification by pounding and roasting, as mentioned in the former procefses. Then in the fame manner, and with the fame quantity of lead, put it into a crucible firftly examined, that it be entire, folid, not fpeckled with black spots, like the fcoria of iron, efcpecially at its inferior parts, and capable of containing three times as much. Add besides glafs gall and common falt, both very dry, and enough, that when the whole is molted the farts may ftim at top at the height of about half an inch.

Put the crucible thus loaded in a wind-furnace: that it close with a tile; put coals round it, but not higher than the upper border of the crucible. Then light them with burning coals, and increase the fire till the whole melts very thin, which will be done by a middling fire, maintained always equal, and never greater; leave it thus for about one quarter of an hour, that the fcorification may be perfectly made. Take off the tile and dir: the mafl with an iron wire, and a little after pour it out into the mould. When the regulus is cleared from fcoria, try it in a telf by coppelling it.

Remarks: The fcorification of any ore whatever, or of any body fetched out of ores, may indeed be
be made by this apparatus, as well as in a retort under a muffle; but it serves chiefly to the end that a greater quantity of metal may be melted from it with profit. For you may put many common pounds of it at one single time into the crucible; but then you need not observe the proportion of lead prescribed in the foregoing process; nay, a quantity of lead two or three times less is sufficient, according to the different qualities of the object. But the masses will certainly be flipp’d, unless you choose a very good crucible; for there is no vessel charged with litharge that can bear a strong fire having a draught of wind, without giving way through it to the litharge.

"You add glass-gall and common salt, that they may forward the incineration, by swimming at top; for the refractory scoria rejected by the litharge, and adhering between this and the salts that swim at top, is soon brought to a flux, and the precipitation of the silver is thereby accelerated. They also hinder in a manner a small burning coal fallen into the crucible, from setting the litharge a boiling, which troubles the operation; for the litharge or glass of lead, especially that which is made without any addition, so soon as the phlogiston gets into it, rises into a foamy mass, consisting of a multitude of small bubbles very difficult to be confined, unless the phlogiston be entirely consumed, and the litharge reduced to lead, which sometimes rides above the border of the vessel."

The cornes och, if it really be, as Cronstedt says, a lunar cornes, ought to be treated in some of the methods directed for the reduction of lunar cornes. See Chemistry-Index.

PROCESS VII.

Silver and gold may be extracted from their ores by mercury.

A new method of extracting the precious metals by means of amalgamation with mercury has lately been introduced into Germany. The attraction between these has indeed been known from the most remote antiquity: Vitruvius informs us, that by this means gold might be recovered from embroidery and old cloaths; and Pliny mentions the gilding of brasses and other metals by the same means. From time immemorial mercury has been made use of in the streamings for gold, in order to purify and collect together the gold dust which is dispersed in the sands; and almost all nations who practice this use the same process. The gold sand, after being washed, is triturated with quicksilver, and the superfluous metal separated by straining through leather. By the miners it was used in a similar manner; the lodes containing gold being first pounded and then triturated in mills along with the mercury. But it was found, that in these mills there was a large quantity left behind in the residuum, so that it was necessary to subject what was left to the action of fire; on which account the mills were deemed unnecessary, and are now almost everywhere disused. The process of extracting gold and silver by amalgamation, however, was looked upon to be essentially deficient, by reason of an opinion which prevailed among the chemists, that mercury could not dissolve either of these metals except in their pure and perfect state; whence it was supposed, that a great quantity which fire could have extracted was left by the mercury. This opinion was supported by the most celebrated metallurgists, as Schletter, Gellert, Wallerius, and Kramer; whence it became generally believed, that amalgamation would never answer in great operations. But of late Baron Inigo Born has not only demonstrated that this can be done to great advantage, but has actually introduced it, notwithstanding that some difficulties were thrown in his way. The following is an account of the methods which have been practiced for separating gold and silver from their ores by means of quicksilver.

This process was introduced into some of the mines of Mexico in 1566 by Don Pedro Fernandez de Velasco, and in 1571 into some of those of Peru by the same person; and from thence it quickly spread through all the mines in the south and north-east parts of America, so much that it is almost the only method used in that part of the world for extracting these metals. The richer ores, however, are purified by fusion with lead; and our author informs us, that formerly the poorer kind of ores were certainly thrown away, and then the method of amalgamation was introduced into Peru, the old barrows were searched for the ores which had been rejected as useless, but were now put to the quicksilver.

In the year 1588, Don Juan de Corduba, a Spaniard, applied to the court of Vienna, proposing to extract silver from its ores, whether poor or rich, by mercury, and in a short space of time. He made some experiments upon different kinds of ore, which on a small scale succeeded very well, but on attempting it with 20 quintals of it he failed; and as Lazarus Erker, who was employed to give a report concerning it, disapproved of the method, it was not pursued any farther. The reaons allledged in Baron Born’s book for this failure are, that he did not calcine his ore; that he did not use any salt; and that the weather was too cold; though this last circumstance might have been remedied had Corduba attended to it.

Another Latin and anonymous account of the mode of amalgamation is preserved among the records of the aulic chamber. It is directed to the emperor, but the year in which it was written is not mentioned. According to the account given by the author of this paper, he had examined the mines of Guatemala in New Spain, and made some useful regulations for them. He directs the ore to be calcined in furnaces like lime-kilns, the fire being kept up according to the nature of the ores, after which they are to be reduced to powder in mills or flamps. The pulverized matter is then passed through fine iron sieves, and put into earthen or copper vessels by 10 or 20 quintals at a time; more or less being mixed with it according to circumstances. The light-coloured ore requires 50 lb. to every thousand, and the darker somewhat more. To this mixture are to be added five pounds of dry tartar, two pounds of pulverized horn, and three pounds of brick-dust. Some kinds of ores require but a small quantity of these additions.

After the mixtures are put into the boilers, as much water is added as will make the whole of the consistence of paste moderately thick; the vessels must be exposed to sunshine, or kept in a place warmed artificially, adding more water when the matter begins to dry; and it
M E T A L L U R G Y.

Amalga-
mation of
Silver and
Gold Ores.

must be stirred up three or four times a-day. At the expiration of three or four days, various colours appear upon the surface. After this 15 lb. of brimstone is to be added to every thousand pounds of ore, and the whole worked over again; but this addition is by the baron considered as quite superfluous. Lastly, 100 lb. or less of quicksilver is added, according to the nature of the ore; the whole mass is carefully worked over, and left at rest for 10 hours. A fire must next be kindled under the boiler, and the matter it contains triturated or flourished for two days together; keeping it always sufficiently diluted by a proportional quantity of water. It is, lastly, allowed to rest for 12 hours, and then dried.

When this operation is successfully performed, if the ores be rich, particles of amalgam will be seen in it: these are collected, washed out, and kept for further use, the leavings being carried to a place fit for washing over. This place ought to be on the slope of a hill, where a kind of pit is dug out and lined with brick and mortar, and ought to be large enough to contain 5 quintals. A stream of water is then made to run upon it, and the matter flourished without intermission. The superfluous water runs over the rim of the pit, and carries off the lighter stony and earthy particles, the heavy amalgam remaining at bottom. This is then to be mixed with the small clots already mentioned, which were taken out of the mass originally, and pressed through a cloth made of hemp or coarse linen. The quicksilver, which comes through clean, is kept for farther use; the remainder distilled off in proper vessels, and the remaining silver melted into ingots. By this method it is found that even very poor ores are worked to advantage, the expense being very moderate.

The following method of extracting gold from its ores is very much recommended by our author: "The auriferous sand, which contains gold grains and gold-dust, is concentrated by washing; and without any calcination goes to the abovementioned washing-pit, which for this purpose need not be so large. On its upper part is fixed a square launder, about 12 feet long, covered in the bottom with a woollen cloth, in order to retain any part of the gold-dust which may be carried over with the water and fluff gently stirred in the pit. When the water carries off no more mud, but runs clear, the farther supply is to be stopped; the water in the pit is pumped or taken out with buckets; the coarser sand in the bottom is separated or scraped off by hands; and the finer heaviest sand at the bottom is mixed with quicksilver. Then it is squeezed through a piece of cloth; the quicksilver comes off without any gold, which separated from the sand remains as an amalgam, and is pure after the remaining quicksilver has been evaporated. The sand and heavier dust remaining on the launder is washed and treated in the same manner.

"The auriferous or leadfimines, however, which rise from different mines, are calcined like silver ores, more or less as the nature of their matrices will direct. Then they are ground and sifted; and the auriferous fluff, thus prepared, is put into heaps, exposed to the sunshine, and worked and turned about for three or four days. It requires no salt. Afterwards sulphur, and at last quicksilver, are added and mixed with it. There is no occasion for fire under the vessel in which it is triturated, except in winter; and two days after, though not dried, it is immediately carried to the washing-pit, and treated like the amalgam of silver.

"This method of extracting gold and silver is so certain and safe, that when other methods of amalga-
mation extract only one ounce of gold and silver, this produces three or four from the poorest ores in a shorter time and with less expense."

P. Joseph Acofta tells us, that at Potosi 5000 or 7000 quintals of quicksilver are annually consumed in the dressing of the ore, not to mention what is recovered from the leavings of the first washing. These leavings, called lamas, are burnt in particular furnaces in order to extract the remaining quicksilver; and there are upwards of 50 such furnaces near Potosi and Tarapaca. The ore refined there amounts, according to the best information, to the immense quantity of 300,000 quintals. Only about 2000 quintals of the quicksilver are recovered, which shows that probably two pounds of quicksilver on every quintal of ore. The ores are of different natures, and in proportion to the silver they contain require more or less quicksilver. That which contains most, requires naturally the greatest quantity of quicksilver; though some of the workmen pretend that there is a kind which contains very little silver, and yet requires a great deal of mercury: but whether this be owing to the ignorance of the workmen, or to the mercury being absorbed by some other matter, is not generally known. The ore is first pulverized in mills, and then passed through iron or brass sieves. The mills will grind, when properly regulated, 30 quintals in the space of 24 hours. The pulvèrized matter is put into heaps in the open air, and is kept mixed with it in the proportion of 5 to 50 quintals of the ore, in order to macerate and cleanse it of its impurities, that the quicksilver may the more readily amalgamate with the metal. Upon these heaps, and while they are stirring, the quicksilver is pressed through a cloth. Before the invention of fire-places, the ore was repeatedly kneaded with quicksilver in wooden troughs, and formed into large round masses, which were left in that form for two days; after which they were worked again, until the metals appeared to be embodied together, which took from 9 to 20 days; but it was afterwards found that heat assisted the operation so far, that by means of proper ovens the same might be accomplished in five or six days. When the quicksilver has taken up the silver, and wholly separated it from its matrix the lead and the copper, the ovens are opened, the matter is taken out, and the quicksilver expelled and recovered in the following manner. The mixture is put into water troughs, and stirred therein by means of mills and water-wheels, by which the earthy and extraneous particles are washed away, and the amalgam settles at the bottom. The sediment looks like sand. It is further washed over in flat plates, and perfectly cleaned; what goes off with the water is collected for further use under the name of residuum. When the amalgam is become clean and bright by this method, it is put into a cloth and squeezed out. This uncombined quicksilver
Metalurgy.

Amalgamation of Silver and Gold Ores.

Amalgamation of silver contains five parts of quicksilver and one of solid metal. It is made into masses named pinmas, having the form of a figar loaf, hollow within, and weighing about 100 pounds. They are exposed to a strong fire in order to expel the quicksilver, after being put into pots covered with earthen heads. The silver till appears in the form of amalgam, but is reduced to one sixth of the former weight. Its texture is feezy, and the quality of the metal so fine, that the silver-sheets cannot be cast it; neither can it be formed into coin, without an alloy. Baron Born observes, however, that it is only cold amalgamation which produces silver of such uncommon finenes; by hot amalgamation it is generally alloyed with copper, which cannot be parted from it without cupellation.

The most circumstantial account of the amalgamation of silver ore is that of Alonzo Barba. He divides the ores into two classes: 1. those which are best treated by fire and fusion, and 2. such as are most fit for amalgamation. Thoé called paco and tacana, may be amalgamated; but that none of their richer contents may be lost, it will be necessary to mix them with lead, and proceed by cupellation. The former of these ores has no lustre or brightness. It is said to be of a reddish yellow, soft and friable; seldom rich in silver, and mostly valuable on account of its being easily got from the mine. Tacana is a rich silver ore, of a black colour, sometimes of a grey or of an ash-colour; 3. a brown, rich, silvery earth. 3. The plomo is too rich for pulverisation and amalgamation, and is therefore simply melted down with the tacana. This seems to be the same with the horn-silver ore, and is described as almost entirely consisting of native silver, of a black, grey, or greenish-white colour. Barba says that they found at Potosi some plomo of a cinnamon colour, which they had not seen anywhere else; but Baron Born thinks that here he has mistaken the red silver ore for another species. Freszier affirms, that in what he calls the plomo recho, the native silver appears upon rubbing or scratching it, and that it gives white and very pure silver by simple fusion without any amalgamation. In the imperial cabinet at Vienna, there is a specimen weighing about a pound, of black horn silver ore from Potosi, on the polished surface of which the virgin silver appears very plainly. 4. The sahahucado (virgin silver or gold grown in the matrix in the form of wire or hair) is amalgamated in the mortar. 5. The foroces (lead ores containing silver), are melted along with the refilir and conchilo, two kinds of red silver ore. 6. The nigrillo (grey copper and white silver ore) may be refined by amalgamation, though they are more fit for fire.

Besides this classification in such as are fit for fire, and those for amalgamation, the ores require further to be sorted into such as require the addition of particular substances for their amalgamation. Vitriol is generally hurtful, especially when salt is added to the vitriolic ores; and it requires the addition of iron, tin, lead, and lime, in order to counteract its effects; but in forms as it is of service, and promotes amalgamation. The calcination of vitriolic ores is of no service, but rather the contrary, as it dilutes the vitriol, and brings on a vitriolic effervescence. It may, however, be separated by washing till the water comes off taflets and sweet. The amalgamation is disturbed by sulphur, bitumen, and antimony, only by the smoothness and needle-like figure of the particles which reduce the quicksilver to a kind of dust. The ores mixed with these always run into quicksilver; but if melted without calcination, they would run entirely into croft and circus.

The finer the ores are pounded the better; and after putting the powder through a fine sieve, the coarser part goes again to the naid: they ought to be previously burnt, in order to afflict the operation of grinding. The best method of obtaining fine powder is by walking over; but as this is very apt to pack and turn clammy, it ought to be mixed with sand.

The ores are known to be sufficiently calcined by their change of colour and loss of brightness. Barba tells us, that all bright ores must be calcined, but with great care; that no vitriol may be disengaged, as that proves injurious to the amalgamation; but baron Born says, that one of the greatest objects in the calcination of the Hungarian ores is to decompose the sulphur into quicksilver, as promoting the decomposition of the salt. The amalgamation is likewise promoted by burning and calcination, in as far as it promotes the pulverisation of the ore, and afflicts the action of the quicksilver; but it is chiefly useful in the black and grey silver ores. It can only be determined by circumstances whether it be better to pulverize the ores before or after calcination. Their value is best known by pounding them previous to calcination. The stuff must be constantly stirred during the time it is calcining, and some powder taken from the mass to be tried with quicksilver and salt. The thickening of the quicksilver, and the grain of the stuff, show what additions are necessary, or whether calcination be completed or not. When ores are calcined in lumps, the fire does not act equally upon all their parts; though this method is attended with the advantage of losing much less dust, as well as saving the expense of flamps and mills.

Ores cannot be calcined in reverberatory furnaces, as the heat would run it together, and part of the metals themselves would be carried off by the strong current of air and the violent smoke. Barba recommends a furnace of an oblong square figure, with three vaults over each other; the fire is put in the lowermost, and the ore into the two upper ones. The heat circulates by means of lateral openings in the walls, and is set out on the back without a flame. The heat is graduated by register and dampers on the outside.—Whatever kind of furnace, however, is used, some of the ore will have clotted, and must therefore be grounded to a fine powder; but to prevent as much as possible these inconveniences, the hard ores ought to be calcined before they go to the mill, and the soft ones after, but with proper additions. The iron ores, which refit the fire longer, are calcined with an addition of sulphur, or of sulphurous and antimonial matter, proportioned to the iron they contain; but sulphurous and antimonial ores require to be calcined with the scoria of iron. Artetical ores, or those mixed with orpiment and sandarac, are calcined with lead glance; and those mixed with white or black bitumen, must be calcined with iron scoria or pounded limestone.

The
Amalgamation of Gold and Silver Ores

The impurities of ores, and the additions proper to be made to them, are determined by pounding them coarsely, and throwing them upon a heated plate of iron. If the smoke be white or black, it shows a mixture of bitumen of these colours; if yellow, it flows out; if red, sandarac; if greenish-yellow, sulphur.

Salt ought not to be used in the calcination of ores as it would calcine the silver; and the duration of the calcining must be determined by the change of colour which the ores undergo by calcination by themselves, and the brightness they assume by triturating with quicksilver. It is also a mark of sufficient calcination when antimonial and sulphureous ores no longer send out a disagreeable smoke; if the thick and black smoke of bituminous ores become white; and if the silver in the fluff appears in white glittering sparks. Vitriolic ores may also be calcined in the same manner; but they require a longer time with the addition of alum and salt: they, however, require no farther addition in the fusing and operations; and in the course of four days all their silver will be taken up by the quicksilver. Lift quicksilver will also be lost; for as there is no occasion for the frequent turning and working of the heap, a very small part of it only can be turned into useless dust. Vitriolic ores ought always to be well washed with water before they are calcined; and if there is still a suspicion of their being vitriolic, they must be tried by quicksilver: if it takes a lead-colour, the fluff must be washed till iron put into it no longer takes a copper colour. The lixivium is kept as an useful addition to some ores.

Amalgamation, according to Alonso Barba’s method, is performed in three ways, viz. in heaps or casons, in the boiler, and in mortars.

1. In heaps. Before the operation takes place in the large way, an assay is made of three or four pounds of the fine sifted powder taken from the general quantity; and according to the produce of this he calculates that of the whole. He tries it also with quicksilver, to know perfectly the method he is to follow, and the additions that are to be made. In this assay the followed method is adopted: 1. The matter is elixirized, to extract the vitriol if there be any. 2. One pound of the lixiviated matter is tried with quicksilver and salt, carefully observing the colour and its change. If the quicksilver assumes the appearance of silver filings, and these quicksilver flakes become thinner and thinner, it proves that the amalgamation goes on successfully, and that there is no occasion for any addition. The whole is stirred from time to time, till the quicksilver seems to diminish, and recover its natural form, but without dividing into small globules; after which the matter is to be washed, as all the silver is by that time completely taken up. The ores of Verenguela de Pacages are treated only with quicksilver and salt, and yield their full produce.

When the ore turns black, iron is added; when of a light lead-colour, tin; if a dark lead-colour, lead; and if of a yellowish or gold-colour, lime. The three first of these are tried, by Baron Born, “very idle and useless additions.”—The ore frequently divides into small and powdery globules, in consequence of the hardness of the minerals, or from too much furring; but this may be prevented by calcination before it is reduced to powder, or by less furring. In a great many operations, however, this quicksilver dust can scarcely be avoided. It serves the workmen as an index of the progress they have made, or sometimes as a direction how to operate; and has different names according to the caufe by which it is produced; as quicksilver dust, the dust of addition, and silver dust. The first of these arises simply from too great division, and is white without any quickness, scarcely moving when the matter is sprinkled with water; it flicks somehow what to the bottom, and runs into globules when broken between the fingers. The second is produced by the amalgam of lead and tin; and, when pressed between the fingers, unites with the quicksilver which had begun to combine with the silver. The third comes from the amalgam of silver: it links toward the coarser fluff on the bottom, and floats about in flakes of different sizes; turning into amalgam when rubbed or pressed between the fingers. All these are produced chiefly when there are lead, manganese, and iron ores in the mixture; or by vitriol of copper, which is particularly productive of this minute division of the quicksilver. They are produced also by too plentiful an addition of salt, which thickens the water and prevents the descent of the particles of quicksilver.

According to the produce of the assay the large heap is regulated. It is first wetted with water, and mixed with a due proportion of salt; but at the beginning only one third of the quicksilver and one half of the lead and tin are added. It is turned over once every day during the two first days, because the quicksilver being then uncombined would be apt to be driven off in small globules, and a great waste, occasioned. The heap is likewise too much cooled by the addition of too much quicksilver at once; so that it is better to put it gradually to the other matters. The lead and tin are always thrown into the heap along with the quicksilver; but too much of either is hurtful, by deadening the quicksilver, and preventing the amalgamation. All these additions, however, must vary according to circumstances; observing that the quantities added must always be less and less in proportion as the amalgam advances to perfection. The matter should be kept rather dry than otherwise, and two parts of amalgam be in the heap to one of fluid quicksilver. Too great an abundance of this fluid mass is very detrimental, on account of the quantity of quicksilver dust which it occasions; and if the other ingredients are accidentally wafted, the dust of addition will be changed into quicksilver dust, which having very little weight, will be poured off along with the water. But when lime is added, the whole must be mixed at once, and the entire heap turned over two or three days, till the quicksilver be added. Too much lime prevents the union of the two metals, and is an inconvenience which cannot be remedied. The heaps are frequently turned and worked over after the first two days, which is attended with several advantages; as that the quicksilver is thus heated; more thoroughly mixed with the matter, and the silver is purified by the frequent rubbing. The heaps, however, are subject to various accidents, owing to
M E T A L L U R G Y.

Part II.

Amalgamation of Gold and Silver Ores

Some clean quicksilver is also put into the bottom of this tub; the inside of which must be lined with iron plate well cleaned, and rubbed with quicksilver; (though the last operation seems to be quite superfluous, as mercury will not in the least unite with iron by rubbing). The stuff brought into the tub must be diluted with a great quantity of water, and be stirred round with a petticoat lined with iron plate in such a manner that it may turn round six times once way and six times the other, always touching the bottom; the unconnected bodies of quicksilver and amalgam are thereby to meet, to combine, and to fall to the bottom. To recover the salt which had been mixed with the heap, the water must be evaporated: but the Baron observes, that at Shemnitz no salt is recoverable from the lixivium; and if any be recovered by the Spaniards, it only shows that they add too much, and that part of the remainder is undecomposed by the vitriolic acid. The quicksilver is separated from the amalgama much in the same way as already described.

2. Amalgamation by boiling, was accidentally discovered by Barba, in an attempt to fix quicksilver. On mixing silver ore finely powdered with quicksilver, and boiling it with water in a copper vessel, he found that the metals readily united; and thus having discovered a shorter method of amalgamation, he gradually improved and introduced it into practice in Peru. In this operation the boilers must be of copper, earthen or other vessels being found not to answer: the copper also must be pure, because the quicksilver would dissolve the metals with which it is alloyed. They must be in the shape of inverted cones and flat-bottomed. The under part has a rim of six inches high and half an inch broad, all best of one piece. Other copper plates are fixed in the inside with copper nails; and care must be taken that it be watertight, that no quicksilver may run off; and for the better security, the inside of the boiler may be lined with lime and ox-b'ood. The boilers may be of any magnitude; their upper parts being surrounded with iron rings with strong handles, into which a cross board is wedged. In the middle of this board is a hole for the spindle to move in. The spindle is of light wood, and moves on a brass pivot in the bottom. It has four wooden wings, with three or four perpendicular bars alio of wood; the farthest from the spindle being the shortest; the nearest so long as to sweep the bottom. It is turned by a moveable handle on the upper end.

These boilers are put into an oblong furnace, capable of holding 10 of them; the fire-place being in the middle, and the flame and smoke passing under the boilers, and going out on both ends of the furnace by two chimneys. The fire being lighted, first the water, then the fine stuff, and at last the quicksilver, is put in; observing always that the bottom be fully covered with quicksilver. The water must always be kept boiling, otherwise the operation may be interrupted or become tedious: on account of the evaporation, the boilers must be supplied with a quantity of water, in small quantities at a time, that the boiling be not checked. The stuff must be proportioned to the size of the boiler: if too little be put in, the amalgamation goes on too slowly; while too much would not
METALLURGY.

not allow the mass to be thick enough, or to boil with sufficient freedom. Some of the amalgam is to be taken out from time to time with a long ladle, and the progress of the operation is judged of by the colour. The effay of the stuff determines whether all the silver be taken out of it in this manner. Some quicksilver is then thrown upon the surface of a sample of the boiled stuff, and worked round with it in a vessel two or three times. If the quicksilver rises and takes up some of the stuff, some silver remains; if not, the whole is taken up. Then the fire is stopped, the spindle is taken out, and the water and stuff let off. The coarser matter on the quicksilver may at all events be washed in cold water, and go once more to the mill. Almost the whole of the silver amalgama lies upon the surface of the quicksilver, immediately under the stuff, sometimes four or five fingers thick; the fire under the boilers preventing the silver from uniting with the quicksilver in the bottom. This metal, when poured off, must be pressed and treated in the usual manner.

The advantages attending this method are, that the heat promotes the union of the metals, while the boiling of the water and stirring of the mixture with the spindle bring them more frequently in contact with each other in a quarter of an hour, than they would be in several days in the common method; by which means the whole process is finished in about 24 hours. Left quicksilver is also lost by it; for being always covered with water, it cannot evaporate; and in well managed and successful operations, no quicksilver dust is produced; but the greatest recommendation is, that it is not attended with any loss of silver, so that even the poorest ores will yield all that they contain. Barba looks upon the profit of this method above the other to amount to 25 dollars for every heap of 50 quintals; even making allowance for the coals. The only objections are, that both silver and copper are apt to be lost by the corrosion of the copper-boilers; but if the copper be pure, there is no great reason to be apprehensive of any thing of this kind; or, at all events, the bottom of the boiler, which is constantly exposed to the action of the quicksilver, may be secured by a copper ring three or four inches high; and the bottom itself may be secured in the same manner; so that when corroded they may be changed for new ones: or the boilers may be paved or lined with varnishes or mortars of different kinds; which will as effectually prevent any loss. While the whole is boiling, the quicksilver violently flies over the other metal, by which means the amalgama is filled with many heterogeneous particles. These are separated by washing in quicksilver, on the surface of which they swim like scoria, and may easily be taken off, till the quicksilver flows its usual brightness; and as this cannot be done without taking off some of the metals also, the fume may be referred for the next operation.

The advantage of amalgamation by boiling chiefly appears in this, that heaps, in which by too large additions, the quicksilver has been totally dissolved so as to disappear, may be easily cured by boiling them, in iron or copper vessels with bits of iron; for then the quicksilver appears again in its proper metallic form and brightness.

Amalgamation in mortars. It is difficult to procure the full produce from ores which contain native gold and silver either in the form of hair or wire, or in larger lumps and nodules. These cannot be completely pounded, nor can they be amalgamated by the mercury, without diluting the large particles of gold and silver; and when they are treated by fire, the flint-burn nature of their matrices occasions a great loss of metal. The following method of treating them in a mortar was discovered by a Franciscan friar.

A round conical hole is cut in a hard stone, half a foot in diameter at top, of an equal depth, and sloping into a truncated, or rather obtuse and nearly flat, bottom, of about four inches in diameter. Some quicksilver is poured into it, together with a proportional quantity of small bits of the native metal or ore; after which they are triturated with an iron pestle. By this violent trituration, the gold and silver combine with the quicksilver; and the finer, lighter stuff of red silver ore and other silver calces, which are generally found with native silver, runs off by means of a small launder and current of water. It is not, however, suffered to run away, but is left to settle for common amalgamation.

Mortars of the dimensions above described being too small for any considerable quantity of ore, Barba proposes to substitute in their place larger stones of a concave figure, with vertical grinders, as in oil-mills; or common horizontal and parallel grinders of the grindmill. The ore and quicksilver are put between these stones, with a small stream of water; which, running off, will carry away the lighter stuff, whilst the gold and silver will remain at the bottom, taken up by the quicksilver.

There are several other methods of amalgamation described in Baron Born's work, as practised by the Spaniards of South America: but as all of them agree in the most material circumstances with those already mentioned, we shall only farther take notice of that invented by the Baron himself, and by him lately introduced at Shemnitz in Lower Hungary.

This method is very pompously related, and at great length, in his work on the subject. His theory contains the following particulars:

1. Quicksilver has a tendency to unite with other metals and fémimëmtal, and to quicken or animate them according to certain laws of affinity which are determined by experience.

2. It unites with gold, silver, copper, tin, lead, bismuth, and zinc, without heat; but with other metals and fémimëmtals it will not unite but in a state of fusion. It unites with tin and bismuth more easily than with gold and silver; and with those more readily than with copper.

3. The union of quicksilver with other metals is promoted by heat.

4. This union is also greatly promoted by mechanical comminution.

5. No amalgamation, or only a very slow and partial one will take place, if the surface of the quicksilver or metallic particles be covered with a coat of heterogeneous matter; which happens chiefly in the amalgamation of ores where the fine particles of the metal are involved in sulphur and arsenic.

6. Hence it is necessary to free the noble metals from...
from the stony matter which surrounds them, and to reduce the bafier ones from their calciform to a metallic flate, before they can be amalgamated with succeds.

7. Particles of gold and silver may be freed from the stony matters which involve them by trituration; and from sulphur and arsenic, by calcination.

8. In calcination, some part of the sulphur is destroyed, and vitriolic acid difengaged; which, combining with the earthy matters contained in the ore, as well as the calces of the bafier metals mixed with it, fill leave the gold and silver involved: whence it is necessary to employ fuch chemical agents as will free the particles of these metals from their heterogeneous coat, and keep their surface as well as that of the quicksilver clean, without acting either upon the gold or silver. These agents are principally the mineral acids, which act variously according to their different natures. The marine acid is moft efficacious for gold or silver ores; but it would be exceedingly expensive to use it in its proper form, fo that it is neceffary to take some method of expelling it extemperaneously from common salt by means of oil of vitriol.

9. The calcined ore, when pulverised, must be wetted with water, fo that the quicksilver may be separared from the earthy matters by trituration; and the particles of these metals from their heterogeneous coat, and keep their surface as well as that of the quicksilver clean, without acting either upon the gold or silver. These agents are principally the mineral acids, which act variously according to their different natures. The marine acid is most efficacious for gold or silver ores; but it would be exceedingly expensive to use it in its proper form, so that it is necessary to take some method of expelling it extemperaneously from common salt by means of oil of vitriol.

10. To decompose the common salt in the dry way, the ore must be properly stamped and fifted, and the mixtures made up with a proportional quantity of pulverified common or rock salt, and then undergo an adequate calcination in an open fire. Thus the common salt may be decomposed in the dry way. The natrium acid, thus difengaged, dissolves the heterogeneous particles in which the metals are involved, and allows the quicksilver to act upon them much more effeclually than it could have been enabled to do by any mechanical comminution; and this the more so as it takes up even those particles of daphlogisticated iron upon which the other acids are incapable of acting.

11. The calcination and corruption of the bafier metals is indispensably necessary, especially in a natural combination of gold and copper; for the affinities of these two is fo strong, that unless the latter be perfectly calcined, or otherwise removed, very little of the gold can be extracted. The separation will also be promoted by the addition of sulphurous subfances.

From these considerations, the Baron lays down the following rules concerning amalgamation.

"1. The ores and mixtures previous to their amalgamation must be mechanically comminuted, and reduced to a fine powder, by flamping, grinding, and fiftins, that the surfaces of the particles, and their points of contact, may be increased and multiplied.

"2. This powder must be calcined, that, besides the pure particles of the nobler metals, those which are disfigured in the ore may be efengaged and laid bare by defulphuration and calcination.

"3. If before its calcination no common salt was added, it must be added afterwards; then it must be triturred with a proportionate quantity of quicksilver and water, long enough, and in such a manner, that the quicksilver, by an uninterrupted motion of the whole mass, may come into repeated contact with the difengaged gold and silver particles, and take them up.

"4. As much depends on the just-mentioned proportions, the infpeclor, director, or master of the work, must be well acquainted with the elelve attraction of bodies, that forming a joint idea of, and judgment on, their different mechanical or chemical decomposition and combination, he may remedy and remove such unfavorable difficulties and impediments in the process as may, and will sometimes, prevent its full success."

The various steps by which the metals are extracted from their ores, according to the Baron's method, are, 1. Stamping, grinding, and fiftins. 2. Calcination; after which the grinding and fiftins must be repeated. 3. Trituration. 4. Washing of the refiduum. 5. El- liquation of the amalgama. 6. Heating of the same. 7. Diftillation of the quicksilver pressed from the amalgama. 8. Refining of the heated amalgama. 9. Extracting from the refidua such parts of the noble metals as may still be contained in them.

1. Stamping, grinding, and fiftins. The Baron recommends dry flamps and mills for this purpose; as wetflamps, he says, "would bring on great losfs of silver and expenfive contrivances to prevent or recover it."

On the other hand, E. Raife, the translatcr of his work, says, that "late experiments have proved so much in favor of the wet flamps, that they have actually been adopted as great improvements."

The contents of the ores are accurately investigated by elays before any thing is done in the large way. The ores are delivered to the respective mills; the smaller ores are passed over a brafs flie, the meshes of which are about one-tenth of an inch wide, that the finer particles may be separated and not sent to the flamps, which would occasion some waste, especially in the dry way. The finer fland is sent directly to the mill, and the big lumps to the flamp. Each box, or fett of flamps, has three famp-heads, weighing 40 or 54 pounds, the whole being of cafl-iron. The matter is every now and then wetted with water to prevent the finer parts from flying off. When the ore is sufficiently beat in the flamps, it is afterwards fifted, and the coarse part returned to the flamp. When the coarsef part is reduced in this manner to the size of coarse fland, it is sent to the mill; the running ftone of which
which must be kept close in a box, and nothing left open but the admission-funnel. The millstones are a kind of porphyry, and the sieves of brass-wire.

2. Calcination. The ore being reduced to a sufficient degree of fineness, is next carried to the calcining furnace; previous to which it is again to be tried by effay, and to have the proper additions according to its nature. When the furnace is properly heated, the whole quantity of ore defined to one furnace, about 30 quintals, is brought up to the top by wheel-barrows; and being spread as even as may be, the proper quantity of salt and lime is sifted over it; and the whole turned with crooks and rakes till it be perfectly mixed. The calcination is then performed in the following manner: The back-door being carefully allowed to dry the upper hearth. Here is again to be spread and is put upon the upper hearth, that the two operations may conveniently be performed on that account. A larger proportion of the gold and silver will be more dispersed; in which contact.

4. The washing of the triturated leavings or residua is performed in large tubs, and requires no particular description, farther than that it be continued till all the soluble matter be got out; and for this purpose there must be a contrivance for furring the matter all the time it is washing.

5. Elution of the quicksilver and amalgama. Formerly this was performed in bags made of deer-skins, strongly compressed with engines for the purpose; but this being found too expensive, it is now done by small quantities at a time, and pressed only by the hand till the ball of amalgam yields no more quicksilver. A small quantity always remains in the quicksilver which passes through; and this quantity is the greater in proportion to the warmth of the amalgam when pressed.

6. The distillation of the amalgam is performed per depergen in large iron pots. The undermoat stands upright to its middle in a stream of cold running water which passes under the hearth; the upper part hardly appearing two inches above it. The amalgam, made up into balls, is placed in iron cullenders fixed upon a tripod set in the bottom of the lower pot, and covered in the inside with a coarse cloth. The upper pot is inverted on the lower one; and the junction being lulled, the fire is put all round the outer one, and the heat passing through to the amalgam quickly liquefies it, and raises the quicksilver in vapour, which condenses in the under pot continually kept cool by the stream of water. The upper pot is kept in a strong red heat for five or six hours; by which means the cloth is entirely converted into tinder, so that the cullenders must afterwards be cleaned with a brass brush.

The other operations contain nothing particular but what may be easily understood from what has been already delivered.
§ 1. Copper is found under ground in three different forms: 1. Native or virgin copper diversely malmified, which is much more rare than native silver. This native copper is not so ductile as copper purified by fusions from the ore (a). 2. Copper is found in form of cals, of verdigrife, of precipitates. Such are the minerals called filly copper ore, and several white and green earths. These matters are only copper almost pure and but little mineralised, but which has been corroded, dissolved, precipitated, calcined by fumes from the air, of water, and of earths (b). 3. Copper is frequently in a truly mineral state, that is, combined with sulphur and with arsenic, with other metallic matters mixed with earths, and enveloped in different matrices (c). These are the true copper ores. They have no regular forms except they partake of the nature of pyrites. Their colours are very different, which depend chiefly on the proportion of the mineral substances composing them. Lastly, in almost all of them we may perceive green or blue colours, which always indicate an erosion or calculation of the copper. Molt copper ores contain also some iron or ferruginous earth, to which the ochre colour is to be attributed, which might make us believe them to be ores of iron. Ores which contain much iron are the most difficultly fusible.

Copper ores have almost all a yellow, golden, and shining colour, by which they are easily distinguished. Some of them are coloured with irises, and frequently have spots of verdigrise, by which also they are distinguishable from other ores.

Many copper ores are also rich in silver. Such is that called the white copper ore, the colour of which is rather occasioned by arsenic than by silver, although it contains so much silver as to be enumerated by several mineralogists amongst silver ores.

Lastly, the pyrites of a golden yellow colour which contains copper and sulphur, and the white pyrites which contains copper and arsenic, are considered as copper ores by several chemists and naturalists. Hencel and Cramer remark, that no proper ore of copper is known which does not contain a considerable quantity of arsenic.

§ 2. Ores of copper may be effayed in methods similar to those employed for finding of large quantities of ores (Part III.), or they may in general be effayed by the following processes.

PROCESS I.

To reduce and precipitate copper from a pure and fusible ore in a close vessel.

"Mix one, or, if you have small weights, two dolomitaical centners of ore beat extremely fine, with six centners of the black flux; and having put them into a crucible or pot, cover them one inch high with common salt, and press them down with your finger: but let the capacity of the vessel be such that it may be only half full: put the vessel close, put it into the furnace; heap coals upon it, so that it may be covered over with them a few inches high; govern the fire in such a manner that it may first grow slightly red-hot. Soon after you will hear your common salt crackle; and then there will be a gentle hilling noise. So long as this lasts, keep the same degree of fire till it is quite over. Then increase suddenly the fire, either with the funnel and cover put upon the furnace, or with a pair of bellows applied to the hole of the bottom part, that the vessel may grow very red-hot. Thus you will reduce and precipitate your copper in about a quarter of an hour: then take out the vessel, and strike with a few blows the pavement upon which you put it, that all the small grains of copper may be collected in one mass.

"Break the vessel, when grown cold, in two, from top to bottom, as nearly as you can; if the whole process has been well performed, you will find a solid, perfectly yellow and malleable regulus adhering to the bottom of the vessel, with scorias remaining at top of a brown colour, solid, hard, and shining, from which the regulus must be separated with several gentle blows of a hammer; this done, weigh it, after having wiped off all the filthines.

A soft, dusky, and very black scoria, is a sign of a fire not sufficiently strong. Small neat grains of copper,

(a) Native copper is solid; or consisting of friable mafles, formed by precipitation of cupreous vitriolic waters called cement or sinter copper; or forming crystallized cubes or grains, leaves, branches, or filaments.

(b) Calculiform ores are either pure calces of copper, or are mixed with heterogeneous matters. 1. The pure or loose friable ochre, called calcitum montanum "mountain-blue," and viride montanum "mountain-green," and the red indurated cals, called improperly glas copper ore. 2. Mixed calciform ores are those in which the cals of copper is mixed; with calcareous earth, forming a mountain-blue; with iron, forming a black calx; with gypsum, an indurated green ore, called malacities; and with quartz, a red ore.

(c) Copper is malminated, 1. By sulphur, forming the grey copper ore, in properly called vitreous (minera cupri vitrea Wallerii). 2. By sulphurated iron, forming the hepatic copper ore (minera cupri hepatica Wallerii) of a brown yellow colour. It is a kind of cupreous pyrites, and is called by Cronstedt minera cupri fyrataces. Sometimes it is of a blackish grey colour, and is then called pyrites cupri griffins (minera cupri griffes Walh:ri); sometimes of a reddish yellow, and tarnished with blue irises on its surface, when it is called minera cupri luraesi; when of a yellowish green colour, it is the pyrites cupri fluoro-vitridenses (cuprum sulphures et furo-malminilatum Wallerii); and when of a pale yellow colour, it is the pyrites cupri pallide felenus. Most of the above pyritaceous ores contain also some arsenic, but their sulphur is predominant. 3. Copper malminated by sulphur, iron, and arsenic. White copper ore (Minera cupri alba Wallerii). This ore contains also some silver. 4. Copper dissolved by vitriolic acid. Native blue vitriol. 5. Copper united with bitumen. Copper coal ore. This is a pit coal, from the ashes of which copper is obtainable. 6. Copper is also found in the mineral called kuefer nickel.
PROCESS IV.

The roasting of a pyritic, sulphurous, arsenical, semimetallic, copper ore.

"Break two decimalatical centners of the ore to a coarfe powder, put them into a tefl covered with a tile, and place them under the muffle of a decimalatical furnace. But the fire must be fo gentle, that the muffle may be but faintly red-hot. When the ore has decrepitated, open the tefl and continue the fire for a few minutes; then increase it by degrees, that you may fee the ore perpetually fmoaking a little: in the mean time, it is alo proper now and then to fir it up with an iron hook. The fhhing particles will afume a dark red or blackifh colour. This done, take out the tefl, that it may grow cold. If the small grains are not melted, nor ftrongly adherent to each other, hitherto all will be well; but if they run again into one fingle cake, the procefs must be made again with another portion of the ore, in a more gentle fire.

When the ore is grown cold, beat it to a powder somewhat finer, and refalt it by the fame method as before; then take it out, and if the powder is not melted yet beat it again to a moft fubtile powder; in this you are to take care that nothing be loft.

Roafit the powder in a fire somewhat ftronger, but for a few minutes only. If you do not then find the ore any way inclined to melit, add a little tallow and burn it away under the muffle, and do the fame another time again, till, the fire being very bright, you no longer perceive any sulphurous, arfenical, unpleafant fmoke, or any smoke; and there remains nothing but a thin, fift powder, of a dark red, or blackifh colour.

"Remarks. Every pyrites contains iron, with an unmetallic earth; to which sulphur or arfenic, and moft commonly both, always join. Befides, there is copper in many pyrites; but fometimes more and fometimes less: fome of them are altogether deftitute of copper; therefore, fo much as pyrites differ with regard to the proportion of their conftituent particles to much do they differ as to their dipofition in the fire. For inftrance, the more copper there is in pyrites, the more it inclines to colliquation. The more sulphur and arfenic it has in it, the more quickly the melting of it will be procured, and the reverse: the more iron and unmetallic earth it contains, the more it proves refractory in the fire. Now if fuch pyrites melt in the roafing, as happens to fome of them if they grow but red-hot, the sulphur and arfenic that lies hidden therein are fo strictly united with the fixed part, that you would in vain attempt to dilipate them.

Nay,
Nay, in this case, when it is reduced again into a powder it requires a much greater time and accuracy in the regimen of the fire to perform the operation. For this reason, it is much better to repeat it with new pyrites. But you can roast no more than the double quantity at once of the ore you have a mind to em.

main ftill

For this reason, it is much better to repeat it with new multi he

fulphur is expelled by a fire not quite so

violent a fire: for a great

violence, and do it in the fame manner, and with the fame pre­

operations. For the former perform the

affayers

dafter a a

reduced into copper, by being burnt to an

black copper. whereas the latter perform it in

refraitory

it under the mume of the

creafe the fire, that the whole may melt with all fpeed:

moifiened: when this bed

open orifice of which there

So

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all fpeed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

creafe the fire, that the whole may melt with all f-speed:

crea
If the ore be very poor, and enveloped in much earthy and flaky matters; to a quintal of it, a quintal and a half of borax, a quarter of a quintal of pitch, and ten pounds of calx of lead or minium, must be added. The calx of lead will be revived, and will unite with the scattered particles of the copper, and together with these will fall to the bottom of the crucible, forming a compound regulus. When the ores of copper are very rich, half a quintal of borax and a quarter of a quintal of glafs will be sufficient for the reduction. If the ore is charged with much antimony, a half or three quarters of a quintal of clean iron filings may be added; otherwise the large quantity of antimony might destroy the copper, especially if the ore contained no lead. If iron be contained in copper ore, as in pyrites, some pounds of antimony, or of its regulus, may be added in the effay; as these substances more readily unite with iron than with copper, and therefore disengage the latter metal from the former.

PROCESS VIII.

To effay ores of copper by humid solution.

Some pyrites and ores contain so small a quantity of copper, that it cannot be separated by the above processes, but is destroyed by the repeated roasting and fusions. These, and indeed any copper-ores, may be effayed by humid solution, or by mercurials.

1. By roasting a sulphureous ore, the sulphur is burnt or decomposed, its phlogiston with part of the acid evaporating, while the remaining part of the acid combines with the metals, especially with the copper and iron contained in the ore. Accordingly, from an ore thus roasted, a vitriolic solution may be obtained by lixiviation with warm water, especially if the ore has been exposed, during a few days after it has been roasted, to a moist air; as the water thus gradually applied unites better with the combination of the metallic calxes with the concentrated vitriolic acid of the sulphur: but all the copper is not thus reduced by one operation to a vitriol. More sulphur must therefore be combined with the residuous ore by fusion, and must be again burnt off, that the remaining part of the copper may be attacked by some of the acid of the sulphur. By repeating this operation, almost all the copper and iron will be reduced to a vitriolic lixivium, from which the copper may be separated and precipitated by adding clean pieces of iron.

2. Copper-ores may be more easily effayed by humid solution in the following manner:

Roast the mineralised ores in the manner directed in Proces IV. and pulverise them. If the ores be calciform, they do not require a previous roasting. Put this powder into a matrafs capable of containing ten times the quantity of the ore; pour upon the ore some water: let the matrafs in a sand-bath, that the water may boil: pour off the lixivium; add to the residuous ore more water, with some vitriolic or marine acid; digest as before in the sand-bath, and add this lixivium to the former: repeat this operation, till you find that the acid liquor dissolves no more metal.

By adding clean plates of iron you may precipitate the copper, which ought then to be collected, fused with a little borax and charcoal dust, and weighed.
We may remark, that although copper is not soluble by a dilute vitriolic acid, yet the calx of it obtained by roasting the ore, and also the calciform ores, are readily soluble in that acid.

3. Stahl advises to effay copper ores by boiling them, after they have been roasted and powdered, in water together with tartar and common salt, or with alum and common salt: but we have not found this method so effectual as the preceding.

PROCESS IX.

Dr Fordyce’s method of effaying copper ores, by means of aqua regia. [Phil. Trans. for 1781, vol. lxxv. art. 3.]

This method consists only in pouring a quantity of an aqua regia composed of equal parts of the nitrous and muriatic acids upon a small quantity of the ore in powder, till a fresh effusion of the menstruum shows no green or blue tinge; by which means all the metallic part of the ore will be dissolved. It is then to be precipitated by means of a solution of fixed alkali, or volatile alkali cautiously managed will answer the same purpose. The metal then appears in form of a powder called green verditer; but is mixed with what calcareous earth might have been contained in the ore, which the acids would dissolve, and the fixed alkali, if that kind was used, would precipitate. The volcanic volatile alkali would not throw down this earth, and is therefore to be preferred to any other; but care must be taken to hit the point of saturation very exactly with it, as it violently dissolves the metal if added in too great quantity. Dr Fordyce orders this green calx to be dissolved in vitriolic acid, and then, by adding a piece of clean iron to the solution, all the copper contained in the ore will be obtained in its metallic form.

This method can be subject to no fallacy, unless the ore contains a luminescent matter; in which case some of the earth of alum will be mixed with the metal, as that earth will be precipitated by fixed alkali, by caustic volatile alkali, and by iron. This, however, may very effectually be prevented by dissolving the green calx first in volatile alkali, and then in vitriolic acid. It is even probable, that by reducing the ore to a very fine powder, and treating it with caustic alkali, all the metal might be separated from the ore, without the trouble of using aqua regia. For the principles on which this method is conducted, see the article CHEMISTRY paffim.

SECT. V. Ores of Lead.

§ 1. Lead is seldom found native (q) and malleable. Neither, says Mr Macquer (r), is it found in form of calx or precipitate, as copper is, because it is much less liable to lose its phlogiston by the action of air and water: therefore almost all lead is found naturally mineralized.

Lead is generally mineralized by sulphur (q). Its ores have a dark white, but a shining metallic colour. These ores, although they form irregular masses, are internally regularly disposed, and seem to be composed of cubes of different sizes applied to each other, but not adherent. These ores are generally distinguished by the name of Galena. They commonly contain about three quarters of lead and a quarter of sulphur. They are accordingly heavy and fusible, although much less so than pure lead.

Most lead-ores contain silver; none but those of Württemberg in Cornithia are known to be quite free from it: some of them contain so much of it, that they are considered as improper ores of silver. The smaller the cubes of galena are, the larger quantity of silver has been remarked to be generally contained.

§ 2. Lead ores may be effayed, 1. By means of the black flux, in the manner directed by Mr Cramer, as follows:

“Let one or more quintals of this ore be grossly powdered, and roasted in a telft till no more sulphureous vapours be exhaled, and then reduced to a finer powder; it is then to be accurately mixed with twice its weight of a black flux, a fourth part of its weight of clean filings of iron and of borax. The mixture is to be put into a good crucible, or rather into a telft; it is then to be covered with a thickness of two or three fingers of decrepitated sea-salt; the crucible is to be closed, and placed in a melting furnace, which is to be filled with unlighted charcoal, so that the top of the crucible shall be covered with it. Lighted coals are then to be thrown upon the unkindled charcoal, and the whole is left to kindle slowly, till the crucible be reduced. Soon after which a hissing noise proceeds from the crucible, which is occasioned by the reduction of the lead; the same degree of fire is to be maintained while this noise continues, and is afterwards to be suddenly

(q) Cronstedt doubts whether any native lead has been found. Linnaeus says, he has seen what externally appeared to be such.

(r) But he is mistaken. As lead unites strongly with vitriolic acid, we may expect to meet ochres of this metal as well as of copper. Accordingly we find some calciform ores of lead. 1. A pure calx of lead, in form of a friable ochre, corissa nativa, found on the surface of galena; or it is indurated with a radiated or fibrous texture, of a white or yellowish green colour, and resembling spar; it is called flatum plumbi, sparvi fciptum, and lead-spar. 2. A calx of lead is found mixed with calx of arsenic, forming the ore called arseneatised lead-spar. Sometimes also that calx is mixed with calcareous earth.

(g) Lead is mineralized. 1. With sulphur; such are the several kinds of steel-grained and tesselated galenas, which also contain generally some silver. 2. With sulphurated iron and silver. It is fine-grained or tesselated, and is distinguished from the former by yielding a black flag when scorified, whereas the former yields a yellow flag. 3. With sulphurated antimony and silver. Plumbum fributum Linnaei. Its colour is similar to that of galena, and its texture is tesselated. 4. With sulphur and arsenic. This ore is soft, almost malleable, like lead. From this ore lead may be melted by the flame of a candle.
Zinc, and in tin-ores; and the tin contained in them is very pure. Lately, appear to be all of this kind. If the galena be mixed with pyrites, that it contains much more arsenic than sulphur, prevent the black or tarnished colour, and it may be thrown over the ore, when put into the crucible, without previous fusion, for this purpose nothing is requisite than to keep the ore melted in a crucible with a moderate heat, till all the sulphur is destroyed, and the metal be collected. To prevent the destruction of any part of the metal after it is separated from the sulphur, some charcoal dust may be thrown over the ore, when put into the crucible; but if the galena be mixed with pyrites, especially arsenical pyrites, it requires much roasting and faine fluxes.

Sect. VI. Tin Ores.

§ 1. Tin is very seldom found pure, but almost always mineralized, and chiefly by arsenic. The richest ore of tin is of an irregular form, of a black or tarnished colour, and almost the heaviest of all ores. The cause of this extraordinary weight is, that it contains much more arsenic than sulphur, whereas most ores contain more sulphur than arsenic.

The most common tin ore is of the colour of dull, which proceeds from a quantity of iron or of iron-ore mixed with it. The tin-ores of Saxony and Bohemia appear to be all of this kind.

One kind of tin-ore is semi-transparent and like spar. Lastly, several kinds of garnets are enumerated by mineralogists among tin-ores, because they actually contain tin.

The county of Cornwall, in England, is very rich in tin-ores; and the tin contained in them is very pure. From tin-mines in the East Indies tin is brought, called Malacca tin. No mines of tin have been discovered in France; only in Bretagne garnets are found which contain some tin.

Native tin is said to have been found in Saxony and Malacca. Its ores are all of the calciform kind, excepting black-lead, which appears to be tin mineralized by sulphur and iron.

The calciform ores of tin are, 1. Tin-stone, which is of a blackish-brown colour, and of no determinate figure; and tin-grains, or crystals of tin, which resemble garnets, and are of a spherical or polygonal figure, which they have probably acquired by the attrition of their angles. The tin-stone seems to consist of attrited tin-grains. This ore is called of tin united with calx of arsenic, and frequently with calx of iron. 2. Garnets are said to contain calx of tin united with calx of iron. 3. Mangane is said also to contain tin.

§ 2. Ores of tin may be essayed in the same manner, according to Cramer, as he directed for the essay of lead-ores, supra. He further makes upon this essay the following remarks.

1. Tin-ore, on account of its greater gravity, admits better of being separated, by chlorination or washing, from earths, stones, and lighter ores. 2. A more exact separation of earths and stones ought to be made, because the scorification of these by fluxes requires such a heat as would destroy the reduced tin. 3. The iron ought to be separated by a magnet. 4. By a previous roasting, the arsenic is dissipated, which would otherwise carry off a great deal of tin along with it in a melting heat, would change another part of it into aqaeous, and would vitiate the remaining tin. 5. The essay of tin is very precarious and uncertain; because tin once reduced is easily destructible by the fire, and by the faine fluxes requisite for the reduction.

Mr Gellert directs, that ores of tin should be essayed in the following manner:

"Mix a quintal of tin-ore, washed, pulverized, and twice roasted, with half a quintal of calcined borax, and half a quintal of pulverized pitch: these are to be put into a crucible moistened with charcoal-dust and water; and the crucible placed in an air-furnace; after the pitch is burnt, give a violent fire during a quarter of an hour; and then withdraw your crucible. If the ore be not very well washed from the earthy matters, as it ought to be, a larger quantity of borax is requisite, with some powdered glass, by which the quick fusion of the borax is retarded, and the precipitation of the earthy matters is prevented. If the ore contains iron, to the above mixture may be added some alkaline salt.

Sect. VII. Ores of Iron.

§ 2. Iron is seldom found in its metallic state, and free from admixture; though Cramer gives an account of an ore which needs only to be put into a forge, and heated to a welding heat. Several sands and earths also have the appearance of iron, and are even approachable by a magnet. The ore mentioned by Cramer is found vitriified: with moderate blows the fiorus are thrown out, and a mass of iron obtained, which, by being put into the forge again, gives tough iron without any other process. But in general this metal is found in the state of a calx; or, though it is combined with a great quantity of the principle of inflammability, it has seldom enough of the metallic form; and it is very often intermixed with a certain proportion of sulphur. The minerals wrought for iron are three, viz. iron-ore, iron-stone, and bog-ore.
The iron ore is found in veins as the ores of other metals are, and the appearance is very various; sometimes it has a rusty iron colour resembling that of iron; sometimes it has a reddish cast; often it is formed into a sort of crystallizations which are proteranent knobs on the outside; and these consist of fibres tending to a common centre: and it is of a dark colour like coagulated blood. It is called hematites or blood-flone; and consists of a calx of iron with a small quantity of vitriolic acid.

Iron-flone in Britain is clay found in strata with coal: but which contains a large quantity of iron, so as to make the working profitable. Sometimes it has little appearance of conlills iron, fo as to make the working profitable. triolic acid.

red.
rally in low fltuations, and in fprings containing a

tion of the metal with

quality,

depofits it in the form of ochre; and after a number

metals.

very

earth: the black and heavy fands are generally

found in veins, and it is

fione

seen; put

satu;

iron out

precipitate

iron may be eJayed

Assayillg,

s

iron ores: hence they are called iron ores in form of

peafe, of beans, of coriander feeds, of pepper-corns, of
cinnamon, &c. which Mr Cramer treats as ridiculou trifes.

§ 2. Ores of iron may be eJayed by the following procres:

To reduce a precipitate iron out of its ore in a close vehicle.

"Roast" for a few minutes in a fea under a muffe, and with a pretty strong fire, two centners of the small weight of your iron ore grofsly pulverifed; that the volatiles may be difipated in part, and the ore itsel: be softened in cafe it fhould be too hard. When it is grown cold, beat it extremely fine, and roast it a fecond time, as you do the copper-ore, but in a much stronger fire, till it no longer emits any fmeal; then let it grow cold again. Compoze a flux of three parts of the white flux, with one part of fufible pulverifed glafs, or of the like ftitile unfaporous fcorias, and add fandiver and coal-duft, of each one-half part; add of this flux three times the quantity of your roasted ore and mix the whole very well together; then choose a very good crucible, well rubbed with lute within, to flop the pores that may be here and there unseen; put into it the ore mixed with the flux; cover it over with common falt; and fuit it clofe with a tile, and with lute applied to the points.

"Put the wind furnace upon its bottom-part, having a bed made of coal-duft. Introduce besides into the furnace a small grate supported on its iron bars, and a ftone upon it, whereon the crucible may fland as on a fupport: furround the whole with hard coals, not very large, and light them at top. When the veffel begins to grow reed, which is indicated by the commons falt's ceasing to crakle, flop with grofs lute the holes of the bottom part, except that in which the nozzle of the bellows is received: blow the fire, and excite it with great force, adding now and then fresh fuel, that the veffel may be never naked at top; having thus continued your fire in its full strength for three quarters of an hour, or for a whole hour, take next the veffel out of it, and strike feveral times the pavement upon which it is fet, that the small grains of iron which happen to be difpersed may be collected into a regulus, which you will find after having broken the veffel.

"When the regulus is weighed, try its malleability: then make it red-hot; and when ho, strike it with a hammer: if it bears the strokes of a hammer, both when red hot and when cold, and extends a little, you may pronounce your iron very good; but if, when
throw lighted coals upon them, that the fire may
scorch and make them red-hot from top to bottom;
at first let the bellows blow softly, and afterwards
strongly during an hour, or an hour and a quarter:
then take away the crucible, and break it when
cold. A regulus will be found in the bottom, and
sometimes some small grains of iron in the scoria,
which must be separated and weighed along with
the regulus: then try the
regulus whether it can be extended under the hammer
when hot and when cold.

"Remarks. To disengage a metal from the earthy
matters mixed with it by fire, we must change these
matters into scoria or glass. This change may be
effectuated by adding some sub stance capable of
dissolving these matters; that is, of converting them
into a scoria or glass, from which the metallic
matters may be, by their weight, separate and
form a regulus at bottom. Fixed alkali, which is an
ingredient of the black and
of the white flux, is a powerful solvent of earths and
flint; but the alkali does also dissolve iron,
especially when this is in a calcined or earthy state;
and this solution is so much more complex, as the fire
is longer applied. Hence, in ordinary essays, where
an alkali salt is used, little or no regulus of iron is
obtained. Now, glass acts upon and dissolves earths and
flint; but not, or very little, iron: consequently glass is
the best flux for such essays, and experience confirms
this assertion. If the ore contains but little iron we
may add to the glass some borax; but borax cannot
be employed finely, because it very soon fuses and
separates from the ore before the metal is revived.
Quicklime is added, not only to absorb the sulphur and
aromatic remaining in the ore, but also because it dissolves
and vitrifies the fusty and earthy matters of iron ores
which are generally argillaceous. For which reason,
in the large operations for smelting iron ore, quenching,
and even in certain cases gypsum, are commonly added
to facilitate the fusion.

"The reduction of iron-ore, and even the fusion of
iron, requires a violent and long-continued heat:
therefore in this operation, we must not employ any
inflammable sub stance, as pitch, that is soon consumed,
but charcoal pulverised, which in close vessels is
not tenderly wafted. Too much charcoal must not be
added, else it will prevent the action of the glass upon
the earthy matter of the ore, and consequently the
separation of the metallic part. Experiments have
taught me, that one part of charcoal dust to eight
parts of ore was the best proportion.

"When iron is surrounded by charcoal, it is not
decomposed or destroyed; hence the iron of the ore,
which sinks into the hollow made of paste of charcoal,
dust and clay, remains there unburnt. The clay is
added in this paste to render it more compact, and
to keep the fluid iron collected together.

"The air is directed between the crucibles; because
if it was thrown directly upon them, they would
scarcely be able to reft, the heat. The space between
the air-pipe and the crucibles ought to be continually
filled with charcoal, to prevent the cold air from
touching the crucibles. Dull and malleable iron is
seldom obtained in this first operation. The sulphur
and arsenic, and frequently also an earthy matter adhering
to the iron, prevent these qualities."

Sect. VII. **Metalurgy.**

Effaying of either hot or cold, it proves brittle, you may judge it to be not quite pure, but still in a semi-mineral condition.

"Remarks. The arsenic, but especially the sulphur
must be dissipated by roasting: for the former renders
the iron brittle; and the latter not only does the same,
but, being managed in a close vessel, with a saline
alkaline flux, turns to a liver of sulphur; to the action
of which iron yielding in every respect, it can upon
no account be precipitated, and if not the whole, a
great part of it at least is retained by the sulphureous
scoria; so that in this case you commonly in vain look
for a regulus.

"The iron obtained from this first precipitation has
hardly ever the requisite ductility, but is rather
brittle; the reason of which is, that the sulphur and
aromatic remains in it; for notwithstanding that the
greatest part of these is dissipated by roasting, yet
some part adheres so firmly, that it can never be
separated but with absorbent, terrestrial, alkaline ingredients,
that change the nature of the sulphur. For
which reason, in larger operations, they add quicklime,
or marble fluxes that turn into quicklime; which,
while they absorb the said minerals, are, by it
and by help of the destroyed part of the iron, brought
to a fusio n, and turn into a vitrified scoria; although, at
other times, they refit so much by their own nature a
vitrification. Another cause of the brittleness of iron
is the unmetallic earth, when it is not yet separated
from it; for the iron ore contains a great quantity of
it, and in the melting remains joined with the reguline
part: whence the iron is rendered very coarse and
brittle. Some iron ores are altogether untractable:
nevertheless, the regulius produced out of them, when
broken, have sometimes a neat semimetallic look; which
proceeds undoubtedly from a mixture of a small
quantity of some other metal or semimetal."

Process II.

[The following Process for effaying iron ores, and
ferruginous stones and earths, is extracted from
Mr Gellert's Elements of effaying.]

"Roast two quintals of iron ore, or of ferruginous
earth: divide the roasted matter into two equal
parts: to each of which add half a quintal of pulverised
glass: if the sub stance be fusible and contain much
metal; but if otherwise, add also half a quintal
of calcined borax. If the roasting has entirely disengaged
the sulphur and arsenic, an eighth part, or even
half a quintal, of quicklime may be added. With
the above matters mix twelve pounds of charcoal-powder.

"Take a crucible, and cover the bottom and sides
of its inner surface with a paste made of three parts
of charcoal dust and one part of clay beat together.
In the hollow left in this paste put the above mixture;
press it lightly down; cover it with pulverised glass;
and put on the lid of the crucible.

"Place two such crucibles at the distance of about
fingers from the air-pipe, in such a manner that
the air shall pass between them at about the third
part of the height from the bottom; fill the space
between the two crucibles with coals of a moderate size;
...
§ 1. Mercury is sometimes found pure, fluid, and in its proper metallic state, only mixed with earths and flotes. Such are the ores of mercury found near Montpelier, in Tuscany, and in other places.

But the largest quantity of the mercury found in the earth is mineralized by sulphur, and consequently is in the form of cinnabar.

Mercury is never mineralized by arsenic. The richest mine of mercury is that of Almaden, in Spain. Linnaeus and Cronstedt mention a singular ore, in which the mercury is mineralized by sulphur and by copper. It is said to be of a blackish-grey colour, of a glassy texture, and brittle. When the mercury and sulphur are expelled by fire, the copper is discovered by giving an opaque red colour to glass of borax, glassy texture, and brittle.

Montpelier, in Tuscany, and in other places.

§ 2. Cramer directs, that ores of mercury should be essayed by the following processes:

PROCESS I.

To separate mercury out of an unsulphurous ore by distillation.

"Take a lump of the pulverized ore, one common pound, which must stand for one centner: put it into a glass retort perfectly clean, well licated, or coated up to half the length of its neck: this must be very long, and turned backwards with such a declivity, that a glass recipient may be perpendicularly applied to it: but you must choose a retort small enough, that the belly of it may be filled hardly two-thirds with the ore: this retort must be placed so, that nothing of the fluid adherent to the neck of it may fall in the cavity of the belly, but that the whole may run forward into the recipient. Finally, have a small recipient full of cold water: let it be perpendicularly setuated, and receive the neck of the retort in such manner that the extremity of it be hardly one half-inch immersed into the water.

"Let the retort be surronded with hot burning coals placed at some distance in form of a circle, left the vessel shoul'd burn by too sudden a heat: then by degrees bring the burning coals nearer and nearer, and at last surround the whole retort with them and with fresh charcoal, that it may grow slightly red-hot; this fire having been continued for an hour, let the retort cool of itself: then strike the neck of it gently, that the large drops which are always adherent to it may fall into the recipient: let the recipient be taken away and the water separated from the mercury by filtration, and let the mercury be weighed. This operation may be more conveniently performed in a sard bath; in which case the pot containing the sand must be middling red-hot, and the retort be able to touch the bottom of it immediately; nor is it then necessary that the retort be licated."

PROCESS II.

To receive mercury from a sulphurous cinnabar-ore.

"Beat your ore extremely fine, and mix it exactly with an equal portion of iron-fillings, not rusty; proceed to distil it with the same apparatus as in the former process, but urge it with the strongest fire that can be made.

"Cinnabar may be separated from stones by sublimation thus: Beat it to a fine powder, and put it into a small narrow glass or earthen crucible, the belly of which must not fill more than one-third part: stop the orifice at top; this must be very narrow, to hinder the free action of the air. Put this small crucible in an earthen pot about two inches wide in diameter, and gather sand around this pot about as high as the pulverized ore rises in the crucible. Then put it upon burning coals in such manner that the bottom of the pot may be middling red-hot. Thus will your cinnabar ascend and form a solid ponderous ring, which must be got out by breaking the vessel."

SECTION IX. Ore of the Regulus of Antimony.

Native regulus of antimony was first observed by Mr Swab, in Sweden, in the mine of Salberg, and described by him in the memoirs of the Swedish Academy in 1749. Mr Wallerius mentions it in his Mineralogy.

Regulus, of antimony is generally united with sulphur, with which it forms antimony, which ought to be considered as a true ore of the regulus of antimony.

Another ore of regulus of antimony is also known of a red colour, in which the regulus is mineralized both by arsenic and by sulphur. This ore resembles some iron ores, and some kind of blend. It is distinguished by its great fusibility, which is such, that it may be easily melted by the flame of a candle.

The native regulus of antimony, by Von Swab, is said by that author to have differed from the regulus of antimony obtained from ores, in these two properties, that it was capable of being easily amalgamated with mercury, and that its calx shot into crystals during the cooling.

Besides the ores of regulus of antimony enumerated above, this ferrimetal is also found in ores of other metallic substances, as in the plumose silver-ore, and in the sulluated lead-ore.

§ 2. The ore of antimony may be essayed by the following processes described by Mr Cramer.

PROCESS I.

To obtain antimony from its ore.

"Choose a melting crucible, or an earthen pot not glazed, that may contain some common pounds of the ore of antimony, broken into small bits. Bore at the bottom of the crucible some small holes, two lines in diameter. Let the bottom of the vessel be received by the orifice of a smaller one, upon which it must be put; and when the ore is put into it, let it be covered with a tile, and all the joints be stopped with lute.

"Put these vessels upon the pavement of a hearth and put stones all around them at the distance of six inches. Fill this intermediate space with ashes, so high that the inferior pot be covered to the upper brim. Then put fresh and burning coals upon it, and with a pair of hand-bellows excite the fire, till
Sect. IX. METAL LURGY.

To roast crude antimony, or its ore, with or without addition.

"Choose an earthen, flat, low dish, not glazed; and if it cannot be made muddling red hot; cover it over with a coat of late without. Spread it thinly over with crude antimony, or with its ore, but to a pretty coarse powder, not exceeding a few ounces at once. Put the dish upon a fire-pan, having a few burning coals in it; increase the fire till it begins to smoke a little. Meanwhile you must incessantly move the powder with a piece of new tobacco-pipe; for this causes the sulphur to evaporate the soorer. If you increase the fire a little too soon, the powder immediately gathers into large clots, or even begins to melt. When this happens, take it immediately off the fire before it melts entirely. Then pulverize it again, and finally make a gentle fire under it. Your black shining powder will assume an asl colour almost like that of earth, and become more refractory in the fire; wherefore you may then increase the fire till your powder grows middling red-hot, and let it last till it ceases to smoke. If you add to your crude antimony pulveried, half or an equal quantity of charcoal, and perform the rest as above, the roasting will be done more conveniently; for it does not gather so easily into clots, and melts with much greater difficulty. When part of the sulphur is evaporated, add some fat to it at several times. Thus you will sooner finish the operation, and the remaining calx will not be burnt to excess. However, if it be thus exposed to too violent and long-lasting a fire, a great quantity of it evaporates; nor does it cease entirely to smoke in a great fire. And it will be enough, if, growing middling red-hot, it does no longer emit the unpleasant smell of the acid of sulphur."

Sect. X. Ores of Bismuth.

§ 1. Bismuth is found native, resembling the regulus of bismuth. An ore of bismuth, of a whitish yellow colour, is mentioned by Crefcent; and is different from the ore improperly called flowers of bismuth, which is a calx of cobalt.

Bismuth is mineralized. 1. By sulphur. This ore has the appearance of galena. 2. With sulphurated iron. Bismuth is found also in cobalts, and in some ores of silver.

§ 2. Ore of bismuth may be assayed by the following process.

"Bismuth ore may be melted with the same apparatus as was directed for the fusion of crude antimony out of its ore. Or you may beat your ore to a very fine powder, with the black flux, sandier, and common salt; in a close vessel, like the ore of lead or of tin, and melt it in a middling fire, having a draught of air. But as this semifinal is destructible and volatile, you must as quick as possible apply it to that degree of fire, which the flux requires to be melted; and so soon as it is well melted, the vessel must be taken out of the fire; and when it is grown quite cold and broken, you will find your regulus."

Mr. Gellert directs that ores of bismuth should be assayed by fusing a quintal of pulverized ore with half a quintal of calcined borax and half a quintal of pulverized glafs, in order to vitrify the adherent earths and flowers which envelope the bismuth. But probably the heat requisite for this vitrification would volatilize part of the bismuth.

If the ore be of the kinds above described, mineralized by sulphur, or by sulphur and iron, a previous roasting would be expedient, which may be performed in the same manner as is directed for the roasting of antimony.

Sect. XI. Ores of the Regulus of Cobalt.

Cobalt is a grey-coloured mineral, with more or less of a metallic appearance. Its grain is close; it is compact and heavy, and frequently covered with an efflorescence of peach-coloured flowers. Of this several kinds are known. All the true cobalts contain the semifinal called regulus of cobalt, the calx of which becomes blue by vitrification. This regulus is mineralized in cobalt by sulphur, and especially by a large quantity of arsenic. Some cobalts also contain bismuth and silver.

Authors have given the name of cobalt to many minerals, although they do not contain the semifinal abovementioned, but only because they externally resemble the ore of the regulus of cobalt. But these minerals can only be considered as false cobalts. They are distinguishable from true cobalt by trying whether they can yield the blue glass called smalt, and the sympathetic ink. The red efflorescence is also a mark by which true cobalt is distinguishable from the false.
The principal ores of cobalt are in Saxony, where they are dug for the sake of obtaining zaffre, azure, blue or smalt, and arsenic. Very fine cobalt is also found in the Pyrenean mountains. It has been likewise found in Cornwall and Scotland. And that it is in the eastern parts of Asia, appears from the blue coloring on old oriental porcelain: but probably the mines discovered in these countries are nearly exhausted, as considerable quantities of zaffre and smalt are exported from Europe to China.

Cobalt is heavier than most other ores, from the large quantity of arsenic it contains; and in this respect it resembles the ore of tin.

Besides the grey or ash-coloured cobalt above described, which is the most frequent, other cobalts are found of various colours and textures, mixed with various substances. Wallerius enumerates six species of cobalts. 1. The ad-coloured ore, which is regulus of cobalt mineralized by arsenic, constituting shining leaden-coloured grains. Some ores of this kind are compact, resembling steel, and others are of a loose texture and friable. 2. The foa-coloured ore is black, shining like a mirror, and laminated. This species is very rare; and is supposed by Wallerius to be a foliated felspar, or felenites mixed with cobalt. 3. The vitrœus or flag-like ore is of a bluish, shining colour, compact, or spongy. 4. Crystallized ore, is a grey, deep-coloured cobalt, consisting of clusters of cubical, pyramidal, prismatic crystals. 5. Flowers of cobalt, red, yellow, or violet. These flowers seem to be formed from some of the above-described compact ores, decomposed by exposure to moist air. This decomposition is similar to that which happens to ferruginous and cuprous pyrites. 6. The earthy cobalt is of a greenish white, or of a yellow colour, and of a soft and friable texture. This species seems to be an ochre of cobalt; and is formed perhaps from the flowers of cobalt further decomposed, in the flame burned as a metallic ore, is formed from the feline efflorescence of decomposing pyrites; when this efflorescence is further decomposed by exposure to moist air; by which the vitriolic acid contained in it is expelled, and the efflorescence is changed from a feline state to that of an ochre or calx.

Besides these proper ores, cobalt is also found in a blue clay along with native silver, in ores of bismuth, and in the mineral called kupfernickel. See Nickel.

The effay of cobalt is described in the article Regulus of Cobalts.

Sect. XII. Ores of Zinc.

§ 1. The proper ore of zinc is a substance which has neither an earthy or fomy than metallic appearance, and is called calamine, calamine, or lapis calaminarius. This flone, although metallic, is but moderately heavy, and has not the brilliancy of most other ores. Its colour is yellow, and like that of rust. It is also less dense than other metallic minerals. It seems to be an ore naturally decomposed. The calamine is not worked directly to obtain zinc from it, because this would only succeed in close vessels, and consequently with small quantities, according to Mr Margraf's process. But it is successfully employed for the conversion of copper into brass by cementation, by which the existence of zinc in that flone is sufficiently proved.

Mr Wallerius enumerates also amongst the ores of zinc a very compounded mineral, consisting of zinc, sulphur, iron, and arsenic. This mineral, called blend, resembles externally the ore of lead, and hence has been called fals galena. These blends have different forms and colours; but are chiefly red, like the red ore of antimony.

Zinc is obtained from certain minerals in the East Indies, of which we know little.

Calkform ores of zinc, according to Cronstedt, are pure or mixed. The pure are indurated, and sometimes crystallized, resembling lead-fspar. The mixed ore contains also some calx of iron. This is calamine. It is whitish, yellowish, reddish, or brown.

Zinc is mineralized, 1. By sulphurated iron. Ore of zinc. Wallerius says, lead is sometimes contained in this ore. It is white, blue, or brown. 2. By sulphur, arsenic, and iron. Blend, or pseudo-galena, or fals-galena, or black-jack. These are of various colours, white, yellowish, brown, reddish, greenish, black. They consist of scales, or are tesselated. Mr Cronstedt thinks, that in the blende the zinc is mineralized in the state of a calx, and in the ore of zinc in its metallic state.

§ 2. Although the minerals above enumerated have been known, from their property of converting copper into brass, to be ores of zinc, yet the method of effecting them so as to obtain the contained zinc was not known, or at least not published, before Mr Margraf's Memoir of the Berlin Academy for the year 1746, upon that subject. That very able chemist has shown, that zinc may be obtained from its ores, from the flowers, or from any other calx of zinc, by treating thefe with charcoal-dust, in close vessels, to prevent the combustion of the zinc, which happens immediately upon its reduction when exposed to air. For this purpose, he put a quantity of finely powdered calamine, or roasted blend, or other calx of zinc, well mixed with an eighth part of charcoal-dust, into a strong, luted earthen retort, to which he fitted a receiver. Having placed his retort in a furnace and raised the fire, he applied a violent heat during two hours. When the vessels were cold and broken, he found the zinc in its metallic form adhering to the neck of the retort.

The chief difficulty in this operation is to get an earthen retort sufficiently compact to retain the vapour of the zinc. For it easily pervades the Hefian crucibles. Stourbridge melting pots, and similar vessels, as may be seen from the quantity of flowers which appear upon their outer surface, when zinc or its calxes and any inflammable matter have been exposed to heat within these vesicles), and at the same time sufficiently strong to resist the violent fire which Mr Margraf requires.

A pretty exact effay of an ore of zinc may be made in the following manner.

Mix a quantity of pulverized roasted ore or calx of zinc with
Sect. XIII. Metalurgy.

Metal - With an eighth part of charcoal-dust. Put this mixture into a crucible capable of containing thrice the quantity. Diffuse equally amongst this mixture a quantity of small grains or thin plates of copper equal to that of the calamine or ore employed, and upon the whole lay another equal quantity of grains or plates of copper; and lastly, cover this latter portion of copper with charcoal-dust. Lute a lid upon the crucible, and apply a red heat during an hour or two. The copper or part of it will unite with the vapour of the zinc, and be thereby converted into brais. By comparing the weight of all the metal after the operation with the weight of the copper employed, the weight acquired, and consequently the quantity of zinc united with the copper will be known. The copper which has not been converted into brais, or more copper with fresh charcoal-dust, may be again added in the same manner to the remaining ore, and the operation repeated with a heat somewhat more intense, that any zinc remaining in the ore may be thus extracted. A curious circumstance is, that a much greater heat is required to obtain zinc from its ore by distillation, than in the operation now described of making brais; in which the separation of the zinc from its ore seems to be facilitated by its disposition to unite with copper.

Sect. XIII. Ores of Arsenic.

§ 1. The minerals which contain the largest quantity of arsenic are cobalts and white pyrites; although it is also contained in other ores, it being one of the mineralising substances. But as cobalt must be roasted to obtain the sulphur it contains, the arsenic also which rises during this torrefaction is collected, as we shall see in part III. (Smelting of Ores), and the particular articles of each of the metallic substances mentioned in this article.

I. Regulus of arsenic is found native. It is of a leaden colour; it burns with a small flame; and is diffigulated, leaving generally a very small quantity of calx of bismuth, or of calx of cobalt, and a very little silver. When it is of a solid and tefaceous texture, it has been improperly called tefaceous cobalt, in German jherzbuntal. II. Calx of arsenic is found in form of powder; native flowers of arsenic, or of indurated fmit, transparent cryftals; native cryftalline arsenic. III. Calx of arsenic is mixed. 1. With sulphur; when yellow, it is called orpiment; when red, it is called native realgar; the difference of colour depends on the proportion of the two component parts. 2. With calx of tin; tin-grains. 3. With sulphur and silver, in the red silver ore. 4. With calx of lead, in the leadpar. 5. With calx of cobalt, in the efflorence of cobalt. IV. Arsenic is mineralised. 1. With sulphurated iron; arsenical pyrites. 2. With iron only; white pyrites, or milipickel. 3. With cobalt, in almost all cobalt-ores. 4. With silver. 5. With copper. 6. With antimony.

§ 2. Arsenic may be separated from its ore or earthy matter with which it happens to be mixed, by sublimation, according to the following process by Mr Cramer.

"Do every thing as was said about mercury, or sulphur; but let the vessel which is put into the fire with the ore in it be of earthen or stone, and the recipient be of glass, and of a middling capacity. Nor is it necessary that this should be filled with water, so it be but well luted. The fire must likewise be stronger and continued longer than for the extracting of sulphur. Nevertheless, every kind of arsenic cannot be extracted in a confined fire: for it adheres to the matrix more strongly than sulphur and mercury. You will find in the part of the vessel which is more remote from the fire pulverulent and subtile flowers of arsenic; but there will adhere to the posteriory of the neck of the retort small solid maffen, shining like small crystals, transparent, sometimes gathered into a solid sublimate, and perfectly white, if the ore of the arsenic was perfectly pure; which nevertheless happens very seldom. The flowers are most commonly thin, and of a grey colour: which proceeds from the philogam mixed with the maff. They are often of a citron or of a golden colour, which is a sign that there is in the mixture some mineral sulphur; and if the sublimate be red or yellow, it is a sign of much sulphur.

"As all the arsenic contained in the ore is not expelled in close vessels, you must weigh the residuum; then roast it in a crucible till it smokes no longer, or rather in an earthen flat vessel not glazed, and in a strong fire to be fired now and then with a poker, and then weigh it when grown cold; you will be able thus to know how much arsenic remained in the close vessel, unless the ore contain bismuth."

If the arsenic be sulphurated, it may be purified by triturating it with mercury or with fixed alkali, and by subliming the arsenic from the remaining sulphurated mercury or alkali. The method of obtaining a regulus of arsenic is described at the article Regulus of Arsenic.

PART III.

Smelting of Ores.

Having shown the nature of the principal metallic minerals, and the substances of which they are composed; and also explained the processes by which an exact analysis of these compound minerals may be made, and the nature and quantity of the contained metals may be known; in order to complete what relates to this important subject, we shall describe in this Part the principal operations by which metals, &c.
METALURGY.

Part III.

Sect. I. Extraction of sulphur from Pyrites and other Minerals.

In order to obtain sulphur from pyrites, this mineral ought to be exposed to a heat sufficient to sublime the sulphur or to make it difficult to volve, which must be close, to prevent its burning.

Sulphur is extracted from pyrites at a work at Schwartzember, in Saxony, in the high country of the mines; and in Bohemia at a place called Alten-Sattel.

The furnaces employed for this operation are oblong, like vaulted galleries; and in the vaulted roofs are made several openings. These are called furnaces for extracting sulphur.

In these furnaces are placed earthen-ware tubes, filled with pyrites broken into pieces of the size of small nuts. Each of these tubes contains about 50 pounds of sulphur. They are placed in the furnace almost horizontally, and have scarcely more than an inch of depth. The ends, which come out of the furnace five or six inches, become gradually narrower. Within each tube is fixed a piece of baked earth, in form of a flat, at the place where it begins to become narrower, in order to prevent the pyrites from falling out, or choking the mouth of the tube. To each tube is fitted a receiver covered with a leaden pipe, pierced with a small hole to give air to the sulphur. The other end of the tube is exactly closed. A moderate fire is made with wood, and in eight hours the sulphur of the pyrites is found to have passed into the receivers.

The residue of the pyrites, after the distillation, is drawn out at the large end, and fresh pyrites is put in its place. From this residuum, which is called burnings of sulphur, vitriol is extracted.

The 11 tubes into which were put, at three several distillations, in all nine quintals, or 9000 pounds of pyrites, yield from 100 to 150 pounds of crude sulphur, which is so impure as to require to be purified by a second distillation.

This purification of crude sulphur is also done in a furnace in form of a gallery, in which five iron cucurbits are arranged on each side. These cucurbits are placed in a sloping direction, and contain about eight quintals and a half of crude sulphur. To them are linted earthen tubes, so disposed as to answer the purpose of capitals. The noes of each of these tubes is inflected into an earthen pot, called the fore runner.

This pot has three openings; namely that which receives the noe of the tube; a second smaller hole, which is left open to give air; and a third in its lower part, which is stopped with a wooden peg.

When the preparations are made, a fire is lighted about seven o'clock in the evening, and is a little altered as soon as the sulphur begins to distil. At three o'clock in the morning, the wooden pegs which stop the lower holes of the fore-runners are set, and the sulphur flows out of each of them into an earthen pot with two handles, placed below for its reception. In this distillation the fire must be moderately and prudently conducted; otherwise less sulphur would be obtained, and it also would be of a grey colour, and not of the fine yellow which it ought to have when pure. The ordinary loss in the purification of eight quintals of crude sulphur is about one quintal.

When all the sulphur has flowed out, and has cooled a little in the earthen-pots, it is cast into moulds made of beech-tree, which have been previously dipped in water and set to drain. As soon as the sulphur is cooled in the moulds, they are opened, and the cylinders of sulphur are taken out and put up in casks. These are called roll braise.

As sulphur is not only in pyrites, but also in most metallic minerals, it is evident that it might be obtained by works in the great from the different ores, which contain much of it, and from which it must be separated previously to their fusion; but as sulphur is of little value, the trouble of collecting it from ores is seldom taken. Smelters are generally satisfied with freeing their ores from it, by exposing them to a fire sufficient to expel it. This operation is called torrefaction, or roasting of ores.

There are, however, ores which contain so much sulphur, that part of it is actually collected in the ordinary operation of roasting, without much trouble for that purpose. Such is the ore of Ramelsberg in the country of Hartz.

This ore, which is of lead, containing silver, is partly very pure, and partly mixed with cuprous pyrites and silver; hence it is necessary to roast it.

The roasting is performed by laying alternate strata of ore and wood upon each other in an open field, taking care to diminish the fire of the strata as they rise higher; so that the whole mass shall be a quadrangular pyramid truncated above, whose base is about 31 feet square. Below, some pails are left open, to give free entrance to the air; and the sides and top of the pyramid are covered over with small ore, to concentrate the heat and make it last longer.

In the centre of this pyramid there is a channel which descends vertically from the top to the base. When all is properly arranged, ladlefuls of red-hot scor via from the melting furnace are thrown down the channel, by which means the shreds and wood placed below for that purpose are kindled, and the fire is from them communicated to all the wood of the pile, which continues burning till the third day. At that time the sulphur of the mineral becomes capable of burning spontaneously, and of continuing the fire after the wood is consumed.

When this roasting has been continued 15 days, the mineral becomes greasy; that is, it is covered over with a kind of varnish: 20 or 35 holes or hollows are then made in the upper-part of the pile in which the sulphur is collected. From these cavities the sulphur is taken out three every day, and thrown into water. This sulphur is not pure, but crude; and is therefore sent to the manufacturers of sulphur, to be purified in the manner above related.

As this ore of Ramelsberg is very sulphurous, the first roasting, which we are now describing, lasts three months; and during this time, if much rain has not fallen, or if the operation has not failed by the pile falling
Sect. I. METALURGY.

Sulphur Works.

falling down or cracking, by which the air has so much free access, that the sulphur is burnt and consumed, from 10 to 20 quintals of crude sulphur are by this method collected.

The sulphur of this ore, like that of most others, was formerly neglected, till, in the year 1570, a person employed in the mines called Christopher Saunders, discovered the method of collecting it, nearly as it is done at present.

Metallic minerals are not the only substances from which sulphur is extracted. This matter is diffused in the earth in such quantities, that the metals cannot absorb it all. Some sulphur is found quite pure, and in different forms, principally in the neighbourhood of volcanoes, in caverns, and in mineral waters. Such are the opaque kind called virgin-sulphur; the transparent kind called sulphur of Quito; and the native flowers of sulphur, as those of the waters of Aix-la-Chapelle. It is also found mixed with different earths. Here we may observe, that all those kinds of sulphur which are not mineralized by metallic substances, are found near volcanoes, or hot mineral waters, and consequently in places where nature seems to have formed great subterranean laboratories; in which sulphureous minerals may be analysed and decomposed, and the sulphur separated, in the manner in which it is done in small in our works and laboratories. However that be, certainly one of the chief and most famous sulphur-mines in the world is that called Solfatara. The Abbé Nollet has published, in the Memoirs of the academy, some interesting observations upon this subject, which we shall here abridge.

Near Pozzoli, in Italy, is that great and famous mine of sulphur and alum called at present Solfatara. It is a small oval plain, the greatest diameter of which is about 400 yards, raised about 300 yards above the level of the sea. It is surrounded by high hills and great rocks, which fall to pieces, and whole fragments form very steep banks. Almost all the ground is bare and white, like marble; and is everywhere sensibly warmer than the atmosphere in the greatest heat of summer, so that the feet of persons walking there are burnt through their shoes. It is impossible not to observe the smell of a sulphurous vapour, which rises to a considerable height, and gives reason to believe that there is a subterranean fire below, from which that vapour proceeds.

Near the middle of this field there is a kind of basin three or four feet lower than the rest of the plain, in which a found may be perceived when a person walks on it, as if there were under his feet some great cavity, the roof of which was very thin. After that the lake Agnano is perceived, whole waters seem to boil. These waters are indeed hot, but not so hot as boiling water. This kind of ebullition proceeds from vapours which rise from the bottom of the lake, which being set in motion by the action of subterranean fires, have force enough to raise all that mass of water. Near this lake there are pits, not very deep, from which sulphureous vapours are exhaled. Persons who have the itch come to these pits, and receive the vapours in order to be cured. Finally, there are some deeper excavations, whence a soft stone is procured which yields sulphur. From these cavities vapours exhale, and issue out with noise, and which are nothing else than sulphur subliming through the crevices. This sulphur adheres to the sides of the rocks, where it forms enormous masses: in calm weather, the vapours may be evidently seen to rise 25 or 30 feet from the surface of the earth.

These vapours, attaching themselves to the sides of rocks, form enormous groups of sulphur, which sometimes fall down by their own weight, and render these places of dangerous access.

In entering the Solfatara, there are warehouses and buildings erected for the refining of sulphur.

Under a great shed, or hangar, supported by a wall behind, and open on the other three sides, the sulphur is procured by distillation from the soft stones we mentioned above. These stones are dug from under ground; and those which lie on the surface of the earth are neglected. These last are, however, covered with a sulphur ready formed, and of a yellow colour; but the workmen say they have lost their strength, and that the sulphur obtained from them is not of so good a quality as the sulphur obtained from the stones which are dug out of the ground.

These last mentioned are broken into lumps, and put into pots of earthen ware, containing each about 20 pints Paris measure. The mouths of these pots are as wide as their bottoms; but their bellies, or middle parts, are wider. They are covered with a lid of the same earth, well luted, and are arranged in two parallel lines along two brick walls, which form the two sides of a furnace. The pots are placed within these walls; so that the centre of each pot is in the centre of the thickness of the wall, and that one end of the pots overhangs the wall within, while the other end overhangs the wall without. In each furnace ten of these pots are placed; that is, five in each of the two walls which form the two sides of the furnace. Between these walls there is a space of 15 or 18 inches; which space is covered by a vault reposing on the two walls. The whole forms a furnace seven feet long, two feet and a half high, open at one end, and shut at the other, excepting a small chimney through which the flue passes.

Each of these pots has a mouth in its upper part without the furnace, in order to admit a tube of 18 lines in diameter and a foot in length, which communicates with another pot of the same size placed without the building, and pierced with a round hole in its base of 15 or 18 lines diameter. Lastly, to each of these last-mentioned pots there is a wooden tub placed below, in a bench made for that purpose.

Four or five of these furnaces are built under one hangar, or shed. Fires are kindled in each of them at the same time; and they are thrown down after each distillation, either that the pots may be renewed, or that the residuums may be more easily taken out.

The fire being kindled in the furnace, heats the first pots containing the sulphureous stones. The sulphur rises in fumes into the upper part of the pot, where it passes through the pipes of communication into the external vessel. There the vapours are condensed, become liquid and flow through the hole below into the tub, from which the sulphur is easily turned out, because the form of the vessel is that of a truncated cone which...
METALURGY.

§ 1. As ores consist of metallic matters combined with sulphur and arsenic, and are besides intermixed with earthy and stony substances of all kinds, the intention of all the operations upon these compound bodies is to separate these different substances from each other. This is effected by several operations founded on the known properties of these substances. We now proceed to give a general idea of these several operations.

First of all, the ore is to be separated from the earths and stones accidentally adherent to it; and when these foreign substances are in large masses, and are not very intimately mixed in small particles with the ore, this separation may be accomplished by mechanical means. This ought always to be the first operation, unless the adherent substance be capable of serving as a flux to the ore. If the unmetallic earths be intimately mixed with the ore, this must necessarily be broken and divided into small particles. This operation is performed by a machine which moves Pettit's or hammer wheels, called boards or stampers. After this operation, when the parts of the mineral are specifically heavier than those of the unmetallic earth or stone, these latter may be separated from the ore by washing in canals through which water flows. With regard to this washing of ores, it is necessary to observe, that it cannot succeed but when the ore is sufficiently heavier than the foreign matters. But the contrary happens frequently, as well because quarts and spar are naturally very ponderous, as because the metallic matter is proportionally so much lighter as it is combined with more sulphur.

When an ore happens to be of this kind, it is necessary to begin by roasting it, in order to deprive it of the greatest part of its sulphur.

It happens frequently that the pyritic matters accompanying the ore are so hard that they can scarcely be pounded. In this case it is necessary to roast it entirely, or partly, and to throw it red hot into cold water; by which the stones are split, and rendered much more capable of being pulverized.

Thus it happens very frequently, that roasting is the first operation to which an ore is exposed.

When the substance of the ore is very fluid, this first operation may be dispensed with, and the matter may be immediately fused without any previous roasting, or at least with a very slight one. For, to effect this fusion, it is necessary that it retain a great quantity of its sulphur, which, with the other fluxes added, serves to destroy or convert into scoria a considerable part of the stony matter of the mineral, and to reduce the rest into a brittle substance, which is called the mattress.
M E T A L L U R G Y.

Roasting of Ores.

The sulphur of which may be separated during the fusion; and for many calciform ores, as those do not generally contain any sulphur and arsenic.

In the roasting of ores, the following attentions must be given. 1. To reduce the mineral previously into small lumps, that the surface may be increased; but they must not be so small, nor placed so compactly, as to prevent the passage of the air and flame. 2. The larger pieces must be placed at the bottom of the pile, where the greatest heat is. 3. The heat must be gradually applied, that the sulphur may not be melted, which would greatly retard its expulsion; and that the spars, fluors, and flumes, intermixed with the ore, may not crack, fly, and be dispersed. 4. The ores not thoroughly roasted by one operation must be exposed to a second. 5. The fire may be increased towards the end, that the noxious matters more strongly adhering may be expelled. 6. Fuel which yields much flame, as wood and f oglal coals free from sulphur, is said to be preferable to charcoal or coals. Sometimes cold water is thrown on the calcined ore at the end of the operation, while the ore is yet hot, to render it more friable.

No general rule can be given concerning the duration or degree of the fire, these being very various according to the difference of the ores. A roasting during a few hours or days is sufficient for many ores; while some, such as the ore of Ramellberg, require that it should be continued during several months.

Schlutter enumerates five methods of roasting ores. 1. By constructing a pile of ores and fuel placed in alternate layers, in the open air, without any furnace. 2. By confining such a pile within walls, but without a roof. 3. By placing the pile under a roof, without lateral walls. 4. By placing the pile in a furnace containing walls and a roof. 5. By roasting the ore in a reverberatory furnace, in which it must be continually stirred with an iron rod.

Several kinds of fusions of ores may be distinguished. 1. When a sulphureous ore is mixed with much earthly matter, from which it cannot be separated by mechanical operations, it is frequently melted, in order to discharge it from these earthly matters, and to concentrate its metallic contents. By this fusion, some of the sulphur is dissolved, and the ore is reduced to a flake intermediate between that of ore and metal. It is then called a matt (lapis sulphures-metallicus); and is to be afterwards treated like a pure ore by the second kind of fusion, which is properly the smelting, or extraction of the metal by fusion. 2. By this fusion or smelting, the metal is extracted from the ore previously prepared by the above operations, if these be necessary. The ores of some very fusible metals, as of bismuth, may be smelted by applying a heat sufficient only to melt the metals, which are thereby separated from the adhering extraneous matters. This separation of metals by fusion, without the vitrification of extraneous matters, may be called eliquation. Generally, a complete fusion of the ore and vitrification of the earthly matters are necessary for the perfect separation of the contained metals. By this method, metals are obtained from their ores, sometimes pure, and sometimes mixed with other metallic substances, from which they must be afterwards separated; as we shall see when we treat of the fusion of particular metals. To procure this separation of metals from ores, these must be so thinly liquefied, that the small metallic particles may discharge themselves from the scoria; but it must not be so thin as to allow the metal to precipitate before it is perfectly discharged from any adhering extraneous matter, or to pervade and destroy the containing vessels and furnace. Some ores are sufficiently fusible; but others require certain additions called fluxes, to promote their fusion and the vitrification of their unmetallic parts; and also to render the scoria sufficiently thin to allow the separation of the metallic particles.

Different fluxes are suitable to different ores, according to the quality of the ore, and of the matrix, or stone adherent to it.

The matrices of two different ores of the same metal frequently serve as fluxes to each other; as, for instance, an argillaceous matrix with one that is calcareous; these two earths being dissipated to vitrification when mixed, though each of them is singly unfusible. For this reason, two or more different ores to be smelted are frequently mixed together.

The ores also of different metals require different fluxes. Thus calcareous earth is found to be best suited to iron-ores, and spars and scoria to fusible ores of copper.

The fluxes most frequently employed in the smelting of ores are, calcareous earths, flours or vitreous spars, quartz, and sand, fusible flumes, as flutes, basalters, the several kinds of scoria, and pyrites.

Calcareous earth is used to facilitate the fusion of ores of iron, and of some of the poorer ores of copper, and, in general, of ores mixed with argillaceous earths, or with felt spar. This earth has been sometimes added with a view of separating the sulphur, to which it very readily unites: but by this union the sulphur is retained, and a hepar is formed, which readily dilutes iron and other metals, and so firmly adheres to them, that they cannot be separated without more difficulty than they could from the original ore. This addition is therefore not to be made till the sulphur be previously well expelled.

Flours or fusible spars facilitate the fusion of most metallic minerals, and also of calcareous and argillaceous earths, of flaxites, abeufus, and other indefinite flumes, but not of siliceous earths without a mixture of calcareous earth.

Quartz is sometimes added in the fusion of ferruginous copper ores, the use of which is said chiefly to be, to enable the ore to receive a greater heat, and to give a more perfect vitrification to the ferruginous scoria.

The fusible flumes, as flutes, basalters, are so tenacious and thick when fused, that they cannot be considered properly as fluxes, but as matters added to lessen the too great liquidity of some very fusible minerals.

The scoria obtained in the fusion of an ore is frequently useful to facilitate the fusion of an ore of the same metal, and sometimes even ores of other metals.

Sulphurated pyrites greatly promote the fusibility of the scoria of metals, from the sulphur it contains. It is chiefly added to difficultly-fusible copper-ores, to form the sulphureous compounds called mats, that the ores.
Metalurgy.

§ 1. As silver, even its proper ores, is always alloyed with some other metals from which it is intended to be separated after the silver-ore has been well roasted, it must be mixed with a greater or less quantity of lead previous to its fusion.

Lead has the same effect in fusion of gold and silver as mercury has upon these metals by its natural fluidity; that is to say, it unites with them, and separates them from unmetallic substances, which, being lighter, rise always to the surface. But lead has the further advantage of procuring, by its own vitrification, that all metallic substances, excepting gold and silver, hence it follows, that when gold and silver are obtained by means of mercurius; they still remain alloyed with other metallic substances; whereas when they are obtained by fusion and scorification with lead, they are then pure, and not alloyed with any metals but with each other.

In proportion as the lead, which has been united to the gold and silver of the ore, is scorified by the action of the fire, and promotes the scorification of the other metallic matters, it separates the perfect metals, and carries with it all the others to the surface. There it meets the unmetallic substances, which it likewise vitrifies, and which it changes into a perfect scoria, fluid, and such as a scoria ought to be to admit all the perfect metal contained in it to precipitate.

When all heterogeneous matters have been thus disengaged by scorification with lead, the perfect metals, to which some lead still remains united, are to be further purified by the ordinary operation of the cupel.

The common rule for the fusion and scorification of silver-ore with lead, is to add to the ore a quantity of lead so much greater as there is more matter to be scorified, and as these matters are more refractory and of more difficult fusion. Silver ores, or those treated as such, are often rendered refractory by ferruginous earths, pyritous matters, or cobalts, containing always a considerable quantity of an earth which is unmetallic, very subtile, and very refractory, and which renders a considerable augmentation of the quantity of lead necessary.

The quantity of lead which is commonly added to fusible silver ores, that do not contain lead, is eight times the quantity of the ore. But when the ore is refractory, it is necessary to add twelve times the quantity of lead, and even more; also glafs of lead, and fluxes, such as the white and black fluxes; to which however borax and powder of charcoal are preferable, on account of the liver of sulphur formed by these alkaline fluxes.

It is necessary to observe, that saline fluxes are only used in small operations, on account of their dearness. To these are substituted, in the great operations, of which we now treat, sambider, fusible scoria, and other matters of little value.

The greatest part of silver now employed in commerce is not obtained from the proper ores of silver, which are very scarce; but from lead and even copper ores, which are more or less rich in silver. To give an idea of the manner of treating these kinds of ores, from which silver is extracted in the great works, we shall briefly describe here, after Schlutter, the smelting of the ore of Ramelberg, which contains, as we have already said, several different kinds of metals, but particularly lead and silver.

When this mineral has been disengaged from its sulphur as much as possible by three very long roasting, it is melted, in the Lower Hartz in Saxony, in a particular kind of furnace, called a furnace for smelting upon a hollow or caile. The masonry of this furnace is composed of large thick plates, capable of sustaining great heat, and cemented together by clay. The interior part of the furnace is three feet and a half long, and two feet broad at the back part, and one foot only in the front. Its height is nine feet eight inches. It has a foundation of masonry in the ground; and in this foundation channels are made for the evacuation of the moisture. These channels are covered over with stones called covering stones. The hollow or caile, which is made above these, is formed of bricks, upon which are placed, first, a bed of clay; then a bed of small ore and sifted vitriols; and, lastly, a bed of charcoal powder beat down, called light braque. The anterior wall of the furnace is thinner than the others, and is called the oenois. The back wall, which is pierced to give passage to the pipes of two large wooden bellows, is called the middle wall. When the furnace is thus prepared, charcoal is thrown into the hollow, or caile; when being kindled, the fire is to be continued during three hours, before the matters to be fused are added. Then these matters are thrown in, which are not the proper ore, but a mixture of several substances, all of which are somewhat profitable. The quantity of these matters is sufficient for one day's work; that is, for a fusion of eighteen hours; and it consists of 1. Twelve shorbens or measures of well roasted Ramelberg ore (the shorben is a measure whose contents are two
Sect. III. METALURGY.

Smelting of Ores of Silver.

1. Two feet five inches long, one foot seven inches broad, and a little more than a foot deep: it is equal to 32 quintals of that country. Coluna weight, at 123 pounds each quintal.

2. Two measures of silver, which is an impure ore containing some lead and silver, which has been formerly thrown away as useless, and is now collected by women and children. Besides these other matters are added, containing lead and silver, as the teats employed in refining, the drofts of lead, impure litharge, and any rubbish containing metal, which was left in the furnace after the foregoing fusion. All these matters being mixed together, are thrown into the furnace: and to each measure of this mixture a measure of charcoal is added. The fusion is then begun by help of bellows; and as it proceeds, the lead falls through the light bronze or charcoal-bed into the hollow, or caîne, where it is prevented from burning under the powder of charcoal. The scorvia, on the other hand, being lighter and less fluid, is skimmed off from time to time by means of ladles, that it may not prevent the rest of the lead from falling down into the hollow. Thus, while the fusion lasts, fresh matters and fresh charcoal are alternately added, till the whole quantity intended for one fusion, or as they call it, one day, be thrown in.

There are several essential things to be remarked in this operation which is very well contrived. First, the mixture of matters from which a little lead and silver is procured, which would otherwise be lost; and which have also this advantage, that they retard the fusion of the Ramelberg ore, which, however, well roasted it has been, retains always enough of the sulphur and iron of the pyrites mixed with it, to render it too fluid or too fluid; so that without the addition of those matters nothing would be obtained but a clay. It is even necessary, notwithstanding these additions, not to hasten the fusion too much, but to give time for the ore to mix with other matters, else it would melt and flow of itself before the ret. Secondly, the fusion of the ore through charcoal which is pardoned in most smelting-works, and for almost all ores, is an excellent method, the principal advantage of which is the saving of fuel. The action of the burning charcoal directed immediately upon the mineral, at the same time that it melts it more readily and efficienously, also supplies it with the phlogiston necessary to bring it to a perfect state.

From the Ramelberg ore after its first roasting a white vitriol is obtained and prepared at Godlars, whose basis was zinc: which proves that this ore contains also a certain quantity of this metallic substance. As this ore is smelted in a country where the art is well understood for extracting everything which a mineral contains, so in this fusion zinc and cadmium are obtained in the following manner: When the furnace is prepared for the fusion, it is necessary to close it up in the fore-part before the fusion is begun.

Thus the zinc is separated from the ore of Ramelberg, and is not confounded in the hollow or caîne with the lead and silver, because being a volatile metallic, it cannot support the activity of the fire without rising into vapours, which are condensed in the place leaf hot, that is to say, upon the vitreous expressly prepared for that purpose; and which, being much thinner than the other walls of the furnace, are continually cooled by the external air.

It is also in this furnace, and after the fusion of the Ramelberg ore, that the cadmania of zinc, or the cadmania of furnaces, is obtained. This ore is composed of sulphurous and ferruginous pyrites of true lead.
Metallurgy.

Part III.

Smelting of Ores of Silver.

The first work of that kind was erected in Sweden by Mr. Von Swab, in the year 1738. The ore employed was a kind of blend; this ore, when calcined, powdered, and mixed with charcoal, was put into iron or stone retorts, and the zinc was obtained by distillation. In Bristol a work is established in which zinc is obtained by distillation by descent.

After this distillation which we have now made concerning the operation in the great by which zinc and cadmia are obtained, and which we could not infer elsewhere, because of the necessary relation it has with the smelting of the Ramelberg ore, we proceed to the other operations of the same ore; that is to say, to the finery, by which the silver is separated from the lead, which are mixed together, forming what is called the work.

This operation differs from the fining of eisay, or in small principal, in this circumstance, that in the latter method of fining all the litharge is absorbed into the cupel, whereas in the former method the greatest part of this litharge is withdrawn.

The fining in great of the work of Ramelberg is performed in a furnace called a reverberatory furnace. This furnace is so contructed that the flame of wood burning in a cavity called the fire-place, is determined by a current of air (which is introduced through the ash-hole, and which goes out at an opening on one side of that part of the furnace where the work is, that is, where the lead and silver are) to circulate above, and to give the convenient degree of heat, when the fire is properly managed. In this furnace a great cupel, called a left, is disposed. This teft is made of the ashes of beech-wood, well lisiivated in the usual manner. In some founderies different matters are added, as sand, fpar, calcined gypsum, quicklime, clay. When the teft is well prepared and dried, all the work is put at once upon the cold teft, to the quantity of 64 quintals for one operation. Then the fire is lighted in the fire-place with faggots; but the fusion is not urged too fast, 1. That the teft may have time to dry; 2. Because the work of the Ramelberg ore is alloyed by the mixture of several metallic matters, which it is proper to separate from it, otherwise they would spoil the litharge and the lead procured from it. These metallic matters are, copper, iron, zinc, and matt. As these heterogeneous substances are hard and refractory, they do not melt so soon as the work, that is, as the lead and silver; and when the work is melted, they swim upon its surface like a skim, which is to be taken off. These impurities are called the scum or the first waxte.

What remains forms a second scum, which appears when the work is at its greatest degree of heat, but before the litharge begins to form itself. It is a scoria which is to be carefully taken off. It is called the second waxte.

When the operation is at this point, it is continued by the help of bellows, the wind of which is directed, not upon the wood or fuel, but upon the very surface of the metal, by means of iron-plates put for that purpose before the blast-holes, which are called pophems. This blast does not so much increase the intensity of the fire, as it facilitates the combustion of the lead, and throws the litharge that is not imbied by the teft towards a channel, called the litharge-way, through which...
which it flows. The litharge becomes fixed out of the furnace: the matter which is found in the middle of the largest pieces, and which amounts to about a half or a third of the whole, is friable, and falls into powder like sand. This is put into barrels containing each five quintals of it; and is called falseable litharge, because it is sold in that state. The other part, which remains solid, is called cold litharge, and is again melted and reduced into lead. The fusion is called cold fusion, and the lead obtained from it cold lead, which is good and falseable when the work has been well cleared from the heterogenous matters mentioned above. The tellts and cupels impregnated with litharge are added in the fusion of the ore, as we have already related.

When two-thirds, or nearly that quantity, of the lead are converted into litharge, no more of it is formed. The silver then appears covered with a white skin, which the refiners call lightening, and the metal lightened or fined fibers.

The silver obtained by this process of fining is not yet altogether pure. It still contains some lead, frequently to the quantity of four drams in each mark or eight ounces. It is delivered to the workmen, who complete its purification by the ordinary method. This last operation is the refining, and the workmen employed to do it are called refiners. A fining of 64 quintals of work, yields from 8 to 10 marks of refined silver, and from 35 to 40 quintals of litharge; that is, from 12 to 18 of falseable litharge, from 22 to 23 of cold litharge, from 20 to 22 quintals of impregnated tellt, and from 6 to 7 quintals of lead-droths. The operation lasts from 16 to 18 hours.

§ 2. Ores containing silver may be divided into four kinds. 1. Pure, or those which are not much compounded with other metals. 2. Galenic, in which the silver is mixed with much galena, or ore of lead mineralized by sulphur. 3. Pyritic, in which the silver is mixed with the martial pyrites. 4. Cupreous, in which the silver is contained in copper ores. To extract the silver from these several kinds of ores, different operations are necessary.

Native silver is separated from its adhering earths and stones by amalgamation with mercury in the manner directed for the separation of gold; or by fusion with lead, from which it may be afterwards separated by cupellation.

Pure ores seldom require a previous calcination; but when bruised and cleansed from extraneous matters, may be fused directly, and incorporated with a quantity of lead; unless they contain a large proportion of sulphur and arsenic, in which case a calcination may be useful. The lead employed must be in a calcined or vitrified state, which being mixed with the ore, and gradually reduced by the phlogiston of the charcoal added to it, may be more effectually united with the silver of the ore, than if lead itself had been added, which would too quickly precipitate to the bottom of the containing vessel or furnace. The silver is to be afterwards separated from the lead by cupellation.

Galenical ores, especially those in which pyrites are intermixed, require a calcination, which ought to be performed in an oven, or reverberatory furnace. They are then to be fused together with some inflammable

Vol. XII.
different from that already described; but in this respect only, that the scorpa and metal are not drawn out of the furnace, but blow spontaneously, as soon as they are melted, into receiving basins, where the metal is freed from the scorpa. These furnaces are generally called pierced furnaces.

Instead of a light braque, or bed of charcoal powder, under which the metal lies hid, the bottom of these furnaces is covered with a basin composed of heavy braque, which is a mixture of charcoal powder and clay. In the front of the furnace, and at the bottom of the chemife, there is a hole, called the eye, through which the melted and flowing metals and runs along a trench or furrow, called the trace, into one or more receiving basins made of earth, scorpa, sand, &c. There the metal is separated from the scorpa, by making it flow from these basins into another lateral one. These furnaces also are also called crooked furnaces.

Different names are given to them according to some difference in their construction. For instance, those which have two eyes, and two traces, through which the melted matter flows alternately into two basins, are called spectacle furnaces. Their greater or less height gives occasion also to the distinction of high furnaces and middle furnaces.

The high furnaces are of modern invention. They were first introduced at Mansfield in the year 1727; and they are now used in almost all countries where ores are smelted, as in Saxony, Bohemia, Hungary, &c. Their chief advantage consists in simplifying and diminishing the labour. This advantage is effected by the great height of the furnace, which allows the ore to remain there a long time before it falls down into the bottom part of the fire and is melted. Consequently, it suffers successively different degrees of heat; and, before it is melted, it undergoes a roasting which cools nothing; therefore the high furnaces are chiefly employed for crude fusions; and particularly for the flake-copper ore. These furnaces are above 18 feet high. A too great height is attended with an inconvenience, besides the trouble of supplying it with ore and fuel, which is, that the charcoal is mostly consumed before it gets down where the greatest heat is required, and is then rendered incapable of maintaining a fire sufficiently intente.

All the furnaces which we have mentioned are supplied with large bellows, moved by the arbor of a wheel, which is turned round by a current of water.

The only kind of furnace for smelting ores where bellows are not employed, is what is called a regenerative furnace. The Germans call it a wind furnace. It is also distinguished by the name of English furnace, because the invention of it is attributed to an English physician of the name of Wright, who was well versed in chemistry; and because the use of it was first introduced, in England about the end of the last century, where it is much employed, as well as in several other countries, as at Königberg, in Norway.

The length of these furnaces is about 18 feet, comprehending the manufactory: their breadth is 12 feet, and their height nine feet and a half. The hearth is raised three feet above the level of the foundry: on one side is the fire-place, under which is an ash-hole hollowed in the earth; on the other side is a basin made, which is kept covered with fire when there is occasion; on the anterior side of this furnace there is a chimney, which receives the flame after it has passed over the mineral that is laid upon the hearth. This hearth, which is in the interior part of the furnace, is made of a clay capable of sustaining the fire. The advantage of this furnace is, that bellows are not necessary; and consequently it may be constructed where there is no current of water, and wherever the mine happens to be. This furnace has a hole in its front, through which the scorpa is drawn out; and a basin, as we have said, on one side, made with sand, in which are oblong traces for the reception of the matt, and of the black copper, when they flow out of the furnace.

Copper is generally mineralised, not only by sulphur and arsenic, but also by ferrometals and pyritic matters, and is frequently mixed with other metals. As this metal has great affinity with sulphur and arsenic, it is almost impossible to disengage it from them entirely by roasting: hence, in the smelting in great nothing is obtained by the first operation but a copper marr, which contains all the principles of the ore, excepting the earthy and flaky parts, particularly when the ore is smelted crude and unrefined. Afterwards this marr must be again roasted and fused. The produce of this second fusion begins still more to resemble copper, but is not malleable. It continues mixed with almost all the minerals, particularly with the metals. As it is frequently of a black colour, it is always called black copper, when it is unmalleable, whatever its colour happens really to be.

As of all the imperfect metals, copper is most difficultly burnt and vitriolised, it is again remelted several times, in order to burn and vitriolise the metallic substances mixed with it; and this is done till the copper is perfectly pure, which is then called red or refined copper, and these last fusions are called the refining and refining of it; red copper contains no metals but gold and silver, if any of these happened to be in the ore.

In order to avoid all these fusions, it has been proposed to treat it in the humd way certain copper ores, particularly those which are very pyritic. This method consists in making the blue vitriol from the ore, by roasting and lixiviating it, and in precipitating pure copper from this lixivium, which is called cernuteter, by means of iron; but it is not much practised, because it has been observed, that all the copper contained in the ore was not procured by this means.

As expence is not much regarded in small experiments, these fusions are much abridged and facilitated by adding at first saline and glairy fluxes; and then by refining the black copper with lead in the cupel, as gold and silver are done. In this method of refining, it is to be most carefully observed, that the metal be fused as quickly as possible, and exposed to no more heat than is necessary, lest it be calcined.

When the black copper contains some iron, but not a great

METAL LURGY.

§ 1. Smelting of Ores of Copper.

A great deal, the lead presently separates the iron from it, and makes it rise to the surface of the copper; but if the iron be in too large a proportion, it prevents the lead from uniting with the copper. These two phenomena depend on the same cause, which is, that lead and iron cannot unite.

Frequently copper ores contain also a quantity of silver sufficient to make its extraction by particular processes profitable. It was long before any process could be thought of for this purpose which was not too expensive and troublesome: but at length it is accomplished by the excellent operation called *eliquation*.

The copper from which silver has been separated by *eliquation* must be refined after this operation, as it is generally black copper from which silver is extracted: but even if it had not been black copper which was employed for this operation, it would require to be refined on account of a little lead it always retains. It is therefore carried to the refiner's furnace, when this operation is performed by the help of bellows, the blast of which is thrown upon the surface of the melted metal. As in this refining of copper the precise time when it becomes pure cannot be known, because *scoria* is always formed on its surface, it is necessary to use an *eisy-iron*, the polished end of which being dipped in melted copper, shows that this metal is pure when the copper adhering to the iron falls off as soon as it is dipt in cold water.

When this mark of the purity of the copper has been observed, its surface ought to be well cleansed; and as soon as it begins to fix, it must be sprinkled with a broom or before dipped in cold water. The surface of the copper which is then fixing, being suddenly cooled by the water, detaches itself from the rest of the metal, is taken hold of by tongs, and is thrown hot into cold water. By again sprinkling water on the mass of copper, it is all of it reduced into plates which are called *rofite*, and these plates are what is called *rofite-copper*.

§ 2. The copper of pyritic cupreous ore cannot be obtained without several operations, which vary according to the nature of the ores. These operations are chiefly roasting and fusions. By the first fusion a matt is produced, which is afterwards to be roasted; and thus the fusions and roasting are to be alternately applied, till by the last fusion copper is obtained. These methods of treating pyritic copper ores depend on the following facts: 1. Sulphur is more dispersed to unite with iron than with copper. 2. The iron of these ores is destructible by the burning sulphur during the roasting of the fussion of the ores, while the copper is not injured. This fact appears from experiments mentioned by Scheffer and by Wallerius, and from the daily practice of melting cupreous ores.

From these facts we learn, 1. That sulphur may be employed to separate and deftroy iron mixed with copper. 2. That iron may be employed to separate the sulphur from copper, as is sometimes done in the effay of sulphurated copper-ores. 3. That by adjusting the proportion of the iron and sulphur to each other in the fussion of copper-ores, these two substances may be made to destroy each other, and to procure a separation of the copper: and this adjustment may be effected, by adding sulphur or sulphurous pyrites to the copper-ore, when the quantity of sulphur contained in this ore relatively to the iron is too small; or by adding iron when the sulphur predominates; or by roasting by which the superfused sulphur may be expelled, and no more lead than is sufficient for the destruction of the iron contained in the ore. We shall apply these principles to the following cases.

1. When the quantity of sulphur and of iron in a copper ore is small, and especially when the iron does not too much abound, a previous roasting will at once calcine the iron, and expel most of the sulphur; so that by one fusion the calcined iron may be scoriated and black copper may be obtained. If the sulphur has not been sufficiently expelled, a second roasting and fusion are requisite; for the whole quantity of sulphur ought not to be expelled during the first roasting: but as much ought to be left as is sufficient for the scoriation of the calcined iron; otherwise this might, during the fusion, be again revived and united with the copper.

2. If, in a copper ore, the quantity of iron be too great, relatively to the sulphur, some sulphurated pyrites, especially that kind which contains copper ought to be added, that a matt may be obtained, and that the iron may be calcined and scoriated.

3. When the quantity of sulphur and iron is very great, that is, when the ore is very pyriticous and poor, it ought to be first formed into a matt; by which it is separated from the adherent earths and stones, and the bulk is diminished; then by repeated and alternate roasting and fusions, the copper may be obtained.

4. When the quantity of sulphur in an ore is greater than is sufficient for the forming a matt, the superfluous quantity ought to be previously expelled by roasting.

The copper thus at first obtained is never pure, but is generally mixed with sulphur or with iron. It is called black copper. This may be refined in furnaces, or on hearth.

In the former methods, to the copper when melted a small quantity of lead is added, which unites with the sulphur, and is scoriated together with the iron, and floats upon the surface of the melted copper. This purification of copper by means of lead is similar to the refining of silver by cupellation; and is founded on the property of lead, by which it is more diptosed to unite with sulphur than copper is; and on a property of copper, by which it is less liable than any other imperfect metal to be scoriated by lead. But as copper is also capable of being scoriated by lead, this operation must be longer continued, and no more lead must be employed, than is sufficient for the separation of the sulphur, and for the scoriation of the iron.

The copper might also be purified from any remaining sulphur by adding a sufficient quantity of iron to engage the sulphur. Thus Mr Scheffer found, that by adding to sulphurated copper from Great Britain, of old cast iron, he rendered the copper pure and durable. See his Dissertations on the Parting of Metals amongst the Ewwood Memoirs for the year 1752. In this purification, the quantity of iron added ought not to be too little.
METALLURGY.

Manufacturing of Iron.

little, else all the sulphur will not be separated; and it ought not to be too great, else the superfluous quantity will unite and injure the purity of the copper. The fusion and fortification, with addition of lead, seems to be the best method for the last purification of copper.

Sect. V. Smelting, &c. of Ores of Iron.

Notwithstanding the great importance of this subject, and the labours of Reaumur, Swedenborgius and of some other authors, we have still a very imperfect knowledge of the causes of the differences of the several kinds of ores, of the methods of smelting adapted to these differences, of the causes of the good and bad qualities of different kinds of iron, and of the means of so meliorating this metal, that we may obtain tough and ductile iron from any of its ores.

Swedenborgius has very industriously and exactly described the different processes now used in most parts of Europe for the smelting of ores of iron, for the forging of that metal, and for the conversion of it into steel: but we do not find that he or any other author have, by experiments and discoveries, contributed much to the illustration or to the improvement of this part of metallurgy, unless, perhaps, we except those of Mr Reaumur, concerning the softening of cast iron by cementation with earthy substances.

The ores of iron are known to vary much in their appearance, in their contents, in their degrees of fusibility, in the methods necessary for the extraction of their contained metal, and in the qualities of the metal when extracted.

Most ores require to be roasted previously to their fusion; some more slightly, and others with a more violent and longer-continued fire. Those which contain much sulphur, arsenic, or vitriolic acid, require a long-continued and repeated roasting, that the volatile matters may be expelled. Of this kind is the black-iron ore, from which the Swedish iron is said to be obtained.

Some ores require a very slight roasting only, that they may be dried and rendered friable. Such are the ores called bog ores, and others, which being in a calcined state, and containing little sulphureous matter, would, by a farther calcination, be rendered less capable of being reduced to a metallic state.

The roasting of ores of iron is performed by kindling piles, consisting of strata of fuel and of ore placed alternately upon one another, or in furnaces similar to those commonly employed for the calcination of lime-flone.

Some authors advise the addition of a calcareous earth to sulphureous ores during the roasting, that the sulphur may be ab sorbed by this earth when converted into quicklime. But we may observe that the quicklime cannot absorb the sulphur of sulphureous acid, till these be first extricated from the ore, and does therefore only prevent the dissipation of these volatile matters; and, secondly, that the sulphur thus united with the quicklime forms a hepar of sulphur, which will unite with and dissolve the ore during its fusion, and prevent the precipitation of the metal.

The next operation is the fusion or smelting of the ore. This is generally performed in furnaces or towers, from 20 to 30 feet high, in the bottom of which is a bafon for the reception of the fluid metal. When the furnace is sufficiently heated, which must be done at first very gradually, to prevent the cracking of the walls; a quantity of the ore is to be thrown in, from time to time, at the top of the furnace, along with a certain quantity of fuel and of lime-flone, or whatever other flux is employed. When the fuel below is consumed by the fire excited by the wind of the bellows, the ore, together with its proportionable quantity of fuel and of flux, sinks gradually down, till they are exposed to the greatest heat in the furnace. There the ore and the flux are fused, the metallic particles are revived by the fuel, are precipitated by means of their weight through the scoria formed of the lighter earthy parts of the flux and of the ore, and unite in the bafon at the bottom of the furnace, forming a mass of fluid metal covered by a glassy scoria. When a sufficient quantity of this fluid metal is collected, which is generally twice or thrice in 24 hours, an aperture is made, through which the metal flows into a channel or groove made in a bed of sand; and from thence into smaller lateral or connected channels, or other moulds. There it is cooled, becomes solid, and retains the forms of the channels or moulds into which it flows. The piece of iron formed in the large channel is called a pig and those formed in the smaller channels are called pigs. Sometimes the fluid iron is taken out of the furnace by means of ladles, and poured into moulds ready prepared, of sand or of clay, and is thus formed into the various utensils and instruments for which cast iron is a proper material.

The scoria must be, from time to time, allowed to flow out, when a considerable quantity of it is formed through an aperture made in the front of the furnace for that purpose. A sufficient quantity of it must, however, be always left to cover the surface of the melted iron, else the ore which would fall upon it, before the separation of its metallic from its unmetallic parts, would lessen the fluidity and injure the purity of the melted metal. This scoria ought to have a certain degree of fluidity; for if it be too thick, the revived metallic particles will not be able to overcome its tenacity, and collect together into drops, nor be precipitated. Accordingly, a scoria not sufficiently fluid, is always found to contain much metal. If the scoria be too thin, the metallic particles of the ore will be precipitated before they are sufficiently metallised, and separated from the earthy and unmetallic parts. A due degree of fluidity is given to the scoria by applying a proper heat and by adding fluxes suited to the ore.

Some ores are fusible without addition, and others cannot be smelted without the addition of substances capable of facilitating their fusion.

The fusible ores are those which contain sulphur, arsenic, or are mixed with some fusible earth.

The ores difficultly fusible are those which contain no mixture of other substance. Such are most of the
ores which contain iron in a state nearly metallic. As iron itself, when purified from all heterogeneous matters, is scarcely fusible without addition, so the metal contained in these purer kinds of ores cannot be easily extruded without the addition of some fusible substance. 1. Those which are mixed with some very refractory substance. Some of these refractory ores contain arsenic; but as this substance facilitates the fusion of ores, we may presume that their refractory quality depends upon a mixture of some unmetallic earth or other infusible substance. The earth which is mixed with the common calciform ores is in considerable quantity; and is sometimes carceous, sometimes siliceous, and sometimes argillaceous.

Perhaps the fusibility of different ores depends greatly on the degree of calcination to which the metal contained in them has been reduced; since we have reason to believe, that by a very perfect calcination, some metals at least may be reduced to the state of an earth almost unfusible, and incapable of metallification; and since we know, that in every calcination and subsequent reduction of a given quantity of any imperfect metal, a fusible part of that quantity is always lost or destroyed, however carefully these operations may have been performed. That some of these ores are already too much calcined, appears from the influence above-mentioned of the bag ores, which are injured by roasting; and even the great height of the common smelting furnaces, although advantageous to many ores that require much roasting, is liable to be injurious to those which are already too much calcined, by expelling them to a further calcination, during their very gradual descent, before they arrive at the hottest part of the furnace, where they are fusied.

But as too violent calcination renders some ores difficultly fusible, so too slight calcination of other ores injures the purity of the metal, by leaving much of the sulphureous or other volatile matter, which ought to have been expelled.

Various fusiblenes are added to affist the fusion of ores difficultly fusible. These are, 1. Ores of a fusible quality, or which, being mixed with others of a different quality, become fusible: accordingly, in the great works for smelting ores of iron, two or more different kinds of ore are commonly mixed, to facilitate the fusion, and also to moderate the quality of the iron. Thus an ore yielding an iron which is brittle when hot, which quality is called red-short, and another ore which produces iron brittle when cold, or cold-short, are often mixed together; not, as sometimes supposed, that these qualities are mutually destructive of each other, but that of each of them is diminished in the mixed mass of iron, as much as this mass is larger than the part of the mass originally posseffed of that quality. Thus, if from two such ores the mass of iron obtained consists of equal parts of cold-short, and of red-short iron, it will have both these qualities, but will be only half as cold-short as iron obtained solely from one of the ores, and half as red-short as iron obtained only from the other ore. 2. Earths and fomes are also generally added to facilitate the fusion of iron ores. These are such as are fusible, or become fusible when mixed with the ore, or with the earth adhering to it. Authors direct that, if this earth be of an argillaceous nature, limonite or some calcareous earth should be added; and that, if the adherent earth be calcareous, an argillaceous or siliceous earth should be added; because these two earths, though singly unfusible, yet, when mixed, mutually promote the fusion of each other: but as limonite is almost always added in the smelting of iron ores, and as in some of these, at least, no argillaceous earth appears to be contained, we are inclined to believe that it generally facilitates the fusion, not merely by uniting with those earths, but by uniting with that part of the ore which is most perfectly calcined, and least disposed to metallification; since we know, that by mixing a calciform or roasted ore of iron with calcareous earth, without any inflammable matter, these two substances may be totally vitrified. See Experiments made upon quicklime and upon iron, by Mr. Brandt, in the Swedish Memoirs, for the years 1749 and 1751. Calcareous earth does indeed powerfully facilitate the fusion of iron ores, that it deserves to be considered whether workmen do not generally use too great a quantity of it, in order to hasten the operation. For when the scoria is rendered too thin, much earthy or unmetalized matter is precipitated, and the cast iron produced is of too vitreous a quality, and not sufficiently approximated to its true metallic state.

Some authors pretend, that a principal use of the addition of lime in the smelting of iron ores is to absorb the sulphur, or vitriolic acid, of these ores; but, as we have already observed, a hepar of sulphur is formed by that mixture of calcareous earth and sulphur, which is capable of dissolving iron in a metallic state; and thus the quantity of metal obtained from an ore not sufficiently divorced of its sulphur, or vitriolic acid, (which, by uniting with the fuel, is formed into a sulphur during the smelting), must be considerably diminished, though rendered purer, by addition of calcareous earth; hence the utility appears of previously expelling the sulphur and vitriolic acid from the ore by a sufficient roasting. 3. The scoria of former smeltings is frequently added to assist the fusion of the ore; and, when the scoria contains much iron, as sometimes happens in ill-conducted operations, it also increases the quantity of metal obtained.

The quantity of these fusible matters to be added varies according to the nature of the ore; but ought in general to be such, that the scoria shall have its requisite degree of thinness, as is mentioned above.

The fuel used in most parts of Europe for the smelting of ores of iron is charcoal. Lately, in several works in England and Scotland, iron ore has been smelted by means of pit-coal, previously reduced to cinders or coaks, by a kind of calcination similar to the operation for converting wood into charcoal, by which the aqueous and sulphureous parts of the coal are expelled, while only the more fixed bituminous parts are left behind. In France, pit-coal not calcined has been tried for this purpose, but unsuccessfully. The use of peat has also been introduced in some parts of England.

The quality of the iron depends considerably upon the quality and also upon the quantity of the fuel employed. Charcoal is lighter than coals, for producing,
MANUFACTURING OF IRON.

METALLURGY.

Part III.

During an iron capable of being rendered malleable by forging.

The quantity of fuel, or the intensity of the heat, must be suited to the greater or less fusibility of the ore. Sulphureous, and other ores easily fusible, require less fuel than ores difficultly fusible. In general, if the quantity of fuel be too small, and the heat not sufficiently intense, all the iron will not be reduced, and much of it will remain in the scoria, which will not be sufficiently thin. This defect of fuel may be known by the blackness and compactness of the scoria; by the qualities of the iron obtained, which in this case is hard, white, light, intermixed with scoria, smooth in its texture, without scales or grains, rough and convex in its surface, and liable to great loss of weight by being forged; and, lastly, it may be known by observing the colour and appearance of the drops of metal falling down from the melted ore, and of the scoria upon the furnace of the fluid metal, both of which are darker coloured than when more fuel is used. When the quantity of fuel is sufficiently large, and the heat is intense enough, the iron is darker coloured, denser, more tenacious, contains less scoria, and is therefore less fusible, and loses less of its weight by being forged. Its surface is also smoother and somewhat concave; and its texture is generally granulated. The scoria, in this case, is of a lighter colour, and less dense. The drops falling down from the melted ore and the liquid scoria in the furnace appear hotter and of a brighter colour. When the quantity of fuel is too great, and the heat too intense, the iron will appear to have a still darker colour, and more conspicuous grains or plates, and the scoria will be lighter, whiter, and more spotty. The drops falling from this melted ore, and the fluid scoria will appear to a person looking into the furnace through the blast-hole to be very white and shining hot. The quantity of charcoal necessary to produce five hundred weight of iron, when the ore is rich, the furnace well contrived, and the operation skilfully conducted, is computed to be about 40 cubic feet; but is much more in contrary circumstances.

The time during which the fluid metal ought to be kept in fusion before it is allowed to flow out of the furnace, must also be attended to. How long that time is, and whether it ought not to vary according to the qualities of ores and other circumstances, we cannot determine. In some works the metal is allowed to flow out of the furnace every six or eight, and in others only every ten or twelve hours. Some workmen imagine, that a considerable time is necessary for the cohesion of the metal. This is certain, that the iron undergoes some change by being kept in a fluid state; and that if its fusion be prolonged much beyond the usual time, it is rendered less fluid, and also its cohesion, when it becomes cold, is thereby greatly diminished. The marquis de Courtivron says, that the cohesion may be restored to iron in this state by adding to it some vitreifiable earth, which he considers as one of the constituent parts of iron, and which he thinks is destroyed by the fusion too long continued. That the fusibility of cast-iron does depend on an admixture of some vitreifiable earth, appears probable from the great quantity of scoria forced out of iron during its conversion into malleable or forged iron, and from the loss of fusibility which it suffers nearly in proportion to its loss of scoria. The quantity of iron daily obtained from such a furnace as is above described, is from two to five tons in 24 hours, according to the richness and fusibility of the ore, to the contraction of the furnace, to the adjustment of the due quantity of flux and of fuel, and to the skill employed in conducting the operation.

The quality of the iron is judged of by observing the appearances during its flowing from the furnace, and when it is fixed and cold. If the fluid iron, while it flows, emits many and large sparkles; if many brown spots appear on it while it is yet red hot; if, when it is fixed and cold, its corners and edges are thick and rough, and its surface is spotted; it is known to have a red-short quality. If, in flowing, the iron seems covered with a thin glossy crust, and if, when cold, its texture be whitish, it is believed to be cold-short. Mr. Reaumur says, that dark-coloured cast iron is more impure than that which is white. The marquis de Courtivron is of a contrary opinion. But no certain rules for judging of the quality of iron before it be forged can be given. From brittle cast iron, sometimes ductile forged iron is produced. Cast-iron with brilliant plates and points, when forged, becomes sometimes red-short and sometimes cold-short. Large shining plates, large cavities called eyes, want of sufficient density, are almost certain marks of bad iron; but whether it will be cold or red short cannot be affirmed till it be forged. Whiteness of colour, brilliancy, cleanness of texture, and hardness, are given to almost any cast iron by sudden cooling; and we may observe, that in general the whiter the metal is, the harder it is also, whether these properties proceed from the quality of the iron, or from sudden cooling; and that, therefore, the darker-coloured iron is fitter for being cast into moulds, because it is capable in some measure of being filed and polished, especially after it has been exposed during several hours to a red-heat in a reverberatory furnace, and very gradually cooled. This operation, called by the workmen annealing, changes the texture of the metal, renders it softer and more capable of being filed than before, and also considerably less brittle.

Mr. Reaumur found, that by cementing cast iron with absorbent earths in a red-heat, the metal may be rendered softer, tougher, and consequently a fit material for many utensils formerly made of forged iron. Whether cementation with absorbent earths gives to cast iron a greater degree of these properties than the annealing commonly practiced, has not been yet determined.

In Navarre, and in some of the southern parts of France, iron-ore is smelted in furnaces much smaller, and of a very different construction from those above described. A furnace of this kind consists of a wide-mouthed copper-caldron, the inner surface of which is lined with maitonry a foot thick. The mouth of this caldron is nearly of an oval or elliptic form. The space or cavity contained by the maitonry is the furnace in which the ore is smelted. The depth of this cavity is equal to two feet and a half; the larger diameter of the oval mouth of the cavity is about eight feet, and its smaller diameter is about six feet; the space of the furnace is gradually contracted towards the bottom;
metalurgy

bottom, the greatest diameter of which does not exceed six feet: eighteen inches above the bottom is a cylindrical channel in one of the longer sides of the caldron and masonry, through which the nozzle of the bellows passes. This channel, and also the bellows pipe, are so inclined, that the wind is directed towards the lowest point of the opposite side of the furnace. Another cylindrical channel is in one of the shorter sides of the furnace, at the height of a few inches from the bottom, which is generally kept closed, and is opened occasionally to give passage to the scoria: and above this is a third channel in the same side of the furnace, through which an iron instrument is occasionally introduced to stir the fluid metal, and to assist, as is said, the separation of the scoria from it. The greatest height of this channel is at its external aperture on the outside of the furnace, and its smaller height is at its internal aperture; so that the instrument may be directed towards the bottom of the furnace; but the second channel below it has a contrary inclination, that, when an opening is made to the furnace, the air may now enter through the central channel, for its further use. The whole mass of iron is roasted. They take care to throw the charcoal chiefly towards the bottom of the furnace; and it is cast-iron, from which it is more separated, as the heat applied is more intense, and as the fusion is longer continued. To separate these impurities from cast-iron, and to unite the metallic parts more closely and compactly, and thus to give it the ductility and tenacity which render this metal more useful than any other, are the effects produced by the following operations.

The first of these operations is a fusion of the iron; and which much of its impurities is separated in form of scoria, by the following furnace, a further and more complete separation of these impurities, and also a closer combination of the metallic particles, are effected by the application of mechanical force or pressure, by means of large hammers.

Some differences in the construction of the forge or furnace, in which the fusion or refining of cast-iron is performed, in the method of conducting the operation, and in other circumstances, are observed to occur in different places. We shall describe from Swedenborgius the German method.

The fusion of the cast-iron, which is to be rendered malleable, is performed upon the hearth of a forge similar to that used by blacksmiths; at one side of this hearth is formed a cavity or fire-place, which is intended to contain the fuel and the iron to be melted; this fire-place is 20 inches long, 18 inches broad, and 12 or 14 inches deep. It is surrounded on three sides by three plates of cast-iron placed upright; and on the fourth side, which is the front, or that part nearest to which the workman stands, by a large forge-hammer, through the eye of which the scoria is at certain times allowed to flow. The floor also of the fire-place is another cast-iron plate. The thicknesses of these plates is from two to four inches. One of the upright side-plates rests again a wall, in an apertures through which a copper-tube called the tuyere, is luted with clay. This tube is a kind of siphon for receiving the pipe of a pair of bellows placed behind the wall, and its direction is therefore parallel to that of the bellows-pipe; but it advances about half a foot further than this pipe into the fire-place; and thus gives greater force to the air, which it keeps concentrated, or prevents the divergency of the air till it is required to act. The tube rests upon the edge of the side-plate which leans against the wall, nearer to the back-part than to the front of the fire-place; and in such an oblique direction, that the wind shall be impelled towards the further part of the floor of the fire-place, or where this floor is intersected by the opposite side-plate. The obliquity of the tuyere ought to vary according to the quality of the iron; and therefore, in every operation, it may be shifted till its proper position is found. The more nearly its direction approaches...
stry to a horizontal plane, the more intense is the heat; but a larger quantity of fuel is consumed than is even proportional to the increase of heat, because the flame is not then so well confined. When the iron is easily fusible, great heat is not required: the tuyere may then decline considerably from the horizontal plane, and thus fuel may be saved. This tuyere, tho' made of copper, a metal more easily fusible than iron, is preferred from fusion by the constant passage of cold air through it. It must be carefully kept open, and cleansed from the scoria, which would be apt to block up its cavity, by which not only the heat would be too much diminished for the success of the operation, but the tube itself would be melted.

To prepare for the fusion, a quantity of scoria of a former operation is thrown into the fire-place, till one third-part of this be full; and the remaining two thirds of the fire-place are to be filled with smaller scoria, coal-dust, and sparks ejected from hot iron.—These matters, being fusible, form a bath for the reception of the iron when melted. Upon this bed of scoria, the mafs of cast iron to be melted is placed; so that one end of it shall be within the fire-place, opposite to the tuyere, and at the distance of about four or five inches from its aperture; and the other end shall stand without the fire-place, to be pulFed in, as the former is melted. The upper side of the mafs of iron ought to be in the same horizontal plane as the upper part of the orifice of the tuyere, that the wind may, by means of the obliquity of its course, strike upon and pass along the under-side of the mafs; but if the iron be difficultly fusible, the tuyere is to be displaced more horizontally, so that the wind shall strike directly upon the mafs of iron; and that one part of the blast shall graze along the upper surface, and the other part along the under surface of the iron. The mafs of iron weighs generally from 200 to 400 pounds. Sometimes two or three smaller masses are put one above another, so as not to touch. When these are of different qualities, the cold-short piece is placed undermost, that being more fusible than the red-short. The iron being placed, charcoal-powder and burnt ashes are thrown; but towards the tuyere, dry and entire pieces of coal are placed, to maintain the fire. When these are kindled, more coals are added, and the fire is gradually excited. The workman attends to the direction of the flame, that it passes equally along the under surface of the iron, quite to the further extremity, and that it do not escape at the sides, nor be reverberated back towards the tuyere, by which this copper tube might be melted. During this fusion, pieces of iron are apt to be separated from the mafs, and to fall down unfused to the bottom and corners of the fire-place. These are carefully to be searched for, and exposed to the greatest heat till they are melted. When the whole mafs is thus brought into perfect fusion, the coals are removed; and the wind blowing on its surface, whirls and dissipates the small remaining pieces of scoria and sparks thrown out from the fluid iron. This jet of fire continues about seven or eight minutes, and the whole operation about two hours. In this second fusion the scoria is to be thrice removed, by opening a passage through the eye of the hammer. The first time of removing the scoria is about 20 minutes from the kindling of the fire, the second time is about 40 minutes after the first, and the third time is near the end of the operation.

The mafs is then removed from the hearth, and put upon the ground of the forge, where it is cleaned from scoria, and beat into a more uniform shape. It is then placed on an anvil, where, by being forged, it receives a form nearly cubical. This mafs is to be divided into five, six, or more pieces, by means of a wedge; and these are to be heated and forged till they are reduced to the form of the bars commonly rendered...
rendered very pure. Where only one fusion is practiced, it is called the French method. In this, no greater quantity of iron is fused at once than is sufficient to make one bar. The fire-place is of considerably less dimensions, and especially is less deep, than in the German method above described. The fire is also more intense, and the proportion of fuel consumed to the iron is greater. The iron, when melted, is not kept in a state of ebullition as is above described; but this ebullition is prevented by firing the fluid mass with an iron bar, till it is coagulated, and becomes solid.

By these operations, fusion and forging, the iron loses about one half of its former weight, sometimes more and sometimes less, according to the quality of the cast-iron employed; it is purified from the vitreous and earthy parts which were intermixed with it, its metallic particles are more closely compacted, its texture is changed, and it is rendered more dense, soft, and malleable, tough, and difficultly fusible.

The degrees, however, of these qualities vary much in different kinds of iron. Thus some iron is tough and malleable, both when it is hot and when it is cold. This is the best and most useful iron. It may be known generally by the equable surface of the forged bar, which is free from transverse fissures or cracks in the edges, and by a clear, white, small-grained, or rather fibrous texture. Another kind is tough when it is heated, but brittle when it is cold. This is called cold-short iron; and is generally known by a texture consisting of large, thin plates, without any fibres. It is less liable to rust than other iron. A third kind of iron, called red-short, is brittle when hot, and malleable when cold. On the surface and edges of the bars of this kind of iron, transverse cracks or fissures may be seen; and its internal colour is dull and dark. It is very liable to rust. Lastly, some iron is brittle both when hot and when cold.

Most authors agree, that the red-short quality of iron proceeds from some sulphur or vitriolic acid being contained in it, because sulphur is known to produce this effect when added to iron, and because the iron obtained from pyritic and other sulphurated ores has generally this quality.

The cause of the cold-short quality of iron is not so well ascertained. Some imagine, that it proceeds from a mixture of arsenic or of antimony. But this opinion seems to be improbable, when we consider that these metallic substances may in a great measure be diffipated by roasting, whereas the ores which yield a cold-short iron are injured by much roasting; that no arsenic or antimony are observable in molift, if in any, of these ores; and lastly, that these femimetallics would render the iron brittle both when hot and when cold. Cramer and other authors impute this vicious quality to a mixture of unmetallic earth or vitreous matter; and affirm, that it may be destroyed by cementation with phlogiston, and by forging. And lastly, others ascribe the cold-short quality of iron to a defect of phlogiston, or, as Swedenborgius says, of sulphur. To ascertain the cause of the bad qualities of iron, and to discover practical remedies, are still desiderata in metallurgy.

In one bar frequently two or more different kinds of iron may be observed, which run all along its whole length; and scarcely a bar is ever found of entirely pure and homogeneous iron. This difference probably proceeds from the practice we have mentioned of mixing different kinds of ores together, in the smelting; and also from the practice of mixing two or more pigs, of cast iron of different qualities in the finery of these; by which means, the red-short and cold-short qualities of the different kinds are not, as we have already remarked, mutually counteracted or destroyed by each other, but each of these qualities is diminished in the mixed mass of iron, as much as this mass is larger than the part of the mass originally possessed of that quality; that is, if equal parts of red short and of cold-short iron be mixed together, the mixed mass will be only half as red short as the former part, and half as cold-short as the latter. For these different kinds of iron seem as if they were only capable of being interwoven and diffused through each other, but not of being intimately united or combined.

The quality of forged iron may be known by the texture which appears on breaking a bar. The best and toughest iron is that which has the most fibrous texture, and is of a clear greyish colour. This fibrous appearance is given by the resistance which the particles of the iron make to their rupture. The next best iron is that whose texture consists of clear, whitish, small grains, intermixed with fibres. These two kinds are malleable, both when hot and when cold, and have great tenacity. Cold-short iron is known by a texture consisting of large, thin plates, without fibres: and red-short iron is distinguished by its dark dull colour, and by the transverse cracks and fissures on the surface and edges of the bars. The quality of iron may be much improved by violent compression, as by forging and rolling; especially, when it is not long exposed to too violent heat, which is known to injure, and at length to destroy, its metallic properties.

For the conversion of iron into steel, see the article Steel.

Sect. VI. Of the Smelting of Tin Ores.

The tin-ores commonly smelted are those which consist of calx of tin combined with calx of arsenic and sometimes with calx of iron. These are either pure, as the tin-grains, or intermixed with furs, stones, pyrites, ores of copper, iron, or of other metals.

The impure ores must be cleansed as much as is possible from all heterogeneous matters. This cleansing is more necessary in ores of tin than of any other metal; because in the smelting of tin-ores a less intense heat must be given than is sufficient for the scorification of earthy matters, lest the tin be calcined. Tin-ores previously bruited may be cleansed by washing, for which operation their great weight and hardness render them well adapted. If they be intermixed with very hard stones or ferruginous ores, a flight roasting will render these impure matters more friable, and consequently fitter to be separated from the tin-ores. Sometimes these operations, the roasting, condensation, and folution, must be repeated. By roasting, the ferruginous particles are so far revived, that they may be separated by magnets.
The ore, thus cleansed from adhering heterogeneous matters, is to be roasted in an oven or reverberatory furnace, with a fire rather intense than long continued; during which it must be frequently stirred to prevent its fusion. By this operation, the arsenic is expelled, and in some works is collected in chambers built purposely above the calcining furnace.

Lastly, the ore cleansed and roasted is to be fused, and reduced to a metallic state. In this fusion, attention must be given to the following particulars. 1. No more heat is to be applied than is sufficient for the reduction of the ore; because this metal is fusible with very little heat, and is very easily calcinable. 2. To prevent this calcination of the reduced metal, a larger quantity of charcoal is used in this than in most other fusions. 3. The scoria must be frequently removed, lest some of the tin should be involved in it; and the melted metal must be covered with charcoal powder, to prevent the calcination of its surface. 4. No flux or other substance, excepting the scoria of former smeltings which contains some tin, are to be added, to facilitate the fusion.

Sect. VII. Smelting of Ores of Lead.

Ores of lead are either pure, that is, containing no mixture of other metal; or they are mixed with silver, copper, or pyrites. The methods of treating ores of lead containing silver and copper, are described in the sections of Smelting of Ores of Silver and of Copper; and in the former of these an instance is given of the method of smelting the ore of Ramelberg, which contains all these three metals.

Pure ores of lead, and those which contain so small a quantity only of silver as not to compensate for the expense of extracting the nobler metal, may be smelted in furnaces, and by operations similar to those used at Ramelberg, or in the following methods. 1. From the lead-ore of Willach in Carinthia, a great part of the lead is obtained by a kind of elicitation, during the roasting of the ore. For this purpose, the ore is thrown upon several strata or layers of wood, placed in a calcining or reverberatory furnace. By kindling this wood, a great part of the lead flows out of the ore, through the layers of fuel, into a basin placed for its reception. The ore which is thus roasted is bent into smaller pieces, and exposed to a second operation similar to the former, by which more metal is elicited; and the remaining ore is afterwards ground, washed, and smelted, in the ordinary method.

The lead of Willach is the purest of any known, and Schütter ascribes its great purity to the method used in extracting it, by which the molten fusible, and consequently the purest part of the contained lead, is separated from any less fusible metal which happens to be mixed with it, and which remains in the roasted ore. This method requires a very large quantity of wood.

2. In England, lead ores are smelted either upon a hearth, or in a reverberatory furnace called a cupel.

In the first of these methods, charcoal is employed as fuel, and the fire is excited by bellows. Small quantities of fuel and of ore are thrown alternately and frequently upon the hearth. The fusion is very quickly effected; and the lead flows from the hearth as fast as it is separated from the ore.

3. In the second method practiced in England, pitch-coal is used as fuel. The ore is melted by means of the flame passing over its surface; its sulphur is burnt and diffipated, while the metal is separated from the scoria, and collected at the bottom of the furnace. When the ore is well cleansed and pure, no addition is requisite; but when it is mixed with calcareous or earthy matrix, a kind of flux or fusible spar found in the mines is generally added to render the scoria more fluid, and thereby to assist the precipitation of the metal. When the fusion has been continued about eight hours, a passage in the side of the furnace is opened, through which the liquid lead flows into an iron cistern. But immediately before the lead is allowed to flow out of the furnace, the workmen throw upon the liquid mass a quantity of flaked quicklime, which renders the scoria so thick and tenacious, that it may be drawn out of the furnace by rakes. Schütter mentions this addition of quicklime in the smelting of lead ores in England, but thinks that it is intended to facilitate the fusion of the ores; whereas it really has a contrary effect, and is never added till near the end of the operation, when the scoria is to be raked from the furnace of the metal.

Sect. VIII. Of the Smelting of Ores of Semi-metals.

Antimony is obtained by a kind of elicitation from the minerals containing it, as is described in the article Antimony; and the regulus of antimony is procured from antimony, by the processes described in the same article, and in the article Resevoir of Antimony.

Arsenic, saffre, and bismuth, are obtained generally from one ore, namely, that called cobalt. The arsene of the ore is separated by roasting, and adheres to the internal surface of a chimney, which is extended horizontally about 200 or 300 feet in length, and in the sides of which are several doors, by means of which the arsene, when the operation is finished, may be swept out and collected. These chimneys are generally bent in a zig-zag direction, that they may better retard and stop the arsenic flowers. These flowers are of various colours, white, grey, red, yellow, according to the quantity of sulphur or other impurity with which they happen to be mixed. They are afterwards purifed by repeated sublimations; while some alkaline or other substances are added to detain the sulphur, and to assist the purification.

In the same roasting of the ore by which the arsenic is expelled, the bismuth, or at least the greatest part of this semi-metal which is contained in the ore, being very fusible, and having no disposition to unite with the regulus of cobalt, which remains in the ore, is separated by elicitation.

The remaining part of the roasted ore consists chiefly of cals of regulus of cobalt, which not being volatile, as the arsenic is, nor so easily fusible as bismuth is, has been neither volatilized nor melted. It contains also some bismuth, and a small quantity of arsenic, together
metal combined with any silver or other fixed metal which happens to be contained in the ore. This roasted ore being reduced to a fine powder, and mixed with three or four times its weight of fine sand, is the powder called saffre or saffra. Or the roasted ore is sometimes fused with about three-quarters its weight of pure sand and as much pure potash, by which a blue glass, called fusil, is produced; and a metallic maf, called saffil, is collected at the bottom of the vessel in which the matters are fused. The metallic maf or saffil is composed of different substances, according to the contents of the ore and the methods of treating it. The matters which it contains at different times are, nickel, regular cinnabar, bismuth, arsenic, sulphur, copper, and silver.

Bismuth is seldom procured from any other ores but that of cobalt. It might, however, be extracted from its proper ores, if a sufficient quantity of these were found, by the same method by which it is obtained from cobalt, namely, by eliugation.

Mercury, when native, and enveloped in much earthy or other matter, from which it cannot be separated merely by washing, is distilled either by ascent or by descent. When it is mineralised by sulphur, that is, when it is contained in cinnabar, some intermediate substance, as quicklime or iron, must be added in the distillation, to disengage it from the sulphur.

The rich ore of Almaden in Spain is a cinnabar, with which a calcareous stone happens to be so blended, that no addition is required to disengage the mercury from the sulphur. The distillation is there performed in a furnace consisting of two cavities, one of which is placed above another. The lower cavity is the fire-place, and contains the fuel, resting upon a grate, through the bars of which the air enters, maintaining the fire and paves into a chimney, placed at one side of the fire-place immediately above the door thereof, which fuel is to be introduced. The roof of this fire-place, which is vaulted and pierced with several holes, is also the floor of the upper cavity. Into this upper cavity, the mineral from which mercury is to be distilled is introduced, through a door in one of the sides of the furnace. In the opposite wall of this cavity are eight openings, all at the same height. To each of these openings is adapted a file of aludels connected and luted together, extending 60 feet in length. These aludels, which are earthen vessels open at each end, and wider in the middle than at either extremity, are supported upon an inclined terrace; and the aludel of each file, that is most distant from the furnace, terminates in a chamber built of bricks, which has two doors and two chimneys.

When the upper cavity is filled sufficiently with the mineral, a fire is made below, which is continued during 12 or 14 hours. The heat is communicated thro' the holes of the vaulted roof of the fire-place to the mineral in the upper cavity, by which means the mercury is volatilised, and its vapour paves into the aludels, where much of it is condensed and the rest is discharged into the brick chamber, in which it circulates till it also is condensed. If any air or smoke paves through the aludels along with the vapour of the mercury, they escape through the two chimneys of the chamber. Three days after the operation, when the apparatus is sufficiently cooled, the aludels are unluted, the doors of the chamber are opened, and the mercury is collected.

Metaphor in general denotes the changing of something into a different form; in which sense it includes the transformation of infers, as well as the mythological changes related by the ancient poets.

Mythological metamorphoses were held to be of two kinds, apparent and real: thus, that of Jupiter into a bull, was only apparent; whereas that of Lycaon into a wolf, goes on to describe the lion in appearance, but in reality the hero; and his description is peculiarly beautiful, by expressing the virtues and qualities of the hero in new terms, which, properly speaking, belong not to him, but to the lion. This will better be understood by examples. A family connected with a common parent, resembles a tree, the trunk and branches of which are connected with a common root: but let us suppose, that a family is figured, not barely to be like a tree, but to be a tree; and then the simile will be converted into a metaphor, in the following manner:

Edward's fe'n sons, whereof thyself art one,
Were fe'n fair branches springing from one root;
Some of these branches by the delin'ies cut: 474
But Thomas, my dear lord, my life, my Glo'tor:
One flourishing branch of his most royal root,
Is hack'd down, and his sumner-leaves all faded,
By Env'y's hand and Murder's bloody axe.

Richard II. act i. fe. 2.

Figuring human life to be a voyage at sea:
There is a tide in the affairs of men,
Which, taken at the flood, leads on to fortune:

Omitted
Metaphor

Omitted, all the voyage of their life
Is bound in hollows and in mires.
On such a full sea are we now afloat;
And we must take the current when it serves,
Or lose our ventures. — *Julius Caesar*, act iv. sc. 5.

Figuring glory and honour to be a garland of flowers:

"Had I a heart to prophesy,"

That name in arms was now as great as mine!

Pr. Henry, I'll make it greater ere I part from thee;
And all the budding honours on thy crest
I'll crop, to make a garland for my head.

First part of Henry IV. act v. sc. 9.

Figuring a man who hath acquired great reputation

Honour and honour to be a garland of flowers:

To the dark-brown shield.

A flower in thy presence,

Of the hand in friendship, noble king of Morven.

So art the beam of the sun,

To bring the softest showers on the earth,

I was a lovely garland round me:

But thy death came like a mist,

To be another. An allegory requires no such operation,

Nor is one thing figured to be another: it

Does because it is our own work. (*See the word*

Allegory.

explains it elegantly in the following words: "To

tutque illa Horatii locus, quos navim pro repubbica,

Fluctus et urbes, incentpitu, lyras

O navis, referent in mare te novi

The world may read in me; my body's mark'd

With Roman swords; and my report was once

Hades.

"Thou dwellest in the soul of Malvina, son of mighty

And when a soldier was the theme, my name

Was not far off; then was I as a tree,

And half our sailors swallo'd in the flood!

What though the mast be now blown overboard,

The cable broke, the holding-anchor loth.

And to bedlams swelled in the flood!

Yet lives our pilot still. Is't meet that he

Should leave the helm, and like a fearful lad,

With tearful eyes add water to the sea,

And give more strengt to that which hath too much;

While in his own the ship splits on the rock,

Which industry and courage might have faved?

Ah, what a flame! ah, what a fault were this!

Third part of Henry VI. act v. sc. 5.

Oroonoko. Ha! thou haft rous'd

The lion in his den; he

And the wide forest trembles at his roar.

I find the danger now. — Oroonoko, alt iii. sc. 2.

"My well-beloved hath a vineyard in a very fruitful hill.

He fenced it, gathered out the stones thereof,

Planted it with the choicest vine, built a tower in the midst of it, and also made a wine-press therein; he

Looked that it should bring forth grapes, and it brought forth wild grapes. And now, O inhabitants of Jerusalem, and men of Judah, judge, I pray you, betwixt me and my vineyard. What could have been done more to my vineyard, that I have not done? Wherefore when I looked that it should bring forth grapes, I brought it forth wild grapes. And now go to, I will tell you what I will do to my vineyard: I will take away the hedge thereof, and it shall be eaten up; and break down the wall thereof, and it shall be trodden down. And I will lay it waste: it shall not be pruned, nor digged, but there shall come up briars and thorns: I will also command the clouds that they rain no rain upon it. For the vineyard of the Lord of hosts is the house of Israel and the men of Judah his pleasant plant."

Isaiah. v. 1.
The rules that govern metaphors and allegories are of two kinds. The construction of these figures comes under the first kind: the propriety or impropriety of introduction comes under the other.—To begin with rules of the first kind; some of which coincide with those already given for similies; some are peculiar to metaphors and allegories.

In the first place, it has been observed, that a simile cannot be agreeable, where the resemblance is either too strong or too faint. This holds equally in metaphor and allegory; and the reason is the same in all. In the following instances, the resemblance is too faint to be agreeable.

Malcolm.—But there's no bottom, none, In my voluptuous teens: your wives, your daughters, Your matrons, and your maids, could not fill up The cistern of my lust. Macbeth, Act iv. Sc. 4.

The best way to judge of this metaphor, is to convert it into a simile: which would be bad, because there is scarce any resemblance between lust and a cistern, or between enormous lust and a large cistern.

Again:
He cannot buckle his disemper'd caulfe Within the belt of rule. Macbeth, Act iv. Sc. 2.

There is no resemblance between a disemper'd cause and any body that can be confined within a belt.

Again:
Steep me in poverty to the very lips. Othello, Act iv. Sc. 9.

Poverty here must be conceived a fluid, which it resembles not in any manner.

Speaking to Bolingbroke banish'd for fix years:

Again:
Here is a letter, lady, And every word in it a gaping wound Infufting life-blood. Merchant of Venice, Act iii. Sc. 3.

Tantae molis erat Romanam condere gentem. Æneid. i. 37.

The following metaphor is strained beyond all endurance: Timur-bec, known to us by the name of Tamerlane the Great, writes to Bajazet emperor of the Ottomans in the following terms:

"Where is the monarch who dares refiit us? where is the potentate who doth not glory in being numbered among our attendants? As for thee, descended from a Turcoman sultan, since the veil of thy unbounded ambition hath been wrenched in the gulf of thy self-love it would be proper, that thou shouldst take in the fails of thy temerity, and cast the anchor of repentance in the port of sincerity and justice, which is the port of safety; left the tempest of our vengeance make thee perish in the sea of the punishment thou deservest."

Such strained figures, as observed above, are not unfrequent in the first dawn of refinement; the mind in a new enjoyment knows no bounds, and is generally carried to excess, till taste and experience discover the proper limits.

Secondly, whatever resemblance subjects may have, it is wrong to put one for another, where they bear no mutual proportion. Upon comparing a very high to a very low subject, the simile takes on an air of burlesque; and the same will be the effect where the one is imagined to be the other, as in a metaphor; or made to represent the other, as in an allegory.

Thirdly, These figures, a metaphor especially, ought not to be crowded with many minute circumstances; for in that case it is scarcely possible to avoid obscurity. A metaphor above all ought to be short: it is difficult, for any time, to support a lively image of a thing being what we know it is not; and for that reason, a metaphor drawn out to any length, instead of illustrating or enlivening the principal subject, becomes disagreeable by overburdening the mind. Here Cowley is extremely licentious: take the following instance.

Great and wife conqueror, who, where'er Thou com'st, doft forfay, and settle there! Who canst defend as well as get; And never hadst one quarter beat up yet; Now thou art in, thou ne'er will part With one inch of my vanquish'd heart; For since thou took'st it by assault from me, 'Tis garris'd so strong with thoughts of thee, It fears no beauteous enemy.

For the same reason, however agreeable long allegories may at first be by their novelty, they never afford any lasting pleasure: witness the Fairy Queen, which with great power of expression, variety of images, and melody of verification, is scarce ever read a second time.

In the fourth place, the comparison carried on in a simile, being in a metaphor funk by imagining the principal subject to be that very thing which it only resembles; an opportunity is furnished to describe it in terms taken strictly or literally with respect to its imagined nature. This suggests another rule. That in con- structing a metaphor, the writer ought to make use of such words only as are applicable literally to the imagined nature of his subject: figurative words ought carefully to be avoided; for such complicated figures, instead of setting the principal subject in a strong light, involve it in a cloud, and it is well if the reader, without rejecting by the lump, endeavour patiently to gather the plain meaning, regardless of the figures:

A stubborn and unconquerable flame Creeps in his veins, and drinks the streams of life. Lady Jane Gray, Act i. Sc. 1.

Copied from Ovid,
Sorbent avida precordia flamme. Metamorph. lib. ix. 172.

Let us analyse this expression. That a fever may be imagined a flame, we admit; though more than one step is necessary to come at the resemblance: a fever, by heating the body, resembles fire; and it is no stretch to imagine a fever to be a fire: again, by a figure of speech,
In the last place, It is still worse to jumble together Metaphor. metaphorical and natural expression, so as that the period must be understood in part metaphorically; in part literally; for the imagination cannot follow with sufficient ease changes so sudden and unprepared: a metaphor begun and not carried on, hath no beauty; and instead of light, there is nothing but obscurity and confusion. Instances of such incorrect composition are without number: we shall, for a specimen, select a few from different authors Speaking of Britain.

This precious stone set in the sea,
Which serves it in the office of a wall,
Or as a most defensive to a house
Against the envy of less happier lands.

Richard II. alt ii. fc. 1.

In the first line Britain is figured to be a precious stone: in the following line, Britain, divested of her metaphorical dress, is presented to the reader in her natural appearance.

These growing feathers pluck'd from Cæsar's wing,
Will make him fly an ordinary pitch.
Who else would soar above the view of men,
An eep us all in servile fearfulness.

Julius Cæsar, alt i. fc. 1.

Rebus angustis animofus atque
Fortis appare: sapienter idem
Contrahes vento nimium fæcit
Turgida vela. Hor.

The following is a miserable jumble of expressions, arising from an unsteady view of the subject, between its figurative and natural appearance:

But now from gathering clouds destruction pours,
Which ruins with mad rage our halecyon hours;
Mists from black jealousies the tempest form,
Whilist late divisions reinforce the storm.

Dipsanary, canto iii.

To thee the world its pleasant homage pays,
The harvest early, but mature the praife.

Oui, fa pudeur ne'lt que franche grimace,
Qu'une ombre de vertu qui garde mal la place,
Et qui s'evanouit, comme l'on peut favoir,
Aux rayons du soleil qu'une bourse vait voir.

Moïsés, L'Écoutez, Alt iii. fc. 2.

Et fon feu, de pourvù de fêne et de lecture,
S'etcin à chaque pas, faut de nourriture.

Boileau, L'art poetique, chant. iii. 1. 319.

Dryden, in his dedication of the translation of Juvenal, says, “When thus, as I may say, before the use of the loadstone, or knowledge of the compass, I was failing in a vast ocean, without other help than the pole-star of the ancients, and the rules of the French stage among the moderns, &c.”

“ There is a time when factions, by the vehementness of their own fermentation, fain and dilty another.”

Bolingbroke.

This fault of jumbling the figure and plain expression into one confused mass, is not less common in allegory than in metaphor.

Take
M E T

Metaphor. Take the following examples:

Mutatofque Deus flebi, et alpera
Nigris aequor vaentis
Embratur insidens,
Qui nunc te fructus credulas aurei:
Qui semper vacuum, semper amabilis
Sperat, necus aure
Fullacis.

Pour moi sur cette mer, qu'ici nous courrons,
Je foupe à pourvoir d'équip et d'avirons,
A regler mes desires, à prévenir Perige,
Li fauver, s'il se peut, ma Raizon du mafrage.

Baldeus, epître 5.

Lord Halifax, speaking of the ancient fabulists: "They (says he) wrote in figns, and spoke in parables; all their fabbles carry a double meaning: the story is one, and entire; the characters the fame throughout; not broken or changed, and always conformable to the nature of the creature they introduce. They never tell you, that the dog which flapped at a shadow, lost his troop of hawks; that would be unintelligible. This is his (Dryden's) new way of telling a story, and confounding the moral and the fable together." After insinuating from the hind and panther, he goes on thus: "What relation has the hind to our Saviour? or what notion have we of a panther's Bible? If you say he means the church, how does the church feed on lawns, or range in the forest? Let it be a church, or always a clavser-footed beast; for we cannot bear his flattering the feme every line."

A few words more upon allegory. Nothing gives greater pleasure than this figure, when the representative subject bears a strong analogy, in all its circumstances, to that which is represented: but the choice is seldom fo lucky; the analogy being generally fo faint and obscure, as to puzzle and not please. An allegory is still more difficult in painting than in poetry: the former can show no resemblance but what appears to the eye; the latter hath many other resources for showing the resemblance. And therefore, with respect to what the Abbé du Bos terms mix allegorical compositions, these may do in poetry; because, in writing, the allegory can easily be distinguished from the historical part: no perfon, for example, mistakes Virgil's Fame for a real being. But such a mixture in a picture is intolerable; because in a picture the objects must appear all of the fame kind, wholly real or wholly emblematical. For this reason, the history of Mary de Medicis, in the palace of Luxembourg, painted by Rubens, is unpleasant by a perpetual jumble of real and allegorical personages, which produce a discordance of parts, and an obscurity upon the whole: witness, in particular, the tableau representing the arrival of Mary de Medicis at Marfelles; where, together with the real personages, the Nereids and Tritons appear founding their shells: such a mixture of fiction and reality in the feme group, is strangely absurd. The picture of Alexander and Roxana, described by Lucian, is gay and fanciful; but it fuffers by the allegorical figures. It is not in the wit of man to invent an allegorical representation deviating farther from any shadow of resemblance, than one exhibited by Louis' XIV. anno 1654; in which an enormous chariot, intended to represent that of the fun, is dragged along, surrounded with men and women, representing the four ages of the world, the celestial signs, the ladons, the hours, &c. a monftrous composition and yet fcarce more absurd than Guido's tableau of Aurora.

In an allegory, as well as in a metaphor, terms ought to be chosen that properly and literally are applicable to the representative subject: nor ought any circumstance to be added that is not proper to the representative subject, however subtly it may be applicable properly or figuratively to the principal. The following allegory is therefore faulty:

Ferus et Cupido,
Semper ardentes aecus sagittas
Cote cruelis.

Cote cruelis. Horat. lib. II. ode 8.

For though blood may suggest the cruelty of love, it is an improper or immaterial circumstance in the representative subject: water, not blood, is proper for a whetstone.

We proceed to the next head, which is to examine in what circumstances these figures are proper, in what improper. This inquiry is not altogether superfluous by what is said upon the fame subject in the article Comparison; because upon trial, it will be found that a short metaphor or allegory may be proper, where a simile, drawn out to a greater length, and in its nature more solemn, would scarce be refihed.

And, in the first place, a metaphor, like a simile, is excluded from common conversation, and from the decription of ordinary incidents. Secondly, in expressing any severe passion that totally occupies the mind, metaphor is unnatural.

The following example, of deep, despair, beside the highly figurative style, has more the air of raving than of senfe:

Califia. Is it the voice of thunder, or my father?
Madness? confusion! let the storm come on,
Let the tumultuous roar drive all upon me,
Daft my devoted bark; ye fanges, break it;
'Tis for my ruin that the tempest riles.
When I am left, funk to the bottom low,
Peace shall return, and all be calm again.

Fair Penitent, act 5.

The following metaphor is sweet and lively; but it fuits not the fiery temper of Chamont, inflamed with passion: parables are not the language of wrath venting itself without restraint:

Chamont. You took her up a little tender flow'r,
Just sprouted on a bank, which the next frost
Had nipp'd; and with a careful loving hand,
Transplanted her into your own fair garden,
Where the fun always shines; there long the flourifh'd,
Grew sweet to fens, and lovely to the eye;
Till at the laft a cruel robber came,
Cropp this fair roe, and rife all its sweetness,
Then call it like a loathfome weed away.

The following speech, full of imagery, is not natural in grief and dejection of mind.

Guelfes. O my fon! from the blind dotage
Of a father's fondnefs thee ill's arose.
For thou! I've been ambitious, base, and bloody:

For
METAPHYSICS

Definition. Metaphysics has been defined, by a writer deeply read in the ancient philosophy, "The science of the principles and causes of all things existing." This definition, we think, extremely proper: and hence it is, that ontology, the followers of Aristotle were led by their master, who, to the books in which he pretends to elevate the mind above things corporeal to the contemplation of God and things spiritual, prefixed the Greeks words μετα τε φυσικα (A).

The science of Metaphysics has been divided, as Division according to the objects which it considers, into fix principal parts which are called. 1. Ontology; 2. Cosmology; 3. Anthroposophy; 4. Psychology; 5. Pneumatology; and, 6. Metaphysical theology.

1. That part of the science which is named ontology, investigates and explains the nature and essence of all beings, as well as qualities the and attributes that essentially appertain to them. Hence it has been said that ontology should proceed in its operations from the most simple ideas such as do not admit of any other qualities of which they may be compounded. These simple ideas are of being, of essence, of substance, of mode, of existence as well with regard to time as place, of a necessary cause of unity; the idea of negation; the difference between a being that is simple or compound, necessary or accidental, finite or infinite; the ideas of essential and abstract properties, such as of the greatness, perfection, and goodness of beings, &c. The business therefore of ontology, is to make us acquainted with every kind of being in its nature and essential qualities, which distinguish it from all other beings. This knowledge being once established on simple principles, just consequences may thence be drawn, and those things proved after which the metaphysician enquires,

(À) TINN METÁ TÀ PHÝSKA. Cujus inscriptionis hæc ratio eft, quod in hoc opera ea tradantur quorum theoria posterior est doctrina naturalis solummodo quod nos, qui a corporum cognitione rerumque caducarum in subsistens et immaterialium atque immortalmium contemplationem provehimus.

5. The fifth part of metaphysics is

\[\text{Divisions of} \]

Metaphysics. It is easy to conceive, that even a clear knowledge of beings, and their essential properties, would be full deductible and useless to man, if he did not know how to determine and fix his ideas by proper denominations, and consequently to communicate his perceptions to those whom he would instruct, or against whom he is obliged to dispute. To render our ideas therefore intelligible to others, we must have determine words or denominations for each being, and the qualities of each being; and ontology teaches us those terms which are so necessary to fix our ideas, and to give them the requisite perspicuity and precision, that when we endeavour to extend the sphere of our knowledge, we may not waste our time in disputing about words.

2. Metaphysics, having, in so solid a manner as possible, explained and established the principles above mentioned, continues its enquiries to the second part, which is called **Cosmology**, and examines into the essence of the world and all that it contains, its eternal laws; of the nature of matter; of motion; of the nature of tangible bodies, their attributes and adjuncts; and of all that can be known by reasoning and experience. It is also in cosmology that the metaphysicians of this school examine the Leibnitzian system; that is, whether God, in creating the world, must necessarily have created the best world; and if this world be so in fact. In this manner they pursue the argument, from consequence to consequence, to its last reftort, frequently with very little advantage to truth and science.

3. Anthropology, or the knowledge of man, forms the third branch of metaphysics. It is subdivided into two parts. The first, which consists in the knowledge of the exterior parts of the human frame, belongs not to this science, but to Anatomy and Physiology. The business of the metaphysician is here to ascertain the nature of those powers by which all the motions essential to life are produced; and to discover, if possible, whether they be corporeal or spiritual. This inquiry leads at the same time to

4. **Psychology**; which consists in the knowledge of the intellectual soul in particular; concerning which, the most profound, the most subtle, and most abstract researches, have been made that human reason is capable of; and concerning the subsistence of which, in spite of all these efforts, it is yet extremely difficult to support any positive opinion with conclusive or probable arguments.

5. The fifth part of metaphysics is called **pneumatology**. By this term, which has not been long in use, metaphysicians mean the knowledge of all spirits, angels, &c. It is easy to conceive what infinite art is necessary to give an account of that, of which nothing positive can ever be known in the present state of human existence. But the metaphysician of this school readily offers to show us, "what is the idea of a spirit; the effective existence of a spirit, what are its general qualities and properties; that there are rational spirits, and that these rational spirits have qualities that are founded in the moral attributes of God;" for this is in so many words what is attempted to be taught in pneumatology.

6. **Metaphysical theology**, which Leibnitz and some others call **theology**, is the sixth and last branch of the science of metaphysics. It teaches us the knowledge of the essence of God, to make the most rational suppositions concerning his divine essence, and to form a just idea of his attributes and perfections, and to demonstrate them by abstract reasoning. Theodicy differs from natural theology, in as much as this last borrows, in fact, from theodicy proofs and demonstrations to confirm the essence of a supreme Being: but after having solidly established that great truth, by extending its consequences natural theology teaches us what are the relations and connections that subsist between the supreme Being and men, and what are the duties which result from those relations.

We have briefly mentioned these divisions of the science, because they were once prevalent in the Ion schools. The greater part of them, however, appears to us to be not only superfluous, but such as can serve no other purpose than to perplex the mind. The only beings of which we know anything are mind and body; and we have no reason to think that there are any other beings in the universe. Of bodies indeed there are various kinds, endowed with different properties: and it is extremely probable, that of minds endowed with different powers, the variety may be equally great. Our own minds we know to be united in one system with bodies by which they perform all their operations; and we can demonstrate that there is another Mind, which is independent of all body, and is the cause of all things. Between these there may be numberless orders of minds; but their energies are wholly unknown to us, and therefore they can never become the objects of science.

Mind and body therefore, i.e. the minds and bodies which we know to exist, together with their powers and properties, essential and accidental, can alone be the subjects of rational inquiry. We may inquire into the essence of mind and the essence of body, and endeavour to ascertain in what respects they differ. We may examine the nature of different bodies, in order to discover whether all bodies, however modified, have not something in common; and we may consider the properties, relations, and adjuncts of bodies, and endeavour to distinguish those which are accidental from such as appear to be so necessary that without them body itself could not exist. Of minds we cannot make the same comparison. In this part of the science we have not sufficient data for an accurate and complete induction; we can only examine the powers of our own mind; and by probable analogy make some estimate of the powers of superior minds, as observation will help us to guess at the powers of those which are placed beneath us in the scale of existence.

If this be so, Cosmology, as distinguished from Ontology, cannot properly be a branch of Metaphysics. For if mind and body, with their several powers, properties, and adjuncts, compose the universe, it is obvious, that when we have ascertained, as well as we are able to ascertain, the essence of mind and the essence of body, together with the powers and properties of each, and have traced them all to the first cause, we have done every thing in the science of the universe, if we may use the expression, which belongs...
METAPHYSICS.

Division of the science of the metaphysician. The particular laws of motion on the earth and in the planetary system belong to the natural philosopher and astronomer.

In like manner, Anthroposophy, Psychology, and Pneumatics, if they be not words expressive of distinctions where there is no difference, seem to be at least very needlessly disjoined from each other. Of the nature of spirits we can know nothing but from contemplating the powers of our own minds; and the body of man is in the province, not of the metaphysician, but of the anatomist and physiologist. Anthroposophy, psychology, and pneumatics, if they be used to denote our knowledge of all minds except the Supreme, are words of the same import; for of no created minds except our own can we acquire such knowledge as deserves the name of science.

Ontology has sometimes been defined the science of being in the abstract; but in the course of our inquiries it will be seen, that being in the abstract is a phrase without meaning. Considered as the science of real beings and their properties, Ontology is a very significant word, of the same import with Metaphysics, comprehending in itself the knowledge of the nature of all things existing. Or if it be thought proper to make a distinction between ontology and theology, the former branch of the science will teach the knowledge of body and created minds, whilst it is the province of the latter to demonstrate the existence and attributes of that mind which is uncreated.

Body and mind therefore, with their properties, adjuncts, and powers, comprehend the whole subject of the science of metaphysics; and as we are earlier acquainted with body than with mind, the natural order of conducting our inquiries seems to be, to begin with the former, and thence proceed to the latter. It is however obvious, that if we would pursue these inquiries with any hopes of success, we must first trace human knowledge from its source, ascertain the nature of truth, and know what kind of evidence on each topic to be treated to guard against\. In this view of the science, metaphysics appears to be divided into three parts; the first treating of human understanding; the second, of body with its adjuncts; and the third, of mind with its powers.

Previous to the entering upon such inquiries, some philosophers of great merit have lately thought it expedient to explain the terms which they should have occasion to use. Their conduct is judicious and worthy of imitation; for the objects of metaphysics being, for the most part, such as fall not under the cognizance of the senses, are liable to be differently apprehended by different men, if the meanings of the words by which they are expressed be not ascertained with the utmost precision. We intend, however, to use very few words but in the common acceptation; and we therefore hope, that as terms of science are explained under different words in the Dictionary, to which references are made, we have little or no occasion for dwelling the article by previous definitions. There are indeed two words which have given rise to much useless disputation, which yet cannot be banished from speculative philosophy, and which it will therefore be proper here to define. The words, to which we allude are idea and notion. These are very generally considered as synonymous; but we think that much loquacity might have been avoided by assigning to each a determinate signification. We know not any philosopher who made much use of the word idea before Plato; but with his mysterious doctrines concerning ideas we have here nothing to do; our present business is to ascertain the precise meaning of the word, which is evidently derived from idea to see, as the word notion is from "noscere, novi, notum," and that from νοστης, to know or understand. In the original sense of the two words, therefore, notion is more comprehensive than idea, because we know many things which cannot be seen. We have not a doubt, but that at first the word idea was employed to denote only those forms of external objects which men contemplate in their imaginations, and which are originally received through the fente of faith. Its signification was afterwards extended to the relics of every sensation, of touch, taste, sound, and smell, as well as of sight; and at last it was confounded with notion, which denotes the mental apprehension of whatever may be known. In our use of the word idea, except when we quote from others, we shall employ only to denote that appearance which abides objects of sense make in the memory or imagination (A); and by the word notion we shall denote our apprehension or knowledge of spirits, and all such things as, though they be the objects of science, cannot be perceived by the external senses. Having said this, we proceed to our inquiries, beginning with that into human understanding.

(a) In thus restricting the meaning of the word idea, we have the honour to agree with the great English Lexicographer.—"He was particularly indignant against the almost universal use of the word idea in the sense of notion or opinion, when it is clear that idea can only signify something of which an image may be formed in the mind. We may have an idea or image of a mountain, a tree, or a building; but we cannot surely have an idea or image of an argument or proposition. Yet we hear the fages of the law delivering their ideas upon the question under consideration; and the first speakers in parliament entirely coinciding in the idea, which has been so ably stated by an honourable member; or representing an idea as unconstitutional, and fraught with the most dangerous consequences to a great and free country. This Johnson called modern cant." Defoe's Life of Johnson.
METAPHYSICS.

PART I. OF HUMAN UNDERSTANDING.

Preliminary Observations on the Origin of our Ideas and Notions.

THAT the mind of man has no innate ideas or notions, but comes into the world ignorant of everything, is a truth which since the days of Locke has been very little disputed. In the first book of his Essay on the Human Understanding, that acute philosopher has demonstrated, that the rudiments or first principles of all our knowledge are communicated to us by sensation; and he has compared the mind previous to the operation of external objects upon the senses, to a tabula rasa or sheet of white paper. To repeat his arguments would dwell the article to no purpose. There is not a man capable of attending to his own ideas, who can entertain a doubt in what manner he received them. Without the sense of sight, we could never have known colours; nor found without hearing; nor hardness, softness, smoothness, pain, or bodily pleasure, without touch; nor odours, without smell, &c.

Self-evident as these facts are, objections have been started to the inferences drawn from them; and Locke has been accused of advancing principles subversive of all distinction between truth and falsehood, and favourable of course to universal scepticism. — "The first book of his Essay, which with sublimity (says Dr Beattie) I think the worst, tends to establish this dangerous doctrine, that the human mind, previous to education and habit, is as susceptible of one impression as of another: a doctrine which, if true, would go near to prove that truth and virtue are no better than human contrivances; or at least that they have nothing permanent in their nature, or may be as changeable as the inclinations and capacities of men; and that there is no such thing as common sense in the world. Surely this is not the doctrine which Mr Locke meant to establish." We are so thoroughly satisfied that it is not, that we cannot help wondering how such inferences could, by a man of learning, genius, and candour, be drawn from any thing which is to be found in the Essay on the Human Understanding.

But the Doctor thinks Mr Locke's "simile of the mind to white paper one of the most unlucky allusions that could have been chosen; because the human soul, when it begins to think, is not extended, nor of a white colour, nor incapable of energy, nor wholly unfurnished with ideas, nor as susceptible of one impression or character as of any other." and it has been observed by another objector, that "on a sheet of white paper you may write that sugar is bitter; wormwood sweet; fire and frost in every degree pleasing and wearable; that compassion and gratitude are base; treachery, falsehood, and envy, noble; and that contempt is indifferent to us." All this is true; but we apprehend it is not to the purpose. Mr Locke has no where expressed himself in such a manner as to lead us to suppose that he believed the soul to be extended or coloured; or, when it begins to think, incapable of energy, and wholly unfurnished with ideas; but he certainly did believe, that it begins not to think the first infant of its existence, and that it acquires all the ideas of which it is ever possessed. We may undoubtedly write upon a piece of white paper that sugar is bitter, and that wormwood is sweet; but how the capacity of paper to receive the symbols of false propositions should make Mr Locke's comparison improper or dangerous, we cannot comprehend. Mr Uther indeed says, that it is improper on this account, "that no human art or industry is able to produce impressions upon the mind in respect of them, the mind discovers not a passive capacity, but refits them with the force of fate." Does it indeed? does the mind reject the idea of sugar or of bitterness, of contempt or of indifference? May not any man have the idea of sugar and at the same time the idea of bitterness, and compare the one with the other in his mind, as well as the word sugar may be written beside the word bitter, and connected with it on the same piece of paper? In all this we perceive nothing that is impossible or even difficult. The mind cannot indeed be made so to feel that sugar has the same taste with wormwood; but who ever thought that it could? Not Mr Locke, we shall be bold to say; nor does his simile give the smallest countenance to such an absurdity. The author of the Essay on the Human Understanding understood his subject too well to imagine that either truth or falsehood could be communicated to paper, or that paper is capable of comparing ideas. Paper is capable of receiving nothing but lines or figures; and it passively receives whatever lines or figures we may choose to inscribe on it; yet if a pen be carried over it in a circular direction, the figure impressed will not be a square, just as, to the mind of one eating sugar, the taste communicated is not that of wormwood.

On a piece of paper a circle may be described, and close beside it a square: in like manner an agreeable sensation may be communicated to the mind, and immediately afterwards a sensation that is disagreeable. These two sensations, or the ideas which they leave behind them, may be compared together; and it is certainly true that no art or industry can make them appear similar in the mind: but is it not equally true, that no art or industry can make the circle and the square similar on the paper? The paper is susceptible of any fort of plain figures, and the mind is equally susceptible of any fort of ideas or sensations; but figures dissimilar cannot be made to coincide, neither can discordant ideas be made to agree. Again, one may write upon paper, that "a circle is a square," and likewise that a "circle is not a square," and both these propositions may be communicated to the mind by the organs of sight or of hearing. The paper receives the words expressive of the false as well as those expressive of the true proposition; and the mind receives the ideas and relations signified by the one cluster of words as well as those signified by the other: but in the mind the idea of a square is different from that of a circle, and on the paper the figure of a square is different from the figure of a circle. The great difference between the mind and the paper is, that the former is conscious of its ideas, and perceives their agreement or disagreement; whereas the paper is not conscious of
M E T A P H Y S I C S.

Part I.

Although the knowledge which we acquire from the ideas and notions be of equal importance and perhaps of greater certainty than that which we receive through the medium of the senses, it comes into the mind at a much later period; both because it is impossible that the faculties of the mind should operate without materials, and because it is much more difficult to attend to these operations even while they are going on, than to the objects of sense which solicit our attention. It is for this reason pretty late before children have any notions whatever of the operations of their own minds; and of the greater part of these operations the bulk of mankind have no clear or accurate notions during their whole lives. On the other hand, every human being is so surrounded with bodies, which perpetually and variously affect his senses, that a variety of sensible ideas force an entrance even into the minds of children. In order therefore to trace the procedure of the understanding, and to ascertain the extent and limits of human knowledge, it should seem that we must begin with considering the external senses, that we may discover the manner in which we receive knowledge by means of them, the objects of that knowledge, and its certainty. It is to be observed, however, that though we consider the mind as possessed of many powers or faculties, and inquire first into the nature of that faculty which we conceive to be first exercised, this is done merely for the sake of proceeding in our subject with method and perspicuity. The mind is one simple and undivided being; and in every mental energy it is the whole mind, and not any part or portion of it, that is energetic. On this account, it is impossible to explain even the nature of sensation and perception to him who knows not what is meant by will and understanding: but to every one who is acquainted with the common import of these words, and who has read the flux & systém of LOGIC inferred in this Work, we hope that our theory of perception will be intelligible and convincing.

CHAP. I. Of Sensation and Perception.

SECT. I. Of Sensation.

The Supreme Being, who made us and placed us in this world, has given us such powers of mind as by five or he faw to be suited to our state and rank in his creation. He has given us the power of perceiving many objects around us; but that power is limited in various ways, and particularly in this, that without the organs of the several senses we perceive no external object. The senses, as every one knows, are five in number, and each communicates its proper sensation. It is by the eyes alone that we see, by the ears that we hear, by the nose that we smell, and by the tongue and palate that we taste; the sense of feeling or touch is spread over the whole body, for we feel equally by our hands and by our feet, &c. To the powers of perception by the senses it is necessary not only that we have all the organs enumerated, but that we have them also in a sound and natural state. There are many disorders of the eye which cause total blindness, as well as others which impair without destroying the power of vision. The same thing is true of the organs of all the other senses.

All this is so well known from experience, that it needs no proof; but it may be worth while to observe, that
that it is known from experience only. For any thing that we know to the contrary, our Creator might have endowed us with the power of perception by a thousand organs of sense, all different from those which we possess; and it is certain that he himself perceives every thing more perfectly than we do without the aid of such organs. For it is to be observed, that the organs of sense are different from the being which is sentient; that it is not the eye which sees, the ear which hears, the nose which smells, the tongue which tastes, nor any part of the body which feels: and that it is by experience that we learn to associate our several sensations with those organs upon which the impressions are made.

It is, however, certain that we receive no sensation from external objects, unless when some impression is made upon the organ of sense, either by the immediate application of the object itself, or by some medium which palies between the object and the sensor. In two of our senses, viz. touch and taste, there must be an immediate application of the object to the organ. In the other three the sensation is occasioned by the impression of some medium passing from the object to the organ. The effluvia of bodies drawn into the nostrils, with the breath, are the medium of smell; the undulations of the air are the medium of hearing; and the rays of light passing from visible objects to the eye are the medium of sight. These are facts known from experience to hold universally both in men and in brutes.

The brain and nerves necessary to sensation. The proof of these impressions upon the nerves and brain in sensation is this, that from many observations and experiments it is found, that when the organ of any sense is perfectly found, and has the impression made upon it by the object ever so strongly, yet if the nerve which serves that organ be cut or tied hard, there is no sensation, and it is well known that divers in the brain deprive us of sensation, while both the organ and its nerve are sound. There is sufficient reason, therefore, to conclude, that in sensation the object produces some change in the organ; that from the organ the change proceeds to the nerve, and from the nerve to the brain. Hence it is that we have positive sensations from negative objects, or mere non-entities, such as darkness, blackness, and vacancy. For, if sensation results from changes in the brain whatever produces any change must of course

(c) Another eminent writer thinks on this subject very differently, and in our opinion much more judiciously.

"Suppose (says Dr Reid) a person who never had this sense (viz. smell) before, to receive it all at once, and to smell a rose; can he perceive any similitude or agreement between the smell and the rose? or indeed between it and any other object whatever? Certainly he cannot. He finds himself affected in a new way, he knows not why, or from what cause. He is conscious that he is not the cause of it himself; but he cannot from the nature of the thing determine whether it is caused by body or spirit; by something near, or by something at a distance. He cannot give it a place any more than he can give a place to melancholy or joy; nor can he conceive it to have any existence but when it is smelled."

Inquiry into the Human Mind, ch. 2. f. 52. 2.
course occasion a new sensation: but it is obvious, that the mere absence of any impression, by the removal of the object which produced it, must as necessarily cause a change in the organ, nerves, and brain, as the presence of a new impression from a new object. To these changes, or that which immediately produces them, we give the name of impressions; because we know not how, in a general manner, to express more properly any change produced by an external cause, without specifying the nature of that cause. Whether it be prejudice, or attraction, or repulsion, or vibration, or something unknown, for which we have no name, still it may be called an impression.

Sir Isaac Newton was perhaps the first who supposed that the rays of light falling upon the bottom of the eye excite vibrations in the retina; and that those vibrations being propagated along the solid fibres of the optic nerves into the brain, cause the actual sensation of seeing. This hypothesis was adopted by Dr Hartley, applied to the other senses, and shewn to be at least as probable as any which has yet been invented to account for the perception of external objects by means of the organs of sense. Be this as it may, experience informs us, that whatever be the nature of those impressions and changes which are made by external objects upon the senses, nerves, and brain, we have without them no actual sensation, and of course perceive nothing ab extra. Hence it has been supposed, that the mind is wholly passive in sensation, and that sensation is necessarily produced by those impressions. But this we believe to be a mistake. Every man who has been attentive to his own thoughts and actions, must know instances of impressions having been certainly made upon his organs of sense without producing any sensation, or suggesting to his mind the perception of the particular objects by which the impressions were caused. His whole mind is intensely employed in any particular pursuit, may have his eyes open upon an object which he does not see; or he may not hear the sound of a clock striking within two yards of him; Nay, we will venture to affirm, that there is hardly one reader of this article who has not in such absences of sensation have not often occurred. Now, as there is no reason to suppose, that in the one case the undulations of the air, caused by the striking of the clock did not reach his ears, or that in the other the rays of light, reflected from the object, did not fall upon his eyes, which are open to receive them; the only reason which can be assigned for his not having, in these instances, had audible and visible sensations, is, that his mind was so engaged in something else as not to pay to the vibrations in his brain that attention, if we may so say, without which impressions ab extra can produce no sensation. There are, indeed, some impressions on the organs of sense so violent and so sudden, as to force themselves upon the mind however employed. Such are those made on the ear by thunder, and on the eye by strong light. In these cases, sensation is involuntary and unavoidable; whence we conclude, not that in such instances the mind is passive or defective of energy, but that by the violent agitation given to the brain, it isroufed from its reverie, and compelled to give attention. It appears, therefore, that in sensation the mind exerts some kind of energy; for in nothing but in the sentient being itself can we seek for the cause why, when all external circumstances are the same, organical impressions sometimes produce sensations and sometimes not; and that cause can only be the energy of the mind: what kind of energy, we pretend not to say.

Sect. II. Of Perception by the Senses.

How the correspondence is carried on between the thinking principle within us and the material world without us, has always, as Dr Reid observes, been found a very difficult problem to those philosophers who consider themselves as obliged to account for every phenomenon in nature. It is, indeed, a problem of which we expect not to see a complete solution. A few steps beyond the vulgar we may certainly go; but the nature of that connection by which the mind and body are united, will probably remain for ever unknown. One question, however, which has employed much of the attention of philosophers, both ancient and modern, appears to be not wholly unanswerable. It is, Whether by means of our senses we perceive external objects meditatedly or immediately; or in other words, Whether sensation and perception be one and the same thing, or two things succeeding each other? On this subject, till of late, there appeared to have been in the main a great uniformity in the sentiments of philosophers notwithstanding their variations respecting particular points. Of some of the most eminent of them, we shall give the opinions as we find them collected by one * who is well acquainted with their writings, who is thoroughly qualified to estimate their respective merits, and who cannot be suspected of partiality to that theory, which we feel is the most in accordance with our own views.

* Dr Reid in his *Inquiries into the Human Mind*.

Plato illustrates our manner of perceiving external objects thus: He supposes a dark subterraneous cave, in which men lie bound in such a manner as that they can direct their eyes only to one part of the cave. Far behind there is a light, of which some rays come over a wall to that part of the cave which is before the eyes of our prisoners. A number of men variously employed pass between them and the light, whose shadows are seen by the prisoners, but not their persons themselves. In this manner did that philosopher conceive, that by our senses we perceive not things themselves, but only the shadows of things; and he seems to have borrowed his notions on this subject from the disciples of Pythagoras.

"If we make due allowance for Plato's allegorical of Aristo
genius, his sentiments with respect to sensation and sense; perception correspond very well with those of the Peripatetics. Aristotle, the founder of that school, seems to have thought, that the soul consists of two or three parts, or rather that we have three souls—the vegetable, the animal, and the rational. The animal soul he held to be a certain form of the body, which is inseparable from it, and perishes at death. To this soul the senses belong; and he defines a sense to be that which is capable of receiving the sensible forms, or species of objects, without any of the matter of them; as wax receives the form of the seal without any of its matter. Of this doctrine it seems to be a necessary consequence, that bodies are constantly sending forth, in all directions, as many different kinds of forms without matter as they have different sensible qualities. This was according-
Part I.

of Perception.

Of Des Cartes:

"After Aristotle had kept possession of the schools for more than a thousand years, his authority, which had often supplied the place of argument was called in question by Lord Bacon and others. Des Cartes, however, was the first philosopher who, convinced of the defects of the prevailing system, attempted to form another entirely new: but on the nature of perception by means of the senses he differs little or nothing from those who had preceded him in that department of science. He denies, indeed, and refutes by solid reasoning, the doctrine which maintains that images, species, or forms of external objects, come from the objects themselves, and enter into the mind by the avenues of the senses. But he takes it for granted, as sight, and the ideas of them immediately or immediately upon the organs of sense, and secure with those which are clearer, and thus we come by those ideas to Des Cartes, is not the same as it to the brain or seat of the soul and body, in which they represent, any more than that words and signs should resemble the things which they signify.

"According to this system it would appear, that we perceive not external objects directly by means of our senses, but that those objects, operating either mediately or immediately upon the organs of sense, and they again upon our nerves and brain, excite in the mind certain sensations; whence we infer the existence of external objects from our sensations of which they are the causes. Perception of external objects, therefore, according to Des Cartes, is not one simple original act of the mind, but may be resolved into a process of reasoning from effects to causes."

Of Malebranche:

The doctrines of Malebranche, Locke, and Hartley respecting perception, differ not essentially from that of Des Cartes. Malebranche, indeed, supposes, that external objects are not themselves the causes of perception; but that the Deity, being always present to our minds more intimately than any other being, does, upon occasion of the impriptions made upon our organs of sense, discover to us, as far as he thinks proper, and according to fixed laws, his own ideas of the object: and thus, according to him, we see all things in God, or in the divine ideas. He agrees, however, with Des Cartes and the ancient philosophers, in considering it as a truth which it is impossible to question, that we perceive not the objects without us, the sun, moon, and stars, &c. because it is not likely that the soul falls out of the body, and takes a walk, as it were, through the heavens to contemplate those objects. She sees them not therefore by themselves; and the immediate object of the mind, when it sees the sun, is not the sun itself, but something which is intimately united to the mind, and is that which he calls an idea.

Locke speaking of the reality of our knowledge, Of Locke, says: "It is evident the mind knows not things immediately, but only by the intervention of the idea it has of them." Our knowledge, therefore, according to him, is real only so far as there is a conformity between our ideas and the things which they represent. The manner of our perceiving external objects he illustrates by the following similitude: "Methinks the understanding is not much unlike a closet wholly shut from light, with only some little opening left, to let in external visible resemblances or ideas of things without. Would the pictures coming into such a dark room but stay there, and lie so orderly as to be found upon occasion, it would very much resemble the understanding of a man in reference to all objects of sight, and the ideas of them." He has elsewhere defined an idea thus: "Whatever the mind perceives in itself, or is the immediate object of perception, thought, or understanding, that I call an idea; and the power to produce any idea in my mind, I call perception."

This unguarded expression which affirms that ideas in the mind are the resemblances of external things, has brought upon Mr. Locke much unfounded ridicule. That on this and other occasions he uses the word idea with too great latitude, and that he often confounds ideas with sensations, and even with the causes of sensation, must be admitted by his warmest admirers: but we believe, that by an attentive reader, who peruses his whole work, and compares such passages as are objections to this method of thought, his meaning may always be discovered, and with respect to some confusion and perception will generally be found just. That by calling the ideas of primary qualities resemblances of the qualities themselves, he meant nothing more than that bodies in all possible states imitate the senses, nerves, and brain, in such a manner as to produce in the mind certain sensations: between which and those impressions there is an inseparable, though unknown, connection, is evident from the account which he gives of the manner of perception. "Our senses (says he), conversant about particular sensible objects, do convey into the mind several distinct perceptions of things, according to those various ways in which those objects affect them; and thus we come by those ideas as we have of yellow, white, hot, cold, sweet, bitter, sour, and all those which we call sensible qualities: which when I say the senses convey into the mind, I mean they from external objects convey into the mind what produces those perceptions." And as bodies can act only by impulse, he adds, that "those perceptions can be produced only by an impression made upon the senses, and some motion thereupon continued by our nerves to the brain or seat of perception."

Dr. Hartley was the pupil of Locke and Newton; of Religion, and has, in a more satisfactory manner than all who had
had preceded or have followed him, explained that nothing different from the mind can be perceived in the immediate act of sensation; but that the apparently immediate perception of external objects is an illusion of early and deep-rooted association.

In this sentiment Mr. Hume agrees with his predecessors; but he obscures his philosophy, and meanders his reader, by confounding sensations with the impressions from which they proceed. "Every one (says he) will allow, that there is a considerable difference between the perceptions of the mind, when a man feels the pain of excessive heat, or the pleasure of moderate warmth, and when he afterwards recalls to his memory this sensation or anticipates it by his imagination." The less forcible and lively of these perceptions he with great propriety calls ideas; but it is either through wilful perver[se]n[ess], or confusion of intellect, that he chooses to call the others impressions. Sensation and perception are caused by impressions; but they are no more impressions themselves, than the pain occasioned by the stroke of a bludgeon is the stroke itself, or the bludgeon with which it was struck. But more of this afterwards.

Thus far, then, that we perceive not external objects directly, but infer their existence from certain sensations excited in our minds by the operation of these objects upon our senses, nerves, and brain, seems to have been the opinion of every philosopher from Pythagoras to Mr. Hume. For an opinion so universal, and at the same time so contrary to the operation of the senses upon the exterior objects; why should it be rejected? But in this I am very certain of, that nothing can act directly upon bodies, nerves, or mind upon body (says he), I know not; but this is an evident fact: and therefore our mind can never perceive anything but its own proper modifications and the various states of the sensum to which it is present. So that it is not the external sun and moon, which are in the heavens, that our mind perceives, but only their image or representation impressed on the sensum. How the soul of a seeing man feels those images, or how it receives those ideas from such sensations in the sensum I know not; but I am sure it can never perceive the external bodies themselves to which it is not present.

This reasoning appears to have force; and perhaps, the unanimous agreement of thinking men in all ages has full greater force: yet the doctrine which prevailed so long, and which to Locke appeared so evident as to need no proof, has been lately called in question by some eminent philosophers of England; who, though they allow that we cannot perceive external objects but by means of the senses, yet affirm that they are the objects themselves which we perceive directly; and that in perception there is no association which can be resolved into a process of reasoning from sensations the effects, to external objects the causes. Dr. Reid, who was perhaps the first, and is unquestionably the ablest of this class of philosophers, has expressed himself on the subject as follows.

"If we attend to the act of our mind which we call the perception of external objects, we shall find it in these three things: first, Some conception or notion of the object perceived. Secondly, A strong and irresistible conviction and belief of its present existence. And, thirdly, That this conviction and belief are immediate, and not the effect of reasoning." To the first and second of these propositions, we are persuaded that Des Cartes and Locke would readily have assented; nor do I observe that they would have denied the third, had the author allowed that this strong and irresistible conviction is the consequence of an early and deep-rooted association resolvable into a process of reasoning. This, however, the learned professor does not allow; for he repeatedly affirms, that it is intuitive and original, and that the constitution of our power of perception determines us to hold the existence of what we distinctly perceive as a prior principle, from which other truths may be deduced, but it is deduced from no one.

With this view of the matter, he could with no propriety attempt to support his own opinion by argument but to the reasonings of Dr. Portefield and others in defence of the Cartesian theory, he replies in the following words: "That nothing can act immediately where it is not, I think must be admitted (d); for I agree with Sir Isaac Newton, that power without substance is inconceivable. It is a confe-
M E T A P H Y S I C S.

Part I.

Of Perception.

consequence of this, that nothing can be acted upon immediately where the agent is not present; let this, therefore, be granted. To make the reasoning conclusive, it is farther necessary, that when we perceive objects, either they act upon us, or we act upon them. This does not appear self-evident, nor have I ever met with any proof of it."

Of the profundity of Dr Reid's understanding, we have the most firm conviction; nor is there any metaphysician, ancient or modern, from whom we differ with greater reluctance: but we cannot help thinking this a very rash assertion, as his own works appear to us to afford complete proof, that, in perception, the mind both acts and is acted upon. Let us attend however to the reasons which, on this occasion, induce him to think that in perception there is no action either of the object on the mind or of the mind on the object.

"When we say, that one being acts upon another, we mean, that some power of force is exerted by the agent, which produces, or has a tendency to produce, a change in the thing acted upon. If this be the meaning of the phrase, as I conceive it is, there appears no reason for asserting, that in perception, either the object acts upon the mind or the mind upon the object. An object, in being perceived, does not act at all. I perceive the walls of the room where I sit; but they are perfectly inactive, and therefore not apt upon the mind. To be perceived, is what logicians call an external denomination, which implies neither action nor quality in the object perceived."

This last sentence we pretend not to understand. Substance without qualities is to us inconceivable, and certainly is no object of perception; for Dr Reid himself has told us, and told us truly, that "the objects of perception are the various qualities of bodies." That an object in being perceived does not act at all, is directly contrary to what the ingenious author has taught us, both in his Inquiry and in his Essays, viz. that "it is a law of our nature that we perceive not external objects, unless certain impreisions be made by the object upon the organ, and by means of the organ upon the nerves and brain." For if the external object in being perceived make impressions, it is certainly not true that it acts not at all. It is indeed readily acknowledged, that when one perceives the walls of the room where he sits, these walls do not act immediately upon the organs of sight; but it does not, therefore, follow that they are perfectly inactive: for it is known to all mankind, that from every point of the wall which is seen, rays of light are reflected to the eye; that those rays make upon the retina tonica an impression, which is conveyed by the optic nerve to the brain; and that this impression on the brain is one of the immediate causes of vision. In what particular manner it causes vision, we shall never be able to discover, till we know more of the laws which unite mind and body, and by which one of these is qualified to act upon the other; but because we know not the manner of this operation, to affirm that there is no operation at all, seems to be as absurd as it would be to affirm, because we perceive no necessary connection between a stroke and the sensation of sound, that the sound of a musical string is not caused by the stroke of a plunger. That God might have given us powers of perception of a different kind from those which we possess, there can be no doubt; but with what we might have been, we have no concern. As we are, we know perfectly that the eye is an instrument of vision, because without it nothing can be seen; we know also, that the retina and optic nerves are equally necessary; because if they be disorder'd, vision is still wanting; we know likewise, that the brain is necessary to all perception; because when it is disordered, thinking either entirely ceases or is proportionally disturbed. And, lastly, we are not more certain of our own existence, than that actual perception takes not place but when the object makes an impression upon some organ of sense: for when no rays of light fall upon the eye, we see nothing; when no rapid body is applied to the tongue and palate, we taste nothing; and if we could be removed from every thing solid, we would feel nothing. These are conclusions which cannot be controverted. They are admitted equally by the philosopher and by the plain unlettered man of common sense; nor are they rendered one whit less certain by our not being able to go a step farther, so as to discover in what manner the brain or the affections of it can be the immediate instrument of sensation and perception. For (as Dr Reid, in the spirit of true philosophy, observes) "in all inquiry the operations of mind, as well as in those of bodies, into the human mind."

We think sufficiently, and

...
METAPHYSICS.

PART I.

Of Perception.

The laws of reasoning will compel him to admit the third. To say, that in perception the mind acts not upon external objects, is a truth in which all mankind are agreed; and it is the very principle from which his predecessors infer, that the conviction of the present existence of external objects is not an original and infallible consequence of sensation, but an early and deep-rooted association which may be resolved into a process of reasoning. His meaning, therefore, must be, that in perception the mind acts not at all: but this is directly contrary to his definition of perception, which he calls an act of the mind: it is likewise contrary to this theory of perception, as it is detailed in the Inquiry into the Human Mind on the principles of Common Sense. We are therefore taught, with equal elegance and perspicuity, "that an impression made by an external object upon the organ, nerves, and brain, is followed by a sensation, and that this sensation is followed by the perception of the object."

We are likewise taught, that "although the Ferretelles had no good reason to suppose an active and passive intellect, they yet came nearer the truth, in holding the mind to be, in sensation, partly passive and partly active, than the moderns in affirming it to be purely passive. Sensation, imagination, memory, and judgment, have by the vulgar, in all ages, been considered as acts of the mind. The manner in which they are expressed in all languages shows this: for when the mind is much employed in them, we say, it is very active; whereas, if they were impressions only, we ought to say that the mind is very passive." All this is undeniable; but if sensation necessarily precede perception, and if in sensation the mind be active, what becomes of the assertion, that in perception it acts not at all? Indeed we may appeal to the common senses of mankind, whether any thing can be perceived without some mental energy of the perceiver. For when the impressions made on the external senses are faint, in order to be conscious of them an evident exertion is requisite, not of the organ only, but also of the mind, as in perceiving very remote objects and sounds; but when the impressions are stronger, the perception is involuntary and unavoidable, as has been already explained in the preceding section.

It being thus certain that in perception the mind both acts and is acted upon, and it being universally acknowledged that nothing can act where it is not, we feel ourselves compelled to admit with the Cartesians, that in perception the conviction of the present existence of external objects is not original and infallible, but the consequence of an early and unavoidable association of certain sensations with the causes which produce them. In this opinion we are still more confirmed by the well-known fact, that particular prefaces upon the organ, nerves, and brain, excite not only sensations, but even perceptions of objects apparently external, when no such objects are within the reach of our senses. Thus, if a man in the darkprefe either corner of his eye with his finger, he will see a circle of colours like those in the feather of a peacock's tail, though no such external object be before him, and though the room be so dark that nothing external could possibly be seen. Again, if a burning coal be nimbly moved round in a circle, with gyrations continually repeated, the whole circumference of the circle will at once appear on fire, though it is certain that there can be really on fire but one of perception.

Upon the whole, we think that there is good evidence, that in perception the process of reasoning consists in the reflection that some fact with the organ of sense, there must be some medium which passes between them; as, in vision, the rays of light; in hearing, the vibrations of the air; and in smelling, the effluvia of the body smelled; otherwise we have neither sensation nor perception. Secondly, There must be some action or impression upon the organ of sense, either by the immediate application of the object, as in the two senses of touch and taste, or by the medium that goes between them, as in the other three senses. Thirdly, The nerves which go from the brain to the organ, must receive some impression by means of that which was made upon the organ; and by means of these nerves that impression must be carried to the brain. Fourthly, The impression made upon the organ, nerves, and brain, routes the dormant energy of the mind; and this double action of the mind and the object produces a sensation. And, last, As we know by experience that the mind alone cannot by an exertion of its own produce one sensation, and are intuitively certain that nothing can be begit to exist without a cause, we infer from the existence of any new sensation the existence of some other cause than the internal energy of the mind, from which that sensation proceeds; and this cause experience teaches us to be the external object. This process is carried on so rapidly, and the several parts of it, by being continually repeated, are so closely associated, that except by a reflex act of the mind we discern not from one another, and therefore we denominate the whole perception.

It is with extreme difficulty that we advance a doctrine which Dr Reid has controverted: but he differs Reid's. Where we from only the first stage of the process, where he supposes sensation and perception to be two simple and independent acts of the mind. Yet he sometimes expresses
expressed himself, as if he thought as we do, that in
perception the belief of the present existence of exter-
nal objects is rather the result of experience that an
intuitive persuasion. Thus speaking of the percep-
tion which we have in smelling a rose, he says, "Per-
ception has always an external object, and the ob-
ject of my perception in this case is that quality in
the rose which I discern by the sense of smell. Ob-
erving that the agreeable senation is raised when the
rose is near and ceases when it is removed, I am led
by my nature [we think by experience would have been
more proper] to conclude (some quality to be in the
rose, which is the cause of this senation. This
quality in the rose is the object perceived; and that of
my mind, by which I have the conviction and
belief of this quality, is what in this case I call per-
ception." Again (he says) that "three of our senses,
viz. smell, taste, and hearing, originally give us only
certain sensations, and a conviction that those sen-
ations are occasioned by some external object. We
give a name to that quality of the object by which it is
fitted to produce such a sensation, and connect that
quality with the object and with its other qualities.
Thus we learn, that a certain sensation of smell is
produced by the rose; and that quality in the rose by
which it is fitted to produce this sensation we call
the smell of the rose. Here it is evident that the sen-
sation is original. The perception that the rose has
that quality which we call its smell, is acquired."

To this doctrine no Cartesians could possibly ob-
ject: for it is the very account which Des Car-
tes himself would have given of perception by the
organ of smell, as it resolves such a perception into
an early association between a certain sena-
tion and that external quality from which we
know by experience that the sensation proceeds.
Indeed the excellent author repeatedly affirms, that
every different perception is conjoint with a sena-
tion which is proper to it; and that the one is the
sign, and the other the thing signified. He likewise
doubts, whether children, from the time that they
begin to use their senses, make a distinction between
things which are only conceiv'd or imagined, and
things which really exist. But if the conviction of
the present existence of external objects were in
perception inductive, we cannot see how there could be
room for such a doubt: for the mere senses of chil-
dren are as perfect as those of full grown men; and
they know well the difference between actually fuck-
ing their nurfes and only thinking of that operation,
though they be not capable of expressing that diffe-
rence in language.

But if in our conception of the present exis-
tence of external objects be not inductive, what
it may be asked, is the evidence that such objects
really exist? This question we shall partly answer in
the following section, and more completely when we
come to examine Berkeley's theory of the non-exis-
tence of matter: but from what has been said already,
it is sufficiently evident, that every sensation compels
us to believe in the present existence of something
different from ourselves, as well as from our sena-
tions.

SECT. III. Of the Objects of each Sense respec-
tively.

HITHERTO we have considered sensation and per-
sation in general, and thorn that is not by instinct sen-
ation which we perceive the existence of external
objects. This will appear more clearly, if we can ascertain the
precise nature of information which each sense
affords us: and in order to this, we shall begin with
the sense of touch, not only because it is that which is
the first exercised, but also because there is a
meaning in which all the others may be resolved into it.

By means of touch we perceive many things; of

The nature which the chief are, heat and cold, hardness and soft-
ness, roughness and smoothness, extension, figure, fo-

lidity, and motion. Of these perceptions, some are
immediate; and others, as we are persuaded, early afso-
ciations, which may be resolved into a process of rea-
toning. The perceptions of heat and cold are imme-
diate. When a perfon for the first time in his life ap-
-proaches the fire, he feels heat; and when he is first
exposed to the frost, he feels cold. What are heat
and cold, and where do they reside? They are obvi-
ously the reveries of each other; but are they external
objects or mere sensations in the mind? They are un-
doubtedly sensations which have no existence but when
they are felt. To every man not altogether a stranger to
these speculations, this proposition is self-evident; but to
thebulk of the people it appears an extravagant para-
dox. To make it plain, however, to the

mind, that nothing can begin to

exist without some

cause. A man on
top of a mountain covered

with snow, may imagine

what he felt when in

the neighbourhood of fire, and thus have in his mind
what is called an idea of heat; but that idea will not
warm him (s) like the actual sensation, which no ex-
ception of his own can in such circumstances produce.

Or wallow naked in December's snow,

By thinking on fantastic summer's heat!
Oh no! the apprehension of the good
Gives but the greater feeling to the worl;

K. RICHARD II.
When he leaves the mountain, however, and approaches the fire, he feels the sensation actually produced, and produced as often as he makes the experiment. He is, therefore, under the necessity of observing, that in the fire there is some power or quality which, acting either mediately or immediately upon his sense of touch, excites the feeling which is called heat. What that power is, we shall perhaps never be able to discover; but it is self-evident, that it is neither heat nor the resemblance of heat, though in vulgar language it is known by that name.

The same reasoning holds good with respect to cold. There is at certain times, and in certain countries, some power in the air which congeals water and causes cold; but that power is as different from the sensation of cold, as the power of fire is different from the sensation of heat, or the point of a sword from a flesh wound.

The perceptions of extension and figure, &c. are not immediate. By the sense of touch we perceive extension, figure, and solidity, &c. but we do not perceive them immediately as we perceive heat and cold; for extension, figure, and solidity, are not sensations. Those perceptions must then be acquired and rendered more clearly to ascertain the manner in which we acquire them, let us suppose a man from his birth delimited by the sense of sight and the power of local motion, but possessed of intellect and every other faculty which we enjoy—Such a person, it is obvious, would be capable of every sensation and perception which is original to us, except the perception of colours; but we doubt whether it would be possible to give him perceptions of extension, figure, and solidity. Let us try; and as he cannot move a single limb or member of himself, let us suppose a solid substance of small dimensions to be gently pressed against any part of his body; what would such a press upon his body; what would such a press upon his body? We think it would communicate nothing but a new sensation, to which, as it is neither pleasing nor painful, no name has hitherto been given, except the general name of feeling. This sensation he would not know whether to refer to an external or internal cause; or rather he would have no notion whatever of an external cause, though he would at the same time be conscious that the new sensation was not excited by any energy of his own will. Were the press to be gradually increased till it rose to pain, our blind man would still be conscious of nothing but a sensation, which could not lead him to the notion of extension, figure, or solidity, because mere sensations cannot be conceived as either solid or extended.

Let us next suppose the press to be applied successively to different parts of his body; he would now indeed be conscious of successive sensations, but he could not ascribe to them either extension or place: for it has been already shewn that the external parts of the body are not themselves sentient; and it shall be shewn afterwards, that to a man who has never perceived motion, place is absolutely inconceivable. Lastly, let us suppose the dimensions of the pressuring substance to be greatly enlarged: what would then follow? nothing, we apprehend, but an increase of pain: for though the whole body were pressed ab extra, the pressure could affect the individual being which is sentient, not more extensively, but only more violently. It appears, therefore, that a man blind from his birth, and delimited of the power of local motion, could never be made to perceive extension, figure, or solidity.

Let us now suppose this man to receive by a miracle the use of his limbs, and to be suddenly prompted, by some instinctive impulse, to rise and walk. So long as he met with no obstacle in his way, he would not apprehend, acquire by this exercise any correct notions of extension or figure; but were a stone or log of wood of considerable dimensions to be laid across his usual walk, the cafe would soon be altered. He would feel himself interrupted in his course, and he would at the same time recognize his wanted sensations of touch. After being twice or thrice thus interrupted, he would learn from experience that this interruption or resistance proceeded from the same cause which in this instance communicated to him the sensation of feeling; and were he to run his hand along the surface of a log or stone, he would perceive the resistance and sensation continued. As every effect must have an adequate cause, this continued resistance would compel him to believe the continuity of something external in every direction in which he felt his hand resisted; but such continuity of being is all that is meant by the word extension. At the same time, and by the same means, he would gradually acquire the perception of sensation; for by running his hand in every direction over the surface of the obstacle which opposed him, he would soon perceive it on all sides limited; but the limits of extension is a phrase of precisely the same import with figure. It appears, therefore, that without the power of local motion, men could never by the sense of touch acquire the notions of extension and figure; and the same willition be found to be the case with respect to hardnes and softness.

When we press our hand gently against a flock or Hardness a stone, we feel a sensation which is neither painful nor pleasing. When we press it more violently, the sensation becomes painful, and we experience in the object a resistance which we have not power to overcome. When we press butter on pomatum very gently, we have a sensation in all respects similar to that which we felt when we gently touched the flock or the stone. But when we press the butter with violence, we feel no pain, and experience little resistance; for the parts of which it is composed give way before the hand, though the parts of the flock or the stone remained fixed and immovable. That the parts of the body should thus yield to the parts of another so readily, must proceed from some difference in the texture of the two bodies: for by the sense of touch we perceive the effects to be different; and are therefore certain that they must proceed either from different causes, or from the same cause operating with different degrees of force. That particular texture which makes the parts of a stone resist the pressure of touch, we call hardnes; and the texture which makes the parts of butter or pomatum give way to touch, we call softness. But what hardnes and softness are in themselves, touch cannot inform us; for they are neither sensations, nor similar to sensations. We acquire, however, by experience, so complete notions of hardnes and softness, that every one who understands the English language perfectly knows the meaning of these words as soon as he hears them; and when he is told
Part I. METAPHYSICS.

Objects of the respective Sciences.

43. Roughness and smoothness.

Solidity, what; and how perceived.

We acquire the notions of roughness and smoothness in the very same way and by the very same means that we acquire ideas of extension and figure. To describe the process at large would certainly be superfluous; for if what we have said concerning our perceptions of extension and figure be just and intelligible, everyone will, without further assistance, discover for himself how he perceives roughness and smoothness. Motion shall be considered among the adjuncts of body; but in order to understand what body itself is, it will be necessary, before we dismiss the sense of touch, to inquire how we come by the notion of solidity.

Solidity is one of those notions, or, in the language of Locke, one of those ideas, which are commonly said to be acquired by the sense of touch. That touch gives the first hint towards our notion of solidity, is certainly true; but that hint may be afterwards improved by the intellect, or we never could have an adequate knowledge of what is meant when any thing is said to be absolutely solid. We know by experience, that we can at pleasure open and shut our empty hand without meeting with any resistance. We know likewise, that when we grasp an ivory ball of three or four inches diameter, no force which we can exert will bring together the several parts of the hand, which were easily brought together when we grasped nothing. In this way do we acquire our first notion of solidity; for that word denotes nothing more in this instance than the power or property of the ball, by which our fingers are excluded from the place which it occupies. Solidity differs from hardness in this respect, that hardness results from the strong cohesion of the parts of a hard body, which renders it difficult to change the places of those parts, as they respect one another; whereas solidity respects the whole mass, and is as essential a quality of water as of adamant. A drop of water, indeed, placed between two plane surfaces of marble, will not like adamant preclude their contact; because the parts of a drop of water, cohering but loosely to one another, give way to the pressure, and escape in every lateral direction. But if a drop of water be confined on all sides, as in a globe of gold, we know from experiment that no force will bring the sides of the globe together without forcing the water through the pores of the metal; and hence we infer solidity to be essential to every corporeal substance.

Thus then it appears, that of the objects perceived by touch not one is immediately perceived except heat, cold, and other sensations. The sensations, as they are not excited by any internal energy of our own, lead us indeed to something external as their cause; and by comparing the different sensations with each other, and observing what effects their external causes have upon our own motions, we are naturally led to conceive these causes as extended, figured, solid, hard or soft, rough or smooth, &c.; but it is obvious that this conception is the result of experience, and a process of mental reasoning.

On the senses of taste, smell, and hearing, it is needless to say much. The immediate objects of their sensations are confusedly sensations which have no existence but when they are perceived; though experience teaches us to refer them all to external objects as their respective causes. With respect to touch, this has been made sufficiently evident in the preceding section, and it is not less evident with respect to taste and hearing.

Certain bodies applied to the tongue and palate, and moistened with the saliva, excite certain sensations which we call tastes. These sensations, however, are not in the bodies; nor can they have any existence but in a sentient being. They are produced in conformity of impulses on the nerves of the tongue and palate, exciting certain agitations in the brain; but the sensation itself is neither impulse nor agitation. Some substances excite tastes which are agreeable, and others such as are disagreeable; and there are not a few which excite no taste at all. Bodies, which applied to the tongue and palate of one man produce tastes that are agreeable, applied to the same organs of another man give him tastes which are disagreeable; and we have all experienced, that the same substance, which, when all organs are found, excites a sweet or pleasant taste, has, when the organs were disordered, excited a taste which was bitter or unpleasant. These facts, which cannot be controverted, afford the fullest evidence, if evidence were wanted, that taste, as we feel it, is no quality of bodies, nor has any existence out of the mind.

The organ of hearing is the ear, and its object is Hearing. It is well known, that sound is produced by certain vibrations of the air striking the tympanum of the ear, and that those vibrations are caused by the sonorous body. Sound, however, is not vibration, nor the idea of sound the idea of vibration. Sound considered by itself is a mere sensation, which can have no existence but in a sentient being. We know by experience, that it is caused by something external; but we know likewise that the effect has no relation to the cause. Previous to experience we could not refer sound to any external cause; far less could we discern whether it proceeded from an object above us or below us, on our right hand or on our left. It appears to us self-evident, that if a man born deaf were suddenly made to hear, he would consider his first sensation of sound as originating wholly within himself. Between that sensation and the sensations of touch, taste, smell, and sight, there is no resemblance; nor are there any relations among them, which, previous to experience, could induce him to trace them all to external objects as their several causes. Our deaf man might have learned to refer all his other sensations to their true causes, in some such way as we have described under the sense of touch; but sound would be something new to him, and so totally different from touch, taste, and smell, that he could attribute it to nothing external.

Experience, however, would soon teach him, that the ear is its organ, and the sonorous body its cause; and he would in time learn to distinguish one sound, that of a trumpet for instance, from another, suppose the sound of a bell; and to attribute each to its proper cause, even when neither the trumpet nor the bell was perceived by his other senses. With respect to tactile sensations, it is by experience that we learn to refer all sensations which are called the same, to the same organ, and the same particular part of the body. With respect to smell, the immediate objects of this sensation are confusedly sensations which have no existence but when they are perceived; though experience teaches us to refer them all to external objects as their respective causes. With respect to taste, this has been made sufficiently evident in the preceding section, and it is not less evident with respect to taste and hearing.
founds which we have been accustomed to hear, this is done so instantaneously, that some philosophers have imagined it to be the effect of an instinctive principle in our nature, totally different from experience, and independent of reason. But the fact is not so. Long before we are capable of making sensation and perception objects of reflection, we have heard the sound produced by the ringing of a bell, and seen the object which produced the sound so often, that, when we hear a similar sound again, we instantly refer it to a bell, though we feel not the bell from which it proceeds; but this is the effect of habit, and not of instinct. Had we never perceived a bell while ringing by either of our senses of sight or touch, we could not by the sense of hearing acquire any notion of the figure or texture of the body from which the cause of the sound proceeds, tho' we had heard that sound every day of our lives. It is, indeed, by experience only that we learn to distinguish by the ear whether a horrid body be before or behind us, on our right hand or on our left; for we find it always difficult to say from what precise quarter a strange sound proceeds; and this difficulty would be heightened to impossibility, had not all sounds something in common. Dr Sparman relates, that when he first heard the roaring of a lion, he did not know on what side of him to apprehend danger, as the sound seemed to proceed from the ground, and to inclose a circle of which he and his companions stood in the centre. The same thing has happened to every man, when the sound was such as he had never heard before; even though it was neither so loud nor so terrific as the roaring of a lion in a desert wilderness: but with respect to sounds which we are daily hearing on each side of us, we soon learn to distinguish with tolerable accuracy whether they be before or behind us, above or below, on our right hand or on our left. All this, however, is the effect, not of instinct, but of experience improved into habit.

Sight is justly considered as the noblest and most comprehensive of all our senses. The reason is obvious: for when a full-grown man opens his eyes, he perceives houses, trees, rivers the earth, sun, and moon, &c. and to each of these objects belong figure, extension, colour, &c. which are all perceived instantly by means of this sense. Yet it is certain, that the sense of sight does not originally communicate to us so many perceptions; and there is abundant evidence, that an infant cannot at first, or for some weeks after its birth, distinguish by vision one object from another. Colour is the proper object of sight, and for some time its only object; but colour as perceived by us is a mere sensation, which can have no existence but in a sentient being. If this proposition stood in need of proof, we might observe that there are men, and even whole families, who puzzle the sense of sight in a degree of perfection sufficient for all the purposes of life, and yet cannot distinguish certain colours from each other: blue, for instance, from green, or perhaps from red: and there is no man who can distinguish between some particular shades of blue and green by the feeble light of a candle. Were colours the real quality of body, this mistake of one for another could never be experienced. No man who polishes the sense of touch ever confounded hardnes with softness, a sphere with a cube, or an ell with an inch. The reason is, that
Part I. M E T A P H Y S I C S. 495

Objects of the pure impenetrable to the eye, and yet it is often perceived by sight. How is this done? We think, in the following manner. Distance is one mode of extension, which we have already seen, is perceived by means of touch. Of short distances we have our first ideas are doubtless acquired by the stretching out and drawing back of our arms; and those ideas are soon connected with certain sensations which we have in actual vision, that the latter instantly suggests the former. Thus, it is a fact known by experience, that when we look at a near object with both eyes, according as it approaches or recedes from us, we alter the disposition of our eyes, by lengthening or shortening the interval between the pupils. This disposition, or turn of the eyes, is attended with a sensation of which every man is conscious at the time of vision; and this sensation seems to us to be that which in this case suggests the idea of greater or lesser distance to the mind. Not that there is any natural or necessary connection between the sensation of which we are conscious, and greater or lesser distance; for the sensation is wholly internal, and the distance is external. But because the mind has by constant experience, found the different sensations occasioned by different dispositions of the eyes to correspond to different degrees of distance in the object, there has grown an habitual or customary connection between those sensations and the notions of greater or lesser distance. So that the mind no sooner perceives the sensation arising from the different turn it gives the eyes in order to bring the pupil nearer or farther together, than it is instantly impressed with a certain notion of the distance which was wont to be connected with that sensation. Again, an object placed at a certain distance from the eye, to which the breadth of the pupil bears a sensible proportion, being made to approach nearer, is seen more confusedly; and the nearer it is brought, the confusion is always the greater. The reason of all this is known to every optician: but it being constantly experienced by them who never dip into optics, there arises in the mind of every man an habitual connection between the several degrees of confusion and distance; the greater confusion implying the less distance, and the less confusion the greater distance. It is of no avail to say, that between confused vision and distance, great or small, there is no necessary connection; for there is as little connection between a blur in the face and the mental feeling of shame; and yet no one does a man of observation perceive that particular colour in the face of another, than it suggests to him the notion of that feeling or passion with which he has constantly observed it accompanied.

In these ways, however, we perceive only small distances. Of distances more remote our judgment is formed from other data; and happily these data are not far to seek. It is a fact known to every man who is not totally ignorant of the science of optics, that a greater number of rays fall upon the eye when reflected from a body near at hand, than can fall from the same body at a distance; and as those rays operate by impulse, it is self-evident that the impression must be stronger, and of course the sensation or colour more vivid, when the body is near than when it is distant. Now having acquired the notion of the true distance of objects by motion and the sense of touch, and finding by uniform experience, that as they are near or far, objects of off, the sensation of colour which they excite in the reti- mind through the organ of vision is more or less vivid, those degrees of sensation come to be closely associated with the respective distances of the objects, that the latter instantly suggests the other.

It is just so that we perceive figure by sight. Having experienced by the sense of touch that one surface is a square and another a circle, that one body is by sight a cube and another a sphere; and finding our sense of sight differently affected by the square and the circle, by the cube and the sphere; these different affections come to be closely connected in our minds with the figures of the respective bodies, that long before we are capable of reasoning on the subject the one is never present to us without suggesting the other. Nay, to complete in this case the connection or association, that we cannot even in idea abract from the colour from the figure; though it is certain that colour is a mere sensation, and figure an external quality; that colour alone is immediately perceivable by the eye, and the notion of figure suggested by the colour. We are aware that it has been affirmed, and affirmed with great vehemence, that figures of two dimensions are immediately perceived by the eye, and perceived with greater accuracy than by the sense of touch. But they who insist upon this doctrine affirm likewise, contrary to experience and the clearest reasoning, that the immediate objects of sight are external, and that colour is a quality of bodies. In the arguments too by which they support their hypotheses, they seem to confound sight as an affection of the mind, with the picture on the bottom of the eye, as if the retina were the sentient being; whereas the retina and picture are no more than instruments of sensation. It is indeed a fact, that the picture has the same figure nearly with the plane of the object which is presented to the eye; as when the object is a sphere, the picture is a circle variously shaded in colour. It is likewise a fact, that the picture is enlarged in proportion as the object is brought near, and diminished as it is carried to a distance. But these facts are known only to persons skilled in optics; and therefore it is evident, that though calculations may be railed from them by mathematicians to determine the distance and figure of external objects, they cannot possibly be the data from which distance and figure are inferred by the vulgar, who know not that such pictures on the retina exist. Besides all this, it is universally known, that a painter, by laying on his colours properly, can make a plain square surface appear to the eye in certain positions as an oblong or as a cube, and a plain circular surface as a concave or a convex hemisphere. But not one of these things could possibly done, were figure or indeed any thing else than colour, the immediate object of vision.

As we see distance and figure, so we see magnitude; and we see both in the same way that we see flame or tude, anger in the looks of a man. The impression made upon the bottom of the eye by rays reflected from a large magnitude, must necessarily be different from the impression made by rays reflected from a magnitude that is less. This is self-evident; and since the impression ab extra is in some way or other the cause of that sensation, which is all of which we are originally conscious in vision, it is obvious that the sensation, like
like every other effect, must correspond to the cause from which it proceeds. Being therefore conscious of different sensations; and having, at an earlier period than we diligently remember, learned by experience to refer them to different magnitudes; no sooner is each sensation excited than it suggests the notion, or if you please the perception, of that magnitude with which it is connected. So completely is this association fixed in the mind, that when we look at a known object, its real magnitude appears to be as instantly observed as its colour, whilst we hardly attend at all to the particularity of the sensation by which the magnitude is suggested. It is indeed customary with writers on optics to distinguish between tangible and visible magnitude, as if any kind of magnitude were the immediate object of vision: but this is not so; for magnitude is something external, whereas the immediate object of vision is a mere sensation. What has introduced into science this mode of speaking is the following fact, that as we approach a distant object it appears to the eye larger and larger every step, and less and less as we recede from it, whereas the tangible magnitude of an object is always the same. The reason of this apparent change of magnitude to the eye, according to the distance at which any particular object is viewed, is, that from a near object rays of light fall in greater numbers and more diverging than from the same object viewed at a distance. This of course alters the nature of the visible sensation: each common sensation is in the mind closely linked with a particular notion of magnitude; and by the exercise of sight and touch we have learned from experience, that the particular sensation caused by diverging rays must be referred to a larger magnitude than that which is caused by parallel rays proceeding from the same distance.

Upon the whole, then, we think ourselves entitled to conclude, that the proper and original objects of vision constitute an universal language of the Author of Nature, by which we are instructed how to regulate our actions, in order to attain those things that are necessary to the preservation and well-being of our bodies, as also to avoid whatever may be hurtful or destructive to them. It is principally by the information of this language that we are guided in all the transactions and concerns of life: and the manner in which it signifies and marks to us the objects which are at a distance, is similar to that of languages and signs of human appointment, which do not suggest the things signified by any likeness or identity of nature, but only by an habitual connection, which experience has made us observe, between them. This language of the eye, like the language of the tongue, suggests by one sensation what may be resolved into a variety of perceptions. A tree is composed of a trunk, branches, leaves; it has colour, figure, size; and all these things are at once suggested to the mind by the two words _firring oak_. Just so is it with respect to vision: the sensation received by the eye suggests at once the _trunk, branches, leaves, colour, figure_, and _size_ of the oak, and suggests them all as the qualities of one object.

Chap. II. _Of Retention and Ideas._

From the experiment with the burning coal mentioned in n° 33, it is apparent, that sensations excited through the eye, together with their corresponding perceptions, remain in the mind for a short time after the external exciting cause is removed. The same thing appears from another experiment which was first made by Sir Isaac Newton, and which every man may repeat for his own satisfaction. It is universally known, that a proper mixture of the seven original colours, _red, yellow, green, blue, &c._, constitutes that uniform appearance which we call _white_. But when these colours are made to pass in a rapid succession before the eye, they excite the very same perception as when they are properly mixed: this is a satisfactory proof that the impression made by each separate colour remains in the brain until a revolution of all the colours be completed; for nothing but the impression of all the colours at once can produce the sensation and perception of _white_. Indeed no person capable of paying the proper attention to these things, can keep his eye fixed upon a luminous object, and afterwards shut it, without experiencing that the sensation and perception remain for some time after the external object is shut out, and that they go off gradually till they leave behind them the mental appearance, which is properly called an _idea_ of the object.

The same continuance of the sensation after the removal of its cause is equally observable in the sense of hearing: for every sound which we hear is reflected by the neighbouring bodies; and therefore consists in reality of a variety of sounds succeeding each other at different distances of time, according to the distances of the several reflecting bodies. Yet this causes no confusion orapparent complexity of sound, unless when the distance of the reflecting bodies is very considerable, as in spacious buildings.

With respect to the continuance of the sensation of touch, doubts have been started; but for these there is as little room as for doubting the continuance of the sensations of seeing and hearing. The continuance of heat after the heating body is removed, and of the smart of a wound after the instant of infliction, are proofs that every sensation of touch does not vanish with its cause. A man unused to the motion of a ship or a coach, after having been a day at sea or on the road, feels or imagines he feels the rolling of the ship or the jolting of the coach after he is in bed and actually at rest. Of these facts we know not what other account can be given, than that the agitation in the brain, which is the immediate cause of the sensation of touch, remains for some time after the external cause of the agitation is removed.

As to the senses of taste and smell, Dr. Hartley seems to think that there is no clear and direct evidence for the continuance of their sensations after their proper objects are removed: but in this opinion the ingenious author does not judge by his own theory. Let any man eat onions, garlic, or any other thing of a very pungent taste, and immediately wash his mouth with fresh water, so that he may be sure no part of the rapid body remains on his tongue or palate. According to this doctrine, the taste of the onion or garlic should instantly vanish with its object; but the fact is otherwise. Whoever shall make the experiment, will find the sensation to remain for a considerable time; not indeed in its original force, but weakened no more than what it must necessarily be by the introduction of
of a new sensation excited by the water. It is more difficult to ascertain the permanency of this, but analogy inclines us to believe, that in this particular it resembles the other senses, though we know not how to direct the reader to an experiment which will give him absolute conviction.

Whether the cause of these continued sensations, after the removal of their objects, be in the brain alone considered as an immaterial being, or in both together, is of very little importance; because, taking the mind and its internal organs as an

metaphysical whole*, it matters not to our present inquiry, where this retentive power resides, as long as it can be proved to exist within us: for it seems evident, that what has the faculty of retaining a sensation when no longer acted upon by the object which excited it, must also have a power to preserve the vestiges of that sensation even after the sensation itself shall be entirely obliterated. This is in fact the case with the mind. When an object which we have once perceived is made remote from our thoughts, we are certain that there is within us a capacity, disposition, tendency, or power, by which a representation of that object may be at any time revived and presented to the intellect. Thus the same inherent power of the mind and its internal organs, which retains a sensation and perception in the absence of the object by which they were excited, can also reproduce that perception, or bring into the view of the intellect something exactly similar to it. The reproduction will not indeed be so lively as the original perception when accompanied with its corresponding sensation, because sensation and actual perception are effected by a double cause, the action of the external object upon the organ, nerves and brain, and the corresponding energy of the mind or sentient principle; whereas, in the reproduction, the mind seems to act solely by its own power, and certainly without the assistance of external objects. This reproductive power is commonly called memory. By many of the ancient philosophers, and by M. Schuwb, with one or two others among the moderns, it is called imagination. We do not choose either to revive antiquated modes of expression, or to introduce innovations of our own; but as we cannot disapprove of the ancient phraseology, after the definitions which the reader will and by find of imagination, memory, and recollection, as given by Mr Harris, we have prefixed to this chapter the general title of retention which comprehends them all.

56 The opinions of philosophers respecting memory.

When one recalls an object of sight by the power of memory, it appears to him precisely the same as in the original survey, only less distinctly, and with a conviction (which is perhaps the result of experience) that the real object is not immediately before him. How is an object recalled by the power of memory? Does the man endeavor to form in his mind a picture or representative image of the object? Let us listen to the answers given by different philosophers to this question.

VOL. XI.

The sentiments of the Peripatetics, as expounded by Alexander Aphrodite, one of the earliest commentators on Aristotle, are thus translated by Mr Harris in his Hermes:—Now, what fancy or imagination is, we may explain as follows: We may conceive to be formed within us, from the operation of the senses about sensible subjects, some impression (as it were), or picture in our original sensation, being a relic of that motion caused within us by the external object; a relic which, when the external object is no longer present, remains, and is still preferred, being as it were its image; and which, by being thus preferred, becomes the cause of our having memory. Now such a fort of relic, and (as it were) impression, they call fancy or imagination (r)." A passage from Aristotle's doctrines of Plato, as rendered into English by Dr Reid, shows, that in this theory, as in all the Peripatetics, when the form or type of things is imprinted on the mind by the organs of the senses, and so impressed as not to be deleted by time, but preserved firm and lasting, its representation is called memory.

Mr Harris, who was deeply read in the ancient philosophy, and who considered the authority of Aristotle and Plato as superseding all reasoning and all inquiry, after judiciously observing, that if the soul had no other faculties than the senses it could never acquire the least idea of time, thus expresses himself on the subject before us:—"But happily for us we are not deftined here. We have, in the first place, a faculty called imagination or fancy; which, however as to its energy it may be subsequent to sense, yet is truly prior to it both in dignity and scope. This it is which retaining the fleeting forms of things, when things themselves are gone, and all sensation is at an end. That this faculty, however connected with sense, is still perfectly different, may be seen from hence. We have an imagination of things that are gone and extinct, but no such things can be made objects of sensation. We have an easy command over the objects of our imagination, and can call them forth in almost what manner we please; but our sensations are necessary when their objects are present, nor can we control them but by removing either the objects or ourselves. As wax would not be adequate to its employments of signature, had it not a power to retain as well as receive; the same holds of the soul, with respect to sense and imagination. Sense is its receptive power; imagination its reproductive power. Had it sense without imagination, it would not be as wax but as water; where, though all impressions may be infantly made, yet as soon as made they are entirely lost. Thus then, from a view of the two powers taken together, we may call sense (if we please), a kind of transient imagination; and imagination, on the contrary, a kind of permanent sense."

Great part of the office which is here given to imagination, is in common English attributed to memory; but between these two faculties, as well as between imagination and recollection, the author accurately distinguished. The distinction between imagination and memory, &c.
METAPHYSICS.

Retention and Ideas.

When we view some reality, or thing, which ceases to be anything when there is no perception of it, this is memory. What we view some object, and of the mind, the doctrine of Alexander of Alexandria, would be very little wide of the truth. Experience teaches us that memory as well as perception depends upon the state of the brain; and as it is undeniable, that when a man to day contemplates an object which he perceived yesterday, or at any former period, he has a view of it in all respects similar to the original perception, only fainter and less defined, it is extremely probable, that an impression ab extra, which produces a sensation and perception, leaves behind it some tendency in the brain, to vibrate as in the actual sensation, and that this tendency is carried into effect by the internal energy of the mind itself. But in the Peripatetic philosophy, pictures and forms in the mind were considered as real things, and by no means as metaphorical expressions. This is evident from their being constantly compared to the impression of a seal upon wax and from their converting the materia prima from something, which can neither be seen nor felt, into visible and tangible body, of which we shall treat afterwards. Now it is certain that on being immaterial, no corporeal form can be impressed, and repeated impressions having thrown that no such forms are in fact impressed on the brain, this whole theory is at once overturned.

Modern philosophers having denied that there are real images or forms in the mind during the immediate act of perception, cannot consistently with themselves admit such images in the act of retention, or when those things which were formerly objects of perception are recalled to the mind by the power of memory. Mr Locke's doctrine is, that 'the mind retains these simple ideas which it first received from sensation or reflection, two ways: first, by keeping the idea, which is brought into it, for some time actually in view, which is called contemplation: and secondly, by the power which we have to revive again in our minds those ideas, which, after imprinting, have disappeared, or have been, as it were, laid out of sight; as when we conceive heat or light, yellow or sweet, the object being removed. This (he says) is memory; which is, as it were, the store-house of our ideas.'

To explain this more fully, he immediately adds the following observation:—'But our ideas being nothing but actual perceptions in the mind, which cease to be anything when there is no perception of them, this laying up of our ideas in the repository of the memory, signifies no more but this, that the mind has a power, in many cases, to revive perceptions which it has once had, with this additional inclination annexed to them, that it has had them before. And in this sense it is, that our ideas are said to be in our memories, when indeed they are actually no where; but only there is an ability in the mind, when it will, to revive them again, and, as it were, paint them anew on itself, though some with more, some with less difficulty, some more lively and others more obscurely. And thus it is, by the assistance of this faculty, that we are enabled to have all those ideas in our understandings, which, though we do not actually contemplate them, yet we can bring in sight, and make appear again, and be the objects of our thoughts, without the help of those sensible qualities which first impressed them there.'

To attempt a defence of the accuracy of this language would be vain; but as the author's meaning is sufficiently obvious, his expressions may be easily and certainly corrected. Had Locke said:—'But our ideas being nothing but scenes or appearances in the mind, which cease to be anything when there is no perception of them, this laying up of our ideas in the repository of the memory signifies no more but this, that the mind has a power, in many cases, to revive scenes which it has once viewed, with this additional perception annexed to them, that it has viewed them before,' there would have been no room for the many petulant remarks which have been made upon the passage.

But against this account of memory, a much heavier charge has been brought than that which regards the propriety of the language. It has been said, that the additional perception, which, according to Locke, attends the revival of our ideas by the power of memory, 'would be a fallacious perception, if it led us to believe that we had them before, since they cannot have two beginnings of existence: nor can we believe them to have two beginnings of existence; we can only believe that we had formerly ideas or perceptions very like to them, though not identically the same.' Let us examine this question somewhat narrowly: for if it be really true, that in the sense in which the word same is here used, we cannot twice contemplate the same idea, all confidence in memory would seem to be at an end.

Suppose a man to stand on some of the rising grounds about Edinburgh, the Calton-hill for instance, and from that eminence to view the glorious prospect spread of the coast of Fife, the ocean, the frith of Forth, and the little islands scattered in the frith. Let him go away, and return next day to the same place, and look the same way: we would ask whether he has the same view or perception which he had the day before? The man must surely be very captious who would say that he has not: and yet it is certain that the energy of mind by which he perceives on one day cannot be identically the same with that by which he perceived on another: nor are the rays of light which fall upon his eyes on the second day, identically the same with those which fell upon his eyes and occasioned vision on the first day. Let the same man now shut his eyes, and contemplate the various objects at which he had been just looking. They will appear to him in all respects the same as when viewed by means of his organs of sight, only fainter and less distinct, with this additional conviction, that the immediate objects of his present contemplation are not real external things, but ideas or mental representations of those things which had so lately been the objects of his sight. Let him think no more about the matter for some
The memory and the very ideas, clown many infl:ances to discover his real meaning. According to him, that memory and together, that; we weaker than the former. Imagination an idea of imagination (ircf5: we've Hilllef, terventIOn that there is fuch act of memory or agitation, or whatever other affection of the brain is necessary to memory, identically the same at the second time as at the first: but the mind exerting itself in the very same manner at the one time as at the other, produces the same kind of agitation in the brain, and is itself affected in the very same way at the second as at the first exertion. Whence it follows, that the second same scene will be as much the same with the first, as the second of a perception is the same with the first; and the two same scenes, and the two actual perceptions, are respectively paid to be the same with each other, only because they impress the mind with a conviction that they were occasioned by the same external objects.

But though we think Locke's doctrine, with respect to memory, may be this easily vindicated, from the charge of fallaciousness, we must acknowledge that to us it appears not to be of much value. It teaches nothing, but that the mind has a power to retain ideas of those objects which it formerly perceived, and in many infancies to recall them as occasion may require. But these are truths known to all mankind, to the clown as well as to the philosopher.

Philosophers in general have paid less regard to the retentive faculties of the mind than to its original powers of perception. Perhaps they imagined, that as memory depends upon perception, and in same respects appears to resemble it, a competent knowledge of the nature of the former faculty would lead to that of the second. Be this as it may, Mr. Hume, who was at some pains to detail his notions of perception, has in his Philosophical Essays only dropped concerning memory and imagination a few hints, so loosely thrown together, that, if he had not elsewhere expressed himself with more precision, it would have been difficult to discover his real meaning. According to him, that which is commonly called the perception of an external object, is nothing but a strong impression upon the mind; and that which is called the remembrance of a past object, is nothing but a present impression or idea weaker than the former. Imagination is an idea weaker than the idea or impression which he calls memory. This seems to be a wonderful abuse of language. Impressions are not perceptions; and, if possible, they can still less be called ideas, which are but secondary perceptions. It is likewise far from being true, that an idea of imagination has necessarily less vivacity than an idea of memory. We have seen Mr. Hume, and have at the present moment an idea of his form and ciphers: we can likewise imagine to ourselves a centaur; and though a centaur was never seen, and therefore cannot be an impression rejected by memory, our idea of and idea of it, the monster is much more lively and distinct than that of the philosopher.

Dr. Reid having observed, of memory *, that it is by it we have an immediate knowledge of things past; and, if it must have an object: that in this respect it agrees with perception, but differs from sensation, which has no object but the feeling itself; and that every man can distinguish the thing remembered from the man, remembrance of it—proceeds to inquire what memory is? And, “First (says he), I think it appears that memory is an original faculty given us by the Author of our being, of which we can give no account but that we are to make. The knowledge (continues he) which I have of things past by my memory, seems to me as unaccountable as an immediate knowledge, would be of things to come (r); and I can give no reason why I should have the one and not the other, but that such is the will of my Maker. I find in my mind a distinct conception and a firm belief of a series of past events; but how this is produced I know not. I call it memory but this is only giving a name to it; it is not an account of its cause. I believe most firmly what I distinctly remember; but I can give no reason of this belief. It is the inspiration of the Almighty which gives me this understanding. When I believe the truth of a mathematical axiom or of a mathematical proposition, I feel that it must be so: every man who has the same conception of it feels the same. There is a necessity and an evident connection between the subject and the predicate of the proposition; and I have all the evidence to support my belief which I can possibly conceive. When I believe that I washed my hands and face this morning, there appears no necessity in the truth of the proposition. It might be or it might not be. A man may distinctly conceive it without believing it at all. How then do I come to believe it? I remember it distinctly. This is all I can say. This remembrance is an act of my mind. It is impossible that this act should be, if the event had not happened? I confess I do not see any necessary connection between the one and the other. If any man can show such a necessary connection, then I think that belief which we have of what we remember will be fairly accounted for; but if this cannot be done, that belief is unaccountable; and we can say no more but that it is the result of our constitution. Our original faculties are all unaccountable: Of these memory is one. He only who made them comprehends fully how they are made, and how they produce in us not only a conception, but a firm belief and assurance, of things which it concerns us to know.”

On this account of memory we shall make no remarks. There is a certain sense of the words, in which every thing which the author has said on the subject is undoubtedly just; and it would be very unacquainted to take

(s) If memory depends upon the slate of the brain as it has been affected in past perceptions, this appears to us a strange position. Perhaps the excellent author means nothing more, than that it is as unaccountable to us, that impressions on the brain should cause perception, and the vestiges of those impressions should cause remembrance, as how the mind might not perceive things to come without the interposition of meditations on the brain. If this be his meaning, no man will controvert it: for it is impossible to discover the nature of that relation which subsists between an impression and perception; but that there is such a relation, we know from experience.
METAPHYSICS.

Part I.

Retention and Ideas.

What is memory, as it is the result of that constitution which was given us by God, and not the offspring of habit or human contrivance, is unquestionably an original faculty; and though it is therefore impossible to account for it so fully as to silence every inquiry which may be made; yet we could wish that Dr Reid had bestowed a little more pains upon it, in order to discover if possible in what respects it resembles or differs from perception. He has well observed, that there are laws of nature by which the operations of the mind are regulated, as well as laws of nature which govern the material system. As the latter are the ultimate conclusions which the human faculties can reach in the philosophy of bodies, so the former are the ultimate conclusions which we can reach in the philosophy of minds. The more general that these laws are in both cases, the more useful they are and the more satisfactory: for as they are themselves inexplicable, the fewer they are in number, and the more comprehensive each, the fewer will those phenomena be for which we can give no account. Thus, as we know not what makes the planets tend to the centre of the sun, or heavy bodies tend to the centre of the earth, we can give no other account of these phenomena, but that, as they appear to be of the same kind, it is reasonable to conclude that they proceed from similar causes. What the cause is of this tendency of bodies towards each other, we know not. We call it gravitation, and employ it to account for all phenomena of the same kind. In like manner it is universally allowed, that as we know not how mind and matter operate upon each other, there is something in perception wholly unaccountable. That perception follows sensation; and that there is no sensation which is not occasioned by some affection of the brain, proceeding from some impression ab extra; we have the evidence of experience; but how a particular affection of the brain should excite a sensation in the mind, we know not; though we may here, as in the corporeal system, attribute similar effects to the same or similar causes. Thus, if we exert an act of memory we have the same appearance of things as in the original act of perception, the rules of philosophy authorize us to refer both phenomena to the same general law; just as they authorize us to refer the motion of the planets and of projectiles to the same general law. On the other hand, if we perceive no similarity between memory and perception, we have made no progress in the philosophy of mind; for in that case we have discovered two phenomena proceeding from two causes totally different from each other, and both inexplicable. Although we scarcely hope to throw any light upon a subject which Dr Reid has not attempted to illustrate, we shall state a few facts respecting the memory, and submit to the reader the conclusions to which we think these facts lead.

Objects once perceived by the senses, when recalled to the mind by the power of memory, appear precisely the same as in the original perception, only less distinct. For example, having seen yesterday a spreading oak growing on the bank of a river, and having heard a shepherd play, and handled a square of paper, we endeavour to recall to our minds these objects which are now absent. How is this operation performed? Do we endeavour to form in our minds pictures of them or representative images? or, does our intellect survey the types or forms which, according to memory, are the ultimate left in the imagination when originally perceived? Neither of these things is done. We conceive ourselves as standing in the same place where we stood yesterday; upon which we have perceptions of the objects similar in all respects to the perceptions which we had when we employed our eyes, our ears, and our hands. The tree appears, as it were, before us; faint indeed, but attended with all the objects which we observed around it yesterday: we seem to hear the sound of the pipe, yet, at a distance, to move our hands over the stone, and to feel the stone surfaces and the stone angles which we felt in the original perception. In this recollection we are not conscious of pictures or images more than in the original survey. The perceptions seem to be of the tree and river themselves, of the sound itself, and of the stone itself, exactly as at the first; and yet we are satisfied that in the act of remembrance we perceive no such object as a real tree, pipe, or stone. That these are facts, every man must be convinced who attends to the energies of his own mind when exerting the powers of retention; and therefore it is, in our opinion, with no impropriety that Mr Harris says, we may call sense, if we please, a kind of imperfect imagination, and imagination, on the contrary, a kind of permanent sensation for if these two faculties, as far as the mind or intellect is concerned, be not the same, they seem to resemble each other much.

2. The primary perception of a visible object is more complete, lively, and distinct, and remains longer in the memory than that of any other object. We know likewise by experience, that an idea or secondary perception of a visible object is as much more complete, lively, and distinct, than the idea of any other object, as was the primary perception; and that we remember things which we have seen for a longer time than sounds which we have heard, or than tangible objects which we have only handled. Yet there seems to be a constant decay of all our ideas, even of those which are struck (c) deep in and minds the most retentive; so that if they be not frequently renewed by repeated exercise of the senses, or by reflection on those objects which at first occasioned them, the print (c) wears out, and at last remains nothing to be seen. Concerning ideas, it is easy to remark, that though they remain longest and clearest in the memory which are derived from two or more senses, especially if the sense of sight be one of the number, or which are oftenest refreshed by a return of the objects which produced them. Hence a man has a longer and more distinct remem-
Part I.

METAPHYSICS.

Retention and Ideas.

66

Memory a kind of habit.

Recollection.

1. Remembrance of what he has seen, of what he has only heard, of what he has both seen and felt, and of the ideas which we have of heat and cold, of hunger and thirst, and of all the things which most frequently affect our senses, are extremely clear, and are never quite left whilst the mind retains any ideas at all.

2. Memory appears to be a kind of habit, which is not always in exercise with regard to things we remember, but is ready to suggest them when there is occasion. The most perfect degree of this habit is when the thing presents itself to our remembrance spontaneously, and without labour, as often as there is occasion. A second degree is, when the thing is forgotten for a longer or shorter time, even when there is occasion to remember it, and yet at last some incident, such as a violent passion, which agitates the whole mind and sentiment, tumbles the idea, as it were, out of its dark corner, and brings it into view without any search. A third degree is, when we call about and search for what we would remember, and after some labour find it out. This searching faculty of the soul is by Aristotle called μνήμεια; by Dr Reid others reminiscence, and by Mr Harris recollection.

Should it be said, that we will to remember we must already conceive, as we can will nothing of which we have not a conception; and that therefore, a will to remember a thing, seems to imply that we remember it already—we answer, with Dr Reid, that when we will to remember a thing, we must indeed remember something relating to it; but we may have no positive idea or conception of the thing itself, but only of the relation which it bears to that other thing which we do remember. Thus, one remembers that a friend charged him with a commission to be executed at such a place, but he has forgotten what the commission was. He applies himself to discover it; and recollects that it was given by such a person, upon such an occasion, in consequence of such a conversation: and thus by a train of thought he is led to the very thing which he had forgotten and wished to remember. To this operation it is not always necessary that the relations between the various ideas which the mind turns over be very close, or have their foundation in nature; for a casual connection is often sufficient. Thus, from seeing a garment, we think of its owner; thence of his habitations; thence of woods; thence of timber; thence of ships; thence of admirals; thence of cannons, iron, furnaces, and forges, &c."

That in the process of recollection, one idea should suggest another, may be easily accounted for. When, in perception, our minds are exposed to the influence of external objects, all the parts and properties, and even the accidental variable adjuncts of these objects, are perceived by full-grown men at the same time; so that the whole group makes but one impression upon our organs of sense, and consequently upon the mind. By these means all the parts of the simultaneous impression, and consequentially of the perception occasioned by that impression, are so intimately associated or linked together, that the idea of any one of them recurring at any future period generally introduces the ideas of all the rest. But as the necessary parts and properties of any thing are more closely linked together, and occur more frequently than any particular variable adjuncts, it is obvious, that the part of any one of these properties, the idea of the rest, and of the object itself, will be more readily introduced than by the idea of any variable adjunct. It seems, however, to be certain, that we have no power of calling up any idea at pleasure, but only such as have a connection, either in nature or by means of former associations, with those that are at any time present to the mind. Thus the fight, or the idea, of any particular person, generally enables us to recollect his name, because his name and his person have been constantly associated together. If that fail to introduce the name, we are at a loss and cannot recollect it at all till some other associated circumstance helps us. In naming a number of words in a sentence, or lines in a poem, the end of each preceding word or line being connected with the beginning of the word or line which succeeds it, we can easily repeat them in that order; but we are not able to repeat them backwards with any ease, nor at all till after many fruitless efforts. By frequent trials, however, we acquire at last a facility in doing it, as may be found by making the experiment on the names of numbers from one to twenty. It is, indeed, probable, that in the wildest flights of fancy, no single idea occurs to us but such as had a connection with some other idea, perception, or notion, previously existing in the mind, as shall be shewn more fully in a subsequent chapter.

4. "Memory appears to depend entirely or chiefly upon the state of the brain. For diseases, concussions of the brain, spirituous liquors, and some poisons, impair or destroy it; and it generally returns again with the return of health, from the use of proper medicines and methods. It is observable, too, that in recovering from concussions and other disorders of the brain, it is usual for the persons to recover the power of remembering the then present common incidents for minutes, hours, and days, by degrees; also the power of recalling the events of his life preceding his illness. At length he recovers this last power perfectly; and at the same time forgets almost all that pained in his illness, even those things which at first he remembered for a day or two. Now the reason of this seems to be, that upon a perfect recovery the brain recovers its natural state, and all its former affections and tendencies; but that such affections or tendencies as took place during the preternatural state, i.e. during the patient's illness, are obliterared by the return of the natural state. All this we are induced to believe, because, though it is a fact incontrovertible, that in certain diseases the memory is impaired, and recovers its vigour with the return of health, it is not conceivable that the mind itself should suffer any change by diseases, concussions, or spirituous liquors, &c."

From these facts we are strongly inclined to conclude, that the power of the mind or immaterial (n) principle

(n) Through the whole of this and the preceding chapters, we have taken it for granted that the sentient principle in man is not material. This is the common, and, as shall be shewn afterwards, the most probable opinion; but whether it be absolutely certain or not, makes no difference on the theories of sensation and perception. There are obviously neither figure nor motion, and therefore not subject to the laws which govern the material world.
Retention and Ideas

External objects operating on the senses leave some permanent effect in the brain.

Metaphysics

69.

Retention and Ideas

By what means we never confound memory with perception, nor fancy that they perceive things which they only remember? If perception be an inference drawn from certain sensations excited by an impression on the brain, and if remembrance result from the mind's operating upon relics of those impressions, one would think it natural to suppose, that in both cases we have actual perceptions, though in the one case the perception must be more vivid and distinct than in the other. To this we answer, That previous to all experience, perception and memory are probably confounded; and that we believe a man brought into the world with all his faculties in their full natural perfection, would not instantly be able to distinguish what he remembered from what he perceived. This we know to be the case with respect to imagination, a faculty which strongly resembles memory; for in dreams, and sometimes even in waking reveries, we fancy that we actually perceive things which it is certain we can only imagine. A very short experience, however, would enable this newly created man to make the proper distinction between remembrance and perception. For let us suppose him to be brought into a dark room, and soon afterwards a candle to be introduced. The candle would give him a visible sensation, though not at first the perception of an external object. Let the candle after some time be carried out: the man would retain a visible idea, which he might confound with the actual sensation. But if, whilst this idea remained in his mind, the candle were brought back, he would instantly feel a difference between the real sensation and the idea, when both were together present to his mind. And having, in some such manner as we have already described, acquired the power of perceiving external objects by means of his senses, he would soon discover, without any effort of his own, the difference between actual perceptions and the ideas treasured up in his memory.

The only remaining difficulty which seems to enumber this theory of remembrance, is, to account for the order of succession in which objects recur to the memory, and to which we give the name of time. But this difficulty will vanish when we have ascertained what time is. At present it is sufficient to observe that our perceptions of external objects remain a certain space of time in the mind; that this time is different, according to the strength and other circumstances of the impression which occasioned the perception; and that traces of those perceptions may be recalled after the intervention of other trains of ideas, and at very different intervals. If one look upon a house, and then shut his eyes, the impression which it made upon his mind will not instantly vanish:
Part I.

Metaphysics.

Retention and Loss.

73 Brutes have memory, and

with: he can contemplate the house almost as long as he pleases; and, by the help of various associated circumstances, he may recall the idea several years afterwards and refer it to the original perception.

Before we dismiss the object of attention, it may not be improper to take notice of the retentive powers of inferior animals. Aristotle, Locke, Dr. Reid, and almost every philosopher of eminence both among the ancients and moderns, have maintained, that inferior animals have memory as well as men; and indeed we do not perceive how the fact can be denied of the more perfect animals, and those with whose operations we are least acquainted. A dog knows his master again after a long absence; a horse will trace back a road which he has but once travelled, often with more accuracy than his rider; and it is well known that many species of singing birds have a capacity to learn tunes from the human voice, and that they repeat the same; which is commonly called his phantasms, should know it after a few minutes. If this reviver of his philosophy is inclined to say, that memory necessarily implies a faculty capable of improvement by exercise, what is this but an admission, that if imagination belongs only to man and memory of sensible objects both to man and brute——we can contemplate in imagination the idea of a cactus or a golden mountain, but we cannot be found to remember them, for they were never perceived. That a dog can contemplate in his imagination the idea of a cactus or a golden mountain, we have not the least reason to suppose; but were he not capable of viewing relics of sense reported within him, and referring them to their original causes, he could not possibly recognize his master after a day’s absence.

Dr. Reid and the same author agree with Aristotle, the power in thinking it probable that brutes have not reminiscence, or the power of recollection; but there are many well attested facts which seem to prove the contrary. We shall mention one which fell under our own observation. One of the persons concerned in this work was, when a young man, absent for five months from the house of his father. Upon his return, a dog of that species which is commonly called the shepherd’s cur, and which had been in the possession of his father only a few months before his departure, gazed at him for a few minutes as at any other stranger. The animal then began to walk around him with looks which soon attracted his notice. This made him call the dog by the name which he bore in the family, and stretch out his hand to caress him, when the creature instantly leaped upon him with all that appearance of attachment which those animals so commonly exhibit upon the return of their master after a few days absence. If this was not recollection, we should be glad to know what it was, for we cannot distinguish it from recollection in men. Indeed, if dogs and some other animals possess, as Aristotle, Locke, and others, allow them to possess, the power of memory and something of reminiscence; and if as Dr. Reid expressly says, “they expect events in the same order and succession in which they happened before;” it is not conceivable that they can be wholly destitute of reminiscence, or the power of recollection.

That memory is a faculty of the first importance, cannot be denied; since it is obvious, that, without the power of retaining the ideas and notions which we receive by the senses and other faculties, we never could make any progress in the acquisition of knowledge, but should begin every day, nay every hour, in the same state of ignorance in which we were born. That it is a faculty capable of improvement by exercise, and that there are some methods of exercise better adapted for this purpose than others, has been shown elsewhere. See Memory.

Chap. III. Of Simple Apprehension and Conception.

The ideas received into the mind by the senses, Ideas of and treasured up in the memory and imagination, are foundation of the original materials of human knowledge. It is by the first comparing those ideas with one another, or by analyzing them into their first principles, that we acquire all our knowledge in mathematics and philosophy, and
and indeed all the knowledge which regulates our conduct through life. It must, therefore, be of importance to trace the progress of the mind in its various operations upon these materials; beginning as the certainly begins, with that which is most simple, and proceeding regularly to those which are more complex and difficult.

Now the first operation of the mind about her ideas appears plainly to be that which logicians term simple apprehension. Having yesterday observed a tree or any other object, if we contemplate the idea of that tree to day as it remains in the imagination, without comparing it with any other idea, or referring it to any external object, we perform the operation which is called simple apprehension. We consider simple apprehension as an operation, because the mind in the apprehension of her own ideas is certainly active; she turns them, as it were, round and round, and views them on every side.

Simple apprehension is a phrase which is commonly taken to be of the same import with the word conception; and in the ordinary affairs of life no confusion can arise from an indiscriminate use of the two words: but in this article we think it expedient to employ the phrase simple apprehension, to denote the view or contemplation of those ideas only which the mind by sensation has actually received from external objects; and the word conception to denote the view, not only of those ideas, but also of such as the mind fabricates to herself. Thus, a man may conceive a centaur, but we would not choose to say that he may apprehend a centaur; not that there is any impropriety, perhaps, in this last expression; but as there is certainly a difference between apprehending the idea of what has been seen or felt, and conceiving that which never existed, pernicuity requires that these different operations be expressed by different names.

We have said that the mind may conceive what never existed; and every man may easily satisfy himself that what we have said is true: but though this has been frequently called the creative power of the mind, it has in fact no resemblance to creation. The materials of all our most complex and fantastic conceptions are furnished to our hands by sensation and reflection; nor can we form one simple idea which was not originally received by some of our senses from external objects, or, as shall be shown afterwards, one intellectual notion which was not acquired by reflecting on the operations of our own minds. To explain the process of fantastical conception, it is to be observed, that in every sensible object we perceive at once several things, such as colour, figure, extension, and motion or rest, &c. These are the objects of different senses: but they are not, at least, by full grown men, perceived in succession, but all at once; whence it comes to pass that the memory, or the imagination, retains not several distinct and disjointed ideas, but the idea of one colour, figured, and extended object. But when we compare various objects, or the ideas of various objects, together, we find that in some respects they agree and in others disagree; i.e. that several objects affect some of our senses in the same way, and other senses differently. Thus one globe is black, and another white; one black substance is circular and hard, and another square and soft. In the first instance, the two globes affect our sense of touch in the same way, and our sense of seeing differently; in the second, the two black substances affect our sense of sight in the same way, and our sense of touch differently.

From observing this difference among objects by means of the different sensations received from them, the mind learns to analyze its original ideas, which are copies of those sensations, into their first principles, and to combine those principles in such a manner as to form complex ideas of objects which we never actually perceived by the senses. Of the simple and unmixed principles which compose those complex ideas, there is not indeed one which was not originally received by some sense; so that the whole difference between complex ideas fabricated by the mind, and those which are the relics of sensation, consists in the order in which the constituent simple ideas of each are put together. Thus, no man ever saw a mountain of pure gold; and therefore the idea of such a mountain can be in no human mind as a relic of sensation; but we have all seen pieces of gold of different sizes, and we have all seen mountains; and nothing is more easy than to conceive a piece of gold extended on all sides to the size of a mountain, and rising out of the earth. Again, though no peron ever saw a centaur, yet it is easy to conceive the upper parts of a man joined to the breast and shoulders of a horse. In these instances, the complex conceptions are of things which is in the highest degree probable never had a real existence, and which it is certain we never perceived as existing; but the simple ideas of which they are composed are the relics of actual sensations; for every one has perceived as really existing the body of a horse and the upper parts of a man, and when conceiving a centaur he only perceives them to exist united. That we have not in the imagination one simple and unmixed idea which was not left there as a relic of sense, every man will be convinced who shall try to conceive a simple colour or taste which is totally different from all the colours and tastes, and all the shades and varieties of them, which he has received by sensation; but his simple ideas, though all received from without, he may put together in numberless manners, differing from any order in which he has ever actually perceived the qualities of external objects existing.

Yet even this power of the mind is limited. It is impossible to put together a number of contrary and inconfident ideas, in such a manner as to form of them one complex conception. No man, for instance, can ever form a conceiving a thing to be at once white and black, round and square, hard and soft, in motion and at rest. Hence it is a maxim among philosophers almost universally received, that though we can conceive many things which never actually existed, yet we can form no ideas but of such things as might possibly exist. A centaur never existed, but it may be conceived; for it is by no means imposible that the head of a man might be joined to the body of a horse; but black snow cannot be conceived; for in the complex idea denoted by the word snow white新生儿s an essential part, and nothing can be conceived to be both black and white at the same time. From this undeniable fact, that we cannot conceive impossible existence, the power of conception has by some writers in certain infinances been made a test of truth. In every idea is implied
Part I.

Of Simple Appreciation and Conception.

The singular opinion of Dr Reid respecting our power of conception.

This axiom has been denied by the author of the Essays on the Intellectual Powers of Man; who affirms, that "any two sides of a triangle may be conceived to be equal to the third," as distinctly as "any two sides of a triangle may be conceived to be greater than the third." This assertion from such a man surprised us as much as any paradox which we ever read: for nothing is more certain, that we ourselves can form no conception of a triangle of which two of the sides are only equal to the third. We can, indeed, resolve the proposition into its different ideas, and form the distinct and independent ideas of a triangle, two sides, and one side; and we can likewise form the general notion of equality: but to combine these ideas and this notion into one individual complex conception, we find to be absolutely impossible. A man who knows nothing of triangles, if such a man there be, might believe Dr Reid that it is a figure of which one of its sides is equal to the other two; but such a person would have no conception of the figure itself, but only a confidence in the Doctor's veracity.

What is it to conceive a corporeal thing to exist? Is it not to fancy that we view it on all sides, as what may be seen, or felt, or smelt, or talked? The Doctor, indeed, repeatedly reproaches as the source of much error the notion of ideas as images in the mind; and if ideas be taken as real mental figures, he is certainly right: But we appeal to the common sense of mankind, whether every person distinctly conceives a triangle, is not at the time conscious that his mind is affected in a manner similar, though not so forcibly, as when he actually views a triangle with his eyes? What other men may feel, they know best; but we are as certain that this is the case with respect to oursefes, as we are certain of our own existence. That affection of the mind is occasioned by some agitation in the brain, of the same kind with that which occasions actual perception, is highly probable; but whatever be the cause, the fact is undeniable.

The Doctor's words, indeed, taken by themselves, would lead one to think, that by conception he means, in this case nothing more than the understanding of the terms of a proposition; but if that be his meaning, there was no room for controversy; as the great philosophers Cudworth, Clarke, Price, and Hume, who in their own opinion he is combating, would have been as ready as himself to allow, that when a man is thoroughly master of any language, he will find no difficulty in understanding the meaning of any particular words in that language, however absurdly these words may be put together. When Dr Price says, that "in every idea is implied the possibility of the existence of its object, nothing being clearer than that there can be no idea of impossibility or conception of what cannot exist," his meaning evidently is, that we cannot mentally contemplate or fancy ourselves viewing any thing corporeal, which we might not actually view with our eyes, or perceive by some other sense (1). This is the true meaning of conception, which is something very different from understanding the separate meaning of each word in a proposition.

The learned professor, however, appeals to the practice of mathematicians for the truth of his opinion: and if they be on his side we must give up the cause; for in no science have we such clear ideas, or such absolute certainty, as in mathematical reasonings. But it is to be observed, that the word conception is with no propriety applied to abstrait truth, but to real or possible existence; nor can we be said to conceive distinctly a real or possible object, unless we be able to turn it round and round, and view it on all sides. The faculties which are conversant about abstrait truth are the judgment and the reason; and truth itself conflicts in the agreement, as falsehood does in the disagreement, of two or more ideas or terms compared together. If those ideas about which the judgment is to be made can immediately be brought together, without the intervention of a third idea, it is impossible that we should judge, or, if Dr Reid will have it so, conceive that to be true which is really false. If the two ideas cannot be immediately brought together, it is impossible that we should form any judgment or conception at all about their agreement or disagreement; but we may suppose or admit, for the sake of argument, that they agree or disagree; and if that supposition conduces to a manifest absurdity, we then know that the supposition was false. It is, therefore, perfectly agreeable to

(1) Dr Price may be thought by some to have contradicted in this passage what he had asserted in a former work. He is a vigorous advocate for abstract and general ideas even of material objects; but those among the moderns who contend the most zealously for these, contend for them only as conceptions of the mind which can have no possible existence cut of it. Were this likewise the opinion of Dr Price, he would certainly have fallen into a direct contradiction; but this is not his opinion. His notion of abstract ideas seems to be the same with that of Plato, who considers ideas, not only as the possibilities of existence, but as things actually existing from eternity, uncreated and independent even of the Supreme Mind. That Dr Price carries the matter thus far, we are unwilling to believe; but he certainly considers general ideas as real existences independent of our minds, though the immediate objects of our understanding. That in this notion he is mistaken, we shall endeavour to prove in the next chapter. It is enough for our present purpose to have shown that he does not contradict himself; and that he might with great propriety affirm on his own principles, as well as upon the principles of those who admit not of universal ideas, that in every idea is implied the possibility of its object.
METAPHYSICS.

Part I.

Of Simple Apprehension and Conception.

The maxim of Price and Hume, that mathematicians should in many cases prove some things to be possible and others impossible, which without demonstration would not have been believed; because if the ideas compared cannot be immediately brought together, no judgment previous to the demonstration can be formed of the truth or falsehood of the proposition; and if it concern not real or possible existence, it is a proposition with which conception has nothing to do.

"But (says Dr Reid) it is easy to conceive, that in the infinite series of numbers and intermediate fractions, some one number integral or fractional may bear the same ratio to another as the side of a square bears to its diagonal." We are so far from thinking this an easy matter, that if the word conceive be taken in the sense in which it is used by the philosophers whose opinion he is combating, we must confide that we can form no adequate conception at all of an infinite series. When we make the trial, we can only bring ourselves to conceive the real numerical figures: 1, 2, 3, &c. or the fractional parts 1/2, 1/3, &c.; and even here our conception reaches but a small way.

We have reason to believe, that minds of a larger grasp can conceive at once more of the series than we can; and that the Supreme Mind conceives the whole of it, if the whole of a mathematical infinity be not a contradiction in terms: but surely no man will say that he can conceive an infinite series as he conceives a centaur, and have an adequate and distinct view of it at once. If, by conceiving that in an infinite series some one number may bear the same ratio to another that the side of a square bears to its diagonal, the Doctor only means that such a supposition may be made; his observation is not to the purpose for which it is brought; the question is not about our power to make suppositions of this kind, but about our power to raise in our imaginations an adequate and distinct mental view of possible or impossible existence. "To suppose (says Johnfon), is to advance by way of argument or illustration, without maintaining the truth of the position." In this sense a man may suppose that in an infinite series there may be some one number which bears the same ratio to another that the side of a square bears to its diagonal: but such a supposition contains in it nothing that is positive, which conception always does; it is only admitting, for the sake of argument, a proposition, of the truth or falsehood of which the person who makes the supposition knows nothing. He is only talking of ratios as a blind man may talk of colours. A man born blind may be made to comprehend many of the laws of optics, and may make suppositions about colours, and reason from such suppositions to a certain extent, as clearly and truly as one who sees; but will any person say that a man blind from birth can conceive red or green? It is much the same with respect to an infinite series. We can follow such a series so far, and may know the ratio by which it increases or decreases, and reason from what we know with the utmost certainty: but no man ever conceived the whole of an infinite series as he conceives an individual object; nor can any reasonings upon the nature of it be applied to the question of conceiving impossible existence.

But "mathematicians often require us (says Dr Reid) to conceive things that are impossible, in order to prove them to be so. This is the case in all their demonstrations ad absurdum." Conceive (says Euclid) a right line drawn from one point of the circumference of a circle to another, to fall without the circle. I conceive this, I reason from it, until I come to a consequence that is manifestly absurd, and from thence conclude that the thing which I conceived is impossible." If it be indeed true, that Euclid directs his readers to conceive a mathematical circle with a line drawn from one point of its circumference to another, and that line lying without the circle—if he really desires them to form such a complex conception as this, we have no hesitation to affirm, that he requires them to do what is manifestly impossible. The writer of this article has not in his custody any copy of the elements in the original Greek, and therefore cannot say with certainty what are Euclid's words, nor is it of much importance what they be; for on a question which every man may decide for himself, by looking into his own mind, the authority of Euclid is nothing. The proposition to which the Doctor refers, is the second of the third book; and, in the edition of Simpson is expressed thus: "If any two points be taken in the circumference of a circle, the straight line which joins them shall fall within the circle." Every mathematician who can form an adequate conception of a circle and a straight line, perceives the truth of this proposition instantly, for it results necessarily from his conception; but he who has not an adequate conception of a circle, may stand in need of a demonstration to show him the truth: for it is to be observed, that demonstration does not make truth; it only points it out to those who cannot perceive it intuitively, just as a microscope does not make the hairs on a mite's back, but only brings them within the field of vision.

Were a man who never examined a mite through a microscope, and who has no adequate ideas of the insect kingdom, to be asked whether there be hairs on a mite's back? he would probably answer that he did not know, but he could conceive no such hairs. In like manner, were a man who has no adequate conception of a mathematical circle, to be asked whether a straight line, which joins any two contiguous points in the circumference, could lie without the circle? he would probably answer that he did not know. Now it is to be remembered, that the reader of the Elements can have no very adequate conception of a circle when he comes to the second proposition of the third book. The definition of a circle was indeed given him in the introduction to the first book: but of that definition he has hitherto had occasion to make very little use, so that his idea of a circle will be little more accurate than that of an illiterate clown, who has no other idea of the figure than what he takes from a half-penny or a shilling. Dr Reid himself has elsewhere well observed, that "when a youth of moderate parts begins to study Euclid, every thing at first is new to him. His apprehension is unready; his judgment is feeble; and rests partly upon the evidence of the thing, and partly upon the authority of his teacher: but every to the first time he goes over the definitions, the axioms, the elementary propositions, more light breaks in upon him; the language becomes familiar, and conveys clear and ready conceptions." In this state he certainly
of Abstraction and general Ideas.

Every sensible object is an individual, and differs in many respects from every other object. As such it is perceived by the senses; and ideas being nothing more than reflections of sensation preserved in the imagination or memory, every idea must of course be an individual, as much as the object to which it refers. But all science, whether mathematical, moral, or metaphysical, is convergent about general truths; and if truth consists, as we have already observed, and shall more fully evince afterwards, in the agreement or coincidence of ideas, how, it may be asked, can general truth result from the comparison of general ideas? To get rid of this difficulty, many philosophers, both ancient and modern, pretend that the mind is furnished with general ideas, from a comparison of which result general propositions applicable to many individuals. Philosophers, indeed, have differed in opinion respecting the source of those ideas; some of the ancients deriving them immediately from the supreme mind to the human, whilst almost all the moderns say that they are framed by abstraction, and therefore call them abstract ideas.

The doctrine of abstract ideas has been so fairly the described, and in our opinion, so completely overthrown, by Bishop Berkeley, that we shall content ourselves with abstract ideas stated, and obviating some cavils which have lately been urged against his reasoning. It is agreed on all hands (fays that learned and ingenious prelate), that the qualities or modes of things do never really exist to each of them apart by itself and separated from all others; but are mixed, as it were, and blended together, forever in the same object. But, we are told, the mind being able to consider each quality singly, or abstracted from those other qualities with which it is united, does by that means frame to itself abstract ideas.

For example: There is perceived by sight an object extended, coloured, and moved: this mixed or compound idea, the mind resolving into its simple constituent parts, and viewing each by itself exclusive of the rest, does frame the abstract ideas of extension, colour, and motion. Not that it is possible for colour or motion to exist without extension; but only that the mind can frame to itself by abstraction the idea of colour exclusive of extension, and of motion exclusive of both colour and extension. Again, the mind having observed that in the particular extensions perceived by sense, there is something common and alike in all, and some other things peculiar, as this or that figure or magnitude, which distinguish them from one another; it considers apart, or singles out by itself, that which

(x) Principal Campbell, treating of the commonly received doctrine of abstraction, and having shown, that though Locke has in one passage of his immortal work expressed himself on the subject in terms unintelligible, his sentiments on the whole differed little from those of Berkeley and Hume, adds—"Some of the greatest admirers of that eminent philosopher seem to have overlooked entirely the preceding account of his sentiments on this subject; and, through I know not what passion for the paradoxical (I should rather say the impossible and unintelligible), have shewn an amazing zeal for defending the propriety of the hasty expressions which appear in the passages formerly referred to. Has not the mind of man (say they) an unlimited power in moulding and combining its ideas? The mind, it must be owned, hath an unlimited power in moulding and combining its ideas. It often produces wonderful forms of its own out of the materials originally supplied by sense; forms indeed of which there is no exemplar to be found in nature: centaurs and griffins, Gorgons and hydras, and chimeras dire.

But still it must not attempt absolute impossibilities, by giving to its creature contradictory qualities. It must not attempt to conceive the same thing to be black and white at the same time; to conceive two or more lines to be both equal and unequal; the same angle to be at once acute, obtuse, and right," or, we may add, the two sides of a triangle to be not greater than the third. See Philosophy of Rhetoric, vol. ii. p. 108, &c.
METAPHYSICS.

Which is common, making thereof a most abstrat idea of extension, which is neither line, surface, nor solid, nor has any figure or magnitude, but is an idea entirely prefounded from all these. So likewise the mind, by leaving out of the particular colours perceived by sense, that which distinguishes them one from another, and retaining that only which is common to all, makes an idea of colour in abstract, which is neither red, nor blue, nor white, nor any other determinate colour. And as the mind frames to itself abstract ideas of qualities or modes, so does it by the same process, or mental separation, attain abstract ideas of the more compounded beings, which include several coexistent qualities. For example: The mind having observed that Peter, James, and John, resemble each other in certain common agreements of shape and other qualities, leaves out of the complex or compounded idea it has of Peter, James, and any other particular man, that which is peculiar to each, retaining only what is common to all, and so makes an abstract idea, wherein all the particulars equally partake, abstracting entirely from and cutting off all those circumstances and differences which might determine it to any particular existence. After this manner, it is said, we come by the abstract idea of man, or, if you please, humanity or human nature: in which, it is true, there is included colour, because there is no man but has some colour; but then it can be neither black nor white, nor any particular colour, because there is no one particular colour wherein all men partake. So likewise there is included stature; but then it is neither tall stature, nor low stature, nor middle stature, but something abstracted from all these; and so of the rest. Moreover, there being a great variety of other creatures that partake in some parts, but not all, of the complex idea man; the mind, leaving out those parts which are peculiar to man, and retaining those only which are common to all the living creatures, frameth the idea of animal: which abstracts not only from all particular men, but also from all birds, beasts, fishes, and insects. The constituent parts of the abstract idea of animal, are body, life, sense, and spontaneous motion. By body, is meant body without any particular shape or figure, there being no one shape or figure common to all animals, without covering either of hair or feathers or scales, &c. and yet not naked; hair, feathers, scales, and nakedness, being the distinguishing properties of particular animals, and for that reason left out of the abstract idea. Upon the same account, the spontaneous motion must be neither walking, nor flying, nor creeping; it is nevertheless motion; but what that motion is, it is not easy to conceive.

"Whether others have this wonderful faculty of analysing their ideas (continues the Bishop), they best can tell; for myself, I find indeed that I have a faculty of imagining or representing to myself the ideas of those particular things which I have perceived, and of artfully compounding and dividing them. I can imagine a man with two heads, or the upper parts of a man joined to the body of a horse. I can consider the hand, the eye, the nose, each by itself abstracted or separated from the rest of the body. But then, whatever hand or eye I imagine, it must have some particular shape, and some particular colour.—Like wife the idea of man that I frame to myself, must be either of a white, or of a black, or a tawny, a straight or a crooked, a tall or a low, or a middle fixed man. I cannot by any effort of thought conceive the abstract idea above described. To be plain, I own myself able to abstract in one sense, as when I consider some particular parts or qualities separated from others with which, though they are united in some objects, yet it is possible they may really exist without them. But I deny that I can abstract one from another, or conceive separately those qualities which it is impossible should exist fo separated; or that I can frame a general notion by abstracting from particulars in the manner aforesaid; and there are grounds to think most men will acknowledge themselves to be in my case."

To think this there are indeed such good grounds, shown to it that it is probable form of our readers, little conversant with the writings of modern metaphysicians, are the time disposed to suspect, that the Bishop in his zeal may have misrepresented the doctrine of abstraction; as no man in his senses who is not perverted by some darling hypotheses, can suppose himself capable of tagging together such monstrosities, or confidering, as Mr. Harris contemptuously, but most properly, terms it, has not exaggerated in the smallest degree, is apparent from the following account of abstraction given by Mr. Locke. "Abstract ideas (says that writer) are not so obvious or easy to children, or the yet unexercised mind, as particular ones. If they seem so to grown men, it is only because by constant and familiar use they are made so: for when we nicely reflect upon them, we shall find that general ideas are fictions and contrivances of the mind that carry difficulty with them, and do not so easily offer themselves as we are apt to imagine. For example, Does it not require some pains and skill to form the general idea of a triangle (which is yet none of the most abstract comprehensive and difficult) it for it must be neither oblique nor rectangle, neither equilateral, equinatural, nor scalenon, but and none of these at once. In effect, it is some thing imperfect that cannot exist, an idea wherein some parts of several different and inconsequent ideas are put together." "Surely (to use the words of principal Campbell *) the bare mention of this hy-Philosophical idea is equivalent to a confutation of it, since it phy of really confutes itself." But if any man has the faculty of framing in his mind such an idea of a triangle as is here described, it would be vain in us to dispute with him; for we are possessed of no such faculty, and therefore would fight on unequal terms. All we have to desire is, that the reader would fully and certainly inform himself whether he has such an idea or not; and this can be no hard task to perform. What is more easy for any one than to look a little into his own thoughts, and there try whether he has, or can attain to have, an idea of colour, separated from all extension; of extension, which is neither great nor small; of tastes, which is neither sweet nor bitter, nor acid,
Dr. Reid having denied that there are or can be in the mind any ideas of sensible objects, rejects of course the doctrine of abstract general ideas, whilst he maintains in fact the same thing, only substituting the word conception for the word idea. "What hinders me (says he) from attending to the whiteness of the paper before me, without applying that colour to any other object?" We know nothing indeed which can hinder any man from performing this operation, which is daily and hourly performed by infants; but will the Doctor say, that he can attend to colour, or conceive it, abstracted from the paper and every other surface? We are persuaded he will not, though he immediately adds, "the whiteness of this individual object is an abstract conception." Now we should rather have thought, that, consistent with his own notions of colour, he would have called the whiteness of the paper a concrete quality, and his own conception of it a particular and concrete conception. If he conceives the whiteness as separated from the paper, it is no longer the whiteness of that individual object: and he must either conceive it as abstracted from all objects, which is plainly impossible; or he must conceive it as inhering in some other object; and then neither the quality of whiteness, nor his conception of it, is abstract and general, but concrete and particular. He affirms, however, "that in abstractions, strictly so called, he can perceive nothing that is difficult either to be understood or practiced." This is going much farther into the doctrine than Mr. Locke went: for he owned that there was much difficulty in it. Let us see how it becomes so easy to Dr. Reid. "What can be more easy (says he) than to distinguish the different attributes which we know to belong to a subject? In a man, for instance, to distinguish his size, his complexion, his age, his fortune, his profession, and twenty other things that belong to him?" All this indeed, and much more, we can do with the utmost ease; but this is not abstraction, strictly so called, nor any thing like abstraction. We distinguish the size, the complexion, the age, &c. of the man, from one another: but still we conceive them all as his qualities; nor is it possible, at least for us, to abstract them from him, without conceiving them as the qualities of some other man; so that our conceptions are all concrete and particular. "It ought likewise to be observed (says the Professor), that attributes may with perfect ease be distinguished and disjoined in our conception, which cannot be abstracted in the subject." They may be so in his conception, but certainly not in ours; for we can conceive nothing which may not actually exist. "Thus (continues he) I can in a body distinguish its solidity from its extension, and its weight from both. In extension, I can distinguish, length, breadth, and thickness; but none of these can be separated from the body, or from another. It is therefore certain, that attributes, which in their nature are absolutely inseparable from their subject and from one another, may be disjoined in our conception; one cannot exist without the other, but one can be conceived without the other." So far is this from being a matter of certainty, that in every possible sense in which we can understand the word conception, it appears to us as evidently false, as that three and two are equal to nine. It is indeed not difficult to distinguish in a body its solidity from its extension, and its weight from both: but can we distinguish them out of the body? or, to speak in plain language, can we conceive solidity as separated from all extension and all weight? Unless this can be done, and by us it cannot be done, there is no abstraction strictly so called. It is indeed easy to conceive solidity or extension abstracted from any one individual object: but how is it done? Why, by transferring your attention to some other individual object. Thus, we can easily conceive solidity or extension separated from a guinea, for instance; but it is only by transferring our thoughts to another body, a piece of silver, or a ball of gold, &c. and our conceptions in both cases are particular and concrete.

As we think the opinion of Dr. Reid's respecting abstraction both ill-founded and of dangerous consequences, we have expressed our dissent from it in strong terms; and in doing so we have only followed the example set us by himself when dissenting from the theories of Hume and Berkeley. But we are so thoroughly convinced that the Doctor's acuteness is superior to our own (1.), that we are not without our fears that we may have misconstrued his meaning. We are conscious that we have not willfully misrepresented it: and to enable our readers to judge for themselves between him and us, we shall lay before them his definition of general conceptions in his own words.

That there are in every language general terms, is known to all mankind; for such are all substantives, how they proper names excepted; and all adjectives. But "it is impossible (says the Doctor)" that words can have a general signification, unless there be conceptions in the powers of Men.

(1) "If such an extraordinary faculty (abstraction) were possible, I cannot for my part conceive what purpose it could serve. An idea hath been defined by some logicians, the form or resemblance of a thing in the mind; and the whole of its power and use in thinking is supposed to arise from an exact conformity to its archetype. What then is the use or power of that idea, to which there neither is nor can be any archetype in nature, which is merely a creature of the brain, a monster that bears not the likeness of any thing in the universe?" — Philosophy of Rhetoric, vol. ii. p. 110.

(2) Notwithstanding this declaration, which is made with the greatest sincerity, we do not apprehend that we are guilty of presumption when we examine the Doctor's opinions. Berkeley and Hume were certainly as acute as any metaphysician who has succeeded them; yet their opinions have been canvassed without ceremony, and to much advantage.
the mind of the speaker and of the hearer, of things (n) that are general. It is to such that I give the name of general conceptions: and it ought to be observed, that they take this denomination, not from the act of the mind in conceiving, which is an individual act; but from the object or thing conceived, which is general. Now, whatever is conceived, must be either external to the mind, or present with it. But the Doctor himself acknowledges, "That all the objects we perceive are individuals. Every object of sense, of memory, or of confusion of its kind, is an individual object. All the things we enjoy or desire, and all the evils we fear, must come from individuals; and I think we may venture to say, that every creature which God has made in the heavens above, or in the earth beneath, or in the waters under the earth, is an individual." If this be so, and no man can call it in question, it is obvious that we can have no general conception of any thing external. The act of conceiving is an individual act; and therefore the only thing which can be general, must be something present with the mind, and different from the mere act of conceiving. But what can this be, if not what Berkeley and others call an idea? And how comes it to be so prevalent among every object which affects us? The word idea is generally received as temporary, and the same object which God perceives, by its intellectual power, in what respects they agree and in what they disagree? If the agreement be striking, and in more qualities than one, it combines the several individuals into one class or species, giving to the whole a common name, which equally denotes the species and every individual belonging to it. Thus, observing that Peter, James, and John, agree in having the same effect, in walking on two legs, in having hands, &c. and in being endowed with reason, we combine these three, and all other individuals which we perceive to agree in the fame striking and important qualities, into one species, to which we give the name of man—a word which equally denotes the whole species and every individual of it. Again, contemplating several figures, which all agree in the circumstance of being bounded by three straight lines meeting one another so as to form three angles, we call the whole class of figures and each individual by the name of triangle—though it may be impossible to contemplate any number of triangles without perceiving that all the angles of one are acute; that one angle of another is a right angle; and that in the third there is one angle obtuse: but the word triangle, unless it is limited in its significion by the addition of an adjective, is equally expressive of an acute-angled triangle, a right-angled triangle, and an obtuse-angled triangle. By thus arranging individuals according to their most conspicuous qualities, we may combine all the objects existing into so many classes or species, which shall be afterwards known by as many names; but of each species we neither have, nor can have, any other idea than that of a multitude of similar individuals.

As our acquaintance with nature enlarges, we discover resemblances striking and important between one species and another, which naturally begets the notion of a higher class called a genus. From comparing man with beasts, birds, fishes, and reptiles, we perceive that they are all alike possessed of life, or a principle of sensation and action, and of an organized body: hence we rank them all under a higher class or genus, to which we give the name of animal; which equally denotes the whole genus, each species comprehended under the genus, and every individual of every species. Thus, animal is a genus; man, beast, bird, are so many species comprehended under that genus; and Peter, James, and John, are individuals of the species man. Peter, James, and John, are proper names, denoting each an individual;
Part I.

Metaphysics.

Of Abstraction and general Ideas.

Names and ideas often used as mere signs.

"It is a received opinion (says Bishop Berkeley), that language has no other end but the communicating of our ideas, and that every significant name stands for an idea. This being so; and it being withal certain, that names, which yet are not thought altogether insignificant, do not always mark out particular conceivable ideas; it is straightway concluded that they stand for abstraction notions. That there are many names in use among speculative men, which do not always suggest to others determinate particular ideas, is what nobody will deny: and a little attention will discover, that it is not necessary, even in the strictest reasoning, for a name which stands for an idea, should every time they are used excite in the understanding the ideas they are made to stand for. In reading and discoursing, names are for the most part used as letters in algebra; in which, though a particular quantity be marked by each letter, yet to proceed right, it is not requisite that in every step each letter suggest to our thoughts that particular quantity it was appointed to stand for. The same thing is true of ideas, which as well as names are often used merely as signs representing a whole chais; and on that account they may be called general, though every idea is in itself strictly particular. Thus, "An idea, which considered in itself is particular, becomes general by being made to represent or stand for all other particular ideas of the same fort. To make this plain by an example, suppose a geometrical theorem demonstrating the method of cutting a line in two equal parts: He draws, for instance, a black line of an inch in length: this, which in itself is a particular line, is nevertheless with regard to its signification, general; since, as it is there used, it represents all particular lines whatsoever: so that what is demonstrated of it is demonstrated of all lines, or, in other words, of a line in general. And as that particular line becomes general by being made a sign; so the name line, and the idea of a line in the imagination, either of which taken absolutely is particular, by being signs are made general likewise. And as the former owes its generality, not to its being the sign of an abstract or general line, but of all particular right lines that may possibly exist; so the latter, the name and the idea, must be thought to derive their generality from the same cause, namely, the various particular lines which each of them indirectly denotes. Again, when one demonstrates any proposition concerning triangles, it is to be supposed that he has in view to demonstrate an universal truth; yet the particular triangle which he considers must be either equilateral, isosceles, or scalene; for a plain triangle, which is none of these, can neither exist nor be conceived. But whether it be of this or that fort is of no importance, as any of them may equally stand for and represent all rectilinear triangles, and on that account be denominated universal."

This doctrine respecting names and ideas being used merely as signs, has been adopted by almost every subseuent philosopher; and by Principal Campbell it has been illustrated with particularity and acuteness in every way worthy of the author of the Dissertations on Miracles. "In confirmation of this doctrine (says he *), it may be observed, that we really think by signs, as well as speak by them. All the truths which constitute science, which give exercise to reason, and are discovered by philosophy are general; all our ideas, in the strictest sense of the word, are particular. All the particular truths about which we are conversant are properly historical, and compose the furniture of memory. Nor do I include under the term historical the truths which belong to natural history; for even these too are general. Now, beyond particular truth or historical facts, first perceived and then remembered, we should never be able to proceed one single step in thinking any more than in converting without the use of signs.

When it is affirmed that the whole is equal to all its parts, there cannot be an affirmation which is more perfectly intelligible, or which commands a fuller assent. If, in order to comprehend this, I recur to ideas, all that I can do is to form a notion of some individual whole, divided into a certain number of parts of which it is constituted; suppose of the year, divided into the four seasons. Now all that I can be said to discern here is the relation of equality between this particular whole and its component parts. If I recur to another example, I only perceive another particular truth. The fame holds of a third and of a fourth. But so far am I, after the perception of ten thousand particular similar instances, from the discovery of the universal truth, that if the mind had not the power of considering things as signs, or particular ideas as representing an infinity of others, resembling in one circumstance though totally dissimilar in every other. I could not so much as conceive the meaning of an universal truth. Hence it is that *some ideas, to adopt the expression of Berkeley, are particular in their nature, but general in their representation."

But if in universal propositions, ideas particular in which themselves are used only as the signs of others, it may though be demanded, how we can know any proposition to be particular true of all the ideas which are represented by the signs? For example, having demonstrated that the three angles of an isosceles rectangular triangle are equal to two right ones, how can we conclude that this affection therefore agrees to all other triangles because which have neither a right angle nor two equal sides? To this question Bishop Berkeley and Principal Campbell give the following answer: Though the idea we have in view whilst we make the demonstration be that of an isosceles rectangular triangle, whose sides are of a determinate length, we may yet be certain that the demonstration extends to all other rectilinear triangles of what fort or bigness forever; for this plain reason, that neither the equality nor determinate length of the sides, nor the right angle, are at all concerned in the demonstration. It is true, the idea or diagram we have in view includes all these particulars; but then there is not the least mention made of them in the proof.
proof of the proposition. It is not said the three angles are equal to two right angles, because one of them is a right angle, or because the sides comprehending it are of equal length; which sufficiently shows that the right angle might have been oblique and the sides unequal; and for all that the demonstration have held good. In every one of Euclid's theorems, a particular triangle, and a particular parallelogram and a particular circle, are employed as signs to denote all triangles, all parallelograms, and all circles. When a geometrician makes a diagram with chalk upon a board, and from it demonstrates the property of a straight-lined figure, no spectator ever imagines that he is demonstrating a property of nothing else but that individual white figure, five inches long, which is before him. Every one is satisfied that he is demonstrating a property of all of that order, whether more or less extensive, of which it is both an example and a sign; all the order being understood to agree with it in certain characters, however different in other respects. Nay, what more is the mind, with the utmost facility extends or contracts the representative power of the sign as the particular occasion requires. Thus the same equalilateral triangle will with equal propriety serve for the demonstration, not only of a property of all equilateral triangles, but of a property of all isosceles triangles, or even of a property of all triangles whatever. Nay, so perfectly is this matter understood, that if the demonstrator in any part should recur to some property belonging to the particular figure he hath constructed, but not essential to the kind mentioned in the proposition, and which the particular figure is solely intended to represent, every intelligent observer would instantly detect the fallacy. So entirely for all the purposes of science doth a particular serve for a whole species or genus. Now, why one effible individual should in our reasonings serve without the smallest inconvenience as a sign for an infinite number, and yet one conceivable individual, or a particular idea of imagination, should not be adapted to answer the same end, it will, we imagine, be utterly impossible to say (n).

It must, however, be confessed, that there is a considerable difference in kind, between ideas used as signs of the general terms of any language. Amongst all the individuals of a species, or even of the highest genus, there is still a natural connection, as they agree in the specific or generic character; and when the mind makes use of any positive idea as the sign of the species or genus, that idea appears in the imagination as an exact resemblance of some one individual. But the connection which subsists between words and things, or even between words and ideas, is in its origin arbitrary; and yet its effect upon the mind is much the same with that of the natural connection between ideas and things. For having often had occasion to observe particular words used as signs of particular things, and specific terms used as signs of a whole species, we contract a habit of associating the sign with the thing signified, insomuch that either being presented to the mind necessarily introduces or occasions the apprehension of the other. Custom in this instance operates precisely in the same manner as natural resemblance in the other; so that certain sounds, and the ideas of things to which they are not naturally related, come to be as thoroughly laid in our conceptions as the ideas of things and the things themselves.

Nay, so completely are they linked together, that we often use, through long chains of reasoning, certain sounds or words, without attending at all to the ideas or notions of which they are signs. "I believe (says the author of A Treatise on Human Nature), that every one who examines the situation of his mind in reasoning will agree with me, that we do not annex distinct and complete ideas to every term we make use of; and that in talking of government, church, negotiation, conquest, we seldom spread out in our minds all the simple ideas of which the compound notions signified by these terms are composed. It is, however, observable, that notwithstanding this imperfection, we may avoid taking nonsense on these subjects, and may perceive any repugnance among the ideas, as well as if we had a full comprehension of them." This remark generally holds true; but then it is to be observed, that all the words used as signs, and which yet do not denote any one conceivable determinate idea, must be capable of definition. Thus, in matters that are perfectly familiar, in simple narration, or in moral observations on the occurrences of life, a man of common understanding may be deceived by specious falsehood, but is hardly to be gulled by downright nonsense or a repugnance of ideas. Almost all the possible applications of the terms (in other words, all the acquired relations of the signs) have become customary to him. The consequence is, that an unusual application of any of them is instantly detected; this detection breeds doubt, and this doubt occasions an immediate recourse to definition; which, proceeding through species and genera, resolves complex terms into others less complex, till it ends at last in simple ideas and relations, which can neither be defined nor misunderstood (o). See Logic.

Thus

(n) Were it possible to frame an abstract general idea of a triangle, which is neither equilateral, isosceles, nor scalene, even that idea must be used merely as a sign as much as any particular triangle whatever: and the question might still be asked, How can we know any proposition to be true of all the triangles represented by the sign? For example: having demonstrated that the three angles of an ideal triangle, which is neither equilateral, isosceles, nor scalene, are equal to two right angles, how can we conclude that this affection agrees to triangles which are equilateral, &c.? To this question it is not easy to conceive what answer could be given other than that of Berkeley and Campbell, in the sense of using particular and conceivable triangles as signs.

(o) Since this article was written, some excellent observations on the common doctrine concerning abstraction have been given to the public by professor Dugald Stewart of Edinburgh. See Elements of the Philosophy of the Human Mind.
Thus then we see, that though there are no ideas, properly speaking, general and abstract, a man may by terms and particular ideas, used as signs, arrive at the knowledge of general truth. In neither case is it the matter, if we may be allowed the expression, but the power of the sign, that is regarded by the mind. We find, that even in demonstrative reasonings, signs the most arbitrary, or mere symbols, may be used with as little danger of error as ideas or natural signs. The operations both of the algebraist and arithmetician are distinctly of the nature of demonstration. The one employs as signs the letters of the alphabet, the other certain numerical characters. In neither of these arts is it necessary to form ideas of the quantities and sums signified; in none infinities it is even impossible without revolving the quantity or sum into parts, in an manner analogous to definition; and then the mind comprehends not the whole quantity or number at once, but the several parts of which it is composed, which it connects (1) by the relation of juncture or addition. Yet without this resolution, the equations and calculations carried on by means of the letters and figures signify nothing of the whole quantity or the whole sum, are not the less accurate or convincing. And so much for abstraction, generalization, and the power of signs, whether natural or artificial.

CHAP. V. Of the Association of Ideas.

EVERY man whilst awake is conscious of a continued train of thought spontaneously arising in his mind and passing through it; nor could a single now or instant be pitched upon in which some idea is not present in his memory or imagination. No one idea, however, unless detained by a voluntary exertion of the mind, or unless productive of intense pleasure or pain, remains long in the imagination; but each flutters off the stage to make way for another, which takes its turn and is succeeded by a third, &c. We are not to imagine that this train of thought is altogether fortuitous and incoherent. " It is evident (says Mr Hume *), that there is a principle of connection between different thoughts or ideas of the mind; and that, in their appearance to the memory or imagination, they introduce each other with a certain degree of method and regularity. In our more serious thinking or discoursing this is so observable, that any particular thought which breaks in upon the regular train or chain of ideas, is immediately remarked and rejected. Even in our wildest and most wandering reveries, nay, in our very dreams, we shall find, if we reflect, that the imagination ran not altogether at adventures, but that there was still a connection upheld among the different ideas which succeeded each other. Were the loofe and free conversation to be transcribed, there would immediately be observed something which connected it in all its transitions: Or, where this is wanting, the person who broke the thread of discourse might fill inform you, that there had secretly revolved in his mind a succession of thoughts, which had gradually led him from the subject of conversation. Among different languages, even where we cannot suspect the least connection or communication, it is found, that words expressive of ideas, the most compounded, do yet nearly correspond to each other; a certain proof that the simple ideas comprehended in the compound ones, were bound together by some universal principle, which had an equal influence on all mankind.

That these observations are well founded, every principle of association of ideas to three, viz. resemblance, contiguity in time and place, and cause or effect, he certainly contracts them within too narrow a compass. That these principles often serve to connect ideas, will not indeed be denied. A picture leads our thoughts to the original: the mention of one apartment in a building introduces an inquiry or discourse concerning the others: and if we think of a wound, we can hardly forbear reflecting on the pain which follows it. But surely ideas sometimes succeed each other without resemblance, without contiguity in time or in place, and without being connected by the relation of a cause to its effect. Besides all this, there are other associations than of ideas. Ideas are associated with passions and emotions, and passions and emotions are associated together. A particular idea is associated with a proper name, and often with the general name of the species. General conceptions, such as those which Mr Locke calls mixed modes (see Moses), are associated with signs both audible and visible, and signs are associated with each other. Surely virtue, as it confits in action and intention, does not resemble the found virtue, is not contiguous to it in time or in place, and is neither its cause nor its effect; nor is it conceivable, that the arbitrary signs of different things should have any natural relation to one another.

But were the enumeration complete, the bare mention of these principles does not account for the phenomena: For, granting the fact, it may still be asked, Why does a picture lead our thoughts to the original? or the mention of one apartment in a building introduce an inquiry concerning the others? To these questions our author has given no answer; nor are we acquainted with any writer who can be said to have attempted it, except Dr Hartley and his ingenuous editor. There may be some of our readers whom the names of these men will prejudice against their theory; but, doubtless, the greater part are willing to adopt truth, or to examine an ingenious speculation, from whatever quarter it comes. To such as feel themselves otherwise disposed, we beg leave to say, that if they allow the name of Priestley to disgust them at what follows, they will furnis them with a new proof of the truth of the doctrine which they reject.

* No man, we think, will pretend that he can perceive at once a view a million of individual men, or that he can imagine or conceive at once a million of ideal men; yet he may divide the million into parts, which in the one case may be eaily viewed, and in the other may be easily conceived, in fiction. Thus, 100 + 100 = 100, &c.
Association of Ideas.

96. How they operate.

That ideas should be associated together, seems to be inevitable from the manner in which the mind acquires them. All our ideas, properly speaking, are of sensible objects, and by far the greater part of them of visible objects. But every sensible object conveys at once various sensations and perceptions to the mind, which appear not only united in fact, but inseparable in imagination. Thus, when a man looks at any particular object, a tree for instance, he perceives the trunk, branches, leaves, size, shape, and colour, &c. of the whole at once: he does not first perceive the figure of the trunk, then its size, then its colour, then the branches, &c. in succession; but a perception of the whole is conveyed to the mind by one simultaneous impression. We have already seen, that the senses, in fact, convey nothing to the mind but their respective sensations; and that the perception of the external object instantly follows the sensation. We have likewise seen, that sensation is occasioned by respective perceptions of the branches associated with it. This being the case, it is natural to conclude, that when any part of the original sensation is revived in the memory, the whole perception should be revived at once, so as that we cannot have an idea of the trunk of a tree without perceiving the ideas of the branches associated with it. This is indeed not merely natural, but the contrary seems to be impossible; for as the original agitation or vibration was occasioned by the whole tree, it is evident, that whatever effect or tendency that agitation or vibration left behind it, must be left by the whole vibration, and therefore be equally related to the whole tree.

But no object stands single in nature. When we view a tree, or any thing else, we always notice, however tranfiently, the field where it grows and the objects around it: these too leave effects in the brain at the same time that the tree does so; and therefore make their appearance with it in the memory or imagination: but if the tree was the object to which we principally attended during the actual sensation, the idea of it will be much more vivid than the idea of its adjuncts, and remain much longer in the imagination or memory; because the original sensation by which it was perceived, was struck much deeper than the sensations by which its adjuncts were perceived. All this must be intelligible to every one who attends to what we have already said of sensation, perception, and memory.

Thus we see why a picture leads our thoughts to the original, and why the mention of one apartment in a building introduces an inquiry concerning the others. It is not merely because the picture resembles the original, and because the apartments of a building are contiguous. Between a plain surface, variously coloured and shaded, and the contour of the human face, there is certainly very little real resemblance, as any man may be convinced who places his eye within six inches of a good picture. But the painter, having by his skill in perspective, contrived to lay his colours on the plain canvas in such a manner as that they reflect the same rays of light with the original, provided the spectator stand at the proper distance; these rays proceeding from the picture fall upon the eye in the same direction, and therefore give to the nerves and brain the very same impulse which was given by the original. When one apartment of a building is mentioned, we inquire concerning the others from the same cause that, when we think of the trunk of a tree which we have seen, we cannot avoid thinking likewise of its branches.

But the principle of association takes place among things not naturally connected, as the apartments of a building and a multitude of various objects, and its attributes and adjuncts. It is association which is the original source of all the general or complex conceptions which we have, and which even gives meaning to the words of language. Between sounds considered in themselves, and things, or the ideas of things, every one knows that there is no natural connection; yet the idea of every known object is in the mind of every man so firmly associated with the name that it bears in his native tongue, that the presence of the name always suggests the other. It cannot indeed be otherwise, if we attend to the manner in which a child learns to affix a meaning to the words which he hears:—A child knows his mother and nurse, and indeed almost every visible object in the family, long before he acquires the power of articulation. The impressions made

(q.) This is certainly the case with all young children. It has been shown already, that the sensation communicated by the eye from any visible object, has not the least resemblance to that object; and that in looking at a tree or any thing else, a full grown man pays not the least attention to the appearance which the tree really makes to his eye; nay, that he is not even conscious of that appearance, farther than as it conflits in colour. It is by the sense of touch only that we acquire ideas of figure, even of plain figure; and we imagine that we perceive them by the eye only, because different figures, as distinguishable by touch, are so closely associated with their corresponding visible sensations, that long before we are capable of inquiry, these two things are inseparable in the imagination. It is otherwise with children, who, when they first begin to distinguish objects by the sense of sight, appear to do it with great deliberation, as if they first felt the proper sensation of light and colours so or so modified, and afterwards acquired, by something like a mental inference, a notion of the figure at which they are looking.

M E T A P H Y S I C S.

Part I.

Association of Ideas.
METAPHYSICS.

Association made by these objects, and repeated daily and hourly on his brain, every one of which excites a sensation, must soon become so deep as not to be easily effaced. Numbers of them too are associated together, so that the presence of one introduces the other. It has been already observed, that ideas of fight are the most vivid and the most lasting; but the child having the same sound often repeated, even that sound comes in time to leave in his memory.

He then hears the sound of the name, nurture, for instance, uttered at the time when he is looking earnestly at the person of the nursery, with whom he is well acquainted, and to whom he is strongly attached; and having the two ideas repeatedly excited together, they soon become so associated, that the one necessarily excites the other: the word nurture calls into view the idea of the woman treated up in his imagination.

But we need not have recourse to children for the proof of our assertion. It is obvious that the name of every simple and uncompounded idea can be significant only by association. Of a complex conception the name may be made intelligible by a definition; but simple ideas cannot be defined, and between ideas and sounds there is no natural connection, so that the one previous to association should suggest the other. Even of complex conceptions and mixed modes, the meaning of the names is generally acquired by association; for though it is certainly true, that all such names are capable of definition, they are yet used with sufficient propriety by thousands who know not what a definition is. Were a plain unlettered man asked to define virtue, it is not probable that he could do it so as to make himself understood; yet having ideas of the practice of justice, charity, fortitude, &c. strictly associated in his mind with the word virtue, he may remember the general meaning of that word as well as the most acute grammarians or the most profound philosophers.

An alms is a donation to a poor man; but a child who never heard of this definition knows perfectly what an alms is, from having often seen his parents give money to a beggar, and call what they were doing by the name alms. The sound of the word, after having seen the first alms given, will excite in his mind an idea of the individual object who received it, and of the action of him by whom it was given; but after having seen several poor men relieved, he comes to associate with the word alms any thing given to any person who needs it or appears to be in want.

So completely does this association take place between ideas or clusters of ideas, and the words by which they are expressed, that even men of letters bear and understand perfectly many words without reviewing in their minds all the ideas and relations of which they are the signs. It has been already observed, that in talking of government, church, negotiation, conquest, we seldom spread out in our minds all the simple ideas of which the compound notions signified by these terms are composed; and we now add, that the terms may be used with sufficient propriety, and be perfectly understood by those who never attempted to analyse the notions of which they are significant into their primary and constituent parts. Every man has read numerous details of the transactions of one court with another; he has heard such transactions universally called by the term negotiation. The term and the transactions signified by it are so closely associated in his mind, that they are in a manner inseparable; and by this association he knows the meaning of the term better than he could have done by the most complete definition, which, perhaps, he would find it difficult to give, or even to comprehend.

We have said that the meaning of the word virtue is acquired by association, by having often heard that sound applied to certain actions; but it is extremely probable, that the very notion of virtue, simple and uncompounded as it appears to be, is acquired in the very same manner. The first rudiments of the notions of rights and wrongs and obligation seem to be acquired by a child when he finds himself checked and controlled by superior power. At first he feels nothing but mere force, and consequently has no notion of any kind of restraint but that of necessity. He finds he cannot have his will, and therefore he submits. Afterwards he attends to many circumstances which distinguish the commands of a father, or of a master, from those of any other person. Notions of reverence, love, respect, dependence, are connected with the idea of him who gives those commands; and by degrees the child experiences the peculiar advantages of filial subjection. He sees also that all his companions, who are noticed and admired by others, obey their parents; and that those who are of a refractory disposition are universally disliked. These and other circumstances now begin to alter and modify the notion of mere necessity, till by degrees he considers the commands of a parent as something that must not be refited or disputed, even though he has a power of doing it; and all these ideas concurring, form the notions of moral right and moral obligation, which are easily transferred from the commands of a parent to those of a magistrate, of God, and of conscience. This opinion of the gradual formation of the ideas of moral right and wrong, from a great variety of elements associated together, perfectly accounts for that prodigious diversity in the sentiments of mankind respecting the objects of moral obligation; nor do we see that any other hypothesis can account for the facts. If the notion of moral obligation were a simple uncompounded idea, arising from the view of certain actions or sentiments; or were it acquired, as it certainly might be, by a chain of reflection from the nature of God and the nature of man; why should it not in the one case be as invariable as the perception of colours or sounds, and in the other as our judgements of mathematical or phycical truths? But though the shape and colour of a flower appear the same to every human eye; though every man of common understanding knows, that if a billiard ball be struck by another, it will move from its place with a velocity proportioned to the force of the impulse; and though all mankind who have but dipped into mathematics, perceive that any two sides of a triangle must be greater than the third side; yet one man prudifies as a moral duty what another looks upon with abhorrence, and reflects on with remorse. Now a thing that varies with education and instruction, as moral sentiments are known to do, certainly has the appearance of being generated by a series of different impressions and associations in some such manner as we have endeavoured to describe. Let not any man imagine that this account of the origin of moral sentiments endangers the cause of virtue; for whether
METAPHYSICS.

Part I.

The principle of association operates in the perception of external objects; and that the perception of an object may be resolved into a process of reasoning from effects to causes. But children it will be said, do not reason from effects to causes, and yet they soon acquire the faculty of perceiving and distinguishing the objects with which they are surrounded. This is an undoubted truth, and it can be accounted for only by the principle of association. A child has as much the use of his senses as a full-grown man. By his eye he has the sensation of colour; by his nose, that of smell; by his ear he has the sensation of sound; and by his hand he feels heat and cold, resistance and boundedness. Every object which is presented to him, impresses his mind with various sensations: and these sensations combined together are probably all that he perceives for some years; for there is no reason to imagine that a boy of one or two years old has the slightest notion of what we mean by solidity, hardness, softness, or indeed of that which is termed substance. Yet when two or more objects are present, he may easily distinguish the one from the other, because the sensations excited by the one must differ from those excited by the other, as much as the real qualities of the one are different from the real qualities of the other; and by distinguishing between his own sensations, he in effect distinguishes between the objects which produce these sensations. His sensations too being frequently excited, leave behind them ideas in his memory or imagination; and these ideas, from having been imprinted together and never separated, become in time so closely associated, that whenever one of them is called into view, the others necessarily make their appearance with it. Thus a child has a set of associated sensations excited in his mind by the presence of his nurse; he has a different cluster excited, suppose, by the presence of his mother. These are often repeated, and leave deep traces behind them; so that when the mother or the nurse makes her appearance, she is immediately recognized as a known object; or, to speak more correctly, the child feels the very same sensations which he has felt before, from which he has experienced pleasure, and of which he has the ideas treasured up in his memory or imagination. A stranger, on the other hand, must affect him with a set of new sensations, and of course will be distinguished from a known object as accurately as if the child were possessed of the notions of solidity, substance, qualities, and distance. A man born blind, who knew not that such things as fire and snow had ever existed, would yet distinguish the one from the other the moment he should be brought within their influence. He could not indeed apply their names properly, nor say which is the fire and which the snow, nor would he at first have any notion of either of them as a real, external, and distant object; but he would certainly distinguish his own sensations, the sensation of heat from that of cold. It is just so with a child: At first he perceives nothing but different sensations. These he
Part I. M E T A P H Y S I C S.

Association can distinguish; and as they are caused by different objects, in distinguishing between the sensations he will appear to distinguish between the objects themselves. In a short time, however, he acquires, by the following process, some inaccurate notions of distance. He looks, for instance, earnestly in his nurse's face, and at the same time touches her check perhaps by accident. He repeats this operation frequently, till the sensation communicated by his eye comes to be associated with that of his touch, and with the extending of his arm; and being all transfused up as associated ideas in the memory, the sight of his nurse makes him ever afterwards stretch out his hands with a desire to touch her. All this while there is not the slightest probability that the child has any notion of substance or qualities, or of any thing beyond his own sensations, and the means by which he has experienced, that sensations which are pleasant may be obtained, and that such as are painful may be avoided.

The precise time at which a child begins to think of external things: we cannot pretend to ascertain; but we are persuaded that it is later than many persons imagine, and certainly not till he has made considerable progress in the exercise of reason. Prior to that period the things which men know to be bodies, are known to children only as sensations and ideas strongly bound together by the tie of association.

But if association be of such importance in the act of sensation, it is of still greater in that of retention; for it seems to constitute the whole difference that there is between imagination and memory. By many of the ancients, as well as by some modern philosophers, these two faculties seem to have been confounded with each other; but between them there is certainly a great difference, though they likewise resemble each other in some respects. An idea of memory, considered by itself, makes the very same appearance to the intellect as an idea of imagination. We contemplate both as if they were actual, though faint and distant perceptions; but the one is attended with the conviction, that it is the idea of an object which has really been perceived at some period of past time; whilst the other is attended with no conviction, except that the idea itself is actually present to the mind.

Mr Hume has said, that ideas of memory differ from those of imagination only in being more vivid and distinct; but certainly this is not always the case. An idea of imagination has sometimes been taken for a real perception, which an idea of memory can never be. The difference between these two kinds of ideas, we are persuaded, arises chiefly, if not wholly, from association.

Every idea of memory is associated with many others, and those again with others down to the very moment of the energy of remembrance; whereas ideas of imagination are either the voluntary creatures of the fancy at the moment of their appearance, in which case we should call them conceptions; or they are ideas which we have actually received from sensation, but which, on account of some link being broken in the vast chain of association, we cannot refer to any real objects. What gives probability to this conjecture is, that ideas often appear in the mind which we know not whether to refer to the memory or imagination, nothing being more common than to hear a person say, I have in my head the idea of such or such an object; but whether I remember or only imagine the object, I am very uncertain. Afterward, however, by turning the idea over and over in the mind, he finds other ideas make their appearance, till at last clusters of them come into view, and associate so closely with the principal idea, which was the object of doubt, as to convince the judgment that it is an idea of memory.

It has been asked, Why we believe what we distinctly remember? and to that question it has been supposed that no answer can be given. But it appears to us, that association is the ground of belief in this as it will be found to be in other instances; and that a man believes he washed his hands and face in the morning, because the idea of that operation is so strongly linked in his mind to the whole train of ideas which have arisen, in it through the day, that he cannot separate the first from the last, that which was a sensation in the morning from the sensations which are present at the instant of remembrance. As those ideas are associated by nature, each must pass in review in its proper order; so that in so short a space of time there is no danger, and hardly a possibility, of taking the first for the last, or the last for the first.

Nor may we venture to hazard an opinion, that every petit event of a man's life, which he distinctly remembers, is tied by the chain of association to his present perceptions. That this is possible is certain, since it is not difficult to conceive how it may be done. The principal events of a single day may freely be linked together as to be all distinctly reviewed in a cluster of ideas on the morrow. Of these events some one or other must be the most important, which will therefore make its appearance as an idea more frequently than the rest, and be more closely associated with the events of next day. Some event of that day will, for the same reason, be more closely associated with it than the others; and these two, dropping perhaps all the rest of their original companions, will pass on together to the third day, and so on through weeks and months and years. In the compass of a year, several things must occur to make deep impressions on the mind. There will at first be associated together by events of little importance, like the occurrences of a single day. Whilst these feeble chains, however, continue unbroken, they will be sufficient to link the one important event to the other, and to bring them both into view at the same time, till at last these two, from appearing so often together, will in time unite of themselves, and the intermediate ideas be completely effaced. Thus may two or three important events of one year be associated with such a number of similar events of another year, that the ideas of the one shall always introduce to the mind the ideas of the other; and this chain of association may pass from the earliest event which we distinctly remember through all the intermediate years of our lives down to the instant when memory is exerted.

To this account of memory it may perhaps be objected, that it gives us no distinct notion of time. Every thing that is remembered is necessarily believed to have been present in some portion of past time; but association brings into view nothing but a series of events. This objection will be seen to have no weight when we have inquired into the nature of time, and ascertained what kind of a thing it is. It will then
Association of Ideas.

Then perhaps appear, that duration itself, as apprehended by us, is not distinguishable from a series of events; and that if there were no train of thought passing through our minds, nor any motion among the objects around us, time could have no existence. Meanwhile, whatever become of this opinion, we beg leave to observe, that our theory of remembrance is perfectly consistent with the commonly received notions respecting time; and indeed, that it is the only theory which can account for the phenomena respecting past duration. It is universally allowed, that if motion or a succession of events do not constitute time, it is the only thing by which time can be measured. Now it is a fact which no man will deny, that the distance of time from the present now or instant to the earliest period which he definitely remembers, appears to his view extremely short, much shorter than it is said to be in reality; and that one year, when he looks forward, appears longer than two, perhaps longer than ten, when he looks backward. Upon our principles this fact is easily accounted for. We remember nothing which is not linked by a chain of associations with the perceptions of the present moment; and as none but a few of the most important events of our lives can be linked together in this manner, it hence follows, that events which, in the order of succession, were distant from each other, must thus be brought together in the memory, and the whole chain be contracted within very short limits. But when we figure to ourselves a series of future events, we employ the active power of fancy instead of the passive capacity of retention; and can therefore bring within the compass of one periodical revolution of the sun a longer series of imaginary events succeeding each other, than is preferred of real events in our memory from the earliest period of our existence. So perfectly does our theory accord with this well-known fact. On the other hand, if memory be an original faculty of the mind totally independent of association, and of which no other account is to be given than that it necessarily commands our belief, why is it a faculty which, with regard to duration, thus uniformly deceives us? and how comes it to pass, that to a man whose memory is tenacious, who has read much, seen many countries, and been engaged in various occurrences, any determinate portion of past time always appears longer than to another man whose memory is feeble, and whose life has been wasted in ease and idleness? To these questions we know not what answer can be given upon any other principle than that which makes the evidence of memory depend upon association. But if we remember nothing but what is linked to the perception or idea which is present with us at the time of remembrance, and if duration be measured by the succession of events, it is obvious that any portion of past time must necessarily appear longer to him who has many ideas associated in his mind than to him who has but few.

There is not perhaps a single fact of greater importance in the philosophy of the human mind than the association of ideas; which, when thoroughly understood, accounts for many of those phenomena which some late writers of name have, with injury to science and with danger to morality, attributed to a number of distinct and independent infinities. It is for this reason that we have considered it so minutely, and dwelt upon it so long; and in addition to what we have said on the subject, we beg leave to recommend to our more philosophical readers the diligent study of Hartley's Observations on Man (8). In that work we think several things are taken for granted which require proof; and some which, we are persuaded, have no foundation in nature: but, with all its defects, it has more merit than any other treatise on the sensitive part of human nature with which we are acquainted.

Chap. VI. Of Consciousness and Reflection.

Consciousness, remembrance, simple apprehension, and consciousness, with every other actual energy or passion not what are its objects.

One essay on the intellectual powers of man.

This has given rise to the question, whether Descartes' arguments from consciousness for his own existence have been published, in which the reader will find many excellent remarks on the nature and influence of the associating principle.
Part I.

METAPHYSICS.

Of Consciousness and Reflection.

Of Consciousness and Reflection, is like the difference between a superficial view of an object which presents itself to the eye while we are engaged about something else, and that attentive examination which we give to an object when we are wholly employed in surveying it. It is by consciousness that we immediately acquire all the knowledge which we have of mental operations; but attentive reflection is necessary to make that knowledge accurate and distinct. Attention is a voluntary act; it requires some exertion to begin and continue it; and by great exertion it may be continued for a considerable time; but consciousness is involuntary, and of no continuance, changing with every thought. The power of reflection upon the operations of their own minds does not at all appear in children. Men must have come to some ripeness of understanding before they are capable of it. Of all the powers of the human mind it seems to be the last that unfolds itself. Most men seem incapable of acquiring it in any considerable degree; and many circumstances contribute to make it to all men an exercise of difficulty. The difficulty, however, must be conquered or no progress can be made in the science of our own or of other minds.

All the notions which we have of mind and of its operations are got by reflection; and these notions are by Mr. Locke called ideas of reflection. This term we think extremely ill chosen; and we believe it has been the source of much error and confusion among Locke's followers. A man, by attending to the operations of his own mind, may have as distinct notions of remembrance, of judgment, of will, of desire, as of any object whatever; but if the secondary perception of a sensible object, that appearance which it has to the mind when viewed in the memory or imagination, be properly called an idea, it is certain that of the operations of the mind itself there can be no ideas; for these operations, when reflected on, make no appearance without their objects either in the memory or in the imagination. Nothing is more evident, in fact, than that we have no ideas, in the original and proper meaning of the word, of sensible objects, upon which the mind exerts its first operations. Of these operations we have indeed a consciousness; but abstracted from their objects we cannot frame of them any idea of resemblance. We are conscious to ourselves of thinking, willing, remembering, discerning, reasoning, judging; &c. but let any one look into himself, and try whether he can there find any idea of thinking or willing, &c. entirely separate and abstracted from the object of thought or will. Every man who has seen a tree or a house, will find in his mind ideas of these objects, which he can contemplate by themselves, independent of every thing else; but no man can contemplate the idea of thinking or desiring without taking into view the thing thought on or desired. It is plain, therefore, that the energies of thinking, willing, and desiring, with all their various modifications, are not themselves ideas, or capable of communicating ideas to be apprehended, as the ideas of bodies are apprehended by the pure intellect. They are the actions and workings of the intellect itself upon ideas which we receive from the objects of sense, and which are treasured up in the memory or imagination for the very purpose of furnishing the intellect with materials to work.
METAPHYSICS.

Of Consequences, and Reflection.

Our knowledge of the operations of intellect, immediate and not by the intervention of ideas.

That we can in no sense of the word be said to have ideas of the operations of the intellect, will be still more evident if we consider by what means we acquire the knowledge which we have of those operations. It has been already observed, that when our thoughts are employed upon any subject, though we are conscious of thinking, yet our attention is commonly employed upon the object of our thought, and not upon the thought itself: and that if we would give attention to our thoughts and passions, we must do it by a reflex act of the mind, whilst the act of thinking is still recent and fresh in our memory. Thus, if a man wishes to know what perception is, it is not the time to make the inquiry while he is looking at some rare or beautiful object; for though he is conscious of the energy of perceiving, the object of perception employs all his attention. But the time to make this inquiry is either when the object has become familiar to him, or presently after it is removed from his sight. In the former case, he can look upon it without emotion, pay attention to every flipp in the process of perception, and be immediately conscious what perception is. In the latter case, by turning his attention inwards, and reflecting on what he did or felt when the object was before him, he will find clear and vivid ideas of every thing which he perceived by his sense of sight; but he will find no idea of the act of seeing or perceiving. On the contrary, if he be capable of sufficient attention, he will observe that his intellect is employed in the very same manner upon the idea that it was upon the original sensations; and of that employment, and the manner of it, he will be equally conscious as he was of the original energy exerted in sensation. There is indeed this difference between the two, without which reflection could make no discoveries, that the more vivid it was being still fainter when compared with actual sensations, the intellect is not so wholly engrossed by them as it was by the original objects, nor is it so rapidly carried from idea to idea as it was from sensation to sensation. It is thus at leisure to attend to its own operations, and to know what they are; though to form ideas of them as separate from their objects, is absolutely impossible. Every man capable of paying attention to what passes within himself when he feels, hears, and feels, &c. may have very accurate notions of seeing, hearing, and feeling, &c. but he cannot have ideas of them as he has of the objects of sight, hearing, and touch.

The same is the case with respect to the exertion of our reasoning faculties. A man must have distinct and clear ideas to reason upon, but he can have no idea of reasoning itself, though he must be conscious of it, and by attention may know what it is. When a man sits down to study for the first time a proposition in the Elements of Euclid, he certainly employs his reasoning faculty, and is conscious that he is doing so; but his attention is wholly turned to the diagram before him, and to the several ideas which the diagram suggests. Afterwards when he has mastered the proposition, he may go over it again, with a view to discover what reasoning is; but he will not find he has any idea of reasoning as he has of the diagram. He will only exert that faculty a second time, and perceive one truth linked to and depending upon another in such a manner that the whole taken together forms a complete demonstration. In a word, the operations of our own minds, when attention is paid to them, are known immediately by consciousness; and it is as impossible that we should have ideas of them, as that a living man should be a picture upon canvas. He who attends to what passes in his own mind when he perceives, remembers, reasons, or wills, must know by consciousness what these operations are, and be capable of forming very accurate notions of them, as connected with their objects; and he who does not attend to what passes in his own mind will never acquire any notions of them, though he were to read all that has been written on the subject from the days of Pythagoras to those of Dr. Reid.

As we acquire ideas of external objects by means of our senses; and notions of perceiving, remembering, reasoning, and willing, &c. by reflecting on the operations of our own minds; so there are other things which we acquire notions, partly by reflection, and partly by sensation, partly by reflection, and partly by means of that faculty of which it is the more peculiar office to reflection, compare ideas and to perceive truth. Such are things, body, mind, with their several qualities, adjuncts, and relations; the knowledge of which, as has been already observed, constitutes what in strictness of speech is termed the science of metaphysics. These shall be considered in order, after we have investigated the nature of truth, and inquired into the several sources of evidence; but there is one notion, about the origin and reality of which there have been so many disputes, which in itself is of so great importance, and which will be so intimately connected with all our subsequent inquiries, that it may not be improper to consider it here.—The notion to which we allude is of power.

Our notion of power comprehends all the objects around us we perceive frequent changes, and one event regularly succeeding another. Of powers, and of auxiliaries, Gold thrown into the fire is changed from a fixed to an fluid body. Water exposed to a certain degree of red, is changed from a fluid to a fixed body. Night succeeds to day, and summer succeeds to winter. We are conscious of new sensations in ourselves every hour. We are likewise conscious of reasoning, willing, and desiring; and we know that by an exertion of will we can rise or sit, stand still or walk, call one idea into view, and dismiss others from our contemplation. Experience teaches us, that it is not occasionally, but always, that gold is changed into a fluid by being thrown into the fire, and water into a fixed body by being exposed to a certain degree of cold; that night succeeds to day, and summer succeeds to winter. These changes have regularly taken place since the creation of the world; and it has never once been observed that water was fixed by fire, or gold rendered liquid by cold. Were we not assured by experience that our own voluntary motions are produced by exertions of our minds, of which we are conscious, and that without such
such exertions those motions would never have taken place, we should probably have considered the liquefaction of gold as an event equally independent of fire, though uniformly conjoin’d with it, as night is independent of day and day of night. But having experienced that we can move and not move our bodies as we please; that when it is our will to fit, we never get up to walk; and that when we wish to walk, we always do it except prevented by external violence; having likewise experienced, that by a thought, by some internal and inexplicable exertion of our minds, we can call up in our memory or imagination one idea and dismiss others from our mental view; we are led to believe with the fullest conviction, that all those motions of our bodies which in common language are termed voluntary and that succession of ideas which follows a conscious exertion of the mind, depend upon ourselves. In other words, we are necessitated to believe that we have a power to move or not move our bodies in many cases, and a power to turn our attention to one idea in preference to others.

It is thus that we acquire the notion of power in ourselves, which we calmly transfer to other objects. Knowing that the various motions of our bodies thus effected proceed from power, we are naturally led to inquire whether the changes which we perceive in other bodies may not proceed from power like wise. From something analogous to that power, of the exertions of which we are conscious in ourselves. Now uniform experience teaching us that gold is liquefied by being thrown into the fire, and that water is fixed by being exposed to cold; we infer with the utmost certainty that there are powers in fire and cold to produce these changes, and that without the exertion of such powers these changes, would not be produced. We cannot indeed say of external powers, as we can of our own, in what subsistence they inher. We know with the utmost certainty that the voluntary motions of our hands, &c. are produced by a power not inherent in the hands but in the mind, for of the exertion of that power we are conscious; but we do not know whether the power which liquefies gold be the same or different object which we call fire, or in something else to which fire is only an instrument. We learn by observation, that the minute particles of fire or heat influence themselves between the particles of gold, and if we may use the expression, tear them asunder; but whether they do this in consequence of a power inherent in themselves, or only as instruments impelled by another power, is a question which observation cannot enable us to answer.

Were we not conscious of the exertion of our own powers, it seems not conceivable that we could ever have acquired any notion of power at all; for power is not an object of sense, nor, independent of its operations, is it indeed an object of consciousness. In external operations, all that we perceive is one thing, in which we suppose the power to reside, followed by another, which is either the change or that on which the change is produced; but the exertion of the power itself we do not perceive. Thus we perceive gold, after it has been some time in the fire, converted from a fixed to a fluid body; but we perceive not by our senses either the power or the energy of the power which operates to this conversion. In the exercise of our own powers, the case is otherwise. When a man puts his hand to his head, and afterwards thrusts it into his bosom, he not only perceives by his senses the change of position, but is also conscious of the energy or exertion by which the change was produced.

"Suppose (says Mr Hume) a person, though endowed with the strongest faculties of reason and reflection, to be brought on a sudden into this world; he would indeed immediately observe a continual succession of objects, and one event following another, but he would not be able to discover any thing farther. He would not at first by any reasoning be able to reach the idea of cause and effect; since the particular powers by which all natural operations are performed never appear to the senses. The impulse of one billiard ball is attended with motion in the second. This is the whole that appears to the outward senses. The mind feels no sentiment or inward impression from this succession of objects; consequently there is not, in any single particular instance of cause and effect, any thing which can suggest the idea of power or necessary connection. From the first appearance of an object, we never can conjecture what effect will result from it: but, were the power or energy of any cause discoverable by the mind, we could foresee the effect even without experience; and might at first pronounce with certainty concerning it by the mere dint of thought and reasoning. It is impossible, therefore, that the idea of power can be derived from the contemplation of bodies in single instances of their operations; because no bodies ever discover any power which can be the original of this idea."

There is a sense in which this reasoning is unquestionably just. A man who had never been conscious of exerting power in himself, would certainly not acquire the notion of power from observing a continual succession of external objects. The impulse of one billiard ball being followed by the motion of another, would not more lead him to the notion of power in the former, than the succession of night to day would lead him to the notion of a power in light to produce darkness. When Mr Hume says, "that from the appearance of an object we can never conjecture what effect will result from it," he uses language that is ambiguous, and utters an assertion which is either true or false according to the sense in which it is understood. If it be meant, that after having reflected on the operations of our own minds, and learned by experience that motion is communicated by impulse from one ball of ivory to another, we could not conjecture whether a similar effect would be produced by the impulse of balls made of other hard bodies which we had never seen, the assertion is manifestly false. A man who had but once seen motion communicated in this manner from one ivory ball to another, would certainly conjecture that it might be communicated from one wooden ball to another; and if he had seen it repeatedly communicated from one ball to another of different substances, he would infer, with the utmost confidence, that it might be communicated from ball to ball of whatever substance composed, provided that substance be hard, or of a similar texture with the balls to the impulse of which he had formerly paid attention.
Mr. Hume attempts to prove that we have no notion whatever of power.

But Mr. Hume, not contented with denying, which he might justly do, that we could ever have derived the idea of power merely from observing the continual succession of external objects, labours hard to prove that we have no notion of power at all, and that when we use the word power, we do nothing more than utter an insignificant sound. To pave the way for the arguments by which so extravagant a paradox is to be supported, he lays it down as a "proposition which will not admit of much dispute, that all our ideas are nothing but copies of our impressions; or, in other words, that it is impossible for us to think of any thing that we have not antecedently felt either by our external or internal senses." As this proposition, however, will admit, it seems of some dispute, he takes care, before he applies it to the purpose of demolishing all power, to support it by two arguments. "First (says he), when we analyse our thoughts or ideas, however compounded or sublime, we always find that they resolve themselves into such simple ideas as were copied from a precedent feeling or sentiment. Those who would assert, that this position is not universally true nor without exception, have only one, and that an easy, method of refuting it; by producing that idea, which, in their opinion, is not derived from this source. Secondly, If it happen, from a defect of the organ, that a man is not susceptible of any species of sensation, we always find that he is as little susceptible of the correspondent ideas. A blind man can form no notion of colours, a deaf man of sounds. And tho' there are few or no infinaces of a like deficiency in the mind, where a person has never felt, or is wholly incapable of a sentiment or passion that belongs to his species; yet we find the same observation to take place in a less degree. A man of mild manners can form no idea of inveterate revenge or cruelty; nor can a selfish heart easily conceive the heights of friendship and generosity.

As these propositions are the engines by which all power is banished from the world, it may not be improper, before we proceed to inquire by what means they perform so arduous a task, to consider their own inherent strength; for if they be weak in themselves, their work, however dexterously they may be employed, can have no stability. We have already noticed the perverseness of this writer's language, when it confounds sensations with impressions; but here it is still more perverse, for passions, sentiments, and even consciousness are styled impressions. When sensations are confounded with impressions, the effect is only reflected for the cause, it being universally known that sensations proceed from impressions made upon the organs of sense. When consciousness is confounded with an impression, one thing is mistaken for another, to which it is universally known to have neither resemblance nor relation. But, not to waste time upon these fallacies, which, though dangerous is admitted, are yet too palpable to escape upon a reader capable of the slightest attention, let us examine the propositions themselves. The most important, and that for the sake of which alone the others are brought forward, is, that it is impossible for us to think of any thing that we have not immediately felt, either by our external or internal senses." Did Mr. Hume then never think of a mathematical point, or a mathematical line? Neither of these things is capable of being felt either by making an impression upon the organs of sense or as an object of consciousness; and therefore it is impossible that he should ever have had ideas of them such as he doubles had of sensible objects; yet in the most proper sense of the word think (s), he certainly thought of both points and lines; for he appears to have made considerable progress in the science of geometry, in which he could not have proceeded a single step without a perfect knowledge of these things, on which the whole science is built. It is not therefore true, that our thoughts or ideas, when analysed, always resolve themselves into such simple ideas as were copied from a precedent feeling or sentiment; for every mathematical figure of which we can think resolves itself into a point and motion; and a point having no parts and no magnitude, cannot possibly be the object of feeling to any of our senses. If, therefore, ideas alone be the objects of thought, we have refuted Mr. Hume's position by the very method which he himself lays down; for we have produced an idea which is not derived either from a precedent feeling or a precedent sentiment. By sentiment, we suppose to be here meant that which by other philosophers is denominated consciousness; and of consciousness it is undeniable that nothing is the object but the actual energies of our own minds.

But ideas are not the only objects of thought. We have already given our reasons for restricting the word idea to that appearance which an object of sense, when reflected on, makes either in the memory or imagination. Such was undoubtedly its original signification; may things and had it never been used to denote other and very different objects, much error and perplexity would have been avoided, which now disgrace the science of metaphysics. Things may themselves be the objects of thought; and
METAPHYSICS.

Of Conception and Reflection.

We have only relative notions of some things, and yet we know them for certain. We know that which is extended, solid, and divisible. The great advantage of these sciences above the moral and scientific, is that they are clear and determinate; for we see that the ideas of the former being sensible are always clear and determinate: for we see that the notion of a point or of a line is merely relative, and cannot possibly be the copy of a sensation, or, in his language, of a sensible impression. If then we have clear and determinate notions of points and lines, and may reason about them without ambiguity, as he acknowledges we may, what is there to hinder us from having an equally clear and determinate notion of power, or from reasoning about it with as little ambiguity (v)? Why, says he, we are not conscious of power. And to prove this position, which needs no proof, he makes

(v) The opinions of philosophers concerning corporeal and spiritual substances shall be considered more fully hereafter. In quoting from Dr Reid on another subject, we have been obliged to anticipate his opinion, which will be found to be not more modest than just.

(v) "There are some things of which we can have both a direct and relative conception. I can directly conceive ten thousand men, or ten thousand pounds, because both are objects of sense, and may be seen. But whether I see such an object, or directly conceive it, my notion of it is indistinct; it is only that of a great multitude of men, or of a great heap of money; and a small addition or diminution makes no perceptible change in the notion I form in this way. But I can form a relative notion of the same number of men or of pounds by attending to the relations which this number has to other numbers greater or less. Then I perceive that the relative notion is distinct and scientific; for the addition of a single man, or a single pound, or even of a penny, is clearly perceived. In like manner, I can form a direct notion of a polygon of a thousand equal sides and equal angles. This direct notion cannot be more distinct when conceived in the mind, than that which I get by looking at the object when it is before me; and I find it to be distinct that it has the same appearance to my eye, or to my direct conception, as a polygon of a thousand and one, or of nine hundred and ninety-nine sides. But when I form a relative conception of it, by attending to the relations it bears to polygons of a greater, or less number of sides, my notion of it becomes distinct and scientific, and I can demonstrate the properties by which it is distinguished from all other polygons. From these instances it appears, that our relative conceptions of things are not always less distinct, nor less fit materials for accurate reasoning, than those that are direct; and that the contrary may happen in a remarkable degree."

Reid's Essays on the Active Powers of Man.
we say that fire has a power to melt gold, and that gold has a power to be melted. The first he calls **active**, the second **passive**, power. But to say that the **possibility** of being changed is power seems to be a very improper mode of speaking, and such as may lead to confusions which the excellent author certainly held in abhorrence. It tends to make unwise readers imagine that the passive subject is as necessary to the excellence of power, as the active being of which power is an attribute; but if the universe had a beginning, and if its Creator be immutable, two propositions which Mr. Locke firmly believed, there certainly was power when there was no change, nor any thing existing which was capable of change. He owns, indeed, that active power is more properly called power than the other; but we see no propriety at all in passive power. "It is (in the language of Dr Reid) a powerless power, and a contradiction in terms."

But though Locke here uses improper terms, he has other observations with which we have the honour to fully agree, and which lead to confusions the reverse of that impolicy which seems to follow from the notion of passive power. He observes, that "we have from body no idea at all of thinking, nor any idea of the beginning of motion. A body at rest affords us no idea of any active power to move; and when it is set in motion itself, that motion is rather a passion than an action in it. For when the ball obeys the stroke of a billiard flick, it is not any action of the ball, but a passion; also, when by impulse it sets another ball in motion that lay in its way, it only communicates the motion it had received from another, and lores in itself so much as the other received; which gives us but a very obscure idea of an active power of moving in body, which if we observe it only to transfer, but not to produce any motion. So that it seems to me, we have from the observation of the operation of bodies by our senses but a very imperfect obscure idea of active power, since they afford us not any idea in themselves of the power to begin any action either of motion or thought." He thinks it evident, however, "that we find in ourselves a power to begin or procure, continue or end, several actions of our minds and motions of our bodies, barely by a thought or preference of the mind ordering, or, as it were, commanding, the doing or not doing such or such a particular action. This power which the mind has thus to order the conformation of any idea, or the forbearing to consider it, or to prefer the motion of any part of the body to its rest, and vice versa in any particular instance, is that which we call will. The actual exercise of that power, by directing any particular action, or its forbearance, is that which we call **volition** or **willing.**"

According to Mr. Locke, therefore, the only clear whence notion or idea we have of power is taken from the following, that only such beings are present in our mind to give us certain motions to our bodies, or certain directions to our thoughts, as have will and this power in ourselves can be brought into action and under-
Part I. METAPHYSICS

Of Contingency only by willing or volition, and if will necessarily implies some degree of understanding, as in us it certainly does, it comes to a question of the first importance, whether any being which posseffes not power and understanding can be posseffed of real power, or be the efficient cause of any action. This question we feel ourselves compelled to answer in the negative. If we had not will, and that degree of understanding which will necessarily implies, it is evident that we could exert no power, and consequently could have none; for power that cannot be exerted is no power. It follows also, that the power, of which alone we can have any distinct notion, can be only in beings that have understanding and will. Power to produce any effect, implies power not to produce it; and we can conceive no way in which power may be determined to one of these rather than the other in a being that has not will. We grow from infancy to manhood; we digest our food, our blood circulates, our heart and lungs beat; we are sometimes sick and sometimes in health: all these things must be done by the power of some agent, but they are not done by our power. And if it be asked how we know this? the answer is, because they are not subject to our will. This is the infallible criterion by which we distinguish what is our doing from what is not; what is in our power from what is not. Human power can be exerted only by will: and we are unable to conceive any active power to be exerted without will. If, therefore, any man affirms that a being may be the efficient cause of an action which that being can neither conceive nor will, he speaks a language which we do not understand. If he has a meaning, he must take the words power and efficiency in a sense very different from ours; for the only distinct notion, indeed the only notion we can form, of real efficiency, is a relation between the cause and the effect similar to that between us and our voluntary actions. It seems therefore most probable, that such beings only as have some degree of understanding and will can possess active power, and that inanimate beings must be merely passive. Nothing which we perceive without us affords any good ground for ascribing active power to any inanimate being; and we can as little conceive such a being possessed of power as we can conceive it capable of feeling pain. On the other hand, every thing which we discover in our own constitution, leads us to think that active power cannot be exerted without will and intelligence; and to affirm that it can, is to affirm what to us at least is a contradiction in terms.

To this reasoning, which is Dr Reid's, and which to us appears unanswerable, we have heard it objected, that a man born blind has the same evidence for the non-existence of colour that is here urged for the impossibility of power being exerted without will and understanding. If the objection had not been made by a very acute man; we should have deemed it altogether unworthy of notice; for between the two cases supposed to be similar there is hardly any analogy. A man born blind has no notion whatever of colour. If you describe it to him in the best manner that you can, and refer it to any of the senses which he posseffes; if you say that it is the object of feeling, and that by feeling it one may perceive things at the distance of many miles; the blind man has reason to say that you are uttering a proposition which he knows with the utmost certainty cannot possibly be true. But if you tell him that colour is the object of the sense of sight; a sense which he posseffes not; that it has not the least resemblance to the objects of the other senses; and that persons endowed with the sense of sight perceive coloured objects at the distance of many miles; the blind man cannot know whether what you say be true or false, because he has no idea or conception of the things of which you speak. This is not the case with respect to power; for every man who has reflected on the operations of his own mind has a very distinct notion of power, and knows perfectly, that to the actual exertion of the only power which he can conceive, will and understanding are necessary. Should it be said that there may be power altogether different from that of which we have a distinct conception, we think it sufficient to reply, that of a thing which cannot be conceived nothing can be either affirmed or denied; that activity exerted without will and understanding ought not to be called an exertion of power, because power is the name already appropriated to the attribute of a being by which he can do certain things if he wills; that we can form no notion of a real efficient cause which has not will and understanding, so that we have no reason to believe that such a cause anywhere exists; and to say that power, such as we can conceive, may be exerted without will and understanding, is as great an absurdity as to say that there may be velocity without space.

But if active power, in its proper meaning, requires a subject endowed with will and intelligence, what shall we say of those active powers which philosophers teach us to ascribe to matter, the powers of corporeal attraction, magnetism, electricity, gravitation, and others? These powers, as they are called, shall be considered when we treat of the nature and source of corporeal motion. In the mean time, it is sufficient to observe, that whatever the agents may be in the operations of nature, whatever the manner of their agency or the extent of their power, they depend upon the first cause, and are all under his control.

CHAP. VII. OF TRUTH, AND THE DIFFERENT SOURCES OF EVIDENCE.

Sect. I. OF TRUTH.

By pursuing these inquiries in the order which to us appears most natural, we are now led to the contemplation of those faculties of the human mind of which truth is properly the object. But what is truth? This was a famous question among the Greek sophists; which had been so often agitated, and to which so many absurd answers had been given, that it came at last to be doubted by men of the world whether a satisfactory answer could be given, or indeed whether the matter was worthy of investigation. It is well known, that among the ancient philosophers there was a sect called from their principles Sceptics, and from their founder Pyrrhonians, who openly avowed their opinion that truth, like virtue, is nothing but a name; that all things are equally true, or rather equally doubtful; and that it is in vain for man to hope for certainty in any inquiry in which he can be engaged.
(w) Dr Tatham having asked, with a contemptuous air, How imperfect and illogical is the definition of truth given by Wollaston? proceeds, though not to define, to describe or characterise it himself. "Truth (says he) is of the nature and essence of God, like him incomprehensible in the whole, and ineffable in its sublimier parts. For these and other reasons it cannot admit of an adequate definition. And who, in the beginning of his researches, should presume to define that which, after all his longest and best conducted labours, he can only hope partially, and often imperfectly, to comprehend; and of which an important part can neither be directly expressed nor directly understood? We may indeed esteem ourselves highly favoured by the Author and finisher of all truth, if, at the end of our researches, we shall be able any way to understand, to define, and apply to a few particular portions and detachments of it, and to guard them from error and corruption. When upon a solemn occasion the question was put to our Lord by a Roman governor, What is true? though it was what he fully and perfectly knew, and what he came purposely and professedly to teach, he did not define it. He knew that definition was never the best method of instruction; and that in its common use and application it was seldom the friend of truth. Philosophically viewed, words do not constitute truth; they are only the vocal instruments by which it is communicated, or the written signs by which it is recorded. By an inquirer, therefore, things are to be examined rather than words defined. By a teacher, things are to be conveyed by words in some form or other, which are doubtless to be explained to the understanding if not sufficiently understood before. But explanation is one thing, and definition quite another. Explanation is the first office of a teacher: Definition, if it be good, is the last of the inquirer, after the truth be found; and is then the most advantageously employed by the teacher, when his previous instructions have prepared him for it. God is a mind, and truth is consequently an attribute of mind. To the sun, declaring at his rising a marvellous instrument, He, by whom all things were made, hath delegated the power of enlightening the material system; whilst he hath referred to himself the office which is more suitable to his nature, of giving light and knowledge, by his eternal truth, to the mind of man. But whether he act through the instrumentality of his creatures, or more immediately from himself, he is uniform and consistent in his operations; so that one part of his divine economy is always illustrative of another. As the sun sheds his light over the material creation to be apprehended by the eye, truth is the light shed from heaven to be apprehended by the intellect, given to illumine every subject, natural and moral, corporeal and spiritual, so far as they are qualified by their different natures to convey to the human mind, or rather perhaps so far as the human mind is qualified to receive it from them."

(x) Dr Beattie, in his elegant essay, has given a definition of truth very different from this, though it is possible that he means the same as Mr Wollaston's. "I account that to be truth (says he) which the constitution of our nature determines us to believe; and that to be false of which the constitution of our nature determines us to disbelieve." But if truth be really immutable, as he teaches or wishes to teach, it must depend upon the nature of things, and not upon the instinctive impulse of any particular constitution. It is always difficult, often impossible, to distinguish between the constitution of our nature, as it came from the hand of God, and the same constitution as it is moulded by arbitrary and capricious associations of our own. A sincere member of the Church of Rome, certainly believes the doctrine of transubstantiation. How he may do so we have already shown. Were all mankind sincere members of that church, it would be said
and thought, "that the constitution of human nature determines men to believe transubstantiation?" a doctrine which, though it is rejected by millions, Père Buffier has laboured hard to reconcile with common sense. Yet it is certain that the same body cannot be in different places at the same time; and that therefore transubstantiation must be false, though believed by all mankind. Our believing any thing does not make it true, nor our disbelieving any thing make it false. We must, indeed, act according to our belief; but in every instance truth and falsehood would have been what they are, though we had never existed.
METAPHYSICS.

Of Truth.

Of applying the epithets temporary, and eternal to any thing but real existences, yet as this manner of speaking has been used by all philosophers, we shall give instances of each kind of truth, and endeavour to ascertain in what the distinction consists. "The three angles of a plain triangle are equal to two rightangles," is a proposition expressive of a necessary and eternal truth. "The world exists," is a contingent and temporary truth. Here it is obvious, that if both these propositions be true, there is no distinction between them, so far as mere truth is concerned; for truth admits not of degrees of comparison. It is however said, that the first proposition depends not upon time, or will, or anything else; and that the Supreme Being himself could not make it false; whereas it is certainly possible, that he who created the world could annihilate it, and thus reduce what is now a truth to an absolute falsehood. This difference between the two propositions is thought a sufficient ground for calling the former a necessary and eternal truth, and the latter a temporary and contingent truth. But is the difference itself real? In the present instance we cannot think that it is: for if the right angles and triangles, which constitute the materials of the former proposition, be real corporeal things, they may be annihilated as well as the rest of the world; and then the truth of the proposition will cease, for there can be neither equality nor inequality between nonentities. If the angles and triangles be merely ideas in the mind of a rational being, it is not to be denied that the proposition must be true, independent of all will, whenever those ideas exist, i.e., whenever right angles and triangles are thought upon; but if all reasonable creatures were to be annihilated, and the Supreme Being never to think of triangles, the proposition would unquestionably cease to be either true or false. The world indeed may be annihilated; but it certainly is not annihilated whilst any one creature exists to contemplate even that which is called necessary and eternal truth: and therefore whilst any truth exists in a mind not divine, it must be necessarily true that the world exists; for the individual being by which truth is perceived would then constitute the whole world.

But if in a somewhat different manner we compare the former of these propositions with this—"The solar system consists of the sun and at least seven primary planets"—we shall at once perceive the difference between necessary and contingent truths. Both propositions we know to be true at this moment; but there is this difference between them, that a plain triangle can neither actually exist at any period of duration, nor be conceived by any one mind divine or human, of which the three internal angles are not precisely equal to two right angles; whereas the solar system may easily be conceived, and might certainly have been formed, with a smaller number of primary planets rolling round the central fire. This needs no proof; as it is well known, that till very lately we conceived the system to consist of the sun and only five primary planets; and it has already flavoured that whatever we can positively conceive may possibly exist.

Thus, then, every proposition of which the contrary is clearly and distinctly perceived to be impossible, is a necessary truth; and it may likewise be called eternal, because at every period of duration it must of necessity when thought upon be perceived to be true: On the other hand, every proposition of which the contrary may be clearly and distinctly conceived, is, if true, only a contingent truth, because its contrary might have existed; and it may likewise be called temporary, because what might have been false in time past may yet be false in time future.

Though all our faculties (our senses, our memory, and our intellect) furnish materials for propositions, and are therefore all subvertive to the investigation of truth; yet the perception of truth, as it is in itself, is commonly ascribed to our rational faculties; and these have by Locke and others been reduced to two—reason and judgment. The former is said to be conversant about certain truths, the latter chiefly about probabilities.

Some late philosophers of great merit, dissatisfied with this analysis of the intellect, have added to some philosophers a third faculty, viz., memory. The degree of judgment which is common to men with which we can converse and transact business. Whether the introduction of such a term into metaphysics was proper or improper, we do not think it of importance to enquire. According to this definition of it, which is Dr Reid's, it differs not from the reason (x) and judgment of Locke; agreeing with the former when

(x) This is expressly acknowledged by Dr Reid. "It is absurd (says that able and candid writer) to conceive that there can be any opposition between reason and common sense. It is indeed the first-born of reason; and as they are commonly joined together in speech and in writing, they are insepable in their nature. We ascribe to reason two offices or two degrees: the first is to judge of things self-evident; the second to draw conclusions that are not self-evident from those that are. The first of these is the province, and the sole province, of common sense; and therefore it coincides with reason in its whole extent, and is only another name for one branch or one degree of reason." Peter Bellier talks nearly the same language; but Dr Beattie expresses himself very differently. "That there is a real and essential difference between these two faculties; that common sense cannot be accounted for by being called the perfection of reason, nor reason by being resolved into common sense; will appear (he thinks) from the following remarks." We are conscious, from internal feeling, that the energy of understanding, which perceives intuitive truth, is different from that other energy which unites a connexion of intermediate relations. 2. We cannot discern any necessary connection between reason and common sense. Nay, he says, "That we often find men endued with the one who are destitute of the other;" and he instances dreams and certain kinds of madness where this is the case; adding, that a man who believes himself
METAPHYSICS.

Of Intuitive Evidence and Demonstration.

Intuitive evidence is that which arises from the comparison of two or more ideas or notions when their agreement or disagreement is perceived immediately, without the intervention of any third idea or notion. Of this kind is the evidence of these propositions: One and four make five; things equal to one another are equal to one another; the whole is greater than any of its parts; and in a word, all the axioms in arithmetic and geometry. All these are in reality propositions in which the subject and predicate appear upon comparison to be nothing more than the same thing taken in different views or expressed by different terms. In fact, they are all in some respect reducible to this axiom, "Whatever is, is." We do not say that they are deduced from it; for they have in themselves that original and intrinsic evidence which makes them, as soon as the terms are understood, to be perceived intuitively. And if they be not thus perceived, no deduction of reason ever confer on them any additional evidence. But though not deduced from the general axiom, they may be considered as particular exemplifications of it; inasmuch as they are all implied in this, that the properties and relations of our clear and adequate ideas can be no other than what the mind clearly perceives them to be.

It may perhaps be thought, that if axioms were propositions perfectly identical, it would be impossible by their means to advance a single step beyond the simple ideas first perceived by the mind. And it would indeed be true, that if the predicate of the proposition were nothing but a repetition of the subject under the same aspect, and in the same or synonymous terms, no conceivable advantage could be made of it for the furtherance of knowledge. Of such propositions as these, for instance, "Seven are seven, eight are eight, the three angles of a triangle are the three angles of a triangle, two right angles are two right angles," it is manifest that we could never avail ourselves for the improvement of science: But when the thing, though in effect coinciding, is considered under a different aspect; when that which is single in the subject is divided in the predicate, and conversely; or when what is a whole in the one is regarded as a part of something else in the other; such propositions lead to the discovery of innumerable and apparently remote relations. It is by the aid of such simple and elementary principles that the arithmetician and the algebraist proceed to the most astonishing discoveries. Nor are the operations of the geom.etrician essentially different: for this class, belong all propositions relating to number and quantity; that is, all which admit of mathematical demonstration. If the truth of a mathematical proposition be not self-evident; in other words, if the subject and predicate do not appear at first to be different names for the same thing, another term must be found that shall be synonymous to them both. Thus, to prove that the three internal angles of a right-lined triangle are equal to two right angles, I produce the base of the triangle; and by a very short process I discover that the exterior angle so formed is equal to the two interior and opposite angles. By a process equally plain and short, I perceive that the exterior angle and the interior adjacent angle are equal to two right angles: But I have already seen, that the exterior angle is neither more nor less than the two interior and opposite angles under a different aspect; whence it appears that the three internal angles of the triangle are nothing else than two right angles under a different aspect. In a word, all demonstration is founded on first principles or primary truths, which neither
neither admit nor fland in need of proof, and to which the mind is compelled to give its assent by a bare intuition of the ideas or terms of which these primary truths are composed. Nothing is susceptible of demonstration, in the rigid sense of the word, but general, necessary, and eternal truths; and every demonstration is built upon intuition, and consists in a series of axioms or propositions of the very same kind with the first principle or truth from which the reasoning proceeds. That propositions formerly demonstrated are taken into the series, doth not in the least invalidate this account; inasmuch as these propositions are all resolvable into axioms, and are admitted as links in the chain; not because necessary, but merely to avoid the useless prolixity which frequent and tedious repetitions of proofs formerly given would introduce. It is obvious that such truths only as result from the comparison of ideas and notions are necessary; and of course that such truths only are capable of strict demonstration. The truths which relate to real existences are all contingent, except that which affirms the existence of the Supreme Being, the Parent of all truth.

The mathematical sciences, categorical logic, and the part of metaphysics which demonstrates the being of God, are therefore the only branches of human knowledge which admit of strict demonstration. The longest demonstration in the mathematical sciences may be traced to this general and necessary truth. "Whatever is, is," or to some particular exemplification of it: the longest train of categorical syllogisms terminates in this general principle, "What is affirmed or denied of a whole genus, may be affirmed or denied of all the species and all the individuals belonging to that genus:" and the metaphysical demonstration of the being of God rests upon this foundation, "Whatever had a beginning, had a cause." That these are truths absolutely certain, which cannot be proved nor called in question, every man may be satisfied, merely by attending to the ideas or notions which the terms of each proposition express. The two first are merely identical propositions, of the truth of which no man has ever pretended to doubt; and though the last is not identical, it is a necessary and self-evident truth, as its contrary implies, that in the same thing there is power and no power, change and no change, action and inaction, at the same instant.

Before we dismiss the subject of intuition, it may not be improper to observe, that it is by this faculty which we acquire all our notions of relation.

It is by intuition that we are acquainted with all our notions of relation.

It has been just observed, that intuition and demonstration are applicable only to general and necessary propositions, of which the contrary are not only false, but absurd and impossible. The great business of life, however, is with facts and contingent truths, which admit not of demonstration, but rest upon other evidence. The fenoses, external and internal, are the inlets to all our knowledge of facts; and the memory is the storehouse where that knowledge is preserved. Of what a man feels or feels, he can at the instant of feeling or feeling entertain no doubt; and whilst the ideas of what he has seen or felt, with all their associated circumstances, remain vivid and distinct in his memory, he is conscious that he posesses so much real knowledge. But all our knowledge, as it is derived from the senoses, is of particular facts or particular truths; and the man who has in certain circumstances observed one particular phenomenon, for the existence of which he perceives no necessity, has not sufficient ground to conclude, that in similar circumstances similar phenomena will always occur. Milton, who surpassed the greater part of his contemporaries in philosophical science almost as far as he has surpassed all succeeding poets in the sublimity of his genius, represents Adam, when first falling asleep, as under apprehensions that he was about to sink into his original state of infensibility:

Gentle sleep
"First found me, and with soft oppression seizing
"My drowsy slumber, untroubled; though I thought
"I then was falling to my former state
"Infensible, and forthwith to diffuse."

Apprehensions similar to these would take place in his mind when he first perceived that darkness had overspread the earth. In his circumstances, he could have no ground to expect that the sun when once set would rise again to resume the world, as he had not then experienced the alternate succession of light and darkness, and probably knew not whence light proceeds. After some time, however, having observed day and night regularly to succeed each other, these two appearances, or the ideas of them, would be so associated in his mind, that each setting sun would suggest the idea of next sun-rising, and lead him to expect that glorious event with the utmost confidence. He would then consider the alternate succession of day and night as a law of nature, which might be affirmed in a proposition expressive of a certain truth.

This continued observation of the same event has the only evidence which we have for all the general truths in physics, even for those which we are apt to think intuitively certain.

Thus, that milk is white, and that gold is yellow, are truths which we suppose to be universal and necessary truths: but for any thing that we know, they may be particular truths; and they are certainly contingent, as the contrary to either of them may be supposed without absurdity. We have indeed already observed the milk of all animals of every species white; and therefore the proposition of white becomes a necessary part of our idea of the substance milk, of which we call whiteness an essential property. This, however, respects only the milk of the sheep's and goat's. It is evident that the milk of all the animals with which we are acquainted, or of which we have heard, is white, we can have no reason to suppose that the milk of any new and strange animal is of any other colour. Alfo, since, wherever there has been the specific gravity, ductility, and other properties of gold, the colour has always been yellow; we conclude that these circumstan-
Part I. Of Experience and Analogy.

The proper proof, therefore, of such universal propositions as "that milk is white," "that gold is yellow," or "that a certain degree of cold will freeze water," consists in what is called an induction of particular facts of precisely the same nature. Having found, by much and various experience, that the same events never fail to take place in the same circumstances, the expectation of the same confluences from the same previous circumstances is necessarily generated in our minds; and we can have no more suspicion of a different event than we can separate the idea of whitening from that of the other properties of milk. When the previous circumstances are precisely the same, we call the process of proof by the name of induction, and expect the event from experience; but if they be not precisely the same, but only under the same circumstances fall from which any particular appearance has been found to result, we call the argument analogy; and it is stronger in proportion to the degree of resemblance in the previous circumstances. Thus the milk of all the cows that we have seen, or upon which we have made the experiment, having been found nourishing, we confidently expect that the milk of all other cows will prove nourishing likewise; and this confidence of expectation is the result of uniform experience.

But if, from having found the milk of all the animals with which we are acquainted to be nourishing, however different the nature of these animals; and infer that the milk of any strange animal will likewise be nourishing, the inference is drawn by analogy, and by no means carries with it the conviction of experience. A proof from real experience can leave no doubt in the mind (a); an argument from analogy always must.

In the one case, we only infer that two events of precisely the same nature and in precisely the same circumstances have been produced by the same kind of cause; in the other, we infer that two events similar in most respects, though for any thing that we know dissimilar in others, have been produced by the same kind of cause; and it is obvious that between these cases the difference is great.

Thus, after having observed that all the projectiles to which we have paid any attention—a stone thrown from the hand, a ball from a gun, and an arrow from a bow—describe a certain curve, and are impelled in that curve by two powers acting in different lines of direction which form with each other a certain angle, we infer that all projectiles which on the surface of the earth describe the same curve are impelled by the same or similar powers acting in the same or similar lines of direction. This inference is the result of experience, and carries with it the fullest conviction to the mind. But when, from having observed that the curves described by the planets are of the same kind with those described by projectiles on the earth, Sir Isaac Newton inferred that these vast bodies are impelled in their orbits by forces of the very same kind, and acting in the same manner with the forces which impel a ball from a cannon or an arrow from a bow, his argument was founded only on analogy; and even that analogy is very remote. We know by experience that all projectiles which fall under our immediate observation are of the same kind and in the very same circumstances; that every one of them has a tendency, from whatever cause, to the centre of the earth, and is preferred from falling by the force of projection; we know likewise that they are all moved through the medium of the atmosphere, which at the surface of the earth is considerably denser, and that a dense medium must occasion much resistance: But we do not know that the planets have a tendency to the centre of the sun, that they are preferred from falling into that luminary by a projectile force, or whether they move through a medium or in vacuo: So that we are not certain that the motion of the planets is perfectly similar to that of terrestrial projectiles in any other circumstance than the form of the curve which they all describe; and from this single case of coincidence no inference can be drawn which carries to the mind absolute conviction.

When a man reasons from experience, he infers, that what has uniformly happened hitherto, will happen always in the very same circumstances; or that what is known to be the cause of the phenomena of the nine-nine percent is the cause of every other phenomenon in all respects similar to these. Such an inference is founded on the united and complete evidence of sense, memory, and reason. When a man reasons from analogy, he infers, that what has generally happened hitherto,

(a) We say from real experience; because what is often taken for experience, and to human eyes has that appearance, is in fact nothing more than analogy. Thus a physician may have prescribed to ninety-nine patients the same remedy, and always with the same success. If so, he will think that he has experience of its utility, and will prescribe it again with the fullest confidence. Yet in this case he may be disappointed; for though the medicine be the same and the disease the same, there may be something in the constitution of the hundredth patient different from that of the ninety-nine, that what was salutary to them may be pernicious to him. This does not detract from the evidence of experience: it only shows, that the circumstances of the case in which the medicine failed were different from those in which it succeded. In such conclusions as are founded on a complete induction and uniform experience, every man expects the event with the last degree of assurance, and regards his past experience as a full proof of the future existence of that event: In other cases, where experience has been variable—or apparently variable—he knows that the induction has been incomplete, and therefore proceeds with caution. He weighs the opposite experiments; takes as complete a view as he can of the circumstances in which they were made; considers which side is supported by the greater number of experiments, and inclines to that side with doubt and hesitation. And when at last he fixes his judgment, the evidence exceeds not what is called probability. All probability, then, supposes an opposition of experiments and observations, where the one side is found to overbalance the other, and to produce a degree of evidence proportioned to the superiority.
M A T H E M A T I C S.

M E T A P H Y S I C S.

Part I.

M A T H E M A T I C S.

532

Of Testimony.

This last source of evidence which we proposed to consider is testimony, or the report of men concerning events which have fallen under the observation of their senses. That we are all ready to believe the information which we receive from the testimony of our fellow creatures is undeniable; and indeed without such belief, every man's knowledge of facts and events would be confined to those only of which he himself had been a personal witness. In that cafe, no man who had not travelled would believe that there are such cities as Rome and Constantinople; and no man whatever could now believe that such heroes as Hannibal and Cæsar had ever existed.

Between words and things there is no natural connection; and though we are all accustomed to give to things the names by which they are known in the language that we speak, and to express their mutual relations by the words appropriated for that purpose; yet it is obviously impossible to denote one thing by the name of another, and to express by words relations that have no existence. This being the case, it may be asked upon what principle we give credit to human testimony? To this question various answers have been given, which have produced much controversy on one of the most important subjects which can employ the mind of man.

"We may observe (says Mr Hume*), that there is no species of reasoning more common, more useful, and even necessary to human life, than that which is derived from the testimony of men and the reports of eye-witnesses and spectators. The species of reasoning perhaps one may deny to be founded on the relation of cause and effect. I shall not dispute about a word. It will be sufficient to observe, that one assurance in any argument of this kind is derived from no other principle than our observation of the veracity of human testimony, and of the universal conformity of facts to the reports of witnesses. It being a general maxim that no (a) objects have any discoverable connection together and that all the inferences which we can draw from one to another are founded merely on our experience of their constant and regular conjunction; it is evident that we ought not to make an exception to this maxim in favour of human testimony, whose connection with any event seems in itself as little necessary as any other. Were not the memory tenacious to a certain degree, had not men commonly an inclination to truth, and a principle of probity; were they not sensible to shame when detected in falsehood; Were not these, I say, discovered by experience to be qualities inherent in human nature, we should never repose the least confidence in human testimony. And as the evidence derived from witnesses and human testimony is founded on past experience, so it varies with the experience, and is regarded either as a proof or probability, according to the conjunction between any particular kind of report and any kind of object has been found to be constant or variable. There are a number of circumstances to be taken into consideration in all judgments of this kind; and the ultimate standard by which we determine all disputes that may arise concerning them, is always derived from experience and observation. The reason why we place any credit in witnesses and historians, is not derived from any connection which we perceive a priori between testimony and reality, but because we are accustomed to find a conformity between them. But when the fact attested is such a one as has seldom fallen under our observation, here is a contest of two opposite experiences; of which the one destroys the other as far as it goes, and the superior can only operate on the mind by the force which remains. The very same principle of experience which gives us a certain degree of assurance in the testimony of witnesses, gives us also, in this case, another degree of assurance against the fact which they endeavour to establish; from which contradiction there necessarily arises a counterpoise, and mutual destruction of belief and authority."

This account of the origin of faith in testimony has been controverted with much success by the Doctors Campbell and Reid. "That the evidence of testimony is derived solely from experience (says the former of these writers §), is at least not so inconceivable a truth as Mr Hume supposes it; that, on the contrary, testimony hath a natural and original influence on belief antecedent to experience, will, I imagine, easily be conceived. For this purpose, let it be remarked, that the earliest affent which is given to testimony by children, and which is previous to all experience, is, in fact, the most unlimited; that by a gradual experience of mankind, it is gradually contracted, and reduced to narrower bounds. To say, therefore, that our confidence in testimony is the result of experience, is more philosophical, because more consonant to truth; than to say that our faith in testimony has this foundation. Accordingly, youth, which is unexperienced, is credulous; age, on the contrary, is distrustful. Exactly the reverse would be the case were this author's doctrine just." This is a complete confutation of the reasoning of Mr Hume: but in order to prevent all cavilling, it is to be wished that the very acute author had explained more fully what he means by saying, that testimony hath a natural and original influence on belief; for these words may be taken in different senses, in one of which what he affirms is true, and in another false.

Dr

(a) Is there then no discoverable connection between a tree and the field in which it grows; between a man and his clothes; between an author and his work; between a sceptic and paradoxes? Surely all these are

*Mr Hume

§ Differently.

Dr
Part I.

M E T A P H Y S I C S.

Dr Campbell's omission is amply supplied by Dr Reid, who gives § the following account of testimony, and of the credit which it obtains. "The wife and beneficent Author of nature, who intended that we should be social creatures, and that we should receive the greatest and most important part of our knowledge by the information of others, hath, for these purposes, implanted in our nature two principles that tally with each other. The first of these principles is a propensity to speak truth, and to use the signs of language so as to convey our real sentiments. This principle has a powerful operation even in the greatest liars; for where they lie once, they speak truth a hundred times. Truth is always uppermost, and is the natural issue of the mind. It requires no art or training, no inducement or temptation, but only that we yield to a natural impulse. Lying, on the contrary, is doing violence to our nature, and is never for some end which he cannot otherwise attain. — Now, when I reflect upon my actions most attentively, I am not conscious that in speaking truth I am influenced on ordinary occasions by any motive moral or political. I find that truth is always at the door of my lips, and goes forth spontaneously if not held back. It requires neither good nor bad intention, nor forethought to bring it forth, but only that I be articulate and undesigning. "There may indeed be temptations to falsehood, which would be too strong for the natural principle of veracity, unaided by principle of honour or virtue; but where there is no such temptation, we speak truth by infinitive. By this infinitive, a real connection is formed between our words and our thoughts; and thereby the former become fit to be signs of the latter, which they could not otherwise be."

Such is the account which Dr Reid gives of the truth of human testimony: and he adds, that there is another original principle implanted in us by the Supreme Being, to tally with it, viz. a disposition to confide in the veracity of others, and to believe what they tell us. "This (he says) is the counterpart to the former; and as that may be called the principle of veracity, we shall, for the want of a more proper name, call this the principle of credulity. It is unlimited in children, until they meet with instances of deceit and falsehood; and retains a very considerable degree of strength through life."

It is ever with extreme reluctance that we controvert the opinions of this able writer; and that reluctance cannot be justified in the present instance, when we are conscious that great part of what he says is inadmissible. That truth is always at the door of the lips; that it requires no effort to bring it forth; that in ordinary cases men speak truth uninfluenced by any motive moral or political; that the greatest liars speak truth a hundred times where they lie once; and that lying is never practised by the worst men without some temptation, are positions which daily experience renders it impossible to question: But notwithstanding this, we do not think that truth is spoken by an infinitive principle; because it is inconceivable that infinitive should teach the use of arbitrary and artificial signs, such as the words of every language undoubtedly are; or that between such signs and ideas any infinitive connection should ever be formed. "Truth (as we have defined it) is the conformity of those words or signs by which things are expressed, to the things themselves;" and things themselves are what they are, independent of us, our infinitive, and perceptions. When we have precise and adequate ideas of objects, and when those ideas are related to one another as the objects themselves are related, we are in possession of mental truth; and in this case there is a real and natural connection between the signs and the things signified: for we cannot frame original and simple ideas which have no archetype in nature; nor can one object, distinctly perceived, generate in our minds the ideas that are generated by other objects. Here external things are the objects, and ideas are the signs, which, when they are in conformity to the things signified by them, constitute truth.

But in human testimony, the ideas in the mind of the speaker are the things signified, and the words of the signified language are signs by which they are expressed; and when these things and signs are in conformity to each other, the words uttered express so much truth. — Now, though in this case there is no natural connection between the sign and the thing signified, yet it is obvious, that without a violent effort of the speaker to the contrary they must always be in conformity with each other: because, in every language, there are words appropriated for the purpose of denoting every idea and relation which can be expressed; and in the mind of every man these ideas, relations, and words, have been constantly associated from the time that he learned to speak. So intimate is this association, and so impossible to be broken, that whoever will pay sufficient attention to the operations of his own mind, will find that he thinks, as well as speaks, in some language; and that in cogitation he supposes and runs over, silently and habitually, those sounds which in speaking he actually utters (a). If this be so, it is impossible that a man without some effort should ever speak anything but truth; for the ideas of what he has seen or heard, &c. are not of his manufacture.

(b) This seems to have been Plato's opinion; for he calls thinking λόγος to ὑπάρχειν, ὁτι τῇ ἐν ὑπάρχει, "the language by which the soul explains itself to itself when it considers any thing." And Plotinus says, ὁ πρὸς ἐκείνον μὲν ὑπάρχειν ὁ λόγος, "the vocal words are an imitation of those of the soul." To say that vocal words are an imitation of those of the soul, is to speak inaccurately, and to reverse the process of association; but it affords sufficient evidence, that in the opinion of Plotinus men think as well as speak in words.
PART II. OF BODY WITH ITS ADJUNCTS.

CHAP. I. OF THE COMPOSITION OF BODIES; OR, OF MATTER AND FORM.

HITHERTO we have contemplated only the powers of our own minds by which we acquire a stock of ideas, and the various operations of the intellect upon those ideas, as treasured up in the memory or imagination. In the course of our inquiry we have found, that every idea and notion which we have was suggested by something independent of us; and in order to discover what those things are, we have investigated the nature of each sense, as it is by the senses only that we have any communication with the external world. By touch we perceive heat and cold, hardness and softness, figure, solidity, motion, and extension; by the organ of smell, we perceive odours; by the tongue and palate, tastes; by the ear, sounds; and by the sight, colours. We have likewise seen, that heat and cold, odours, tastes, sounds, and colours, are mere sensations which have no existence but while they are perceived. On the other hand, hardness and softness, figure and solidity, motion and extension, are neither sensations, nor like sensations; but are conceived to be something external and independent of us, and to be the causes of certain sensations. Even of heat and cold, odours, tastes, sounds, and colours, we know with certainty that there is some cause independent of our faculties, which may operate in a desert wilderness as well as in a populous city, though, for want of sentient beings to operate upon, it cannot in the wilderness produce the same effects as in the city.

Of things perceived by the senses we find the greatest part always united: for when a man perceives a piece of sealing-wax, he makes use of all his senses, he perceives at once cold, taste, colour, hardness, roughness or smoothness, figure, solidity, motion of extension, the powers or qualities, which in this instance produce the sensations of heat or cold, taste, colour, and motion, are fo united to the hardness, figure, solidity, and extension of the wax, as that they cannot exist alone, is evident: because it is impossible to remove any one of these things, or to conceive it removed, without removing with it all the rest.

(c) Should it be asked what number we call competent, we beg leave to say, that it will be greater or less according to circumstances. In cases where they are not liable to the deceptions of sense, two men of integrity and intelligence deserve equal credit with two thousand; but where there is particular occasion for good organs, whether of sight, hearing, or touch, the greater the number the greater is our security. To this must be added, that as one man is influenced by that which to another would be no motive, a great number of witnesses concurring in the same testimony is always an additional security that they are not under the influence of any latent bias.
Allot. What then is the bond of this union? Do these things necessarily accompany one another, so that one of them cannot exist without bringing all the rest along with it? No; there is no necessary connection among them: for by the operation of fire the wax may be rendered liquid, when the hardness and cold are gone, tho' every thing else remains the same, or nearly the same, as it was before. By a still further operation of fire the appearance may be entirely changed; and that which was formerly a piece of hard red wax, may be reduced to smoke and ashes, in which there is neither hardness, colour, odour, nor figure; at least there is not in the smoke and ashes such hardness, colour, odour, or figure, as was in the wax. The solidity and extention, however, remain; for we perceive ashes and smoke, to be extended and solid as much as wax or an adamant; nor is it possible to do any thing with the wax, or with any other sensible object, which shall deprive it of extention or solidity.

Thus, then, extention and solidity may exist and be perceived when separated from hardness, colour, and odour; but none of these can exist, or be conceived to exist, independent of extention and solidity. Hardness, colour, odour, taste, and figure, or the things which suggest these notions to us, have with great propriety been termed accidents or qualities; because they cannot exist or be conceived to exist by themselves, but require for their support one common subject. Extention and solidity can exist independent of them, but they cannot exist independent of solidity and extention.

Is then solidity the basis of these qualities, so that they necessarily result from it? No; there are many things solid and extended which are neither hard, nor coloured, nor odorous, nor rapid; which could not be if these qualities were the necessary effect of solidity. Besides, all mankind conceive of solidity and extention as qualities of something else; for we never say that solidity is extended or coloured, or hard or odorous, but that something solid has these qualities: whence it is evident that we consider solidity as a quality itself. In what then does solidity and all the other sensible qualities inhere, since they cannot exist separately and do not support each other? This is a question which modern philosophers pretend not to answer; but some of the ancients were not so modish. Aristotle and his followers resolved every bodily substance into matter and form, making matter the basis or substratum, and under form comprehending all sensible qualities.

As attempts have been lately made to revive this philosophy, it may not be improper to give a short view of the doctrine of matter and form, if it were only to discover whether the speculations of Aristotle and his adherents on this subject deserve to be preferred to those of Newton and Locke.

The most peripatetic, and by far the most elegant writer among the moderns who has adopted the ancient philosophy, is Mr. Harris; and left we should be accursed by others of doing injustice to a subject above the reach of ordinary comprehension, we shall transcribe so much of what he has said of matter and form in his philosophical arrangements as seems necessary to make our readers understand his meaning as far as it is intelligible.

"Matter (says this writer) is that elementary substance which appertains in a particular manner common to them all, without distinguishing them from one another. Every thing generated or made, whether by nature or art, is generated or made out of something else; and this something else is called its subject or matter. Such is iron to the saw; such is timber to the boat. Now this subject or matter of a thing being necessarily essential to that thing's existence, is necessarily different from it; and not the same. Thus iron, as iron, is not a saw; and timber, as timber, is not a boat. Hence, then, one character of every subject or matter, that is, the character of negation or privation. [He means negation or privation of what is to be made out of it.]

"Again, though the subject or matter of a thing be not that thing, yet, were it incapable of becoming so, it could not be called its subject or matter. Thus as definite iron is the subject or matter of a saw; because, though iron is not a saw, it may still become a saw. On the contrary, timber is not the subject or matter of a saw; because it is not only (as timber) is no saw, but can never be made one from its very nature and properties. Hence, then, besides privation another character of every subject or matter, and that is the character of aptitude or capacity. [He means aptitude or capacity to be that which is made out of it.]

"Again, when one thing is the subject or matter of many things, it implies a privation of them all, and a capacity to them all. Thus iron being the subject or matter of the saw, the axe, and the chisel, implies privation and capacity with respect to all three. Again, we can change a saw into a chisel, but not into a boat; we can change a boat into a box, but not into a saw. The reason is, there can be no change or mutation of one thing into another where the two changing-beings do not participate the same matter. But even here, were the boat to moulder and turn to earth, and that earth by natural processes to metallic and become iron; through such progression as this we might suppose even the boat to become a saw. Hence therefore it is, that all change is by immediate or mediate participation of the same matter. Having advanced thus far, we must be careful to remember, first, that every subject or matter implies, as such, privation and capacity; and next, that all change or mutation of beings into one another is by means of their participating the same common matter. This we have chosen to illustrate from works of art, as falling more easily under human cognizance and observation. It is, however, no less certain as to the productions of nature, though the superior subtlety in these renders examples more difficult. The question then is, whether in the world which we inhabit, it be not admitted from experience, as well as from the confession of all philosophers, that..."
METAPHYSICS.

Part II.

Of the Composition of Bodies.

146

The peripatetic doctrine concerning the primary matter, or the basis of bodily substances. We forbear to make any remarks upon it till we have seen what they say of form, the other essential part of every body; for what is meant by matter and form will be more completely seen when they are viewed together.

Form (says the same elegant writer) is that elementary constituent in every composite substance, by which it is distinguished, and characterized, and known, from every other. But to be more explicit: The first and most simple of all extension is a line: this, when it exists, united with a second extension, makes a superficies; and these two, existing together with a third, make a solid. Now this last and complete extension we call the first and simplest form; and when this first and simplest form accedes to the first and simplest matter, the union of the two produces body; which is for that reason defined to be matter triply extended. And thus we behold the rife of pure and original body (v). It must be remembered, however, that body, under this character, is something infinite and vague, and scarcely to be made an object of scientific contemplation. It is necessary to this end that its extension should be bounded; for as yet we have treated it without such regard. Now, the bound or limit of simple body is figure; and thus it is that figures, with regard to body, becomes the next form after extension.

But though the boundary of body by figure is the three, one step towards rendering it definite and known, yet this is not sufficient for the purposes of nature. It is in forms which added to matter, contributed body, that their necessity here, that not only its external should be duly bounded, but that a suitable regard should likewise be given to its internal. This internal adjustment, disposition, or arrangement (denominate it as you please), is physical, called organization, and may be considered as the third form which appertains to body. By its accession we behold the rise of body physical or natural; for every such body is some way or other organized. And thus may we affirm, that these three, that is to say, extension, figure, and organization, are the three original forms to body physical or natural; figure having respect to its external organization to its internal, and extension being common both to one and to the other. It is more than probable, that from the variation in these universal and (as I may say) primary forms, arise most of those secondary forms usually called qualities sensible, because they are the proper objects of our several sensations. Such are roughness and smoothness, hardness and softness; the tribes of colours, favours, odours; not to mention those powers of character more subtle, the powers electric, magnetic (c), medicinal, &c.

"Here

135

The peripatetic doctrine concerning form. (f) He must mean only bodily substances; for it is not admitted by such philosophers as make a distinction between mind and body, that the one ever partakes into the other.

(f) "Original body (he says), when we look downward, has reference to the primary matter, its substratum: when we look upwards, it becomes the subject to other things; to the elements, as commonly called, air, earth, water, &c. and in consequence to all the variety of natural productions." (g) That it is from the extension, figure, and organization of bodies, that their medicinal powers arise, seems to be undeniable: for medicines operate by contact; but it is not so clear that the same forms, to use the author's language, are the source of magnetic powers. If the magnet be surrounded with an atmosphere extending to a certain distance, such may be the case; but if not, the author's conjecture must be left founded. See Magnetism.
Part II.

METAPHYSICS

Of the Composition of Bodies.

Here therefore we may answer the question, how natural bodies are distinguished. Not a single one among them consists of materials in chaos, but of materials wrought up after the most exquisite manner, and that coniplexious in their organization, or in their figure, or in both. As therefore every natural body is distinguished by the differences just described, and as these differences have nothing to do with the original matter, which being everywhere similar can afford no distinction at all; may we not here infer the expediency of essential forms, that every natural substance may be essentially characterized? These forms, though they differ from matter, can yet never subsist without it; but united with it, they help to produce every composite being, that is to say, in other words, every natural substance, in the visible world. It must be remembered, however, that it is the form in this union which is the source of all distinction. It is by this that the os is distinguished from the horse, not by that grace on which they subsist, the common matter to both. To which also may be added, that as figures and sensible qualities are the only objects of our fancies, and these are all parts of natural form; so therefore (contrary to the sentiment of the vulgar, who dream of nothing but of matter) it is evidently inseparable, as figures and sensible qualities are the only objects of our fancies, from being unlimited and universal, much less of extended bulk; and yet it seems impossible to conceive it without supposing it totally annihilated. Nay, if we have any just notion at all of solidity, it is evidently inseparable from the sublimate of body, whatever that sublimate be; and indeed, though Mr Harris divests his first matter of every attribute, the argument by which he proves the necessity of such a being does not require its privation to be so universal. "Had the primary matter (says he), in its proper nature, any one particular attribute, so as to prevent its privation from being unlimited and universal, such attribute would run through all things and be conspicuous in all." This indeed is obvious and undeniable: but solidity and extension do in fact run through all things into which the sublimate or matter of body is ever formed or ever can be conceived to be formed; and therefore there is no necessity for supposing the first matter divested of these attributes (h).

Mr Harris says, that both Timaeus and Plato drop

(h) Nor does it appear that it was divested of them by all the ancient philosophers. We learn from Cudworth, that "the atomical phylogny, the most ancient perhaps of any, teaches that body is nothing else but substantial forms, extended bulk; and that nothing is to be attributed to it but what is included in the nature and idea of it, viz. greater or less magnitude with divisibility into parts, figure, and position, together with motion or rest, but so that no part of body can ever move itself. And consequently, this philosophy supposes, that there is no need of any thing else besides the simple elements of magnitude, figure, sit, and motion (which are all clearly intelligible, and different modes of extended substance), to solve the corporeal phenomena by; and therefore not of any substantial forms distinct from the matter; nor of any other qualities really existing in the bodies without, besides the results or aggregates of those simple elements, and the disposition of the insensible parts of bodies in respect of figure, sit, and motion; nor of any intentional species or focus propagated from the objects to our senses; nor, lastly, of any other kind of motion or action really distinct from local motion (such as generation and alteration), they being neither intelligible as modes of extended substance, nor any way necessary. Forasmuch as the forms and qualities of bodies may well be conceived to be nothing but the result of those simple elements of magnitude, figure, sit, and motion, variously compounded together; in the same manner as syllables and words in great variety result from the different combinations and conjunctions of a few letters, or the simple elements of speech; and the corporeal part of sensation, and particularly that of vision, may be solved only by local motion of bodies; that is, either by corcent cilia (called undulae membrane and excrise), streaming continually from the surface of the object, or radii, as the later and more refined atomists conceived, by prehension made from the object to the eye, by means of light in the medium. So that we do distinctly to the object: and so the undulae ciliae, the sense taking cognizance of the object by the fibular interposed medium, that is tense and stretched (thrillmg every way from it upon the optic nerves), doth by that, as it were by a staff, touch it. Again, generation and corruption may be sufficiently explained by concretion and secretion, or local motion, without substantial forms and qualities.
expressions as if they considered matter to be place; but place, as will be seen afterwards, can be the basis of nothing. He likewise quotes a passage from Ammonius on the predicaments, in which it is said "that there never was in actuality either matter without body, or body without quality;" and we appeal to our readers if it be not absolutely impossible to contemplate such a being even in idea. To the question, Whether the first matter has a separate existence by itself, distinct from all the qualities of body, the author of Ancient Metaphysics answers thus:--"We have no idea of it existing separately, because we find no such thing in nature, from which we draw all our ideas; but whether there may not be such a thing existing in the regions of infinite space, as matter without form and dimensions, is what I think no man can take upon himself to decide." But with all submission, it is a man cannot decide this question with the utmost certainty, his three ponderous volumes are nothing better than useless paper; for the subject of them is existing; and concerning existence we know nothing with greater certainty than that a being of which nothing positive can be affirmed, cannot possibly have any existence.

That, in the world which we inhabit, bodily substances of every kind, whether natural or artificial, either immediately or mediately pass into one another, is a truth which cannot be denied; and therefore it follows, that there must be some primary matter common to all things. In modern philosophy this primary matter is considered as solid, and as the substrate of all bodies; and all those things which, in the language of Mr Harris, are comprehended under the appellation of form, are called qualities; so that on this subject the ancient and modern philosophy differ in nothing but in the latter using the word qualities instead of the word form; and defining the first matter to be a solid substance everywhere the same, whilst the ancient philosophy considers it as void of solidity.

Of the nature of this first matter all philosophers of the ancient are equally ignorant: for, as Mr Harris says, it is in ture of which all men are equally ignorant; and if they are in truth qualities, which are the whole that we either hear, or see, or feel, or of which we have either idea or conception. Mr Locke says expressly, "That if any one will examine himself concerning his notion of pure substance in general, he will find that he has no other idea of it at all, but only a supposition of he knows not what support of such qualities as are capable of producing simple ideas in us.

But how, it has been asked, do we know the things which we perceive are qualities, and cannot exist without a subject? We answer, Because every one of them, except solidity, may be changed or destroyed, and the subject in which they inhere still remains. Thus, though wax may be melted or burnt, and be no qualities, longer a hard solid substance of such a figure and such a smell, the matter which supported the hardness, figure, colour, and smell still remains; for melted wax or ashes is as much a solid substance as is that which may be used for the sealing of letters, &c.

It has been said that solidity (1) is the substratum of

lities. And lastly, those sensible ideas of light and colours, heat and cold, sweet and bitter, as they are distinct things from the figure, life, and motion of the insensible parts of bodies, seem plainly to be nothing else but our own fancies, passions, and sensations, however they be vulgarly called.

This, as will be seen by and by, is the philosophy of Newton, Locke, and all their followers: and that it is the genuine philosophy of the ancient atomists, we may safely take the word of the author whom we have quoted; for no modern has been more converant with their writings, more completely master of their language, or has given their sense with greater accuracy. Those authors, therefore, who in their zeal for ancient metaphysics would explode the physiology of Newton and Locke, and substitute in its place the Aristotelian doctrine of matter and form, believe their own pretences; for the theory which they would banish is more ancient than that which they wish to introduce; and we appeal to our readers if it be not more intelligible.

(1) The philosophers of most eminence who have maintained this opinion are, Dr Watts; the author of the Procedure, Extent, and Limits, of the Human Understanding; and Dr Law late bishop of Carlisle, who in a note upon King's origin of evil gives the opinion of the triumvirate in the following words:--"We find by experience, that a thing will always exhibit the same appearances in some respects, though it admit of changes in others; or, in Mr Locke's language, that certain numbers of simple ideas go constantly together, whereas some others do not. The former of these we call the substantia, thing, or being, itself; the latter are termed its modes or accidents. Thus the substance of body, as far as we know of it, consists in solidity and extension; which being necessarily finite, it also becomes capable of division, figure, and motion. These are its original inseparable qualities, which constitute the thing, and seem not to depend on any thing else as a subject. But a particular figure, motion, &c. are only accidents or modes of its existence; which do not necessarily attend it, though they themselves cannot be supposed to exist without it. The substance of spirit consists in the powers of thinking and acting, which likewise admit of various modifications. This seems to be all that we can learn concerning the nature of things from observation and experience. To inquire into the manner how these, which we call properties, exist together, or to attempt to explain the cause, ground, or reason, of their union, is in vain. To assign the word substratum for a representation of it, is saying nothing: it is fettling a mere word for what we have neither any idea of nor occasion for. Indeed if we consider these primary qualities as needing something to inhere in, we are obliged to seek for something to support them: and by the same way of reasoning, we may seek for something else to support that other something, and so on; and at last shall find no other support for the whole but the cause which produced it." Dr Watts (continues the bishop) is of opinion, that it is introducing a needless fabricative notion into the real nature of things, and then exclaiming it to have a real existence!" (Logic, p. 14.) The author of the Procedure, Extent, &c. affirms, "That as far as we directly know the essential properties of any substance, so far as we have a direct knowledge of the
PART II.

METAPHYSICS

Of the Composition of Bodies.

Of the Composition of Bodies.

of body; and men have been probably led into this
notion from a conviction that such sufratum, whatever it be, is and must be solid; but that solidity is
not a quality inseparable from the first matter, and
not that matter itself, must be evident from this con-
figuration, that solidity is the fame in all bodies, and
incapable of producing by itself any other effect than
that of excluding from the place occupied by it every
other solid substance. It could not of itself be the
substantia of colour, taste, or smell, otherwise all bodies
would be coloured, liquid, and odorous; and as, accor-
ding to all our notions of it, it is incapable of any
change, it could not by itself be so modified as to ex-
cite in us those sensations.

The things then immediately perceived by us, or of
which we have any adequate idea or conception, are
only qualities which must belong to a subject; and all
that we know about this subject is, that it is that to
which such qualities belong. From this it is evident,
that our notion of matter, as distinguished from its
qualities, is a relative one and obscure notion, and must
remain obscure till men have other faculties. In this
the philosopher seems to have no advantage above the
vulgar: for as they perceive colour, and figure, and
motion, by their senses, as well as he does; and as both
are equally certain that there is a subject of those qua-
lities, to the notions which both have of this subject
are equally obscure; or, to speak more properly, they
have no positive notion of it all. When a philosopher
calls it the first matter, a substantia or a subject of inde-
finite, those learned words convey no meaning but what
we have any adequate idea or conception, are

Secondary qualities primary and

Qualities primary and

If solid, extended, and moveable.

They are therefore qualities, or in the language of
ancient philosophy, forms alone, about which, in cor-
poral subsistence, we can reason with precision and
certainty; and it is sufficient for all the purposes of
life that we have of them an adequate knowledge.

For as the first matter or original substantia of all bod-
ies seems to be the same, though we know not what it is;
and as one body is distinguished from another only by its qualities or powers; a knowledge of the na-
ture of these is all that can be necessary to direct our
conduct with respect to the various objects with which
we are surrounded.

Qualities thus considered in bodies, are, first, such
as are utterly inseparable from the body, in what state
forever it is; such as in all the changes and alterations
which it suffers, and under all the force which can be
employed upon it, it constantly keeps. Thus, in the
infanct already given, a tinct of sealing-wax may, by the
operation of fire, be rendered liquid or reduced to
smoke and ashes; and when it has undergone these
changes, it has lost many of the sensible qualities which
it had when a long round substance fit for the purpose
of sealing letters; but other qualities which were then
perceivable in it still remain: for not only liquid wax,
but every particle of smoke and ashes, is solid and ex-
tended, as well as the hardest or largest body; and
every such particle has likewise some figure, and is ca-
pable of motion or rest. Again, if a grain of wheat
or any other corporeal substance be divided into two
parts, and each part be again divided without end, till
the smallest particle of it will be solid, extended, of
some figure, and capable of further division. Solidity,
extension, divisibility, and motion or rest, are therefore
qualities inseparable from body, and have on that ac-
count been with great propriety called its original or
primary qualities.

There are other qualities, which in truth are nothing
in the bodies themselves, but powers arising from the
magnitude, figure, texture, and motion, of their in-
fensible parts, to produce in us various sensations; such
are colours, sounds, tastes, and odours. These have
been denominated secondary qualities; and to them may be
added a third sort, which are universally allowed to be
barely powers, though they are in fact as much real
qualities in the subject as though we have just men-
tioned. Thus the power in fire to produce by its primary
qualities a new colour or consistence in wax or clay,
is as much a quality in the fire as the power which it
has to produce in us a new sensation of warmth or
burning. That colours, tastes, odours, and sounds, as
they are perceived by us, are mere abstractions, has been
already proved; and that the powers in the bodies
which produce these sensations are not, like solidity and
extension, inseparable from the body to which they may
belong, is evident; because a piece of red wax may be
reduced to black ashes; and because by pounding an
almond we may change its clear white colour into a
dirty hue, and its pleasant taste into one that is oily
and rancid; and a single rent through the body of a bell
defeats its sound.

The primary qualities of body have a real existence,
independent of us and of every other creature. Thus
the particular bulk, number, figure, and motion, of the
parts of fire or snow are really in the fire or snow, whether
any man's senses perceive them or not; and therefore
these may be called real qualities, because they really
exist in the bodies: but lights, heats, subtilest air, or
cold, (as they are perceived by us), are no more really
in fire or snow, than sickness is in sputor or pain in a
wound. Take away the sensations of them; let not
the eyes see light or colours, nor the ears hear sounds;
let not the palate taste nor the nose smell; and all col-
ours, tastes, odours, and sounds, as they are such par-
icular sensations, vanish and cease, and are reduced to
their causes, i.e. to the bulk, figure, and motion of the
parts of the body.

The qualities then that are in bodies, rightly con-
sidered, are of three sorts. 1. The bulk, figure, number
and motion of the parts of the body.

substance itself: and if we had a direct knowledge of all the essential properties of any substance, we should
have an adequate knowledge of that substance; for surely, if there be any meaning in words, the knowing any
thing of the essential properties of a thing is knowing so much of its very substance.

That the substance of body consists in solidity and extension, and nothing more; and that these depend not
upon any thing else as a subject; cannot be true: for solidity, in our conception, is nothing but impenetrability;
but whoever utters the word impenetrability, certainly means that there is something impenetrable. That there is
something real or being different from solidity and extension, which impregnes us with the notion that it is
solid and extended, is self-evident to all mankind; if it be not matter, these conceptions must be communi-
cated
METAPHYSICS.

Of the Composition of Bodies. Part II.

Situation, and motion or rest, of their solid parts. Of these, as they are in themselves, we have clear and distinct notions. We know that they are in the body whether we perceive them or not, and we call them primary or essential qualities. 2. The power that is in any body, by reason of its internal texture and sensible primary qualities, to operate upon our senses in a peculiar manner, producing in us the different sensations of colours, sounds, tastes, or smells, &c. These we have called secondary qualities; but they are often termed sensible qualities. 3. The power that is in any body, by reason of the particular constitution of its primary qualities, to make such a change in the body, figure, texture, and motion of another body, as to make it operate on our senses differently from what it did before. Thus, the sun has a power to make wax white, and fire to make lead fluid. These are universally called powers; but we have no such notions of them as we have of the primary qualities of bodies. We know that they exist, but we know not what they are. It has indeed been discovered, that the sensation of smell is occasioned by the effluvia of bodies; that of sound, by their vibration. The disposition of bodies to reflect a particular kind of light occasions the sensation of colour; and the operation of the minute parts of bodies upon the nerves of the tongue and palate is the cause of tastes. Very curious discoveries have been made of the nature of heat and its manner of operating, and an ample field still remains. We are likewise intuitively certain, that body can operate upon body only by impulse; but how certain impulses upon certain organs should produce sensations in us to which there is nothing similar in the impelling body, is equally unknown to the clown and the philosopher.

Such is the distinction which in modern philosophy is made between primary and secondary qualities; but it is a distinction which was likewise well known to that sect of ancient philosophers who were denominated atomists. At the head of these were Thales and Pythagoras (s) and we may infer from Arifotle, that the sect comprehended almost all the physiologists who taught before himself and Plato: for he says, "Democritus, and most of the physiologists, fall into a great absurdity; for they make all sense to be touch, and resolve sensible qualities into the figures of insensible matters." And he adds, that "the former physiologists (without exception) said not well, that there is no black and white without the fight, nor bitter and sweet without the taste." He elsewhere tells us, that those philosophers explained generation and alteration without forms and qualities, by figures and local motion. "Democritus and Leucippus having made figures (or variously figured atoms) the first principles, make generation and alteration out of these; namely, generation together with corruption from the concrescence and secretion of them, but alteration from the change of their order and position." By the atomic physiologists the name of quality was generally applied only to those things which we have called secondary qualities. The primary being considered as essential to matter, were seldom, if ever, called qualities. That the atoms, which they held to be the first principles of bodies, were figured, solid, extended, and moveable, is apparent, not only from the short view of their system which we have given from Cudworth, but likewise from the passages which we have just quoted from Arifotle: but the question debated between them and their antagonists was, whether those atoms had feeling, taste, and colour; or, as it was commonly expressed, whether they had qualities? Democritus, Leucippus, and the other atomists, we see, maintained that they had not; and the following account of the doctrine of Protagoras, another philosopher of that school, shows, that on this subject at least the ancient advocates for the atomic system reasoned as justly as any of the moderns, and much more justly than the Peripatetics and Platonists by whom they were opposed. Plato having in his Theocetus first said in general that the philosophy of Protagoras made all things confused or confounded, and that all motion to matter, were confused as justly as any of the moderns, and much more justly than the Peripatetics and Platonists by whom they were opposed. Plato having in his Theocetus first said in general that the philosophy of Protagoras made all things confused or confounded, and that all motion to matter, were confused as justly as any of the moderns, and much more justly than the Peripatetics and Platonists by whom they were opposed.

(c) This is denied by Bishop Warburton, who thinks nothing better settled than that Democritus and Leucippus were the authors of the atomic physiology. We highly respect the learning and ingenuity displayed in the Divine Legation of Moses; but on this point we are convinced that its author is mistaken. "Mochus the Phenician was the author of the atomic physiology; and Cudworth has proved, by arguments which to us are perfectly satisfactory, that Thales and Pythagoras were both atomists, and that they derived the doctrine from Phoenicia or Egypt. They did not, indeed, speculate in physics, but delivered their doctrines as they had received them from tradition, and they referred all motion to mind as its cause. Leucippus and Democritus, we believe, were the first speculative atomists: but though they refined upon, and perhaps improved, the mere mechanical part of the physiology of their masters, they unluckily durt the better part of it; and, banishing mind from their system of the universe, they became materialists and atheists. With the sober and pious part of philosophers this brought the atomic theory into disrepute; and Plato and Arifotle, who were theists, when they opposed that theory, always pointed their arguments against Leucippus and Democritus, which is probably what led the learned bishop to consider these atheists as the authors of the atomic physiology.
Part II.

METAPHYSICS.

Of the Composition of Bodies.

solutely, but something which arises from between them both (a). From this passage it is plain that
Protagoras thought of colours exactly as their Locke
thought, that they are not real qualities existing in bo-
dies, but merely sensations excited in our minds; and
indeed he is presently after represented as having called
it em forms, certain fancies or appearances in us. But there is in the Theocretus another passage, in which a fuller account is given of the atomic phi-
losophy, to this purpose: 'The principle upon which
all these things depend is this, That the whole uni-
iverse (m) is motion of atoms and nothing else; which
motion is considered two ways, and is accordingly
called by two names action and passion. From the
mutual
congruence, and, as it were, attrition of these to,
gether, are begotten innumerable offsprings, which,
though infinite in number, yet may be reduced to

it's congruence with the agent. But the

qualities in external
ties, and powers? It
is apparent-
that the meaning of the author is often to be
summed up thus, οὐδὲ των οὐτων κατὰ τα ὑπόμενα περὶ οὗ ὅπως εἰς τὸν τὰς ὑπόμενα,
μὴ τὸν τις ὁμολογεῖν, ἀλλὰ μιᾶς ἔν τι καὶ λείπει καὶ ὑπὸ τοῦ ἀλλοῦ ἀλλον ὑπὸ τὸν προεξόριστον
φημείς γεννάσθαι καὶ οὐκ ἐκεῖνον ἀλλον ἀλλον ὑπὸ τὸ προεξόριστον ἀλλὰ μιᾶς ἔν τι
kατὰ τὸν τις γένεις.

(a) Protagoras was a follower of Leucippus and Democritus in every thing, and of course an atheist.—

This, however, does not hinder him from having been a correct phylolgist with respect to the composition of
body, and as such only is he quoted by us. It is, indeed, melancholy to think, that there was hardly
a feat of ancient philosophers with which there were in-

(b) ἄρα ἐὰς ἐν τοῖς ἄλλοις πάντα πρωτάνες ἄνθρωπος ὅς ὁ ἄνθρωπος, ὅς το τέλειον τινές εἰσι καὶ ἀλλὰ πάντα τοῦτο χρήστη, τὸ ἀλλοθεον τὸ γενναῖον, ποιότερον ὅ τι μὴ πείνων τοῦ ἀλλοθεον, ἀλλὰ—See the Theocretus:
see also Cutworth's Intellectual System, Book I. chap. 1.
ties perceptible by our senses: but this internal and essential form itself, from which all other forms result, is not perceptible by our senses, nor even by our understanding directly and immediately, nor otherwise than by the analogy formerly mentioned. These essential forms, we are told, mean something, which, though different from matter, can yet never subsist without it; something which, united with it, helps to produce every composite being, that is to say, in other words, every natural substance in the visible world.

This assertion Mr Harris submits with deference to his contemporaries; because (says he) "I speak perhaps of spectres as shocking to some philosophers as those were to Aneas which he met in his way to hell—Terribiles quæ forma." The elegant author's unwillingness to frighten his contemporaries, was a proof of his amiable and benevolent disposition; but he needed not to have suffered from any such apprehension. Those spectres, apparently so dreadful, had long before been laid to rest by the incomparable Cadworth, who has demonstrated, that essential forms differ from matter and motion, as they have no real existence, had no place in the most ancient philosophy; and that the different appearances or sensible qualities which different bodies exhibit, are the result of the different contexture of their insensible parts. Thus, gold and lead are composed of the same primary matter, but the atoms or minute parts of that matter are in the one substance differently combined from what they are in the other; and this different combination is the sole cause that gold is specifically heavier than lead, more ductile, and of a different colour, &c. For the very same reason, iron is harder than either gold or lead, specifically lighter, and possessed of many other sensible qualities which are not found in either of these substances. One vegetable differs from another externally in size, colour, taste, smell, rapidity of growth, and proportion of parts, &c. but all vegetables are composed of the same matter; and the external difference which prevails among them is the result of a different structure and motion of their insensible parts. The same is to be said of the differences which prevail among the bodies of animals; they all result from internal organization and motion, and from nothing else, whatever be the immediate cause of that motion.

This particular internal texture and motion of insensible parts, is that which makes one sort of bodies differ externally from every other sort of bodies; and it is by modern metaphysicians called the real essence of bodies. Thus, that internal texture of minute parts, which makes gold of a bright yellow, extremely ductile, specifically heavier than all other metals, and soluble in aqua regia, is the real essence of gold; but what that essence is in itself no man can tell, as we perceive only the qualities which result from it. We are, however, certain, that it is different from the real essences of lead and iron, because it produces different effects from those produced by these essences; and different effects are never produced in the same circumstances by the same cause.

We have called the internal texture and motion of the insensible parts of bodies their real essences, to distinguish them from other essences which are only nominal, and with which we are perfectly acquainted, because they are the fabrication of our own minds. Thus, a beautiful bright yellow, a certain specific gravity, extreme ductility, and solubility in aqua regia, Nominal essences, are the qualities by which we distinguish gold from all other metals. Of these qualities we frame a sort of general conception, which we call the essence of gold; and every substance in which we find this essence, we class under the specific name gold. For though it is obvious that our conceptions cannot be the real essences of things external, yet are they sufficient guides to these essences, as we know that bodies which, being all formed of the same matter, have the very same sensible qualities, must likewise have the same internal organization or texture of parts, because it is only in that organization or texture that one body can differ from another.—And so much for bodily substance, qualities, and essences.

CHAP. III. Of the Existence of Matter.

We have endeavoured to prove, that all corporeal substances consist of minute atoms, solid and extended; and that the sensible qualities of every body result from the combination and motion of the atoms of which that body is composed. The celebrated Berkeley, Bishop of Cloyne, however, attempted to demonstrate that these atoms have no real existence; and that the very supposition of a solid, extended, and inert substance, being the archetype of our ideas, involves in it an absurdity and contradiction.

It is universally allowed, that all our knowledge of matter is derived through the senses, either immediately in the very act of sensation, or mediately by an association which is resolvable into a process of reasoning. According to the principles which we have stated, and laboured to establish, matter itself is no immediate object of the senses; and as these are the principles upon which the Bishop erected his demonstration, it will be incumbent upon us to consider his theory, because it has been represented as in the highest degree pernicious, and as leading to universal scepticism.

The author of the Essay on the Nature and Immortality of the Soul, represents Berkeley as teaching us, of his theory, "that external objects (that is, the things which we ory gives take for external objects) are nothing but ideas in our minds; in other words, that they are in every respect different from what they appear to be; that matter exists not but in our minds; and that independent on us and our faculties, the earth, the sun, and the starry heavens, have no existence at all; that a lighted candle hath not one of those qualities which it appears to have; that it is not white, nor luminous, nor round, nor divisible, nor extended; but that, for any thing we know, or can ever know to the contrary, it may be an Egyptian pyramid, the king of Prussia, a mad dog, the island of Madagascar, Saturn's ring, one of the Pleiades, or nothing at all." With respect to the consequences of this theory, he affirms, that "it is subversive of man's most important interests, as a moral, intelligent, and perceptive being; and not only so, but also, that if it were universally and seriously adopt-
The dissolution of society and the destruction of mankind, would necessarily ensue within the compass of a month.

Matter is defined to be inert and void of all action. The Bishop makes the same distinction that we have made between ideas and notions; retaining the use of the former term to denote the relics of sensation, and employing the latter to denote our knowledge or conception of spirits and all such objects as are not perceived by sense. He likewise affirms, that we can have no idea of an external inert subsistence; because an idea can be like nothing but another idea, or the simulation of which it is a relief: and as all mankind admit that ideas and sensations can have no existence but in the mind of a percipient being, he therefore means that we can have no idea of anything existing unperceived, and by consequence can have no idea of matter in the philosophical sense of that word. Solidity, extension, divisibility, motion, figure, colour, taste, and all those things which are usually called qualities primary and secondary, being according to him mere ideas, can have no existence but in a mind perceiving them; but so far is he from supposing their existence to depend upon the perception of our minds, that he says expressly, "When in broad day-light I open my eyes, it is not in my power to choose whether I shall see or no, or to determine what particular objects shall present themselves to my view; and so likewise as to the hearing and other senses, the ideas imprinted on them are not creatures of my will. Therefore, some other will or spirit that produces them. The question between the materialists and me is not, Whether things have a real existence out of the mind of this or that person? but, Whether they have an absolute existence, distinct from being perceived by God, and exterior to all minds? I affirm, as well as they, that since we are affected from without, we must allow powers to be without in a being distinct from ourselves. So far we are agreed. But then we differ as to the kind of this powerful being. I will have it to be spirit; they matter, or I know not what third nature. Thus I prove it to be spirit: From the effects I see produced, I conclude there are actions; and because actions, volitions (for I have no notion of any action distinct from volition) and because there are volitions, there must be a will. Again, the things I perceive must have an existence, they or their archetypes, out of my mind: but being ideas, whether they nor their archetypes can exist otherwise than in an understanding: there is therefore an understanding. But will and understanding constitute in the strictest sense a mind or spirit. The powerful cause, therefore, of my ideas is, in strict propriety of speech, a spirit."

This is a faithful abstract of Berkeley's theory given in his own words. Matter, according to him, cannot be the pattern or archetype of ideas, because an idea can resemble nothing but another idea, or the semblance of which it is a relief. Matter, he thinks, cannot be the cause of ideas; for every cause must be active, and matter is defined to be inert and incapable of action. He therefore infers, that all our sensations of what we call the qualities of body are the effect of the immediate agency of the Deity upon our minds, and that corporeal subsistence has no existence, or at least that we have no evidence of its existence. That which we perceive only is the cause of our sensations, no

A view of his theory given by himself.
M E T A P H Y S I C S.

Part II.

Of the Existence of Matter.

answer will be perfectly satisfactory to every reader who attends to the distinction, which, after the Bishop, we have stated between ideas and notions.

Though we believe this dangerous inference from Berkeley's principles is commonly attributed to Hume, as its author, it did not escape the sagacity of the Bishop himself. In the third dialogue, Hylas, who pleads for the existence of matter, thus objects to the reasoning of his antagonist. "Notwithstanding all you have said, to me it seems, that according to your own way of thinking, and in consequence of your own principles, it should follow, that you are only a fystem of floating ideas, without any substance to support them. Words are not to be used without a. meaning. And as there is no more meaning in spiritual substance than in material substance, the one is to be exploded as well as the other."

To this Philomus answers: "How often must I repeat, that I know or am conscious of my own being; but that I myself am not my ideas, but somewhat else; a thinking active principle, that perceives, knows, wills and operates about ideas? I know that I, one and the same self, perceive both colours and sounds; that a colour cannot perceive a sound, nor a sound a colour; that I am therefore one independent principle, distinct from colour and sound; and, for the same reason, from all other sensible things and inert ideas. But I am not in like manner conscious either of the existence or essence of matter. Farther, I know what I mean, when I affirm that there is a spiritual substance or support of ideas: i.e., that a spirit knows and perceives ideas. But I do not know what is meant, when it is said that an unperceiving substance hath inherent in it, and supports, either ideas or the archetypes of ideas. In the very notion or definition of material substance there is included a manifest repugnance and inconsistency. But this cannot be said of the notion of spirit. That ideas should exist in what doth not perceive, or be produced by what doth not act, is repugnant. But it is no repugnancy to say, that a perceiving thing should be the subject of ideas, or an active being the cause of them. That which I take to be a spirit and thinking substance, exit, I know as certainly as I know that my ideas exist. I know likewise what I mean by the terms I and myself; and I know this immediately or intuitively; though I do not perceive it as I perceive a triangle, a colour, or a sound. Ideas are things inactive and perceived; and spirits a sort of beings altogether different from them, by which they are perceived. I do not, therefore, say, that my soul is an idea, or like an idea. However, taking the word idea in a large sense, my soul may be said to furnish me with an idea, that is, an image or likeness of God, though indeed extremely inadequate. For all the notion I have of God is obtained by reflecting on my own soul, heightening its powers, and removing its imperfections. I have, therefore, though not an inductive idea, yet in myself some sort of an active thinking image of the Deity. And though I perceive him not by sense, yet I have a notion of him, or know him, by reflection and reasoning. My own mind and my own ideas I have an immediate knowledge of; and by the help of these do immediately apprehend the possibility of the existence of other spirits and ideas. Farther, from
from my being, and from the dependency I find in myself and my ideas, I do by an act of reason necessarily infer the existence of a God, and of all created things in the mind of God. It is granted that we have neither an immediate evidence, nor a demonstrative knowledge, of the existence of other finite spirits; but it will not therefore follow, that such spirits are on a footing with material substance; if, to suppose the one be inconsistent, and if it be not inconsistent to suppose the other; if the one can be inferred by no argument, and there is a probability of the other; if we see signs and effects indicating distinct finite agents like ourselves, and fee no sign or symptom whatsoever that leads to a rational belief of matter. I say, lastly, that I have a notion of spirit, though I have not, strictly speaking, an idea of it. I do not perceive it as an idea, or by means of an idea; but know it by reflection. Whereas, I neither perceive matter objectively as I do an idea, nor know it as I do myself by a reflex act; neither do I mediate apprehend it by similitude of the one or the other, nor yet collect it by reasoning from that which I know immediately. All which makes the case of matter widely different from that of the Deity and all spirits."

Thus far we think Berkeley’s theory tenable, and its consequences harmless. That by the immediate agency of the Deity all our sensations might be what they are, though matter had no existence, we think he has proved by arguments unanswerable; and we are likewise of opinion, that by admitting the evidence of sense, consciousness, and reason, in their fullest extent, and by distinguishing properly between those things of which we have ideas, and those of which we have notions, he has sufficiently secured the existence of spirits or percipient beings, and obviated the irreligious sophistry of Hume before it was conceived by that author. But the good Bishop stops not here. Not satisfied with proving that all our sensations lead us immediately to the Deity, and that, for aught we know, matter, as defined by philosophers, may have no separate existence, he proceeds farther, and endeavours to prove that matter cannot possibly exist. This appears even in the extracts which we have quoted from his book, in which he talks of the repugnance and inconsistency of the notion. In this part of his system, we think he errs greatly, and advances an opinion altogether inconsistent with his own just principles.

The repugnance of which he speaks, arises solely from considering solidity and extension as reliefs of sensation, or ideas of the same kind with those of heat and cold, tastes, and sounds. "Light, and colours, heat and cold, extension and figures; in a word, the things we see and feel; what are they (says his Lordship), but so many sensations, notions, ideas, or impressions, on sense? and is it possible to separate even in thought any of these from perception? Some there are who make a distinction between primary and secondary qualities; by the former, they mean extension, figure, motion, light, solidity or impenetrability, and number: by the latter, they denote all other sensible qualities, as colours, sounds, tastes, and so forth."

The ideas we have of these they acknowledge not to be the resemblances of any thing existing without the mind, or unperceived; but they will have our ideas of the primary qualities to be patterns or images of things which exist without the mind, in an unthinking substance which they call matter. But it is evident that extension, figure, and motion, are only ideas existing in the mind; that without extension solidity cannot be conceived; that an idea can be like nothing but another idea; and that consequently neither they nor their archetypes can exist in an unperceiving substance. Hence it is plain, that the very notion of what is called matter or corporeal substance, involves a contradiction in it."

This account of extension and solidity affords a fallacious striking inference how much the most vigorous and upright mind is liable to be warped by prejudice in behalf of a darling theory, and how apt the clearest understanding is to be blinded by the equivocal use of terms. That Bishop Berkeley poiffessed a vigorous and perspicacious mind, his most vehement antagonists are eager to admit; and that his intentions were good, is known to all Europe. Yet by the equivocal use of the word idea, which the writings of Locke had then introduced into the language of philosophy, he has here suffered himself to lose light of a very proper and accurate distinction, which, so far as we know, was among the moderns first made by himself between ideas and notions. According to the Bishop, "we have a notion of power and a notion of spirits, but we can have no idea either of the one or the other; for all ideas being passive and inert, they cannot represent unto us by way of image or likenesses that which acts. Such is the nature of spirit or that which acts, that it cannot be of itself perceived, but only by the effects which it produces. It must be owned, however, that we have some notion of soul, spirit, and the operations of the mind, such as willing, loving, hating, inasmuch as we know or understand the meaning of these words."

Now we beg leave to affirm, that what is here said of spirits, and of which we readily admit the truth, is equally true of material or solid substances. We have no ideas of solidity and extension, because these things are not originally impressed upon the senses; but we have very definite, though relative notions of them, for they are clearly perceived by the effects which they produce. That this is at least possible we have the acknowledgment of Bishop Berkeley himself: for he "freely owns, that from a cause, effect, operation, sign, or other circumstance, there may reasonably be inferred the existence of a thing not immediately perceived; and that it were absurd for any man to argue against the existence of that thing, from his having no direct and positive notion of it." This is exactly the case with respect to solid substances. These substances we do not immediately perceive; but we infer their existence from effects, signs, and other circumstances, and we have of them very clear though relative notions. Thus a man can open and shut his empty hand; but when he grasps an ivory ball of three or four inches diameter, he feels, that though the same power be exerted, his hand cannot then be shut. He is conscious that there is no change in himself; and being intuitively certain that every effect must have a cause, he infers with the utmost confidence, that the cause which prevents his hand from shuttering in the ball; or, in other words,
that the thing which communicates to his eye the sensation of colour, and impresses upon his hand a sensation of touch, must be solid or impenetrable. Solidity, however, is not the sensation itself; it is only the cause of the sensation; and therefore it is so far from being an idea in our minds, that we are conscious of its notion is of a thing totally different from all our ideas, of a thing external, at least to our minds. Indeed the notion itself is not positive; it is only relative, and inferred from the effects which are produced on our senses. That it is the same thing which communicates to our eye the sensation of colour, and has the power of refitting the compression of our hand, is evident; because, when the ball is thrown away, the refistance as well as the actual sensation vanishes at once. From this fact, which a lefe acafe man would think a proof that the refistance was not occasioned by the immediate agency of the Supreme Being, but by the impenetrability of a solid substance of small dimensions, the Bishop argues thus against the possibility of such a substance: “They who affert that figure, motion, and the ret of the primary or original qualities, do exist without the mind in unthinking substances, do at the fame time acknowledge, that colours, sounds, heat, cold, and fuch like secondary qualities, do not; which they tell us are sensations existing in the mind alone, that depend on and are occasioned by the different size, texture, and motion, of the minute particles of matter. This they take for an undoubted truth, which they can demonstrate beyond all exception. Now if it be certain, that those original qualities are insepaparably united with the other refible qualities, and not even in thought capable of being abftracted from them, it plainly follows, that they exist only in the mind. But I define any one to reflect and try whether he can by any abfraction of thought conceive the extension and motion of a body, without all other refible qualities. For my own part, I fee evidently that it is not in my power to frame an idea of a body extended and moved, but I must withal give it some colour or other refible quality, which is acknowledged to exist only in the mind. In short, extension and motion, abstraction from all qualities, are inconceivable. Where, therefore, the other refible qualities are, there must be thefe also, to wit, in the mind, and no where elfe.”

In this reasoning, though plausible, there is an unintended fallacy. It is indeed true, that we cannot contemplate in imagination a folid substance without conceiving it to have some colour; but there is sufficient reafon to believe, that this union of colour and solidity in our minds is not the effect of nature as it operates at firft upon our fenses, but merely the consequence of early and deep-rooted association. Bishop Berkeley himfelf has taught us, that the objeets of light are not at a distance; and that if a man born blind were fuddenly made to fee, he would conceive the objeets of his light as existing either in his eye or in his mind. This is a truth which no man will confent who has dip into the fcienee of optics, or who has ever paid the fligheft attention to the perceptions of infants; and if it, follows, that to a man born blind and fuddenly made to fee, colour and solidity would not appear united. Were such a perfom to lay hold of an ivory ball and raise it to the elevation of his eye, he would perceive whitenefs as a new sensation existing in his eye or his mind, but he would feel refistance at the extremity of his arm. He would not have the leaft reafon to conclude, that this whitenefs was insepaparably united to the cause of this refistance; and he would, in fact, draw no fuch conclusion, till experience had taught him, that by removing the ball or cause of refistance from his hand, he at the same time removed the refistance from his eye. After repeated experiments, he would indeed discover, that the cause of colour to the eye, was likewise by fome means or other the cause of refistance to the hand; and he would fo afsoicate fhef in his mind, that the one would never afterwards make its appearance as an idea or a notion without bringing the other along with it. The whole difficulty, therefore, in this cafe, is to break an early and deep-rooted association; for it is plain that the affiliated ideas were not originally united, and that solidity and colour were at firft conceived as separate.

If the reader perceive not the force of this reafoning, we beg leave to recommend to him the following experiment, which, if we mistake not, will carry conviction to his judgement, that in the fame quoted passage Bishop Berkeley has argued fallaciously, and that extension and colour are not insepaparably united as ideas in the mind. Let him go into a dark room, containing a number of spherical bodies of various colours; let him take one of them into his hand; and he will instantly feel refistance, and have a notion of extension and solidity; but will he likewise have the idea of colour insepaparably united with this notion? The Bishop fays he will: and if fo, it muft be the idea of fome particular colour; for his Lordship has taught us, that the altrendant and general idea of colour, which is neither red, nor green, nor blue, &c. cannot poiffibly be formed. The man, then, we shall fuppofe, whilst he feels refistance, conceives the refisting body to be green; and holding it still in his hand, walks into the light of day. The refistance, and consequently the cause of refistance, remains unchanged; but what becomes of the insepaparable union of those with colour, when the body, upon being actually feen, proves to be black; i. e. to have no colour at all?—It appears, therefore, undeniable, that solidity and colour are not united in nature; that the one is an effential quality of something external to us, of which we have no idea, but a very diftinct though relative notion; and that the other is an actual feneration in our minds, caufed by the impression of something external on the organ of fene, which leaves behind it in the memory or imagination a positive and direct idea that exists no where elfe.

Solid refistance, therefore may exist, for though it Matter exis-
Part II.

M E T A P H Y S I C S.

Of the Existence of Matter.

Ten; or, that whatever is, is not; as that matter has no separate existence: for it is certainly possible, that the Supreme Being, without the instrumentality of matter, could communicate to our minds all the sensations and motions from which we infer the reality of solid substance. All that we contend for, as having the evidence of demonstration, is the possibility of solid and extended substance; and if the thing be possible, the general voice of mankind proclaims its probability.—We are conscious of our actual sensations, and we know by experience that they are caused by something distinct from ourselves. When a man grasps an ivory ball, he feels that he cannot shut his hand, and he knows that the resistance which prevents him proceeds not from blindness. Thus far all mankind are agreed. But Bishop Berkeley says, that the resistance proceeds immediately from the Supreme Being or some other spirit; whilst we, without pretending that his scheme is impossible, think it more natural to suppose that the man's hand is kept from shutting by the resistance of a solid substance of four inches diameter; of which substance, though we have no idea of it, we have as distinct a notion as Berkeley had of spirits. From one or other of these causes this effect must proceed; and it is of little importance to life or happiness which of them be the true cause, since it is with the effect only that we are immediately concerned. Still, however, a philosopher would choose to adopt the easiest and most natural side of every alternative; which, if our notion of solidity be just, is certainly, in the present case, the existence of matter.

After treating so largely of the composition of bodies, and showing the general agreement of metaphysicians ancient and modern with respect to the notion of their solidity, it will appear strange to the less philosophical part of our readers, that we should now express a doubt of that notion's being well-founded. We have ourselves no doubt, but on the contrary are fully convinced, that solidity is essential to matter. This, however, has of late been denied by philosophers of great merit. Dr Priestley, after Mr Mitchell and Father Boscovich, affirms that matter is not solid or impermeable to other matter; and that it has, in fact, no properties but those of attraction and repulsion. The proofs of this position, which appears so paradoxical, he draws from optical experiments, from electricity, and from the effects of heat and cold upon substances usually conceived to be solid.

The appearances from which the solidity of matter is inferred, are nothing more, he says, than superficial appearances, and therefore have led to superficial and false judgments, which the real appearances will not authorise. "Resistance, on which alone our opinion concerning the solidity or impermeability of matter is founded, is never occasioned by solid matter, but by something of a very different nature; viz. a power of repulsion, always acting at a real, and in general an affinable distance, from what we call the body itself. When I press my hand against the table, I naturally imagine that the obstacle to its going through the table, is the solid matter of which it consists; but a variety of philosophical considerations demonstrate that it generally requires a much greater power of prehension than I can exert to bring my fingers into actual contact with the table. Electrical appearances show that a considerable weight is requisite to bring into seeming contact even the links of a chain hanging freely in the air, they being kept asunder by a repulsive power belonging to a very small surface, so that they do not actually touch, though they are supported by each other. It has been shown, from optical observations, that a drop of water rolls upon a cabbage leaf without ever coming into actual contact with it; and indeed all the phenomena of light are most remarkably unfavourable to the hypothesis of the solidity or impermeability of matter. When light is reflected back from a body on which it seems to strike, it was natural to suppose that this was occasioned by its impinging against the solid parts of the body; but it has been demonstrated by Sir Isaac Newton, that the rays of light are always reflected by a power of repulsion acting at some distance from the body. Again, when part of a beam of light has overcome this power of repulsion, and has entered any transparent substance, it goes on in a right line, provided the medium be of an uniform density, without the least intermission, and without a single particle being reflected, till it comes to the opposite side, having met with no solid particles in its way, not even in the densest transparent substances, as glass, crystal, or diamond; and when it is arrived at the opposite side, it is solely affected by the laws of attraction and repulsion. "Nay, that the component particles of the hardest bodies themselves do not actually touch one another, is demonstrable from their being brought nearer together by cold, and by the sexes being removed farther from each other by heat. The power sufficient to overcome these internal forces of repulsion, by which the ultimate particles of bodies are prevented from coming into actual contact, is what no person can pretend to compute. The power requisite to break their cohesion, or to remove them from the sphere of each other's attraction, may in some measure be estimated; but this affords no data for ascertaining the force that would be necessary to bring them into actual contact, which may exceed the other almost infinitely."

From these facts, Dr Priestley infers, that the mutual resistance of bodies proceeds in all cases from powers of repulsion acting at a distance from each body: that the supposition of the solidity or impermeability of matter is defective of all support whatever; and that matter itself is nothing but powers of attraction and repulsion, and several spheres of them, one within another. As other philosophers have said, "Take away solidity, and matter vanishes;" so he says expressly, "Take away attraction and repulsion, and matter vanishes."

To illustrate this strange notion, "Suppose (says he) that the Divine Being, when he created matter only fixed certain centres of various attractions and repulsions, extending indefinitely in all directions, the whole effect of which was to be upon each other; these centres approaching to, or receding from each other; and consequently carrying their peculiar spheres of attraction and repulsion along with them, according to certain definite circumstances. It cannot be denied that these spheres may be diversified infinitely, so as to correspond to all the kinds of bodies that we are acquainted with, or that are possible. For all effects in which
bodies are concerned, and of which we can be sensible by our eyes, touch, &c. may be resolved into attraction or repulsion. All compacts of these centres, placed within the spheres of each other, will constitute a body that we term composite, and two of these bodies will, on their approach, meet with a repulsion or resistance sufficient to prevent one of them from occupying the place of the other, without a much greater force than we are capable of employing; so that to us they will appear perfectly hard.

"As, in the constitution of all actual bodies that we are acquainted with, these centres are placed so near to each other, that in every division that we can make we still leave parts which contain many of these centres; we reasoning by analogy, suppose that every particle of matter is infinitely divisible; and the space it occupies is certainly so. But, strictly speaking, as these centres which constitute any body are not absolutely infinite, it must be naturally possible to come by division to one single centre, which could not be said to be divisible, or even to occupy any portion of space, though its sphere of action should extend ever so far; and had only one such centre of attraction, &c. exiled, its existence could not have been known, because there would have been nothing on which its action could have been exerted; and there being no effect, there could not have been any ground for supposing a cause."

In answer to this reasoning against the solidity of matter, Dr Priestley was frequently asked by his candid and masterly antagonist, "What is it that attracts and repels, and that is attracted and repelled?" But to the question he was never able to give a satisfactory answer. Indeed, how could he have been able? for, as Dr Price argues, "Exclusive of attraction and repulsion, he affirms matter to be absolutely nothing; and therefore, though we were to allow it the power of attracting and repelling, yet as it is nothing but this power, it must be the power of nothing, and the very idea of it be a contradiction."

If there be any class of truths intuitively certain, that class comprehends the two following propositions: Power cannot be without a subject; and nothing can act where it is not. If, therefore, there be powers of attraction and repulsion, (which shall be considered afterwards in the chapter of motion), there must be a subject of those powers; and if matter, whether solid or un-solid, be the subject, it cannot possibly attract or repel at a distance. Sir Isaac Newton, in his letters to Dr Bentley, calls the notion that matter poissesses an innate power of attraction, or that it can act upon matter at a distance, and attract and repel by its own agency, "an absurdity into which, he thought no one could possibly fall." Hence it follows, that the appearances from which Dr Priestley infers the penetrability of matter must be fallacious appearances, since they contradicted an intuitive and necessary truth. The facts which he infinches are, indeed, such as would make most other men fuloperate of fallacy, and in his reasoning from them he sometimes takes for granted the truth to be proved. The links of a chain used for electrical purposes, supposing them to be in contact with each other, can touch only with very small surfaces. The electrical fluid is of considerable density, and incapable of being absorbed within a very narrow compass. This is evident, because it passes not through paper and other porous bodies without making a passage for itself, and leaving a visible aperture behind it; and though it assimilates with metals, and passes through them more readily than through other bodies, yet it is plain that it requires a certain quantity of metal to conduct it; for when the conductor falls short of the necessary quantity, it is melted or disintegrated by the force of the fluid. This being the case, it follows that the links of a chain may be in actual contact (we do not positively affirm that they are), and yet the fluid become visible in passing from link to link; for if the point of contact be too small to absorb the whole fluid, part of it must pass without any metallic conductor through the atmosphere, and thus become apparent to the eye of the spectator.

With respect to light, it is obvious that there cannot possibly be any demonstration, in the logical sense of the word, that it is reflected by a power of repulsion acting at some distance from the body; for, in the opinion of all mankind, the primary and solid atoms of matter are too minute to fall under the cognizance of our senses, however alliterated by art; and therefore, if light appears to be reflected at a distance from the surface of the body, we must conclude, either that between the point of reflection and the apparent surface of the body, there are solid atoms unperceived by us, or that light is reflected by the agency of some other substance than matter. One of these conclusions, we say, must be drawn, because they are both possible, and there is no other alternative but to admit one of them, or to suppose that a thing may act where it is not; which is as absurdly absurd and impalpable as that whatever is, is not. Again, when part of a beam of light has entered any transparent substance, how does Dr Priestley know that it goes on in a right line, without the least interruption, till it comes to the opposite side? This he can know only by his senses; but the beam may meet with ten thousand interruptions from objects which the senses cannot perceive, and may describe a zig-zag line, of which the deflections are so small as to elude the keenest eye aided by the most powerful glasses.

That the component particles of the hardest bodies do not actually touch one another, is indeed evident from the effects of cold and heat upon those bodies; but it does not therefore follow that those bodies have no component particles; but only, that they are fewer in number than we are apt to imagine; that all the solid matter in the universe might possibly be comprised within a very narrow sphere; and that it is held together in different bodies and different systems by a power foreign from itself. These are truths which all philosophers have admitted who have thought sufficiently on the subject; but who will admit Dr Priestley's proposition, when it is translated into common English: "That the component nothingness of the hardest bodies do not actually touch one another, is demonstrable from their being brought nearer together by cold, and by their being removed farther from each other by heat?"

Dr Priestley owns, that if matter be solid it could act upon another matter by impulse. We are certain, that, whatever it be, it can act upon nothing in the manner...
Part II.

METAPHYSICS.

Of the Existence of Matter.

Our most adequate notion of matter, manner which he describes; and therefore, to use the words of Dr Price, "matter, if it be anything at all must consist of solid particles or atoms occupying a certain portion of space, and therefore extended, but at the same time simple and uncompounded, and incapable of being resolved into any other simpler particles. It must likewise be the different form of these primary particles, and their different combinations and arrangement, that constitute the different bodies and kinds of matter in the universe." This is exactly agreeable to the doctrines of Newton; who, after considering the question in every point of view, concludes, that in the beginning God formed matter in solid, malleable, hard, impenetrable, moveable particles, of such sizes and figures, and with such other properties, as most conduce to the end for which he formed them; and that those primary particles being solid, are incomparably harder than any porous bodies compounded of them; even so very hard as never to wear or break in pieces; no ordinary power being able to divide what God himself made one in the creation." To talk, as Dr Priestley does, of matter's being certain centres of various attractions and repulsions extending indefinitely in all directions, and to describe these centres as not being physical points or solid atoms, is either to say, that nothing attracts and repels; or it is to introduce the divine agency as the immediate cause of all our sensations. The former of these alternatives Dr Priestley disclaims; the latter he seems willing to admit. But if it be his meaning that all our sensations are caused by the immediate agency of God or created spirits, his scheme differs not from that of Berkeley, except in being less elegantly expressed and less ingeniously supported. Berkeley's scheme is evidently possible. The commonly received scheme is likewise possible. It remains therefore with the reader, whether he will adopt the system of the Bishop of Cloyne; or admit, with all other philosophers, that matter exists; that it consists of parts actually distinct and separable; and that each of these parts is a monad or solid atom, which requires no foreign agency to keep it united.

CHAP. IV. Of Space and its Modes.

Having considered bodies in their substance, essence, and qualities, and proved that they have a real existence independent of us and our conceptions, we proceed now to inquire into the nature of space, motion, number, and duration. These are commonly called the adjuncts of body, and are supposed to be absolutely inseparable from its existence. It does not indeed appear that actual motion is a necessary adjunct of body, considered as a mere solid, extended, and figured substance; but it is certainly necessary to the existence of organized and animated bodies; and the capability of being moved enters into our conceptions of all bodies whatever. Of these adjuncts, that which first demands our attention is space; for without a knowledge of its nature we could not have an adequate idea of motion, and without motion we could have no idea of time.

Every body is extended; and between two bodies not in actual contact, we perceive that a third body may be easily introduced. That which admits of the introduction of the third body is what we call space and if it be totally void of matter, it is called pure space. Whether there be any space absolutely pure, has been disputed; but that such space is possible, admits of no dispute. Were any one body (a cannon ball for instance) to be annihilated, and the circumambient air, with every other matter, were to rush into the space which the ball had occupied, that portion of space, with respect to matter, would be empty or pure space; whether it would necessarily be filled with mind shall be considered afterwards. Pure space, therefore, is conceivable; and it is conceived as having three dimensions, length, breadth, and depth, which are generally called the three simple modes of space. In this respect it agrees with body: but the agreement proceeds no further; for space is conceived as definite of solidity, without which the existence of body is inconceivable. It has been formerly observed, that whatever may be defined of solidity, without which the existence of body is inconceivable. It has been formerly observed, that whatever may be distinctly conceived may possibly exist; but with respect to the existence of pure space, whatever is possible is real: for it shall be shown in the next section, that were there no space absolutely pure or void of matter, there could be no motion. Our business at present is to inquire what the nature of space is, and what notion we ought to have of its existence.

Many modern philosophers consider space as something entirely distinct both from body and mind; some of them ascribe to it no less than four of the attributes of the Deity—eternity, immobility, infinity, and necessary existence; and a few of them have gone so far as to say, that infinite space is the sphere of the Deity. "The and to be suppos'd of the existence of anything whatsoever, (says Dr Clarke *) necessarily includes a presupposition of the existence of space. Nothing can possibly be conceived to exist without thereby presupposing space; which, therefore, I apprehend to be a property or mode of the Being self-existent Substantia, and that, by being evidently and necessarily so, its substance of which it is a property must be also necessary." Elsewhere he says, that "space is a property or mode of the self-existent Substantia, but not of any other substances.

All other substances are in space, and are penetrated by it; but the self-existent Substantia is not in space, nor penetrated by it, but is itself (if I may so speak) the substratum of space, the ground of the Existence of space itself." He acknowledges, however, that such expressions as the self-existent Substantia is the substratum of space, or space is a property of the self-existent Substantia, are not, perhaps, very proper: what I mean (says he), is this: The idea of space (as also of time or duration) is an abstract or partial idea; an idea of a certain quality or relation, which we evidently see to be necessarily existing; and yet (which does not itself a subsistence) at the same time necessarily presupposes a subsistence, without which it could not exist.

These opinions respecting space have been adopted by succeeding philosophers of great merit, and particularly by Dr Price; who says, that "it is a maxim which cannot be disputed, that time and space are necessary to the existence of all things. Dr Clarke (continues he) has made use of this maxim, to prove that infinite space and duration are the essential properties of the Deity; and I think he was right."
Metaphysics.

Of Space and its Necessity to the Existence of Every Thing.

The supposition of the existence of space necessarily includes a presupposition of the existence of space. The idea of space is indeed so closely associated with every visible and most tangible objects, that we cannot see the one nor feel the other without conceiving them to occupy so much of space. But had we not posseffed the senses of sight and touch, we could not have suppos’d the existence of space necessary to the existence of any thing whatever. The senses of smelling, tasting, and hearing, together with our internal powers of consciousness and intellect, would certainly have compell’d us to believe in our own existence, and to suppos’d the existence of other things; but no object either of consciousness, smelling, tasting, or hearing, can be conceived as occupying space. Space and every thing which fills it are conceived as of three dimensions; but who ever suppos’d or can suppos’d an odour, taste, or sound, to have length, breadth, and depth; or an object of consciousness to be an ell or an inch long?

Let us suppos’d that body and all the visible world had a beginning, and that once nothing exist’d but that Being which is alone of necessary as well as eternal existence; feter, say the followers of Dr Clarke, would then exist likewise without bounds or limits. But we define to know of their gentlemen what sort of a being this space is. It certainly is not substance; neither is it a property; for we have seen that the very notions of it, which lead men to suppos’d its existence necessary, render it impos’d to be a property of the self-existent Being. Is it then nothing? It “is in one kind,” it is nothing actually exist’d; but it is something potentially; for it has the capacity of receiving body whenever it shall exist. It is not, and cannot, become anything itself, nor hath it any actual exist’d; but it is that without which nothing corporeal could exist.” For this reason it was that Democritus and Epicurus made space one of the principles of nature; and for the same reason Aristotle has made privation one of his three principles of natural things, matter and force being the other two. But though the privation of one form be doubtles necessary before matter can receive another (for a piece of wax or clay cannot receive the form of a globe before it lose the form of a square), yet Aristotle never dreamed that the privation of the square was any property of the globe, or that privation itself was to be reckon’d a real being. On the contrary, he expressly calls it μὴ μοῖρα, or the no being. In this way, if we please, we may consider space, and call it the privation of falsity or of body. We have indeed a positive idea of it, as well as of silence, darknes, and other privations: but to argue from such an idea of space, that space itself is something real, seems altogether as good sense as to say, that because we have a different idea of darknes from that of light, of silence from that of sound, of the absence of any thing from that of its presence; therefore darknes, silence, absence, must be real things, and have as positive an exist’d as light, sound, and body: and to deny that we have any positive idea of, or which is the very same thing, any idea at all, of the privations above-mentioned, will be to deny what is capable of the most complete proof (see n° 19.), and to contradist’ common sense and daily experience. There are therefore ideas, and simple ones too, which have nothing ad extra correspondent to them; no proper idéum, archetype, or objective reality: and we do not see why the idea of space may not be reckon’d of that number. To say that space must have exist’d, because it has some properties (for instance, penetrability, or the capacity of receiving body), seems to be the fame thing as to urge that darknes must be something because it has the capacity of receiving light; silence the property of admitting sound; and absence the property of being suppl’d by presence. To re-apple in this manner is to assign absolute negations; and such as, in the fame way, may be apppl’d to nothing, and then call them Space, &c.

Space Necessary to the Existence of Every Thing.

It is, however, not true, that the suppos’d of the existence of any thing whatever necessarily includes a presupposition of the existence of space. The idea of space is indeed so closely associated with every visible and most tangible objects, that we cannot see the one nor feel the other without conceiving them to occupy so much of space. But had we not posseffed the senses of sight and touch, we could not have suppos’d the existence of space necessary to the existence of any thing whatever. The senses of smelling, tasting, and hearing, together with our internal powers of consciousness and intellect, would certainly have compell’d us to believe in our own existence, and to suppos’d the exist’d of other things; but no object either of consciousness, smelling, tasting, or hearing, can be conceived as occupying space. Space and every thing which fills it are conceived as of three dimensions; but who ever suppos’d or can suppos’d an odour, taste, or sound, to have length, breadth, and depth; or an object of consciousness to be an ell or an inch long?

Let us suppos’d that body and all the visible world had a beginning, and that once nothing exist’d but that Being which is alone of necessary as well as eternal existence; feter, say the followers of Dr Clarke, would then exist likewise without bounds or limits. But we define to know of their gentlemen what sort of a being this space is. It certainly is not substance; neither is it a property; for we have seen that the very notions of it, which lead men to suppos’d its exist’d necessary, render it impos’d to be a property of the self-existent Being. Is it then nothing? It “is in one kind,” it is nothing actually exist’d; but it is something potentially; for it has the capacity of receiving body whenever it shall exist. It is not, and cannot, become anything itself, nor hath it any actual exist’d; but it is that without which nothing corporeal could exist.” For this reason it was that Democritus and Epicurus made space one of the principles of nature; and for the same reason Aristotle has made privation one of his three principles of natural things, matter and force being the other two. But though the privation of one form be doubtles necessary before matter can receive another (for a piece of wax or clay cannot receive the form of a globe before it lose the form of a square), yet Aristotle never dreamed that the privation of the square was any property of the globe, or that privation itself was to be reckon’d a real being. On the contrary, he expressly calls it μὴ μοῖρα, or the no being. In this way, if we please, we may consider space, and call it the privation of falsity or of body. We have indeed a positive idea of it, as well as of silence, darknes, and other privations: but to argue from such an idea of space, that space itself is something real, seems altogether as good sense as to say, that because we have a different idea of darknes from that of light, of silence from that of sound, of the absence of any thing from that of its presence; therefore darknes, silence, absence, must be real things, and have as positive an exist’d as light, sound, and body: and to deny that we have any positive idea of, or which is the very same thing, any idea at all, of the privations above-mentioned, will be to deny what is capable of the most complete proof (see n° 19.), and to contradist’ common sense and daily experience. There are therefore ideas, and simple ones too, which have nothing ad extra correspondent to them; no proper idéum, archetype, or objective reality: and we do not see why the idea of space may not be reckon’d of that number. To say that space must have exist’d, because it has some properties (for instance, penetrability, or the capacity of receiving body), seems to be the same thing as to urge that darknes must be something because it has the capacity of receiving light; silence the property of admitting sound; and absence the property of being suppl’d by presence. To re-apple in this manner is to assign absolute negations; and such as, in the same way, may be appl’d to nothing, and then call them Space, &c.

Ancient Metaphysics.

But it is said, that as we cannot conceive space to be annihilat’d, it must be some real thing of eternal being and necessary existence. If this argument had not the possible been used by writers of great merit, and with the best intention, we should not have scrupul’d to call it the most contemptible sophism that ever disgrac’d the page of philosophy. Whatever now has an actual exist’d, must from eternity have had a possible exist’d in the ideas of the Divine mind. Body, as an extended substance, has now an actual exist’d; and therefore it must from eternity have had a possible exist’d in the ideas of the Divine mind: but the possible exist’d of body is all that we can conceive by space; and therefore this argument, upon which so much fire’s has been laid, amounts to nothing more, than that what has from eternity been possible, can at no period have been impos’d. It is evident that the capacity or potentiality of every thing existing must have been from eternity; but is capacity or potentiality a real being? All the men and women who shall succed the present generation to the end of time, have at this moment a possible exist’d of existence, nor can that possibility be conceiv’d as an impos’d possibility; but is it therefore any thing actually exist’d either as a substance or a quality?

It has been urged, that space must be something more than the mere absence of matter; because if nothing
of Space and its Modes.

thing be between bodies, such as the walls of a room, they must necessarily touch. But hardly it is not self-evident that bodies must necessarily touch if nothing be between them; nor of the truth of this proposition any thing like a proof be brought. It is indeed intuitively certain, that "things, when they are in contact, have nothing between them," and hence it has been rashly inferred, that things, when they have nothing between them, are in contact; but this is an illegitimate conversion of the proposition. Every logician knows, that to convert a proposition, is to infer from it another whose subject is the predicate, and whose predicate is the subject of the proposition to be converted: but we are taught by Aristotle and by common sense, that an universal affirmative can be converted only into a particular affirmative. "Things, when they are in contact, have nothing between them," is an universal affirmative proposition; and therefore it can be converted into the following particular affirmative: "Some things, when they have nothing between them, are in contact," a proposition which by no means includes in it the contact of the walls of an empty room. The reason why the walls of an empty room do not touch, is that they are distant; but is distance, in the abstract, any thing really existing? Two individuals differ, or there is a difference between them; but is difference itself any real external thing? Bodies are long, broad, thick, heavy; but are length, breadth, density, weight, properly any thing? Have they any real separate archetypes or external idiads? Or can they exist but in some substance?

The reason why so many philosophers have confided space as a real external thing, seems to be this: Every bodily substance is extended; but space is conceived to be that which contains body, and therefore to space we likewise attribute extension. Extension is a quality which can have no existence but as united with other qualities in some substance; and that is of which, abstracled from all substances, we can, properly speaking, form no idea. We know not the meaning of the word, however, and can reason about that which it denotes, without regarding the particular substance in which extension may inhere; just as we can reason about whiteness without regarding any one white object, though it is self-evident that whiteness, abstracled from all objects, cannot figure in the mind as an idea. Qualities considered in this manner are general and relative notions, the objects of pure intellect, which make no appearance in the imagination, and are far less, if possible, to be perceived by sense: but it is extremely painful to the mind to dwell upon such notions; and therefore the ever-active fancy is always ready to furnish them with imaginary substratum, and to make that which was a general and invisible notion be conceived as a particular ideal object. In the case of extension this is the more easily done, that the notion which we have of a real substratum or substance, the support of real qualities, is obscure and relative, being the notion of something we know not what. Now, by leaving, if we can, solidity and figure out of our conception, and joining the notion of some thing with the notion of extension, we have at once the imaginary substratum of an imaginary quality, or the general notion of extension particularised in an imaginary subject; and this subject we call space, vainly fancying that it has a real external and independent existence. Whether this be not all that can be said of space, and whether it be not absurd to talk of its having any real properties, every man will judge for himself, by reflecting upon his own ideas and the manner in which they are acquired. We ourselves have no doubt about the matter. We consider pure space as a mere name relative to the existence of corporeal substance, as nothing more than the absence of body, where body is possible; and we think the usual distinction between absolute and relative space, if taken as real, the jriest absurdity. We do not, however, pretend to dictate to others; but recommend it to every man to throw away all respect for great names, to look attentively into his own thoughts, and on this as on all metaphysical subjects to judge for himself.

Having said so much of space in general, we need not waste much time upon its modes. Indeed the only it is, mode of space, after confidering it with respect to the three dimensions of body, which now demands our attention, is that which we call place. As in the simplest mode of space we confider the relation of distance between any two bodies or points; so, in our idea of place, we confider the relation of distance between any thing, and any two or more points, which, being considered as at rest, keep the same distance one from another. Thus, when we find any thing at the same distance now at which it was yesterday from two or more points with which it was then compared, and which have not since the comparison was made changed their distance or position with respect to each other, we say that the thing hath kept its place, or is in the same place; but if it hath sensibly altered its distance from either of those points, we then say that it hath changed its place.

From this view of the nature of place, we need not observe that it is a mere relation; but it may be worth while to advert to this circumstance, that a thing may without falsehood be said to have continued its place, and the same time to have changed its place, according to the different objects with which it is compared. Thus, if two persons find a company of chefs-men standing each upon the same figure of the chess-board where they left them, the one may with truth affirm that they are all in the same place, or unmoved; and the other may with equal truth affirm that they have all changed place. The former confiders the men only with respect to their distances from the several parts of the chess-board, which have kept the same distance and position with respect to one another. The latter must consider the men with respect to their distance from something else: and finding that the chess-board, with every thing upon it, has been removed, we shall suppose from one room to another, he cannot but say that the chefs-men have changed their place with respect to the several parts of the room in which he formerly saw them.

This modification of distance, however, which we call place, being made by men for their common use, that by it they may delign the particular position of objects where they have occasion for such designation, they determine this place by reference to such adjacent things as best serve their present purpose, without regarding other things which, for a different purpose, would better determine the place of the same object.

Thus
Chapter V. Of Motion.

Mobility, or a capacity of being moved, is essential to every corporeal substance; and by actual motion are all the operations of nature performed. Motion, therefore, if it may be called an adjunct of body, is certainly the most important of all its adjuncts; and to ascertain its nature and origin demands the closest attention of the metaphysician, as well as of the mechanic and astronomer. With the laws of motion, as discovered by experience, we have at present no concern; they are explained and fully established in other articles of this work (see Mechanics, Motion, &c.). The principal questions which we have to consider are, "What is motion? and, by what power is it carried on?"

For an answer to the first of these questions, the modern metaphysician refers every man to his own senses; because, in his apprehension, the word motion denotes a simple idea which cannot be defined. Among the ancients, the Peripatetics were of a different opinion; and Aristotle, whose love of dialectic made him define every thing, has attempted to give two definitions of motion. As some learned men are at present labouring to revive this system, we shall, out of respect to them, mention those definitions, and make upon them such remarks as to us appear proper.

The author of Ancient Metaphysics having observed, that both nature and art propose some end in all their operations; that when the end is obtained, the thing operated upon is in a state of perfection or completion; and that in the operations of both nature and art there is a progress, and by confluence a change, from one thing to another; adds, that this change is motion. Motion, therefore, according to him, is a change or progress to the end-proposed, or to that state of perfection or completion which Aristotle calls τὸ ἐξοικονόμησις. It is not enough, however, to know to what the change or progress is made; to have an adequate idea of motion, we must likewise know from what it proceeds. Now it is evident that every thing existing, whether by nature or art, was, before it existed, possible to exist; and therefore, adds the same author, things do in some sort exist even before they exist. This former kind of existence is said by Aristotle to be a δύναμις, that is, in power or capacity. In this way, plants exist in their seeds; animals in the embryo; works of art in the idea of the artist; and the materials of which they are made; and, in general, every thing in the causers which produce it. From this power or capacity there is a progress to energy or actual existence; so that we are now able to answer the question, "from what, and to what, motion is a change?" for it is universally true of all motion, that it is a change from capacity to energy.

"Having thus discovered that motion lies between capacity and energy, it is evident (he says) that it must have a connection with each of them: and from this double connection Aristotle has given us two definitions of it; one of them taken from the energy, or end to which it tends; the other from the capacity from which it begins. The first is expressed in two words, viz. ἐνεργεῖ καὶ ὀρέστειν ἐνεργεία; or imperfect energy; the other is ἐνεργεία ἀκατάκτως καὶ ἀκατακτώς; which may be translated thus, The perfection of what is in capacity, considered merely as in capacity. The meaning of the last words is, that nothing is considered in the thing that is moved but merely its capacity; so that motion is the perfection of that capacity, but not of the thing itself. It is something more (adds the learned author) than mere capacity; for it is capacity exerted, which when it has attained its end, so that the thing has arrived at that state to which it is defined by nature or art, ceases, and the thing begins to exist ἀνόητως, or actually."

By all the admirers of Aristotle, this latter definition has been preferred to the former; for what reason, it is difficult to say. They both involve in the thickest obscurity that which, viewed through the senses, is very easily understood; and on this, as on many other occasions, Aristotle was certainly guilty of darkening counsel by words without knowledge. The author, whose comment on this wonderful definition we have faithfully abridged, admits that it is not intelligible till we know what change and progress are; but it is possible to conceive any change to take place in bodily substances without motion? or, if we were called upon to explain what progress is, could we do it better than by saying that it is motion from something to something? It is likewise very obvious, that before we can have an adequate idea of motion, we must, according to this definition, know perfectly what the words capacity, energy, and perfection denote; and yet nothing can be more true than that perfection denotes a complex conception, which may be easily defined by resolving it into the simple ideas and notions of which it is compounded, whilst motion is susceptible of no such resolution. The perfection of a knife is compounded of the temper of the steel and the..."
the sharpness of the edge: the perfection of a system of philosophy consists of the importance of the subjects treated, the strength of the author's arguments, and the peripety of his style and manner; but of what is the motion of a ball, or an atom, or any thing else, compounded? We are aware that to this question the modern Peripatetics will reply, that it is not the motion of a ball, or an atom, or any one thing, that their matter has so learnedly defined, but motion abstracted from all individuals, and made an object of pure intellect; and they will likewise affirm, that by the word "perfection" used in the definition, he does not mean any one kind of perfection as adapted to any particular object or end, but perfection abstracted from all objects and all ends. The perfection of nothing and the motion of nothing, for such surely are that motion and that perfection which are abstracted from all objects and all ends, are strange expressions. To us they convey no meaning; and we have reason to think that they are equally unintelligible to men of greater acuteness (o). In a word, motion must be seen or felt; for it cannot be defined. To call it the "act of changing place, or a passage from one place to another," gives no information; for change and passage cannot be conceived without previously conceiving motion (p).

The Peripatetics having idly attempted to define motion, proceed next to divide it into four kinds or classes. This division was by the father of the school motion as adapted to any particular object or end, but perfection abstracted from all objects and all ends. The perfection of nothing and the motion of nothing, for such surely are that motion and that perfection which are abstracted from all objects and all ends, are strange expressions. To us they convey no meaning; and we have reason to think that they are equally unintelligible to men of greater acuteness (o). In a word, motion must be seen or felt; for it cannot be defined. To call it the "act of changing place, or a passage from one place to another," gives no information; for change and passage cannot be conceived without previously conceiving motion (p).

The Peripatetics having idly attempted to define motion, proceed next to divide it into four kinds or classes. This division was by the father of the school motion as adapted to any particular object or end, but perfection abstracted from all objects and all ends. The perfection of nothing and the motion of nothing, for such surely are that motion and that perfection which are abstracted from all objects and all ends, are strange expressions. To us they convey no meaning; and we have reason to think that they are equally unintelligible to men of greater acuteness (o). In a word, motion must be seen or felt; for it cannot be defined. To call it the "act of changing place, or a passage from one place to another," gives no information; for change and passage cannot be conceived without previously conceiving motion (p).
the origin of our idea of motion, his reasoning appears unanswerable; but we do not perceive how it concludes against the possibility of motion itself as existing in a single body. It has been already shown in the chapter of simple apprehension and conception, that though nothing can be conceived which may not possibly exist, yet many things may be possible which we have not faculties or means to conceive. In the present instance, were this solitary globe animated as our bodies are, it would be endowed with all our senses and mental powers; it certainly would not acquire any idea of motion though impelled by the greatest force. The reason is obvious; it would have no objects with which to compare its place and situation at different periods of time; and the experience of a ship at sea in calm weather, affords sufficient proof that motion which is equable cannot be perceived by any other means than by such a comparison. When the waves swell and the ship pitches, it is indeed impossible that those who are on board should not perceive that they are actually in motion; but even this perception arises from comparing their position with that of the waves rising and falling around them. whereas in the regions of empty space the animated globe could compare its position with nothing; and therefore, whether impelled by equal or unequal forces, it could never acquire the idea of motion. It may perhaps be thought, that if this solitary globe were a self-moving animal, it might acquire the idea of motion by inferring its existence from the energy which produced it. But how, we would inquire the cause of this energy? The energy which produced it. Let us, however, suppose that without any end in view it might spontaneously exert itself in such a manner as would produce sensible motion, were it surrounded with other corporeal objects; still we may venture to assert, that so long as it should remain in absolute solitude, the being itself would acquire no idea of motion. It would indeed be conscious of the mental energy, but it could not infer the existence of motion as a consequence of that energy; for the idea of motion cannot be acquired only by sense, and by the supposition there are no objects from which the senses of this spherical animal could receive those impressions, without which there can be no perception, and of course no ideas.

Let us now suppose, that, while this animated globe is under the influence either of external impulse or its own spontaneous energy, other bodies are suddenly brought into existence: would it then acquire the idea of motion? It certainly would, from perceiving its own change of place with respect to those bodies; and though at first it would not perhaps be able to determine whether itself or the bodies around it were moving, yet a little experience would decide this question likewise, and convince it that the motion was the effect either of its own mental energy, or that external impulse which it had felt before the other bodies were present to its view. But it is obvious, that the creation of new bodies at a distance, can make no real alteration in the state of a body which had existed before them: and therefore, as this animated globe would now perceive itself to be moving, we may infer with the utmost certainty, that it was moving before; and that the motion of a single body, though not perceptible by the senses, might possibly be produced in empty space.

Having thus seen that a single body is capable of motion in empty space, the next question that occurs on this subject is, Whether it would be possible to move a body in space that is absolutely full? Such are the terms in which this question is usually put; and by being thus expressed, it has given rise to the dispute among natural philosophers about the existence of a vacuum. Perhaps the dispute might have been avoided had the question been more accurately stated. For instance, had it been asked, Whether motion would be possible in space absolutely full?

detur alid corpus, cujus situ motus determinari intelligatur. Hujus sententiae veritas clarissima elucdebit, modo corporum omnium tam nostrorum quam aliorum, praeter globum illum unicum, annihilationem refo supponi suferimus.

vacuities in it sufficient to permit the motion of the planets and all the other heavenly bodies, which we plainly perceive to revolve around a centre; and if, the next question to be determined is, What can in vacuo operate upon such immense bodies, so as to produce a regular and continued motion?

That all bodies are equally capable of motion or rest, has by natural philosophers been as completely proved as any thing can be proved by observation and experience. It is indeed a fact obvious to the most superficial observer; for if either of these states were essential to matter, the other would be absolutely impossible. If rest were essential, nothing could be moved; if motion were essential, nothing could be at rest, but every the minutest atom would have a motion of its own, which is contrary to universal experience. With respect to motion and rest, matter is wholly passive. No man ever perceived a body inanimate begin to move, or when in motion stop without resistance. A billiard ball laid at rest on the smoothest surface, would continue at rest to the end of time, unless moved by some force extrinsic to itself. If such a ball were struck by another ball, it would return to the same place in a time proportioned to the impetus with which it was struck; but the impelling ball would lose as much of its own motion as was communicated to that upon which the impulsion was made. It is evident, therefore, that in this instance there is no beginning of motion, but only the communication of motion from one body to another; and we may still ask, Where had the motion its origin? If the impelling ball was thrown from the hand of a man, or struck with a racket, it is plain that by a volition of the mind the motion was first given to his own arm, whence it proceeded through the racket from one ball to another; so that the ball, racket, and arm, were mere instruments, and the mind of the man the only agent or first mover. That motion can be begun by any being which is not possessed of life, consciousness, and will, or what is analogous to these, is to us altogether inconceivable. Mere matter or inanimate bodies can by no means be moved with a velocity proportioned to the impetus with which it was struck; but the impelling body only by impulse: orbits as by observation and experience they are found to be, we have formerly been endeavoured to prove that the heavenly bodies could not revolve round their respective centres in elliptical curves.

Part II.

METAPHYSICS.

Of Motion.

Bodies equally indifferent to motion and rest.

The heavenly bodies, however, are not moved in the Newtonian doctrine referring to the cause of the motion of the heavenly bodies. This is admitted by all philosophers, and therefore the Newtonians suppose that the planets are moved in elliptical orbits by the joint agency of two forces acting in different directions. One of these forces makes the planet tend directly to the centre about which it revolves; the other impels it to fly off in a tangent to the curve described. The former they call gravitation, which some of them have affirmed to be a property inherent in all matter; and the latter, which is a projectile force, they consider as impressed ab extra. By the joint agency of such forces, duly proportioned to each other, Sir Isaac Newton has demonstrated, that the planets must necessarily describe such orbits as by observation and experience they are found actually to describe. But the question with the metaphysician is, Whether such forces be real?

With respect to projection, there is no difficulty; but that bodies should mutually act upon each other at a distance, and through an immense vacuum, seems at first sight altogether impossible. If the planets are moved by the forces of gravitation and projection, they must necessarily move in vacuo; for the continual resistance

4 A 2

(k) By much the strongest and best urged of these objections which we have seen, is made by Dr Horsey, a man equally learned in mathematics and in ancient and modern philosophy. "I believe with the author of Ancient Metaphysics (says he), that some active principle is necessary for the continuance as well as for the beginning of motion. I know that many Newtonians will not allow this: I believe they are mistaken, as I myself have formerly been misled by the expression a state of motion. Motion is a change; a continuance of motion is a farther change; a farther change is a repeated effect; a repeated effect requires a repeating cause. State implies the contrary of change; and motion being change, a state of motion is a contradiction in terms." See Ancient Metaphysics, Vol. II.

If our readers think this reasoning conclusive, they may be in the right; and in that case they will see the necessity of admitting, even for the continuance of rectilinear motion, the phyletic nature, or something equivalent to it, without which we have endeavoured to prove that the heavenly bodies could not revolve round their respective centres in elliptical curves.
resistance of even the rarest medium would in time

overcome the force of the greatest impetus; but if

they move in vacuo, how can they be attracted by the

sun or by one another? It is a self-evident truth, that

nothing can act but where it is present, either imme-
diately or mediatly; because everything which op-
erates upon another, must perform that operation either

by its own immediate agency or by means of some in-
strument. The sun and planets are not in contact;
nor, if the motion of these bodies be in vacuo, can any
thing material pass as an instrument from the one to
the other. We know indeed by experience, that every
particle of unorganized matter within our reach has a
tendency to move towards the centre of the earth;
and we are intuitively certain, that such a tendency
must have some cause: but when we infer that cause
to be a power of attraction inherent in all matter,
which mutually acts upon bodies at a distance, draw-
ing them towards each other; we talk a language which

is perfectly unintelligible (s). Nay more, we may
venture to affirm that such an inference is contrary to
fact. The particles of every elastic fluid fly from each
other; the flame of a fire darts upwards with a veloci-
ity for which the weight of the circumambient air

cannot account; and the motion of the particles of a
plant when growing, is so far from tending toward
the centre of the earth, that when a flowerpot is in-
verted, every vegetable in it, as soon as it is arrived at
a sufficient length, bends itself over the side of the
pot, and grows with its top in the natural position.

Some of the Newtonians therefore have supposed,
Not by the

"That all kinds of attraction consist in fine impenetrable

substances or invisible effluvia, which proceed from
every point in the surface of the attracting body;
in all right-lined directions every way; which in their
progress lighting on other bodies, urge and solicit them
towards the superior attracting body; and therefore
(fay they) the force or intensity of the attracting
power in general must always decrease as the squares
of the distances increase." The inference is fairly drawn
from the fact, provide the fact itself were real or pos-
ible: but it is obvious, that if fine imperceptible par-
ticles or invisible effluvia were thus diffused from
every point in the surface of the sun, the earth and other
planets could not move in vacuo; and therefore the
projectile motion would in time be stopped by the resis-
tance

(9) Since this article was finished for the press, Professor Stewart's Elements of the Philosophy of the Human

Mind have been given to the public; a work of which the merit is such as to make it painful to us to differ in
any important opinion from the ingenious author. We shall, however, claim the same liberty of dissenting
occasionally from him that he has claimed of dissenting from Newton, Locke, Clarke, and Cumworth, from
whom he differs widely in thinking it as easy to conceive how bodies can act upon each other at a distance, as
how one body can communicate motion to another by impulse. I allow (says he, p. 79), that it is
impossible to conceive in what manner one body acts upon another at a distance through a vacuum; but I
cannot admit that it removes the difficulty to suppose, that the two bodies are in actual contact. That one
body may be the efficient cause of the motion of another body placed at a distance from it. I do by no means
affert; but only that we have as good reason to believe that this may be possible, as to believe that any one natu-
ral event is the efficient cause of another."

If by efficient cause be here meant the first and original cause of motion, we have the honour to agree with
the learned Professor; for we are persuaded that body inanimate is not, in this sense of the word, the cause
of motion either at hand or at a distance: but if he mean (and we think he must, because such was the
meaning of Newton, from whom he professes to differ), that we can as easily conceive one body to be the in-
formal cause of the motion of another from which it is distant, as we can conceive it to communicate motion
by impulse, we cannot help thinking him greatly mistaken. We will not indeed affirm, with the writer
whom he quotes, "that although the experiment had never been made, the communication of motion by
impulse might have been predicted by reasoning a priori," because we are not certain, that without some
such experiment we should ever have acquired adequate notions of the solidity of matter: But if all corporeal
substances be allowed to be solid and possessed of that negative power to which philosophers have given the
name of vis inerita, we think it may be easily proved a priori, that a sufficient impulse of one hard body upon
another must communicate motion to that other; for when the vis inerita, by which alone the one body is kept
in its place, is less than the vis impetus with which the other rushes to take possession of that place, it is evi-
dent that the former body must give way to the latter, which it can do only by motion, otherwise the two
bodies would occupy one and the same place, which is inconsistent with their solidity. But that a substance
possessed of a vis inerita should make another substance possessed of the same negative power quit a place
to which itself has no tendency, is to us not only inconceivable, but apparently impossible, as implying a direct con-
tradiction.
Of Motion.

The immediate agency of God, which he thinks obvious from several circumstances. In the first place, they are performed slowly and by degrees, which is not suitable to our notions of the agency of almighty Power. Secondly, Many blunders are committed in the operations of nature, such as the formation of monsters, etc., which could never have been things formed by the immediate hand of God. He is therefore of opinion, that, after the creation of matter, God employed an inferior agent to give it motion and form, and to carry on all those operations which have been continued in it since the beginning of the world. This agent he calls plasti nature; and considers it as a being incorporeal, which penetrates the most solid substance, and, in a manner which he pretends not to explain otherwise than by analogy, aduates the universe. He does not look upon it as a being endowed with perception, consciousness, or intelligence; but merely as an instrument which acts under divine wisdom according to certain laws. He compares it to art embodied; and quoting from Aristotle, says, "He artis & naturam ratio omnium in omnium operibus." If the art of the shipwright were in the timber itself, operatively and effectually, it would act just as nature does. He calls it a certain lower life than the animal, which acts regularly and artificially for ends of which it knows nothing. It may be, he says, either a lower faculty of some conscious soul, or else an inferior kind of life or soul by itself, but depending in either case upon a higher intellect. He is aware with what difficulty such a principle will be admitted by those philosophers who have divided all being into such as is extended and such as is cogitative; but he thinks this division improper. He would divide beings into those which are solid and extended, and those which have life or internal energy. Those beings which have life or internal energy he would again divide into such as act with consciousness, and such as act without it; the latter of which is this plastic life of nature. To prove that such an instrument is possible, or that a being may be capable of operating for ends of which it knows nothing, he instances bees and other animals, who are impelled by instinct to do many things necessary to their own preservation, without having the least notion of the purpose for which they work. (See Instinct.) He observes, that there is an essential difference between reason and instinct, though they are both the attributes of mind or incorporeal substance: and that therefore, as we know of two kinds of mind differing so widely, there is nothing to hinder us from inferring a third, with powers differing as much from instinct as instinct differs from reason. Mankind are conscious of their own operations, know for what purpose they generally act, and can by the power of reflection take a retrospective view of their actions and thoughts, making as it were the mind its own object. Brutes are conscious of their own operations, but they are ignorant of the purpose for which they operate, and altogether incapable of reflecting either upon their past conduct or past thoughts. Between their intellectual powers and those of man, there is a much greater difference than there is between them and a plastic nature, which acts as an instrument of divine wisdom without any consciousness of its own operations. Aristotle, from whom principally the
M E T A P H Y S I C S.

Of Motion.

The learned author takes his notion of this plasti nature, compares it, with respect to the divine Wisdom which directs and superintends its operations, to a mere builder or mechanic working under an architect, for the purpose of which the mechanic himself knows nothing. The words of the Stagirite are: "Tota mundi et mundi mundus, simul cum quo coelestibus, simul et concretis, simul et spiritibus," etc. or "and the works of the world, the world of the world, etc."

"We account the architects in every thing more honourable than the mere workman, because they understand the reason of the things done; whereas the other, as some inanimate things, only work, not knowing what they do, just as the fire burns: the difference between them being only this, that inanimate things act by a certain nature in them, but the workman by habit."

Still further to prove that a being may be endowed with some vital energy of a subordinate kind, and yet be destitute of consciousness and perception, the learned author obverses, that there is no reason to think that the souls of men to be for one time a different species of being, and after that they are inanimate, and yet be conscious of their former state; neither can we say, how we come to be so differently affected in our souls by the different motions made upon our bodies, nor are we conscious always of those energies by which we impress fantastic ideas on the imagination. But if it be possible for the souls of men to be for one instant void of consciousness and intelligence, it follows, that consciousness is not absolutely necessary to those energies and motions by which life is preferred. To this it may be added, upon the last authority, "that where animal or vegetable life is concerned, there is in every case a different relation between the cause and effect, and seemingly depending upon the concurrence or influence of some farther principle of change in the subject, than what suffices in inanimate matter, or in the causes and effects that are the objects of mechanical and chemical philosophy." Now to this principle of vegetable life, without which, in a seed or in a plant, vegetation will neither begin nor continue, though light, heat, air, earth, and water, should concur in the utmost perfection, Cudworth expressly compares his plastic nature in the universe, to being really the same thing with the vegetative.

These arguments, if the phenomena of elective acts and actions in chemistry be added to them, demonstrate, for its we think, the possibility of such a principle; and to those who are inclined to affirm that no such thing can exist, because, according to the description of it given by Cudworth and the ancients, it is neither body nor spirit, in the proper sense of the words; we beg leave to ask in the words of Locke, "Who told them that there is and can be nothing but solid beings which cannot think, and thinking beings that are not extended? which is all that they mean by the terms body and spirit."

All the Greek philosophers who were not materialists, and even the inspired writers of the Old and New Testament, constantly distinguished between the spirit and the soul, of a man calling the former sometimes an, and sometimes mens, and the latter psis and St Paul, who before he was a Christian was learned in philosophy, describes the constituent parts of man as three, pues, psis, psis, and body. This distinction, setting aside the authority, with which it comes to us, seems to be well founded; for there are many operations carried on in the human body without any conscious exertion of ours, and which yet cannot be accounted for by the laws of mechanism. Of these, Cudworth infances the motion of the diaphragm and other muscles which causes respiration, and the systole and diastrate of the heart: neither of which, he thinks, can be accounted for by the effect of mere mechanism. But, as we are not conscious of any energy of soul from which they proceed, even while we are awake, and still less, if possible, while we are asleep; he attributes them, not to the intellect or rational mind, but to this inferior vital principle called boo (v); which, in his opinion, adds the

(v) The existence of this plastic nature was warmly debated between Monsieur Le Clerc and Monsieur Bayle. Moleheim, who was inclined himself to admit such a principle, gives the following view of Le Clerc's sentiments from Bibliotheque chfie, tom. ii. p. 113. "Respiratio inquit, et motus cordis, actiones sint, quorum nihil ad animam pertinent. Interim mechanica eas fieri, nullo modo probable est. In voluntaribus commotionibus uscipient animi nostri, quid facit opus fit, ut membra commoveantur: imperant illi tantum. Eft vero aliud nefcio quid, quid fideliter, si modo organa reft fint affecta, mandata ejus exsequitur. Quindi iugur fipicemur, esse naturam in corpore nostro viventem, prater animam nostrarum, cujus fit anima prceceptis et jufis morem gerere? quarnquam potentia ejus fit definita, ut obidire nequeat animo, nisi reift fere habebant organa. Eadem forte natura, corporis motibus impulsa, animam edoceat, quid facitum fit, ut ille posuit precatione, quae ad consensum corporis necessaria judicat. Anima, perigit, si hec vera esse putes, fium est errando, fimmert fipicemur, nec ulle facultate alia, quam imperandi et jubendi insitvda. Hec vero natura ftcrit non diffimulmus errante cinpi cui nihil eorum, quia dominus meditatur, notum fef, quodque nihil aliud facit, quam ut jufis pareat, et dominum de illis rebus admoenet, quas ad faiurnum ipsius pertinent." Molheim proceeds.—Si quis hos locos fcribit, Hec ratione tria fngi in hone me principia; respondet vir doctus; "Nullis confarum argumentis, biinis tantum hominem partibus confarcire. Ego, qui hominem ex binis tantum partibus component, nulla ratione explicare posse naturam conjunctio dis animi et corporis, nihil ipsum Deum ftatuans cuius actionibus hominem intervenire: hoc vero Divina Majeflate prorit indignum fefie. Definitionem accuratum medie hujus naturae poftulantibus fete talem dare non poft definitionem respondet: Hoc unum fefe fcre: eam naturam interiori agendi afficere quae: naturam, quae doceat animam quid rerum.
Part II.

METAPHYSICS.

Of Motion.

The same part in the system of the human body which the platic nature acts in the system of the world.

To make the resemblance more striking, he observes, that even the voluntary motion of our limbs, though it proceeds ultimately from an energy of will, seems to be the effect of that energy employing some instrument which pervades the nerves, muscles, and muscles of the body; and if the human spirit or anima employ the instrumentality of a platic nature or \(\Phi \), in moving the small machine of the body, it seems to be far from incredible that the Divine Wisdom should employ the instrumentality of a platic nature in moving the great machine of the universe.

But we need not insist further on the possibility of such an instrument. Whatever may be thought of the arguments of Cudworth, of which some are, to say the least of them, plausible, though others appear to us to have very little strength, Dr Clarke has proved, with a force of reasoning not inferior to mathematical demonstration, that the motions of the heavenly bodies are carried on by the agency of some sort of movement very different from matter, under every possible form.

"For not to say that, feeling matter is utterly incapable of obeying any laws in the proper sense of the word, the very original laws of motion themselves cannot continue to take place, but by something superior to matter, continually exerting on it a certain force or power according to such certain and determinate laws; it is now evident beyond question, that the bodies of all plants and animals could not possibly have been formed by mere matter according to any general laws of motion. And not only so, but that most universal principle of gravitation itself, the spring of almost all the great and regular inanimate motions in the world, answering not at all to the surfaces of bodies, by which alone they can act upon one another, but entirely to their solid contents, cannot possibly be the result of any motion originally impressed upon matter." For though it is true, that the most solid bodies with which we are acquainted are all very porous; and that, therefore, a subtle material fluid might penetrate the bodies of the planets, and operate upon them with a force exerted internally; still it is self-evident, that the greatest quantities of such a fluid could not enter into those bodies which are least porous, and where the greatest force of revolution resists: and, therefore, this motion much of necessity be caused by something which attracts the very solid substance of all bodies, and continually puts forth in them a force or power entirely different from that by which matter acts upon matter.

Which is, as the same able writer observes, an evident demonstration, not only of the world's being originally made by a supreme intelligent Cause; but moreover that it depends every moment upon some superior Being, for the preservation of its frame; and that all the great motions in it are caused by some immaterial power perpetually and actually exerting itself every moment in every part of the corporeal universe. This preferring and governing power, whether it be the immediate power and action of the supreme Cause which created the world, or the action of some subordinate instruments appointed by him to direct and preside respectively over certain parts thereof, gives us equally in either way a very noble idea of Providence. We know with certainty, that the real and original power can belong only to a being endowed with intelligence and will; and therefore, if the existence of Cudworth's \(w \) platic nature be

Such a principle actuating the universe, if it be divested of intelligence, and considered as a second or inferior cause, under the direction of the Supreme, is acknowledged by a very able judge to be a rational hypothesis; and such, if properly pursued, would certainly open a most entertaining scene of natural philosophy. See Jenner's Answer to an Essay on Spirit.

(w) Besides Cudworth, we have mentioned Berkeley and the author of Ancient Metaphysics, as holding all motions to be the effect of the immediate agency of mind or incorporeal substance. The opinion of the latter of these philosophers is not essentially different from Cudworth's; and therefore it is needless to quote from him. Berkeley was better acquainted with the principles of the Newtonian philosophy, as well as an abler mathematician, than either of these pupils of the ancients; and being likewise a man who on all subjects thought for himself, it may be worth while to lay before our readers a short abstract of his reasoning respecting the origin of motion. His words are: "To tum id quod novum, cui nomen corpus indissimul, nihil in fe constitut quod motus principium seu causa efficiens esse possit. Vis, gravitas, attritio, et hujusmodi voces, utiles sunt ad rationeia et computationes de motu et corporibus motis; sed non ad intelligendum simplicem ipsum motus naturam, vel ad qualitates totidem diffinendas discernendas. Attributionem certe quod attinet, patet illam ab Newtono adhiberi, non tamquam qualitatem veram et physis, sed folummodo ut hypothesin mathematicam. Quin et Leibnitus, nullo elementarem seu solicitationem ab imputo distinguere, satis illa entia non re ipfa inventi in rerum natura, sed abstrahenda facienda esse. Similis ratio est compositionis et revolutionis virtum quorumque directarum in quacunque obliquas, per diagonalem et latera parallelogrammam, Hec mechanices et computationi inferunt: sed aliud est computationes et demonstrationes mathematicas inferire, aliud rerum naturam exhibere. Reversa corpus quae perveretur in utroque utroque, vel motos vel quietis. Hic vero perfeverantia non magis dicenda est alicio corporis, quam existentia ejusdem alicio dicetur. Ceterum res fittertium, quam experimentum in filiendo corpore moto, ejus actionem esse fingimus vana specie deliri. Reversa enim hui PROP. Eiffentiam quam feiunus, passio est in nobis, neque arguit corpus agere, sed nos pati: confut utique nos idem patiuros, fie corpus illud a fe moveatur, sive ab aliquo principio impellatur.—Alicio et reactio dicuntur esse in corporibus: nec incommode ad demonstrationes mechanicas. Sed cavendum, ne propter eam
METAPHYSICS.

Part II.

Of Motion.

This theory not inconsistent with the principle of Newton.

be admitted, (and we see not (x) why it should be called in question,) it can be considered only as an instrument employed by Divine Wisdom, as a chisel or a saw is employed by the wisdom of the mechanic.

Nor let it be imagined, that this ancient theory of motion is in any degree inconsistent with the mathematical principles of Sir Isaac Newton's astronomy, or with the calculations, raised from those principles. Having founded his astronomy on analogy between the phenomena of projectile and planetary motions, he assigned the same or similar forces existing in nature as the efficient causes of both. And indeed, both in the act of deriving his principles from the projectile phenomena, and afterwards for the purpose of applying them to the planetary, it was necessary to analyze the elliptical motion of the heavenly bodies into a compound of two simple motions in right lines, produced by the action of these different forces; and this might also be useful for the purposes of teaching and demonstration, just as we find it necessary, in all parts of science, to separate what in nature is inseparable, for the convenience and acquisition of the understanding. The planetary motions, however, are very probably simple and uncompounded, for no experiments can be tried in those distant regions; and the astronomy of Newton, which is only the application of his mathematical principles to the consideration of matters from their analogy to projectile motions, does not at all require that the forces of gravitation and projection be assigned as their real effective causes (y). It is sufficient for the analogy, on which the whole philosophy is founded, that the phenomena of motion are known from experiments and observations to be the same in both instances; that the principles or general laws mathematically established from the forces of the one are transferred to the phenomena of the other; and that the proofs and operations deduced from these principles in the latter case, are confirmed by fact and experience, the first and final test of truth. *

CHAP. VI. Of Number.

"Amongst all the ideas that we have, as there is none (says Mr. Locke) suggested to the mind by more ways, so there is none more simple than that of unity or one. It has no shadow of variety or com.

position in it. Every object our senses are employed about, every idea in our understandings, every thought of our minds, brings this idea along with it; and there-

supponamus virtutem aliquam realern, quse motus caufa fimple principium fit, effe in ipsis. Etenim voce fidei eodem modo intelhedens fumt ac vox attributis et quedammodum hae eft hypothefis folvendum mathematically, non autem qualitates physica; idem etiam de illis intelligi debet, et ob eadem rationem.

"Auerantur ex idea corporis ex folida, figura, remaneat nihil. Sed qualitates itae sunt ad motum indifferentes, ne in fe quidem habent, quod motus principium dici posint. Hoc ex ipfis ideis noftris perficuum eft. Si iigitur voce corpus significatur id quod concipimus, plane confitat inde non petit fimple principium motus; pars fcelicet nulla aut attributum illus caufa efficiens vera eft, quod motum producat. Vomem autem referre, et nihil concipere, id denium inducit eft effe philofopho.

"Prater res corporas, altera eft genus rerum cogitantium: in is autem potentiam ineft corpora movendi, propria experientia dictius, quando quidem anima noftra pro lubifuis cicer et fittere membrorum motus, quacunque tandem ratione id fiat. Hoc certe confit, corpora moveri ad nuntum animae, ciamque proinde hanc ineftid dici fimple principium motus; particular quidem et subordinatum, quodque ipfum dependet, a primo et universalis principio.

"Ex dicis manifestum eft eos qui vim activam, actionem, motus principium, in corporibus reversa ineft affirmare, fententiam nulla experientia fundatam amplecit, ciamque terminis obfcuris et generallibus aditterne, nec quid fibi velint fatis intelligere. Et contrario, qui metem effe principium motus volunt, fententiam propria experientia munitam preferunt, hominumque omni deo fcelefrumus fuffragis comprobaram.

"Primum Anaxagoras ear tum introdixit, qui motum inerit materias imprimeret: quam quidem fententiam probat etiam Aristoteles, pluribusque confirumat, aperte pronunciandos primum movens effe immobile, indivifibile, et nullum habens magnitudinem. Diuer autem, omne motivum effe mobile, refe animadverfit idem effe ac fiquis dicere, omne adfcribativum effe edificate. Plato infuper in Timae tradit machinam hanc corporam, fenu mundo visibilem, agitar et animari a mente, que fefum omnem fugit. Et Newtonus paffim nee obfcurae innuit, non folummodo motum ab initio a nomine profef tum effe, verum adhue fyttema mundare ab eodem modo moveri. Hoc facris literis confonum eft: hoc scholasticorum calculo comprobatur."

De Motu, paffim.

(x) This we fay upon the received opinion, that there are beings wholly incorporeal. The truth of the opinion itself will be considered in a subsequent chapter.

(y) Indeed Sir Ifaac himself is very far from positively affigning them as the real caufes of phenomena. The purpure for which they were introduced into his philosophy he clearly explains in the following words:

"Eadem ratione quae projectile vi gravitatis in orbem fleti poefit et terra sanit circumire, potell et luna, vel vi gravitatis, fio modo gravis sit, vel illa quacunque vi quia in terra urgetur, refral fémper a curfii rei- lineo terram verius et in orbem fium fleti: et abfque tali vi luna in orbie fio retinei non potell. Hec vis, fi ju/fo minor effe, non fatis fletetar lunam a curfii rei lineo: fi jufto major, plus fatis fletetar, ac de orbie terram verius deducterit. Requiritur quiippe ut fì jufta magnitudinis et mathematicorum eft invenire vim, qua corpus in dato quovis orbie data cum velocitate accurate retinei poefit; et viciflim ingenire viam curvili-

neam, in quam corpus e dato quovis loco data cum velocitate egreliquam data vi fletatur."——Principia

Mathem. Def. Y.
therefore it is the most intimate to our thoughts, as well as it is, in its agreement to all other things, the most universal idea we have; or number applies itself to men, angels, actions, thoughts, every thing that either doth exist or can be imagined. " He seems like wise to be of opinion that we have the idea of unity before that of many; and that it is by repeating the simple idea of unity in our own minds that we arrive at the complex ideas of two, three, &c." In this opinion he is joined by Pere Buffier *; who observes that it is impossible to explain the nature of unity, because it is the most simple idea, and that which perhaps first occurred to the mind.

That unity is a simple idea, must be granted; but it certainly did not first occur to the mind, nor can it be abstracted from all individuals, and apprehended in Locke's sense of the word as a general idea. Let any man look into his own mind, and then say whether he has a general idea of one or unity as abstracted from every individual object mental and corporeal. In particular, when he thinks he has completely abstracted it from body and mind, sensations, ideas, actions, and passions, &c. let him be sure, before he pronounce it a general abstract idea, that he is not all the while contemplating the idea of its name, or of that numerical figure by which it is marked in the operations of arithmetic. Both these ideas are in themselves particular; and become general in their import, only as representing every individual object to which unity is in any sense applicable. But in the chapter of abstraction, we have said enough to convince every person capable of conviction, that these are used as signs for whole classes of objects.

Instead of being an abstract general idea, unity, as the basis of number, is in fact nothing but a mere relation, which cannot be conceived without the related objects; and far is it from being the first idea that occurred to the mind, that it is certainly the result of a comparison, made by the intellect, of two or more objects. The ideas which first occur to the mind are, beyond all doubt, those which are called ideas of sensation; and many such ideas every child receives before he is capable of comparing objects and forming to himself notions of number. Unity, or the idea of one, is indeed the element of the science of arithmetic, just as a mathematical point is the element of the science of geometry; but accurate notions of these elements are, in the progress of knowledge, subsequent to ideas of many and of surfaces. There is reason to believe that persons totally illiterate have no notion at all of mathematical points; and we think it possible to conceive an intelligent and conscious being in such a situation as that he could not acquire a notion of unity or one.

Were a child never to see or feel two objects of the same kind, we doubt if he would think of numbering them, or of making such a comparison of the one with the other, as would suggest to his mind the relations of one and two; for these relations imply both a sameness and a difference of the objects beyond the power of a child to ascertain. The difference indeed would be perceptible to the senses, but the sameness would receive no sameness or agreement. A guinea, a shilling, and a ball of lead, impress upon the mind different sensations; and therefore a child undoubtedly distin-

--

* First Truths.

206 be abstracted from every individual.

207 Unity, a particular relation.

208 some progress in clasping things according to their genera and species, before they acquired any correct idea of the relation of number, or thought of using numerical names or figures as general and discriminating signs: for we say one, two, three, &c. only with respect to the species or genus of which each of the genera and things denoted by these numbers is an individual; and before they received any notion of number.
METAPHYSICS.

Part II.

Of Number.

The words, be predicated of it (2). We say indeed that there is one God; but perhaps we do not always attend to the meaning of the expression. Language was formed to answer the common purposes of life; and those purposes are best answered by denoting individuals by the name of the species or genus to which they belong: but God belongs to no species or genus, unless he be said improperly (3) to be of the universal genus of Being; and therefore the true meaning of the word one, when joined to the verb is, and transferred from the creature to the Creator, in such a sentence as—there is one God—seems to be nothing more than an affirmation that God exists, and that to him the relation of number cannot be applied. In a word, unity and number are merely relations between the individuals of the same species or genus of being; and men acquire ideas of these relations at the same time and by the same means that they are led to clas: things into species and genera. As to the processes of addition and subtraction, and the various purposes to which number is applied, these things belong to the science of arithmetic, and fall not under the province of the metaphysician, whose sole object is to ascertain the real nature and causes of things.

It may, however, be worth while to observe, that Locke, whose notions of number seem to have been different from ours, owns, that a man can hardly have any ideas of numbers of which his language does not furnish him with names. But if units were either real things, or even positive ideas, we see not how names could be necessary to their existence; whereas, if they be nothing more than mere relations, it is obvious that they cannot be conceived but as relative either to beings actually existing, or to names which are the signs of actual beings.

Chap. VII. Of Time.

When St. Augustine was asked what time is? he replied, "Si non rogues, intelligo." An answer from which it may be inferred, that he thought the nature of time could not be explained by a logical definition. Time and eternity are commonly considered as the two modes of duration; and if duration be taken in what Locke thinks its true and original sense, to denote permanence of existence with a kind of resistance to any destructive force, the distinction seems to be sufficiently proper. It is indeed the belt that we can make or compre-

(2) We are happy to find our notions on this subject confirmed by an authority so respectable as that of Professor Stewart. "Without the power of attending separately to things which our senses present to us in a state of union, we never (says this able writer) could have had any idea of number: for before we can consider different objects as forming a multitude, it is necessary that we should be able to apply to all of them one common name; or, in other words, that we should reduce them all to the same genus. The various objects, for example, animate and inanimate, which are at this moment before me, I may clas and number in a variety of different ways, according to the view of them that I choose to take. I may reckon successively the number of sheep, of cows, of horses, of elms, of oaks, of bees; or I may first reckon the number of animals, and then the number of trees; or, I may at once reckon the number of all the organized subsistences which my senses present to me. But whatever be the principle on which my classification proceeds, it is evident that the objects numbered together must be considered in those respects only in which they agree with each other; and that if I had no power of separating the combinations of sense, I never could have conceived them as forming a plurality." Elements of the Philosophy of the Human Mind, chap. iv.

(3) We say improperly, because beings which were created can have nothing in common with that being which is self-existent, and upon whose will and power all other things depend.
attention to fixed upon one object, that large portions of time, as measured by the clock, have passed away wholly unheeded; and every man who has seen a very striking and uncommon object, must remember, that when the sensation was first impressed upon his mind, all other objects, ideas, and notions, and among the rest the notion of time, were for a while excluded.

No sensation, however, keeps possession of the whole mind after it has ceased to be new; nor can the most vigorous exertions long preserve any one idea from being driven off the stage by the succeeding train. Now this succession of ideas appearing and disappearing in their turns, is that which, when compared with the permanency of our and other things, gives us our first and juttest notion of time: for whilst we are thinking, or whilst a series of ideas is successively passing through our minds and vanishing, we know that we ourselves and the things around us; and this existence, or continuation of existence, communicate with the train of our fleeting ideas, is what we call the duration of ourselves and the things around us.

We are aware that our first notions of time have been often said to be derived from motion as perceived by our senses in the objects around us; but this was certainly not perceived by us in its very notion of time, will be readily comprehended by the reader. The common notion of time is the measure to which each sensation has added, (says the author of Ancient Metaphysics) and among other things, time could have had no existence. All this is certainly true; but that corporeal motion, though the original source of all our ideas, is not that which immediately suggests to us the notion of time, will be readily granted by him who considers that motion itself is perceived by us only when it excites or accompanies a constant succession of perceptions and ideas. Motion, when equable and very slow, such as that of the hour-hand of a common watch, is not perceived by us in its course; nor can we discover that the thing has moved at all, till after we have been sensible of the lapse of a considerable portion of what is commonly called time; when we discover that the hand of the watch has changed its place with respect to other objects which we know to be fixed. The same is true of motion remarkably quick: "Let a cannon-ball (says Locke) pass through a room, and in its way take with it any limb or fleshly parts of a man; it is as clear as any demonstration can be, that it must strike successively the two sides of the room; it is also evident that it must touch one part of the flesh first, and another after, and so in succession; and yet I believe nobody who ever felt the pain of such a shot, or heard the blow against the two distant walls, could perceive any succession either in the pain or found of it to twist a fibre."

Of these two phenomena a satisfactory account may be easily given; from which we think it will at the same time be apparent, that the succession of the train of ideas in the mind is the measure and standard of all other successions. We know that the very mind which reviews a train of sensible ideas is of the very same kind with that which attends to a series of passing sensations (see no. 69); and therefore it is natural to suppose that we can pay attention to sensations and ideas passing with nearly equal velocities. But it has been shown, that every sensation remains in the mind or senso-rium for a very short space after the object which excited it is taken away; whence it follows, that a body communicating to the organs of sense a series of similar impressions succeeding each other with remarkable rapidity, cannot excite a train of similar and distinct sensations; because the effects of the first and second impressions not having vanished when those of the third and fourth arrive, the whole train of effects must necessarily coalesce into one uniform sensation. This reasoning is confirmed by experience. Similar sounds succeeding each other at considerable intervals, are all distinctly perceived; and if the motion be accelerated gradually, it may be carried to a great degree of velocity before the sounds be confounded and coalesce into one. "Mr Hericell having, by means of a clock, produced sounds or clicking noises, which succeeded each other with such rapidity that the intervals between them were, as far as could be judged, the smallest possible, found that he could evidently distinguish one hundred and fifty of them in a second of time; but beyond that he could by no means of attention distinguish one sound from another."

The same philosopher tried another experiment on visible sensations. By means of the same handle and work of the clock, he caused a wheel in it to turn till it acquired the velocity of once in a second. He continued to increase the velocity, and observed it while revolving at the rate of twenty times round in thirteen seconds, and could still distinguish the teeth and spaces from each other; whereas it appears (by a computation given at length, that he had two hundred and forty-six distinct visible sensations generated by equable motion in a second of time. The teeth of the wheel, he owns, were not so far visible as to show their shape distinctly, much less could they have been counted; but he very plainly distinguished the circumstance to be divided into teeth and spaces; and he supposes that the same division might still have been seen though the motion had been a little faster, as far perhaps as two turns in a second, equal to three hundred and twenty sensations."

The reason of Watson's division could not be seen, whilst the wheel moved more rapidly than twice round in a second of time, was doubtless the continuance of that agitation in the brain from which each sensation proceeded, until a new impression caused a new agitation, which coalesced with the former and removed all distinction. Hence it is plain, that no external succession can be perceived which moves with a greater velocity than that of which the internal train of sensations and ideas is capable. On the other hand, an external succession which moves with less rapidity than that to which the internal train of ideas may be reduced, either has not sufficient force to generate sensations at all, or the successive impressions from which the sensations proceed follow one another at such distances as to permit the natural train of ideas to intervene between them, and thus destroy the perception of the succession entirely.

To us, therefore, it seems evident, that the constant and regular succession of ideas in the mind of a waking man, is the measure and standard of all other successions; of which, if any one either exceeds the pace of which our ideas are capable, or falls short of...
METAPHYSICS.

Part II.

Of Time.

An essay on Truth.

"A nobleman of Lausanne, as he was giving orders to a servant, suddenly lost his speech and all his fennes. Different remedies were tried without effect. At last, after some chirurgical operations, at the end of six months, during all which time he had appeared to be in a deep sleep or delirium, his speech and fennes were suddenly restored. When he recovered, the servant to whom he had been giving orders when he was first feized with the diltemper, happening to be in the room, he asked whether he had executed his commission, not being fensible, it seems, that any interval of time, except perhaps a very short one, had elapsed during his illness." If this story be true, here was a man, who, by the train of ideas vanishing at once from his mind, lost the perception of what was to others six months of time; and had all mankind been in his state, the same portion of time would have been irrecoverably lost even to the annals of chronology.

We are aware of an objection to any inference which may be drawn respecting the preceding question from the case of this nobleman. It may be said, that he had lost, together with the perception of time, the perception of every thing besides; and, that, therefore, motion may still be the cause from which a waking man derives his notions of time. But in reply to this objection, we beg leave to ask, Whether if a ball had been put in motion on a table, and the nobleman had been told, that a body moved with a velocity of that ball would have been carried over so many thousand miles of distance during the time that he lay in a state of insensibility, he could from such information alone have formed any tolerable notion of the length of time in which he was insensible? He certainly could not, for want of a standard by which to measure the rapidity of the motion. He would, indeed, have known instantly that he had been insensible for a considerable length of time, because he had the evidence of former experience that a body carried by perceptible motion over a great extent of distance would have generated in his mind a vaft train of succession of sensations; but till he had attended this ball during part of its course, and compared with the permanency of other objects the series of sensations which is generated in his mind, he would not have been able to guess with any thing near to accuracy the length of time, it would take to pass over a thousand miles.

The same insensibility of duration happens to every man in sound sleep. From having notions of time, such as they are, formed in our mind, we never indeed suppose, however soundly we have slept, that the moment at which we awake in the morning is contiguous to that in which we fell asleep at night. The reason is obvious; every man has been awake whilst others were sleeping, and has known by experience, that if they had been awake likewise a train of ideas would have passed through their minds which must have suggested to them the notions of time. Most men, too, have been frequently awake whole nights, and have thus acquired a notion of time as going on incessantly, whether perceived by them or not; and this notion being closely associated with ideas of night and morning, we inevitably suppose a portion of time to have elapsed between the, thought, not perceived by us in our sleep. But were a man to sleep without dreaming from Sunday night till Tuesday morning, and then to awake at his usual hour as marked on the clock, there are numberless instances on record to convince us, that he would not of himself suppose, nor perhaps be very easily persuaded, that more than one night had elapsed between his falling asleep and the moment at which he awoke.

It being thus evident, that our notion of time is suggested by that comparison which we inevitably make of the existence of things permanent with the train of ideas incessantly passing through our minds; we may now perhaps be able to answer the question, "What is time?" It must of necessity be one of three things, viz. either the ideal succession itself; a certain quality inherent in all objects; or merely the relation of co-existence between things that are permanent and the trains of fleeting ideas which succeed each other on the theatre of the imagination. It is not the first of these; for in every train of thought, the appearance of any one idea in the mind occupies no more of the extension of time, than a mathematical point occupies of the extension of distance. Ten thousand mathematical points added together, would make no part of a line; and ten thousand ideas made to coalesce, if that were possible, would occupy no part of that mode of duration which is called time. A point is the boundary of a line, but no part of it: the appearance of an idea in the mind is instantaneous; and an instant is the boundary, but no part of time. Hence it follows, that were every thing instantaneous like ideas in a train, there could be no such thing as time, since nothing could be said to have in that sense of the word any duration. That time is not a quality inherent in all objects, is likewise plain; for we have seen, that were ideas as permanent as objects, the notion of time could never have been acquired. Succession, though it does not itself constitute time, is essential to its existence; and were all motion to cease, and the attention of men to be immovably fixed upon one invariable object or cluster of objects, time would cease likewise. It remains, therefore, that time can be nothing else than the relation of co-existence appre­hended between things that are permanent and those trains of fleeting ideas which incessantly succeed each other on the theatre of the imagination. Thus whilst a man is steadily looking at one object, which, from its being common, does not occupy his whole mind, he may be conscious of a thousand ideas starting up in
of Time.

Of Time.

In his imagination, and each in its turn vouchsafing the
infant in which it appeared. Every one of these ideas
had an existence as well as the object at which he is
looking; but the existence of each of them was in
stantaneous and in succession, whilst the existence
of the external object is permanent. The object there-
fore, as contrasted with the train of ideas, is said to
endure or to exist in time, whilst each idea is destitute
of duration, and exists in no time.

To this theory some objections occur, which it will
be incumbent upon us to obviate. It may be said,
that though each idea considered by itself is instan-
taneous, and occupies no time; yet the whole train
when taken together, without being compared with
any thing external, is perceived to occupy a consid-
erable portion of that mode of duration; and that,
therefore, time itself must be something more than a
mere relation between a fleeting succession of ideas
and objects of more permanent existence. But how,
we beg leave to ask, is the whole train perceived to
occupy any portion of time? Is it not by being com-
pared with our own existence? A man, whilst a train
of ideas is passing through his mind, may be suddenly
deprived of all his external senses, and then indeed it
will be impossible for him to compare the fleeting
existence of this internal succession with the more per-
manent existence of external things; but whilst he
thinks at all, he must be conscious of his own exist-
ence, and cannot avoid perceiving, that whilst his ideas
pass in constant succession, each making an instan-
taneous appearance in his mind, he himself remains
unchanged. Now, what is it that this perception sug-
gests to the mind? Evidently nothing more than the relation of
co-existence between a fleeting succession and a per-
manent object; for were it possible that the man could
be deprived of memory and still have ideas succe-
sively arising each other in his mind, he would then think all objects equally fleeting; he would
indeed be himself a mere succession of instantaneous
distinct persons, and could have no notion whatever of
His existence, though it should seem to endure half a century as estimated by others, must to
himself appear to pass away like a flash of lightening.

It may be further objected to our theory, that
time is measured by motion; and that it seems very
aburd to talk of measuring a relation, especially a mere ideal relation, by a real external thing. In an-
swer to this objection, which at first sight appears for-
midable, we beg leave to observe, that relations are
equality ideal; and that yet many of them may be said
to be measured by real external things, with as much
propriety as time can be said to be measured by
motion. When a man wishes to ascertain the relation of
quantity which one body bears to another, though he
knows that such a relation has no other than an ideal
existence, and cannot be conceived but in conjunc-
tion with the related bodies, he applies to them successively
some common standard; and having discovered the
relation which each bears to that, he compares the
one relation with the other, and thus ascertains the
relation sought. Just so it is with respect to motion
measuring time. That which to each individual con-
stitutes real time, is the relation of co-existence be-
tween the fleeting succession of his own ideas and other
of Time

breadth, and depth; but when we have no other view than to ascertain the relation of length which the one bears to the other, we apply the common standard to each in that dimension only. Just so it is with regard to real and partial time. When an individual wishes to ascertain what would to him have been the duration of any action which he did not see performed, he applies the common standard to the existence of that action, and to the usual flow of his own thoughts; but when two men talk of the duration of any action, or agree to meet on such a day, they compare the existence of the action, or the distance intervening between the present moment and the day of meeting, only with that partial train of sensations which by the common standard is generated in an equal number, and in the same order, in the minds of both.

It will be said, that if time be nothing more than a mere relation subsisting between trains of ideas or other fleeting objects, and things of a more permanent existence; and if the universe had a beginning; either time must have had a beginning likewise, or the Deity cannot be immutable. We allow the force of the argument; but instead of an objection, we consider it as a confirmation of the truth of our theory. The Deity, who is immovable, exists not in time, but in eternity; and that these, though from the poverty of language they are both called modes of duration, are yet very different from each other, we shall endeavour to prove in the next chapter.

CHAP. VIII. Of Infinity and Eternity.

As corporeal subsistence is certainly not infinite, and as the present material system has in itself every evidence of its not being eternal, it may seem strange, perhaps, to the reader, that we should treat of infinity and eternity among the adjuncts of body. But in modern metaphysics these words are used in a vague sense to denote the extent of space and time; and in this chapter it is our intention to do little more than state that there is no number which may not be increased, and that unit might be infinitely divisible, and that unit might be added to unit without end; but these phrases suggest notions very different from that of a metaphysical infinite, which is something positive to which nothing can be added (b).

That there is something positively infinite, has been very seldom questioned; but it has been warmly disputed among metaphysicians what subjects are infinite.

Dr. Clarke and his adherents have contended that space and time are real things; that they are both of necessity eternal; that the former impresses us with the idea of its infinity, and that the latter is positively eternal. "Time and space (says the Doctor*) are the infinite generation of the Being and Attributes of God, and either by non-attention, or by choice he attends perhaps to part of his idea, and forbears attending to the remainder. They who suppose space to be nothing but a (gentleman of Gloucester) figure.

For the space which is between two bodies is always unequally just what it was, and has the very same dimensions, quantity, and figure, whether these or any other bodies be there or anywhere else, or not at all. Just as time or duration is the same, whether you turn your back or not, or whether the sun moves or stands still, or whether there was or was not any sun, or any material world at all. To set bounds to space is to suppose it bounded by something which itself takes up space, and that's a contradiction; or else that it is bounded by nothing, which is another contradiction. To suppose space removed, destroyed, or taken away, amounts to the absurd supposition of removing a thing away from itself; that is, if in your imagination you annihilate the whole of infinite space, the whole of infinite space will still remain; and if you annihilate any part of it, that part will still necessarily remain, as appears by the unmoved situation of the rep, and to suppose it divided or divisible amounts to the same contradiction."

The absurdity of considering space as a real external thing has been already evinced in chap. 4th, p. 549, where it was shown how we acquire the notion, and what kind of notion it is. Space, as was there observed, may be conceived either as the mere absence and possibility of body; or as ideal extension, united to, and inhering in, an ideal substratum. Taken in the former sense, it is an object of pure intellect; in the latter, it

(6) On the use of metaphor. Lib. 9, cap. 9, page 493.
Part II.

METAPHYSICS.

Infinite generations contain an infinitely greater infinity of particular men. An infinite number of men must have twice as many hands, and ten times as many fingers, and so on. Infinite time has an infinity of ages; there a much greater infinity of years, days, hours, &c. Space likewise (according to Dr. Clarke) has three dimensions, all infinite. It must, therefore, contain an infinity of surfaces, an infinitely greater infinity of lines, and a still infinitely greater infinity of physical points. The case is the same in the time; itself, which, if we suppose it to contain an absolute infinity of thousands (and we may as well do that as imagine it to comprehend an infinity of units), it will contain ten times as many hundreds, fifty times as many scores, and so on. All this is only the infinitesimal of number, which we in vain attempt to turn into a positive infinite with which it is totally incompatible. For let us add one to any of these infinite series of generations, ages, lines, or numbers, which we know to be always in our power, and if it was absolutely infinite before, there is one more than infinite. If it only becomes infinite now, then one finite added to another makes infinity. If it be no larger after the addition than it was before, then one part added to another adds nothing; all which are absurdities. The same will appear, if we subtract a part from any of the formentioned subjects, as well as in every which admits of parts, or may be taken in pieces by the mind.

To this kind of reasoning Dr. Clarke replies as follows:—To endeavour to prove that there cannot possibly be any such thing as infinite time or space, from the impossibility of an addition of finite parts ever composing or exhausting an infinite; or from the imaginary inequality of the number of years, days, and hours, that would be contained in the one; or of the miles, yards, and feet, that would be contained in the other, is supposing infinities to be made up of numbers; that is, it is supposing finite quantities to be aliquot or coextensive parts of infinite, when indeed they are not fo, but do all equally, whether great or small, whether many or few, bear the very same proportion to an infinite, as mathematical points do to a line, or lines to a superficies, or as moments do to time, that is, none at all. No given number or quantity can be any aliquot or coextensive part of infinite or be compared at all with it, or bear any kind of proportion to it, or be the foundation of any argument in any question concerning it.

If it be indeed true, and it is that for which we contend, that no given number or quantity can be any aliquot or coextensive part of infinite, or be compared at all with it; then it undeniable follows, not that miles, yards, and feet, are no coextensive parts of space; or years, days, and hours, coextensive parts of time; but that space and time cannot possibly be positive infinities. This, we say, follows undeniable: for nothing is more evident than that all quantities of the same kind, from the largest to the least, bear a certain proportion to each other; and upon the supposition that space is a real extended thing, miles, yards, and feet are included in it, and bear to it the relation of parts to a whole. The same is true of time, days, and hours. To affirm (for no proof is offered), that all
METAPHYSICS.

Of infinity and eternity.

...and he may suppose the inch taken away from the foot or the yard, and those ideal quantities so much lengthened by the subtraction. But if the Doctor be here again confounding the powers of the mind with the positive ideas of space, the sentence when explained will be seen to contain nothing to his purpose. Every man has the power of contemplating in idea millions of miles, and millions of ages, and of adding mile to mile, and age to age, without end; and if he try to deprive himself of any part of this power, or to fix a limit to the mental process of addition, he will find that in spite of himself his imagination will ramble beyond the limit assigned, and that he has attempted an impossibility. This, however, is so far from being a proof that his ideas of space and time are positively infinite, that, as we have already observed, it is a proof of the contrary.

But (say this great man and his followers) “space and time are the sine qua non of all other things and all other ideas. The suppression of the existence of any thing whatever includes necessarily a presupposition of the non of all existence of space and time”; and therefore, if there be other any thing infinite and eternal, space and time must likewise be so.

To every corporeal substance, and every idea of such substance, space and time are indeed necessary; for every body has extension and duration; and every idea of a particular body, being nothing but a secondary perception in the imagination or memory, must have the same relation to imaginary extension, that the object from which it was derived has to extension which is real. Every idea, too, which remains in the imagination whilst a train of other ideas passes successively in view, or whilst external things are perceived to change, has real time. But will any man say that consciousness, our notion of power, our acts of willing, or even tastes, sounds, and smells, are extended, or that the suppression of their existence necessarily implies a presupposition of the existence of space? We acquire our ideas of ex to space, or tension and space by means of our senses of touch and fight; and we learn from experience, that things external and extended are the causes of our sensations of taste, sound, and smell. The efforts are in our minds closely associated with the ideas of their causes; and it is not perhaps easy to think of a particular sound, taste, or smell, without at the same time thinking of the object by which it was at first excited in the mind: but had we been originally formed with the powers of consciousness, thinking, and willing, and with no other senses than those of tasting, smelling, and hearing, it is obvious that we never could have had the idea of space; and therefore, that idea cannot possibly be necessary to the presupposition of every thing else. To consciousness, thinking, and willing, space is so far from being necessary, that we cannot perceive any part of space at a farther distance than the whole of nature. It is not more difficult to conceive a part greater than the whole, than it is to conceive an ell or a cube, or a solid, or a sphere; nor is it in the power of any man to make space and non-extendable coalesce in his mind so as to form of the two simple ideas one complex conception. The very reverse is the case with respect to the objects of sight and touch. The idea of every thing which we see and handle necessarily...
Part II. M E T A P H Y S I C S.

Infinity and Eternity.

ly coalesce in the mind with the idea of space, nor can we possibly separate the one from the other; but the things which we see and handle are neither infinite nor capable of infinity.

With respect to time, the same observations will be found to be just as with respect to space. Whatever is liable to change, exists in time and cannot be eternal; but if there be any being immutable, and Starr views at once all things which to us are past, present, and to come, the existence of that being is not com-

mendurable with time. That such a being is possible no man can doubt, who reflects, that if we had one permanent idea invariably in the mind, we should never have acquired the notion of succession or of time; and that if there were actually no change in nature there could not possibly in nature be any such thing as time. Every man, therefore, who can conceive existence without change, must be convinced, that the suppo-
sal of the existence of any thing whatever does not necessarily include the presupposition of the existence of time, and that there may be an eternity distinct from time, as well as an infinity distinct from space; nay that nothing which is properly infinite and eternal can possibly occupy either space or time.

If it be asked, what kind of infinity and eternity they are which have no relation to space and time? Cudworth, treading in the footsteps of the ancients, has long ago answered, that they are "absolute perfection, and necessary existence." For (says he), infinite understanding and knowledge is nothing else but perfect knowledge, which hath in it no defect or mixture of ignorance, but knows whatsoever is knowable. In like manner, infinite power is nothing else but perfect power, which hath in it no defect or mixture of impotency—a power which can do every thing which is possible or conceivable. Lastly, infinity of duration, or eternity, is really nothing else but perfection, as including in it necessary existence and immutability; so that it is a contradiction to suppose such a being to have had a beginning, to cease to be, or to suffer or be affected by any change whatever. And because infinity is perfection, therefore nothing which includes in its idea or essence any thing of imperfection, as every positive idea of number, corporeal magnitude, and fuc-
cessive duration, evidently does, can be truly and properly infinite."

It must indeed be confessed, that the idea of succession intones itself into our usual ideas of existence, and is so closely connected with the existence of all finite beings, that we find it extremely difficult to imma-
gine the eternal existence of God, any otherwise than as an eternally continued series of thoughts. Our con-
fertional conversation with material objects, and the associations thence arising, make it almost impossible for us to consider things abstracted from time and space; yet we have the evidence of experience and consciousness, that an idea may be conceived without relation to space and time, and that space and time cannot be made to coalesce with some of our notions. The same must be true with respect to infinity and eternity; for we have seen that neither space, time, nor any thing else which consists of parts, whether continuous or successive, can be supposed to be positively infinite, as the supposition implies the most palpable contradiction. But that there may be perfect power, perfect knowledge, and permanent invariable existence, is so far from implying any contradiction, that even we, whose faculties are so very narrow, can yet make some advances towards the conception of such perfections. Thus, every man of common un-
derstanding knows that some things are in themselves possible, and others impossible, to be performed by any power. Of these possibilities and impossibilities a philosopher knows more than an illiterate man, and one philosopher knows more than another. An intel-
let more perfect knows more of them than any man; and that intellect which knows them all must be abso-
lutely perfect, and incapable of improvement, because it knows every thing which is to be known. The same is true of perfect power—but we shall treat of real infinity and eternity more at large when we come to demonstrate the being and attributes of God. At present it is sufficient to have shown, that nothing can be positively infinite but a thing absolutely perfect, which never was not, which can produce all things possible and conceivable, and upon which all other things must depend.

Part III. Of MINDS AND THEIR POWERS.

Chap. I. Of Mind in General.

The science of metaphysics comprehends every thing into the existence, nature, or causes, of which any inquiry may be made. But all things of which we have any notion or idea may be divided in-
to mind and body, with their various powers, qualities, and adjuncts. By body is meant that which is solid, extended, inert, and divisible; and its several adjuncts are space, motion, number, and time. The only mind di-

finguished from body, with which we are intimately acquainted is our own; and we know that it is posse-
sessed of the powers of sensation, perception, retention, consciousness, reflection, reason, and will. These are totally different from expansion, solidity, divisibility, and motion; and there-

fore it is proper to distinguish the being of which they are powers by another name than that of body.

Of bodies there are various kinds possessing various probably sensible qualities; and from analogy it is reasonable to conclude, that there may be various classes of minds different orders. For this indeed we have stronger evidence than that of analogy. Brute animals evidently possess the powers of perception and spontaneity with some degree of consciousness; but as they appear not to reflect upon their own conduct, or to have their actions influenced by motives, their minds are inferior to ours, though still perfectly distinct from mere extended, inert, and divisible substances. Mind, therefore, considered with respect to its powers, is evidently different from body considered with respect to its qualities. This is indeed

Vol. XI.
METAPHYSICS.

Of Mind in General.

229. The absurd hypotheses of Hobbes respecting mind.

Hobbes supposed, that every material atom is endowed with the faculty of senaison (c); but that for want of memory each senaison is momentaneous, being instantaneously effaced as soon as its cause is removed. Though this hypothesis is too absurd to require a formal and laboured confutation, it may not be improper to observe, that, if it were true, the hairs of a man's head would feel extreme pain when pinched by the hot iron of the hair-dresser; and that the nails of his fingers would be severely tortured when under the operation of the knife or the razor.

Others have supposed that each atom of matter has a tendency towards senaison and perception; and that when a sufficient number of these atoms are brought together in a certain order, the united tendencies produce the actual powers which dillinguish mind from gross body. This supposition is so possible a absurdity from that of Hobbes. Sensation and perception are of such a nature, that a mere tendency towards them is inconceivable. A thing must either be sensible and percipient, or insensible and inert; there is evidently no medium. Or if it could be supposed that each individual atom to have a tendency towards senaison, it would by no means follow that a number of such atoms brought together in any possible order would become one sentient, thinking, and active being. A number of bodies laid upon an inclined plain have each a tendency to roll downwards; but if the declivity of the plane be not such as that their separate tendencies may oveer the resistance opposed to each individual body by friction, the united tendencies of all the bodies when brought together will not be able to overpower the resistance of their united frictions. Just so it is with respect to senaison and perception: If the tendency of one atom cannot overcome one degree of inertness, the tendency of a thousand atoms will not overcome a thousand degrees of the same inertness.

We have just mentioned these absurd suppositions that our article might be complete: but it is proper to inform the reader that, so far as we know, neither of them has for these many years been maintained by any philosopher of eminence either at home or abroad. The opinions on this subject, which at present divide the republic of letters, are two; and these alone are worthy of examination. One party maintains, that perception, memory, reason, and will, &c. are the powers of a being which must be immaterial and indivisible: The other alleges, that as we know nothing of these powers but from our own consciousness, and as we can trace them in ourselves to the brain and no farther, we have no reason to suppose that they are the powers of any substance distinct from matter. Both parties, however, distinguish that which in man is the subject of thought from his external organs of sense. Of Mind and agree to call it by the name of mind; though the one considers it as composed of the same first matter with the dust of the ground; whilst the other believes it to have no property whatever in common with that matter.

Were we to adopt some of the ancient methods of philosophizing, this important question might be soon decided. A most respectable writer, who has labour'd to restore the metaphysics of Plato and Aristotle, hopes to confute the materialists, by laying down what they must think of the definitions of mind and matter, and then showing that the one is not the other.

"In all the parts of the material world (says he) there is a perpetual motion: For the celestial bodies move constantly in one respect or another; and all here below is in a continual vicissitude of generation and corruption, which cannot be without motion. Now, where there is motion, there must be something that moves: What is moved I call body; what moves I call mind.

From this definition he undertakes to prove, that mind must be immaterial. "That there is a relation between moving and being moved (says he), nobody can deny; and the relation is no other than that of action and passion. But the nature of relation is such, that it must necessarily be between two things at least; and it is further necessary, that the two things related should exist together. Hence, if there be that which moves, there must be a different thing that is moved; and wherever the one is, the other must necessarily be: so that nothing can move itself. This being establlshed, I say that what moves must be either material or immaterial: for the one of these being the negation of the other, there can be no middle between them, because a thing must necessarily be, or not be. If then it be immaterial, there is an end of the question: but if it be said to be material, then I say that it must be moved itself before it can move any thing else; for it is only in that way that body can move body. If then it must be first moved itself, but cannot itself move itself, what is it that moves it? If it be answered, That it is another material mover, then I repeat the same question, to which the same answer must be given: and so we have an infinite series of material movers, without any beginning or principle of motion.

Now this is absurd, and contradictory to this first principle of natural philosophy, admitted by all philosophers ancient and modern, That nothing can be produced without a cause.

Ancient

For the immateriality of the human mind, and of Metaphysics, every being endowed with the powers of perception.

And thought, the learned writer has better arguments; but it is upon this chiefly that he reifs his persuasion, that mind is the only mover in the universe. It is needless to observe, that in the very definitions and axioms upon which this reasoning is built, the thing to be proved is taken for granted: for if it be self-evident,
Part III.

M E T A P H Y S I C S.

> Of Mind in general.

Of the substance of the Human Mind.

232. The proper method of investigating the nature of mind.

233. Arguments own imagination divested matter of solidity, and reduced it to mere centres of attraction and repulsion, observes, that "if one kind of substance be capable of supporting all the known properties of man; that is, if those properties have nothing in them, that is absolutely incompatible with one another; we shall be obliged to conclude (unless we openly violate the rules of philosophizing, which will not authorize us to multiply causes or kinds of substance without necessity), that no other kind of substance enters into his composition; the supposition being manifestly unnecessary in order to account for any appearance whatever. All the properties that have hitherto been attributed to matter, may be comprised under those of attraction and repulsion. Besides these, man is posessed of the powers of sensation or perception, and thought. But if, without giving the reins to our imaginations, we suffer ourselves to be guided in our inquiries by the simple rules of natural philosophy above-mentioned, we must necessarily conclude, that these powers also may belong to the same substance that has also the properties of attraction, repulsion, and extension (b), which I as well as others call by the name of matter. The reason of the conclusion is simply this, that the powers of sensation or perception and thought, as belonging to man, have never been found but in conjunction with a certain organized system of matter; and therefore that these powers necessarily exist in and depend upon such a system. This at least must be our conclusion, till it can be shown that these powers are incompatible with the other known properties of the same substance; and for this I see no fort of pretence.

This is what Dr Prieietyle calls the proper and direct proof that the sentient principle in man is the material substance of the brain; and he enforces it by the following observations: "Had we formed a judgment concerning the necessary feat of thought by the circumstances that universally accompany it, which is our rule in all other cases, we could not but have concluded that in man it is a property of the nervous system, or rather of the brain; because, as far as we can judge, the faculty of thinking, and a certain state of the brain, always accompany and correspond to one another; which is the very reason why we believe that any property is inherent in any substance whatever. There is no instance of any man retaining the faculty of thinking when his brain was destroyed; and whenever that faculty is impeded or injured, there is sufficient reason to believe that the brain is disturbed in proportion; and therefore we are necessarily led to consider the latter as the seat of the former. Moreover, as the faculty of thinking in general ripens and comes to maturity with the body, it is also observed to decay with it; and if, in some cases, the mental faculties continue vigorous when the body in general is enfeebled, it is evidently because in those particular cases the brain is not much affected by the general cause of weakness. But, on the other hand, if the brain alone be affected, as by a blow on the head, by actual pressure within the skull, by sleep, or by inflammation, the mental faculties are universally affected in proportion. Likewise, as the mind is affected in consequence of the affections of the body and brain, so the body is liable to be reciprocally affected by the affections of the mind, as is evident in the visible effects of all strong passions, hope or fear, love or anger, joy or sorrow, exultation or despair. These are certainly irreparable arguments, that it is properly no other than one and the same thing that is subject to these affections, and that they are necessarily dependent upon one another. In fact, there is just the same reason to conclude, that the powers of sensation and thought are the necessary result of a particular organization, as that found is the necessary result of a particular concourse of the air. For in both cases equally the one constantly accompanies the other; and there is not in nature a stronger

(b) When Dr Prieietyle mentions the extension of corporeal substance, it must be remembered that he does not mean the extension of any real thing posseseed of an independent existence. The extension belongs wholly to the sphere or the combination of spheres of attraction and repulsion. The centre itself, which attracts and repels, he repeatedly affirms not to have the dimensions even of a physical point; and he sometimes seems to entertain a doubt whether it be any thing more than a mere relative notion.
Though the ingenious author thinks, that if there be any foundation for the established rules of philosophy, this reasoning ought to be conclusive, he yet subjoins, for the greater satisfaction of his readers, some additional arguments or rather, as he says, distinct illustrations of the great argument. They are as follows:

1. That the faculty of thinking necessarily depends, for its exercise at least, upon a flock of ideas, about which it is always conversant, will hardly be questioned by any person. But there is not a single idea of which the mind is possessed but what may be proved to have come to it from the bodily senses, or to have been consequent upon the perceptions of sense. The notion, therefore, of the possibility of thinking in man, without an organized body, is not only destitute of all evidence from actual appearances, but is directly contrary to them; and yet these appearances ought alone to guide the judgment of philosophers.

2. "The only reason why it has been so earnestly contended for, that there is some principle in man that is not material, is, that it might sublimate, and be capable of sensation and action, when the body is dead. But if the mind was naturally so independent of the body, as to be capable of subsisting by itself, and even of appearing to more advantage, after the death of the body; it might be expected to discover some signs of its independence before death, and especially when the organs of the body were obstructed, so as to leave the soul more at liberty to exert itself; as in a state of sleep or swooning, which must resemble the state of death; in which it is pretended that the soul is most of all alive, most active, and vigorous. But judging by appearances, the reverse of all this is the case.

3. "If the mental principle was, in its own nature, immaterial and immortal, all its particular faculties would be so too; whereas we see that every faculty of the mind without exception is liable to be impaired, and even to become wholly extinct, before death. Since, therefore, all the faculties of the mind, separately taken, appear to be mortal, the substance or principle in which they exist must be pronounced to be mortal too.

4. "If the sentient principle in man be immaterial, it can have no extention; it cannot have length, breadth, nor thickness; and consequently every thing within it, or properly belonging to it, must be simple and indivisible. Let us now consider how this notion agrees with the phenomena of sensation and ideas. It will not be denied, but that sensations or ideas properly exist in the soul, because it could not otherwise retain them; so as to continue to perceive and think after its separation from the body. Now, whatever ideas are in themselves, they are evidently produced by external objects, and must therefore correspond to them; and since many of the objects are archetypes of ideas are divisible, it necessarily follows, that the ideas themselves are divisible also. But, how is it possible that a thing (be the nature of it what it may) that is extensible, should be contained in a finitude, be the nature of it likewise what it may, that is indivisible? If the archetypes of ideas have extention, the ideas which are expressive of them, and are actually produced by them according to certain mechanical laws, must have extention likewise; and therefore the mind in which they exist, whether it be material or immaterial, must have extention also. But how any thing can have extention and yet be immaterial, without coinciding with our idea of mere empty space, I know not."

To the argument, which is here chiefly insinuated on as being agreeable to the established rules of philosophy, a very able reply has been made, which we shall give in the words of its elegant and spirited author. But before we attempt to dig up the foundation of the Doctor's system, it may not be improper to demolish, if possible, the additional buttresses by which it is strengthened. An experienced general, before he forms a citadel which he knows to be strongly fortified and skilfully defended, will take care to raise every left important redoubt from which the enemy might annoy him in his rear.

Because the faculty of thinking in general ripens, comes to maturity, and decays with the body, and the body on the other hand is affected by the affections of the mind, the Doctor affirms that we have the same reason to conclude, that the powers of sensation and thought are the necessary result of a particular organization, as that found is the necessary result of a particular concoction of the air. This argument is conclusive only upon the supposition that there is no possible evidence whatever for the immateriality of the being which is the subject of thought. If the other reasonings for the materiality and immateriality of the mind be of equal weight, this argument ought doubtless to turn the balance; but if there be the smallest preponderancy in behalf of the immaterialities, it is a mere begging of the question to attempt to counteract it by any inference which can be drawn from the mutual affections of the body and mind. If two such heterogeneous beings as an immaterial mind and an organized body can be supposed united in one person, they must necessarily affect each other; and to affirm, on account of this reciprocal affection, that they are one and the same, is equally absurd as to say that an electricist and his apparatus are one and the same. Dr Priestley himself did not at first think electrical experiments with so much ease as after he had acquired facility by long practice, nor could he even yet perform them so neatly with a bad as with a good apparatus.

That which the Doctor calls the first illustration of his argument might be admitted, and the force of the argument itself be sufficiently denied. Some kind of organized body may be necessary to the mind as an instrument without which it could not exert its faculties; but it would certainly be rash to infer that the mind must therefore be a system of matter. An anvil and a hammer are necessary to the exercise of the blacksmith's art; but what would be thought of him who should from this fact conclude, that the blacksmith himself must be a system of iron? This, therefore, instead of illustrating the great argument, seems to be wholly foreign from the question in debate; and it has in fact been admitted by Dr Price *. Correlpondence with Dr Priestley.

* Correspondence with Dr Priestley.
Part III. METAPHYSICS.

Of the Substance of the Human Mind.

Delineated.

Religion of Nature.

Ludmentation, however, is more to the purpose; and as it is not new, we shall give it an old answer.

Why do we not perceive external objects in our sleep or in a swoon? Because (says Mr. Woolaston), the passions are become impracticable, the windswept, and the nerves being obstructed, or somehow rendered for the time useless, can transmit no information to it. Why, however, does it not reason and think about something or other? Because, all the marks by which things are remembered, being for the present choked up or disordered, the remembrance of which it uses to reason, and to preserve the deductions and conclusions it makes, is all suspended at least for the time; and if its tables being covered, its books closed, and its tools locked up, the requisites for reasoning are wanting, and no subject offers itself to exercise its thoughts, it having yet had little or no opportunity to take in higher objects and more refined matter for contemplation. And, to conclude, if it be demanded, Why does it not reason and think about anything more than the instrument by which sensations and ideas are excited in the sentient principle? A real and proper idea, as we have often repeated, is nothing else than a fainter sensation: but no sensation, from whatever cause it may proceed, is itself extended; nor could we, without memory, the reasoning faculty, and the power of local motion, have acquired from mere sense any notion of extension at all: (See sect. 1.) Of objects and ideas are those appearances (if we may so say), which sensations or some other motion in the brain excite in the mind; but a half appearance is an absurdity. A man may view half a tree with his eyes, and he may contemplate the idea of half a tree in his mind; but he cannot have half a view or half an idea of anything. Sensations and ideas result from the mutual agency of the brain and sentient principle upon each other; and if the agency of the brain be vibration, more of it may arise at one time than at another; but surely the more relation between its agency at any time and the agency of the mind, can neither have extension nor be divisible; for who ever thought of extending or dividing relations? On this subject it is extremely difficult to write with peripety and precision; and what we have said may very possibly be misunderstood. Our notion is to ourselves clear and determinate; but language which was not invented by metaphysicians, wants words in which it may be properly expressed. Perhaps the reader may understand what we mean, when we say that a sensation or an idea is the instantaneous effect of the mutual agency of the brain and sentient principle. Of this we think every man, by a little attention, may be perfectly convinced, though it may be impossible ever to discover the precise nature

(thor's notions of mind and ideas differ in some respects from our own, we shall examine this objection to the doctrine of the immaterialities upon principles which we believe Dr. Priestley more inclined to admit.

That the sentient principle in man, if it be immaterial, can have no extension, is a truth which we think cannot be controverted; and if so, every thing in that principle must be simple and indivisible. Thus far we agree with Dr. Priestley; but with respect to what follows, we differ from him entirely. The agitation in the brain, which is the immediate cause of sensation, must indeed correspond to the impression ab extra by which it is produced, and therefore must have the property of extension; but that agitation, whatever it be, is not itself sensation any more than a bludgeon is a blow or a fword is a wound. Dr. Priestley, indeed, in answer to Dr. Price, affirms, that, according to Hartley's theory, ideas are only vibrations in the brain; but whoever shall take the trouble to examine that theory himself, will not find that its author ever advances such an opinion, or considers vibrations as anything more than the instruments by which sensations and ideas are excited in the sentient principle. A real and proper idea, as we have often repeated, is nothing else than a fainter sensation: but no sensation, from whatever cause it may proceed, is itself extended; nor could we, without memory, the reasoning faculty, and the power of local motion, have acquired from mere sense any notion of extension at all: (See sect. 1.) Of objects and ideas are those appearances (if we may so say), which sensations or some other motion in the brain excite in the mind; but a half appearance is an absurdity. A man may view half a tree with his eyes, and he may contemplate the idea of half a tree in his mind; but he cannot have half a view or half an idea of anything. Sensations and ideas result from the mutual agency of the brain and sentient principle upon each other; and if the agency of the brain be vibration, more of it may arise at one time than at another; but surely the more relation between its agency at any time and the agency of the mind, can neither have extension nor be divisible; for who ever thought of extending or dividing relations? On this subject it is extremely difficult to write with peripety and precision; and what we have said may very possibly be misunderstood. Our notion is to ourselves clear and determinate; but language which was not invented by metaphysicians, wants words in which it may be properly expressed. Perhaps the reader may understand what we mean, when we say that a sensation or an idea is the instantaneous effect of the mutual agency of the brain and sentient principle. Of this we think every man, by a little attention, may be perfectly convinced, though it may be impossible ever to discover the precise nature
M E T A P H Y S I C S.

Of the Substance of the Human Mind.

The nature of this agency; and if so, it is plain that sensations and ideas cannot be divided, for no instantaneous effect of any kind is divisible. A sensation, and of course a simple and original idea, neither has extension itself, nor suggests the notion of extension ab extra. By running the hand or any other member along a solid body, we feel continued resistance; this feeling, or the idea of this feeling, becomes in time so closely associated with all our sensations of touch and fight, that the one cannot be separated from the other; and these associations are what Dr. Priestley calls extended ideas. Upon the whole then, we think it apparent, that our sensations, and the reliefs of our sensations, are unextended and indivisible, (v) and that though they suggest to us the existence of extended things ab extra, the sentient being may be unextended and indivisible.

Having thus examined Dr. Priestley's auxiliary arguments for the materiality of mind, we now proceed to consider his main and direct proof. To this, as we have observed, so able a reply has been made, that it would be injustice to our readers not to lay it before them, in the words of its author. "I readily acknowledge (says this spirited essayist), that the power of sensation or perception never having been found but in conjunction with a certain organized system of matter, we ought, as philosophers, to conclude that this power necessarily exists in, and results from, that organized system, unless it can be shown to be incompatible with other known properties of the same substance. On the other hand it must be admitted, that constant conjunction implies necessary connection only when reasons cannot be discovered to prove the conjunction to be accidental and arbitrary. In the present instance, it is alleged, that discerptibility is a property of matter absolutely incompatible with the property of sensation or perception; or in other words, that sensation is a power or property incapable of division. But as the power of the entire system is clearly nothing more than the sum or aggregate of the powers of all the parts, it necessarily follows, that the primary particles of which the system is composed must, upon the material hypothesis, possess distinct powers of sensation; and that those

(v) We affirm this only of human sensations and ideas, because these are the only sensations and ideas of which we are conscious, and about which we can reason. Other animals are sentient as well as men, and appear to have their sensations excited by impressions ab extra; but whether in every species of animals a single impression excites but one sensation common to the whole animal, or different sensations which are felt each by a different faculty or sentient principle, is a question which we are not able to answer. We make this remark, because from the phenomena of sensation in the earth-worm, and other reptiles, some philosophers of eminence having supposed, that in these creatures the sentient faculty belongs to the material system, and is divisible with it; have thence concluded, we think rashly, that all arguments for the immateriality of the human mind are founded merely on our ignorance. We call this conclusion rash; because, though we know perfectly what a human sensation is, we have little knowledge of the nature of sensation in worms, that may be true of the one principle of sensation may be false of the other. Indeed, if we are to judge from the phenomena, this is actually the case. It appears from experiments made by Abbé Spallanzani and others, that if a certain number of rings be cut off either from the anterior or posterior part of a worm, or even from both, the remainder will not only continue to live and be sentient, but will also regenerate a new head and a new tail, and become again a complete worm. Nothing like this takes place in man or in the higher orders of animals; and therefore, were it certain that the sentient principle in the worm is diffused through the whole system and divisible with it, we could not infer that the principle of such sensations as we are conscious of, is likewise extended and divisible. It is, however, so far from being certain that the sentient principle is diffused through the whole worm, that nothing necessarily follows from this fact, but that its seat is at some distance from either extremity. Nay, were it true, as perhaps it is, that a worm may be so divided, as that each of the two feotions shall retain life, sensation, and this reproductive power, we would not therefore be authorized to conclude that the sentient principle is one, co-extended and divisible with the material system. The earth-worm, like many other reptiles, being an hermaphrodite, which unites in itself both sexes, may possibly consist of two animated systems; which though united by some bond of connexion, by which sensation is communicated from the one to the other, are yet in themselves perfectly distinct. Should this, upon proper investigation, be found to be the case; and should it likewise be found, that when a worm is divided into three or more parts, only one or two of these parts continue to live, there would be no room whatever for supposing that even in these creatures the principle of sensation is extended and divisible. In the mere power of reproducing amputated parts, when that power is considered by itself, there is nothing more wonderful than in the growth of the nails of our fingers or the hairs of our heads. The only thing which seems to militate against the simplicity of the principle of sensation in worms, is the continuance of life, &c. with both parts of a worm when cut into two by a knife or pair of scissors; but if a worm be found to have two seats of sensation analogous to the brain in higher animals, and if it be likewise found that life continues only in such sections as retain at least one seat of sensation, the sentient principle in the worm may be as simple and indivisible as in any animal whatever. We neither with nor expect much stress to be laid upon these hints and conjectures. Should they induce any of our physiological readers, who have leisure, and are at the same time skilled in philosophy, properly so called, to institute a set of experiments upon worms, and such reptiles, and to trace apparent effects to their higher causes, they might eventually lead to important discoveries. In the mean time, it is sufficient for our purpose to observe, that whatever be the sentient principle or principles in the earth-worm, it is obvious that the whole animal cannot in any case be conscious as man undoubtedly is, of one individual sensation; and that therefore no arguments built upon the phenomena accompanying sensation in worms, can be of any importance in the controversy about the materiality or immateriality of the human mind.
Part III.

METAPHYSICS.

Of the Substance of the Human Mind.

Those powers combined constitute the indivisible power of sensation belonging to the system; or, in other words, that the indivisible power of sensation is a divisible power, nay, an infinitely divisible power, if matter be, as philosophers in general allow, an infinitely divisible substance—a conclusion obviously and grossly ridiculous. We are then compelled to a knowledge, that sensation or perception is not the property of a material substance; i.e. if the common mode of expression be retained, it is the property of an immaterial substance; or to avoid verbal contention, it is a property not resulting from, or necessarily connected with, the organical system, but a property wholly foreign, superinduced, and adventitious. (c)

In opposition to this reasoning, the materialists affirm, that entire systems may possess, and they think themselves warranted to pronounce that organized systems of matter actually do possess powers essentially different from those which inhere in the several parts. Amongst various familiar though striking illustrations of this truth, it has been said, that a rope possesses the property of sweetness or fragrance, a globe the property of sphericity, a harp the property or power of producing harmony, aqua regia the property of dissolving gold, &c. though the component particles of these different organized systems are themselves totally delusive of the powers and properties here enumerated.

The immaterialists, in reply, assert, that it is not only false in fact, but a direct contradiction, and an absolute impossibility in the nature of things, that a system should possess any property which does not inhere in its component parts. To assert that the power of the whole is the sum or aggregate of the powers of all the parts, is an identical and self-evident proposition, the whole and all the parts being terms precisely synonymous. Whoever, therefore, calls in question the truth of this axiom, must maintain that the power of the whole is something different from the power of the all the parts, i.e. that the power of the whole is not the power of the whole. "It will be easy to demonstrate the correspondence of facts with this plain and simple theory. For this purpose, it is necessary to observe, that the properties of matter, or what are generally denominated fuch, may be divided into real and nominal, which Locke and others have called primary and secondary qualities. Figure, magnitude, and motion, are qualities really inherent in matter; but figure, magnitude, and motion, eternally varied, can produce only different combinations of figure, magnitude, and motion. There are also powers, or qualities, vulgarly considered as inherent properties of matter organically disposed, which are really and truly qualities or affections of the mental or percipient principle, and have no existence when not perceived. Thus the sweetness or fragrance of the rope, considered as mere sweetness and fragrance, can be nothing but an affection of the mind; considered as a quality of the rope, they can mean nothing more than a certain arrangement, configuration, and motion of parts, which in some inexplicable manner produces the sensation of sweetness. In this instance, therefore, the power of the whole is plainly the aggregate of the powers residing in the parts, by the motion and organization of which a certain effect is produced upon a foreign and percipient substance.

"But a globe, we are told, possess the property of sphericity, though not a single particle amongst that infinite number of which the globe is constituted is itself of a spherical form. The fallacy of

(c) This argument is not new. It was long ago urged by Dr Clarke against Mr Dodwell; and some of our readers may not be ill pleased to see it stated by so matter丽 a reasoner: "That the soul cannot possibly be material, is demonstrable from the single consideration of bare sense or conceivingness. For matter being a divisible substance, consisting always of separable, nay of actually separate and distinct parts, it is plain that unless it were essentially conscious, in which case every particle of matter must consist of innumerable separate and distinct consciousnesses, no system of it, in any possible composition or division, can be an individual conscious being. For suppose three or three hundred particles of matter, at a mile or any given distance one from another, is it possible that all these separate parts should in that state be one individual conscious being? Suppose then all these particles brought together into one system, so as to touch one another, will they thereby, or by any motion or composition whatsoever become one whet less truly distinct beings than they were when at the greatest distance? How then can their being dispersed in any possible system make them one individual conscious being? If you will suppose God by his infinite power superadding consciousness to the united particles, yet still those particles being really and necessarily as distinct beings as ever, cannot be themselves the subject in which that individual consciousness inheres; but the consciousness can only be superadded by the addition of something, in which all the particles must still itself be but one individual being. The soul, therefore, whose power of thinking is undeniably one individual consciousness, cannot possibly be a material substance."

That the same mode of reasoning was known to the ancients, Budworth has shown by numerous quotations; and as an argument certainly loses nothing by antiquity, or by having occurred to thinking men in distant ages, we shall lay before our readers two passages from Plotinus, of which the extract from Clarke's letter (though we are persuaded it was not borrowed by the author) must be considered as little more than a paraphrastical translation. Clarke's Letter to Mr Dodwell, 2d edition. "En. IV. Lib. 7. Cap. 5."

The same argument is elsewhere stated thus: "En. IV. Lib. 7. Cap. 2."
be challenged to produce, in the whole compass of nature, a case which bears the least analogy to that which these inferences are most unphilosophically adduced to prove and to illustrate. It is an absurdity which transcends imagination itself does not exceed, to maintain that a whole is in reality any thing different from its component parts; and all nature rises up in confusion of an affection so monstrous and extravagant. To affirm that perception can arise from any combination of imperceptible particles, is as truly ridiculous, as to affirm that a combination of the four primary colours with the four cardinal virtues may constitute a planet. It is equivalent to an assertion, that an epics poem might be composed of parallelograms, cones, and triangles. In a word, it is an absurdity not less real, and little less obvious, than that of the blind man who thought that the idea of a scarlet colour resembled the sound of a trumpet.

If matter be taken in the common acceptation, to be a solid, extended, and inert substance, this reasoning for the immateriality of the sentient principle in man appears to us to have the force of demonstration, which no difficulties or partial objections, arising from our inability to conceive the bond of union between two such heterogeneous substances as mind and body, the materialist can ever weaken, and far less overturn. But the modern materialists deny that matter is either solid or inert. Amongst the parts (say they) which compose phaenomena, which for that reason they would substitute in its place, the property of attraction or repulsion (says Dr. Priestley), appears to me not to be properly what is imparted to matter, but what really makes it to be what it is; intumefaction, that without it, it would be nothing at all; and as other philosophers have said—Take away solidity, and matter vanishes; I say, Take away attraction and repulsion, and matter vanishes. If this be admitted, the ingenious author hopes that we shall not consider matter with that contempt and disgust with which it has generally been treated, there being nothing in its real nature that can justify such sentiments respecting it.

We know not why, upon any hypothesis, matter should be viewed with contempt and disgust—Whether penetrable or impenetrable, every sentient being considers it as one of the creatures of God perfectly fitted to answer all the purposes for which it was intended: but were it really destitute of solidity, and endowed with the powers of attraction and repulsion, we should still be obliged to consider it as incapable of the powers of sensation and thought. If we have any notion at all of what is meant by centres of attraction and repulsion (of which indeed we are far from being confident), it appears to us to be intuitively certain, that nothing can be the result of any possible combination of such centres, but new and more enlarged spheres of attraction and repulsion. But these conclusions, sensation, and will, are as different from attraction and repulsion, as a cube is from the sound of a trumpet, or as the sensations of a felon in the agonies of death are from the attraction of the rope by which he is hanged. If this be admitted, and
Part III.

METAPHYSICS.

and we are persuaded it will be denied by no man whose understanding is not clouded by an undue attachment to paradoxes, the sentient principle cannot possibly be matter: for if, when the powers of attraction and repulsion are taken away, matter vanishes; and if consciousness and sensation are not attraction and repulsion; it is not more evident that three and two are not nine, than that the substance which attracts and repels cannot be that which is conscious and perceptive.

Locke, who was certainly no materialist, as he repeatedly affirmed, and indeed demonstrated, that thought could never be the result of any combinations of figure, magnitude, and motion, was yet of opinion, that God by His almighty power might endow some systems of matter with the faculties of thinking and willing. It is always with reluctance that we controvert the opinions of so great a man; and it is with some degree of horror that we venture in any case to call in question the power of Omnipotence.

But Omnipotence itself cannot work contradictions; and it appears to us nothing short of a contradiction, to suppose the individual power of perception inhering in a system which is itself extended and made up of a number of separate and distinct substances. For let us suppose such a system to be six feet long, three feet broad, and two feet deep (and we may as well suppose a system of these dimensions to be perceptible, as one that is smaller), then it is plain, that every idea must be extended, and that part of it must be in one place, and part in another. If so, the idea of a square inch will be six feet long, three feet broad, and two feet deep; and what is still harder to be digested, the several parts of this idea will be at a great distance from each other, without any bond of union among them. The being which apprehends one extremity of the idea, is, by the supposition, six feet distant from the being which apprehends the other extremity; and though these two distinct beings belong to one system, they are not only separable, but actually separated from each other as all the particles of matter are. What is it then that apprehends as one the whole of this extended idea? Part of it may be apprehended by one particle of matter, and part of it by another; but there is nothing which apprehends, or can apprehend, the whole. Perhaps it will be said, the power of apprehension is not divided into parts, but is the power of the one system, and therefore apprehends at once the whole idea. But a power or faculty cannot be separated from its subject, power which inheres in nothing being confusedly impossible; and a material system is not one subject in which any individual power or faculty can inhere. There must, therefore, be united to the system some one being, which is the subject of thought, and which is unextendcd as well as indivisible. This, we say follows undeniably. For, let us suppose, that an extended being without separable parts is possible, and that such a being is percipient; it is obvious, that the whole of any one of its perceptions could not be in one place. Now, though we should grant to Dr. Priestley and other materialists, that every idea of an extended substance has itself three dimensions, and is incorporated and commensurate with the whole percipient system; what, upon this supposition, shall we think of consciousness and of the perception of truth? Is consciousness or truth extended? If so, one idea or superfcieties of consciousness, or of a truth, may be greater or less than another, above or below, to the right or to the left; and it will be very proper and philosophical to speak of the length, breadth, and depth, of consciousness or of truth. But surely to talk of the place, or the extension of these things, is as absurd as to talk of the colour of sound, or the sound of a triangle; and we might as well say, that consciousness is green or red, as that it is an ell or an inch long; and that truth is blue, as that it has three dimensions.

This reasoning is somewhat differently stated by Cudworth; who observes, that if the soul be an extended substance, "it must of necessity be either a physical point (i.e. the least extent possible, if there be any such least extent), or else it must consist of more such physical points joined together. As for the former of these, it is impossible that an single atom, or small point of extension, should be able to perceive distinctly all the various things, i.e. take notice of all the different and different parts of an extended object, and have a description or delineation of the whole of them upon itself (for that would be to make it the least, and not the least, possible extent at the same time): Besides, to suppose every soul to be but one physical point, or the smallest possible extent, is to suppose such an essential difference in matter or extension, as that some of the points thereof should be naturally devoid of all life, sense, and understanding; and others, again, naturally sentient and rational. And even should this absurdity be admitted, it would yet be utterly inconceivable how there should be one, and but one, sentient and rational atom in every man; how this atom of so small dimensions should actuate the whole system; and how it should constantly remain the same from infancy to old age, whilst all the other parts of the system transpire perpetually, and are succeeded by new matter (n)."

"But if, according to the second hypothesis, souls be

(n) Should it be said, that this essential difference between the atoms of matter is not fortuitous; that some of them are created intelligent for the express purpose of animating systems of others which are unintelligent; and that these intelligent atoms do not operate upon the systems with which they are united, by the natures, solidity, or extension, of matter, but by the energies of understanding and will: Should this (we say) be alleged, surely it may be asked, for what purpose are they conceived to have the quality of extension? It is evidently of no use; and it has been already shown, and shall be more fully shown afterwards, that by our notions of consciousness and understanding, we are so far from being led to suppose the subject of these powers extended, that we cannot suppose any relation whatever between them and extension. But if these intelligent atoms be divided of their quality of extension, they will be transformed from matter to mind, and become the very things for the existence of which we plead.
 Of the Substance of the Human Mind.

...''}BH OV'1"1

Theology, Ethical, Theological, and Political, Vol. I.

As the materialists endeavour to prejudice the public against the notion of an unextended soul, by representing it as a fiction of Des Cartes, altogether unknown to the ancients, it may not be improper to give our readers an opportunity of judging for themselves how far this representation is just—Plotinus, reasoning about the nature of the soul from its energies of sensation, expresses himself in these words:—"... multa multa auctius et sentire, in illo autem est ratione, qui in anima multo auctius semittur quidam quodem solum..." He observes, the soul has no property in common with matter, but that in every man there are innumerable percipiens or perfeons; a conclusion directly contrary to the infallible evidence of consciousness (i.).

Cogent as these arguments for the immateriality of the sentient principle appear to be, they have been lately treated with the most sovereign contempt by a writer who professes to be a disciple of Dr. Priestley's, who seems to have not learned the modesty or the candor of his master. Dr. Priestley labours to prove, that to account for the phenomena of sensation and volition, &c. it is not necessary to suppose an immaterial principle in man. Mr. Cooper with greater boldness affirms, and undertakes to demonstrate with all the parade of mathematical precision, that such a principle is impossible. Though the authority of this philosopher in such inquiries as depend not immediately upon the retort and the furtherance, is certainly not great; he yet utters his dogmas with such confidence, that it may not be improper to examine the chief arguments upon which they rest.

"Suppose (says he) the soul to have no common property with matter; then, nothing can act upon any other but by means of some common property. Of this we have not only all the proof that induction of known and acknowledged cases can furnish, but that additional proof also which arises from the impossibility of conceiving how the opposite proposition can be true. But by the supposition, the soul has no property in common with matter; and therefore the soul cannot act upon matter. But by the supposition of every system of immaterialism (except those of Malbranche, Berkeley, and Leibnitz), it is deemed an essential property of the soul, that it acts upon the body, or upon matter; therefore the soul can and cannot act upon matter at the same time, and in the same respect. But this is a contradiction in terms; and as two contradictions cannot both be true at the same time, the supposition of the existence of an immaterial soul cannot be true: that is, the soul does not exist.

This reasoning, the reader will observe, is carried on with all the pomp of mode and figure. The proposition hangs upon each other like the several steps of an algebraical process: but as in such processes one error unwarily admitted produces a false result, so in demon-

(1) As the materialists endeavour to prejudice the public against the notion of an unextended soul, by representing it as a fiction of Des Cartes, altogether unknown to the ancients, it may not be improper to give our readers an opportunity of judging for themselves how far this representation is just—Plotinus, reasoning about the nature of the soul from its energies of sensation, expresses himself in these words:—"... multa multa auctius et sentire, in illo autem est ratione, qui in anima multo auctius semittur quidam quodem solum..." He observes, the soul has no property in common with matter, but that in every man there are innumerable percipiens or perfeons; a conclusion directly contrary to the infallible evidence of consciousness (i.).

Cogent as these arguments for the immateriality of the sentient principle appear to be, they have been lately treated with the most sovereign contempt by a writer who professes to be a disciple of Dr. Priestley's, who seems to have not learned the modesty or the candor of his master. Dr. Priestley labours to prove, that to account for the phenomena of sensation and volition, &c. it is not necessary to suppose an immaterial principle in man. Mr. Cooper with greater boldness affirms, and undertakes to demonstrate with all the parade of mathematical precision, that such a principle is impossible. Though the authority of this philosopher in such inquiries as depend not immediately upon the retort and the furtherance, is certainly not great; he yet utters his dogmas with such confidence, that it may not be improper to examine the chief arguments upon which they rest.

"Suppose (says he) the soul to have no common property with matter; then, nothing can act upon any other but by means of some common property. Of this we have not only all the proof that induction of known and acknowledged cases can furnish, but that additional proof also which arises from the impossibility of conceiving how the opposite proposition can be true. But by the supposition, the soul has no property in common with matter; and therefore the soul cannot act upon matter. But by the supposition of every system of immaterialism (except those of Malbranche, Berkeley, and Leibnitz), it is deemed an essential property of the soul, that it acts upon the body, or upon matter; therefore the soul can and cannot act upon matter at the same time, and in the same respect. But this is a contradiction in terms; and as two contradictions cannot both be true at the same time, the supposition of the existence of an immaterial soul cannot be true: that is, the soul does not exist.

This reasoning, the reader will observe, is carried on with all the pomp of mode and figure. The proposition hangs upon each other like the several steps of an algebraical process: but as in such processes one error unwarily admitted produces a false result, so in demon-

(2) As the materialists endeavour to prejudice the public against the notion of an unextended soul, by representing it as a fiction of Des Cartes, altogether unknown to the ancients, it may not be improper to give our readers an opportunity of judging for themselves how far this representation is just—Plotinus, reasoning about the nature of the soul from its energies of sensation, expresses himself in these words:—"... multa multa auctius et sentire, in illo autem est ratione, qui in anima multo auctius semittur quidam quodem solum..." He observes, the soul has no property in common with matter, but that in every man there are innumerable percipiens or perfeons; a conclusion directly contrary to the infallible evidence of consciousness (i.).

Cogent as these arguments for the immateriality of the sentient principle appear to be, they have been lately treated with the most sovereign contempt by a writer who professes to be a disciple of Dr. Priestley's, who seems to have not learned the modesty or the candor of his master. Dr. Priestley labours to prove, that to account for the phenomena of sensation and volition, &c. it is not necessary to suppose an immaterial principle in man. Mr. Cooper with greater boldness affirms, and undertakes to demonstrate with all the parade of mathematical precision, that such a principle is impossible. Though the authority of this philosopher in such inquiries as depend not immediately upon the retort and the furtherance, is certainly not great; he yet utters his dogmas with such confidence, that it may not be improper to examine the chief arguments upon which they rest.

"Suppose (says he) the soul to have no common property with matter; then, nothing can act upon any other but by means of some common property. Of this we have not only all the proof that induction of known and acknowledged cases can furnish, but that additional proof also which arises from the impossibility of conceiving how the opposite proposition can be true. But by the supposition, the soul has no property in common with matter; and therefore the soul cannot act upon matter. But by the supposition of every system of immaterialism (except those of Malbranche, Berkeley, and Leibnitz), it is deemed an essential property of the soul, that it acts upon the body, or upon matter; therefore the soul can and cannot act upon matter at the same time, and in the same respect. But this is a contradiction in terms; and as two contradictions cannot both be true at the same time, the supposition of the existence of an immaterial soul cannot be true: that is, the soul does not exist.

This reasoning, the reader will observe, is carried on with all the pomp of mode and figure. The proposition hangs upon each other like the several steps of an algebraical process: but as in such processes one error unwarily admitted produces a false result, so in demon-
Part III.

METAPHYSICS.

Of the Substance of the Human Mind.

demonstrative reasonings one unsound argument admitted into the premises is necessarily productive of error in the conclusion. When the author affirms, "that nothing can act upon any other but by means of some common property," he affirms without the shadow of proof what is certainly not self-evident. He says, indeed, that of this we have all the proof that induction of known and acknowledged cases can furnish; but unless concomitants be calculated to deceive us, this is unquestionably a mistake. Matter, he repeatedly affirms, has no other properties than those of attraction and repulsion: but a man moves his arm by a mere energy of will; and therefore, according to this demonstrator, an energy of will must be either material attraction or material repulsion. If so, it is reasonable to conclude, that when a man draws his hand towards his head, the center of his brain exerts its power of attraction; and that when he extends his arm at full length before him, the same center exerts its power of repulsion. We beg pardon of our readers for detaining them one moment upon such absurdities as these: yet we cannot dismiss the argument without detaining them one moment upon such absurdities as asking the liberty to ask an all-knowing author, How it comes to pass that the same center sometimes attracts and sometimes repels the same substance at the same distance; nay, that it both attracts and repels substances of the same kind, at equal distances, and at the very same instant of time? This must be the case, when a man puts one hand to his head, and thrusts another from him; and therefore, if these operations be the effect of attraction and repulsion, it must be of attraction and repulsion, to which induction of known and acknowledged cases furnishes nothing similar or analogous, i.e. of such attraction and repulsion as, according to Mr Cooper's mode of reasoning, does not exist. The truth is, that we are not more certain that we ourselves exist, than that an energy of will is neither attraction nor repulsion, and therefore, unless all matter be ended with will, it is undeniable, that whatever be the substance of the soul, one thing acts upon another by a property not common to them both. In what manner it thus acts, we pretend not to know: but our ignorance of the manner of any operation is no argument against the reality of the operation itself, when we have for it the evidence of concomitants and daily experience; and when the author shall have explained to general satisfaction how material centres attract and repel each other at a distance, we shall undertake to explain how one thing acts upon another with which it has no common properties.

Sufficient, as it should seem, that this reasoning has not the complete force of mathematical demonstration, the author supports his opinion by other arguments. "Whatever we know, (says he), we know by means of its properties, nor do we in any case whatever certainly know any thing but these; and we infer in all cases the existence of any thing which we suppose to exist from the existence of its properties. In short, our idea of any thing is made up of a combination of our ideas of its properties. Gold is heavy, ductile, tenacious, opaque, yellow, soluble in aqua regia, &c. Now, let any one suppose for an instant that gold is deprived of all these, and becomes neither heavy, ductile, tenacious, opaque, yellow, soluble, &c. what remains, will it be gold? Certainly not. If it have other properties, it is another substance. If it have no properties remaining, it is nothing. For nothing is that which hath no properties. Therefore, if any thing lose all its properties, it becomes nothing; that is it loses its existence. Now, the existence of the soul is inferred, like the existence of every thing else, from its supposed properties, which are the phenomena of thinking, such as perception, recollection, judgment, and volition. But in all cases of perfect sleep, of the operation of a strong narcotic, of apoplexy, of swooning, of drowning where the vital powers are not extinguished, of the effects of a violent blow on the back part of the head, and all other lepithymic affections, there is neither perception, recollection, judgment, nor volition; that is, all the properties of the soul are gone, are extinguished. Therefore, the soul itself loses its existence for the time. If any man shall say that these properties are only suspended for the time, I would desire him to examine what idea he annexes to this suspension; whether it be not neither more nor less than that they are made not to exist for the time. Either no more is meant, or it is contradictory to matter of fact; and moreover, if more be meant, it may easily be perceived to involve the archetypal existence of abstrait ideas, and to contradict the axiom, "impossible est idem effe et non effe.""

For the benefit of short-sighted inquirers, it is to be shown to willing that the author had favoured the public with a more equal proof which might have been so easily brought; for we can discern no connection whatever between the suspension of the exercise of the powers of the mind, and the archetypal existence of abstrait ideas, or the absurd proposition that it is possible for the same thing to be and not be. We think, however, that we understand enough of this reasoning which he has given us to be able to pronounce with some confidence that it is nothing to the purpose. For, in the first place, we beg leave to observe, that between the properties of gold and the powers of thinking, &c. there is no similarity; and that what may be true of the one, may be false when affirmed of the other. The powers of the mind are all more or less active; the enumerated properties of gold are all passive. We know by the most complete of all evidence, that the exercise of power may be suspended, and the power itself remain unimpaired; but to talk of the suspension of the energies of what was never energetic, if it be not to contradict the axiom, "impossible est idem effe et non effe," is certainly to employ words which have no meaning. Yet even this argument from the properties of gold might have led the author to suppose that something else may be meant by the suspension of the exercise of powers, than that those powers are made not to exist for the time. In a room perfectly dark gold is not yellow; but does it lose any of its essential properties, and become a different substance, merely by being carried from light to darkness? Is a man while in a dark room deprived of the faculty of sight, and one of the powers of his mind made not to exist for the time? The author will not affirm that either of these events takes place. He will tell us that gold exhibits not its yellow appearance, merely because the proper medium of light paries not from it to the eye of the perceiver, and that it is only for want of the same medium that nothing is seen by us in perfect darkness. Here,
then, by his own confession, is a power of the mind, and a property of an external object, both suspended in their energies, without being annihilated: and no proof has yet been brought that all the powers of the mind may not in the same manner be suspended in their energies without being made not to exist. As light is necessary to vision, but is not itself either the thing which fees or the thing which is seen; so may the brain be necessary to the phenomena of thinking, without being either that which thinks, or that which continues to exist; so may the energy of thinking cease when the brain is rendered unfit for its usual office, though the being which thinks, and the power of thought, continue to exist, and to exist unimpaired.

That this is actually the case every man must be convinced who believes that in thinking he exerts the same powers to-day that he exerted yesterday; and therefore our author's second demonstration of the non-existence of mind is like his first, founded upon affirmations which cannot be granted.

Another of these pretended demonstrations is as follows: "If the soul exist at all, it must exist somewhere; for it is impossible to frame to one's self an idea of any thing existing, which exists not where. But if the soul exist somewhere, by the terms it occupies space, and therefore is extended; but whatever has extension, has figure in common with matter. Moreover, by the supposition of every immaterial hypothesis (except those of Malbranche, Berkeley, and Leibnitz), it ads upon body, i.e., upon matter; that is, it attracts and repels, and is attracted and repelled, for there is no conceivable affection of matter but what is founded on its properties ofattraction and repulsion; and if it be attracted and repelled, its reaction must be attraction and repulsion. The soul then has the properties of extension, figure, attraction, and repulsion, or solidity. But these comprise every property which matter, as such, has ever been supposed to possess. Therefore the soul is matter, or material. But by the supposition it is immaterial; therefore it does not exist. For nothing can exist whose existence implies a contradiction."

Mr Cooper, we see, still proceeds in the direct road of mathematical demonstration; but in the present instance we beg leave to stop him in the very beginning of his course, and to ask where the universe exists? When he shall have given such an answer to this question as men of common sense may be able to comprehend, we may perhaps attempt to tell him where an unextended soul exists. If this demonstration be not a collection of words without meaning, the existence of space as a real thing is taken for granted. Space, therefore, has extension, and of course figure; but we believe Mr Cooper will find some difficulty in ascertaining the figure of infinite space. The mind certainly acts upon body. For this we have the evidence of consciousness and experience; but we have no evidence whatever that it must therefore attract and repel, and be attracted and repelled. It has been already observed, that the mind, whatever be its substance, acts upon the body by energies of will. What these are every man knows with the utmost certainty and precision, whilst we may venture to assert that no man knows precisely what corporeal attraction and repulsion are, supposing the existence of such powers to be possible. When we speak of attraction and repulsion, we have some obscure notion of bodies acting upon each other at a distance; and this is all that we know of the matter. But when we think of an energy of the human will, the idea of distance neither enters nor can enter into our notion of such an energy. These are facts which we pretend not to prove by a mathematical or a chemical process. Every man must be convinced of their truth by evidence more complete than any proof, viz., immediate consciousness of his own thoughts and volitions. This being the case, we may turn Mr Cooper's artillery against himself, and on that account mind acts upon body by powers different from attraction and repulsion, argue that body neither attracts nor repels; and were it true, as it is certainly false, that nothing could act upon another but by means of some property common to both, we might infer that every atom of matter is endowed with the powers of volition and intelligence, and by consequence that every man is not one but ten thousand conscious beings, a conclusion which our philosopher seems not inclined to admit.

Having finished his demonstrations, the author states other objections to the doctrine of immaterialism, which, as they are not his own nor new, have greater weight. "It appears no more than reasonable (says he), that if the doctrine of materialism be rejected as inadequate and inadequate to explain the phenomena, the latter should at least be explained in some manner or other better upon the sublitted than the rejected hypotheses; so that it is reasonable to require of an immaterialist that his supposition of a distinct soul should explain the rationale of the phenomena of thinking. But, strange to say, of far from attempting to explain these phenomena on the immaterial hypothesis, it is acknowledged on all hands that even on this hypothesis the phenomena are inexplicable." This objection it would certainly be no difficult task to obviate; but from that trouble, small as it is, we are happily exempted by the objector. "I would have it understood (says he), that no materialist ever undertook to say bow perception results from our organization. What a materialist undertakes to assert is, that perception, whatever it be, or however it results from, does actually result from our organization." According to Mr Cooper, then, the rationale of thinking is hardly any one operation in nature. We see that the stroke of a rattle produces motion in a billiard ball; but how it does so, we believe no man can say. Of the facts, however, we are certain; and know that the motion is produced by some power, about the effects of which we can reason with precision. In like manner we know with the utmost certainty, that we ourselves have the powers of perception and volition; and that these powers cannot be conceived as either an ell or an inch long. How they result from the mutual agency of an immaterial and material subsistence upon each other, we are indeed profoundly ignorant; but that such is the fact, and that they are not the result of mere organization, we must necessarily believe, so long as it is true that the power of the entire system is nothing more than the
Of the Substance of the Human Mind.

The immaterial hypothesis contains in it something inexplicable by man; The material hypothesis likewise contains, by the confession of its advocates, something that is equally inexplicable; and is over and above burdened with this contradiction, that the whole is something different from all its parts. It is therefore no "singular phenomenon in literary history, that one hypothesis should be rejected as inadequate to account for appearances, and that the hypotheses substituted should, even by the acknowledgment of its abettors, be such as not only to explain the rationale of the appearances, but, from the nature of it, to exclude all hopes of such an explanation." This is exactly the case with respect to a "caenium" in astronomy. That hypothesis does not in the least tend to explain the rationale of the motions of the planets; but yet it must be admitted in preference to a "plenum", because upon this last hypothesis motion is impossible.

"Supposing the existence of the soul, it is an unfortunate circumstance (says Mr Cooper), that we cannot properly affirm positively any thing of it at all." Were this the case, it would indeed be a very unfortunate circumstance; but can we not affirm positively as many things of the soul as we can of the body? Can we not say with as much propriety and certainty, that the soul has the powers of perception and volition, &c. as that the body is solid and extended, or as that matter has the powers of attraction and repulsion? We know perfectly what perception and volition are, though we cannot have ideas or mental images of them; and if our author knows what attraction and repulsion are, he believes he will not pretend to have of them ideas entirely abstrait from their objects. "But granting the soul's existence, it may be asked (says he), Of what use is an hypothesis of which no more can be ascribed than its existence?" We have just observed, that much more can be ascribed of the soul than its existence, viz. that it is something of which perception and will are properties; and he himself affirms nothing of matter but that it is something of which attraction and repulsion are properties.

"This soul, of which these gentlemen (the immaterialists) are conscious, is immaterial essentially. Now, I deny (says our author), that we can have any idea at all of a substance purely immaterial." He elsewhere says, that nothing can exist which is not extended, or that extension is inseparable from our notions of existence. Taking the word idea in its proper sense, to denote that appearance which external objects make in the imagination, it is certainly true that we can have no idea of an immaterial substance; but neither have we, in that sense, any idea of matter abstrait from its qualities. Has Mr Cooper any idea of that which attracts and repels, or of attraction and repulsion, abstrait from their objects? He may, perhaps, have, though we have not, very adequate ideas of bodies acting upon each other at a distance; but as he takes the liberty to substitute assertions for arguments, we beg leave in our turn to assert, that those ideas neither are, nor can be, more clear and adequate than our notion of perception, confciouness, and will, united in one being.

That extension is no otherwise inseparable from our notions of existence than by the power of an early and perpetual association, is evident from this circumstance, that, had we never possessed the senses of sight and touch, we never could have acquired any idea at all of extension. No man, who has thought on the subject, will venture to affirm, that it is absolutely impossible for an intelligent being to exist with no other senses than those of smell, taste, and hearing. Now it is obvious that such a being must acquire some notion of extension from his own confciouness: but in that notion extension could not possibly enter; for neither sounds, tastes, smells, nor consciousneses, are extended; and it is a fundamental article of the materialists creed, that all our ideas are reliefs of sensation. Since then extension may be conceived without extension, it may be inferred that they are not inseparable from each other; and since cogitation cannot be conceived with extension, we may reasonably conclude that the being which thinks is not extended.

Mr Cooper indeed with his master talks of extended ideas and extended thoughts: but we must add, in the words of Cudworth, that "we cannot conceive a thought to be of such a certain length, breadth, and thickness, measurable by inches, feet, and yards; that we cannot conceive the half, or third, or twelfth part of a thought; and that we cannot conceive every thought to be of some determinate figure, such as round or angular, spherical, cubical, cylindrical, or the like. Whereas if extension were inseparable from existence, thoughts must either be mere non-entities, or extended into length, breadth, and thickness; and consequently all truths in us (being nothing but complex thoughts) must be long, broad, and thick, and of some determinate figure. The same must likewise be affirmed of volitions, appetites, and passions, and of all other things belonging to cognitive beings; such as knowledge and ignorance, wisdom and folly, virtue and vice; and that these are either all of them absolute non-entities, or else extended into three dimensions, and measurable not only by inches and feet, but also by solid measures, such as pints and quarts. But if this be absurd, and if these things belonging to soul and mind (though doublets as great realities at least as the things which belong to body) be unextended, then must the subsitances of souls or minds be themselves unextended, according to that of Plotinus, ΝΥΚΟΤΝΑ ΒΕΡΟΙΚΟΤ ΕΝ ΠΟΙΟΣ, and therefore the human soul cannot be material."
Of the Sub-stance of the Human Mind.

Who's arrogance does not surpas his judgment will venture to deny; but the question at present between the most rigid immaterialists and their opponents, is, whether there is ground to think that the human soul is such a being? Now, when Mr. Baxter and his followers confidently affirm, that human perception must necessarily subsist after the dissolution of the present mortal and perishable system; and that the soul, when disencumbered of all body, will have its faculties greatly enlarged; they affirm what to us appears incapable of proof. That a disembodied soul may perceive and think, and act, and that its powers of intellecution may have a wider range than when they were circumfered by a corporeal system, which permitted their action upon external objects only through five organs of sense, is certainly possible; and the argument by which the materialists pretend to prove it not possible, is one of the most contemptible sophisms that ever disgraced the page of philosophy. To affirm, that because our intellectual powers, in their embodied state, seem to decay with the system to which they are united, the mind, when set free, must therefore have no such powers at all, is equally absurd as to say, that because a man light up in a room which has but one window, sees objects less and less dimly as the glass becomes more and more dimmed, he must in the open air be deprived of the power of vision. But because the human soul may, for any thing that we can see to the contrary, subsist, and think, and act, in a separate state, it does not therefore necessarily follow that it will do so; and every thing that we know of its nature and its energy leads us to think, that without some kind of body by which to act as by an instrument, all its powers would continue dormant. There is not the shadow of a reason to suppose that it existed and was conscious in a prior state; and as its memory at present depends upon the state of the brain, there is all the evidence of which the case will admit, that if it should subsist in a future state divorced of all body, though it might be endowed with new enlarged powers of perception, it could have no recollection of what it did and suffered in this world, and therefore would not be a fit object either of reward or of punishment. This consideration has compelled many thinking men, both Pagans and Christians, to suspend that at death the soul carries with it a fine material vehicle, which is its immediate fenimentum in this world, and continues to be the seat of its recollection in the next. Such, we have seen, was the opinion of Mr. Wollaston and Dr. Hartley; it was likewise the opinion of Cudworth and Locke, who held that the supreme Being alone is the only mind wholly separated from matter; and it is an opinion which even Dr. Clarke, one of the ablest advocates for immaterialism, would not venture positively to deny.

Nor is this opinion peculiar to a few moderns. Cudworth, after giving a vast number of quotations from Pythagoreans and Platonists, which prove to a demonstration that they held the Deity to be the only mind which perceives and acts without the instrumentality of matter, observes, that “from what hath been said, it appeared, that the most ancient afforers of the incorporeity and immortality of the human soul, yet supposed it to be always conjoined with some body. Of the Sub-

Thus Hierocles plainly says, ως αυτοις εις την παντοτητα του ασθενους ανθρωπου δεμενος ανθρωπινος αντικειμενος, γενομενος προς τον καταπονσε Εαυτου, κενον και αει συνενοικον. The rational nature having always a kindred body, so proceeded from the demiurgus, as that neither itself is body, nor yet can it be without body; but though itself be incorporeal, yet its whole form is terminated in a body. Agreeably to this the definition which he gives of a man is, ψυχη κατεβας μετα των αβανοις, ανθρωπινος αντικειμενος, a rational soul, together with a kindred immortal body; and he affirms, that our present animated terrestrial body, or mortal man, is nothing but ιδιοτατα ανθρωπων, the image of the true man, or an accession from which it may be separated. Neither does he affirm this only of human souls, but also of all other rational beings whatsoever below the supreme Deity, that they always naturally actuate some body. Wherefore a demon or angel (which by Hierocles are used as synonymous words), is also defined by him after the same manner. ψυχη λυκιων μετα φαινοντος, του ανθρωπου, a rational soul, together with a lucid body. And accordingly Proclus upon Plato's Timaeus affirmed, πολλα εις χωριαν μετα αγγελικον του ρειμον δια εις, και ιδιοτατα ανθρωπων, και ιδιοτατα δια μαντειας, that every demon, inferior to human souls, had both an intellectual soul and an ethereal vehicle, the eternity thereof being made up or compounded of these two things. So that there is hardly any other difference left between demons or angels, and men according to these philosophers, but only this, that the former are capable into aerial bodies only, and no further; but the latter into terrestrial also. Now, Hierocles positively affirms this to have been the true cabala, and genuine doctrine of the ancient Pythagoreans, entertained afterwards by Plato and Ptolemy Philo in de anima, i de Platon naturam exposito, aevum divisionem hominum mundi primary locum habere in homine animato et in animato, and this was the doctrine of the Pythagoreans, which Plato afterwards declared; he resembling every both human and divine soul (1. e. in our modern language, every created rational being) to a winged chariot, and a driver or charioteer both together: meaning by the chariot, an animated body; and by the charioteer, the incorporeal soul actuating it.

That this Pythagorean opinion of the Deity's being the only mind which thinks and acts without material organs was very generally received by the ancient Christians, might be proved by a thousand quotations: We shall content ourselves with producing two from the learned Origens. "Solus Dei (faith this philosophic father of the Church), id est, Patris, Filii, et Spiritus Sancti, nature ut primum effe, ut fine materiali subjicitur, et absque illa corporis adjectitatis societate, intelligitur animaliter 1." "Materiem fubstantiam opinione quidem et intelleculo solum separavit lib. 1. rari, a naturis rationalibus, et pro ipsis, vel pro ipsa cap. 6. affectam videri; sed non quam fine ipsa cas vel vivisse, vel vivere: Solius namque Trinitatis incorporea vita exifere putabatur: Should Mr Cooper and his friends ask, What is the use of a soul which cannot act cap. 2. without the instrumentality of matter? or why we should suppose the existence of such a subsistence? we beg leave, in our turn, to ask these gentlemen, What is the use of a brain which cannot see without eyes? and
Part III.

METAPHYSICS.

Of Personal Identity.

And why they should suppose all our sensations to terminate in such an internal system, since the vulgar certainly suppose their sensations to subsist in their respective organs? How this ancient notion, which makes body so essential a part of man, is consistent with the immortality of the human soul, we shall inquiring in a subsequent chapter; in which we shall endeavour to ascertain what kind of immortality we have reason to expect, and upon what evidence our expectation must rest. Previous to this inquiry, however, it is necessary to enter upon another, which is of the first importance, and which every materialist has endeavoured to pervert; we mean that which concerns personal identity. For if, as has been often said, no man is the same person two days successively, it is of no importance to us whether the soul be mortal or immortal.

Chap. III. Of Personal Identity.

Whether we are to live in a future state, as it is the most important question which can possibly be asked, so is it the most intelligible one which can be expressed in language. Yet strange perplexities have been raised about the meaning of that identity or sameness of person, which is implied in the notion of our living now and hereafter, or indeed in any two successive moments; and the solution of these difficulties has been stranger than the difficulties themselves. To repeat all that has been said on the subject would swell this chapter to a disproportionate bulk. We shall therefore content ourselves with laying before our readers the sentiments of Bishop Butler, and the fancies and demonstrations of the philosopher of Manchester. We are induced to adopt this course, because we think the illustrious Bishop of Durham has exhausted the subject, by stating fairly the opinions which he controverts, and by establishing his own upon a foundation which cannot be shaken, and which are certainly not injured, by the objections of Mr Cooper.

"When it is asked (says this philosophical prelate+) in what personal identity consists? the answer should be the same as if it were asked in what consists similitude or equality?—that all attempts to define would but perplex it. Yet there is no difficulty at all in ascertaining the idea or notion: For as, upon two triangles being compared or viewed together, there arises to the mind the notion of similitude; or, upon twice two and four, the notion of equality: so likewise, upon comparing the consciousness of one's self or one's own existence in any two moments, there as immediately arises to the mind the notion of personal identity. And as the former two comparisions not only give us the notions of similitude and equality, but also show us that two triangles are similar, and that twice two and four are equal; so the latter comparison not only gives us the notion of personal identity, but also shows us the identity of ourselves in these two moments—the present, suppose, and that immediately past, or the present, and that a month, a year, or twenty years past. In other words, by reflecting upon that which is myself now, and that which was myself twenty years ago, I discern they are not two, but one and the same self.

"But though consciousness of what is present and remembrance of what is past do thus ascertain our personal identity to ourselves; yet, to say that remembrance makes personal identity, or is necessary to our being the same persons, is to say that a person has not existed a single moment, nor done one action, but what he can remember; indeed none but what he reflects upon. And one should really think it self-evident, that consciousness of personal identity presupposes and therefore cannot constitute personal identity; any more than knowledge, in any other case, can constitute truth, which it presupposes.

"The inquiry, what makes vegetables the same in the common acceptation of the word, does not appear to have any relation to this of personal identity; because the word same, when applied to them and to persons, is not only applied to different subjects, but is also used in different senses. When a man swears to the same tree, as having stood fifty years in the same place, he means only the same as to all the purposes of property and uses of common life, and not that the tree has been all that time the same in the strict philosophical sense of the word: For he does not know whether any one particle of the present tree be the same with any one particle of the tree which stood in the same place fifty years ago. And if they have not one common particle of matter, they cannot be the same tree in the proper and philosophic sense of the word same; it being evidently a contradiction to say they are, when no part of their sub stance and no one of their properties is the same; no part of their subsidence, by the supposition; no one of their properties, because it is allowed that the same property cannot be transferred from one subsistence to another: And therefore, when we say that the identity of sameness of a plant consists in a continuance of the same life, communicated under the same organization to a number of particles of matter, whether the same or not; the word same, when applied to life and to organization, cannot possibly be understood to signify what it signifies in this very sentence, when applied to matter. In a loose and popular sense, then, the life, and the organization, and the plant, are justly said to be the same, notwithstanding the perpetual change of the parts. But, in a strict and philosophical manner of speech, no man, no being, no mode of being, no any thing, can be the same with that with which it has indeed nothing the same. Now sameness is used in this latter sense when applied to persons. The identity of these, therefore, cannot subsist with diversity of subsitance.

"The thing here considered, and demonstratively, What it is, as I think, determined, is proposed by Mr Locke in these words: Whether it (i. e. the same self or person) be the same identical subsitance? And he has suggested what is a much better answer to the question than that which he gives it in form: For he defines person a thinking intelligent being, &c. and personal identity, the sameness of a rational being; and then the question is, Whether the same rational being is the same subsitance? which needs no answer; because being and subsitance are in this place synonymous terms. The ground of the doubt, whether the same person be the same subsitance, is laid to be this, that the consciousness of our own existence, in youth and in old age, or in any two joint successive moments, is not the same individual act.
Metaphysics. Part III.

Now it is strange that this should have occasioned such perplexities: for it is surely conceivable, that a person may have a capacity of knowing some object or other to be the same now which it was when he contemplated it formerly; yet in this case, where, by the supposition, the object is perceived to be the same, the perception of it in any two moments cannot be one and the same perception. And thus, though the successive consciousnesses which we have of our own existence are not the same, yet are they consciousnesses of one and the same thing or object; of the same person, self, or living agent. The person of whose existence the consciousness is felt now, and was felt an hour or a year ago, is discerned to be, not two persons, but one and the same person; and therefore is one and the same.

Mr. Locke's observations upon this subject appear forcibly; and he seems to profess himself dissatisfied with suppositions which he has made relating to it. But some of those hasty observations have been carried to a strange length by others; whose notion, when traced and examined to the bottom, amounts, I think, to this: "That personality is not a permanent but a transient thing. That it lives and dies, begins and ends, continually: That no one can any more remain one and the same than in what will befall any other person. That our personality constitutes personality; and the supposition, the same, of one and the same thing or object, to be the same now which it was then. Nay, very often a person's identity arises wholly from the consciousness that he was such and such at a certain time. All these successive actions, sufferings, and enjoyments, are actions, enjoyments, and sufferings, of the same person; and they are so prior to all considerations of its remembering or forgetting, since remembering or forgetting can make no alteration in the truth of past matter of fact. And suppose this being endowed with limited powers of knowledge and memory, there is no more difficulty in conceiving it to have a power of knowing itself to be the same being which it was a time ago, than in conceiving it to have a power of knowing itself to be the same being which it was at all done. Nay, very often a person's affirmation of an action having been done, of which he is absolutely assured, arises wholly from the consciousness that he himself did it: and this he, person, or self, must either be a substance or the property of some substance. If he, if person, be a substance; then consciousness that he is the same person, is consciousness that he is the same substance. If the person, or he, be the property of a substance, still consciousness that he is the same property is as certain a proof that his substance remains the same, as consciousness that he retains the same substance would be; since the same property cannot be transferred from one substance to another.

But though we are thus certain that we are the same agents, living beings, or substances, now, which we were as far back as our remembrance reaches; yet it is asked, Whether we may not possibly be deceived in it? And this question may be asked at the end of any demonstration whatever; because it is a question con-
Part III. METAPHYSICS.

Of Personal Identity.

Concerning the truth of perception by memory: and he who can doubt whether perception by memory can in this case be depended upon, may doubt also whether perception by induction and reasonings, which also include memory, or indeed whether intuitive perception itself, can be depended upon. Here then we can go no further: for it is ridiculous to attempt to prove the truth of our faculties, which can in no other wise be proved than by the use or means of those faculties themselves.

This reasoning, which we believe will to most men appear unanswerable, Mr Cooper hopes to overturn by the following observations: "If all imagination of a daily change in us be borne down by our natural sense of things, then (says he) does our natural sense of things positively contradict known fact; for a daily, a momentaneous change in us, i.e. in our bodies, does actually take place.

True, a daily change in our bodies does take place, and so likewise a daily change in our clothes; but surely no man was ever led by his natural sense of things to suppose, that his limbs or external organs were the seats of sensation and will, any more than that his coat or his shoes were any real parts of his trunk or of his feet. But it is only that which thinks and wills that any man considers, in this cafe, as himself or his person; and if our natural sense of things, or consciousnes, tells us, that what thinks and wills has continued the fame from a distance of time as far back as we can remember, it is certain, that, whether it be material or immaterial, it has continued from that period, otherwise we can be certain of nothing. "But (says our philosopher) other known and ascertained facts are frequently borne down by our natural sense of things: for how many thousand years before the days of Copernicus was the motion of the earth round the sun entirely borne down by our natural sense of things which made us give full credit to the motion of the sun round the earth? Do not the generality of mankind believe, upon the evidence of their natural sense of things, that every part of their body remains exactly the same to-day as it was yesterday?"

To the former of these questions we answer positively, that before the days of Copernicus the motion of the earth round the sun was not borne down by our natural sense of things, but by ill-founded hypotheses and inconclusive reasonings. By the natural sense of things, nothing can be meant, in this place, but the evidence of consciousness or of external sensation; but the actual motion either of the sun or of the earth is not perceived either by consciousness or by sensation. Of consciousness nothing is the object but the internal energies and feelings of our own minds: and with regard to the motion of the sun or of the earth, nothing is perceived by the sense of sight but that, after considerable intervals of time, these two great bodies have repeatedly changed their places in the heavens with respect to each other. This is all that on this subject our natural sense of things leads us to believe; and is not this infallibly true? Afterwards indeed, by taking for our personal identity, the truth of propositions, for which neither sense nor consciousness affords the shadow of evidence; the vulgar now, and all mankind formerly, reasoned themselves into the opinion, that the earth stands still, and that the sun moves round it. In vulgar philosophy it is taken for granted, that in the universe there is not a relative but an absolute upwards and an absolute downwards; that our heads are absolutely upward, and our feet downward; and that the earth to revolve round its axis, these positions would be reversed, that our heads would be placed beneath our feet, and that we ourselves would fall from the earth into empty space. Upon these false hypotheses the vulgar reason correctly. They know that bodies cannot change their place without motion; they know that in the time of their remembrance the sun and the earth have been perpetually varying their places with respect to each other; they know that they themselves have never fallen, nor had a tendency to fall, into empty space; and hence they infer that it is the sun and not the earth that moves. But will any man say that the absurd suppositions from which this conclusion is logically deduced, have the evidence either of sensation or consciousness, as the permanency of that living agent which each man calls himself has?

To our author's second question we likewise reply with confidence, that the generality of mankind do not believe, upon their natural sense of things, that every part of their body remains exactly the same to-day as it was yesterday. It would be strange indeed if they did, after having repeatedly experienced the weight of increased perspiration or sweating; after having witnessed men emaciated by sickness, and again restored to plumpness in health; and after having perhaps lost whole limbs, which certainly their natural sense of things teaches them to consider as parts of their body. In all these cases, the generality of mankind are as sensible of changes having taken place in their bodies as he who has attended ever so closely to physiological inquiries, though not one of them has the least imagination of a change having taken place in the living agent which each man calls himself.

Bishop Butler observes, that if the living agent be perpetually changing, it is a fallacy upon ourselves to charge our present selves with any thing we did, to imagine our present selves interested in any thing which befell us yesterday, or that our present self will be interested in what will befal us to-morrow. To this judicious observation our daring philosopher replies, "that as the man of to-morrow, though not in all points the same with, yet depends for his existence upon, the man of to-day, there is sufficient reason to care about him." Could he have said, that as the man of to-day depends for his existence on the man of to-morrow, there is sufficient reason for the present man to care about the future man; or that as the man of to-morrow depends for his existence on the man of to-day,

(k) This inference too has been so often drawn, that it comes in time to coalesce in the mind with the fentiments, from which the motion either of the sun or of the earth is deduced with infallible certainty; and hence it is considered as part of that truth which sensation immediately discovers. See our Chapter of Association.
M E T A P H Y S I C S.

Part III.

If the anachronism had been kept out of sight, have you not the force of his argument. Every man has sufficient reason to care about the ox upon which he is to be fed; but we cannot to clearly perceive what reason the ox has to care about the man.

Not satisfied, it would seem, with this reply, our author proceeds to affirm, "that the man of to-morrow, posse: ling a reminiscence of the actions of the man of to-day, and knowing that these actions will be referred to him both by himself and others, (which is certainly knowing that both himself and others are most iniquitous wretches), they cannot be indifferent to the man of to-day, who looks forward to the properties of the man of to-morrow;" i. e. the reminiscence and knowledge of a future man constitute all the relation that subdits between the present man and his actions; a discovery worthy of an original genius. But as on the subject of personal identity we pretend to no originality, we shall leave this proposition to the meditation of our readers and take the liberty to ask our author a question or two respecting this same reminiscence, which he is graciously pleased to acknowledge for a property.

He defines identity, "the continued existence of any being unaltered in substance or in properties," and he repeatedly acknowledges that no identical quality or property can be transferred from one subject to another. Let us now suppose, that a man has a reminiscence of an individual action performed a month ago, and that this reminiscence is accompanied with a consciousness that the action was performed by himself. This supposition, whether true or false, may certainly be made; for it implies nothing more than what every man firmly believes of himself in every act of remembrance. Let us again suppose, that, at the distance of ten or twenty years, the man known by the same name has a reminiscence of the same action, with a consciousness that he himself performed it. Is this reminiscence the same with the former? or is it a different reminiscence? If it be the same, either the person remembering at the distance of ten or twenty years is the same with him who remembered at the distance of a month, or there is an identical quality transferred from one substance to another, which is admitted to be impossible. If reminiscence be itself a real and immediate quality of any substance, and not the mere energy of a power, and if the one reminiscence be different from the other, the subjets in which these two different qualities coincide must likewise be different. Yet the man who has the reminiscence at the distance of a month has the evidence of consciousness that the action was performed by him; and the man who has the reminiscence at the distance of ten or twenty years, has likewise the evidence of consciousness that the same action was performed by him and not by another. By the confession of Hume and of all philosophers, consciousness never deceives; but here is the evidence of one consciousness in direct opposition to another; and therefore, as two contradictory propositions cannot both be true, either the one reminiscence is the same with the other, or reminiscence is no real quality. That one act of reminiscence should be numerically the same with another, which followed it at the distance of twenty years, is plainly impossible; or, if it should be, that reminiscence itself is no real and immediate quality of any substance. But if this be so, what is reminiscence? We answer, it is plainly neither more nor less than the energy of a power, which, though dormant between its energies, remains unchanged from the one to the other, and which being itself the real or immediate quality of a subject, that subject must likewise remain unchanged. That powers may remain dormant, and yet unchanged, every man must be convinced; who having struck any thing with his hand, knows that he has power to repeat the stroke, and yet does not actually repeat it. Two blows with the hand immediately following each other are numerically different, so that the one cannot with truth be said to be the other; but we have the evidence of external sense, that they are both struck by the same member. In like manner, two energies of reminiscence directed to the same object, and succeeding each other at any interval of time, cannot possibly be one and the same energy; but as the latter energy may include in it the former as well as the object remembered by both, we have the evidence of consciousness, that both are energies of the same power; and we have seen, that to suppose them any thing else, may be demonstrated to involve the groesest absurdities and contradictions.

Mr Cooper has other arguments to obviate the force of Bishop Butler's demonstration of personal identity; such as, that a "high degree of similarity between the two succeeding men is sufficient to make the one care about the other;" and that "a good man, knowing that a future being will be punished or rewarded as the actions of the present man deserve, will have a sufficient motive to do right and to abstain from wrong." But if there be any one of our readers who can suffer himself to be persuaded by such assertions as these, that the living agent which he calls himself is perpetually changing, and at the same time that such change is consistent with the expectation of future rewards and punishments, he would not be released from his error by any reasoning of ours. We shall therefore trust such trifling with every man's judgment, and proceed to examine our author's demonstration, that personal identity has no existence. But here it is no part of our purpose to accompany him through his long chemical rabble, or to controvert his arguments for the non-identity of vegetable and animal bodies. The only thing to which, after Bishop Butler, we have ascribed identity, is that which in man is sentient and conscious; and the non-identity of this thing, whatever it be, Mr Cooper undertakes to demonstrate from the known properties of sensations and ideas.

This demonstration sets out with a very ominous circumstance. The author, after conducting impref-
Part III. METAPHYSICS.

Of Personal Identity.

This fall from the pen of any man who had paid the slightest attention to the different energies of his own intellect. Motions in the brain, as we have repeatedly observed, are the immediate causes of our sensations; but is it conceivable, is it possible, that anything would be the cause of itself? The motion of a sword through the heart of a man is the immediate cause of that man's death; but is the sword or its motion death itself, or can they be conceived as being the sensations of the man in the agonies of dying? But sensations and ideas, whatever they be, exist in succession; and therefore, argues our demonstrator, no two sensations or ideas can be one and the same sensation or idea. The conclusion is logically inferred; but what purpose can it possibly serve? What purpose, why it seems "sensations and ideas are the only existences whose existence we certainly know (a charming phrase, the existence of existences, and as original as the theory in which it makes its appearance); and, therefore, from the nature of sensations and ideas, there is no such thing as permanent identity." Indeed! what then, we may be permitted to ask, is the import of the word "now" in this sentence? Does it denote a series of sensations and ideas, and does each sensation and each idea certainly know not only itself, but all its ancestors and all its descendants? Unless this be admitted, we are afraid that some other existence besides sensations and ideas must be allowed to be certainly known, and even to have something of a permanent identity. Nay, we think it has been already demonstrated (see chap. of Text), that there were not something permanent, there could be no time, and of course no notion of a first and last, or indeed of succession, whether of sensations or ideas. And therefore, if we have such a notion, which the author here takes for granted, and upon which indeed his demonstration reposes, it follows undeniably that there is something permanent, and that we know there is something permanent, which observes the succession of sensations and ideas.

All this, indeed, Mr. Cooper in effect grants; for he is not much startled at the appearance of contradictions in his theory. "I find (says he), by perpetually repeated impressions which I perceive, that my hands, body, limbs, &c. are connected, are parts of one whole. I find, by perpetually repeated perceptions also, that the sensations excited by them are constantly similar, and constantly different from the sensations excited by others." He has then repeated perceptions; but how can this be possible, if he be not different from the perceptions, and if he do not remain unchanged while the perceptions succeed each other at greater or less intervals of time? A striking object passing with rapidity before the eyes of a number of men placed beside each other in a line of battle, would undoubtedly excite a succession of sensations; but surely that succession would not take place in the mind of any individual in the line, nor could any single man in this case say with truth that he had repeated perceptions of the object. In like manner, were that which is sentient perpetually changing, no man could possibly say or suppose that he had repeated perceptions of any thing; for upon this supposition, the man of to-day would have no more connection with the man who bore his name yesterday, or twenty years ago, than the last man in the line had with the first.

Upon the whole, we cannot help thinking, that Bishop Butler's demonstration of personal identity remains unhawked by the batteries of Mr. Cooper. It reverts, indeed, upon the solid basis of consciousness and memory; and if implicit credit be not given to the evidence of these faculties, we cannot proceed a single step in any enquiry whatever, nor be certain of the truth even of a mathematical demonstration.

But as we have ourselves supposed, that to sensation, reminiscence, and every actual energy of the mind of man, the instrumentality of some material system is necessary, it may perhaps be thought incumbent on us to show how the perpetual flux of the particles of matter which compose the brain, as well as all the other parts of the body, can conflict with the identity of the person who perceives, remembers, and is conscious. If this cannot be done, our hypotheses, ancient and plausible as it is, must be given up; for of personal identity it is impossible to doubt. In this case, however, we perceive no difficulty; for if there be united to the brain an immaterial being, which is the subject of sensation, consciousness, and will, &c. it is obvious, that all the intellectual powers which properly constitute the person, must be inherent in that being. The material system, therefore, can be necessary only as an instrument to excite the energies of those powers; and since the powers themselves remain unchanged, why should we suppose that their energies may not continually be exerted by successive instruments of the same kind, as well as by one permanent instrument? The powers of perception and volition are not in the material system, any more than the sensation of feeling is in the rays of light, or the energy of the blacksmith in the hammer with which he beats the anvil. Let us suppose a man to keep his eye for an hour steadily fixed upon one object. It will not surely be denied, that if this could be done, he would have one uninterrupted and unvaried perception of an hour's duration, as measured by the clock. Yet it is certain, that the rays of light which alone could occasion that perception would be perpetually changing. In like manner, a blacksmith, whilst he continues to beat his anvil, continues to exert the same power whether he uses one hammer all the time, or a different hammer at each stroke. The reason is obvious; the eye, with all its connections of brain and mind in the one case, and the person of the smith in the other, remain unaltered; and in them alone reside the faculty of sensation and the power of heating, though neither the faculty nor the power can be exerted without material instruments. But were it possible that millions of men could in the space of an hour take their turns in rotation with each new ray of light, it is self-evident, that in this case, there would be nothing permanent in sensation; and, therefore, there could not be one uninterrupted and unvaried perception, but millions of perceptions, during the hour, totally different from and unconnected with each other. Let us now suppose a man to fix his eye upon an object for the space of a minute, and at the dilution of a day or a month to fix it upon the same object.
METAPHYSICS.

Chap. IV. Of the Immortality of the Soul.

Wherever men have been in any degree civilized, and in some nations where they have been in the most savage state, it has been the general persuasion, that the mind or soul subsists after the dissolution of the body. The origin of this persuasion, about which disputes have been rife, no Christian hesitates to attribute to revelation. The Egyptians, from whom the Greeks derived many of their theological and philosophical principles, appear to have taught the immortality of the soul, not as a truth discovered by the exertions of human reason, but as a dogma derived to them from the earliest ages by tradition. This indeed may be confidently inferred from the character and conduct of their first Greek disciples. Those early wise men who fetched their philosophy immediately from Egypt, brought it home as they found it, in detached and independent placits. Afterwards, when schools were formed, and when man began to philosophize by hypothesis and system, it was eagerly inquired upon what foundation in nature the belief of the soul's immortality could rest; and this inquiry gave rise to the various dissolutions concerning the existence of the soul, which have continued to excite the ingenuity of the learned to the present day. It was clearly perceived, that if continuous, thought, and volition, be the result of any particular modification of matter and motion, the living and thinking agent must perish with the dissolution of the system; and it was no less evident, that if the being which perceives, thinks, and wills, be not material, the mind of man may subsist after the dissolution of the body into its component particles. The discovery of the immortality of the mind was therefore one step towards the proof of its immortality; and in the opinion of many philosophers, whose hopes ought to rest on a surer basis, it was alone a complete proof.

"They who hold sentitive perception in brutes (says P. S. see the Procedure, Facts, and Limits of the Under- standing) the philosophers of ancient Greece believed alike; for it was evidently clear that nothing which had a beginning of existence could be naturally immortal, whether its substance be material or immaterial.

"There was never any of the ancients before Chri- Stianity (says the accurate Budworth), that held the belief of immortality a priori, or before it came to exist in this human form, and hence it appears to be immortal, and as such will subsist after death."

To give this argument for immortality any strength, it must be taken for granted, not only that the soul existed in a prior state, but that it existed from eternity; for it is obvious, that if it had a beginning in any state, it may have an end either in that state or in another. Accordingly, Plato affirms in plain terms its eternity and self-existence, which, as we learn from Cicero, he inferred from its being the principle of motion in man. "Quin antem eam etiam movenetur, hic iones, hoc principium eff movenit." Principium autem eff movenit, Nam ex principio oriuntur omnia: ipsum autem nulla ex nullis, sed id principium, quod gigneretur aliquo. This is § 263. If Tuscul. must be acknowledged, is very contemptible reasoning; but the opinion which it was intended to prove was held by all the philosophers. They were unanimous in maintaining the self-existence of the soul, though not its personality, to be eternal à parte ante as well as ad partem post; and Cicero, where he tells us that this opinion failed from Pherecydes, Syrus, to Pythagoras, and from Pythagoras to Plato, expresses their notion of the soul's duration by the word sempiter- nus, which, in its original and proper sense, is applicable only to that which has neither beginning nor end.

Indeed none of the philosophers of ancient Greece appear to have believed a creation (see Creation) possible: for it was a maxim universally received among them, De nihilo nihil fit, in nihilum nihil posse reverti; that nothing can come from nothing, or go to nothing. This maxim, as held by the theological philosophers, and learned Budworth labours to interpret in a sense agreeable...
of the immortalit.

METHAPHYSICS.

of the

mortality

of the Soul.

For instance, when Aristotle writes of Parmenides and Melissus, that neither a thing nor that which

the" they say that no real entity is either made or de-

stroyed; what can be its meaning, but that those

philosophers taught that nothing could be either

created or annihilated? He tettiifies the same thing

of Xenophanes and Xeno, when he says that it was a

fundamental principle of their philosophy—μην

καταλείπειν γενέσθαι καὶ διαλέπειν—\(\textit{that it is impossible that any thing should be made out of nothing.} \)

And of Empedocles, when he relates

—\(\text{That be a knows the very same thing with other phi-

losophers, viz., that it is impossible that anything should be made out of nothing, or perishing into nothing.} \)

But it is needless to multiply quotations respecting the opinions of single philo-

sophers. Of all the philosophers before himself and Plato, Aristotle says, without exception, περὶ πάντων

ἐκ τῶν ἔρευνων τῶν ἑαυτῶν τοιούτως ἡ καὶ, ἐχοὺς ἐκ τῶν θείων ἐπιστημῶν, ὁμιλεῖν, \(\text{That they agree in this opinion, that it is impossible that any thing should be made out of nothing.} \)

and he calls this the common principle of naturalists; plainly intimating, that they considered it as the

greatest absurdity to suppose that any real entity in nature could either be brought from nothing or reduced to

nothing.

The author of the Intellectual System, in order, perhaps, to hide the impiety of this principle, endeavours to persuade his readers, that it was urged only against the hypothesis of forms and qualities of bodies considered as real entities, distinct from matter. But how it could be supposed to militate against that particular opinion, and not against the possibility of all creation, is to us perfectly inconceivable. The father of the school which analysed body into matter and form, together with by far the greater part of his followers, taught the eternity of both these principles; \(\text{eternal maxim, } \textit{De nihilo nihil fit}. \)

Even Plato himself, whose doctrine of \textit{idas} is supposed to wear a more favourable aspect than Aristotle's forms to the truths of revealed religion, taught the eternity of matter; but whether as a self-existing substance, or only as an emanation from the \textit{Deity}, is a question which has been disputed. That he admitted no proper creation, may be confidently inferred from Plutarch; who writing upon the generation of animals, according to the doctrine laid down in the \textit{Timaeus}, has the following passage: \(\textit{Ev cannot be supposed to think my soul younger than my body.} \)

This man probably believed upon the author-

ity of the scriptures, that the matter of the visible

world was created in time; but he certainly held with

his philosophic masters, that his own soul was as old

as any atom of it, and that it had consequently exis-

ted in a prior state before it animated his present

body.

(1) \textit{Aristotelis, et plerisque Peripateticorum, in vulgus notum eff, in hac usque sententia—nec natur.

effe, nec interiorum quum hanc mundum. Vid. \textit{Petrus Galenus Physic.} sect. 1. lib. 1. cap. 6. } \(\textit{Thomaeus de Stoica mundi causis.} \) \(\textit{Diff. 4. et ali.} \)

Hinc video \textit{Mentissim in Achronim} Lib. 1. inter philosophorum de mundo sententias hanc, \(\textit{se praeceps, effet, primo commemorare loco:} \)

\(\text{Suum fess ex nullis repetentem semina relab,} \)

\(\text{Nam utroque noesse places, simpereque vives,} \)

\(\text{Et tibi principium parentis favere credi.} \)

\(\text{Mothem's edition of Cudworth's Intellectual System, lib. i. cap. 3. sect. 33. note 60.} \) On this subject see also, \(\text{Ancient Metaphysics.} \)
Thence who maintained that the universe, maintained upon the same principle, that their souls were uncreated, as did they conceived all bodies to be formed of one first matter, so they conceived all souls to be an emanation from the one first Mind, or, if you will, from the first from the divine parent. Cicero and the Stoics held, as Stobaeus informs us, that "every thing was made out of one, and would be again resolved into one." But let Seneca speak for them all: "Quid est autem, cum non existimem in co divinis aliquid extirpicanda, qui Dei pars est? Totum hoc, quo continemur, et unum est, et Deus: et focii ejus famus, et membra — Why should you not believe everything, who is indeed part of God? That whole in which we are contained is one, and that one is God, we being his companions and members. Epistletus says, "The souls of men have the nearest relation to God, as beings parts or fragments of him, dispersed and torn from his substance: evanescent we are, out of our substance we were, and therefore we are." Plato writes to the very same purpose, when, without any foretelling, he frequently calls the soul God, and part of God. And Plutarch says, that "Pythagoras and Plato held the soul to be immortal; for that, launching out into the fruit of the universe, it returns to its parent and original—beatam, anamnem autem elyds omnia, a quo et membra nos exierimus. Plato defines his own opinion to be, that "the soul is not so much the work and production of God, as a part of him; nor is it made by him, but from him, and out of him: et ex quae est, et ex illo est, et ex ipso est." Plutarch declares his own opinion to be, that "the human soul is the first of nature, is inferior to the soul of the world; and receding farther from the first intelligence, it is inferior in perfection to the soul of the world, though even that soul is inferior to the human soul that he considered as immortal. Cicero delivers the common sentiments of his Greek philosophers on this head, when he says, "A natura deorum, ut deololimis phantasmaticis placentis, hanc animos adliberos habemus." And again, "Humanum animus animas decerpus ex mente divina: cum alio nullo, nisi cum ipso Deo (fi hoc fas est dictum), comparari potest." Whilst the philosophers were thus unanimous in maintaining the soul to be a part of the self-existent Subsistence, they differed in opinion, or at least expressed themselves differently, as to the mode of its separation, evolution, and relation to its divine parent. Cicero and the Stoics of the immortal soul, talk as if the Supreme Mind were extended, and as if the human soul were a part literally torn from that mind, as a limb can be torn from the body. The Pythagoreans and Platonists seem to have considered all souls as emanations from the divine Subsistence rather than as parts torn from it, much in the same way as rays of light are emanations from the sun. Plato, in particular, believed in two self-existent principles, God and matter. The former he considered as the supreme Intelligence, incorporeal, without beginning, end, or change; and distinguished it by the appellation of θεός, the God. Matter, as subsisting from eternity, he considered as without any form or quality whatever, and as having a natural tendency to disorder. Of this chaotic mass God formed a perfect world, after the eternal pattern of his own mind, and endowed it with a soul or emanation from himself. In the language of Plato, therefore, the universe being animated by a soul which proceeds from God, is called the θεός of God; and several parts of nature, particularly the heavenly bodies, are gods. The human soul, according to him, is derived by emanation from God, through the intervention of this soul of the world; and receding farther from the first intelligence, it is inferior in perfection to the soul of the world, though even that soul is inferior to some material admixture. To account fully for the origin and present state of human souls, Plato supposes, that "when God formed the universe, he separated from the soul of the world inferior souls, equal in number to the stars, and assigned each its proper celestial abode; that those souls (by what means, or for what reason, do not appear) were sent down to the earth into human bodies, as Phy. into sepulchres or prions." He ascribes to this cause the depravity and misery to which human nature is liable; and maintains, that it "is only by disengaging itself from all animal passions, and rising above sensible objects, to the contemplation of the world of intelligence, that the soul of man can be prepared to return to its original state." Not inconsistently with this doctrine, our philosopher frequently speaks of the human mind as consisting of three parts; or rather he seems to have thought that man has three souls; the first the principle of intelligence, the second of passion, and the third of appetite (αὔπαστ); and to each he assigns its proper place in the human body. But it was only the intellectual soul that he considered as immortal.

Ariflotel...
Metaphysics

Of the Impermanency of the Soul.

Aristotle taught: in terms equally express that the human soul is apart of God, and of course that its subsistence is of eternal and necessary existence. Some of his followers, indeed, although they acknowledged two first principles, the active and the passive, yet, held, with the Stoics, but one subsistence in the universe; and to reconcile these two contradictory propositions, they were obliged to suppose matter to be both active and passive. Their doctrine on this subject is thus delivered by Cicero: "De natura ita dicebat, ut eam dividenter in res duas, ut altera esset efficacia, altera autem quia huscimque praebens, ea quae efficeretur aliquid. In eo, quod efficeret, vim effice censet; in eo autem quod efficeretur, materiae quidam; in utroque tamen universo. Neque enim materiam ipsum coherere putaverint, si nulla vi contineretur, neque vim sine aliqua materia; nihil eft enim, quod non aliquid effe cogatur."

They divided nature into two things, as the first principles; one whereof is the efficient or affirer, the other that which offers itself to him for things to be made out of it. In the efficient principle, they acknowledged active force in the passive, a certain matter; but in the active, both of them together; for much as neither the matter could cohere together unless it were contained by some active force, nor the active force subsist of itself without matter; because that nothing may not be compelled to be somewhere. Agreeably to this strange doctrine, Arrian, the interpreter of Epictetus, fays of himself, "Egum autem genere rerum, quo mea commissa, homo in natura, efficeri nequeo, nisi ut in me, ut dixi, immutabili loco me reperias"; that is, I am a man (a part of the universe), as an hour is part of the day.

Aristotle himself is generally suppos’d to have believed in the eternal existence of two subsistences, mind and matter; but treating of the generation of animals, he fays, "omnem diei donationem, quae, ut forte, nata a principiis, tamen in corpore animae, ut in omnibusc generationibus, haud quidem, sed inuisita, aue, ut prope, quae indivisa sit, ars non habet." In the universe there is a certain animal heat, so as that after a manner all things are full of mind; wherfore they are quickly completed (as made complete animals) when they have received a portion of that heat. This heat, from which, according to Cicero ⁴, the Stagyrite derived all souls, it has, must be confessed, a very material appearance; in so much that the learned Mohefin seems to have been doubtfull whether he admitted of any material principle in man; but for this doubt there appears to us to be no solid foundation. Aristotle expressly declares, that this heat is not fire nor any such power, but a spirit which is in the feels or elementary principles of bodies; "quod autem in corpore animae, aut in omnibus rebus, quae aut animae, aut corporis, efficitur, non est ignis, nec enim in eis spiritus, sed spiritus, quod non est ignis." And as the excellent perfon himself acknowledges (§), that Aristotle taught the existence of two of the first principles, God and matter, not indeed subordinately, but eternally linked together by the effectual union; we think it follows undeniable, that this heat, from which he derived all souls, must be that mind, which he called God, and which he considered as the actuating soul of the universe.

Upon these principles neither Aristotle nor the Stoics could believe with Plato, that in the order of nature there was first an emanation from the supreme mind to animate the universe, and then through this universal soul other emanations to animate mankind. The Stagyrite believed, that the Supreme Mind himself is the soul of the world, and that human souls are immediately derived from him. The genuine Stoics, acknowledging but one subsistence, of necessity confidered both the souls and bodies of men as portions of that subsistence, which they called "quod efficeret," though still they affected to make some unintelligible distinction between body and mind. But however the various schools differed as to those points, they were unanimous as to the soul’s being a part of the self-existing Substance; and Cicero gives them their whole system this cavellsian in words which cannot be misunderstood: Quicquid eff hoc, omnium amat, format, alit, auger, creat, sepelit, recipitque in se omnium, omniumque idem est Peter: "nulla vi contineretur, neque vim sine aliqua materia; nihil enim effet, quod non aliquid effe cogatur." Upon this principle they maintain, that the universe, as an emanation, is self-existent, and that "quod efficeret" is contained in the et quod quamquerem significat, perspicere non pefit! And upon the same principle he elsewhere argues, not of the immortality, but for the eternity and necessarily of the soul: "Animorum nulla in terranatione, nisi originum invenire potest: His enim in natura nihil habebit, quamquam nihil in memores mentis, cogitationis habebit; 57. quod et praeterita tenet, et futura providet, et completa potest prefentia: quae fola divina sunt. Nec inventur unanimi, unde ad hominem venire potest, nisi a Deo. Ini quicquid est illud, quod fenit, quod sapit, quod vult, quod viget, celest et divinum effe, et eum ipsum effe sancuefrum est necesse est." This passage was indeed securing the future permanency of the soul Confolatio, in the most effectual manner; for it is obvious, that what had not a beginning can never have an end, but must be of eternal and necessary existence.

But when the ancients attribute a proper eternity to the soul, we must not suppose that they understood its distinct, its to be eternal in its distinct and personal existence. They believed that it proceeded or was dis perse in time from the

tion, and even the coherence of the minute particles of body, to the immediate agency of mind, of course furnishes every human body with at least four minds. This fourth mind differs not from the physis nature of Cudworth, and is likewise a Platonic notion apparently better founded. That there are in our bodies motions perpetually carried on by the agency of something which is not the principle of either our intelligence, our passions, or our appetites, is a fact which cannot be denied; but if those motions proceed immediately from mind, it must be either from the supreme mind, or from some subordinate mind, acting under the supreme, but wholly different from and independent of that which each man calls himself.

Of the Immortality of the Soul.

Of the subsistence of God, and would in time be again resold into that subsistence. This they explained by a closed vessel filled with sea-water; which swimming a while upon the ocean, does, on the vessel's breaking flow in again, and mingle with the common mass. They only differed about the time of this reunion; the greater part holding it to be at death; but the Pythagoreans not till after many transmigrations. The Platonists went between these two opinions; and rejoined pure and unpolluted souls immediately to the Universal Spirit; but those which had contracted much defilement, were sent into a succession of other bodies, to be purged and purified, before they returned to their parent subsistence.

A doctrine similar to this of Plato has been held from time immemorial by the Bramins in India, who faced books teach: "That intellect is a portion of the great soul of the universe, breathed in all creatures, to animate them for a certain time; that after death it animates other bodies, or returns like a drop into that unbounded ocean from which it first arose; that the souls of men are distinguished from those of other animals, by being endowed with reason and with a consciousness of right and wrong; and that the soul of him who adheres to right as far as his powers extend, is at death absorbed into that divine essence, never more to reanimate flesh. On the other hand, the souls of those who do evil, are not at death disengaged from all the elements; but are immediately cloathed with a body of fire, air, and akeb (a kind of celestial element, through which the planets move, and which makes no reflance) in which they are for a time punished in hell. After the seclusion of their grief is over, they reanimate other bodies; and when they arrive through these transmigrations at a state of puissance, they are absorbed into God, where all passions are utterly unknown, and where consciousness is lost in bliss."

Whether the Greeks derived their notions of the divinity and transmigration of souls from the east, or whether both they and the Bramins brought the same doctrines at different periods from Egypt, it is foreign from the purpose of this article to inquire. Certain it is, that the philosophers of Greece and India argued in the very same manner, and upon the very same principles, for the natural immortality of the soul; and that the immortality which they taught was wholly incompatible with God's moral government of the world, and with a future state of rewards and punishments. That this is true of the doctrine of the Bramins, is evident from the last quoted sentence; for if the soul, when absorbed into the Divine essence, loses all consciousness of what it did and suffered in the body, it cannot properly be rewarded for its virtues praificed upon earth. That the philosophers of Greece taught the same cession of consciousness, might be inferred with the utmost certainty, even though we had not Aristotle's express declaration to that purpose:

For as they all believed their souls to have existed before they were infused into their bodies, and as each must have been conscious that he remembered nothing of his former state (o), it was impossible to avoid concluding, that in the future state of his soul as little would be remembered of the present. Accordingly, Aristotle teaches, that "the agent intellect only is immortal and eternal, but the passive corruptible."—τούτως μὲν αὐθαίρετον καὶ αἰωνίου καὶ παρά θεοτόκος τὸ αἰώνιον. Cudworth thinks this a very doubtful and obscure passage; but he, lib. iii.

Warburton, whose natural acuteness often discovered cap. 6.

That the hypothesis of the soul's being a part of God only absurdly abhorred the Divine subsistence is a gross absurdity, we freely need not spend time in proving. The argument long ago urged against it by St. Austin must ere now have occurred to every reader. In the days of that learned father of the church, it was not wholly given up by the philosophers; and in his excellent work of the City of God, he thus expouses its extravagance and impotency: "Quid infelicius credi potest, quam dei parvum, qui quamvis tam vasta, quamque vastissima, tam universa, quamque universissima, tam praebuit, atque omnino damnabilissima, quis terre poterit nisi qui proruit infantiam?"

But though this hypothesis be in the highest degree absurd and wholly untenable, we apprehend it to be the only principle from which the natural or essential immortality of the soul can possibly be inferred. If the soul had been an beginning, it may have an end; for nothing can be more evident than that the being which had not existence of itself cannot of itself have perpetuity of existence. Human works, indeed, continue in being after the power of the workman is withdrawn from them; but between human works and the Divine there is this immense difference, that the former receive from the artist nothing but their form; whereas the latter receive from the Creator both their form and their subsistence. Forms are nothing but modifications of subsistence; and as subsistences depend upon God and not upon man, human works are continued in being by that fiat of the Creator, which made the subsistences of which they are composed sufficient of different forms, and of such a nature as to retain for a time whatever form may be impressed upon them. Human works therefore are continued in being by a power different from that by which they are finifhed; but the works of God depend wholly upon that power by which they were originally brought into existence; and were the Creator to withdraw his supporting energy, the whole creation would sink into nothing.
Self-evident as this truth certainly is, some eminent philosophers seem to have questioned it. "No substance or being (says Mr. Baxter) can have a natural tendency to annihilation, or to become nothing. That which once exists should cease to exist is a real effect, and must be produced by a real cause; but this cause could not be planted in the nature of any substance or being to become a tendency of its nature; for it could not be a free cause, otherwise it must be a being itself, the subject of the attribute freedom, and therefore not the property of another being; nor a necessary cause, for such a cause is only the effect of something imposing that necessity, and so no cause at all."

That the author's meaning in this argument is good, cannot, we think, be controverted; but he has not expressed himself with his usual accuracy. He seems to confound causes with the absence of causes, and the effects of the former with the consequences of the latter. The visible world was brought into existence by the actual energy of the power of God; and as the visible world had nothing of itself, it can remain in existence only by a continuance of the same energy. This energy therefore is at the present moment as real a cause as it was fix thousand years ago, or at any past period when it may have been first exerted; and the visible world is its real and permanent effect. But would the ceasing of this energy be likewise a cause? It would certainly be followed with the annihilation of the visible world, just as the withdrawing of the sun's beams would be followed with darkness on the earth. Yet as no one has ever supposed that darkness, a non-entity, is a positive effect of the sun or of his beams, but only a mere negative consequence of their absence; so, we think, no one who believes in creation can consider that destruction which would inevitably follow the withdrawing of the energy by which all things are supplied, as the positive effect of a contrary energy, or any thing more than a negative consequence of the ceasing of that volition or energy of power by which God at first brought things into existence. For "where the foundation of existence lies wholly in the power of an infinite Being producing, the ground of the continuance of that existence must be wholly in the same power conferring; which has, therefore, with as much truth as frequency, been styled a continued creation (r)."

The force of this reasoning Mr. Baxter certainly saw when he said, "that a tendency to pervertive in the same state of nature, and a tendency to change it are contradictions, and impossible to be planted in the same subject at once; or, not to urge the contradiction, if the last prevailed, the remaining in the same state for any given time would be impossible. We forget the true cause of all these tendencies, the will of God, which is absurd to suppose contrary to itself. The tendency in matter to pervertive in the same state of

Vol. XI.

(r) See Stillington's Origines Sacrae, where this question is treated in a very matterly manner by one of the ablest metaphysicians of the last century. See also our article Providence.

(q) It was by such arguments that Socrates reasoned himself into the belief of a future state of rewards and punishments. He was sanguine, as we have already observed, in this belief; and he was as singular in confining himself to the study of morality. "What could be the cause of this belief, but this refinement, of which his belief was a natural consequence? For having confined himself to morals, he had nothing toindle him; whereas the rest of the philosophers, applying themselves with a kind of fanaticism to physics and metaphysics, had drawn a number of absurd though subtle conclusions, which directly opposed the consequences of those moral arguments." Warburton's Div. Leg.
METAPHYSICS.

Part III.

Chap. V. Of Necessity and Liberty.

In the preceding chapter we have adverted to that great moral proof for a future state, and the immortality of the soul, arising from the relation in which a man, as a being accountable for his conduct, stands to a God of almighty power, infinite wisdom, and perfect justice. But the circumstance of accountability implies freedom of agency; for it is contrary to all our notions of right and wrong (see Moral Philosophy), that a man should be either rewarded or punished for actions which he was necessitated or compelled to perform.

Human actions are of three kinds: one, where we act by instinct without any view to consequences; one, where we act by will, in order to obtain some end; and one, where we act against will. It is the second kind of actions only which concerns upon the agent merit or demerit. With respect to the first, he acts blindly (see Instinct), without deliberation or choice; and the external act follows from the instinctive impulse, no less necessarily than a stone by its gravity falls to the ground. With respect to the last, he is rather an instrument than an agent; and it is universally allowed, that were a strong man to put a sword into the hand of one who is weaker, and then to force it through the body of a third person, he who held the sword would be as guiltless of the murder as the sword itself. To be intitled to rewards, or liable to punishment, a man must act voluntarily; or, in other words, his actions must proceed from that energy of mind which is termed volition: and, we believe, it has never been denied, that all men have power to do whatsoever they will, both with respect to the operations of their minds and the motion of their bodies, uncontrolled by any foreign principle or cause.

"Every man (says Priestley) is at liberty to turn his thoughts to whatever subject he pleases, to consider the reasons for or against any scheme or proposition, and to reject upon them as long as he shall think proper; as well as to walk wherever he pleases, and to do whatever his hands or other limbs are capable of doing." Without such liberty as this, morality is inconceivable. But though philosophers have in general agreed with respect to the power which a man has to perform such actions as he wills, they have differed widely in opinion respecting the nature of his volitions. That these are the result of motives, has seldom if ever been questioned; but whether that result be necessary, so as that the agent has no self-determining power to decide between different motives, has been warmly disputed by men equally candid, impartial, and intelligent. The principal writers on the side of necessity are, Hobbes, Collins, Hume, Leibnitz, Lord Kames, Hartley, Edwards, Priestley, and perhaps Locke. On the other side are, Clarke, King, Law, Reid, Butler, Price, Bryant, Wollaston, Horley, Beatie, and Gregory, &c. To give a short view of this celebrated question, is all that our limits will permit; and as we do not think ourselves competent to settle the dispute, it was perhaps a thing desirable to give the opposite reasonings in the words of those eminent authors themselves. It must, however, be obvious to the reader, that the style and manner of so many different writers are extremely various, and that to introduce them all into our abstruse, would make the whole a mass of confusion. We shall, therefore, select one writer to plead the cause of necessity, by supposing his defects from those who, though inferior to him on the whole, may yet have argued more ably on some particular points which the question involves: and to this combined reasoning we shall subjoin such answers as to appear most conclusive. Hartley, Hume, and Priestley are perhaps the most profound reasoners on the side of necessity; but there is so much more perplexity in the arguments of Lord Kames, that we cannot help preferring them, as being on the whole better calculated to give the ordinary reader a fair view of the subject.

"Into actions done with a view to an end (says his Lordship f), desire and will enter: desire to accomplish the end goes first; the will to act, in order to accomplish the end, is next; and the external act follows of course. It is the will then, that governs every external act done as a mean to accomplish an end; and it is desire to accomplish the end that puts the will in motion; desire, in this view, being common to any act: actuated rathe~r is to the power which a man has power to do whatever he wills.

But what is that which raises desire? The answer is ready: It is the prospect of attaining some agreeable end, or evading one that is disagreeable. And if it be enquired, what makes an object agreeable or disagreeable? The answer is equally ready: It is our nature which makes it so. Certain visible objects are agreeable, certain sounds, and certain fumps; other objects of these senses are disagreeable. But there we must stop, for we are far from being so intimately acquainted with our own nature as to assign the causes.

"With respect to infinitive actions, no perfen, I presume, thinks that there is any freedom. With respect to voluntary actions, done in order to produce some effect, the necessity is the same, though less apparent at first view. The external action is determined by the will; the will is determined by desire; and desire by what is agreeable or disagreeable. Here is a chain of causes and effects, not one link of which is arbitrary, or under command of the agent; he cannot will but according to his desire; he cannot desire but according to what is agreeable or disagreeable in the objects perceived: nor do these qualities depend on his inclination or fancy; he has no power to make a beautiful woman ugly, nor to make a rotten carcass smell sweetly.

"Many good men, apprehending danger to morality from holding our actions to be necessary, endeavour to break the chain of causes and effects above-mentioned; maintaining, that whatever influence desire or motives may have, it is the agent himself who is the cause of every action; that desire may advise, but cannot command; and, therefore, that a man is still free to act in contradiction to desire and to the strongest motives.

That a being may exist which in every case acts blindly and arbitrarily, without having any end in view, I can make a shift to conceive: but it is difficult for me even to imagine a thinking and rational being, that has affections and passions, that has a definable end in view, that can easily accomplish this end; and yet after all can fly off or remain at rest, without any cause, reason, or motive, to sway it. If such a
whimsical being can profitably exist, I am certain that
man is not that being. There is not perhaps a per-
son above the condition of a changeling, but can say
why he did so and so, what moved him, what he in-
tended. Nor is a single fact flatly to make us be-
lieve that ever a man acted against his own will or
defire who was not compelled by external force.—
On the contrary, confiant and universal experience
proves, that human actions are governed by certain
inflexible laws; and that a man cannot exert his
self-motive power but in pursuance of some desire or
motive.

"Had a motive always the same influence, actions
proceeding from it would appear no less necessary
than the actions of matter. The various degrees of
influence that motives have on different men at the
same time, and on the same man at different times,
occaion a doubt, by suggeting a notion of chance.
Some motives, however, have such influence as to leave
no doubt: a timid female has a physical power to
throw herself into the mouth of a lion roaring for force; and that every natural
motion is, by the laws of nature, prescribed
by terror no less

by it he is made a fit

for divine tccffity, the dispute is at

of that relation which subsists between motive
and action; but from his comparing the fluctuations
of the mind between two contending motives, to the
vibrations of a balance with different weights in
the opposite scales, there is no room to doubt but that
he agreed exactly in opinion with Mr Hume and Dr
Priestley. Now both these writers hold, that the
relation of motives to volition and action, is the very
same with that which subsists between cause and ef-
eff in physics, as far as they are both known to us.
"It is universally allowed (says Mr Hume †), that Mr Hume,

matter, in all its operations is actuated by a neccessry and
force; and that every natural effect is so precisely de.

termed by the energy of its cause, that no other human

effect, in such particular circumstances, could possibly
have resulted from it. The degree and direction of standing,
every motion is, by the laws of nature, prefribed eg. 8,
with such exactness, that a living creature may as soon
arise from the shock of two bodies, as motion in any
other degree or direction than what is actually pro-
bled by it. Would we, therefore, form a juft and
precise idea of necessity, we must consider whence that
idea arises, when we apply it to the operation of bod-
ies. But our idea of this kind of necessity and cau-
sation arises entirely from the uniformity observable
in the operations of nature, where similar objects are
contantly conjointed together, and the mind is deter-
mained by custom to infer the one from the appear-
ance of the other. These two circumstances form
the whole of that necessity which we ascribe to mat-
ter. Beyond the constant conjunction of similar objects,
and the consequent inference from one to the other, we
have no notion of any necessity or connection." He then
gives a pretty long detail to prove a great uniformity
among the actions of men in all nations and ages; and
concludes that part of his argument with affirming,
"not only that the conjunction between motives and

voluntary actions is as regular and uniform as that
between the cause and effect in any part of nature;
but also, that this regular conjunction has been uni-
versally acknowledged among mankind, and has never
been the subject of dispute either in philosophy or
common life." He afterwards observes, "that men

began at the wrong end of this question concerning
liberty and necessity, when they enter upon it by ex-

aminong the faculties of the soul, the influence of the
understanding, and the operations of the will. Let
them first discuss a more simple question, namely, the
operations of body, and of brute unintelligent matter;
and try whether they can there form any idea of cau-
sation and necessity, except that of a constant con-
junction of objects and subsquent inference of the
mind from one to another. If these circumstances
form in reality the whole of that necessity which we
conceive in matter, and if these circumstances be also
universally acknowledged to take place in the opera-
tions of the mind, the dispute is at an end; at least

281
Of Necessity and Liberty.

Dr Prieley.

"The Doctrine of philosophical Necessity illustrated.

Dr Prieley, in words a little different, teaches the very same doctrine which was taught by Mr Hume.

In every determination of the mind (says he), there are cases where volition and choice are concerned, and circumstances may be considered as if the mind were the state of mind (including every thing belonging to the will itself); and the events of things presented to it; the latter of which is generally called the motive, though under this term some writers comprehend them both. To distinguish the manner in which events depending upon will and choice are produced, from those in which no volition is concerned, the former are said to be produced voluntarily, and the latter mechanically. But the same general maxims apply to them both. We may not be able to determine à priori how a man will act in any particular case; but it is because we are not particularly acquainted with his disposition of mind, present situation, and views of things. But neither can we tell in which way the wind will blow to-morrow, though the air is certainly subject to no other than necessary laws of motion.

It is universally acknowledged, that there can be no effect without an adequate cause. This is even the foundation on which the only proper argument for the being of a God rests. And the necessarians assert, that if, in any given state of mind, with respect both to disposition and motives, two different determinations or volitions be possible, it can be so on no other principle, than that one of them shall come under the description of an effect without a cause; just as if the beam of a balance might incline either way, though loaded with equal weights. It is acknowledged, that the mechanism of the balance is of one kind, and that of the mind of another: and, therefore, it may be convenient to denominate them by different words; as, for instance, that of the balance may be termed a physical, and that of the mind a moral mechanism. But still, if there be a real mechanism in both cases, so that there can be only one result from the same previous circumstances, there will be a real necessity, enforcing an absolute certainty in the event. For it must be understood, that all that is ever meant by necessity in a cause, is that which produces certainty in the effect."

Such is the nature of human volitions, according to every necessarian of eminence who has written on the subject since the days of Hobbes: and if this theory be just, if there be a constant and invariable of necessity in the conjuncture of motives and actions similar to that of cause and effect in physics, it is obvious, that in volition the mind is as inert as body is in motion.

This consequence is indeed avowed and infituted upon view of necessity, arising from its own frame and constitution, the impulse of superior beings, or the operations of objects, reasons, or motives, &c. By this they do not mean, that between motives and volitions there is no relation whatever, or that a man can ever choose evil as evil, or refuse good as good. Such an assertion would be contrary to common sense and universal experience. But what they endeavor to prove is, that the conjuncture of motive and volition is not invariable, like that of cause and effect in physics; that a man may in most cases choose according to any one of two or more motives presented to his view; that by choosing any thing, he may make it in some measure agreeable by his own act, or, to speak more properly, may bend his own mind towards the act of the mind is not inert; and that, therefore, we are under no necessity to act in a particular manner in any given case whatever.

That the conjuncture of motive and action is not constant like that of cause and effect in physics, and that by consequence the mind in forming volitions is not inert, has been evinced by Dr Gregory with the force and precision of mathematical demonstration. Former writers on the side of liberty had often observed, that upon the supposition of the inertia of mind, a man, with equal and opposite motives presented at once to his view, would, during their continuance, remain perfectly at rest, like a balance equally loaded in both scales. The observation is admitted to be just by all the advocates for necessity; but they contrive to evade its consequences, by denying that in any given case a man can be at once affailed by two equal and opposite motives. Thus, when it is said that a porter, standing with his face due north, must remain in that position at perfect rest, as long as equal motives shall at once be offered to him for travelling eastward and westward, the necessarians admit the force of the argument; but when it is added that a guinea, offered for every mile that he should travel in each of these opposite directions, ought therefore to fix him at rest till one of the offers be withdrawn, they deny that the desire of gaining the guinea is the cause of the motives which operate upon his mind. He may have, say they, some secret reason which we cannot discern for preferring the one direction to the other; and that reason, added to the guinea, will make him go eastward or westward, just as an ounce thrown into either scale of a balance poise by equal weights will make that scale preponderate. Though we think that this solution of the difficulty can satisfy no man who is not already biased to the necessarian system; and though, even were it to be admitted, it seems to militate against the constant conjuncture of motives and actions, unless it can be proved that the porter must travel the road which he has been necessitated to choose with reluctance and a heavy heart; yet as it may admit of endless quibbling upon ambiguous words,
words, the philosophical world is much indebted to Dr. Gregory for an argument which, in our opinion, can neither be overthrown nor evaded, and which demonstrates that the conjunction of motive and action cannot be constant and inseparable, like that of cause and effect in physics.

His reasoning is to this purpose: Suppose a porter to offer a guinea for every mile that he shall travel directly eastward. If there be no physical cause or moral motive to keep him at rest, or to induce him to move in another direction, there cannot be a doubt, upon either hypothesis, but he will gladly embrace the proposal, and travel in the direction pointed out to him, till he shall have gained as much money as to satisfy his most avaricious desires. The same thing would have happened if a guinea had been offered for every mile that he should travel due south. In these two cases taken separately, the relation between the man's motives and his actions would be strikingly analogous to that between a single impulse and motion in physics. Let us now suppose the two offers to be made at the same instant, and the man to be assured that if he travel eastward he can have no part of the reward promised for his travelling to the south, and if he travel southward he can have no part of the reward promised for his travelling to the east. What is he to do in this case? If his mind be inert in volition, and if the two motives operate upon him with the same necessity that causes operate in physics, it is obvious that the man could travel neither towards the east nor towards the south, but in a diagonal direction from north-west to south-east; and this he must do willingly, although perfectly satisfied that he could gain nothing by his journey. As this inference is contrary to fact and universal experience, the Doctor very justly concludes that the premises, from which it is deduced by mathematical reasoning, must be false and absurd; or, in other words, that the relation between motive and action cannot be that of constant conjunction, like the relation between cause and effect in physics.

He uses many arguments of the same kind, and equally convincing, to prove the absurdity of supposing the inertness of mind, and only an occasional conjunction of motives and actions; but we forbear to quote them, both because we with his book to be read, and because we think the single argument which we have borrowed from him sufficient to demolish the theory of Priestley and Hume, which rests wholly upon the hypothesis of the constant conjunction of motive and action.

But is it not then really true, that the external action is determined by the will, the will by desire, and desire by what is agreeable or disagreeable? That the external action is universally determined by the will, is certainly true; but that the will is necellitated and universally determined by the desire is as certainly false. If Potiphar's wife was handfome, and made her propofal to Joseph with any degree of female address; and if his constitution was like that of other young men; there cannot be a doubt but that he felt a desire to do what the requested of him: yet we know that he willed to do otherwise, and in direct opposition to his desire fled from the room. Perhaps it may be faid, that his volition to flee was the effect of a contrary and stronger desire not to sin against God; but this is confounding the reader, by calling two energies of mind, between which there is little or no similarity, by the same name. He perceived, or knew, that to comply with his mistress's request would be to sin against God; he knew that he ought not to sin against God, and therefore he chose or determined himself not to do it. We can easily conceive how the preference, aversion, and address, of the lady might be agreeable to him, and excite desire. There may very possibly be more than one of our readers, who, during the course of their lives, have experienced something of the fame kind: but could abstract truth he in the same way agreeable, fo as to excite in his mind a desire of virtue sufficient to annihilate or banish the desire of the woman? As well may it be faid that one fenfation can annihilate another, that the beautiful colours of the rainbow can remove the fenfation of fcent from the mind of him who is plunged into the midil of a dunghill, or that the smell of a rofe can make him forget the part of a froke inflicted by a bludgeon. Sensitive desire, and the perception of duty, are things so totally different, that to consider them as operating against each other like different weights in the opposite scale of a balance, is as absurd as to fuppofe that found I can operate against colour, or colour against smell. A man may prefer found to colour, or colour to smell, and act accordingly; but the determination must be wholly his own, unless these two fenfations be themselves either agents or physical caufes of the fame kind, like the weights in the opposite scales of the balance.

The advocates for liberty do not pretend, that in matters of importance a man ever acts without some motive or reason for his conduct. All that they infer upon is, that between two or more motives of different kinds he has a liberty of choice, and that he does not always determine himself by that which he knows to be the greatest. Without fuch freedom, they think men might be often brought into situations where they could not act at all, and where inaction would at the fame time be in the highest degree abfurd. Thus, were two bags of gold, containing each a thousand or ten thousand guineas, to be placed on the fame table, before a man whose family is perishing for want, and were the man to be told that he might take either of them, but not both, is it conceivable that he would be held in perpetual fuppliance between the two? No; he would instantly and with alacrity take up one of them without feeling the leaff regret for the want of the other. This action would, indeed, be the confequence of a very powerful motive, the desire to obtain honestly that wealth of which he and his family ftood fo much in need. That motive, however, being general, would draw him equally to both bags; and it remains with the neceffaries to fay by what else than a felf determining power he could take either the one or the other. When it is afcribed, that fuch felf-determination would be an effect without a caufe, the advocates for liberty cannot help thinking that their antagonifts are guilty of advancing as an argument a petiti fmails; for the affirmation is true, only if the mind in volition be inert, and the inertia of the mind is the foul question at issue. If the mind be not inert, it is plain, that in confequence of a man's felf-determination, no effect would be produced without a fuf-
a sufficient cause. At any rate, motives cannot be causes. In the proper sense of the word, a cause is that which produces an effect; but the production of an effect requires active power; and power being a quality must be the quality of some being by whom it may be exerted. Power may be dormant, and therefore power without will produces no effect. Are motives, then, real beings, endowed with power and will? No; they are only views of things or mental perceptions, which in the strictest sense of the word are passive; and between two motives the mind determines itself, without receiving an impulse from either.

Nor is it only between motives of equal force that men have the power of determining themselves. Whoever believes in a future state of rewards and punishments, and yet acts in a manner which he knows to be offensive to Him who is to be the future and final judge, unquestionably prefers to the strongest of all motives, another which even to himself appears to have comparatively but very little strength. Whether there be men who occasionally act in this manner, is a question which can be decided only by an appeal to every one's consciousness. The same reason, we can have no doubt, for we never met with a single individual, not biased by futility, who was not ready to acknowledge, that during the course of his life he had done many things, which at the time of action he clearly perceived to be contrary to his true interest. Without a self-determining power in the mind, this could never be the case. Did motives operate with the necessity of physical causes, it is obvious that in every possible situation the strongest must constantly prevail; and that he who in certain circumstances had in time past done any particular thing, would on a return of the same circumstances do the very same thing in every time future. Dr Priestley, indeed, wishes to persuade his readers that this is actually the case. "In every determination of the mind (says he), or in cases where volition and choice are concerned, all the previous circumstances to be considered are the state of mind (including every thing belonging to the will itself), and the various views of things presented to it;" and he affirms, that "whenever the same precise circumstances occur twice, the same fate determination or choice will certainly be made the second time that was made the first." This is an assertion of which no man can controvert the truth; for it is an identical proposition. If in the circumstances previous to the determination of the mind, every thing belonging to the will itself must be included, it is self-evident that he who in any given circumstances has acted a particular part, will on a return of those circumstances act the same part a second time; for this is only saying, that he who on two different occasions shall exert volitions of the same tendency, will not on those occasions exert volitions of which the tendencies are different. But the question to be decided is, Whether a man, in the same general state of mind, possessed of the same degree of health, and conscious of the same appetites, must, in external circumstances perfectly alike, necessarily exert at all times the same volitions. That the human mind is under no such necessity, we think every man's conscious experience may abundantly satisfy him; for there are, perhaps, but very few who have not at one time resisted temptations, to which at another they have chosen to yield.

That there is a relation between motives and actions, must be confessed; but that relation is neither necessary, nor conditional. If it were, all actions would be perfectly rational; and folly, as well as merit and demerit, would be banished from the conduct of men. What is the particular nature of that relation which subsists between the voluntary actions of men, and the motive from which they proceed, can be known to be banished every individual only by an attentive and unbiased reflection on the operations of his own mind. Without this reflection, no man can be made to understand it by the reasonings of philosophers, and with it no man can need the aid of those reasonings. That a self-determining power, such as that for which we plead, contributes to the sum of human happiness, has been shown by Archbishop King and his ingenious translator; who have proved, with the force of demonstration, that the mind can take pleasure in the object of its choice, though that object be in itself neither agreeable nor disagreeable to our natural appetites; and that if it could not, it would be vain in such a world as ours to hope for any portion of felicity. Into that detail our limits will not permit us to enter: but to the reader who wishes for further information, we beg leave to recommend the last edition of King's Origin of Evil, by Dr Law late bishop of Carlisle; without, however, vouching for the truth of all the opinions advanced by either of those learned writers.

Before we conclude this chapter, it may be proper to observe, that it is only in volition that we are conscious of any original active power in ourselves, and that without such consciousness we could never have acquired the notion of active power. In our desires and appetites, we neither are active nor suppose ourselves active. Lord Kames, and most necessarians, confound desire with volition: but that they are perfectly distinct is plain from this circumstance, that we daily desire many things which we know to be wholly out of our own power, whereas no man ever willed what he did not believe to be in his own power. We desire on all desire or wish that our children may be virtuous, the active wife, and happy; and though we are conscious that powers, it is not in our power to make them so, we cannot

Reid's

Raufs

Prince of

Abyflinia

rain or sunshine as he thought proper, because he considered the object of his volition as depending upon a power imparted to him from heaven; but though he might desire, he could not will, the rising or the falling of winds; for these he confessed were not subjected to his authority. In a word, without freedom in volition, power is inconceivable; and therefore it is as certain that we are free agents as that we have any notion of active powers.

Chapter
It has been already observed, that as of bodies there are various kinds, endowed with various properties; so the probability is, that of minds endowed with different powers, or different degrees of power, the variety may be as great, or perhaps greater. The existence and powers of our own minds are made known to us by consciousness and reflection; and from our dependent state, and the mutability of the objects around us, we are necessarily led to infer the existence of another mind, which is independent, unchangeable, eternal, and the cause of all things which have a beginning of existence. Between that mind and our own, we can hardly avoid believing that there are many orders of "thrones, dominations, principalities, virtues, powers," but as we have no intuitive knowledge of such intermediate beings, and cannot from anything which we perceive discern the necessity of their existence, they are not properly the object of science. The existence, however, and many of the attributes of One First Cause, are capable of the strictest demonstration; for the invisible things of Him from the creation of the world are clearly seen, being understood by the things which are made.

Of this great truth, the most important by far which can occupy the mind of man, many demonstrations have been given both by divines and by philosophers. We shall lay before our readers such a one as to us appears perfectly conclusive, being founded on the intuitive knowledge which we have of our own existence, and therefore independent of all theories about the nature and reality of the material world.

Every man, whether he adopt the common theory or that of Berkeley respecting matter, is conscious that he himself exists, and must therefore grant that something now exists. But if any thing exist now, then must something have always existed; otherwise that thing which now exists, must either have been created by nothing, i.e., have been created by no cause; or else it must have created itself, acting before it existed. Both these suppositions are so palpably absurd, that no atheist has allowed them, either among the ancients or the moderns. We must therefore admit, either that there is some one independent being, which now exists, and always has existed; or that the things which we know to exist at present (every man's self for instance), were produced by something which had its existence from something else, which also depended upon some other cause, and so on in an infinite series of caused or successive beings. But this last supposition, though it has been often made, is as grossly absurd as either of the two former. For of this infinite series, either some one part has not been successive to any other, or else all the several parts of it have been successive. If some one part of it was not successive, then it had a first part, which destroys the supposition of its infinity. If all the several parts of it have been successive, then have they all once been future; but if they have all been future, a time may be conceived when none of them had existence: and if so, then it follows, either that all the parts, and consequently the whole of this infinite series, must have arisen from nothing, which is absurd; or else that there must be something in the whole besides what is contained in all the parts, which is also absurd.

As the possibility or impossibility of an infinite series of dependent beings is the main question at issue between the atheists and us, we shall state the preceding reasoning in a manner somewhat different. For this purpose, let us suppose some one to affirm, that the course of generation has had no beginning, and consequently that the number of successive births has been infinite. We would ask such a person, Whether before the birth of Abraham, for example §, there had past an infinite series of generations or not? If not, the course of generation must have had a beginning, which is the conclusion for which we contend. But if the series past was infinite, then at the birth of Joseph, the great-grandson of Abraham, it is evident, that more generations were past, and that the number then was greater than that which was supposed to be infinite; so that upon this supposition we have a number that is both infinite and not infinite, which is a manifest contradiction. Should it be said that the number of generations was infinite, as well as the birth of Abraham as at the birth of Joseph; it will then follow, that one infinite may be greater than another of the very same kind; and consequently that an infinite may be bounded, i.e., be finite. But should it be alleged, that the number of births at Abraham's was finite, and became infinite when it reached to Joseph's, it will then follow, that one finite number added to another may make an infinite number, which is directly contrary to every possible notion of infinity. We might argue in the same manner against an infinite series of every kind, the very supposition of which involves the most palpable contradictions. See Chap. of INFINITY and ETERNITY.

From the impossibility of an infinite series it necessarily follows, that there exists, and must have existed from eternity, some one independent being, whose duration cannot be commensurate with succession, and to whom the relation of time is not applicable. Here will some atheists pretend to imagine, that by the same mode of reasoning they may disprove the existence of God; for do not they who thus destroy the eternity of the world, destroy at the same time the eternity of the Creator? If time itself be not eternal, how can the Deity or anything else be so?

In urging these questions, it must be taken for granted that time is essential to all existence, and that God cannot be eternal otherwise than by a successive flux of infinite time. But it has been already shown (n 225), that successive duration is not essential to existence; that we can even conceive existence without succession; and it may here be added, that if we suppose a perfect being alone in nature, we shall find it impossible to imagine any succession of ideas, any flux of moments, or any alternation or increase whatever in his knowledge and
METAPHYSICS.

Of the Being and Attributes of God.

Of the essence. Such duration as we are acquainted with can have no relation to an immovable Being, while supposed to exist alone; but as soon as he determined to exercise his several attributes in the production of something distinct from himself, then, and not till then, have we reason to think of time, succession, and motion, began. These atheistical questions, therefore, instead of containing an objection to the existence of a Deity, afford a plain demonstration of it: for since it is not more evident that something new exists than that something must have existed from eternity; and since it has been shown that neither the world in its present state, nor time, nor any thing capable of change nor succession, can possibly be eternal; it follows, that there must necessarily be some Being who, in the order of nature, is before time, and who, in the finitude and immutable perfection of his own intelligence, compreends at once his yesterday, to-day and forever. "The atheists (says the excellent Cudworth) can here only smite, or make great faces, and show their little wit in quibbling upon non-entities, or a fleeting view of eternity; as if that fleeting eternity of the Deity (which so much reason has been contended for by the ancient genuine atheists) were nothing but a pitiful small moment of time sufficiently short, and as if the duration of all beings whatsoever must needs be like our own; whereas the duration of every thing that is of necessity be agreeable to its nature; and therefore, as that whose imperfect nature is ever flowing like a river, and consists in continual motion and changes one after another, must needs have accordingly a successive and flowing duration, flowing perpetually from present into past, and always hastening towards the future, expecting something of itself which is not yet in being; so that what that perfect nature is essentially immutable and unchanging duration, never losing any thing of itself once present, nor yet running forward to meet something of itself which is yet not in being." From the eternity of the supreme Being we necessarily infer his dependence on self-existence; for that which never had a beginning of existence cannot possibly have any cause of that existence, or in any manner depend upon any other being, but must exist of itself, or be self-existent. Eternity ad partem non esse, or necessary existence, or the impossibility of ever ceasing to be, follows from independence: For to the nature of that which exists without any cause, existence must be essential. But a being whose existence is of itself and essential to its nature, cannot be indifferent to existence or non-existence, but must exist necessarily. And here it may be proper to observe, that the word necessity, when applied to existence, may be taken in two acceptations very different from each other; either as it arises from the relation which the existence of that thing, of which it is affirmed, has to the existence of other things; or from the relation which the actual existence of that thing has to the manner of its own existence. In the former sense, when necessity of existence has relation to the existence of other things, it denotes that the supposition of the non-existence of that thing of which necessity is affirmed, implies the non-existence of things which we know to exist. Thus, some independent being does necessarily exist; because, to suppose no independent being, implies that there are no dependent beings; the contrary of which we know to be of the living and Attributes of God.

290 who is self-existent, and

291 cannot cease to be.

† Notes to King on Evil, and Law's Inquiry into the Ideas of Space, &c.

292 What is meant by necessary existence.

293 only one necessity or self-existent being in the former sense, is necessarily existing; because existence is essential to such a being, so that it never could begin to exist, and never can cease to be: For to suppose a being to begin to exist, or to lose its existence, is to suppose a change from non-entity to entity, or vice versa; and to suppose such a change is to suppose a cause upon which that being depends. Every being, therefore, which is independent, i.e., which had no cause of existence, must exist necessarily, and cannot possibly have begun to exist in time past, or cease to be in time future.

These two kinds of necessity, as applied to existence, Only one necessity or self-existent being in the former sense, is necessarily existing; because existence is essential to such a being, so that it never could begin to exist, and never can cease to be: For to suppose a being to begin to exist, or to lose its existence, is to suppose a change from non-entity to entity, or vice versa; and to suppose such a change is to suppose a cause upon which that being depends. Every being, therefore, which is independent, i.e., which had no cause of existence, must exist necessarily, and cannot possibly have begun to exist in time past, or cease to be in time future.

Thus the phenomena of nature lead us, by the strictest reasoning, to one first cause, which is sufficient for the production; and therefore none but one first cause can in this sense of the word be necessary. And though several mere independent beings might possibly exist, yet they would be no gods to us; they would have no relation to us demonstrable by reason; nor we any thing to do with them. For if the position of their existence were not requisite to the production of this system, which it obviously would not be, we could perceive no necessity for it at all; we could never discover it by our own faculties, and therefore it could be nothing to us. And tho' two or three such beings should exist, and act in the formation and government of their respective systems, or agree in one; yet till their existence and operations were made known to us, and a natural relation discovered, nothing would be due from us to them. They would have no religious or moral relations to us; and we should have no reason to call more than one of them our creator, preserver, and governor, which is the proper sense of the word God.

To shew in this manner that there is only one eternal self-existent Being which bears the relation of God to us, seems to be going as far as is necessary, or as natural
of the Being and Attributes of God.

Impossibility to demonstrate that there can be but one self-existent Being.

Dr. Clarke's first demonstration of the unity of the Being and Attributes of God, Prop. 7.

Examined, and shown to be inconclusive.

Dr. Clarke's distinction on the Argument a priori, added to Law's Inquiry into the Ideas of Space, Time, Inherence, etc.

After considering the first; let us take the substance itself, and try whether it can be conceived as prior or antecedent to itself in our conceptions or in the order of nature. Surely we need not observe that nothing can be more absurd or contradictory than such a supposition. Dr. Clarke himself repeatedly affirms, and it would be strange indeed if he did not affirm, that no being, no thing whatever, can be conceived as in any respect prior to the first cause.

The only remaining supposition is, that some attribute or property of the self-existent Being may be conceived as in the order of nature antecedent to that being. But this, if possible, is more absurd than either of the two preceding suppositions. An attribute is attributed to its subject as its ground or support, and not the subject to its attribute. A property, in the very notion of it, is proper to the subsistence to which it belongs, and subsequent to it both in our conceptions and in the order of nature. An antecedent attribute, or antecedent property, is a solecism as great, and a contradiction as flat, as an antecedent subsequent or subject in the same sense and in the same syllologism. Every property or attribute, as such, presupposes its subject; and cannot otherwise be understood. This is a truth so obvious and so forcible, that it sometimes extorts the assent even of those who upon other occasions labour to obscure it. It is confessed by Dr. Clarke, that "the sixth scholastic way of proving the existence of the self-existent Being from the absolute perfection of his nature, is incoherent."

For all or any perfections (says he) presuppose existence; which is a petitio principii. If there be proprieties, modes, or attributes in God, be considered as perfections (and it is impossible to consider them as anything else), then, by this confession of the great author himself, they must all or any of them presuppose existence. It is indeed immediately added in the same place, "that bare necessity of existence does not presuppose, but infer existence;" which is true only if such necessity be supposed to be a principle extrinsic, the absurdity of which has been already shown, and is indeed universally confessed. If it be a mode or property, it must presuppose the existence of its subject, as certainly and as evidently as it is a mode or a property. It might perhaps a posteriori infer the existence of its subject, as effects may infer a cause; but that it should infer in the other way a priori is altogether impossible as that a triangle should be a square, or a globe a parallelogram.

The only remaining supposition is, that some attribute or property of the self-existent Being may be conceived as in the order of nature antecedent to that being. But this, if possible, is more absurd than either of the two preceding suppositions. An attribute is attributed to its subject as its ground or support, and not the subject to its attribute. A property, in the very notion of it, is proper to the subsistence to which it belongs, and subsequent to it both in our conceptions and in the order of nature. An antecedent attribute, or antecedent property, is a solecism as great, and a contradiction as flat, as an antecedent subsequent or subject in the same sense and in the same syllologism. Every property or attribute, as such, presupposes its subject; and cannot otherwise be understood. This is a truth so evident and so forcible, that it sometimes extorts the assent even of those who upon other occasions labour to obscure it. It is confessed by Dr. Clarke, that "the sixth scholastic way of proving the existence of the self-existent Being from the absolute perfection of his nature, is incoherent."

For all or any perfections (says he) presuppose existence; which is a petitio principii. If there be proprieties, modes, or attributes in God, be considered as perfections (and it is impossible to consider them as anything else), then, by this confession of the great author himself, they must all or any of them presuppose existence. It is indeed immediately added in the same place, "that bare necessity of existence does not presuppose, but infer existence;" which is true only if such necessity be supposed to be a principle extrinsic, the absurdity of which has been already shown, and is indeed universally confessed. If it be a mode or property, it must presuppose the existence of its subject, as certainly and as evidently as it is a mode or a property. It might perhaps a posteriori infer the existence of its subject, as effects may infer a cause; but that it should infer in the other way a priori is altogether impossible as that a triangle should be a square, or a globe a parallelogram.

Doubtful, as it would seem, of the force of his first argument, which even those who pretend to be convinced by it acknowledge to be obscure, the Doctor gives a second, which we must confess appears to us to be still more obscure, and if possible less conclusive.

To suppose two or more distinct beings existing of themselves necessarily and independently of each other, implies (he says) this contradiction, that each of them being independent of the other, they may either of them be supposed to exist alone; so that it will be no contradiction to suppose the other not to exist; and consequent neither of them will be necessarily existing. Whatever therefore exists necessarily is the one simple essence of the self-existent Being; and whatsoever differs from that is not necessarily existing, because in absolute necessity there can be no difference or diversity of existence.

"Necessity is used here in two different senses; 1. Law's Inquiry into the Ideas of Space, &c. both as absolute and relative. In the former, neither of the two beings can exist without the other, i. e. without our supposing the other to exist also, since that is chap. 6. equally necessary. In the latter, either of them may exist alone, i. e. without the help of the other, or without the supposition of the other as requisite to its own existence."
existed. The confquence therefore that either of them may exist alone, and so neither of them is necessarly, is a mere equivocation on necessity, using it both in an absolute and relative fense at the fame time." But as this is a question of the highest importance, and as the author was a man of great worth, we shall consider his argument upon the fuppofition that the word necessity has from the beginning to the end of it the fame invariable meaning.

It has been already observed, that there are only two fenses in which word can be applied to the exiflence of any being; and whether it be here ufed in the one or the other of these fenses, the reasoning, if resolved into a fyllogism, will appear to be inconclusive. If the word be taken in that fense of necessity which arifes from the relation that dependent beings which we know to exist bear to some one independent Being, the argument will stand thus:

From a known effect no more causes can be necessarily inferred than what are fufficient to account for that effect: but

One self-exifilent and independent Being is fufficient to account for all the phenomena of nature; therefore, from the phenomena, &c.

No more than one fuch Being can be necessarily inferred to exist.

But though no more than one independent being can in this fense of the word necessarily exist, it by no means follows from this fyllogism, that two or more fuch beings may not possibly exist. It is, indeed, a plain contradiction to say, that two or more self-exiflent beings are in this fense necessary; but furely there is no contradiction in faying, that two or twenty fuch beings are possible. We could not, therefore, by this argument, convict a perfon of abfurdiity, who fhould affirm that two or more independent beings actually exist.

We might, indeed, deny the exiflence of them all but one, because one is fufficient to account for those phenomena, from which alone we know that any independent being exists; but becaufe one of them might be fuppofed to exist alone, fo that it would be no contradiction to fuppofe the other not to exist; we know not how the Doctor came to affirm, in direct opposition to his own demonstration, that not one of them would be necessarily existing.

Necelfity, as applied to exiflence, in the other fene of the word, arifes, as we have fene, from the relation which the actual exiflence of the being, of which it may be affirmed, has to the manner of that being's exiflence. It is the fame necelfity, we are told *, with that which is the caufe of the unalterable proportion between two and four; and it is confidered as the formal caufe or ground of the exiflence of an independent being. Were it not for the strange exphrensions formal caufe and ground of exiflence, we fhould have no objection to this account of that necessity by which a being independent undoubtedy exists: but this kind of necelfity is a principle which will not fupport the superstructure which the learned author labours to raise upon it. The fame necelfity which is the caufe of the unalterable proportion between two and four, is likewise the caufe of the unalterable proportion between three and five, between four and eight and between five and ten, &c. But if it can be the caufe of fo many different proportions of the

same kind, why may it not be the formal caufe or ground of the exiflence of as many independent beings of the fame kind as well as to one? The following fyllogism, we apprehend, to be legitimate both in mode and figure, and its conclusion is directly contrary to the proposition which the Doctor deduces from the fame notion of necessity.

If necelfity, confidered as a formal caufe or ground of exiflence, be in one fense of its caufality the formal caufe or ground of exiflence to many things of the fame kind, it may likewise in every other fense of its caufality, be the formal caufe or ground of exiflence to many things of the fame kind.

But fuch necessity, in that fense of its caufality where it is the formal caufe or ground of exiflence to the unalterable proportion between two and four, is the formal caufe or ground of exiflence to many proportions of the fame kind.

Therefore, the fame necelfity in that other fense of its caufality, where it is faid to be the formal caufe or ground of exiflence to one independent being, undoubtedly may be the formal caufe or ground of exiflence to many independent beings of the fame kind.

Thus it appears, that necessity, in any fene in which Necel!sity, it can be properly affirmed of exiflence, cannot be the foundation of any argument to prove the impossibility of more than one self-exiflent being. It is indeed a principle from which we apprehend that no positive conclusion whatever can be deduced by reafoning a priori.

That necessity of exiflence may be predicated of a being which is independent and uncreated, is felf-evident, because to the nature of fuch a being exiflence is essential. But whilft that nature itself remains wholely incomprehensible by us, it is impoffible that we should discover, by our own unafiliated reason, whether it can be the nature of only one, or of more than one independent being. To argue from necessity, as if it were the cause or ground of exiflence to fuch a being, is certainly abfurdf, if it be not impoflible; for if that to which exiflence is essential, does not exifl without any caufe efient or formal, we fhall be obliged to inquire after a caufe or ground of this caufe, and thus be involved in all the abfurdiities and contradictions of an infinite feries. We have inftilled the longer on this point, because necessity, as the foundation of the argument a priori, has sometimes been employed to very bad purpofes. Attempts have been made from the notion of necessary exiflence, to prove that the Supreme Being cannot be a free agent, and to fet the first principles of the religion of nature at variance with those which are revealed in the scriptures.

But though we are firmly perfuaded that the divine unity cannot be demonftrated a priori, we are far from thinking it incapable of any proof. On the contrary, the common arguments a posteriori drawn from the order and harmony of the world, have always satisfied us, and in our opinion muft satisfy every person capable of proportioning his affent to evidence, that the Creator and Preserver of such a fystem has but one soul and one intelligence, and therefore is himself but one being. But proof is one thing; and demonstration is, in the proper fene of the word, ano-
Part III.

METAPHYSICS.

Of the Being and Attributes of God.

302. God omnipotent.

The being which is self-existent and independent must be also omnipotent. That such a being has active power in some degree, is shown at the same time and by the same medium that we prove his existence; and since he depends upon no cause for his existence or his power, he cannot depend upon any for the exertion of that power, and consequently no limits can be applied to it. Limitation is an effect of some superior cause, which in the present instance there cannot be: consequently to suppose limits where there can be no limiter, is to suppose an effect without a cause. For a being to be limited or deficient in any respect, is to be dependent in that respect on some other being which gave it just so much and no more; consequently that being which in no respect depends upon any other is in no respect limited or deficient. In all beings capable of increase or diminution, and consequently incapable of perfection or absolute infinity, limitation or defect is indeed a necessary consequence of existence, and is only a negation of that perfection which is wholly incompatible with their nature; and therefore in these beings it requires no further case. But in a being naturally capable of perfection or absolute infinity, all imperfection or finiteness, as it cannot flow from the nature of that being, seems to require some ground or reason; which reason, as it is foreign from the being itself, must be the effect of some other external cause, and consequently cannot have place in the first cause. That the self-existent being is capable of perfection or absolute infinity must be granted, because he is manifestly the subject of one infinite or perfect attribute, viz. eternity, or absolute invariable existence. In this respect his existence has been shown to be perfect, and therefore it may be perfect in every other respect also. Now that which is the subject of one infinite attribute or perfection, must have all its attributes infinitely or in perfection; since to have any perfections in a finite limited manner, when the subject and these perfections are both capable of strict infinity, would be the forementioned absurdity of positive limitation without a cause. To suppose this eternal and independent being limited in or by its own nature, is to suppose some antecedent nature or limiting quality superior to that being, to the existence of which no thing no quality, is in any respect antecedent or superior. And to suppose that there is no such thing as active power in a being which is evidently the fountain of all power, is the grossest of all absurdities. The same method of reasoning will prove knowledge and every other perfection to be infinite in the Deity, when once we have proved that perfection to belong to him at all; at least it will show, that to suppose it limited is unreasonable, since we can find no manner of ground for limitation in any respect; and this is as far as we need go, or perhaps as natural light will lead us.

Of the omnipotence of the supreme Being some philosophers, as well as atheists, have talked very absurdly. Hobbes, with a view to make this attribute appear impossible and ridiculous, affirms "that God does not by his omnipotence or infinite power could turn a tree into a yllogism." And Des Cartes, though certainly no atheist, childishly asserts, that all things what- ever, even abstract truth and falsehood, do so depend upon the arbitrary will and power of God, as that if chap. 3. he had pleaded "twice two should not have been four, nor the three angles of a plain triangle equal to two right ones." But the true notion of Omnipotence, so far from implying a power to turn a tree into a yllogism, or to make twice two not equal to four, implies only that the being poiffed of it can actually perform whatever can be conceived by the most perfect understanding; conception in this case being the measure of possibility. Now every thing may be conceived by a mind sufficiently enlarged which does not involve in it a direct contradiction; but what we clearly discern to imply a contradiction, such as that a thing may be and not be at the same instant, cannot be conceived by any intellect, or made to exist by any power. And thus has this attribute of the Divinity been always stated, not only by the wiser Christians, but also by most of the ancient philosophers themselves, who expressly admit that "nothing is exempted from the divine power, but only to make that which hath been done to be undone." (a)

And here it may be asked, Whether creation, in 4 G 2 the

(a) John Gerhard and John Vossius both cite Gabriel Biel as acknowledging the unity of God to be incapable of rigid demonstration; and with the sentiments of that schoolman, those two learned divines profess their own to agree.

(h) de a d'hebrewes o euclides m enegedv w d'agardoiwet. Moro yap aveto w d'heureiopisti. Aorista, kai o d'palejana. Arifl. ad Nicomach. lib. 6. cap. 2.
METAPHYSICS.

Of the Being and Attributes of God.

The proper sense of the word (see Creation), be within the compass of infinite power. All the ancient philosophers, who were unlightened by the rays of divine revelation, held that it is not true ground their opinion upon this maxim, Etc, nihil nihil sit. But the maxim will support no such conclusion.—The ancients, or at least the Peripatetic school, with the metaphysics of which we are well acquainted, considered four kinds of causes, the efficient, the material, the formal, and the final; and though they extended the maxim to the first two, if not to all these causes, it is a self-evident truth only when applied to the complete cause. Without the actual exertion of power, it is indeed most certain that nothing could be brought into existence; but it is so far from being clear that pre-existent matter, or, as Aristotle chose to express himself, a material cause, must be supposed for infinite power to operate upon, that, we think, every man may find complete evidence of the contrary in himself. That sensation, intelligence, consciousness, and volition, are not the result of any modifications of figure and motion, is a truth as evident as that consciousness is not swift, nor volition square. If then these be the powers or properties of a being pre-existent matter, or, may find complete evidence of the contrary in himself, talk indeed of volition, are not the result of any modifications of his mind has toower and motion, but the creation of the material is indeed a self-evident truth only when applied to the existence. But the creation of the material system may be shewn to be in the highest degree probable by other arguments. The same reasoning which proves the impossibility of an infinite series and of eternal time, proves that the universe cannot have existed from eternity in its present state. But if it has not existed from eternity in its present state, it belongs to the opponents of creation to say what was its former. We talk indeed of chaos; but such language, when a Creator is not admitted, is most unphilosophical trifing. It appears from the most accurate inquiries that have been made into the subsistence and essence of body, that the atoms of which each mass is composed are held together by a foreign force. If by chaos be held together by a foreign force, then this force is supposed to be removed, we must beg leave to say, that of such a substance we have neither idea nor notion, and cannot distinguish it from non-entity. The original atoms of matter, we believe indeed to require no other agency to keep each entire than that which was created; but still, as those atoms are conceived to be solid and extended, they must be capable of division by infinite power; and if that force or influence which makes them solid and extended were removed, they would lose solidity and extension, and of course become nothing. So far is it, therefore, from being true, that the creation of matter appears to be impossible, that we are compelled by every thing that we know of it to believe that matter cannot possibly be self-existent.

"Because it is undeniably certain, concerning ourselves (says Hudworth,) and all imperfect beings, that none of these can create any new substance, moral substance are apt to measure all things by their own scantling, and to supposè it universally impossible for any power whatever thus to create. But since it is certain, that imperfect beings can themselves produce some things out of nothing pre-existing, as new cogitations, new local motion, and new modifications of things corporeal, it is fully reasonable to think that an absolutely perfect Being can do something more; Is, create new substances, give them their whole being. And it may well be thought as easy for God or an Omnipotent Being, to make a whole world, matter and all, to us sure, as it is for us to create a thought or to move a finger, or for the sun to send out rays, or a candle to light; or lastly, for an opaque body to produce an image of itself in a glass or water, or to project a shadow: all these imperfect things being, but the congeries, rays, images, or shadows, of the Deity. For a substance to be made out of nothing by God, or a Being infinitely perfect, is not for it to be made out of nothing in the impossible sense, because it comes from him who is all. Nor can it be said to be impossible for any thing whatever to be made by that which hath
Part III.

METAPHYSICS.

Of the Being and Attributes of God.

hath not only infinitely greater perfection, but also infinite active power. It is indeed true, that infinite power itself cannot do things in their own nature impossible; and, therefore, those who deny creation, ought to prove, that it is absolutely impossible for a substance, though not for an accident or modification, to be brought from non-existence into being. But nothing is in itself impossible, which does not imply a contradiction; and though it be a contradiction for a thing to be and not to be at the same time, there is surely no contradiction in conceiving an imperfect being, which before was not, afterwards to be. To call in question the possibility of creation, because we have no adequate conception how a thing can be brought into existence, would be in the highest degree absurd; for it may be doubted, whether we have adequate conceptions of any thing except our own ideas and their various relations (1).

305

† Demonstration of the Being and Attributes of God.

306

God a free agent; but omnipotence, and omnipotence only is not a necessary, but a free agent; for active power implies freedom, and infinite power infinite freedom. What, therefore, hath no bounds fet to its power, what can have no opposition made to its will, nor restraint laid on its actions, must both will and act freely. "If the supreme cause were not a being endowed with liberty and choice, but a mere necessary agent, then would it follow, as Dr Clarke well observes †, that nothing which is not, could possibly have been; and that nothing which is, could possibly not have been; and that no mode or circumstance of the existence of any thing could possibly have been in any respect otherwise than it now actually is. All which being evidently false and absurd; it follows, on the contrary, that the supreme cause is not a mere necessary agent, but a Being endued with liberty and choice."

† Cooper's Tracts.

307

To this reasoning it has been lately replied †, that Clarke must have known, that all those who contend against the free agency of the Deity, do of course acknowledge, that nothing could have happened, or does happen, or will happen, but what actually has happened, or doth happen, or will happen; and that it is most false and absurd to deny it. "It is, therefore, according to the necessarians, absolutely impossible, that at present there could exist upon this earth more or fewer persons than are now actually alive; that the earth could move in any other direction than from west to east; or that there could be more or fewer planets in the solar system. Yet is it most certain, that there have been fewer persons on the earth than there are now; that there is not a cultivated country in Europe which could not contain more people than now inhabit it; that the comets move in very different directions from that of west to east; and that as, till very lately, we conceived only five primary planets in the system, it is evidently possible that the system might contain no more. Upon the supposition, therefore, that the Supreme Being acts under a physical necessity, the same things are possible and not possible at the same time, which is the grossest of all absurdities. It might have been objected with much more plausibility, that the first cause cannot possibly be free, because he must needs do always what is best in the whole; but it will be seen by and by, that among different created systems, there is no reason for supposing any one absolutely left. But though this Being is free, and as such the absolute thor of change in other beings, yet he must himself be unchangeable; for all changes have a beginning, and abide consequently the effects of some prior causes. But there can be nothing prior to the existence of this Being, as he is eternal; neither any cause of it, as he is independent; nor consequently any change in it, except we could suppose him to change himself, which is the same absurdity as to produce himself, i.e. to be at the same time both effect and cause."

308

Omniscience, as well as some of the foregoing attributes of the Supreme Being, may perhaps be more evident, &c. Proved in a different manner. § Notes to the last page of this volume, for which we have the evidence of consciousness, as much as for our own existence. Indeed, it is only King on our consciousness of those that our existence is evil known to ourselves. We know likewise that there are perfections, and that to have them is better than to be without them. We find also that they have not been in us from eternity. They must, therefore, have had a beginning, and consequently some cause for the very same reason that a being beginning to exist in time requires a cause. Now this cause, as it must be superior to its effect, must have those perfections in a superior degree; and if it be the first cause, it must have them in an infinite or unlimited degree, since bounds, or limitation without a limitor, would as we have already shown, be an effect without a cause.

It is indeed obvious, that the omniscience of the Supreme Being is implied in his very existence. "For all things being not only present to him, but also entirely

(1) "Ridicula foret et inepta ejus remitteras, quod corpus ideo creationem scripsi duceret negandum esse, quod ejus creationis clarum et perficuum notionem effingere cognitione nobis lan dicet. Infinita enim est rerum copia, quarum perpicius et aperiit caremus notionibus. Et si omnima negandae continuo nobis essent, quorum confusam tantam et imperficientam consequi possumus notionem, omnia fere nobis effent negandae exceptis relationibus, quos inter notiones qualdam absurdratias esse intelligimus. Quis interiorem nobis naturam rerum, tant corporum, quam spirituum, cognitam esse dixerit? Et esse tamen has naturas, omni plane dibitatione vacat. Quis quemadmodum altera harum naturam agat in alteram, esse firere, affirmet? Quis causas fibi patere, preper quis quas vel illi effectus, quos videmus quotidiane contingere, a certis veniant corporibus, iure glorietur? Nec tamen quicumque est, qui vel illam animam in corpus operationem, vel hos effectus in dubium revocare auget. Teneamus igitur ea, quae certo novimus, nec incidero nos ab illis dimoveri patiamur, quod multa ruinus sunt, quorum naturam ignoramus; contra multa nos fugere et cognitionem nostram superare, quae trivial felnus animo. Joannis Clarici contra eos qui negant, ex nihil villa ratione fieri possit aliquis, observationes; in Mythologiis. Select. Intellex. Syr.
Metaphysics.

Of the being and attributes of God.

Entirely depending upon him, and having received both their being itself and all their powers and faculties from him, it is manifest that as he knows all things that are, and penetrates every part of their substance with his all-piercing eye, so must he likewise know all possibilities of things, that is, all effects that can be. For, being alone self-existent, and having alone given to all things all the powers and faculties with which they are endowed, it is evident that he must of necessity know perfectly what all and each of these powers and faculties, which are derived wholly from himself, can possibly produce. And seeing at one boundless view, or more properly in his own ideas, all the possible compositions and divisions, variations and changes, circumstances and dependencies of things, all their possible relations one to another, and their dispositions or fitnesses to certain and respective ends, he must without possibility of error know exactly what is best and properest in every one of the numberless possible cases, or methods of disposing things; and understand perfectly how to order and direct the respective means to bring about what he so knows to be in its kind, or on the whole, the best and fittest end. This is what is meant by infinite wisdom, or omniscience; and it has been readily admitted by every man who has believed in the existence of a God as the creator and preserver of all things.

Doubts, however, have been entertained by theists, and pious theists, whether omniscience itself can certainly foreknow what are called contingent events, such as the actions of free agents; and some few there are professing to be even Christians, who have boldly pronounced such knowledge to be impossible. That we have no adequate notion how events, which are called contingent, can be certainly foreknown, must indeed be granted; but we are not, therefore, authorized to say that such knowledge is impossible, unless it can be clearly shown to imply a contradiction. They who suppose that it implies a contradiction, must likewise suppose, that, where there is not a chain of necessary causes, there can be no certainty of any future event; but this is evidently a mistake. "For let us suppose that there is in man a power of beginning motion, and of acting with what has of late been called philosophical freedom; and let us suppose farther that the actions of such a man cannot possibly be foreknown; will there not yet be in the nature of things, notwithstanding this supposition, the same certain of event in every one of the man's actions, as if they were ever so fatal and necessary? For instance, suppose the man, by an internal principle of motion, and an absolute freedom of mind, to do some particular action today, and suppose it was not possible that this action should have been foreseen yesterday, was there not nevertheless the same certainty of event as if it had been foreseen, and absolutely necessary? That is, would it not have been as certain a truth yesterday, and from eternity, that this action was in event to be performed today, notwithstanding the supposition, as it is now a certain and infallible truth that it is performed? Mere certainty of event, therefore, does not in any measure imply necessity."

And surely it implies no contradiction to suppose, that every future event which in the nature of things is now certain, may now be certainly known by that intelligence which is omniscient. The manner how God can foreknow future events, without a chain of necessary cause, it is indeed impossible for us to explain: yet some form of general notion of it we may conceive. "For, as a man who has no influence over another person's actions, can yet often perceive beforehand what that other will do; and a wise and more experienced man, with full greater probability will foresee what another, with whose disposition he is perfectly acquainted, will in certain circumstances do; and an angel, with still higher degrees of error, may have a further prospect into mens future actions; so is it very reasonable to conceive, that God, without influencing mens wills by his power, or subjecting them to a chain of necessary causes, cannot but have a knowledge of future free events, as much more certain than men or angels can possibly have, as the perfection of his nature is greater than that of theirs. The defined manner how he foresees these things we cannot, indeed, explain; but neither can we explain the manner of numberless other things, of the reality of which, however, no man entertains a doubt."

We must therefore admit, so long as we perceive no contradiction in it, that God always knows all the free actions of men, and all other beings endowed with liberty; otherwise he would know many things now of which he was once ignorant, and consequently his omniscience would receive addition from events, which has been already shown to be contrary to the true notion of infinity.

In a being incapable of change, knowledge has nothing to do with before or after. To every purpose of knowledge and power, all things are to him equally present. He knows perfectly every thing that is, and what to us is future he knows in the very same manner as he knows what to us is present.

Thus have we demonstrated the necessary existence of a being who is eternal, independent, unchangeable, omnipotent, free in his actions, and omniscient; and this is the being whom we worship as God. Eternity, independence, immutability, omnipotence, liberty, and omniscience, which seem to be all the natural attributes which we can discover in the divine nature, as they are conceived to be differently combined, made us speak of him in different terms. His enjoying in an absolute manner every conceivable power or perfection, makes us call him a Being infinitely perfect. His being capable of no want, defect, or unhappiness of any kind, denotes him to be all-sufficient in himself; and the unlimited exercize of his knowledge and power, demonstrates him to be omnipresent.

Such a Being must be incomprehensible by us, and by every creature, is a truth self-evident; and yet in all ages men of the best intentions have been vainly attempting this impossibility. The manner of his omniscience, for instance, has been the subject of much dispute among those who ought to have reflected that they knew not how their own minds were prefent to their own bodies.

The celebrated Dr Clarke and his adherents, who confided space as the fine gua non of all other things, inferred, that God must be infinitely extended; and that, as wherever his substance is, there his attributes must be, it is thus that his knowledge and power are present with every creature. But this notion labours under inextricable difficulties.

For "if the Divine substance be infinitely extended, then will there be part of it in this place and part in
Part III.

METAPHYSICS.

Of the Divine Attributes of God.

370 The manner of the attributes in all things, for instance, is comprehensible. This is the notion of omnipresence, which, and whose nature, it is to be known and to be comprehended. As the attributes of the Divine Being must be considered in the same manner with his subsistence, we shall likewise, upon this notion of omnipresence, have a part of his knowledge and power in this place, and a part of them in that; and of these parts the one must be greater or less than the other according to the dimensions of the place with which it is concentrated; which is a supposition that appears to us harther, if possible, than even the former.

Should it be said that the Divine attributes are not to be considered as having parts (though we fee not how they can be considered otherwise than as their subject), they must then exist completely in every point of this immense expansion. Be it so; and what follows? Why, every point of this infinitely expanded being will be omniscient and omnipotent by itself; an inch of it will have as much wisdom and power as and the same as the whole; and, instead of another infinite wisdom and power, we shall have millions: For as these parts of the subsistence are conceived, diffusely, and each individual part is not another, so must the attributes be likewise conceived, and the individual power and knowledge of one part be distinct from that of another. And if so, it follows, that one point of this expanded being has equal power and intelligence with the whole; so that the notion of extent being necessary to God's presence with every creature, involves in it the most palpable contradiction. That God is at all times and in all places to present with every creature as to have an absolute knowledge of and power over it, is indeed capable of the strictest demonstration; but we think it great presumption to affirm the particular mode of his presence, especially such a one as is neither agreeable to the nature of an absolutely perfect Being, nor in the least necessary to the exercise of any one perfection which he can be proved to possess. Philosophers and divines have offered several names for the manner in which God is present with his works; but we choose rather to confess, that the manner of his presence is to us, and probably to every creature, wholly incomprehensible. Nor need we be surprised if staggered at this, when we reflect that the manner in which our own minds are present with our bodies is to us as incomprehensible as the manner in which the supreme Mind is present with every thing in the universe. That our minds have a power over our limbs, we know by experience; but that they are not extended or substantially diffused through them, is certain; because men daily lose arms and legs without losing any part of their understanding, or feeling their energies of volition in the smallest degree weakened. But we need pursue this subject no farther. It has been confessed by one of the most learned advocates for the extension of the Deity and all minds, that "there is an incomprehensibleness in the manner of every thing, about which no controversy can or ought to be concerned."

The moral attributes of God may be deduced from his natural ones, and are immediate consequences of them when exercised on other beings. They may be termed his secondary relative attributes, as they seem to be the perfection of his external acts rather than any new internal perfections. And though the existence of any moral quality or action is not capable of strict demonstration, because every moral action or quality, as such, depends upon the will of the agent, which must be absolutely free; yet we have as great assurance that there are moral qualities, in God, and that he will always act according to these qualities, as the nature of the thing admits; and may be as well satisfied of it, as if it were capable of the most rigid demonstration. This important point, however, cannot be so clearly or so firmly established by abstract reasoning as by taking a scientific view of the works of creation, which evince the goodness, holiness, and justice, of their Author, as well as his perfect wisdom and infinite power. The consideration, therefore, of the moral attributes of God, together with his providence, and the duties thence incumbent on man, is the proper business of other articles (see Religion, Theology, and Moral Philosophy.)

At present we shall only observe, that by reasoning a priori from his existence and his natural perfections, we must necessarily infer that his actions are the result of unmixed benevolence. Every wise agent has some end in view in all his actions; it being the very essence of folly to act for no end: but there cannot be an end of action which is not either selfish or benevolent. Selfishness is the offspring of want and imperfection, and is therefore the source of most human actions; because men are weak and imperfect beings, capable of daily additions to their happiness. When the thief plunders a house at midnight, when the highwayman robs a traveller on the road, and even when the assassin murders the man who never injured him: it will be found that their actions spring not from an innate desire to injure merely upon others, but from a prospect of reaping advantage to themselves. The object of the thief and the robber is obvious: it is to gain money, which is the mean of procuring the comforts of life. Even the assassin has always the same selfish end in view: either he is bribed to commit the murder, or he fancies that his horrid deed will remove an obstacle to the way to his own happiness. But they are not vicious men only who act from selfish considerations: much of human vice is, when traced to its source, will be found to have its origin in the desire of happiness. When a man gives his money to feed the hungry and to clothe the naked, he believes that he is acting agreeably to the will of Him to whom he and the poor stand in the same relation; and he looks for a future and eternal reward. By continuing the practice, he soon acquires the habit of benevolence; after which, indeed, he looks for no further reward, when performing particular actions, than the immediate pleasure of doing good. This selfishness of man is the necessary consequence of his progressive state. But the Being who is independent, omnipotent, omniscient, and, in a word, possessed of every possible...
Of the Being and Attributes of God.

perfection, is incapable of progression, or of having any accession whatever made to his happiness. He is immutable; and must of necessity have been as happy from eternity, when existing alone, as after the creation of ten thousand worlds. When, therefore, he willed the existence of other beings, he could have nothing in view but to communicate some resemblance of his own perfections and happiness. That he had some end in view follows undeniable from his infinite wisdom. That he could not have a selfish end, follows with equal certainty from his own infinite perfections; and as there is no medium, in the actions of a wise Being, between selfishness and benevolence, we must necessarily conclude, that the creation was the refult of unmixed benevolence or perfect goodness. The other moral attributes of the Deity, his justice, mercy, and truth, ought therefore to be considered only as so many different views of the same goodness in the Creator, and various sources of happiness to the creature. These are always subordinate to and regulated by this one principal perfection, and brightest ray of the Divinity.

Thus we conceive his justice to be exerted on any being no farther than his goodness necessarily requires, in order to make that being, or others, feasible of the benign nature and pernicious effects of sin, and thereby to bring them to as great a degree of happiness as their several natures are capable of. His holiness hates and abhors all wickedness, only as the necessary consequences are absolute and unavoidable misery; and his veracity or faithfulness seems to be concerned for truth, when applied to an object of the whole creation; only they, contrary to God's intention and command, have abused what was necessary for the perfection of the whole, to the corruption and deprivation of themselves. And thus have all sorts of evils entered into the world without any diminution to the infinite goodness of its Creator and Governor.

But though evil could not be totally excluded from the universe, are we not authorized to infer, from the love of infinite power, wisdom, and goodness of the Creator, that the present system is upon the whole the very best system possible? Undoubtedly we are, if of possible systems there can be a best; but this is far from being evident, that we think it implies a contradiction. A belt of beings there is, viz. God, who is possessed of infinite perfections; but there cannot be a belt of creatures or of created systems. To prove this, we need only reflect, that wherever creation flows, it must flop infinitely short of infinity; and that how perfect ever we conceive any creature or system of creatures to be, yet the distance between that and God is not lefened, but continues infinite. Hence it follows, that the nature of God and his omnipotence is such, that whatever number of creatures he has made, he may fill add to that number, and that however good or perfect the system may be on the whole, he might still make others equally good and perfect.

The dispute, whether a being of infinite power, Origin of wisdom, and benevolence, must be supposed to have created the best possible system, and the embarrassment of filo-

Dr Clarke contains all that can be advanced with certainty and all that is necessary to vindicate the ways of God to man.

"All that we call evil (says that able reasoner), is either an evil of imperfection, as the want of certain faculties and excellencies which other creatures have; or natural evil, as pain, death, and the like; or moral evil, as all kinds of vice. The first of these is not properly an evil: for every power, faculty, or perfection, which any creature enjoys, being the free gift of God, which he was no more obliged to bestow than he was to confer being or existence itself, it is plain, that the want of any certain faculty, or perfection, in any kind of creatures, which never belonged to their nature, is no more an evil to them, than their never having been created or brought into being at all could properly be called an evil." To this we may add, that as no created being can be self-existent and independent, imperfection is unavoidable in the creation, so that the evil of defect (as it is most absurdly called) must have been admitted, or nothing could ever have existed but God. "The second kind of evil, which we call natural evil, is either a necessary consequence of the former, as death to a creature on whose nature immortality was never conferred; and then it is no more properly an evil than the former: Or else it is counterposed in the whole with as great or greater good, as the afflictions and sufferings of good men; and then also it is properly no evil: Or else it is a punishment; and then it is a necessary consequence of the third and last sort of evil, viz. moral evil. And this arises wholly from the abuse of liberty, which God gave to his creatures for other purposes, and which it was reasonable and fit to give them for the perfection and order of the whole creation; only they, contrary to God's intention and command, have abused what was necessary for the perfection of the whole, to the corruption and deprivation of themselves. And thus have all sorts of evils entered into the world without any diminution to the infinite goodness of its Creator and Governor."
M E T A P H Y S I C S.

Part III.

Of the being and attributes of God, that affords the best receptacle to fities. Good, therefore, being relative to appetite, that must be reckoned the creature by us which has the strongest appetites, and the fullness means of satisfying them all, and securing its own permanent happiness. And though the substance of creatures is chiefly to be regarded as contributing to their perfection, yet we have no way of measuring the perfection of different substances but by their qualities, i.e. by their appetites by which they are capable of good and evil, and by their powers to procure those objects from which they receive the ends of things which makes them happy.

It is plain, therefore, that whatever system we suppose in nature, God might have made another equal to it; his infinite wisdom and power being able to make other creatures equal in every respect to any that we know or can conceive, and to give them equal or stronger appetites, and as certain or more certain ways of satisfying them. We fee in many cases, that very different means will anwver the same end. A certain number of regular pyramids will fill a space; and yet irregular ones will do it as well, if what we take from the one be added to another; and the same thing may be done by bodies of the most irregular and different figures in the same manner: and therefore we may very well conceive, that the answering of appetites, which is all the natural good that is in the world, may as well be obtained in another system as in this; provided we suppose, that where the appetites of the sentient beings are changed, the objects are also suited to them, and an equal congruity among the parts of the whole introduced. This is so easily conceived, that in an indefinite number of possible worlds, we do not see why it may not be done in numberless ways by infinite power and wisdom.

If then it be plain, that there might have been many other worlds, or even but one, equal to this in all respects as to goodness, there could be no necessity, either physical or moral, that God should create the one rather than the other; because nothing could make the one better, or to him more agreeable, than the other, but his own free choice. Either, therefore, God must be possessed of absolute freedom, or, among a number of possibilities equally perfect, he could not have made a choice, and so nothing would ever have been created. It is not, then, as Leibnitz and others argue, the natural and necessary goodness of the same particular things, represented by the divine ideas, which determines God to prefer them to all others, if under the guidance of his free act of producing them; but it is his own free choice, which among many equal potential goods, makes some things actually good, and determines them to existence. When these are once supposed to exist, every thing or action becomes good which tends to their happiness and preservation; and to suppose their all-perfect Author to have any other end in view than their preservation and happiness, is the same absurdity as to suppose that knowledge may produce ignorance; power, weakness; or wilful folly.

We have now finished what we proposed under the article Metaphysics. It has swelled in our hands to a large extent; and yet it can be considered as little more than an introduction to that science, which comprehends within its wide grasp every thing existing. The reader who wishes to pursue these interesting speculations, should study diligently the authors whom we have consulted, and to whom we have been careful to refer in the margin. Were we to make a selection, we should without hesitation recommend Aristotle and Plato among the ancients; and Cudworth, Locke, Hartley, and Reid, among the moderns. These philosophers, indeed, on many points, differ exceedingly from one another; but he who wishes not to adopt opinions at random, should know what can be said on both sides of every question.

M E T A P L A S M U S.

METAPLASMUS, in grammar, a transmutation or change made in a word, by adding, retrenching, or altering a syllable or letter thereof.

METAPONTUM, or METAPONTIUM, (anc. geog.), a town of Lucania, on the Sinus Tarentinus, to the west of Tarentum; built by the Pylians, who returned from Troy, (Mela.) Where Pythagoras is said to have taught in the time of Servius Tullius, (Livy); a town of Lucania, on the Sinus Tarentinus, to the west of Tarentum; built by the Pylians, who returned from Troy, (Mela.) When Pythagoras is said to have taught in the time of Servius Tullius, (Livy). Metapontinus, the people; who pretended to show, in a temple of Minerva, the tools with which Epeus built the wooden horse, (Julius.) Now a tower, called Torre di Mare, in the Basilicata of Naples, (Bandrand.)

METASTASIO (l'abbe Pierre Bonaventure), whose real name was Tasso, was born at Aslice, on January 3d, 1698. His talent for poetry was first unfolded by the reading of Tasso; and he began to compose verses at ten years of age. "A prodigy of this nature (says Metastasio) made such an impression on my master, the celebrated Gravina, that he thenceforth considered me as a plant worthy of being cultivated by his own hands." Metastasio was only fourteen years of age when he composed his tragedy entitled Il Giufino; in which he appears too clever and scrupulous an imitator of the Grecian drama. Our young poet unfortunately lost his patron in 1717; who left him his heir, "as being a young man of the most promising abilities." Metastasio, at the age of nineteen, being, in consequence of this inheritance, superior to those wants which repress the exertions of genius, and to which men of abilities are too often subject, gave full scope to his inclination for poetry. He began his dramatic career with the Didone Abbandonata, which was acted at Naples in 1724, the music was composed by Sarro. He soon acquired such celebrity, that in 1735 he was invited to Vienna by the emperor Charles VI.; who appointed him imperial poet, and granted him a pension of 4000 florins. From that time some of his works were presented at every court-festival; and notwithstanding the extreme
be who was then at Vienna, p. 37.

Metallo magnificence of these entertainments, they should now be forgotten were it not for the verses which he composed upon the occasion. The courts of Vienna and Madrid vied with each other in the presents which they conferred upon him. From Maria Theresa he received a snuff-box and a port-folio set with diamonds, and a golden candlestick with a screen. Ferdinand VI. king of Spain, informed of the great merit of Metallo by Farinelli, of whom he was a passionate admirer, sent him a present of a casket mounted with gold, and furnished with the different implements of writing. This favourite of kings and of the muses was of a cheerful temper, and was exceedingly temperate: to this he was probably indebted for the uninterrupted health which he enjoyed, and for the entire possession of his senses and faculties to the most advanced period of old age. He took his meals, arose, and went to bed, always at fixed hours. This exactness and order were scrupulously observed even in the most tripping actions of his life. He used to say in jest, that he dreaded hell for no other reason but because it was a place ubi nullus ordo, sed simplicium horror inhabitat. He had even his fixed hours for making verses: to which he scrupulously adhered, without waiting for the moment of poetical enthusiasm. He was equally regular in the duties of the Christian as in the labours of the scholar. His behaviour was that of a true philosopher: his ambition extended no farther than the attainment of literary fame; and he despised every civil mark of distinction. When Charles VI. offered him the titles of Count or of Baron, which add no real worth or dignity to the poet, but frequently make him appear in a more ridiculous light, he instantly begged the favour that he would allow him to continue Metallo. The empress Maria Theresa afterwards wished to bestow upon him the small crocs of St Stephen; but he excused himself on account of his age, which would prevent him from assisting at the festivities of the order. He was attacked by a fever on the 22d of April 1782; and he died on the 12th of the same month, at the age of 84. Before his death he received the sacrament according to the form of the Romish church; and Pius VI. who was then at Vienna, sent him his apostolical benediction in articulo mortis. He left about 150,000 florins. He composed a great number of tragic operas, and several small dramatic pieces which have been set to music. We have different editions of them in 4to, 8vo, and 12mo; and M. Richlet has published a translation of them into French, in 12 vols, small 12mo.

The greatest part of Metallo's writings will confer immortality on their author. His dialogue is natural, simple, and easy; his style is always pure and elegant, and sometimes sublime and pathetic. His subjects are noble, interesting, and excellently adapted for representation. He was perfectly acquainted with the resources of his art, and has subjected the opera to rules. He stripped it of its machinery, and of the marvellous, which was fitted to excite the gazer of amusement, but which gave no introduction to the understanding, and made no impression on the heart. His descriptions are copied from nature; the situations of his characters never fail to raise an interest in the reader, and often excite the tear of pity. His fables are celebrated; his characters are noble and well supported; his plots are excellently conducted, and happily unravelled. "There are scenes (says Voltaire) worthy of Corneille when he does not declaim, and of Racine when he is not feeble." His operas, in point of the pathetic, may be compared with our finest tragedies; and may be read with great pleasure, independent of the charms of the music. We must not, however, expect to find in Metallo that exact regularity, and that fertile simplicity, which constitutes the excellence of some of our tragic poets: But though he sometimes transgresses the unities of time and place, he always preserves the unity of interest. Notwithstanding all these advantages, some critics will not allow him the merit of invention, which is the first qualification of a poet. They consider him only as a successful imitator of the French tragic writers, from whom a great part of his beauties are borrowed, and place him at the head of the finest wits of Italy, but deny that he possessed genius. He was a fond admirer of the ancients; and this admiration, increasing with the facility of his understanding, continued to the last period of his life. He recommended reading them, as he himself had done, in a chronological order. His memory was excellent, and continued unimpaired even in old age. Horace was his favourite author, and he could repeat almost the whole of him. Metallo, who, as we have observed, was the pupil of the celebrated Gravina, added a gentleness of character peculiar to himself to the accuracy of thinking and great erudition of his master. His abilities and fame were reflected by the critics in general; and whereas the life of most men of letters is one continued warfare, his days happily glided away in tranquility and peace. The circumstance which occasioned the change of his name is thus related in a late anecdote: "Gravina's barber, who, like most of his profession, was a great talker, one day informed him, that in the Place de la Valicella, where he had his shop, a young boy came every evening, and sung extempore verses of his own composition, so harmonious and elegant that all the passengers flocked to listen to them. Gravina, upon this information, added one to the number of the young poet's audience, and found the verses so superior to the idea which he had formed of them from the account of the barber, and so much above the capacity of a child of ten or eleven years of age, that he instantly determined to undertake the cultivation of so promising a plant. His first care was to put the young Tragaffi (which was the boy's name) to school; but apprehending that the ordinary methods of education might check the progress of so uncommon talents, he took him home to his own house, and changed his name into Metallo, which signifies the same thing in Greek. In short, by an act of education and by instruction suited to his genius, Gravina laid the foundation of that reputation which he predicted, and which Metallo now enjoys." Vie des Hommes Illustres d'Italie, Tom. I. p. 187. METASTASIS, in medicine, a transposition or settlement of some humour or disease in some other part, and sometimes it signifies such an alteration of a disease as is succeeded by a solution. METATARSIUS (maza beyond, and ousa the tarfas), in anatomy, that part of the human skeleton containing..
METATHELIS, containing the middle of the foot. See Anatomy, n° 70.

METATHESIS, in grammar, a species of the metaplasmus, being a figure whereby the letters or syllables of a word are transposed, or shifted out of their usual situations, as pdiria for prjilis, Lybia for Libya, &c.

This word is, by physicians, used with respect to morbid causes, which, when they cannot be evacuated, are removed to places where they are less injurious.

METELIN, the modern name of the Island of Lefbos. See LESBOS and MITYLENE.

In the Irish Philosophical Transactions for 1789, we have a description of this island by the earl of Charlemont, in which he speaks in Raptures of its beauties. "The mountains, whose rugged tops exhibit a pleasing intermixture of rocks and fine groves, have their green sides, for many miles along the coast, covered with olives, whose leafy verdure is corrected, embellished, and brightened by a lively mixture of bays and laurels aspiring to the height of forest trees, of myrtles and pomegranates, of arbutes rich at once in blossom and in berry, of mulberries growing wild and laden with fruit, &c. Winter is here unknown, the verdure is perpetual, and the frequency of evergreens gives to December the colour of June. The parching heat of summer is never-ending May. The houses are constructed in such a manner as to have an end. The father and mother, with what little ishown, are the misfortunes of the family yet at an end. The father and mother, with what little is left them, contrive by their industry to accumulate a second little fortune; and this, if they should have a third daughter, they are obliged to give to her upon her marriage; and the fourth, if there should be one, becomes her calorgia; and so on through all the daughters alternately. Whenever the daughter is marriageable, she can by custom compel the father to procure her a husband; and the mother, such is the power of habit, is foolish enough to join her in deceiving him into an immediate compliance, though its consequences must be equally fatal and ruinous to both of them. From hence it happens, that nothing is more common for the old father and mother reduced to the utmost indigence, and even begging about the streets, while their unnatural daughters are in affluence; and we ourselves have frequently been thrown the eldest daughter parading it through the town in the greatest splendor, while her mother and sister followed her as servants, and made a melancholy part of her attendant train."

The fons, as soon as they are of an age to gain livelihood, are turned out of the family, sometimes with a small present or portion, but more frequently without any thing to support them; and thus reduced, they either endeavour to live by their labour, or, which is more usual, go on board some trading vessel as fadors, or as servants, remaining abroad till they have got together some competency, and then return home to marry and be humpecked. Some few there are who, taking advantage of the Turkish law, break through this whimsical custom, who marry their calograrias, and retain together by his industry. The second daughter inherits nothing, and is condemned to perpetual celibacy. She is likened a calorgia, which signifies properly a religious woman or nun, and is in effect a menial servant to her father, being employed by her in any office she may think fit to impose, frequently serving her as waiting-maid, as cook, and often in employments still more degrading. She wears a habit peculiar to her situation, which she can never change; a sort of monastic dress, coarse, and of a dull brown. One advantage, however, she enjoys over her sister, that whereas the elder, before marriage, is never allowed to go abroad, or to see any man, her nearest relations only excepted, the calorgia, except when employed in domestic toil, is in this respect at perfect liberty. But when the filter is married, the situation of the poor calorgia becomes desperate indeed, and is rendered still more humiliating by the comparison between her condition and that of her happy sisters. The married filter enjoys every sort of liberty; the whole family fortune is hers, and she spends it as the pleases; her husband is her obsequious servant, her father and mother are dependent upon her, she dresses in a most magnificent manner, covered all over, according to the fashion of the island, with pearls and with pieces of gold, which are commonly feigns; thus continually carrying about her the enviable marks of affluence and superiority, while the wretched calorgia follows her as a servant, arrayed in simple homespun brown, and without the most distant hope, of ever changing her condition. Such a disparity may seem intolerable, but what will not custom reconcile? Neither are the misfortunes of the family yet at an end. The father and mother, with what little is left them, contrive by their industry to accumulate a second little fortune; and this, if they should have a third daughter, they are obliged to give to her upon her marriage; and the fourth, if there should be one, becomes her calorgia; and so on through all the daughters alternately. Whenever the daughter is marriageable, she can by custom compel the father to procure her a husband; and the mother, such is the power of habit, is foolish enough to join her in deceiving him into an immediate compliance, though its consequences must be equally fatal and ruinous to both of them. From hence it happens, that nothing is more common for the old father and mother reduced to the utmost indigence, and even begging about the streets, while their unnatural daughters are in affluence; and we ourselves have frequently been thrown the eldest daughter parading it through the town in the greatest splendor, while her mother and sister followed her as servants, and made a melancholy part of her attendant train."

"The fons, as soon as they are of an age to gain livelihood, are turned out of the family, sometimes with a small present or portion, but more frequently without any thing to support them; and thus reduced, they either endeavour to live by their labour, or, which is more usual, go on board some trading vessel as factors, or as servants, remaining abroad till they have got together some competency, and then return home to marry and be humpecked. Some few there are who, taking advantage of the Turkish law, break through this whimsical custom, who marry their calograrias, and partake of a word are transposed, or shifted out of their usual situations, as pdiria for prjilis, Lybia for Libya, &c.

This word is, by physicians, used with respect to morbid causes, which, when they cannot be evacuated, are removed to places where they are less injurious.

METELIN, the modern name of the Island of Lefbos. See LESBOS and MITYLENE.

In the Irish Philosophical Transactions for 1789, we have a description of this island by the earl of Charlemont, in which he speaks in Raptures of its beauties. "The mountains, whose rugged tops exhibit a pleasing intermixture of rocks and fine groves, have their green sides, for many miles along the coast, covered with olives, whose leafy verdure is corrected, embellished, and brightened by a lively mixture of bays and laurels aspiring to the height of forest trees, of myrtles and pomegranates, of arbutes rich at once in blossom and in berry, of mulberries growing wild and laden with fruit, &c. Winter is here unknown, the verdure is perpetual, and the frequency of evergreens gives to December the colour of June. The parching heat of summer is never-ending May. The houses are constructed in such a manner as to have an end. The father and mother, with what little ishown, are the misfortunes of the family yet at an end. The father and mother, with what little is left them, contrive by their industry to accumulate a second little fortune; and this, if they should have a third daughter, they are obliged to give to her upon her marriage; and the fourth, if there should be one, becomes her calorgia; and so on through all the daughters alternately. Whenever the daughter is marriageable, she can by custom compel the father to procure her a husband; and the mother, such is the power of habit, is foolish enough to join her in deceiving him into an immediate compliance, though its consequences must be equally fatal and ruinous to both of them. From hence it happens, that nothing is more common for the old father and mother reduced to the utmost indigence, and even begging about the streets, while their unnatural daughters are in affluence; and we ourselves have frequently been thrown the eldest daughter parading it through the town in the greatest splendor, while her mother and sister followed her as servants, and made a melancholy part of her attendant train."

"The fons, as soon as they are of an age to gain livelihood, are turned out of the family, sometimes with a small present or portion, but more frequently without any thing to support them; and thus reduced, they either endeavour to live by their labour, or, which is more usual, go on board some trading vessel as factors, or as servants, remaining abroad till they have got together some competency, and then return home to marry and be humpecked. Some few there are who, taking advantage of the Turkish law, break through this whimsical custom, who marry their calograrias, and
retain to themselves a competent provision; but these are accounted men of a singular and even criminal disposition, and are hated and despised as conformables to Turkish manners, and deserters of their country. To adopt the customs of their destitute masters, and to brave the contempt, the detestation, and the hatred, of their neighbours and fellow-citizens.

"Of all these extraordinary particulars I was informed by the French consul, a man of sense and of indubitable veracity, who had resided in this island for several years, and who solemnly assured me that every circumstance was true: but indeed our own observation left us without the least room for doubt, and the singular appearance and deportment of the ladies fairly evinced the truth of our friend's relation. In walking through the town, it is easy to perceive, from the whimsical manners of the female passengers, that the women, according to the vulgar phrase, wear the breeches. They frequently flapped us in the streets, examined our drabs, interrogated us with a bold and manly air, laughed at our foreign garb and appearance; and showed so little attention to that decent modesty which is or ought to be the true characteristic of the sex, that there is every reason to suppose they would, in spite of their haughtiness, be the kindlets upon earth, if they were not strictly watched by the Turks, who are here very numerous, and would be ready to punish any transgression of their ungentle laws with arbitrary fines. But nature and native manners will often hide even the efforts even of tyranny. In all their customs these maiden ladies seem to have changed sexes with the men. The woman rides astride, the man fits sideways upon the horse; nay, I have been assured that the husband's distinguishing appellation is his wife's family name. The women have town and country houses, in the management of which the husband never dares interfere. Their gardens, their servants, are all their own, and the husband, from every circumstance of his behaviour, appears to be no other than his wife's first domestic, perpetually bound to her service, and flave to her caprice. Hence it is that a tradition obtains in the country, that this island was formerly inhabited by Amazons, a tradition, however, founded upon no ancient history that I am aware of. Sappho indeed, the most renowned female that this island has ever produced, is said to have had many inclinations; in which, as Lucian informs us, she did but conform with the singular manners of her countrywomen: but I do not find that the mode in which she chose to shew these inclinations is imitated by the present female inhabitants, who seem perfectly content with the dear prerogative of absolute sway, without endeavouring in any other particular to change the course of nature; yet will this circumstance serve to show, that the women of Lesbos had always something peculiar, and even peculiarly masculine, in their manners and deportment. But this as it may, it is certain that no country whatsoever can afford a more perfect idea of an Amazonian commonwealth, or better serve to render probable those ancient relations which our manners would induce us to esteem incredible, than this island of Metelin. These lordly ladies are for the most part very handsome in spite of their drabs, which is singular and disadvantageous. Down to the girdle, which as in the old Grecian garb is called far above what we usually call the waist, they wear nothing but a shift of thin and transparent gauze, red, green, or brown, through which every thing is visible, their breasts only excepted, which they cover with a sort of handkerchief; and this, as we were informed, the Turks have obliged them to wear, while they look upon it as an incumbrance, and as no incon siderable portion of Turkish tyranny. Long sleeves of the same thin material perfectly show their arms even to the shoulder. Their principal ornaments are chains of pearl, to which they hang small pieces of gold coin. Their eyes are large and fine; and the nose, which we term Grecian, usually prevails among them, as it does indeed among the women of all these islands. Their complexion are naturally fine; but they spoil them by paint, of which they make abundant use; and they disfigure their pretty faces by having the hinder part of the eyebrow, and replacing it with a straight line of hair neatly applied with some sort of gum, the brow being thus continued in a straight and narrow line till it joins the hair on each side of their face. They are well made, of the middle size, and for the most part plump; but they are distinguished by nothing so much and so universally as by a haughty, disdainful, and supercilious air, with which they seem to look down upon all mankind as creatures of an inferior nature, born for their service, and doomed to be their slaves; neither does this peculiarity of countenance in any degree diminish their natural beauty, but rather adds to it that sort of bewitching attraction which the French call piquant.

His lordship has been at great pains to investigate the origin of such a singular custom; but is unable to find any other example in history than that of the Lycians, who called themselves by the names of their mothers, and not of their fathers. When asked by their neighbours who they were? they described themselves by their maternal genealogy. If a gentlewoman should marry a slave, the children by that marriage were accounted noble; but should the first man among them marry a foreign woman, the children would be accounted ignoble. This custom is mentioned by several modern authors. A difficulty of no little magnitude occurs, however, in accounting for the derivation of the inhabitants of Lesbos from the Lycians. This is solved in the following manner: In times of the most remote antiquity, the island of Lesbos was peopled by the Pelasgi, who, under their leader Panthus, the son of Triopas king of Argos, first inhabited Lesbos; previous to that time they had dwelt in a certain part of Lycia which they had conquered; and in this country we may suppose they had learned the custom in question. But though this might readily be granted, as we know so little of the origin of ancient nations, yet the question still recurs, Whence did it originate among the Lycians? Here we are still more difficult than before; and let the only thing we have to help us out is an obsolete tradition concerning the punishment, viz., that the hero having destroyed a bear which ravaged the territory of Xanthus a city of Lycia, the inhabitants were so ungrateful as to return him no thanks for so great a favour; upon which, by his prayers, he caused the curse of barrenness to fall upon them, but was at length
length prevailed upon, by the intrigues of the women, to intercede with his patron Neptune to pardon them. On this account it was decreed, that the people of Xanthus should be called by the names of their mothers and not of their fathers. Plutarch relates also, that Bellerophon not only freed the Lycians from an invasion of pirates, but from the Amazons also, whom he drove out of their country; "to see that there may be some reason (says his Lordship) to suppose, that the Lycian women, by an intercourse with the Amazons, who had, it should seem, dwelt among them, were already previously prepared for the introduction of those customs, which were finally established in consequence of their patriotic merit in deprecating the wrath of Bellerophon, and in averting its fatal consequences."

This is the substance of what his Lordship advances to the origin of this extraordinary custom. He owns, that the traces are very obscure; and though he is conscious that such a speculation may be liable to ridicule, and he is aware of some objections to it, to be answered, the coincidence will notwithstanding be allowed to be curious and very remarkable. The well known pertinacious adherence to ancient manners among the eastern nations, may in some measure excuse our credulity; and we may still add to our authority, by supposing that this same Xanthus may probably have given his name to the Lycian city of that denomination; and consequently must have inhabited that very part of Lycia where, according to Plutarch, he is supposed more immediately to have flourished.

METELLUS, the surname of the family of the Ceculli at Rome, the most known of whom were — A general who defeated the Achaeans, took Thebes, and invaded Macedonia, &c.—Q. Cecullus, who rendered himself illustrious by his succeflles against Jugurtha the Numidian king, from which he was named Numilicus.—Another who favored from the flames the palladium, when Vealta's temple was on fire. He was then high priest. He lost his sight and one of his arms in the action; and the senate, to reward his zeal and piety, permitted him always to be drawn to the senate-house in a chariot, an honour which no one had ever before enjoyed. He also gained a great victory over the Carthaginians, &c.—Q. Cecullus Celer, another who distinguished himself by his spirited exertions against Catanus. He married the sister of Clodius, who disgraced him by her incontinence and licentiousness. He died 57 years before Christ. He was greatly lamented by Cicero, who shed tears at the loss of one of his most faithful and valuable friends.—L. Catius, a tribune in the civil wars of Cæsar and Pompey. He favoured the cause of Pompey, and opposed Cæsar when he entered Rome with a victorious army. He refused to open the gates of Saturn's temple, in which were deposited great treasures; upon which they were broke open by Cæsar, and Metellus retired when threatened with death.—Q. Cecullus, a warlike general who conquered Crete and Macedonia, and was named Macedonicus. He had four sons, of which three were confuls, and the other obtained a triumph, all during their father's lifetime. — A general of the Roman armies against the Sicilians and Carthaginians. Before he marched, he offered sacrifices to all the gods except Vealta; for which Metellus, the name of his Lordship, neglect of the goddess was so incensed, that she demanded the blood of his daughter Metella. When Metella was going to be immolated, the goddess placed a heater in her place, and carried her to a temple at Lamium, of which she became the priestess. — Another, furnamed Dalmaticus from his conquest over Dalmatia, A. U. C. 634.—Qimber, one of the conspirators against J. Cæsar. It was he who gave the signal to attack and murder the dictator in the senate-house. — Pius, a general in Spain, against Sertorius, on whose head he set a price of 100 talents and 20,000 acres of land.

METEMPSYCHOSIS, (formed of μετά "beyond," and έν "I animate or enliven"), in the ancient philosophy, the paliage or transmigrafion of the soul of a man, after death, into the body of some other animal.

Pythagoras and his followers held, that after death men's souls passed into other bodies, of this or that kind, according to the manner of life they had led. If they had been vicious, they were imprisoned in the bodies of miserable brutes, there to do penance for several ages; at the expiration whereof, they returned anew to animate men. But, if they lived virtuously, some happier brutes, or even a human creature, was to be their lot.

What led Pythagoras into this opinion was the persuasion he had that the soul was not of a perihable nature; whence he concluded that it must remove into some other body upon its abandoning this. Lucan treats this doctrine as a kind of officious lie, contrived to mitigate the apprehension of death, by persuading men that they only changed their lodging and only ceased to live to begin a new life.

Reuchlin denies this doctrine; and maintains that the metempsychosis of Pythagoras implied nothing more than a similitude of manners, dehors, and studies, formerly existing in some person deceased, and now revived in another alive. Thus when it was said that Euphorbus was revived in Pythagoras, no more was meant than that the martial virtue which had flown in Euphorbus at the time of the Trojan war, was now, in some measure, revived in Pythagoras, by reason of the great respect he bore the ælethe. For those people wondering how a philosopher should be so much taken with men of the sword, he palliated the matter, by saying, that the soul of Euphorbus, i. e. his genius, disposition, and inclinations, were revived in him. And this gave occasion to the report, that Euphorbus's soul, who perished in the Trojan war, had transmigrated into Pythagoras.

Vicinius asserts, that what Plato speaks of the migration of a human soul into a brute, is intended allegorically, and is to be understood only of the manners, affections, and habits, degenerated into a beastly nature by vice. Serranus, though he allows some force to this interpretation, yet inclines rather to understand the metempsychosis of a resurrection.

Pythagoras is said to have borrowed the notion of a metempsychosis from the Egyptians; others say, from the ancient Brahmans. It is still retained among the Brahmans and other idolaters of India and China; and makes the principal foundation of their religion. So extremely sure are they bigoted to it, that they not only
MET [614]

Metemps.

METEOROLOGY.

In the subject with difficulties attending it, we have an intimate acquaintance with the constitution of the atmosphere; with the nature of those powerful agents by which it appears to be principally influenced, viz. fire, light, and electric fluid; and with their peculiar modes of operation and action upon one another and upon the atmosphere, and this in every possible variety of circumstances. Nor is even all this sufficient: The various phenomena of rain, wind, snow, thunder, heat, cold, &c. are known to depend very much upon the situation of different places on the surface of the earth; and their occasional variations are with great reason supposed to proceed, partly at least, from changes which take place in the bowels of the earth: whence a meteorologist ought not only to be perfectly well acquainted with geography, but therewith mineralogy also; and that to an extent at which human knowledge will probably never arrive.

In a science so difficult, it is not to be supposed that any thing like a certain and established theory can be laid down: our utmost knowledge in this respect goes no farther as yet than to the establishment of a few facts; and in reasoning even from these, we are involved every moment in questions which seem scarcely within the compass of human wisdom to resolve.

In considering the subject of meteorology, it will be Caused properly to be admitted, that the whole atmospheric phenomena depend some how or other upon the action of the sun upon the earth, and the annual and diurnal revolutions of the latter. As these causes, however, are always invariably the same, why do we not find the same regularity in meteors that we do in other phenomena of nature? The eclipses of the sun and moon, for instance, which depend upon the different positions...
METEOROLOGY.

...itions of the earth and moon with regard to the great luminaries, are found to follow a certain and regular course; so that the very same eclipses, both as to quantity and duration, which happened before will happen again. But with meteors the case's quite different. Most of the atmospheric phenomena are so various and uncertain, that no person can pretend to reduce them to any kind of rule. Every succeeding year, for instance, differs in a vast number of particulars from that which preceded it, even in such as are the most similar to one another. Sometimes we find a number of years successively similar to one another, and another set quite different taking place immediately after them; and some have even fancied that this succession took place every 19 years, nearly the time of the revolution of the moon's nodes, though the observations on which this opinion is built are far from being sufficient to establish it; at any rate, the similarity between the phenomena of different years may sufficiently warrant us to conclude, that other causes besides the regular action of the sun and revolution of the earth are to be attributed to it. Some of these causes may be supposed to be fermentations and other commotions within the bowels of the earth itself; but as all fermentation is a regular process, and takes place only in certain circumstances, of which heat is a very considerable one, why is there not annually a certain quantity of this fermentation excited, and why are not general effects observed in proportion? It does not indeed appear, that the immense variety which occurs in meteorological appearances can by any means be accounted for but by the interference of some causes in their own nature irregular; that is, capable of such endless variety, that no assignable space of time is sufficient to exhaust it. These causes as they cannot be proved to exist either on the surface of the earth or in its internal parts, must be looked for in the celestial expanse itself. Sir Isaac Newton supposed the planets to be influenced by the comets, and that from the tails of the latter some of the finer parts of our atmosphere were produced. He even supposed, that from these bodies a quantity of water, imagined to be wafted in the various operations of nature, might be supplied. But if it is not unreasonable to suppose that comets answer some such purposes to the planets, because they are never seen without the planetary regions: and though their influence be not immediately perceptible, it is impossible to prove that they have none; nor is it possible that they have not; for we are very certain, that the influence of any object extends as far as its light, and how much farther we cannot tell. Considering the matter in this view, therefore, there is not a spot which can obscure the fun, a comet that can appear in the celestial regions, a planet that can approach the earth, or perhaps a belt or spot which can take place on Mars, Jupiter, or Saturn, which may not be productive of important changes in our atmosphere, and affect the meteors produced by it in many different ways.

It would no doubt be an error to have recourse to so many obscure causes, were there any plain and obvious ones from whence the phenomena could be deduced. But the endless variety of meteors which occur throughout every part of the globe, plainly show that the causes, whatever they are, must be infinitely varied also. The principal one is doubt the action of the sun upon the earth and atmosphere in its various situations: but this is regular; and, did nothing else interfere, would produce regular effects. Secondary causes probably are the action of the moon and planets, but these also are regular, though much more diversified than the former: so that we are at last obliged to have recourse to causes still more obscure and remote, as comets, spots on the sun, and changes taking place in the ethereal fluid which pervades the whole celestial expanse. These we must either assign as the remote causes of the phenomena of our atmosphere,
Evaporation is a principal cause of meteorological phenomena. In considering this operation, however, as different from what takes place in our chemical operations. The latter, evaporation is merely the effect of heat; and the process cannot go on without a considerable degree of it, especially if the vessel containing the fluid be close. In the natural way, the contrary, the process goes on under almost every degree of cold we know; the vapours ascend to an height which has never yet been determined; and, from the extreme cold which they sustain, show evidently that they are connected with our atmosphere by means of some other agent besides heat. From the continual ascent of vapour indeed, if the operations of nature were of the same kind with those of art, the upper parts of our atmosphere would be always involved in a fog, by reason of the condensation of the vast quantity which continually ascends thither: but so far is this from being the case, that in those elevated regions to which the vapours continually ascend, the air is much drier than at the surface of the ground. This was experienced by M. de Sauffure and M. de Luc in their journeys up the Alps. The air was there found to be exceedingly dry, and evaporation to go on much more rapidly than below; so that the surface of their bodies was parched up, and an excessive thirst took place by reason of the great abstraction of the moisture. The same dryness was manifest by the hygrometer, which could scarce ever be brought to indicate any moisture, even when our travellers were surrounded with clouds, hail, and rain. From many experiments, indeed, it is evident, that water, after being reduced into a state of vapour, is capable of undergoing a certain change, by which it lays aside its fluidity entirely, and even to appearance its specific gravity; so that it becomes, as far as we can judge, a substance totally different from what it was before. This may be understood from the common operation of making ice; for in that case, the water unites with the lime so intimately, that the whole assumes the form of a dry powder, extremely greedy of moisture, and which cannot be reduced to its former state of quicklime without undergoing a much greater degree of heat than the water by itself could bear. The same thing is manifest from mixing dry plaster of Paris with water; for thus a vast quantity of the water is fixed, and becomes in a manner solid. A still more remarkable instance is in fending the steam of water over red-hot iron; for there the fluid unites with the metal, that it cannot be expelled from it even by the heat of a burning-glass. Other instances are mentioned under the article Water: here we are to consider the changes which the element undergoes after being reduced to the state of vapour. The first of these is, its assuming the appearance of smoke or fog when mixed with the common atmosphere; which smoke, when examined by a microscope, appears to be composed of an infinite number of spherules of water, hollow, and filled with a fluid specifically lighter than air, by which means they ascend in it. As long as the aqueous vapour retains this visible form, it retains also its humidity, and will again become a liquid, and wet whatever comes in its way; and this the more readily, while it retains any sensible degree of heat. As the vapour cools in the atmosphere, it gradually assumes an aerial state, mixing itself with the air so as to be no longer distinguishable from it. In this state the air itself does not by any means appear to become more moist, but continually drier the more water it receives. This, however paradoxical it may seem, is a certain fact; for in summer, though we are assured that evaporation goes on very rapidly from the surface both of the sea and land, yet the air, far from being moist, is much drier than at any other time; and yet we know that the whole quantity evaporated is some how or other received by the atmosphere. After the water has attained to this state, our inquiries concerning it must in a great measure stop. We know not now, whether it has the form of small hollow spherules, or whether it really becomes part of the atmosphere itself, and assumes the form of what we call dephlogiJlicated air. From some experiments in which that kind of air is produced from water, we are certain, that part of this element is converted into air: but in these operations, the evaporation of the water is prevented by being carried on in close vessels; so that we cannot tell whether that which would be mere steam in the open air, becomes dephlogiJicated air in close vessels or not. From the immense waste of dephlogiJicated air, indeed, and the vast quantity which always surrounds the earth, we may judge that the water, after undergoing the natural process of evaporation, does really become changed into this aerial fluid; and thus we will have a more ample source of it than can be derived from vegetation, or any other cause with which we are yet acquainted.

On this subject M. de Luc has some very curious observations, built principally upon the new doctrine of de M. de Luc, the composition of water; which, though a position maintained by the antiphlogiJitians, is by no means inconsistent with the existence of phlogiston, but rather a proof of it. Our author first began to alter his sentiments concerning the aqueous exhalation of vapour in the atmosphere, from the circumstance already mentioned concerning the great dryness of the upper atmospheric regions already taken notice of.
A very remarkable instance of this was, that the feet of his cane dropped off during his journey up one of the Alpine mountains, which he never had observed it to do before. It is observed likewise, that the air in these elevated regions is somewhat drier in the night than in the daytime; for which M. de Luc gives the following reason, viz. that the air on the plains being condensed by the cold, the superior air must subside, and the air on the mountains of course be replaced by the drier air from above them; though he thinks that this dryness may also be imputed in part to some other cause. This increase of dryness in the night, however, seems less constant than that in the daytime. Our author has often arrived at the tops of mountains before sun-rise, and sometimes found the grass covered with dew; though he never had the good fortune to be able to determine the state of the air for want of an hygrometer: nor indeed could the appearance of dew be any certain indication of the state of the atmosphere, there being strong reasons to believe, that dew is occasioned in great measure by vegetables themselves; for grass, when covered with glass plates, was found to become moist as well as that which had been exposed to the open air. In this case, the plates became moist both on the upper and under sides; but when suspended a foot above the ground, they were found to be covered with dew only on the upper part.

The dryness of the air on the tops of high mountains was otherwise accounted for by M. Sauvure.—When on Mount Blanc, at the height of 7200 feet above the level of the sea, he found, that from six in the evening till half-past five the next morning, his hygrometer moved 21 degrees (the whole scale containing 100) towards dryness. But this he accounts for by saying, that from sunset to three or four in the afternoon, the quantity of vapours in the neighbourhood of the earth is continually diminishing, because they are not in the atmosphere, either in virtue of their own levity, or by means of a vertical wind, which he supposes to be produced by the heat of the sun; that, from the time just mentioned till next morning, their quantity increases in the lower strata, because the upper vapours re-descend in proportion as they descend; and that in the higher regions of the atmosphere, the reverse ought to be the case, as the upper strata are then left drier by the previous descent of the vapours. This argument, however, is contradicted by M. Sauvure himself in another part of his work; where he says, that in the middle of the day, when the sun is hottest, the air in the neighbourhood of the earth contains really more water than it does at the moment when a refreshing dew falls. It is besides impossible that a vertical wind can ever be occasioned by the heat of the sun; for this produces only a general expansion of the whole body of the atmosphere, as a condensation of it is occasioned by the action of cold: neither could any considerable quantity of vapour (supposing with M. Sauvure that it is a chemical solution of water in air) descend in the night time; for, according to him, this compound differs very little from common air in its capacity of being expanded and condensed. Neither, according to M. Sauvure himself, can any part of the water with which the air is combined defend at all, until some portion of the former becomes supersaturated with it, that is, till it has received more than it can hold in solution. But if this should happen to be the case, the superfluous quantity would then appear in the form of a mist or cloud, and the hygrometer would indicate extreme humidity; whereas the contrary indication constitutes the difficulty.

It is besides evident, from innumerable instances, that mere cold will not by any means occasion the condensation of aerial vapour. A most remarkable example of this is given by M. de Luc, in an account of a storm in which he was involved on one of the Alps. "Though the hygrometer (says he) was within 33° of extreme dryness, or 66° from extreme humidity, thick clouds formed around us, which obliged us to think of retracting: in a little time the summit of the mountain was surrounded by them; they spread and covered the whole horizon: a premature night surprised us in a very dangerous road; and we suffered one of the most violent tempests we ever experienced, of wind, rain, hail, and thunder. The storm lasted great part of the night, and extended all over the neighbouring mountains and plains; and after it had ceased, the rain continued, with only a few intermissions, till next day at noon. In one of these intervals, I examined the hygrometer on the outside of our cabin; it showed only 10° of more humidity than before; and even this increase was no more than what the difference of heat was capable of producing. Nevertheless, new clouds continually rolled around us; and the rain, which previously began again, accompanied us as it were by fits to the bottom of the mountain. When arrived there, we saw the clouds disperse entirely. I observed the hygrometer again in the open air; and though the earth was all drenched with water, and the heat of the sun much less, the hygrometer was 10° drier than it had been two days before, after a course of fine weather. Where was all this water, and all the ingredients of the storm, while the hygrometer showed such a degree of dryness in the very stratum where it was formed?"

M. de Luc adopts the opinion concerning vapour, which has been published in this work, under the articles Chemistry, Evaporation, and many others, viz. that it is a combination of fire with water. By vapour, however, he does not mean the visible stream rising from heated liquids, but that invisible and subtile fluid which is found to be formed even in water, and which of consequence disproves the hypothesis of those who hold that vapour is a solution of water in air. Our author, however, gives a solution of the difference betwixt what he calls fog or mist and vapour, which seems not founded upon any evident principle. According to him, this vapour cannot subsist unless the particles of water united to the fire be at a certain distance from one another. When this distance is lessened, a decomposition takes place by reason of the attraction of the aqueous particles to one another; and they then appear in their proper form of a liquid, the fire dispersing itself through the atmosphere. The smallest distance to which the particles can be brought without any decomposition,
METEOROLOGY.

varies according to the temperature; but is always constant in the same degree. When the thermometer stands at temperature, or thereabouts, watery vapours, compressed into the smallest space they can bear, are found to have between $\frac{1}{14}$th and $\frac{1}{16}$th of the elasticity of air; but have less than $\frac{1}{18}$th of its weight. If such vapour, however, be mixed with air, the minimum distance is greatly increased, by reason of the interposition of aerial particles; and thus it can sublimate under a much greater pressure than it could otherwise endure. In the heat of boiling water they can, without any mixture of air, bear the pressure of the atmosphere; for ebullition, under any given pressure, cannot take place until the vapour produced in the liquid has acquired a degree of expansive force sufficient to raise the liquid into bubbles under that pressure; and as long as the vapour retains this heat, it must continue capable of relieving the same pressure. As the heat abates, a decomposition begins; hence the opaque steam over boiling water, which, by becoming vapour again by uniting with the fire it meets with in a large space, is diffused by its expansibility.

Thus, vapours are continually undergoing decompositions and new vaporizations. This evaporation of the fusions and new vaporizations. This evaporation of the vapour is constant and always the same degree. When the weather will be fine, they glide uniformly on the brink of the mountain, and rise over it by a regular motion, somewhat slow. When rain impedes, the motion is irregular: they are alternately attracted and repelled by the mountain, and rise like elastic bodies rebounding. In a stormy season, particularly when there will be hail, the motions are still more rapid and irregular. This observation (add the Monthly Reviewer, from whom the above quotation was taken) may be confirmed in the mountainous countries of Great Britain; we have seen it among the mountains of Cumberland, particularly in the neighbourhood of Keswick. M. Reynier observes, and the observation is sufficiently near the surface not to be overlooked, that the appearance is electrical.

Before we proceed to give any solution of the decomposition of vapour, it will be necessary to consider a discovery on the subject of the nature of the fluid or fluids into which water is converted when it assumes a dry state in the atmosphere. In the experiments of Lavoiplier and others, it seems with great probability to be reduced into the two different kinds of air already mentioned; but M. de Luc does not think that the atmosphere.
M E T E O R O L O G Y.

Mephitic air, and that the clouds do not proceed from any dephlogisticated air, for these explode with extreme violence on the ignition, and that the upper strata of the mephitic air by the mixture of one-third of mephitic air, and the other, has a specific gravity of 0.7. Hence, when the atmosphere is taken into the lungs of an animal, some of the dephlogisticated part may enter the blood, and the phlogisticated part combining more intimately with the rest, may form fixed air or part of it appear in its proper form. In like manner, when the common atmosphere comes in contact with a vegetable, it is possible that the phlogisticated part may be absorbed by it, and the dephlogisticated part set free, which in the atmosphere may form new combinations, &c.

Granting this to be the case, and we can scarcely hope for a more probable conjecture on the subject, the decomposition of the vapour will be easily accounted for. If by any natural process the water can be converted into air, and if the latter is only water partially decomposed, then, by an inversion of the process, air may be inflammably reconverted into water, and will become visible in fog or mist, or be condensed into rain, consisting of greater or smaller drops, according to the degree to which this inverted process is carried. With regard to the means used by nature for carrying on these two opposite processes, we can say very little; because the agents concerned in them are entirely beyond the reach of our senses.
that an hygrometer of materials found on the top of the mountain, which might be said to be naturalized to the climate, the scale of variation might probably have been larger, though there is no reason to think that it ever would be so large as on the plain. For the same reason, as soon as the process has been inverted, by which water was converted into air, the evaporation is instantly taken place in the vapour that has been produced. We are to consider, that the atmosphere is never disposed to let fall the abode of the vapour it contains, for this would amount almost to an annihilation of it. Both processes go on at once; and it is only in particular parts that the reverse processes takes place. Thus clouds are formed: but as these seldom continue stationary, they do sooner come into a situation where the contrary operation is going on, than they begin to evaporate; and even in the very same place, as soon as the condensing process has stopped, the other begins; as we see that even in the moist and mild weather there is a constant evaporation going on; so that during the very time that rain is falling, the atmosphere is taking up what lies upon the ground.—Hence also we may see why the hygrometer indicated a greater degree of dryness in the night than in the day time, viz., because the evaporation from the earth is less during the night than in the day time.

II. Having now in some measure explained the phenomena of natural evaporation, we must next consider those of the Electricity of the atmosphere. Under the article Electricity, the nature of that fluid is so fully discussed, and its identity with the solar light rendered so probable, that there seems no farther occasion for entering into speculations upon the subject. We shall therefore, without taking any notice of the arguments of M. de Luc for its being a compound fluid, proceed to consider, according to the principles laid down in that article, how far electricity is concerned in producing the phenomena of meteorology. In this inquiry we must observe, that as none of the agents by which those phenomena are produced can act by themselves, but must always be assisted by the air, so we are not to ascribe any one phenomenon to the influence of a single agent without the air.

Thus, though in evaporation heat is principally concerned, and though evaporation is the principal cause of the appearance of clouds, &c. yet we do not find that heat is the sole cause of evaporation; neither is evaporation the sole cause of the appearance of clouds. In like manner, though electricity is the principal cause of many of the more grand phenomena of nature, yet electricity does not act by itself, but in conjunction with aqueous vapours; and when the atmosphere ceases to contain any of these vapours, it is highly probable that it ceases to manifest any of the common effects of electricity also.

The general electricity of the earth has, under the article Electricity, been shown to depend upon the absorption of the rays of the sun by the land and water, especially by the latter. As this absorption must undoubtedly be strongest in those places where the greatest quantity of rays fall upon the surface, it follows, that the emission must be greatest where the fewest are absorbed; that is, at the poles. Hence, were there no obstructions, the electrical fluid would issue forth in vast quantities at each pole, very little being emitted in the intermediate spaces. By reason of the resistance made by the great body of the earth, and the immense fields of snow and ice with which the polar regions are constantly enveloped, and which are much less perfect conductors than liquid water, the electric fluid, once absorbed, has no free passage through any particular part of the globe, and therefore forces out every where throughout the whole surface. This passage is facilitated by the moisture contained in the atmosphere; and thus the processes of evaporation and electricity assist one another: for where the air has for a long time been very dry, we find that the electric fluid cannot readily pass, and violent thunder and lightening, nay sometimes earthquakes, are ready to ensue. Hence also the common observation relative to thunder, viz. that there is seldom much thunder when it begins to rain before the thunder comes on: The reason is, that the rain, being an excellent conductor, facilitates the passage of the electric matter through the air, and keeps up the equilibrium without any violence or explosion.

As the electric matter gets out of the earth, it is naturally driven upwards to the higher parts of the atmosphere, where it probably assists in the decomposition of air, or revolving air into water, as has been already said. When clouds are formed, it presides strongly upon them by reason of their conducting nature: and hence all clouds, whether high or low, are found to be electrified; as are likewise all fog, of whatever kind. The fluid getting still higher and higher, at last ascends beyond the regions of our atmosphere, into the unknown spaces which are the residence of those first of all created agents which conduct the planets round the sun, and act as the primordia of nature.

Thus, there is a circulation in the electric fluid as there is in the water. It descends originally from the sun; pervades the whole substance of the globe; and percolating up through the atmospheres, returns to the sun from whence it came. As the sphere of its action in returning, however, must always increase, it follows, that after it has got beyond the bounds of the atmosphere, the signs of its action must continually become less and less, nay, most probably vanish entirely because it is there opposed by an immense quantity of similar matter, acting in an opposite or different direction from itself.

This last consideration leads into a very curious speculation, and in a very plausible manner answers that objection, the force of which it would otherwise be very difficult to avoid. If the electric fluid be no other than the light of the sun absorbed by the earth, and emitted from it again by innumerable small vents, how comes it to pass that it is not perpetually drained off from the upper regions as fast as it arrives without showing any sign of being refilled. The phenomena of thunder, of rain, of every meteor, manifestly show that it often meets with very great resistance; but this could not happen, unless there was something capable of refilling and counteracting the vehement impulse of all the electric fluid with which the earth is filled. This resistance is very evident: for if there were none, there could
Of Gan's troverted.

28 centrifugal forces any part of it to a distance from the rest, nor can make it circulate from one part of the air to another by means of conductors; but we cannot force any part of it to a distance from the ret, nor can we cause a small quantity expel a large one from any place, otherwise than by breaking the equilibrium; in which case the quantity which follows, is precisely equal to that which went before. In the case of electric fluid, we can make it circulate from one part of the air to another by means of conductors; but we cannot force any part of it to a distance from the ret, nor can we cause a small quantity expel a large one from any place, otherwise than by breaking the equilibrium; in which case the quantity which follows, is precisely equal to that which went before.

The phenomena of dew and hoar-frost stem from this law of aqueous and undecomposed vapour which always exists in the atmosphere; and which, being raised by mere heat, is condensed by mere cold, without undergoing that process by which water is changed into air. Hence it both ascends and descends; for if we cover a small space of ground with plates of glass, they will be wetted both above and below. The reason of this is, that the evaporation from the ground does not stop immediately after the air begins to cool, especially if it be covered with anything which prevents the access of the cold air, as the glass places do in this case. The cold air, therefore, acting upon the glass, condenses the vapour below it, in the same manner that the head of a hill or the receiver of a retort condenses the vapours which rise from the matter to be distilled. If the cold be very intense, hoar-frost appears instead of dew; which is nothing more than the dew frozen after it falls upon the ground, in the same manner that the vapour in a
METEOROLOGY.

warm room congeals on the inside of the windows in a frothy night. As this seems to be the whole process, it has not been observed that any electricity is concerned in the production of dew.

When the vapour has been thoroughly decomposed and become invisible, it very frequently returns back to its pristline state, so far as to assume the appearance of mist or fog. In this case, electricity appears evidently to be concerned; for Mr Cavallio has observed that all fogs are electrified. When the process has advanced farther, and the water begins to collect into drops, the electricity is still more remarkable; and it is with great reason supposed that it is by means of electrical repulsion that the drops of rain keep at a regular distance from one another. When the cold is intense and the electricity strong, the drops of water are frozen, and hail is produced; but snow indicates a more moderate degree of electricity; and a very violent cold, accompanied with a strongly electrical atmosphere, produces that excessively disagreeable vapour in the polar regions called frost-smoke, which is a general congelation of all the aqueous moisture contained in the atmosphere.

2. By violent electricity alone are produced the phenomena of thunder, lightning, fire-balls, ignes fatui, and the aurora borealis. In the phenomena of thunder, evaporation and the other agents by which rain and hail are produced are also concerned; though electricity is most remarkably so, and thunder and lightning of the most violent kind frequently occur without any rain. The ignis fatui, aurora borealis, large fire-balls, and the smaller ones called falling-flares, seem to depend upon electricity alone, without any aid from evaporation, or from heat or cold. Aurora borealis, indeed, is most common in the northern and northern parts of the world, where the cold is intense; though this seems to be owing, not to the cold, but to the natural emifion of the electrical fluid from the polar regions in much greater quantities than from others. The fire-balls commonly appear collected on the very extreme boundaries of the atmosphere, where, from the violent resistance already mentioned, the fluid is condensed as it were in a con cave shell, which it cannot by any means penetrate in great quantities in any particular place. Though these fire-balls, therefore, contain an immense quantity of this fluid, they can only proceed in an horizontal direction, and never fly perpendicularly up from the earth, as those will sometimes do which are formed nearer the ground. The ignis fatui seems to depend on the strong electricity of a certain portion of atmosphere, the cause of which is not well understood.

3. By the action of heat and electricity combined, are produced the phenomena of hurricanes, whirlwinds, and water-spouts. It is not, indeed, known in what manner these agents combine themselves to produce such tremendous effects; but it seems evident that electricity is concerned in them, as the sea-water becomes unusually clear before an hurricane, and many signs of electricity are likewise observed in the heavens.

4. The winds are supposed to proceed mostly from the heat of the sun raising the atmosphere, and occasioning a continual influx of fresh air to fill up the vacuum; but very violent winds are frequently observed where no such cause can be supposed to exist.—Thus, on the tops of high mountains the winds are commonly very violent; and mountainous countries, especially when cold, are for the most part subject to high winds. As the tops of mountains, however, are known to be strongly electrified by their attracting and repelling the clouds, we must suppose that this electricity has a considerable share in producing the winds which are generally so violent on their tops. This will appear the more probable, when we consider that frequently storms of wind, and those of the most violent kind, seem to be brought along with clouds; as, for instance, that mentioned under the article MALTA, in which a dreadful tempest, brought along with a cloud, almost destroyed the whole town.

Thus we have endeavoured to give a few sketchy ideas of the doctrine of METEOROLOGY: a more particular detail of the causes by which meteors are produced is given under the names of each of them as they occur in the order of the alphabet. With regard to their uses, those of the most magnificent and tremendous kind seem to be defined to preserve the balance of the electrical fluid in the atmosphere, the want of which would be productive of the most fatal effects to the world in general. The effects of the inferior ones are more confined, and are of use only to particular districts, scarcely ever extending their influence over a whole country. Thus the clouds, which produce rain for the purposes of vegetation, do not extend themselves over a whole country at once, but tranfforinly fly over different parts of it; so that when it is rain, for instance, in one place, it may be sunshine in another, thunder in a third, &c. It is, however, surprising to observe how equally these acts over the whole of a very large tract of land; so that though there is never precisely the same weather in two places twenty miles distant from one another, yet vegetation goes on without any perceptible difference in the one as well as the other; neither, unless there be some very remarkable difference in the weather of one year from that of another, will there be any perceptible difference in the crop. For a more particular investigation of this point, however, see the articles Vegetation and Weather.

For the application of meteorology to the fore-knowledge of the weather, see the article Weather.

METEOROMANCY, a species of divination by meteors, principally by lightning and thunder. This method of divination palled from the Tuscanans to the Romans, with whom, as Seneca informs us, it was held in high esteem.

METEOROMANCY, a species of divination by meteors, principally by lightning and thunder. This method of divination palled from the Tuscanans to the Romans, with whom, as Seneca informs us, it was held in high esteem.

METESSIB, an officer of the eastern nations, who has the care and oversight of all the public weights and measures, and fees that things are made justly according to them.

METHEGLIN, a species of mead; one of the moat
Method, most pleasant and general drinks the northern parts of Europe afford, and much used among the ancient inhabitants: (See Map). The word is Welsh, madgilin, where it signifies the name. — There are several ways of making it; one of the best whereof follows: Put as much new honey, naturally running from the comb, into spring-water, as that when the honey is thoroughly diluted an egg will not sink to the bottom, but be just suspended in it; boil this liquor for an hour or more, till such time as the egg will float above the liquor about the breadth of a grain; when very cool, next morning it may be barreled up; adding to each 15 gallons one ounce of ginger, as much of mace and cloves, and half as much cinnamon, all grossly pounded; a spoonful of yeast may be also added at the bung-hole to promote the fermentation. When it has done working, it may be closely stopped up; and after it has stood a month, it should be drawn off into bottles.

METHOD, the arrangement of our ideas in such a regular order, that their mutual connection and dependance may be readily comprehended. See LOGIC, Part IV.

METHODISTS, in ecclesiastical history, is a denomination applied to different sects, both Papists and Protestants.

I. The Papists Methodists were those polemical doctors, of whom the most eminent arose in France towards the middle of the 17th century, in opposition to the Huguenots or Protestants. These Methodists, from their different manner of treating the controversy with their opponents, may be divided into two classes. The one may comprehend those doctors, whose method of disputing with the Protestants was dilatory and unreasonable, and who followed the example of those military chiefs, who shut up their name. This extreme regularity, however soon brought a charge against them, perhaps not altogether without foundation, of being too scrupulous, and carrying their cavil to too great an height. In particular it was urged, that they laid too much stress upon the rubrics and canons of the church, infifted too much on observing the rules of the university, and took the scripture in too literal a sense; and to the name of Methodists two others were quickly added, viz, thosc of Sacramentarians and the Godly club.

The principal person in this club while in its infancy appears to have been Mr Morgan, and next to him Mr John Wesley. They visited the sick, and instructed a fund for the relief of the poor; and the better to accomplish their benevolent designs, Mr Wesley abridged himself of all his superfluities, and even of some of the necessaries of life; and by proposing the scheme to some gentlemen, they quickly increased their funds to 80 l. per annum. This, which one should have thought would have been attended with praise instead of censure, quickly drew upon them a kind of persecution; some of the seniors of the university began to interfere, and it was reported "that the college censors were going to blow up the Godly Club." — See Wesley. They found themselves, however, patronised and encouraged by some men eminent for their learning and virtue; so that the society still continued, though they had suffered a severe loss in 1730 in the death of Mr Morgan, who had indeed been the founder of it. In the month of October 1735, John and Charles Wesley,
Methodists, Mr Ingham, and Mr Delamotte went to a merchant in London, embarked for Georgia along with Mr Oglethorpe, afterwards General Oglethorpe. The design of this voyage was to preach the gospel to the Indians. By this time, however, it appears, that Mr Welley had embraced such notions as may without the least breach of charity be accounted fanatical. Thus in a letter to his brother Samuel, he conjures him to banish from his school the classics with their poison, and to introduce instead of them such Christian authors as would work together with him in building up his flock in the knowledge and love of God."

During the voyage such a profusion of worship was observed, as we cannot help thinking favoured more of a Pharisaical than Christian behaviour; an account of which, as a familiar firebrand would certainly be inculcated upon the disciples, and consequently must give a just idea of the principles of the early Methodists, we shall here transcribe from Mr Welley's Life. "From four in the morning till five each of us used private prayer; from five to seven we read the Bible together, carefully comparing it (that we might not lean to our own understandings) with the writings of the earliest ages; at seven we breakfasted; at eight we public prayers; from nine to twelve learned the languages and instructed the children; at twelve we met to give an account to one another what we had done since our last meeting, and what we designed to do before our next; at one we dined; the time from dinner to four we spent in reading to those of whom each of us had taken charge, or in speaking to them separately as need required; at four were the evening prayers, when either the second lection was explained (as it always was in the morning), or the children were catechised and instructed before the congregation; from five to six we again used private prayer; from six to seven I read in our cabin to two or three of the passengers, of whom there were about 80 English on board, and each of my brethren to a few more in theirs; at seven I joined with the Germans in their public service, while Mr Ingham was reading between the decks to as many as desired to hear; at eight we met again, to instruct and exhort one another; between nine and ten went to bed, when neither the roaring of the sea nor the motion of the ship could put away the refreshing sleep which God gave us."

As they proceeded on their passage, this austerity instead of being diminished was increased. Mr Welley discontinued the use of wine and flesh; confining himself to vegetables, chiefly rice and biscuit. He ate no supper; and his bed having been made wet by the sea, he lay upon the floor, and slept soundly till morning. In his Journal he says, "I believe I shall not find it needful to go to bed, as it is called, any more;" but whether this was really done or not, we cannot say.

The missionaries, after their arrival, were at first very favourably received, but in a short time lost the affections of 1,000 people entirely. This was owing to the behaviour of Mr Welley himself, who appeared not only capricious but frequently despotic. He particularly gave offence by insisting upon the baptism of children by immersion; and his excessive austerity with regard to himself did not tend to give his hearers any favourable opinion either of the superior sanctity or wisdom of Methodism, more than of their teacher. At last, on account of a difference with Mr Caufton the horse-keeper and chief magistrate of Savannah, which ended in a lawsuit, he was obliged to return to England.

Thus the cause of Methodism seemed to be entirely lost in Georgia. But Mr Welley was soon succeeded by a more popular and successful champion, viz. Mr George Whitefield; who having spent his time during the voyage in converting the soldiers with whom he sailed, arrived at Savannah in Georgia on the 7th of May 1738. Here he was received by Mr Delamotte, who was joined by several of Mr Welley's hearers, and became intimate with some other ministers. Mr Ingham had made some progress in converting a few runaway Creek Indians, who had a settlement about four miles from Savannah; but being obliged to return to England in a few months, this design was frustrated, and the Indians in a few years separated. During the short time that Mr Whitefield resided at Savannah, he became extremely popular; and indeed the influences of his success in the way of making converts are very surprising. However, he was obliged to return to England in the autumn of that year, that he might receive priest's orders. On his return to America in October 1739, he landed at Philadelphia, and infantly began his spiritual labours as in other places; being attended with astonishing success not only there but wherever he went. Palling through the colonies of Virginia, Maryland, North and South Carolina, the number of converts continually increased; but on his arrival at Savannah, he found the colony almost deserted. He now resumed the scheme he had formerly projected of building an orphan-house; and for this he made the first collection at Charleston in South Carolina, amounting to about 90 l. sterl. His zeal in the cause of religion, or of the colony, were not, however, sufficient to procure him the favour of those in power. On his return to Philadelphia, after a short stay at Savannah, the churches were denied him; but he was made ample amends by the success which attended his field preachings and private efforts. Religious societies were everywhere set up, and many were converted with symptoms of enthusiasm, different according to their various tempers and constitutions. During this excursion, he was so successful in his collection for the orphan-house, that on his return to Savannah he brought along with him money and provisions to the value of 900 l. sterl.

The success in Georgia was now greater than ever; but the many charities which it was necessary to supply, rendered it necessary in a short time for him to undertake another journey to Charleston. Here his principles met with the greatest opposition. He had lost the favour of the magistrates by his field-preaching, and was denied the sacrament. The opposition, however, was altogether fruitless: the number of converts increased wherever he went, and he now undertook a voyage to New England. In this place also the established clergy were his enemies; but the usual success attended his other endeavours, and procured 500 l. more for the use of the orphans in Georgia.

From the year 1741 to 1744 America was deprived of Mr Whitefield's preaching, who having spent that interval in England; but in 1744 he again set out for the
The remarkable successes which had hitherto attended his labours, now stirred up many opponents; and there had met with the greater successes, as none of the Methodists preachers whom he had left, were possessed of such abilities, either to gain the favour of those who heard them, or to defend their doctrines against objections. Mr Whitefield's successes however, was the same as before: he even found means to inspire the military chiefs with such sentiments of devotion, that Colonel Pepperell could not undertakes his expedition against Louisburgh, without first consulting Mr Whitefield; and great numbers of New-Englanders went volunteers, confident of victory, in consequence of the discourses of their teacher.

From the continent of America, Mr Whitefield took a voyage to the Bermudas and here, as every where else, he met with the most surprising success. Here, also, collections were made for the Orphan-house in Savannah, which were transmitted to that place.

Supposing it to be better for his cause to visit different countries, than to take up a permanent residence in one, Mr Whitefield left Bermuda in a few months, and did not return to America till 1751, when the Orphan-house was found to be in a very flourishing situation. After a short stay, he set sail again for Britain. Here he remained two years, and then set out on another visit to America, landing at Charleston on the 27th of May, 1754. His presence constantly revived the spirits and cause of his party, and added to their numbers wherever he went. Next year he returned to England; but after labouring in the usual manner, and meeting with the usual success there till the year 1759, he set sail again for America, and arrived at Virginia in the latter end of August. He now visited all the colonies, and found that great progress had been made in converting the Indians. On his arrival at Georgia, matters were found in a very flourishing situation, and he received the thanks of the Governor and principal people, for the great benefit he had been to the colony; which shows, that the stories, which had been so industriously propagated, concerning the avarice of him and other Methodists preachers, was partly at least, a prejudice against him.

He returned to England; and in 1750, made his seventh and last voyage to America, landing at Charleston on the 30th of November, the same year. He was still attended with the same success; and indeed it is impossible to read, without admiration, an account of the efforts made by himself and Mr Wesley, to propagate their tenets in the different parts of the world.

For a very considerable time, Mr Whitefield was the only Methodist who paid any attention to America; and in that country he was more popular than even in Europe. Towards the end of his life, several Methodists, having emigrated from Britain, formed distinct societies in New-York and Philadelphia. These quickly increased in number; and about the time that the war with Britain began, their numbers amounted to about 3000 in Virginia, Maryland, New-York, and Pennsylvania. They would probably have increased much more, had it not been for the imprudence of some of their preachers, who introduced politics into their discourses, and thus rendered themselves obnoxious to the people among whom they lived. Among those who hurt the cause in this manner, was Mr Wesley himself, who, by writing a piece intitled, A Calm Address to the American Colonies, would, in all probability, have ruined it, had not a gentleman, with whom he was connected, destroyed or sent back to England, the whole impression, as soon as it arrived in America, so that its existence was scarce known in that continent. At the conclusion of the war, Dr Coke, who, in 1775, had left a curacy in England, in order to join Mr Wesley, paid a visit to his friends in America; though it had been imagined that a total separation had taken place between the American and European Methodists. This breach was, however, made up by a manoeuvre of Mr Wesley; for no sooner had the Americans obtained their independence, than he, who had hitherto branded them with the name of rebels, sent a congratulatory letter on their freedom, from the "State and the Hierarchy," and exhorting them to "stand fast in that liberty with which God had so strangely made them free." To show his zeal in their service still farther, he gave ordination, by laying on of hands, to several preachers who were to embark for America, and consecrated Dr Coke one of the bishops of the Methodist Episcopal church in that country. He extracted also from the liturgy of the English church one for the American Methodists, taking particular care to expunge every expression that had a particular respect to the regal authority.

Such proceedings in one who had formerly professed such extraordinary attachment to the English church, could not but require an apology; and this was accordingly made in a pastoral letter transmitted to the American societies, and addressed "To Dr Coke, Mr Atburry, and our brethren in North-America." In this letter, he makes the following defence of his conduct: "Lorl! King's account of the primitive church convinced me, many years ago, that bishops and presbyters are the same order, and consequently have the same right to ordain. For many years I have been importuned, from time to time, to exercise this right, by ordaining part of our travelling preachers. But I have still refrained, not only for the sake of peace, but because I was determined, as little as possible, to violate the established order of the national church, to which I belonged. But the case is widely different between England and North-America. Here there are bishops who have a legal jurisdiction; in America there are none, neither any pastors-ministers: so that, for some hundred miles together, there is none either to baptize, or to administer the Lord's supper. Here, therefore, my scruples are at an end; and I conceive myself at full liberty, as I violate no order, and invade no man's right, by appointing and sending labourers into the harvest. It has indeed been proposed to define the English bishops: to ordain part of our preachers for America, but to this I object. 1. I define the bishop of London to ordain only one, but could not prevail. 2. If they consented, we know the fruits of their proceedings; but the matter admits of no delay. 3. If they would ordain them now, they would likewise expect to govern them; and how grievously would that entangle us. 4. As our American brethren are now totally disentangled, both from the State and the Eng-
Methodists wish hierarchy, we dare not entangle them again, either with the one or the other. They are now at full liberty firmly to follow the scripture and the primitive church; and we judge it best, that they should find their liberty wherewith God has so freely made them free.

Dr Coke, on the consecration of Mr Albury to the office of a bishop, made another apology. "The church of England (says he), of which the society of Methodists have till lately professed themselves a part, did, for many years, groan in America, under grievances of the heaviest kind. Subjected to a hierarchy which weighs every thing in the scale of politics, its most important interests were repeatedly sacrificed to the supposed advantages of England.—The churches were in general filled with the parasites and bottle-companions of the rich and great. The humble and most important interests of the oppressed flocks, yea, the representations of a general assembly itself, were condemned and defiled. Every thing faced must bow down at the feet of a party; the holiness and happiness of mankind be sacrificed to their views; and the drunken, the fornicator, and the extortioner, triumphed over bleeding Zion, because they were faithful abettors of the ruling powers. The memorable revolution has struck off these intolerable fetters, and broken the antichristian union which before subsisted between church and state. And had there been no other advantage arising from that glorious epoch, no other advantage arising from that glorious epoch, no other advantage arising from that glorious epoch, what right have you to call them Methodists.

Mr Hanlon, in his memoirs of Mr Wesley, observes, that 'the colonists, in the infancy of Methodism, conducted themselves with more propriety than the English. There was little or no persecution, nor any thing like a riot, except in one or two instances, which have been mentioned as the confequences of the animadversions on slavery; and even these were productive of no mischief. Not a creature was materially injured; no bones were broken, nor any lives lost; which was not the case in this country. Here many thousands of innocent people were subjected to the greatest indignities, and several were eventually sacrificed to the fury of their persecutors.'

While we commend the Americans for their behaviour in opposition to the brutality of English mobs, it may be proper to inquire into the sources of this di- minution. Something of this may have arisen from similarity of sentiment. The Americans from the first beginnings of colonization, had been accustomed to the doctrines of the old Puritans and Nonconformists, which, in many respects, have a near affinity to the Methodist tenets. The origin of Methodism in America..."
the foliage of some venerable oak, delivered his pr"emal lectures, and was a "preacher of righteousness to the people."

The American hospitality is supposed by Mr Hanfon to have been another reason for the affiduity of the Methodists teachers, as well as the conscientious of being well employed, and the satisfaction resulting from considerations of public utility. As many of the preachers were men of fervent piety, this reflection would have its full weight; and the instruction of the ignorant, and the reformation of the profligate, would be considered as the best recompence of their labours—Spreading themselves through the continent, they took in Nova-Scotia, Georgia, with the principal places in both Carolinas, Virginia, Maryland, Delaware, Pennsylvania, New-Jersey, and New-York; numbering upwards of 43,000 members of their society, exclusive of about 80 itinerants, and a considerable number of local preachers, who took no circuits, but affixed occasionally in the neighbourhood of their respective residence.

The large and expensive buildings which the colonists have erected for public worship, almost exceed credibility; and several colleges are founded for the instruction of youth. How far the proposed plan of uniting genuine religion and extensive learning will be carried into execution, time only can discover. It must materially depend on the character of the preachers and tutors, and the provision that shall be made for their support. Men of real erudition, will never be procured at low salaries; and it is in vain to attempt establishments of this sort, without a liberal provision for the professors in every branch of science. Two of these places are called Cokelbury and Wesley Colleges.

How they are endowed, or whether they propose to obtain authority to confer degrees, we are not informed. But perhaps they are rather schools than colleges; which indeed is a circumstance to be wished, as good grammar-schools are of the utmost service to the progress of literature.

The great success which attended the Methodists preachers in America, naturally determined Mr Wesley to try the West-India islands. The Moravians had already attempted to establish their principles in some of these islands; and in 1765, some preachers were sent from the Methodists in England to the West-Indies. In many of these they met with success. Societies were formed in Barbadoes, St Vincent's, Dominica, St Christopher's, Nevis, Antigua, St Eustatius, Tortola, and St Crois, amounting in all to near 5000 persons. At this time the whole number of Methodists in America and the West-Indies, amounted to about 48,302. These societies consist both of whites and blacks; on the continent they were mostly whites, but in the islands negroes. "But it is to be observed, (says Mr Hanfon,) that the subjection of the negroes, and the obedience in which they are trained, must inculcate a docility peculiarly favourable to the purposes of a mission." Some of the missionaries went also to St Vincent's, where they met with some success, and have established some schools, in which their children are carefully instructed in the principles of religion.

In January, 1769, (says our author,) Dr Coke paid a visit to Jamaica, and gave them a few fer-
6th, he does not date his conversion (committed in London, happening to become converts to the new
Abfolutely monstrous. As he made probably be the case, of diffipation; and teach the planters, if it be found im-
There was no invitation, nor any sion that too often prevailed, the emotions of the
service, in America, its teachers were equally indefatigable in general offence. Many

turn to England in 1738, he was not long wanting. He
to pray on the 6th of March following. This was

It has been debated among the leading men of the
Methodistical profession, whether the cause might not be served by sending missionaries to the East-Indies and to Africa; but these projects were dropped, as there was no invitation, nor any prospect of success if it had been adopted. A million has been formed to the new settlement called Kentucky, on the confines of the Indian territories, near the Mississippi. The dangers of the missionaries at the time they undertook this service, was certainly very great; yet such was their zeal for the cause, that they voluntarily offered themselves; but we are not yet informed what success they have met with.

While Methodism was thus making rapid progress in America, its teachers were equally indefatigable in Britain. A most remarkable particular, however, occurs with regard to Mr Wesley himself; for though he had gone to Georgia, as has been already related, to convert the Indians to Christianity, yet, on his return to England in 1738, he took it into his head that he, their teacher, was not yet converted; the reason was, that he had not the faith of assurance. This, however, was not long wanting. He arrived in England on the first day of February, and was blest with the assurance on the sixth of March following. This was immediately announced to the public; and the consequence, if we may believe him, was, that God then began to work by his ministry, which he had not done before. Being joined by one Kinchin, a fellow of Corpus, they travelled to Manchester, Holmes Chapel, Newcastle in Staffordshire, and other places, where they preached, exhorted, and converted on religious subjects, in public houses, stables, &c. Sometimes meeting with successes, and sometimes not. During this peregrination, Mr Wesley certainly displayed a great deal of superlition, which we must undoubtedly suppose to have been communicated to his hearers, and to have caused them to set on many occasions in a very ridiculous manner. An instance follows. The next day (says he), March 11th, we dined at Birmingham, and, soon after we left it, were reproved for our negligence there (in letting those who attended us go without either exhortation or instruction), by a severe shower of hail!" About the latter end of March, or the beginning of April, he and his companion began to pray extempore, leaving off entirely the forms of the church of England, to which he had formerly been so devoted. The doctrine of instantaneous conversion, which his imagination had suggested to him as a work performed on himself, was greedily received by some of his hearers, and all the converts to the new doctrine confirmed themselves, and contributed greatly to persuade others by declarations of their experiences, as they called them: however, though a knowledge of the saving assurance had been given on March Methodists, 6th, he does not date his conversion sooner than May 24th, of the same year.

This new doctrine of an instantaneous, and in fact miraculous impulse, though greatly relished by the enthusiastic part of the society, was very much disliked by others, particularly Mr Charles Wesley, his brother, who warned him of the mischief he was doing; though he himself was soon converted, and, what is very astonishing, two days before John Wesley himself. The particulars related of these miraculous conversions are truly disgraceful, and could not but bring into contempt the society which confided of such enthusiasts. "Many (says Mr Hanion) are represented as falling suddenly to the ground, in horror and agony not to be conceived, and rising again with equal expressions of peace and consolation." Their conversions were usually attended with these violent symptoms; and, for several years, few meetings occurred where Mr Wesley presided, without one or more instances of the same kind. It was not possible that such transfixions should pass without notice. The confusion that too often prevailed, the emotions of the persons affected, and the exultations of the refi, which were severally animadverted upon, gave great and general offence. Many inferred, that it must either be occasioned by the heat of the rooms, and the agitation of the animal spirits under discourses of the most alarming nature; or that it was mere artifice and hypocrisy.

In the mean time, two of the sons of a Mrs Hutton, in London, happening to become converts to the new doctrine, this lady was so much offended; that she wrote to Mr Samuel Wesley, informing him, that the was opinion his brother John had lost his senses; and re-
quitting, that the next time he came to his house, he, Mr Samuel, would either confine or convert him. All that could be done, however, to prevent the progress of the new doctrine was insufficient; and the first Methodist society was formed in London, on the first of May, 1738, when about 50 agreed to meet together once a week for free conversation, begun and ended with singing and prayer.

All this time, however, it seems that the conversion of Mr Wesley was far from being so complete as that of many of his hearers. He had preached and converted others, while he himself was absolutely unconverted. The knowledge of the true saving faith was only revealed to him on the 6th of March, and he did not experience its power till the 24th of May; and even after this, his doubts and fears were still to great, that on the 15th of June, he undertook a voyage to Germany, where, in the company of Count Zinzendorf, his faith seems to have been thoroughly confirmed.

On Mr Wesley's return, September 16th, 1738, he applied himself with the greatest assiduity and success, to the propagation of his doctrine. Multitudes of converts were made in various parts of the kingdom; and the reproaches poured upon him by his opponents, seemed to have rendered his zeal more fervent if possible than before. It is remarkably, however, that none of his old friends were now so much offended with his conduct or his principles, that they absolutely refused to keep company with him. His
and Methodists' original plan seems to have been, to make an union of clergymen, and delineate their principles by their means. But in this he succeeded so ill, that in a letter written in 1743, he wished for a clerical assistant, were he only in deacons orders: but adds, "I know not where, who is willing to call this lot with us; and I scarce expect I shall, because I know how little they are riveted in the service of the devil and the world before they leave the university." Finding at last that nothing could be done with them, he was obliged to have recourse to lay preachers; and easily seduced those who appeared to have the greatest talents for prayer and exhortation in the private meetings appointed for that purpose. Thus he at once, raised himself to be the head of a sect; as the lay preachers willingly yielded obedience to him who had the advantages of superior learning and abilities, and was besides in orders as a clergyman; and this obedience he did not fail on every occasion to exact.

If his doctrine had formerly given offence to the established clergy, the appointment of lay preachers was reckoned much worse; and the being appointed without any form of ordination whatever, which almost all of them were, subjected them to contempt and reproach, which their want of learning, and very sons at Gloucester; here he preached his first sermon; he had formed a society of religious persons at Gloucester: here he preached his first sermon on the Necessity and Benefit of Religious Society; here he became extremely popular, as well as at Bristol and London, while preparing to set sail for Georgia for the first time; and in all places to which he came, large collections were made for the poor.

He maintained the same doctrine with Mr. Wesley as to the new birth; which likewise gave offence; execution was soon commenced and reproach, which their want of learning. Mr. Wesley, the other great labourer in the vineyard, was equally indefatigable, and probably more successful than Mr. Wesley. Before entering into orders, he had formed a society of religious persons at Gloucester: here he preached his first sermon on the Necessity and Benefit of Religious Society; here he became extremely popular, as well as at Bristol and London, while preparing to set sail for Georgia for the first time; and in all places to which he came, large collections were made for the poor.

In the private way, however, his success was very considerable, at Edinburgh, Glasgow, Aberdeen, Dundee, and other places. In 1742, he paid a second visit to Scotland, a third one in 1746. In 1751, he visited Ireland for the first time; and preached to great multitudes, without being molested, even in places where others had been mobbed. From thence he returned to Scotland the same year, and speaks in very favourable terms of the attention the people there paid to their bibles. In 1752 and 1753, he again visited the same kingdom, and the last time distinguished himself by preaching against the playhouses in Glasgow. In 1756 he returned; and, by his animated discourses at Edinburgh against Popy and arbitrary power, was owned to have contributed very much to the increase of courage and loyalty in that country. Next year he again visited the Scotch capital, during the time that the general affembly, sat, and his sermons were attended by several of the members. At Glasgow, he made a large collection for the poor of that city, and from thence took a voyage.
Methodists voyage to Ireland. He was received with the usual affection by the lower classes of Protestants; but the Popish rabble, exasperated at his success, almost murdered him with stones. After passing through a great part of Ireland, visiting England and Wales, he made another visit to Scotland, where four clergymen now lent him their pulpits. His last visit was in the summer of 1756, where his congregations were as large as ever; and it is to his endeavours principally that we are to ascribe the great number of Methodists societies now existing in Scotland.

With regard to the religious principles of the Methodists, we cannot enter into any particular detail: neither indeed are there any doctrines peculiar to all included under that name, except the single o. of salvation by faith without works. In March, 1741, Mr Whitefield being returned to England, separated from Mr Wesley and his friends, "because he did not hold the decrees." Here was the first breach, which warm men persuaded Mr Whitefield to make, merely for a difference of opinion. Those indeed who believed universal redemption, had no desire at all to separate; but those who held particular redemption, would not hear of any accommodation, being determined to have no fellowship with men that "were in such dangerous errors." So there were now two sorts of Methodists so called: those for particular, and those for general, redemption.

Not many years passed, before William Cudworth and James Relly, separated from Mr Whitefield. These were properly Antinomians, absolutely avowed enemies to the law of God, which they never preached, or preached to preach, but termed all *Legalists* who did. With them, preaching the law was an abomination. They had nothing to do with the law. They would preach Christ, as they called it; but without one word either of holiness or good works. Yet these were still denominated *Methodists*, although differing from Mr Whitefield, both in judgment and practice, abundantly more than Mr Whitefield did from Mr Wesley.

In the mean time, Mr Venn and Mr Romaine began to be spoken of: and not long after Mr Maden and Mr Beridge, with a few other clergymen, who, although they had no connection with each other, yet preaching salvation by faith, and endeavouring to live accordingly, to be Bible-Christsians, were soon included in the general name of *Methodists.* And so indeed were all others who preached salvation by faith, and appeared more sincere than their neighbours. Some of these were quite regular in their manner of preaching: some were quite irregular, (though not by choice; but necessity was laid upon them, they must preach irregular, or not at all): and others were between both; regular in most, though not in all particulars.

In 1762, George Bell and a few other persons began to speak great words. In the latter end of the year they foretold that the world would be at an end on the 28th of February, Mr Wesley, with whom they were then connected, withstood them both in public and private. This they would not endure; so, in January and February, 1763, they separated from him, under the care of Mr Maxfield, one of Mr Methodists Wesley's preachers. But still Mr Maxfield and his adherent, even the wildest enthusiasts among them, go under the general name of Methodist, and so bring a scandal upon those with whom they have no connection.

At present, those who remain with Mr Wesley are mostly Church-of-England men. They love her articles, her homilies, her liturgy, her discipline, and unwillingly vary from it in any instance. Mean time all who preach among them declare, *we are all by nature children of wrath,* but by grace we are saved through faith; saved from both the guilt and from the power of sin. They endeavour to live according to what they preach, to be plain Bible-Christsians; and they meet together at convenient times, to encourage one another therein. They tenderly love many that are Calvinists, though they do not love their opinions; yea, they love the Antinomians themselves; but it is with a love of compassion only, for they hate their doctrines with a peculiar hatred: they abhor them as they do hell-fire: being convinced nothing can so effectually destroy all faith, all holiness, and all good works.

We shall conclude this article with the words of Mr Hanfon, which must certainly be accounted just, whatever objections may be made to some parts of the principles or behaviour of the Methodists. "If they profess not much knowledge, which, however, we do not know to be the case, it is at least certain, they are not deficient in zeal: and without any passionate desire to imitate their example, we may at least commend their endeavours for the general good. Every good man will contemplate with pleasure the operation of the spirit of reformation, whether foreign or domestic; and rejoice in every attempt to propagate Christianity in the barbarous parts of the world: an attempt which, if in any tolerable degree successful, will do infinitely more for their civilization and happiness, than all the united energies of those boasted benefactors of mankind, the philosophic infidels."

Methodists (Methodici), in the history of medicine, a sect of ancient physicians, who reduced the whole art of healing to a few common principles or appearances. The Methodists were the followers of Theophilus; whence they were also called *Theophilius.* They were strenuously opposed by Galen in several of his writings; who scrupled not to assert, that the methodical hereby ruined everything that was good in the art.

Quincy mistakenly uses *Methodists (Methodici),* for those physicians who adhere to the doctrine of Galen, and the schools; and who cure with bleeding, purges, &c. duly applied according to the symptoms, circumstances, &c. in opposition to empirics and chemists, who use violent medicines, and pretended secrets or nostrums.

Methodius, a father of the church, bishop of Olympus or Patare in Lycia, and afterwards of Tyre in Palestine, suffered martyrdom at Chalcis in Greece towards the end of Diocletian's persecution in the year 302. He conducted many works in a clear and elaborate style, which were extant in Jerome's time. Father Combeus collected several considerable fragments of this writer, cited by Epiphanius, Photius, and others;
others; and printed them with notes of his own, together with the works of Amphilochius, and Andreas Cretenis, in folio, Paris, 1614.

METHUSELH, the son of Enoch, and father of Lamech, was born in the year of the world 687, and died in 696, being the very year of the deluge, at the age of 969, which is the greatest age that has been attained to by any mortal man upon earth (Gen. v. 21, 22, &c.). According to the text of the septuagint, Methuselah must have lived 14 years after the deluge; and according to other copies, he died six years before it: but it is generally agreed on, that these copies, as well as the septuagint, are corrupted in this place.

METYMNA (anc. geog.), a town of the island of Lesbos. It was the second city of the island in greatness, population, and opulence. Its territory was fruitful, and the wines it produced excellent. It was the second city in Lesbos. It was the second city of the island of Lesbos after the deluge; and according to other copies, it was the second city of Lesbos. It was the second city of the island of Lesbos after the deluge. It was the second city of Lesbos.

METOPE, in rhetoric, is a trope in which one word is put for another, on account of the near relation. The term metoposcopy, says, that seven lines are examined in the forehead, and that each line is considered as having its particular planet; the first is the line of Saturn, the second of Jupiter, the third of Mars, &c. Metoposcopy is only a branch of physiognomy, which finds its conjetures on all the parts of the body.

METRE, metre, in poetry, a system of feet of a just length.

The different metres in poetry, are the different manners of ordering and combining the quantities, or the long and short syllables; thus hexameter, pentameter, iambic, sapphic verses, &c. confit of different metres or measures. See Hexameter.

In English verses, the metres are extremely various and arbitrary, every poet being at liberty to introduce any new fomt that he pleases. The most usual are the heroic, generally consisting of five long and five short syllables, and versis of four feet, and three feet, and a caesura or single syllable.

The ancients, by variously combining and transposing their quantities, made a vast variety of different measures, by forming spondees, &c. of different feet. See Poetry.

METRITES, a Grecian measure, containing something more than nine English gallons. See Measure.

METRICAL VERSES, are those consisting of a determinate number of long and short syllables; as those of the Greek and Latin poets. Capellus observes, that the genius of the Hebrew languages is incompatible with metrical poetry.

METODORUS, a Greek physician, born at Chios, was the disciple of Democritus the philosopher, and the master of Hippocrates the physician, and Anaxarchus the philosopher. He maintained, that the universe is infinite and eternal; but his works are lost. He lived about 444 B.C.

METROCOMIA (from μῆτρα mother, and πόλις town or village), a term in the ancient church-history, signifying "a borough or village that had other villages under its jurisdiction." What a metropolis was among cities, a metrocoma was among country towns. The ancient metrocoma had each its choriopetous or rural dean, and here was his fee or residence. See Metropolitan and Choriopetous.

METRONOMI, the name given by the Athenians to five officers in the city and ten in the piraus, whose duty it was to inspect all sorts of measures, except those of corn. The piraus was the greatest mart in Attica.

METROPOLIS (from μῆτρα mother, and πόλις city), the capital of a country or province; or the principal city, and as it were the mother of all the rest.

The term metropolis is also applied to archiepiscopal churches, and sometimes to the principal or mother-church of a city. The Roman empire having been divided into 13 dioceses and 120 provinces, each diocese and each province had its metropolis or capital city, where the proconsul had his residence. To this civil division the ecclesiastical was afterwards adapted, and the bishop of the capital city had the direction of affairs, and the pre-eminence over all the bishops of the province. His residence in the metropolis gave him the title of metropolitian. This erection of metropolitans is referred to the end of the third century, and was confirmed by the council of Nice.
A metropolitan has the privilege of ordaining his suffragans; and appeals from sentences passed by the suffragans are preferred to the metropolitan.

Metropolis (anc. geog.), a town of Acrania, a little to the south of Stratos. Another, of Lydia; situated between Colophon and Priene, near the Cayster. — A third of Phrygia; sacred to the mother of the gods, who was here worshipped.— A fourth Metropolis of Eleutherae, a district in Thessaly, to the east of Gomphi, and the last town of that district. Metropolis, the people.

Metulium (anc. geog.), a considerable city of Liburnia, at the siege of which Octavius Caesar was wounded. Said to be the metropolis, and situated on two eminences, intersected by a valley (Appian.) Now generally thought to be Melting in Carniola. E. Long. 16. N. Lat. 46. 5.

Metz, an ancient, large, and strong town of France, and capital of the territory of Metz, with a citadel, a parliament, and a bishop's see, whose bishop assumes the title of a prince of the empire. The cathedral church is one of the finest in Europe, and the square called Capitole and the house of the governor, are worth seeing. The Jews live in a part of the town by themselves, where they have a synagogue. The sweetmeats they make here are in high esteem. It is seated at the confluence of the rivers Meus and Seille. E. Long. 6. 16. N. Lat. 49. 7.

Metzu (Gabriel), an eminent painter, was born at Leyden, 1615. His subjects were usually taken from low life; but they were all designed after nature, and surprisingly well represented; such as women selling fish, fowls, or hares; sick persons attended by the doctor; chemists in their laboratories; dead game, painters rooms, shops, and drawing schools hung with prints and pictures; all which subjects he composed well, and finished them with extreme neatness, as he likewise did his portraits. He spent a great deal of time on his pictures, which has occasioned their scarcity and dearness at this time; and besides, it is confidently said, the Dutch prevent their being carried out of their own country, as much as possible. So that those paintings of Metzu, which are sometimes seen in the collections of other kingdoms, are either obtained by chance, or purchased at large prices. Though it ought also to be remembered, that the value set upon the works of this master throughout Holland and Flanders, has induced several painters to endeavour at imitating and copying his works, which having gradually circulated abroad, and being a little mellowed by time, are now called originals. He died in 1678.

Mevania (anc. geog.), a town of the Cipape, a province Umbria; seated at the confluence of the Tina and Clitumnus, on the Via Flaminia, famous for its herds of white cattle brought up there for sacrifice; the white colour said to be owing to the waters of the Clitumnus (Virgil). Mevania was the country of Propertius, beloved by the people. Now said to be Bevagna, in the territory of the Pope.

Meulen (Anthony Francis Vander), painter of battles, &c. was born at Brussel in 1634; and was a disciple of Peter Snayers, a battle-painter, of considerable note. Some of his compositions happening to be carried to Paris, were shown to M. Colbert; who soon discerned the abilities of Vander Meulen, and by his generous offers induced him to leave his native city, and settle at Paris. Here he was employed by Louis XIV. and had an appointment of 2000 livres pension, besides being paid for his work. He attended that monarch in most of his expeditions in the field, and designed on the spot the sieges, assaults, encampments, and marches, of the king's armies, also the views of those cities and towns memorable by any degree of success; and from those sketches he compos'd the paintings, which were intended to perpetuate the remembrance of those military exploits. He died in 1690. The principal works of this master are at Versailles and Matli; but many of his easel pictures are dispersed through England, France, and Flanders.

Meursius (John), a learned and laborious writer, born at Lofdun, near the Hague, in 1579. He early discovered a fondness for polite literature and the sciences; and went to study the law at Orléans with the son of Barneveldt, whom he accompanied in his travels. In 1610, he was made professor of history at Leyden, and afterwards Greek professor. In the following year, the magistrates of the United Provinces proved how high their opinion was of his abilities, by fixing on him to write the history of his country. Meursius married in the year 1612. His wife, Anna Catharina Bilberbeccia, descended from a very ancient and noble family in Angermond, a city of Pomerania, possessed many amiable qualities, and rendered his domestic life remarkably happy, while he discharged the duties of his professorship with an affability equal to his abilities. At the same time the republic of letters did not lose the advantages to be derived from his labours; for during the fourteen years of his residence at Leyden, the works which he published were more numerous than those which had been prefixed to the world by the whole body of professors from the original foundation of the university in 1575.

Meursius's writings had now diffimulated his reputation in every part of Europe; nor had the fame of his diligence and talents as a professor spread with less rapidity. In so high a rank, indeed, did he stand among his literary cotemporaries, that Chriustian IV. king of Denmark, conferred on him the place of historiographer royal, and invited him to undertake the professorship of history and politics in the academy of Sor, which was founded by king Frederick II. although the revival of its honours and dignities may be dated from this period, when it seemed to be again founded under the auspices of Chriustian IV. Meursius and his family left Leyden in the year 1635. On his arrival at Sora, he was received with the most friendly tokens of regard by his majesty and the Danish nobility, and more particularly by Chancellor Rosenkrantz, on whom he bestowed very ample praises in one of his letters. Here he resided, equally beloved and admired, for above twelve years. His pupils were not very numerous, but his exertions never relaxed. Those hours likewise which were not devoted to the duties of his professorship, he employed in reviving the works of the ancients, and in philological disquisitions. His health was not much impaired by the intensity of application; but in the year 1638 he had a violent attack of the stone, from which disorder he
In a letter to Volusius he thus describes his melancholy condition: "The state of my health during the whole of the last winter has been truly deplorable. My sufferings from the jaundice have been really dreadful. I have voided so many, that the repeated discharges brought on a wound which emitted blood for above four months. I was next attacked by a tertian fever, which increased constantly, and produced an universal languor of body, a dejection of spirits, and a total loss of appetite. But, thank heaven, I have now in some measure recovered my strength, and gotten the better of these complaints." He recovered from this attack; but in the following year the disorder returned with redoubled violence, and brought on a consumptive which terminated his existence on the 20th day of September 1639. He left behind him a son, who was named after him, and one daughter.

So mild were the dispositions of Meurinus, that in all his writings he constantly avoided literature disputes. He was sometimes unavoidably drawn into them; but constantly endeavoured to promote a reconciliation, rather than widen any breach, by his replies to the attacks of his adversaries. In his friendships he was firm and affectionate. Of his domestic life, whatever is known has been gathered from his letters. The same easy tranquillity seems to have attended him in every situation. In his family he was particularly fortunate. In his son, to whom he gave his own name, he seemed to behold his own youth renewed. The same application, the same eagerness in the pursuit of knowledge, marked the conduct of this promising young man; who did not long survive his father, but died soon after he had recommended himself to the notice of the learned world by his publications. They were only three in number; but displayed so much solid learning, that they have been alligned to the father, John Meurinus, by Labbe Beughem and others. This mistake was occasioned as much by the similitude of their names, as by the nature of their works, and their manner of treating philological subjects.

His works may be divided into four classes, of which each might form a separate volume if they were ever to be republished. Meurinus himself, indeed, in one of his letters to Volusius, proposes such a division. From that epitite, and from another which the younger Meurinus sent to G. I. Volusius, who strongly advised him to republish the whole of his father's writings, and from the collections of his posthumous works which have appeared from Struvius, Grocchupin, Moller, and some others, a catalogue of his works might be formed. Some allusion will also be derived from the indexes published in their respective works, by Hanks, Defelius, Wettenius, and Barholomew. The plan which Meurinus recommends for publishing his works, is to inerit in the first volume all that he has written relative to Athens; in the second, his historical pieces; in the third, his miscellaneous dissertations; and in the fourth, the various authors which he published, with his notes and corrections.

Before we conclude, one mistake with respect to this great scholar, which prevails very generally, must be corrected. A scandalous and indecent work, which is intitled Meurii elegiast Latinii formantis, and has Aloisia Sigia e Sabinae Sojusam annuo to it is very falsely attributed to Meurinus; nor indeed are the Satires with more reason assigned to Aloisia Sigia, who was a Spanish lady eminent for her piety and virtue. The real author of these infamous productions was Weltensanus, an advocate at Copenhagen, who probably assumed the name of Meurinus, in order to shield himself from the disgrace which would naturally have attended the writer of such a performance. To infer the sale of his book, however, might have been the principal view of Weltensamus. At any rate, such a conclusion may be fairly deduced from the disfigured title, and from his desire that the world should affix it to a character so distinguished and respectable in almost every branch of various literature.

MEW, Sea-mew, or Seawall. See Larus.

Winter-mew, or Craddy-mould, in ornithology. See Larus.

MEWIN, the falling off or change of hair, feathers, skin, horns, or other parts of animals, which happens in some annually, in others only at certain times of their lives: but the generality of beasts mew in the spring. An old hart calls his horns sooner than a young one, which is commonly in the months of February and March, after which they begin to button in March or April: and as the sun grows strong, and the season of the year puts forth the fruits of the earth, so their heads grow, and are filled full by the middle of June. It is to be observed, that if a hurt be felt before he has a head, he will never have any; and if he be felt after he has a head, he will never call his horns; again, if he be felt when he has a velvet-head, it will always be so, without burning or burning.

MEXICO, a province of the Spanish empire in America, once a celebrated kingdom, the most powerful and civilized in the New World.

In former times the country now distinguished by the name of the Vale of Mexico, was called Aztlan, into which the rest of it being divided into the kingdoms of Mexico, Acolhuacan, Tlacopan, and Michuacan; the republics of Tlaxcallan, Cholollan, Huexotzinco, and some other states. Of these the most westerly was Michuacan, which to the east and south had Mexico; on the north the country of the Chichemecas, and some other barbarous nations; on the west the lake of Chapallan, and some independent tribes. Had four considerable cities; the capital being seated on the easter shore of a beautiful lake named Pansnar. The kingdom of Tlacopan lay betwixt Mexico and Michuacan, and was of very small extent; its capital was seated on the western border of a lake called Tezcuco, four miles westward of that of Mexico. Acolhuacan was the most extensive as well as the most ancient. It was bounded on the east by the republic of Tlaxcallan; on the south by a province of Mexico named Ciazco; on the north by the country of the Huexctecas; and on the west by other states of Mexico, terminating at the lake Tezcuco. Its length from south to north was somewhat more than 200 miles, and its breadth about 60; it was very populous, and had a great many cities. On the eastern bank of the lake of Tezcuco was situated the capital of that territory, 15 miles to the eastward of that of Mexico; and no less celebrated for its antiquity than the polite and civilized civilization of its inhabitants. Tlaxcallan, or Tlacopan, a celebrated republic, had Acolhuacan to the west;
The Toltecans, during their journeys, were conducted by a number of chiefs; who, by the time they arrived at Tōllantzinco, were reduced to seven, and, after their final settlement, the government was changed into a monarchy; but by what means, or on what account, we are not told. Their chief king began his reign in 607, and their monarchy lasted 384 years, during which time they reckoned eight princes.

We are not, however, to imagine that each of their kings lived long enough to make up this space. It was a custom among them that the name of the king should be continued for 52 years, and no longer, from the time he ascended the throne. If he died within that period, the government was carried on in his name by a regency; if he survived, he was obliged to resign his authority. During the four centuries that the Toltec monarchy continued, they had increased very considerably in number, and had built many cities; but when in the height of prosperity, almost the whole nation was destroyed by a famine occasioned by drought; and a pestilence, probably the consequence of the former. "According to Torquemada (says our author), at a certain festival-ball made by the Toltecs, the sad-looking devil appeared to them of a gigantic size, with immense arms, and in the midst of the entertainment he embraced and suffocated them; that then he appeared in the form of a child with a putrid head, and brought the plague; and, finally, at the perfusion of the same devil, they abandoned the country of Tula."

The histories, according to Clavigero, are taken from the symbolical representations or hieroglyphics, by which this piece of history was represented, and which the Spanish author has taken literally. Be the cause what it will, however, it is certain that the surviving Toltecans abandoned their country, and dispersed themselves among the surrounding nations, where they were well received, on account of their superior knowledge and civilization. They were succeeded by the Chichemecas, a much more barbarous people, who came from an unknown country called Amaquemecan, where they had for a long time resided; but of which no traces or remembrance can be found among any of the American nations known to Europeans; so that Clavigero supposes it must have been very far to the northward.

The motive which the Chichemecas had for leaving their own country is not known. They were eighteen months on their journey, and took possession of the plateau country of the Toltecs about an hundred years after the former had left it. They were much more uncivilized than the Toltecs; but, however, had a regular form of monarchical government, and in other respects were less disgusting in their manners than some of the neighbouring nations. The last king who reigned in Amaquemecan before the departure of the Chichemecas, had left his dominions between his two sons, Auchcaultli and Xolotl, and the latter conducted the new colony. Having proceeded from the ruins of Tula towards Chempoaalla and Tepepoli, Xolotl sent his son to survey the country. The prince crossed the borders of the lakes and the mountains which surround the vale of Mexico; then ascending to the top of a very high one, he viewed the whole country, and took possession of it in the name of his father, by shooting four arrows to the four winds. Xolotl being informed by his son of the nature of Xolotl, the country, chief for the capital of his kingdom Te-nyauca, about six miles to the northward of the city Xolotl of Mexico, and distributed his people in the neighbouring territory; but as most of them went to the northward, that part obtained the name of the country.
As soon as the nuptial rejoicings were over, Xolotl divided his territories into three parts, assigning one to each of the princes. Acolhuatzin, who had married his eldest daughter, had Azoekazalco, 18 miles the dominions of Xolotl, to the wellward of Tezcuco; Chiconquauhtli, who married the other, had a territory named Xalocan; and Tzontecomatl, who married the lady of inferior rank, had one named Coatlichan. The country continued for some time to flourish, population increased greatly, and with it the civilization of the people; but as these advances, the vices of luxury and ambition increased in proportion. Xolotl found himself obliged to treat his subjects with more severity than formerly, and even to put some of them to death.—

This produced a conspiracy against him, which, however, he had the good fortune to escape; but while he meditated a severe revenge on the conspirators, he was seized with the distemper of which he died, in the fortieth year of his reign, and in a very advanced age. His corpse was adorned with various figures of gold and silver, and placed in a chair made of gum copal and other precious substances, where it remained five days, until the lords summoned to the funeral attended. The body was then burnt, and the ashes deposited in an urn of the hardest stone. This urn was kept exposed in the palace for forty days, during which time the nobility attended with lamentations; after which it was carried to a cave in the neighbourhood, with similar demonstrations of grief.

Xolotl was succeeded by his son Nopaltzin, who at the time of his accession was supposed to have been about sixty years of age. In his time, the tranquillity of the kingdom, which had begun to suffer disturbance under his father, underwent much more violent shocks, and civil wars took place. Alcohuatzin, the only one of the three princes who remained alive, thinking the territory he possessed too narrow, made war upon the lord of a neighbouring province named Tapotzotlan, and deprived him of his territory. Huetzin, son to the late prince Tzontecomatl, lord of Coatlichan, fell in love with the grand daughter of the queen, a celebrated beauty, but was rivalled by a neighbouring lord, who determined to support his pretensions by force of arms. Huetzin, however, got the better, defeated and killed his adversary, and then possessed himself of the lady and his estate. This was followed by a rebellion of the whole province of Toltzantzinco, so that the king himself was obliged to take the field. As the rebels were very numerous, the royal army was at first defeated; but having at last received a strong reinforcement, the rebels were overcome, and their ringleaders severely punished. The king did not long survive the restoration of tranquillity to his dominions. He died in the thirty-second year of his reign, and ninety-second of his age, leaving war upon the eldest son of Tlotzin.

We are not informed of any particulars relating to Tlotzin; this prince farther than he was of an excellent disposition, greatly beloved by his subjects, and, though addicted to peace, yet audacious in exercising his people in the art of war. He reigned thirty-five years, and died of a very painful disease.

Quinatzin, the son and successor of Tlotzin, proved a vain and luxurious prince. His accession to the Acolhua throne was celebrated with much greater pomp than prince, any
any of his predecessors. Xolotl had removed his court from Tenayuca to Tezcuco; but being disgraced with this last place, on account of the conspiracy formed against him there, he had returned to Tenayuca.—There the court continued till the reign of Quinatzin, who removed it back to Tezcuco. In his passage thither, he caused himself to be transported in an open chair or litter, carried on the shoulders of four of his principal lords, while four others held an umbrella over his head. Before his time the kings had been accustomed to walk upon their feet like other people; but this example, once set, was quickly followed by all the lords and great people in the kingdom, who now trode out one another in expensive and ostentatious grandeur.

The reign of Quinatzin, though tranquil at first, was soon disturbed by dangerous revolts and rebellions. These first broke out in two fates, named Maztillen and Totopoe, situated among the northern mountains. The king, having collected a great army, marched without delay against the rebels, and challenged their leaders to come down and fight him in the plain.—This challenge being accepted, a furious engagement ensued, in which, though great numbers fell on both sides, no decisive advantage was gained by either party. Frequent engagements took place for the space of forty days, until at last the rebels, perceiving that their own number were daily diminishing, without any possibility of being recruited like the royal army, made a final surrender to the king, who punished the ringleaders with great severity. Tranquility, however, was not yet restored: the rebellion spread to such a degree, that the king was obliged not only to take the field in person, but to employ six other armies, under the command of faithful and experienced generals, to reduce the rebels. Thofo proved so successful in their enterprises, that in a short time the rebellious cities were reduced to obedience, and the kingdom enjoyed the blessings of peace during the long reign of Quinatzin, which was said to have lasted on the throne for no less than sixty years. He was succeeded by his son Tecutlalti; but as the affairs of the Aztecs now began to be connected with those of the Mexicans, it will be proper to give some account of that people.

The Mexicans, called also the Aztecs, dwelt till the year 1160 in a country called Atlan, situated to the north of the gulf of California, as appears by the route they pursued in their journey; but how far to the northward we are not certainly informed. Betancourt makes it no less than 2700 miles, and Boturini says it was a province of Acolhuas. The cause of their migration is said to have been as follows:

Among the Aztecs there was a person of great authority, named Huiztili, to whose opinion every one paid the utmost deference. He had conceived a design, for what reason we know not, to persuade his countrymen to change their residence; and to effect this he fell upon the following stratagem. Having heard, while meditating on his scheme, a little bird sitting on the branches of a tree, the notes of which resembled the word Tibul, which in the Aztec language signified "let us go," he took that opportunity to work upon the superstitious of the people. With this view, he took along with him a respectable person, and made him attend to the note of the bird. "What can it mean (says he), but that we must leave this country, and find ourselves another? Without doubt it is the warning of some secret divinity who watches over our welfare: let us obey, therefore, his voice, and not draw his anger upon us by a refusal." Tecuhtzin, for that was the name of his friend, readily agreed to the interpretation; and both of them, being persons of great influence, their united persuasions soon gained over to their project the bulk of the nation; and they accordingly set out.

This account, though it has somewhat the air of fable, is what the Mexicans themselves give; and is certainly more worthy of credit than that of the Spaniards, who maintain that the Aztecs set out by the express command of the devil. But whatever was their motive, it is certain that they began their migration about the year aforesaid. Torquemada says, that in all the hieroglyphic paintings which record this migration, there is delineated an arm of the sea, or a great river, which however, Clavigero takes to be a representation of the universal deluge. Boturini supposes it to have been the Gulf of California, but as our author controverts this opinion, because there are no remains of the buildings they constructed, during their migration, in California as there are in other places. If there really was any river of consequence which they crossed, he says it must have been the Colorado, or Red River, which discharges itself into the Gulf of California, in lat. 32°. 30'. Having crossed this beyond the lat. of 25°, they proceeded towards the south-east, as far as the river Gila, where they stopped for some time; and on the banks of that river there are remains of the great edifices they constructed. From thence having returned their course towards the S. S. E. they proceeded to lat. 29°, and stopped again at a place upwards of 200 miles distant from the city of Chihuahua, towards the N. N. W. This place is now known by the name of Cast grands, on account of a very large building still extant, and universally attributed to them by the traditions of the country. It is constructed on the plan of those of New Mexico, that is, consisting of three floors with a terrace above them, and without any entrance to the under floor. The door for entrance opens to the second floor; so that a scaling ladder is necessary: and the inhabitants of New Mexico build in this manner, in order to be less exposed to the attack of their enemies; putting out the scaling ladder only for those to whom they give admission into their houses. No doubt the Aztecs had the fame motive for raising their edifice on this plan, as every mark of a fortress is to be observed in it, being defended on one side by a lofty mountain, and the rest surrounded by a wall about seven feet thick, the foundations of which are still existing. In this there are stones as big as mill-stones; the beams over which the roof are of pine, and well finished. In the centre is a little artificial mount, apparently constructed with a design to keep guard on, and observe the enemy. Some ditches have been formed in this place, and several kitchen utensils found, as earthen pots, dishes, and jars, with some looking-glasses made of a stone called ixtli.

The Aztecs having crossed here as long as they thought
The Aztecs, when they left their original habitations, were divided into six tribes; but here the Mexicans were let with their god by five of them, viz. the Xochimilcas, Tepanecas, Chalchites, Tlahuicas, and Tlascalanis. The cause of this separation is not known. The tribes just mentioned pretend that it was done at the express command of God; but there can be little doubt that it was occasioned by some disagreement among themselves. This is rendered rather probable, when we consider that on their journey towards Tula, the remaining tribe was divided into two violent factions, which alternately persecuted one another; neither did they afterwards contract any more edifices. However, they always travelled together, in order to enjoy the company of their imaginary God. At every place where they stopped an altar was erected to him; and at their departure they left behind them all their sick, and probably some others to take care of them, or such as were not willing to endure the fatigue of farther journeys. They stopped in Tula nine years, and eleven more in the neighbouring parts. At last, in 1316, they arrived at Zumpanco, a considerable city in the vale of Mexico, where they were received in a very hospitable manner by the lord of that district. He not only assisted them proper habitations, but became very much attached to them; and even demanded from among them a wife for his son Ihuacatl. This request was complied with; and from this marriage all the Mexican kings descended.

The Mexicans continued to migrate from one place to another along the lake of Texcoco. Xolotl, who was then on the throne of the Acolhuans or Chichimecas, allowed them to settle in whatever places of his dominions they thought proper; but some of them finding themselves harassed by a neighbouring lord, were obliged, in 1245, to retire to Chapoltepec, a mountain on the western borders of the lake, seven miles distant from the site of Mexico. This took place in the reign of Nopaltzin; when, as has already been observed, disturbances began to take place in the Acolhuans dominions. The Mexicans, however, did not find themselves any more secure in their new place of residence than formerly; they were persecuted by the neighbouring lords, and obliged to take refuge in a number of small islands, named Acolocas, at the southern extremity of the lake of Mexico. Here for 52 years they lived in the most miserable manner that can be imagined; subsisting on fish, insects, roots, &c. and clothing themselves with the leaves of the smooth, which abounds in that lake.

In this miserable plight the Mexicans continued till the year 1314, when they were all reduced to a state of the most absolute slavery. This was done by the king of a petty state named Colhuacan; but there are different accounts of the manner in which it was effected. Some say that this prince, unwilling to allow the Mexicans to maintain themselves in his territories without paying tribute, made war upon them, took their king, and enslaved them. Others affirm, that, pretending compunction for their miserable situation, he offered them a more commodious place of residence. The Mexicans accepted the offer with great pleasure; but had scarcely set out to take possession of their new place of residence, when they were attacked by the Colhuans, made prisoners, and carried off for slaves.

After some years a war broke out between the Colhuans and Xochimilcas; in which the latter gained such advantages, that they were obliged to employ their slaves to assist them. They accordingly ordered them to prepare for war, but without furnishing them arms necessary for a military enterprise; so that the Mexicans were obliged to content themselves with long flaves, having their points hardened in the fire; they also made knives of the stone itzli, and sheilds of reeds woven together. They agreed among themselves not to wait their time, as was usual, in making prisoners, but to content themselves with cutting off one ear of their enemies, and then leaving them without further injury. They adhered punctually to this resolution; and rushing furiously upon the Xochimilcas, cut off an ear from as many as they could, killing those who struggled to such a degree that they could not effect their purpose. In short, so well did the Mexicans acquit themselves in this engagement, that the Xochimilcas not only abandoned the field, but were obliged to take refuge among the mountains. After the battle, the Colhuans collected themselves before their general with the prisoners they had taken; for it was by the number of these, not of the enemy left dead on the field, that they judged of their value. The Mexicans had taken only four, and these they kept concealed for the abominable purpose of sacrificing them. The Colhuans, therefore, seeing no trophies of their valour, began to reproach them with cowardice; but the Mexicans, producing their baskets of ears, desired them to judge from these how many prisoners they might have taken, had they not been unwilling to retard their victory by taking up time in binding them.

Notwithstanding the valour displayed by the Mexicans in this engagement, it doth not appear that their haughty masters were in the least mollified or inclined to afford them easier terms than before. Having erected an altar to their god, they demanded of their lord something precious to offer in sacrifice to him; but he in disdain sent them a dirty cloth, including the filthy carcass of a vile bird. This was carried by Colhuas priests, and without any ceremony laid upon the altar. The Mexicans, with apparent unconcern, removed this filthy offering, and put in its place a knife made of itzli, and an odoriferous herb. On the day of consecration, the Colhuans performed not to attend human sacrifice in Mexico.

Their divination, however, was soon changed into horror, when the Mexicans, after a solemn dance, brought forth the four Xochimilan prisoners they had taken; and, after having made them dance a little, cut open their
They built for the mark given them by their oracle of the place where they found a nopal or warm. This horrible sacrifice had such an effect upon the spectators, that both king and subjects feared the Mexicans immediately to quit their territories and go on a place on the lake where they met with a Collman, a chimi1cas, who sent an emissary, as in their story of the place, an altar was erected in a manner conformable to the construction of floating gardens, by means of bulrushes and mud of the lake; and thence they brought to such perfection that they produced maize, pepper, chia, French beans, and gourds.

For thirteen years that the Mexicans had to struggle with extreme difficulty, they remained at peace; but no sooner did they begin to prosper and live comfortably, than the inveterate enmity between the two factions formerly mentioned broke out in all its fury. This produced a separation; and one of the parties took up their residence on a small island at a little distance to the northward, which, from an heap of sand found there, they at first named Xaltocan, but afterwards Tlatelolco, from a terrace constructed by themselves. This island was afterwards united to that of Tenochtitlan.

About this time the Mexicans divided their city into four parts, a division which still subsists; each quarter having now its tutelar saint, as it had formerly its tutelar god. In the midst of their city was the sanctuary of their great god Mextil, whom they constantly preferred to all else. To him they daily performed acts of adoration; but instead of making any progress in humanity, they seem to have daily improved in the most horrible barbarities, at least in their religion. The dreadful sacrifices made by their prisoners already mentioned, could only be exceeded by that which we are now about to relate. Being now on a more respectable footing than formerly, they sent an embassy to the petty king of Colhuacan, requesting him to lend them one of his daughters, that she might be consecrated to the mother of their protecting god. The despot, intoxicated with the thoughts of having his demand made of a goddess, readily complied with their desire.

The unfortunate princess was conducted in great triumph to Mexico; but no sooner was she arrived, than she was sacrificed in the shocking manner above related; and, to add to the horror of the deed, the body was flayed, and one of the bravest young men of the nation drenched in her skin. Her father, ignorant of this dreadful transaction, was invited by the Mexicans to be present at the apotheosis of his daughter, and went to see the solemnity, and to worship the new divinity. He was led into the sanctuary, where the young man was clothed in the bloody skin of his daughter; but the darkness of the place prevented him from seeing what was before him. They gave him a censer in his hand, and some copal to begin his worship; but having discovered by the flame of the copal the horrible spectacle, he ran out in a distracted manner, calling upon his people to revenge the injury; but this they were not able to do at that time nor ever after. Historians are unanimous, that this sacrifice was performed at the express command of the devil; and indeed in this instance, their credulity seems pardonable; though Clavigero, with more reason, ascribes it to his priests.
In the year 1352 the Mexican government was changed from an aristocracy to a monarchy. At first they were governed by 20 lords, of whom one had an authority superior to the rest. This naturally suggested the idea of monarchy; and to this change they were also induced by the contemptible state in which their nation still continued, thinking that the royal dignity would confer upon it a degree of splendor which otherwise it could not enjoy; and that by having one leader, they would be better able to oppose their enemies. Proceeding, therefore, to elect a king, the choice fell upon Acamapitzin, a man of great estimation among them, and descended from the king of Azcapozalco; who composed with their request, and the nuptials were celebrated with great rejoicings. In the meantime, the Tlatelolcos, the natural rivals of the Mexicans, resolved not to be behind them in any thing which had the least appearance of augmenting the glory of their state. They likewise, therefore, chose a king; but not thinking proper to choose him from among themselves, they applied to the king of the Tepanecas, who readily sent them his son; and he was crowned first king of Tlatelolco in 1353. In this the Tlatelolcos seem to have had a design of humbling their rivals, as well as rendering themselves more respectable; and therefore it is probable, that they had represented the Mexicans as wanting in that respect due to the Tepanecan monarch, as having elected a king without his leave, though at the same time they were tributaries to him. The consequence of this was, that he took a resolution to double their tribute. Hitherto they had paid only a certain number of fish and water-fowl; but now they were ordered to bring also several thousands of fir and willow plants to be set in the roads and gardens of Azcapozalco, and to transport to the court a great floating garden, which produced vegetables of every kind known in Anahuac. This being accomplished with great difficulty, the king commanded them next year to bring him another garden, with a duck and swan in it both hatching upon eggs; but if, that on their arrival at Azcapozalco the brood might be ready to hatch. This was also done; and the prince had the satisfaction of seeing the young birds come out of the eggs. The third year they were ordered to bring a live flag along with a garden. This was more difficult than any of the former tasks; because they were obliged, in order to hunt the flag, to go to the mountains of the continent, where they were in danger of falling into the hands of their enemies; however, this also was accomplished, and the desire of the king gratified.

In this manner the Mexicans were oppressed for no less than 50 years. They freed themselves, however, from all their difficulties by vigorous exertions, absurdly ascribing to the protection of that malevolent being whom they worshiped the glory of every deliverance. Acamapitzin governed this city which at that time comprehended the whole of his dominions, for 37 years in peace. His queen being born, he married another wife, but without abandoning the first; and these two, instead of being rivals to one another, lived together in the utmost harmony: the first wife taking upon herself the charge of educating Huitzilihuitl, the son of the second. He had, besides, several children by other women, and one named Izcoatl, who afterwards proved one of the best and most renowned kings who sat on the throne of Mexico. He is said also to have conquered four considerable cities; but Clavigero thinks he must in this only have been an auxiliary, it being very improbable, that while he could scarce maintain his own territories, he should think of foreign conquests.

Acamapitzin died in 1389, greatly lamented by the Mexicans, and his death was followed by an interregnum of four months. As the deceased monarch had formerly resigned his authority into the hands of his nobles, it was necessary that a new election should take place; and when this was done, the choice fell upon Huitzilihuitl, the son of Acamapitzin. As he was still unmarried, it was resolved to build the feast if possible, to procure him an honourable and advantageous match. With this view, a deputation of nobility was sent to the king of Azcapozalco, requesting, in very humble terms, an alliance with one of his daughters. The expressions made use of by these ambassadors are laid by our authors to have been particularly elegant in the Mexican language: but it is difficult to understand how a speech made among a people ignorant of the art of writing could be particularly recorded at the interval of some hundreds of years after. They are as follows: "We beseech you, with the most profound respect, to take compassion on our matter and your servant Huitzilihuitl, confined among the thick rushes of the lake.—He is without a wife, and we without a queen,—Vouchsafe, Sir, to part with one of your jewels or rings for the sake of these lords, of whom one had other children by other women, and one named Montezuma Ilhuacamixtli, the most celebrated of all the Mexican kings.

This piece of oratory had such an effect upon the king, that he granted their request, and a Tepanecan princess was conducted in great triumph to Mexico, where the marriage was solemnized with the utmost joy. Though this princess brought him a son the first year of their marriage, the king, in order to strengthen himself by fresh alliances, married also the daughter of another prince, by whom he had Montezuma Ilhuacamixtli, the most celebrated of all the Mexican kings.

We must now return to the history of the Acolhuans, who at this time were governed by Teyochtlatlal the son of Quimatzin. For 30 years this prince enjoyed an uninterrupted tranquility. This was interrupted by the revolt of Texpopan, prince of Xaltocan, and the watch of the family of Chichemanequihiti, one of the three original Acolhua princes, who had drawn into his conspiracy the sovereigns of six other states. The king, out of respect to the quality of the rebel, offered to pardon him if he would lay down his arms; but Texpopan, confident of his strength, rejected the offer with contempt. The king was therefore obliged to send an army against him,
in which the Tepanecans and Mexicans served as auxiliaries. The war lasted only two months; Tzompantl was defeated and put to death, along with several others of the principal rebels. The Mexicans, who had behaved with great valor, returned in triumph to their city, while Techtotlala took several very prudent measures to strengthen his government, prevent rebellions in future, and to augment the splendor of his throne.

In consequence of the renown acquired in this war by the Mexicans, and the advantages resulting from the alliance with the king of Azcapozalco, that people now began to be held in much higher estimation by their neighbors than before. They extended their commerce, and in consequence of that, came to wear cotton instead of the threads of the wild-palm, which had formerly constituted their whole dress; but this glimmer of prosperity was soon overclouded, and they had to encounter a more invertebrate and formidable enemy than any that they had yet met with. This was Maxtlaton prince of Coyocan, and son to the king of Azcapozalco. Being of a cruel and revengeful temper, for which he was dreaded even by his father, he resolved to retract the indignity which he pretended to have done to him by the marriage of his father to the king of Mexico. The true cause of his displeasure, however, was his fear that the Tepanecan crown might devolve on his father's son by Huiztiliztliitl; and to prevent this, he took the barbarous method of sending assassins to murder his nephew. The king of Mexico was not then able to retract the injury; for though, by his marriage with the Tepanecan princess, the oppressive tribute was taken off, and the Mexicans had only to pay a couple of ducks annually, by way of acknowledging the Tepanecan superiority, yet the one nation was far from being in a condition to cope with the other. The barbarity of Maxtlaton was not unknown to his father; but it is certain that he did not resent it; and indeed there is great reason to suppose that he took part with his son in most of his wicked enterprizes.

As the Mexicans advanced in wealth and power, so did their rivals the inhabitants of Tlatelolco. Their first king died in 1399, leaving his subjects greatly improved in civilization, and the city much enlarged and beautified. The rivalry which resulted between the two cities had indeed greatly contributed to the aggrandizement of both. The Mexicans had formed so many alliances by marriage with the neighboring nations, had so much improved their agriculture, and floating gardens on the lake, and had built so many more vessels to supply their extended commerce and fishing, that they were enabled to celebrate their secular year, anestering to A.D. 1402, with greater magnificence than they had ever done since they left their original country of Aztlán.

All this time Techtotlala continued to reign in Acolhuacan; but being now very far advanced in years, and finding his end approach, he called to him his son Ixtlilxochitl, and recommended him to beware of the ambitious disposition of the king of Azcapozalco, as he was apprehensive that he might attempt something against the peace of the empire. His suspicions were verified; for on the death of Techtotlala, which happened in 1406, the king of Azcapozalco, without making the usual submissions to the new king, to whom he was a feudatory, set out for his own territories, with a view to stir up the other feudatory princes to rebellion. Having called to him the kings of Mexico and Tlatelolco, they told him, that Techtotlala, who had long tyrannized over that country, being dead, he designed to procure freedom to the princes, so that each might rule his own territory entirely independent of the king of Acolhuacan; but for this purpose he needed their assistance, and trusted to their well known spirit to take part with him in the enterprise. He informed them likewise, that in order to ensure success, he would find means to unite other princes in the confederacy.

The new king of Acolhuacan, in the mean time, was employed in settling the affairs of his kingdom, and endeavouring to gain the good will of his subjects. The combination against him was soon discovered; but though Ixtlilxochitl was deficient in heading his army in person, he was dissuaded from it by his courtiers; so that the conduct of the war was committed to his generals. To weaken the enemy they ravaged the territories of six revolted states; but notwithstanding this, and the superior discipline of the royal army, the war was carried on by the rebels with great obstinacy, their armies being constantly recruited by fresh troops in proportion to their losses. At last, after three years of a ruinous war the king of Azcapozalco, finding that his resources would at last fail him, sued for peace; but with a design of accomplishing by treachery what he had not yet been able to do by force. His adversary, equally reduced with himself, consented to a peace, though he knew very well that the Tepanecan prince intended to observe it no longer than suited his purpose.

In the year 1406 died Huiztiliztliitl king of Mexico, who likewise left the right of electing a successor to the nobility. They made choice of his brother Chimalpopoca; and from thence it became an established law to choose one of the brothers of the deceased king, or if he had no brothers to elect one of his grandsons. While the new prince was endeavouring to secure himself on the throne, the treacherous Tezozomoc used all means in his power to strengthen the party he had formed against the king of Acolhuacan. In this he was attended with such success, that the unfortunate prince found himself reduced to the necessity of wandering among the neighboring mountains, at the head of a small army, accompanied by the lords of Huexotla and Coatecan, who remained always faithful to him. The Tepanecans diffirited him to such a degree, by intercepting his provisions, that he was forced to beg them of his enemies. One of his grandsons was sent to Otompantl, a rebel state, to request them to supply his king with the provisions he was in need of, and to exhibit them to abandon the cause of the rebels, which they had espoused. No talk could be more dangerous; yet such was the magnanimity of the young prince's disposition, that he readily set out on the journey; nor was he deterred by the information he got that there were in the place certain Tepanecans who had come on purpose to publish a proclamation from Tezozomoc. He went boldly to the most public place of the town, and in presence of those who...
Tezozomoc having now in Mexico, a virtue that he had hitherto continued, perceived their opportunity, joined in the general flight; but, both being equally impossible, he fell under a shower of stones. The Tepanecs exulted in this act of treachery, and soon after cut off Itxilxochitl himself, after having treacherously persuaded him to a conference with two of their captains. This pernicious act was committed in fight of the royal army, who were too weak to revenge it: the royal corpse was fared with difficulty; and Nezahualcoyotl, heir apparent to the crown, was obliged to shelter himself among the bushes from the fury of his enemies.

Tezozomoc having now in a great measure gained his point, proceeded to pour down his troops upon those cities and districts which had remained faithful to the late unfortunate monarch. The people made a most desperate defence, and killed vast numbers of their enemies; but at last being themselves reduced by the calamities of war, and in danger of total extermination, they were obliged to quit their habitations and fly to other countries. The tyrant, then, finding himself superior to all his adversaries, gave Tezcuco in fee to Chimalpopoca king of Mexico, Huexotla to Tlacacotl king of Tlatelolco; placing faithful nobles in other places, and appointing Azcapotzalco, the capital of his own territory, the royal residence and capital of Acoculhuacan.

Prince Nezahualcoyotl was present in disguise at this dispossal of his dominions, along with several other persons of distinction who were enemies of the tyrant; and so much was he transported with passion, that it was with difficulty he could be restrained from killing Tezozomoc on the spot, though this would certainly have been done at the expense of his own life. All the rest of the Acoculhuacan empire submitted; and Nezahualcoyotl saw himself for the present deprived of all hopes of obtaining the crown.

Tezozomoc had now attained the summit of his ambition: but instead of conciliating the minds of his new subjects, oppressed them with new taxes; and being conscious of the precarious situation in which he stood, and tormented with remorse on account of his crimes, fell into melancholy, and was haunted with frightful dreams. In one, he imagined that Nezahualcoyotl, transformed into an eagle, had eaten out his heart; and in another, that, in the shape of a lion, he licked his body and sucked his blood. Terrified by these visions, he called his three sons, Tajatzin, Tezcuhtli, and Maxtlaton, enjoining them to put to death Nezahualcoyotl as soon as they could get it done without being publicly known. He himself survived his dreams only about a year. He was now become so old, that his body no longer retained its natural heat. He was therefore obliged to be covered up with cotton in a great cradle, not being able to sit in a chair. In this miserable condition, however, he never forgot his tyranny nor cruelty. From his cradle he issued oppressive laws relating to the Acoculhuacans; and at the same time renewed his commands with regard to Nezahualcoyotl. At last he expired in the year 1422, leaving the crown to his son Tajatzin.

Tezozomoc was no sooner dead than Maxtlaton, the throne without paying the least regard to his father's will, began to exercise the functions of a sovereign. Though it was the right of Tajatzin to invite to his father's funeral whom he pleased, Maxtlaton took that upon himself. Nezahualcoyotl, though not invited, came among the rest; but though Tezcuhtli, brother to Maxtlaton, insulted upon his being put to death, the latter opposed it, as it could not then be done privately, and he hoped to find another opportunity. No sooner were the funeral ceremonies over, however, than Maxtlaton behaved in such a manner to his brother Tajatzin, that the prince thought proper to retire to Chimalpopoca king of Mexico, to whom he had been particularly recommended by his father, in order to have his advice. This monarch, agreeable to the character of that age and people, advised him to invite his brother to an entertainment, and then murder him. Unluckily for them both, this discourse was overheard by a servant, who informed the tyrant of what he had heard; but instead of this, Maxtlaton, pretending to disbelieve his story, drove the informer from his presence, and therefore determined to rid himself of his brother without delay. This he soon accomplished in the very same way that had been projected against himself. Tajatzin, along with the king of Mexico, Tlatelolco, and some other feudatory princes, were invited by Maxtlaton to an entertainment. The king of Mexico prudently excused himself, but the unsuspecting Tajatzin fell into the snare. He came to the place of entertainment, and was instantly put to death. The Tajatzin company were greatly alarmed; but Maxtlaton, having explained to them his reason for so doing, they not only excused him, but proclaimed him king; to which it is not to be doubted that their fears greatly contributed.

Though the king of Mexico escaped a sudden death by his absence at this time, it was only to perish in a more slow and ignominious manner. The vengeance of Maxtlaton first appeared by sending him a woman's dress in return to the feast he sent him as a feuda-king of the seat of the Mex. This infult, however, was quickly followed by one of a much higher nature. Having heard that one of the Mexican prince's wives was an extraordinary beauty, he enjoined some Tepanecan ladies, who were accustomed to visit that prince, to invite her to spend some days with them at Azcapotzalco. This being complied with, the tyrant easily got an opportunity of ravishing her, and then sent her back to her husband. Chimalpopoca was so much affected by this misfortune, that he resolved to offer himself up a sacrifice to his god. Maxtlaton, however, was resolved...
that he should not have even this satisfaction. At
the very time of the ceremony, therefore, he sent a
day of troops, who entering Mexico without resi-
compelled to leave the king alive,
that prince. The very time of the ceremony therefore be sent a
for his invincible treacherous intentions, he went boldly to his palace,
that neither had put to
dom of Acoclaicaunac.
though the prince was well satisfied: he wished to get into his hands
He sent out four captains, therefore,
to Tezcuco, where the prince happened to be at
Though the prince was well informed by a countryman of the road

Chimilpopoca, being carried prisoner to Azcapozalco, was confined in a strong wooden cage, the common prison for criminals. Maxtlaton still was not satisfied: he wished to get into his hands Nezahualcaxolotl; and with this view sent a message to him, pretending that he was willing to come to an agreement with him respecting the kingdom of Acocolacan.

Though the prince was well assured of the tyrant's treacherous intentions, he went boldly to his palace, presented himself before him, and told him that he had heard of the imprisonment of the king of Mexico; he had heard also that he wished to take away his own life; he desired him to do so, and to gratify his malice. Maxtlaton was so struck with this speech, that he assured the prince he had not formed any design against his life; and that he neither had put to death of Mexico, nor would do so. He then gave orders for his being properly entertained, and even allowed him to pay a visit to the king of Mexico in prison. The unfortunate Chimilpopoca, after reciting his misfortunes, requested the prince not to return to court, where they would certainly fall upon some project for taking away his life; and having pathetically recommended to him the care of his subjects, made him a present of a gold pendant and some other jewels he wore; after which they took a last farewell.

Chimilpopoca languished in prison for some little time after the departure of Nezahualcaxolotl; but life became at last so intolerable to him, that he hanged himself in his girdle. His voluntary death, in spite of all that the tyrant had done to prevent it, so exasperated the latter, that he resolved upon the death of the prince at all events, whether in the way recommended by his father or not; to which it is not improbable that he was likewise instigated to this by certain prejudices of the priests. He sent out four captains, therefore, with a small party of troops, in quest of the fugitive prince, with orders to kill him as soon as they overtook him. These messengers of death set out directly for Texcoco, where the prince happened to be at that time playing at foot-ball; for he spent great part of his time in such diversions, that he might remove all suspicions of his aspiring to the throne; and thus he had an opportunity of carrying on his negotiations without molestation.

As he knew the errand on which the Tepanecan captains came, he left off his play on their appearance, and retired to his inner apartment. On being informed that they inquired for him, he sent for answer that he would wait upon them after they had repented andrefreshed themselves. The prince made use of this opportunity to quit the house, and retire by a secret door; or, according to Torquemada, by a kind of labyrinth which he had contrived, and through which none but himself knew the way. He then fled to Coatlican, a small settlement of weavers, who were all exceedingly attached to him. He was pursued thither by the alfihins, who had been informed by a countryman of the road he had taken; but such was the inviolable fidelity of the inhabitants, that several of them suffered themselves to be put to death rather than discover the place of his concealment. Leaving this place, therefore, they went thro' the country in quest of him; and no sooner were they gone, than the prince set out in a way directly contrary to that which they had taken. Being pursued in all directions, however, he was in the utmost danger, and would once have been made prisoner if some countrymen had not concealed him under an heap of chia. Having escaped this danger, he went to a pleasant villa at Tezpolitzinco, belonging to his ancestors; where he was met by old lords who had left their states. Having consulted with them, it was determined to apply to the Chalcefe, although they knew that they were an unfaithful and treacherous people, and had been concerned in the death of the late king. He was then met by embassadors from the Cholulans, who offered him their affiance against the usurper. In a short time he was joined by numbers of others; so that he was not only no longer in danger of his life, but began to be formidable to his enemies.

In the mean time, the Mexicans, who had suffered many injuries since the death of Chimilpopoca, raised to the throne Itzcoatl, the son of Acamapitzin, by a Itzcoatl slave, and who was accounted the moft prudent, just, raifed to the throne of Mexico. His election was a nofs pleasing to Nezahualcaxolotl and his party', who aaffisted the king of Mexico; and this was soon followed by the commencement of hostilities on the part of the former. His first enterprise was against the city of Texcoco, which he determined to take by assault, but was prevented by the submission of the inhabitants. He put to death, however, all the officers established by the tyrant: and all the Tepanecans he found there. The very same day another large city named Acocla was furiously attacked by an detachment of his army; great numbers put to the sword, and among the rest the governor, who was brother to Maxtlaton; and the same day also Coatlican was taken by the Chalcefe.

The Mexican monarch, hearing of the success of his ally, sent an embassage to congratulate him upon them. His ambassador was a son of king Huitzilihuitl, named Montezuma, who for his invincible courage and great qualities was fammed the man of great heart and the archer of heaven. The journey was extremely dangerous; but Montezuma undertook it without any fear, accompanied by another nobleman. They got in safety to the place where the prince was; but had the misfortune to be taken prisoners, and were carried to Chalco; the lord of which city, named Tepetzcocan, was an inveterate enemy to the Mexicans. By him he was immediately put in close confinement, under the care of one Quatozcin, who was inviably attached to the Mexican interest. Orders were given to the latter to provide no succour for the prisoner but what was prescribed by his lord, until the mode of death which they were to suffer should be determined. Tepetzcocan then, with a view to flatter the Mexicanoztinco, sent his prisoners to them, that they might be sacrificed there if they thought proper. These people, however, rejected the proposal with disdain; on which Toteo-

Adventures of that prince.
Toteotzin, enraged at the loss of his prisoners, put Quateozin to a cruel death, destroying also all his family excepting one son and daughter; of whom the latter fled to Mexico, where she was highly honoured by her father's account. Maxtlaton, too, notwithstanding his generosity to the prisoners (which Clavi­erzer derives from mere family), was highly esteemed by the inhabitants. The Mexican populace, terrified at engaging in so powerful an enemy, demanded that their king should submit and beg for peace. The king next gathered together the chief nobility, and asked them if they would in the utmost ex­ertions of Montezuma's eloquence to persuade the people to agree to a commence­ment of hostilities. This being done at last, the king called together the chief nobility, and asked which of them would have the courage to carry an em­bassy to the king of the Tepanecans? This adven­ture appeared so hazardous, that all of them kept a deep silence until Montezuma declared himself willing to undertake the arduous enterprise. He was ordered to pro­pose peace to Maxtlaton, but to accept of no dis­honourable conditions; to which he punctually adhered. Maxtlaton refused to give any immediate an­s­wer, but promised to give one next day, after he had consulted his nobility. Montezuma, dreading some treachery if he staid all night, promised to return next day; which he did, and was told that Maxtlaton had determined upon war. Montezuma then performed the ceremony of challenging him, by presenting him with certain defen­sive weapons, anointing his head, and fixing feathers upon it, as was customary to do with dead princes. Lastly, he proceeded, in the name of his master, that as Maxtlaton would not accept of the offered peace, he and all the Tepanecans would im­possibly be ruined. Maxtlaton showed not the least sign of displeasure, but gave Montezuma arms in like manner to present to the king of Mexico; and directed him, for his personal security, to return in disguise through a small outlet from the palace. Montezuma followed his advice; but as soon as he found himself out of danger, began to intelect the Tepanecan guards; and though they rushed violently upon him, he not only escaped from their attacks, but killed one or two of them.

On his return to Mexico, the populace were again thrown into the utmost confusion by the news that war was inevitable, as the chiefs of the two na­tions had challenged one another. They now request­ed the king to allow them to retire from their city, of which they supposed the ruin to be certain. The king encouraged them with the hopes of victory. "But if we are conquered (replied they), what will become of us?" "If that happens (answered the king), we are that moment bound to deliver ourselves into your hand, to be made sacrifices at your pleasure." "Be it so (replied they), if we are conquered; but if we obtain the victory, we and our descendents are bound to be tributary to you; to cultivate your lands and those of your nobles; to build your houses; and to carry for you, when you go to war, your arms and bag­gage."

Matters being thus settled, intelligence was sent to the Indians to repair with his army to Mexico, which he did without day; and the day after his arrival a furious engagement took place. The Tepanecan army was commanded by a general named Mazatl; Maxtlaton himself not judging it proper to quit his capital. The soldiers on both sides fought with the utmost bravery; but towards night the Mex­icans, disheartened by seeing the army of their enemies continually increasing in number, began once more to lose their courage and talk of surrendering. The king, greatly concerned, asked Montezuma what should be done to dissipate the fears of the people? That brave prince replied, that they must fight till death; that if they died with their arms in their hands, it would be honourable; but to survive their defeat, would be eternal ignominy. Nothing could be more salutary than this advice at so critical a juncture: for the Mexicans were already begun to implore the mercy of their enemies, and to promise to sacrifice their chiefs, whose ambition had brought the whole nation into such a dilemma. On hearing this, the whole body of nobility, with the king and Montezuma at their head, assaulted the enemy so furiously, that they repulsed them from a ditch of which they had taken pos­session; after which, Montezuma, happening to en­counter Mazatl the Tepanecan general, struck him such a blow on the head that he fell down lifeless. Thus the Mexicans were inspired with fresh courage, and their enemies proportionally disspirited; however, they retired for that night to the city, in some hopes of being able to retrieve their fortune next day. Maxtlaton encouraged them by every method in his power; but fortune proved still more unfavourable than the day before. The Tepanecans were now entirely defeated, and the city of Azcapozalco taken. Maxtlaton, who seems not to have had the courage to fight, had not now the presence of mind to fly. He attempted indeed to hide himself; but being quickly discovered, he was beaten to death with sticks and stones. The city was plundered, the inhabitants butchered, and the houses destroyed by the victors.

This victory proved decisive in favour of the confe­quences. Every other place of strength in the country was quickly reduced, until the Tepanecans, finding themselves on the verge of destruction, sent an humble embassy to the king of Mexico, requesting to be taken under his protection, and to become tributaries to him. Itzeatl received them graciously; but threatened them with total extirpation if they violated the fidelity they had sworn to him. Thus the whole Tepanecan nation was subjected to the Mexicans, ex­
Itzcoatl, now finding himself firmly seated on the throne of Mexico, set about forming his engagements with the Acolhuacan prince, by feating him on the throne of his ancestors. Having again joined their armies, they marched against Huazotla, a city which refused to submit even though terms of pardon were offered. Instead of this, they rashly ventured a battle, in which they were entirely defeated; and were then forced to hand over the king and his widow, pregnant women, &c. as was customary in cases of defeat, to move the enemy to compulsion. At last all obstructions being removed, Nezahualcoyotl was seated on the throne of Acolhuacan, the auxiliary troops were dismiffed, and Itzcoatl left at liberty to pursue his conquests, in which he was still assisted by the king of Acolhuacan. The first expedition was against Cojohuacan and other two Tepecan cities, who had not only refused submission, but excited others to shake off the yoke also. The war against them proved bloody. Three battles were fought, in which Itzcoatl gained no other advantage than making the enemy retreat a little; but in the fourth, while the two armies were hotly engaged, Montezuma, with a body of chosen troops, which he had placed in ambush, attacked the rear-guard of the rebels with such vigour, that they were soon disordered, and obliged to fly to the city. The conquerors pursued them thither; and Montezuma perceiving that they intended to fortify themselves in the greater temple, frustrated their design by getting possession of it and burning the turret. By this disaster they were so much terrified, that they fled to the mountains south of Cojohuacan; but even there the royal army overtook and pursued them more than 30 miles, till they came to another mountain, where, quite exhausted with fatigue, and seeing no means of escape, they were obliged to surrender at discretion.

Having thus happily accomplished the conquest of Cojohuacan and the other rebellious cities, the two kings returned to Mexico. Itzcoatl gave great attention to the Tepecan country to Totecuhuanacan, with the title of king of Tzacuba, a grandson of Tezozomic, but who does not appear to have been any way concerned in his projects against the Mexicans. An alliance was then formed among the three kings on the following terms: The king of Tzacuba held his crown on condition of serving the king of Mexico with all his troops, at any time when required; for which he was to have a fifth part of the spoils taken from the enemy. The king of Acolhuacan was likewise to assist the king of Mexico in war; and for this he was to have a third part of the plunder, after deducting the share of the king of Tacuba; and the remainder was to belong to the king of Mexico. The kings of Tacuba and Acolhuacan were both declared honorary electors of the kings of Mexico; the real electors being four nobles; and the king of Mexico was likewise bound to afflict in the wars of his allies whenever it was demanded.

After having thus settled matters among themselves, and rewarding their soldiers, Itzcoatl set out with Nezahualcoyotl for Texcoco, where the Acolhuacan king was crowned with all possible ceremony. Here the new king took every method which prudence could suggest to establish his authority on a permanent basis; but while he was thus employed, the Xochimilcas, fearing lest the Mexicans might conquer their country as they had done that of the Tepecans, held a council on what was to be done to prevent such a disgrace. In this council it was determined to commence hostilities against that rising state, before it should become more formidable by new conquests. Itzcoatl was no sooner informed of this determination, than he sent Montezuma with a great army against them. The Xochimilcas met him with one still more numerous; but being worse disciplined, they were quickly defeated, and their city taken in a very short time after. This conquest was followed by the reduction of Cuicahuatl, situated on a small island on the lake of Chalco. Their inftant situation gave them confidence to attack the formidable power of the Mexicans. The king was so sensible of the difficulty of this enterprise, that he proposed to attack them with the whole force of the alliance: Montezuma, however, with only a small number of men of his own training, whom he furnished with proper vessels, reduced them in seven days.

These conquests were followed by the reduction of the cities of Quauhumahuac, Quauhtlan, and Tolotitlan; the first of which was so strong, that Itzcoatl was obliged to call in his allies to his assistance. In short, in the space of twelve years, Mexico, from being a contemptible and tributary state, became able to command those whom it had formerly served, and who thought themselves very much superior in every respect.

Itzcoatl died in the year 1436, at a very advanced age, in the height of prosperity, and was succeeded by Montezuma I, the greatest monarch that ever sat on the Mexican throne. Before his coronation, in order to comply with the barbarous rites of his religion, he made war upon the Chalcans in order to procure the prisoners who were to be sacrificed at his coronation; and fear was this ceremony over, than a new war commenced, which terminated in the destruction of that city. This quarrel happened between the Chalcans and the Texcucans. Two of the royal princes of Texcoco having gone a-hunting on the mountains which overlook the plains of Chalco, while employed in the chase, and separated from their retinue, with only three Mexican lords, fell in with a troop of Chalcans soldiers; who, to gratify the cruelty of their master, carried them all prisoners to Chalco. The cruel and inconsiderate tyrant who commanded them instantly put them all to death; after which he caused their bodies to be salted, dried, and placed in an hall of his palace, where they served as supports to the pine torches burned there for light every evening. The king of Texcoco, overwhelmed with
with grief, and to the last degree exasperated at such an inhuman act, called for the affilltance of the allied kings. The city was attacked at once by land and water. The inhabitants, knowing that they had no mercy to expect, fought like men in despair. Even the old tyrant who commanded them, though unable to walk, caused himself to be carried in a litter among the combatants; notwithstanding which they were totally defeated, and the most severe vengeance executed upon them.

Montezuma, on his return found himself obliged to encounter an enemy more formidable on account of his vicinity than more powerful ones at a distance. This was the king of Tlatelolco, who had formerly conspired against the life of Itzcoatl; and finding himself disappointed in this had tried to reduce his power by entering into a confederacy with some of the neighbouring lords. At that time his designs proved abortive, but he resumed them in the time of Montezuma; the consequence of which was, that he was defeated and killed. One Moquihuix was chosen in his room; in whose election it is probable that Montezuma had a considerable share. This was followed by conquests of a much more important nature. The province of Cuitlahuac, lying to the southward, was added to his dominions, comprehending a tract of country more than 150 miles in breadth; then, turning to the westward, he conquered another named Tempanacuac. This success, however, was for a short time interrupted by a war with Atonalztin, lord of a territory in the country of the Mixtacas. This prince, puffing up on account of the great wealth he possessed, took it into his head that he would allow no Mexican to travel through his country. Montezuma sent embassadors to know the reason of such strange conduct; but Atonalztin gave them no other answer than showing them some part of his wealth, making a present to the king, and design him from thence to observe how much the subjects of Atonalztin loved him; and that he willingly accepted of war which was to determine whether he should pay tribute to the Mexicans or the Mexicans to him. Montezuma having informed his allies of this insolent answer, sent a considerable army against Atonalztin, but had the mortification to be informed of its defeat; in consequence of which the pride of Atonalztin was increased to a great degree. Montezuma, greatly chagrined at this first check, determined to head his next army in person; but before he could call together another, Atonalztin had drawn into a confederacy with him the Huexotzinca and Tlatacalans, who were glad of the opportunity, as they supposed, of reducing the power of the Mexicans. Their numbers however, availed but little; Montezuma, in the very first engagement totally defeated the confederate army. The allies of Atonalztin were particularly unfortunate; for such of them as were not killed in the field of battle, were destroyed by their own party out of revenge for the unfortunate event of the battle.

By this victory the Mexican monarch became master not only of the dominions of Atonalztin, but of many other neighbouring princes, against whom he made war on account of their having put to death some Mexican merchants or couriers without any just cause. The conquest of Cuitlahuac or Coapa, however, which he attempted in 1457, proved a much more difficult task. This province lies on the coast of the Mexican gulf, and had been formerly inhabited by the Olmecans, whom the Tlaclalans had driven out. The inhabitants were very numerous; but dreading the power of Montezuma, called in those of Tlaclala, together with the Huexotzinca, to their affilltance. Along with these the allies drew the Cholulans also into the confederacy; so that this appears to have been the most formidable combination that had yet been formed against the Mexican power. Montezuma collected an excellently equipped army; which, however, he did not on this occasion command in person. It contained a great number of persons of very high rank, among whom were three princes of royal blood, and Moquihuix king of Tlatelolco already mentioned. The combination of the three republics against Mexico was not known at court when the army set out; but Montezuma, being informed of it soon after, sent an order to his generals to return. This accorded fo ill with the romantic notions of valour entertained by the Mexicans, that a consultation of the generals was held to determine whether they should obey it or not. At last it was determined that the king's order should be obeyed; but no sooner was this agreed to than Moquihuix acceded them all of cowardice, and threatened, with his own troops, unaffiliated, to go and conquer the enemy. His speech had such an effect upon them all, that they went to meet the confederates. The Conacate fought with great valour, but were unable to refit the royal forces; and their allies were almost totally destroyed. Six thousand two hundred of them were taken prisoners, and soon after sacrificed to the Mexican god of war in the barbarous manner already described. The victory was said to have been owing principally to the valour and good conduct of Moquihuix, insofar that to this day a long made in his praise on that occasion is known in Mexico. Montezuma was so well pleased with the victory, that he not only forgave the disobedience of his orders, but bestowed upon Moquihuix a princess, one of his own cousins, to wife.

The next exploit of this great warrior was the entire destruction of the Chalcce, whose rebellion and mischievous disposition continually brought mischief upon themselves, and destruction to their country. They had, it seems, formed a design of making their city a rival to Mexico; and with this view they had taken prisoner one of the brothers of Montezuma himself, whom they attempted to make their sovereign abso- lutely against his own inclination. The prince, finding it impossible to refit, pretended to comply with their wishes; but that the act of exalting him to this dignity might be more conspicuous, he defired them to plant in the market place one of the highest trees, and place a scaffold upon it, from whence every body might see him. This being done, the Mexicans who had been taken along with him assembled round the tree; and the prince having ascended the scaffold with a bunch of flowers in his hand, addressed them to the following purpose: "Ye know well, my brave Mexicans, that the Chalcce wish to make me their king, but it is not agreeable to our god that I should betray our native country; I choose rather to teach you, by my example, to place higher value on fidelity to
it than on life itself." With these words he threw himself from the scaffold, and was killed. The Chalca were so enraged at this, that they instantly fell upon the Mexicans and killed them with their darts. Next evening they were terrified by a screech-owl; the dismal voice of which animal they interpreted into an omen of their approaching ruin. They were not deceived in their predictions, which indeed they might have made without any screech-owl. They were quickly attacked by Montezuma; who on this occasion was so much exasperated, that he caused fires to be lighted on the tops of the adjacent mountains, as symbols of the punishment to which he condemned the rebels. The havoc he made among them was such, that the province was almost depopulated. Vaft numbers were slaughtered, while those who escaped with life fled into the caves of the neighbouring mountains. Some fled into distant countries, leaving their city to be destroyed by the enemy. At last Montezuma, exasperated with revenge, proclaimed a general pardon, and invited the fugitives to return; but many of them, not putting any confidence in his sincerity, chose to remain in their state of exile. The remainder of this emperor's reign was taken up in making new conquests; so that by the time of his death, which happened in 1444, he had extended his dominions as far as the gulf of Mexico on the east; to the middle of the country of the Mixtecas on the south-east; something farther than Chilapan on the south; to the valley of Toluca on the west; the centre of the country of the Otomies on the north-west; and, on the north, to the extremity of the vale of Mexico.

During the reign of this grand monarch a violent inundation happened in Mexico. The lake, swelled by the excessive rains which fell in the year 1446, poured its waters into the city with so much violence that many houses were destroyed, and the streets inundated to such a degree that boats were every where made use of. To prevent accidents of this kind for the future, Montezuma, by the advice of the king of Tezcucu, constructed a great dyke nine miles in length, twelve cubits in breadth, and consisting of two parallel lines of palliades, the interval betwixt which was filled up with stones and bread. The greatest difficulty in the construction lay in being obliged occasionally to work in the lake itself, which in some places was of considerable depth; but this was surmounted by the skill and perseverance of the workmen. The dyke, when constructed, proved of great service in keeping out the waters, though it did not entirely remedy the evil; nor indeed have the Spaniards been able to secure this city effectually from inundations, after being in possession of it for more than two centuries.

The inundation was soon followed by a famine. This was occasioned by the flitting of the crop of maize in 1448; the ears while young and tender being destroyed by frost. In 1450 the crop was totally lost for want of water; and in 1451, besides the unfavourable seasons, there was a scarcity of seed. Hence, in 1452, the necessitie of the people became so great, that they were obliged to fell themselves for slaves in order to procure subsistence. Montezuma permitted them to go to other countries for support; but being informed that many sold themselves for a few days provision, he ordered by proclamation, that no woman should sell herself for less than 400 ears of wheat, nor any man for less than 500. He opened also the public granaries for the relief of the lower classes; but nothing was able to stop the progress of the famine. Many who went for relief to other countries perished with hunger on their journey; and great numbers who sold themselves for slaves never returned to their native country. Most of the populace supported themselves, like their ancestors, on the produce of the lake, until all their difficulties were relieved by a most plentiful harvest in the year 1454.

Montezuma was succeeded by Axayacatl, who like his predecessor faintly commenced a war, for no reason which might embarrass him at his coronation. The people whom he now attacked inhabited the province of Tuzantempex on the coast of the Pacific Ocean, and situated at 400 miles distance from the city of Mexico. A very desperate battle ensued on this occasion, in which, however, the Mexicans at last prevailed; and, besides the poor wretches doomed to destruction whom they carried off, acquired a considerable spoil, as well as a tract of territory extending to Cotulco, a maritime place which frequented in the next century by the Spaniards.

Axayacatl pursued Montezuma's plan of conquest; in which, however, he was less successful, many of the provinces reduced by that monarch having revolted after his death, so that it was necessary to reconquer them. On his returning successful from one of these expeditions, he built a new temple, to which he gave the name of Conato, but the Tlateolcos, whose ancient rivalry seemed to have revived on the death of Montezuma, built another in opposition, which they called Conaolato. Thus the former hatred between the two nations was renewed, and a discord took place which ended in the ruin of the Tlateolcos.

The Mexicans sustained an irreparable loss in 1469. Death of the king. The king of Tacuba and Acolhuacan was killed by the death of these allies the king of Tacuba and Acolhuacan, and their state of Acolhuacan and Tacuba.

The Mexicans sustained an irreparable loss in 1469. Death of the king. The king of Tacuba and Acolhuacan was killed by the death of his brother, and the Acolhuacan prince had the same cordial affection for those of Mexico which was entertained by those who lay under such great obligations to Montezuma. The king of Tacuba was succeeded by his son Chimalpopoca, and the Acolhuacan monarch by his son Nezahualpilli. A short time after the accession of the latter, the war broke out between the Tlateolcos and Mexicans, which ended in the destruction of the former. King Moquiuliu was married to Montezuma to a sister of Axayacatl, now on the throne of Mexico; but it appears that this prince never was greatly the object of his affection. On the contrary, he took all methods of expressing his dislike, either out of enmity to herself, or envy of the superior greatness of her brother. Not content with this, he entered into an alliance with a great number of the neighbouring states, in order to reduce the Mexican greatness. His wife, however, being informed of this scheme, communicated the particulars to her brother; and soon after, being impatient of the ill usage she received, came to Mexico with her four sons to claim the protection of her brother. This uncommon
MEX [647]

MEX

Tlatelolco reduced and the king killed.

The king of Tlatelolco prepared for war with many horrid ceremonies, of which the drinking of human blood was one. A day was appointed for attacking Mexico. Xiloman, lord of Colhuacan, was to begin the attack, afterwards to pretend flight, in order to induce the Mexicans to follow him; after which the Tlatelolcos were to fall upon their rear. For some reason, however, with which we are not acquainted, the Tlatelolcos began the attack without waiting for Xiloman; the consequence of which was, that he retired in defeat, leaving them to finish their battle the better way they could. The engagement lasted till night, when the Tlatelolcos were obliged to retire. Axayacatl, during the night, disposed of his troops in all the roads which led to Tlateloleco, appointing them to meet in the market-place. The Tlatelolcos, finding themselves attacked on all sides, retired gradually before the Mexicans, until at last they were forced into the market-place, where they found themselves worse than ever on account of its narrowness, which did not allow them room to act. The king fled on the top of the great temple, encouraging his men to exert themselves against the enemy. His words, however, had now lost their usual influence. He not only was not obeyed, but was reproached with cowardice because he did not come down and fight among the rest. At last the Mexicans arrived at the temple, and ascended to the balcony where the king was. He made a desperate defence for a little; but by a violent push in the breast was thrown backward upon the steps of the temple, and stunned or perhaps killed by the fall. The soldiers took him up and carried him to Axayacatl; who with his own hand cut open his breast and tore out his heart. His people then attempted to fly across the market-place; but a great number of them were killed, among whom were many officers of distinction. The city of Tlatelolco was then united with Mexico, as a part or kind of suburb, which it still continues to be.

The Tlatelolcos being thus reduced, Axayacatl next set out on an expedition against the Chaluztincas, a tribe in the vale of Toluca, who still refused to submit to the Mexican yoke. Having proved successful in this expedition, he undertook to subdue also the northern part of the valley, now called Valley of Toluca, particularly Xingejoque, a considerable city and state of the Otomies, whose chief was much renowned for strength and bravery. Axayacatl, who likewise valued himself on these qualities, encountered him in single combat. In this, however, he was over-matched, and received a violent wound on the thigh; after which he would have been taken prisoner, had not some young Mexicans made a desperate effort for his rescue. Notwithstanding this disaster, Axayacatl's army gained a complete victory, carrying off 31,060 prisoners, among whom was the chief of the Otomies himself, and two of his officers who had attacked the king. These chiefs were put to death at an entertainment of the allied kings, the sight of their agonies not interrupting in the least the mirth of the feast; so much were they familiarized to the shedding of human blood.

Axayacatl continued to extend his territories to the east and west, till his progress was stopped by death in 1477. He was succeeded by his elder brother Tizoc; and of whose reign we know little, but that he conquered fourteen cities, some of which had been in rebellion. He intended to have built a larger temple than any that had yet been seen in Mexico, though that originally built had been greatly enlarged by some of his predecessors. For this purpose he collected a great quantity of materials; but before he could bring his projects to bear, he was taken off by a conspiracy of his subjects. We are not informed in what manner he died; most probably it was by poison, as the conspirators wished his death to pass for natural. It being discovered to be otherwise, however, diligent search was made for the criminals, who were punished according to their deserts. During the reign of Tizoc, the Alcohuacans made war upon the Huexotzincas, ruined their city, and conquered their territory. Nezahualpilli also, the Alcohuacan monarch, though he had already several wives, had not made any of them queen, having wished to confer that honour upon one of the royal family of Mexico. Tizoc readily gave him one of his grand-daughters, who had a figure of singular beauty named Xocotzin. The friendship between these two ladies was such, that the one could not think of being separated from the other; for which reason the new queen fought and obtained permission to take her former upon herself. Xocotzin had not been long there before the king fell in love with her, and married her with the title of queen likewise. Soon after this second marriage, the first queen brought forth a son named Cacamotzin, who succeeded him in the throne, and was afterwards taken prisoner by the Spaniards.

Ahuitzotl, the brother of Tizoc, succeeded him in the kingdom of Mexico. His first object was to finish the great temple begun by his predecessor; and such was the number of workmen, that it was completed in four years. During the time that it was building, the king employed himself in making war with different nations, referring all the prisoners he took for victims at the dedication of the temple. The number of prisoners sacrificed at this dedication is said by Torquemada to have been 75,324; by other historians 64,062. The miserable victims were ranged in two files, each a mile and a half in length, terminating at the temple. The same year another temple was built by a feudatory lord, in imitation of the great one built by the king; at the dedication of which a vast number of prisoners were also sacrificed. These temples were dedicated in 1486. In 1487 happened a violent earthquake; and Chimalpopoca king of Alcohuacan died, who was succeeded by Totoquihuatzin II.

The remains of the life of Ahuitzotl was a continued series of wars, in all of which he proved ultimately successful, extending the Mexican dominions as far as Guatemala, 900 miles to the south-east of Mexico. In only one expedition the Mexicans were defeated with disgrace. This happened in 1496, when they suddenly, and as appears without any provocation, entered the vale of Atlixco in an hostile manner.
manner. So unexpected was the invasion, that the inhabitants of Atlixco knew only of the intention of their enemies by seeing them in arms in their country. Finding it impossible to raise in an infant a sufficient force among themselves, they applied to their neighbours, the Huexotzincaes. On their arrival at the city, which it seems had already been rebuilt since its destruction by the Acocluacans, they found a most celebrated captain, named Toltecati, amusing himself at foot-ball. Being informed of the arrival of the Mexican army, he instantly quitted his diversion to repair to Atlixco; where, to show his contempt for the enemy, he entered the battle unarmed.— He supplied himself with armour by knocking down the first Mexican he met with his fist, and seizing his armours. He then attacked the enemy with such fury, and was so well seconded by his troops, that the Mexicans were totally defeated; and, in consideration of his signal bravery, the Huexotzincaes made him the chief of their republic. He had not continued in his new office more than a year, however, when, finding himself unqualified for being legislator to such turbulent subjects as he had to deal with, he quitted his dignity and his country at once; and crossing the mountains with some other nobles, came to Tlamanalco, where he was put to death, with all his compatriots, by order of Ahuizotl.

Ahuizotl died in 1502, of a disorder produced by a contusion in his head. Of the cause of which we have the following account: In 1498, the king, thinking that the navigation of the lake of Mexico was become difficult on account of the scarcity of water, formed a project of supplying the deficiency from a fountain which supplied the Cohuaecanec, and called upon the lord of the district to give orders for that purpose. This nobleman represented that the spring was not constant; that sometimes it was dry, and at others ran so abundantly that it might occasion some disaffection in his court. Ahiuzotl, however, supposing this to be a pretence, renewed his order, and put the nobleman to death for insinuating his objection. He then caused a spacious aqueduct to be constructed from Cohuaecan to Mexico; and the water was brought in with a great many superfluous ceremonies. That very year, however, there fell such quantities of rain, that the waters of the lake, augmented also by those of the spring, overflowed the city, so that the streets were filled with falling waters, and some houses were destroyed. The king happening to be one day in a lower apartment of his palace, the waters entered with such rapidity and violence that he was obliged to fly; and the door being low, he struck his head with such force against the top, that he never recovered the effects of the contusion. This inundation was followed by a famine, all the maize being rotten by the water.

"At the time of Ahiuzotl’s death, the Mexican empire was brought to its utmost extent. His successor, Montezuma Xicojotzin, or Montezuma Junior, was a person of great bravery, besides which he was likewise a priest, and held in great estimation on account of his gravity and the dignity of his deportment. His election was unanimous; and the nobles congratulated themselves on the happiness the country was to enjoy under him, little thinking how short the duration of their happiness or of their empire was to be.

The first care of the new monarch, as usual, was to procure victims for the barbarous sacrifices to be made at his coronation. The people of Atlixco, who had again shaken off the Mexican yoke, were the sufferers on this occasion, being once more reduced, though not without great loss on the part of the Mexicans, some of whose bravest officers perished in the war. The ceremony of coronation was performed with such pomp as had never been seen before in Mexico; but no sooner was this ceremony over than Montezuma began to discover a pride which nobody had suspected before. All his predecessors had been accustomed to confer offices upon persons of merit, and those who appeared the most able to discharge them, without any partiality as to birth or wealth. Montezuma, however, disapproved of the conduct of his predecessors, under pretence that the plebeians should be employed according to their rank; for that in all their actions the benefits of their birth and the meanesses of their education appeared; and in consequence of this maxim he deprived all the commoners of the offices they held about the court, declaring them incapable of holding any for the future. All the royal servants now were people of rank. Besides those who lived in the palace, 600 feudatory lords and nobles came to pay court to him. They passed the whole day in the antechamber, where none of their servants were permitted to enter; conversing in a low voice, and waiting the orders of their sovereign.— The servants of their lords were so numerous that they occupied three small courts of the palace, and many waited in the streets. The women were not less numerous. All these last were confined in one vast fràgelio, under the care of some noble duennas, who kept a strict watch over their conduct. From this collection the emperor selected such as he liked best for himself, giving away the rest; and so well did he acquit himself in his matrimonial capacity, that an hundred and fifty of his wives are said to have been pregnant at once.

The pride of Montezuma was no less conspicuous in the ceremonials than in the magnificence of his court. None durst enter the palace without pulling off his shoes and crowning at the gate; neither durst they appear pompously dressed in the imperial presence; this being deemed a want of respect to majesty.— All who entered the hall of audience, before speaking to the king, made three bows at the first, saying Lord! at the second, My Lord! and at the third, Great Lord! They spoke low, and with the head inclined, receiving the answer: which the king gave them by secretaries, with as great humility as if it had been the voice of a deity; and no person in taking leave ever turned his back on the throne. When this mighty emperor went abroad, he was carried on the shoulders of the nobility, in a litter covered with a rich canopy, and attended by a numerous retinue of courtiers: and wherever he passed, every person that his eyes, as fearing to be dazzled with the splendor of Majesty. When he alighted from the litter to walk on foot, carpets were spread on the ground, that the emperor might not be permitted to touch the earth with his feet.
In every respect Montezuma kept up, as far as was possible, this extravagant appearance of dignity. His kitchen utensils were of the finest earthen ware, and his table-cloths and napkins of the finest cotton; but none of these ever served the emperor more than once, being immediately made a present of to future nobles.

The vessels in which his chocolate and other drinks from cocoa were prepared, were all of gold, or some beautiful shell-shell, or naturally formed vessels, curiously varnished. He had also gold plate, but it was used only on particular occasions in the temple. The number and variety of his dishes astonished the Spaniards. Cortes says, that they covered the floor of a great hall; and that there were dishes of every kind of game, fish, fruit, or herbs, in the country. This dinner was carried in state by three or four hundred of the young nobility, who retired as soon as the king sat down to table: and that the meat might not grow cold, each plate was furnished with a chafing-dish. The king marked with a rod the different chafings for himself, and the rest were distributed among the nobility in the ante-chamber. Before he sat down, four of the most beautiful women of his seraglio supplied him with water to wash his hands, and continued standing all the time of his dinner, along with six of his principal ministers and his carvers.

Montezuma took great delight in the cleanliness of his person, and of every thing about him. He bathed regularly every day, and had baths in all his palaces. Every day he wore four drestes, never using again those which he had put off, but referring them as largesses for the nobility, or those who had distinguished themselves in war.

The expense of all this, and many other instances of magnificence, rendered the emperor very disagreeable to a great number of his subjects; though others were pleased with the readiness he showed to relieve the necessities of individuals, and his generosity in rewarding his generals and ministers who deserved it.

Among other actions worthy of imitation, he appointed the city of Colhuacan as an hospital for all invalids, who, after having faithfully served the crown, either in the civil or military line, required a provision on account of their age and infirmities. In this place they were maintained and attended at the expense of the king.

The reign of Montezuma, even before the arrival of the Spaniards, was far from being so glorious with regard to his fascinatory power as that of his predecessors had been. He reduced indeed one rebellious province, and conquered another which had never before been subjugated; but in his war with Tlafcalan he was by no means successful. This was but a small republic at no great distance from the capital, but the inhabitants were remarkable for their bravery and independent spirit. The neighbouring states, however, who had been reduced by the Mexicans, envious of their liberty and prosperity, exasperated the Mexicans against them, by representing that the Tlafcalans were delirious of making themselves masters of the maritime provinces on the Mexican gulf, and that by their commerce with their province they were encroaching on their wealth and power, and gaining the hearts of the people with whom they were to traffic. In consequence of this representation, strong garrisons were placed on the frontiers of Tlafcala, to obstruct the commerce of the inhabitants, and thus to deprive them of the means of obtaining some of the necessaries of life. The Tlafcalans complained; but received no other answer than that the king of Mexico was lord of all the world, and that the Tlafcalans must submit to pay tribute to him.

The Tlafcalans returned a spirited answer, to this insolent speech, and began to fortify their frontier. They had already enclosed all the lands of the republic with entrenchments; and to these they now added a wall of six miles in length on the west side, where an invasion was most to be apprehended; and so well did they defend themselves, that though they were frequently attacked by the neighbouring states in alliance with Mexico, or subject to it, not one of them was able to wrest a foot of ground from them. Thus a continual series of wars and engagements took place between the states of Mexico and this republic, which continued till the arrival of the Spaniards. The most remarkable occurrences in these wars are the exploits of Tlafcalan general named Tlahuicol. His courage and strength were so great that his enemies fled wherever he appeared. The sword with which he fought was so weighty, that no man of ordinary strength could lift it from the ground. At last, however, having in the heat of an engagement got into a martinet, his great strength was of no use to him, so that he was taken prisoner, put into a strong cage, and carried to Mexico.

The emperor, in consideration of his extraordinary qualities, gave him liberty to return to his own country; but this he absolutely refused, saying, that he wished to die, like other prisoners, in honour of their god. In this he persisted obstinately for several years; until at last Montezuma resolved to comply with his barbarous desire; and he was permitted to die by the gladiatorial sacrifice, to be afterwards described, in which the prisoner was allowed, though under great disadvantages, to fight for his life. He was opposed by several brave men, one at a time, of whom he killed eight, and wounded twenty more; until, falling almost dead by a violent blow he received on the head, he was carried to the temple, and there sacrificed.

During the remainder of Montezuma's reign, the empire was disturbed by various rebellions, of which the accounts are not sufficiently interesting to merit particular detail; but in the year following his death, the king of Mexico began to entertain apprehensions of that fatal event which at length overtook him. An expedition having been undertaken against a very distant region, named Amatla, the army, in marching over a lofty mountain, were attacked by a furious north-wind, accompanied with snow; which made great havoc in the army, many of them perishing with cold, and others being killed by the trees rooted up by the wind. The remains of the army continued their march to Amatla, where they were almost all killed in battle. By this and other calamities, together with the appearance of a comet, the Mexicans were thrown into the utmost consternation. Montezuma was so terrified by these omens, that, having in vain consulted his astrologers, he applied to the king of Colhuacan, who was reported to be very skilful in divination. Nezahualpilli having conferred with him at length upon the subject, told Montezuma, that the comet presaged some calamity which was about to befal their kingdoms by the...
arrival of a new people: but this being unsatisfactory to the emperor, the king of Acolhuacan challenged him to a game at foot-ball, flaking the truth of his prediction on the issue of the game. Montezuma lost the game, but did not yet acquiesce in the truth of his prediction. He therefore applied to a celebrated astrologer, whom it seems he had not yet consulted; but he confirmed the interpretation of Nezahualpilli; for which the emperor caufed his house to be pulled down, and himself buried in the ruins.

Many other prelages of the arrival of the Spaniards are related. The following, though apparently the most incredible of them all, seems to be believed by Clavigero. "A litter of Montezuma, named Papantzin, who had been married to the governor of Tlate-lolco, lived in his palace after he was dead to the year 1509, when she died of old age. The day after her burial, a child of five or fix years old happened to pass from her mother's apartment to that of the major-domo of the deceased princes. In passing by the child flaw the princes fitting upon the steps of the fountain where she had been accustomed to bathe, and heard herself called by the name of cocoton, a Mexican expression of endeavour, signifying "little girl." The child, incapable from its age of reftecting on the death of the princes, approached without fear, and was desired to call the wife of her major-domo. The woman caufed the child, and told her that the princes was dead; but being importuned and pulled by the gown, she at last went; but no sooner saw the princes than she fainted. The child then ran to call her mother, who with two other women came to the assistance of the wife of the major-domo; but they also would have fainted, had not the princes called to them and affured them that she was really alive. Having caufed them the major-domo, she defired him to go and tell Montezuma what he had fen. But he, dreading the severity of the emperor, durft not undertake the talk. She then defired him to go to Tezenceo, and tell Nezahualpilli that she wished to fee him. He came accordingly, and at her defire brought Montezuma; whom she informed, that during the time she lay entranced, she had had a vision. The main purport of this vision was to announce to her, that all her forefathers were damned; that another race of men should arrive, who, should conquer the kingdom, and introduce the true religion; and "as soon as the bath should be published and made known, which would wash away fin, she should be the firft to accept of it." There can be but very little doubt that this story is a fiction of the Spanih priests, tho' it cannot be doubted that the Mexicans had some expectations of the arrival of the Spaniards among them at the time they actually came. This, however, we may account for without having recourse to any thing the least supernatural, or out of the ordinary course of things. The Weft India indias had been discoered by Columbus, in 1492: he had made frequent voyages, and had even discovered the continent. Settlements had been made; the Spaniards had thown their prowess and their cruelty; and we are not to doubt, that many of the indians would quit their habitation to escafe the fury of the invaders. It would naturally occur to these fugitives, that the arms of these new comers could not be refifted by those of the western nations, while their relentless cruelty might easily suggeft that they would destroy all before them. From the year 1492, therefore, to 1508, there was time enough for this report to have reached Mexico; and we can only attribute it to the barbarous fate in which the Americans were, that the Spaniards were not perfectly known and described before their arrival.

But whatever were the omens by which the arrival of the Spaniards was announced, they appear to have had no effect in working any reformation upon Montezuma or his Mexicans. Instead of relaxing any thing facing from the barbary of their religion, they seem to have augmented it. Wars were carried on every where, and prisoners sacrificed by thousands; inofhift, that Montezuma finding the fome on which the prisoners were sacrificed too small, he caufed one of moniftors fize to be paff in its place. It was dragged along by an immense number of people; but in paffing a wooden bridge over a canal, in the entry of the city, the bridge broke down by its extraordinary weight, and dragged feral people into the water, among whom was the high prief, who had accompanied it on the road, flattering incenfe as he went along. This misfortune diſconcerted them considerably; nevertheless the fome, by dint of exccfive labour, was got up again, and confecrated by the murder of 12,200 prisoners. The time, however, was now at hand when this horrible and never-ceafing buſhery was to be ended, and a moft severe vengeance to overtake the perpetuators. The Spaniards having established themselves pretty well in the island of Cuba and Hispaniola, now prepared to explore the continent ally, with a view to extend the dominions of their Sovereign, and to fatiate, if possible, their own appetite for wealth.

Mexico itself was first discovered, though imperfectly, by a Spaniard named Nuñez de Balboa; but in 1518, the conquest of it was undertaken by a celebrated adventurer named Ferdinando Cortes. It was not, however, without great difficulty that he got his expedition fett on foot; being perfecuted by the Spanih governors undertaken by the Weft-Indies, fo that he was at laft obliged to throw off his allegiance to them, and proceed without the king's knowledge. On the 10th of February, 1519, he fet fial from the Havannah in Cuba, and foon landed on the island of Cozomel, on the coast of Yucatan, discovered the preceding year. He here joined one of his officers, named Pedro d'Alvarado, who had arrived fome days before, and collected fome booty, and taken a few prisoners. But the general fervently cenfured his conduct; and the prisoners were difcharged after they had been inforn by an Indian interpreter named Meléhior, that such injuries were entirely difagreeable to the intentions and wilhes of Cortes. Here he muftered his army, and found that it amounted to 508 foldiers, 16 horiemen, and 109 mechanics, pilots, and mariners. Having encouraged his men by a proper speech, and releafed, by means of some Indian ambafadors, a Spaniard named Jeron de Aguilar, who had been detained a prifoner for eight years, he proceeded to the river Tobaco, where he hoped to be received in a friendly manner, as one Grijalvo had been a fhort time before; but from some unknown caufe, he was violently attacked by them: however, the superiority of the Spanih arms foon decided the victory, and the inhabitants
MEX [651]

The next day the ambassadors had a formal audience; at which Cortes acquainted them, that he came from Don Carlos of Austria, king of Castile, the greatest monarch of the earth, and was intrusted with propositions of such moment, that he would impart them to none but the emperor himself, and therefore required to be conducted immediately to the capital. This demand produced the greatest uneasiness; and the ambassadors did all in their power to dissuade Cortes from his design, endeavouring to con
ciliate his good-will by the presents sent him by Montezuma. These they introduced with great parade, and consisted of fine cotton-cloth, of plumes of various colours, and of ornaments of gold and silver to a considerable value, the workmanship of which appeared to be as curious as the materials were rich. But these presents served only to excite the avidity of the Spaniards, and to encrease their desire for becoming masters of a country which abounded with so many precious commodities. Cortes indeed could scarcely refrain himself so far as to hear the arguments made use of by the ambassadors to dissuade him from going to the capital; and, in a haughty, determined tone, inforced on his former demand of being admitted to a personal interview with their sovereign.

During this conversation, some painters in the retinue of the Mexican chiefs had been diligently employed in delineating, upon white cotton clothes, figures of the ships, horses, artillery, soldiers, and whatever else attracted their eyes as singular. When Cortes observed this, and was informed that these pictures were to be sent to Montezuma, he resolved to render the representation still more striking and interesting. The trumpets, by his orders, sounded an alarm; the troops formed in order of battle, and showed their agility and strength in the best manner they could; while the artillery was pointed against the neighbour.
ing trees, among which it made dreadful havoc. The Indians for some time looked on with silent admiration; but at the explosion of the cannon, some fled, others fell to the ground, and all were so confounded, that Cortes found it difficult to quiet and compose their minds.

When the painters had exerted their utmost efforts, Montezuma, in representing all these wonderful things, messengers summa made immediately dispatched to Montezuma, with the pictures, and a full account of every thing that had passed since the arrival of the Spaniards, together with some European curiosities to Montezuma; which, though of no great value, Cortes believed would be acceptable on account of their novelty. The Mexican monarchs, in order to obtain the earliest information of every occurrence in all parts of their empire, had couriers posted at proper stations along the principal roads; and as these were trained to agility by a regular education, they conveyed intelligence with surprising rapidity. Though the city in which Montezuma resided was above 160 miles from St Juan de Uilla, Cortes's presents were carried thither, and an answer returned to his commands, in a few days. As the answer was unfavourable, Montezuma had de

Mexico.

The Spaniards then continued their course westward, to the harbour of St Juan de Uilla; where they were met by two Mexican canoes, who carried two ambassadors from the emperor of that country, and showed the most respectful signs of peace and concord. Their language was unknown to Aguilar; but one of the female prisoners abovementioned understood it, and translated it into the Yucatan tongue; after which Aguilar interpreted the meaning in Spanish. This slave was afterwards named Donna Marina, and proved very useful in their conversations with the natives.

At this time the Mexican empire, according to Dr Robertson, was arrived at a pitch of grandeur to which no society had ever attained in so short a period. Though it had subsisted only for 130 years, its dominion extended from the north to the south; over territories stretching about 500 leagues from east to west, and more than 200 from north to south; comprising provinces not inferior in fertility, position, and opulence, to any in the torrid zone. Though by nature Montezuma possessed a good deal of courage and resolution; yet from the first moment that the Spaniards appeared on his coast, he discovered symptoms of timidity and embarrassment, and all his subjects were embarrassed as well as himself.

The general dismay which took place on this occasion was partly owing to the strange figure the Spaniards made, and the prodigious power of their arms; but of the circumstance. By means of his two interpreters, Donna Marina and Aguilar, Cortes learned that the chiefs of the Mexican embassy were deputies from Piptapo and Tuxtiele, the one governor of a province under the emperor, and the other the commander of all his forces in that province; the purport of their embassy was, to inquire what his intentions were in visiting their coasts, and to offer him what assistance he might need in order to continue his voyage. Cortes, in his turn, also professed the greatest friendship; and informed the ambassadors, that he came to propose matters of the utmost consequence to the welfare of the prince and his kingdom; which he would more fully unfold in person to the governor and the general. The natives, instead of opposing the entrance of these fatal guests into their country, assisted them in all their operations with an alacrity which they had ever long reason to repent.

Cortes landed and fortified his camp.

37 Receives an embassy from the emperor of Mexico.

38 State of the empire at that time.

39 Cortes lands and fortifies his camp.
MEX

[652]

Mexico.

82. Sends an unfavourable answer, but accompanied with rich presents, delicate texture, as to resemble silk; pictures of animals, trees, and other natural objects, formed with feathers, silk colors, objects, and (made with such skill and elegance as to rival the works of the pencil in truth and beauty of imitation. But what chiefly attracted their attention, were two large plates of a circular form; one of massive gold representing the sun, the other of silver representing the moon. These were accompanied with bracelets, collars, rings, and other trinkets of gold; and that nothing might be wanting which could give the Spaniards a complete idea of what the country afforded, some boxes filled with pearls, precious stones, and grains of gold unwrought, as they had been found in the mines or rivers, were sent along with the rest. Cortes received all with an appearance of the most profound respect for Montezuma; but when the Mexicans, presuming upon this, informed him, that their manner, though he desired him to accept of what he had sent as a token of his regard for the prince whom he represented, would not give his consent that foreign troops should approach nearer to his capital, or even allow them to continue longer in his dominions, Cortes declared, in a manner more resolute and peremptory than formerly, that he must insist on his first demand; as he could not, without dishonour, return to his own sovereign until he was admitted into the presence of the prince whom he was appointed to visit in his name. The Mexicans were astonished at the sight of the man who dared to oppose the will of their emperor; but not being willing to come to an open rupture with such formidable enemies, with much ado they prevailed upon Cortes to promise that he would not move from his present camp until the return of a messenger whom they sent to Montezuma for further instructions.

The pujillanimity of the Indian monarch afforded time to the Spaniards to take measures which would have been out of their power had they been vigorously attacked on their first refusal to obey his orders. Cortes used every method of securing the affections of the soldiers, which indeed was to his future happiness, as many of them began to exclaim against the rashness of his attempt in leading them against the whole force of the Mexican empire. In a short time Teutille arrived with another present from Montezuma, and together with it delivered the ultimate orders of that monarch to depart instantly out of his dominions; and when Cortes, instead of complying with his demands, renewed his request of audience, the Mexican immediately left the camp with strong marks of surprize and resentment. Next morning, none of the natives appeared; all friendly correspondence seemed to be at an end, and hostilities were expected to commence every moment. A sudden consternation ensued among the Spaniards, and a party was formed against him by the adherents of Velasques; who took advantage of the occasion, and deputed one of their number, a principal officer, to remonstrate, as if in name of the whole army, against his rashness, and to urge the necessity of his returning to Cuba. Cortes received the message without any appearance of emotion; and as he well knew the temper and wishes of his soldiery, and foresaw how they would receive a proposition so fatal to all the splendid hopes and schemes which they had been forming with such complacency, he pretended to comply with the request now made him, and issued orders that the army should be in readiness to embark for Cuba. Upon hearing this, the troops, as Cortes had expected, were quite outrageous; they positively refused to comply with these orders, and threatened immediately to choose another general if Cortes continued to infilt on their departure.

Our adventurer was highly pleased with the disposition which now appeared among his troops; nevertheless, dissembling his sentiments, he declared, that his orders for embarking had proceeded from a persuasion that it was agreeable to his fellow-folders, to whose opinion he had sacrificed his own; but now he acknowledged his error, and was ready to resume his original plan of operation. This speech was highly applauded; and Cortes, without allowing his men time to cool, set about carrying his designs into execution. In order to give a beginning to a colony, he assembled the principal persons in his army, and by their suffrages elected a council and magistrates, in whom the government was to be vested. The persons chosen were most firmly attached to Cortes; and the new settlement had the name of Villa Rica de la Vera Cruz; that is, the rich town of the true cross.

Before this court of his own making, Cortes did not hesitate at resigning all his authority, and was immediately re-elected chief-justice of the colony, and captain-general of his army, with an ample commission, in the king's name, to exercise till the royal pleasure should be further known. The soldiers eagerly ratified their choice by loud acclamations; and Cortes, now considering himself as no longer accountable to any subject, began to assume a much greater degree of dignity, and to exercise more extensive powers than he had done before. Some of the soldiers began to exclaim against the proceedings of the council as illegal; but the ringleaders were instantly sent on board the fleet loaded with irons. By this timely severity the rest were overawed; and Cortes, knowing of how great importance unity was to his future success, soon found means to reconcile those who were most disaffected; to which purpose a liberal distribution of the Mexican gold, both among friends and foes, contributed not a little.

Cortes having thus strengthened himself as well as he could, resolved to advance into the country; and in this he was encouraged by the behaviour of the cacique or petty prince of Zempoalla, a considerable town at no great distance. This prince, though subject to Montezuma, was exceedingly impatient of the yoke; and so filled with hatred of the emperor, that nothing could be more acceptable to him than an appearance of being delivered from that subjection; and a deliverance of this kind he now hoped from the Spaniards. For this reason, he sent ambassadors to Cortes, with offers of friendship, which were gladly accepted by him; and in consequence of the alliance, he very soon visited Zempoalla. Here he was received in the most friendly manner imaginable, and had a respect paid towards him almost equivalent to adoration. The cacique informed him of many particulars relating to the character of Montezuma.—zuma given.

He told him that he was a tyrant, haughty, cruel, by the cacique, and cixquez.
Totonaques, a fierce people who inhabited the mountains of Viaga, were auxiliaries of Cortes, and offered to accompany his march to Zempoalla; but they were dissatisfied with the manner in which they were treated, and retired to their own quarters, to renew their efforts to alleviate the sufferings of their countrymen, by offering them the advantages of Christianity. The inhabitants of that province were warlike, fierce, and revengeful, and made considerable progress in agriculture and some other arts. They were imbued with a spirit of independence, and as their superlition was no less barbarous than Montezuma's, they threatened to sacrifice them to their gods. From this last danger, however, they were delivered by the interposition of Cortes, who manifested the utmost horror at the mention of such a deed. This act of rebellion firmly attached the two caciques to the interest of Cortes; and without hesitation they acknowledged themselves vassals of the king of Spain. Their example was followed by the Tononagues, a fierce people who inhabited the mountainous parts of the country. They willingly subjected themselves to the crown of Cadiz; and offered to accompany Cortes with all their forces in his march towards Mexico.

89 The caciques of Zempoalla and Quiabiban, and some others, submitted.

Although Cortes had now taken such measures as in a manner ensured his success; yet as he had thrown off all dependence on the governor of Cuba, who was now too well convinced to support him, he determined to proceed on his intended expedition, to take the most effectual measures against the impending danger. With this view, he peremptorily required the magistrates of his colony to address a letter to the king of Spain in favor of Cortes.

90 The magistrates of Villa Rica sent a letter to the king of Spain in favor of Cortes.

Cortes himself wrote in a similar strain; but as he knew that the Spanish court, accustomed to the repeated exaggerations of American adventurers, would give little credit to the splendid accounts of New-Spain, if they were not accompanied with such a demonstration of what it contained as would excite an high idea of its opulence, he solicited his soldiers to relique what they might claim as their part of the treasures which had hitherto been collected, in order that the whole might be sent to the king. Equiano and Moctezuma, the chief magistrates of the colony, were appointed to carry this petition to Cadiz, with express orders not to touch at Cuba in their passage thither. But while a vessel was preparing for their departure, an unexpected event produced a general alarm. Some soldiers and sailors, secretly dissatisfied with Cortes, formed a design of seizing one of the brigantines, and making their escape to Cuba, in order to give such intelligence to the governor as might enable him to intercept the vessel which was to carry the treasure and the dispatches to Spain. This conspiracy was concerted with profound secrecy; but at the moment when everything was ready for execution, the secret was discovered by one of the associates. The latent spirit of dissatisfaction which Cortes had so well convinced had not been extinguished among his troops, gave him very great uneasiness.

The only method by which he could think of to prevent such conspiracies for the future was, to destroy his fleet, and thus deprive his soldiers of every resource except that of conquest; and with this proposal he prevailed on his men to comply. With unfeigned contentment the ships were drawn ashore, and, after being stripped of their sails, rigging, iron-work, and whatever else might be of use, they were broken in pieces.

Cortes having thus rendered it necessary for his troops to follow wherever he chose to lead, began his march to Zempoalla with 500 infantry, 15 horse, and six field-pieces. The rest of his troops, consisting chiefly of such as from age or infirmity were less fit for active service, he left as a garrison in Villa Rica, under the command of Excalante, an officer of merit, and warmly attached to his interest. The cacique of Zempoalla supplied him with provisions; and with 200 of those Indians called Tombates, whose office, in a country where tame animals were unknown, was to carry burdens and perform all manner of servile labor. He offered likewise to supply him with 100 troops; but Cortes was satisfied with 400; taking care, however, to choose persons of such note, that they might serve as hostages for the fidelity of their master.

Nothing memorable happened till the Spaniards arrived on the confines of the republic of Tlactalca. The inhabitants of that province were warlike, fierce, and revengeful, and had made considerable progress in agriculture and some other arts. They were implacable enemies to Montezuma; and therefore Cortes hoped that it would be an easy matter for him to procure their friendship. With this view, four Zempoallans of high rank were sent ambassadors to Tlactalca, dressed with all the habiliments of that office usual among the Indians. The senate were divided in their opinions with regard to the proposals of Cortes; but at last Magicatzin, one of the oldest senators, and a person of great authority, mentioned the tradition of their ancestors, and the revelations of their priests; that a race of invincible men, of divine origin, who had power over the elements, should come from the east to subdue their country. He compared the resemblance which the strangers bore to the persons figured in the tradition of Mexico, their dominion over the elements of fire, air, and water; and reminded the
The Tlascalans being taught by this, and some subsequent encounters, how much they were inferior to the Spaniards, began to conceive them to be really what Magiscatzin had said: a superior order of beings, against whom human power could not prevail. In this extremity they had recourse to their priests, requiring them to reveal the causes of such extraordinary events, and to declare what means they should take to repel such formidable invaders. The priests, after many sacrifices and incantations, delivered their responses, that these strangers were the offspring of the sun, procured by his animating energy in the regions of the east; that, by day, while cherished with the influence of his parental beams, they were invincible; but by night, when his reviving heat was withdrawn, their vigour declined and faded like herbs in the field, and they dwindled down into mortal men. In consequence of this, the Tlascalans acted in contradiction to one of their most established maxims in war, and ventured to attack the enemy in the night-time, hoping to destroy them when infatuated and surprised. But the Spanish centinels having observed extraordinary movements among the Tlascalans, gave the alarm. Immediately the troops were under arms, and flying out, defeated their antagonists with great slaughter, without allowing them to approach the camp. By this disaster the Tlascalans were heartily disposed to peace; but they were at a loss to form an adequate idea of the enemies they had to deal with. They could not ascertain the nature of these surpassing beings, or whether they were really of a benevolent or malignant disposition. There were circumstances in their behaviour which seemed to favour each opinion. On the one hand, as the Spaniards constantly disdained the prisoners whom they took, not only without injury, but often with presents of European toys, renewed their offers of peace after every defeat, and renewed their offers of peace after every victory; this lenity amazed people accustomed to the exterminating system of war known in America, and who sacrificed and devoured without mercy all the captives taken in battle; and disposed them to entertain sentiments favourable to their humanity. But, on the other hand, as Cortes had seized so of their countrymen who brought provisions to their camp, and cut off their heads; this bloody spectacle, added to the terror occasioned by the fire-arms and horses, filled them with dreadful ideas of their ferocity. Accordingly they addressed them in the following manner: “If (said they) you are divinities of a cruel and savage nature, we present to you five flaves, that you may drink their blood and eat their flesh. If you are mild deities, accept an offering of incense and variegated plumes. If you are men, here is meat, bread, and fruit, to nourish you.” After this address, the peace was soon concluded, to the great satisfaction of both parties. The Tlascalans yielded themselves as vassals to the crown of Castile, and engaged to assist Cortes in all his operations; while he took the republic under his protection, and promised to defend their persons and possessions from injury and violence.

This reconciliation took place at a very reasonable time. Great distraction for the Spaniards. They were not only worn wastes of out with incessant toil, but to delirium of necessities, the Spaniards that they had no other false to dress their wounds but what...
what was composed of the fat of Indians whom they had slain. Their distress, in short, were ascribed to such an extent, that they had been driven to murder, and even to despair, in much that Cortes had much difficulty in restraining them within any kind of bounds; but the submission of the Tlascalans, and their own triumphant entry into the city, where they were received with the reverence due to a superior order of beings, banished at once all memory of past sufferings, dispelled every anxious thought, and fully convinced them that they could not be relied by any power in America.

Cortes left no method untried to gain the favour and confidence of the Tlascalans; which, however, left the city entirely lost, by his untimely zeal in destroying their idols, as he had done those of Zempoalla. But he was deterred from this rash action by his chaplain, Father Bartholomew de Omedo; and left the Tlascalans in the undisturbed exercise of their superstition, requiring only that they should desist from their horrid practice of offering human victims. As soon as his troops were fit for service, he resolved to continue his march towards Mexico, notwithstanding the remonstrances of the Tlascalans, who looked upon his destruction as unavoidable if he put himself into the power of such a faithless prince as Montezuma. But the emperor, probably intimidated with the fame of his exploits, had resolved to admit his visit; and informed Cortes, that he had given orders for his friendly reception at Cholula, the next place of any consequence on the road to Mexico. In this, however, he was, by no means sincere. Cholula was looked upon by all the inhabitants of the empire as a very holy place; the sanctuary and chief seat of their gods, to which pilgrims resorted from every province, and a greater number of human victims were offered in its principal temple, than even in that of Mexico. Montezuma therefore, invited the Spaniards thither, either from some superstitious hopes that the gods would not suffer this sacred manse to be defiled; or from a belief, that he himself might there find an opportunity of cutting off the enemy, without more certain danger to himself and the immediate protection of his gods. Cortes, however, was received with much seeming cordiality; but 6000 Tlascalan troops, who accompanied him, were obliged to remain without the town, as the Cholulans refused to admit their ancient enemies within their precincts. Yet two of these by disguising themselves, got into the city, and acquainted Cortes, that they observed the women and children belonging to the principal citizens, retiring every night in a great hurry, and that fix children had been sacrificed in the great temple; a sign that some warlike enterprise was at hand. At the same time Donna Marina, the interpreter, received information from an Indian woman of distinction, whose confidence he had gained, that the defection of the Spaniards was concerted; that a body of Mexican troops lay concealed near the town; that some of the streets were barricaded, in others deep pits or trenches were dug, and slightly covered over, as traps into which the horse might fall; that flutes and muskets were collected on the tops of the temples, with which to overwhelm the infantry; that the fatal hour was already at hand, and their ruin unavoidable. Cortes, alarmed at this news, secretly retire three of the chief priests, from whom he extorted a confession that confirmed the intelligence he had already received. As not a moment was to be lost, he instantly resolved to prevent his enemies, and to inflict on them such dreadful vengeance as might strike Montezuma and his subjects with terror. For this purpose the Spaniards and Zempoallans were drawn up in a large court, which had been allotted for their quarters, near the centre of the town; the Tlascalans had orders to advance; the magistrates and chief citizens were sent for under various pretences, and seized. On a signal given, the troops rushed out, and fell upon the multitude, despite of leaders, and so much astonished, that the weapons dropped from their hands, and they fled motionless, and incapable of defence. While the Spaniards attacked them in front, the Tlascalans did the same in the rear; the streets were filled with slaughter; the temples, which afforded a retreat to the priests, and some leading men, were set on fire, and they perished in the flames. This scene of horror continued two days, during which the wretched inhabitants suffered all that the destructive rage of the Spaniards, or the implacable revenge of their Indian allies, could inflict. At length the carnage ceased, after the slaughter of 6000 Cholulans, without the loss of a single Spaniard.

Cortes then released the magistrates; and reproaching them bitterly for their intended treachery, declared, that as justice was now appeased, he forgave the offence; but required them to rescind the inhabitants who had fled, and re-establish order in the town. Such was the ascendant that the Spaniards had now obtained over this superstitious race, that this order was instantly complied with; and the city was in a few days again filled with people, who paid the most respectful service to those men whose hands were stained with the blood of their relations and fellow-citizens.

From Cholula, Cortes advanced directly towards Mexico; and throughout the whole of his journey, was entertained with accounts of the oppressions and cruelty of Montezuma. This gave him the greatest hope of accomplishing his design; as he now perceived that the empire was entirely divided, and no sort of unanimity prevailed among them. No enemy appeared to check his progress. Montezuma was quite irresolute; and Cortes was almost at the gates of the capital before the emperor had determined whether to receive him as a friend, or oppose him as an enemy. But as no sign of open hostility appeared, the Spaniards, without regarding the fluctuations of Montezuma's sentiments, continued their march to Mexico, with great circumspection and the strictest discipline, though without seeming to suspect the prince whom they were about to visit.

When they drew near the city, about 1000 persons, who appeared to be of distinction, came forth to meet them, adorned with plumes, and clad in mantles of fine cotton. Each of these, in his order, passed by Cortes, and saluted him according to the mode deemed most respectful and submissive in their country. They announced the approach of Montezuma himself, and soon after his harbingers came in sight. There appeared first 200 persons in an uniform dress, with large plumes of feathers, alike in fashion, marching two and two, in deep silence, barefooted, with their eyes fixed on the ground. These were followed by a company of higher rank,
Four of his principal favourites carried him on their shoulders, others supported a canopy of curious workmanship over his head. Before him marched three officers, with rods of gold in their hands, which they lifted up on high at certain intervals; and at that signal all the people bowed their heads, and hid their faces, as unworthy to look on so great a monarch.

When he drew near, Cortes dismounted, advancing towards him with officious haste, and in a respectful posture. At the same time Montezuma alighted from his chair, and leaning on the arms of two of his near relations, approached with a flow and flatly pace, his attendants covering the street with cotton cloths, that he might not touch the ground. Cortes accosted him with profound reverence, after the European fashion. He returned the salutation, according to the mode of his country, by touching the earth with his hand, and then kneeling it. This ceremony, the customary expression of reverence from inferiors towards those who are above them in rank, appeared such amazing condescension in a proud monarch, who scarcely deigned to confer the least of the same species with himself, that all his subjects firmly believed those persons, before whom he humbled himself in this manner, to be something more than human. Accordingly, as they marched through the crowd, the Spaniards frequently, and with much satisfaction, heard themselves denominated teules, or divinites. Nothing material passed in this first interview. Montezuma conducted Cortes to the quarters which he had prepared for his reception; and immediately took leave of him, with a politeness not unworthy of a court more refined. "You are now (says he), with your brothers, in your own house; refresh yourselves after your fatigue, and be happy until I return." The place allotted to the Spaniards for their lodging, was a house built by the father of Montezuma. It was surrounded by a stone wall, with towers at proper distances, which served for defence as well as for ornament; and its apartments and courts were so large as to accommodate both the Spaniards and their Indian allies. The first care of Cortes was to take precautions for his security, by planting the artillery so as to command the different avenues which led to it, by appointing a large division of his troops to be always on guard, and by posting sentinels at proper stations, with injunctions to observe the same vigilant discipline as if they were within fight of an enemy's camp.

In the evening, Montezuma returned to visit his guests, with the same pomp as in their first interview; and brought presents of such value, not only to Cortes and his officers, but even to the private men, as proved the liberality of the monarch to be suitable to the opulence of his kingdom. A long conference ensued, in which Cortes learned what was the opinion of Montezuma with respect to the Spaniards. It was an established tradition, he told him, among the Mexicans, that their ancestors came originally from a remote region, and conquered the provinces now subject to his dominion: that after they were settled there, the great captain who colonized this colony, returned to his own country, promising, that at some future period his descendants should visit them, assume the government, and reform their constitutions and laws; that, from what he had heard and seen of Cortes and his followers, he was convinced that they were the very persons whose appearance and prophecies taught them to expect; that accordingly, he had received them, not as strangers, but as relations of the same blood and parentage, and desired that they might consider themselves as masters in his dominions; for both himself and his subjects should be ready to comply with their will and even to prevent their wishes. Cortes made a reply in his usual style with respect to the dignity and power of his sovereign, and his intention in sending him into that country; artfully endeavouring so to frame his discourse, that it might coincide as much as possible with the idea which Montezuma had formed concerning the origin of the Spaniards. Next morning, Cortes, and some of his principal attendants, were admitted to a public audience of the emperor. The three subsequent days were employed in viewing the city; the appearance of which, so far superior in the order of its buildings and the number of its inhabitants to any place the Spaniards had beheld in America, and yet so little resembling the structure of an European city, filled them with surprize and admiration.

Mexico, Tenochtitlan, as it was anciently called by the natives, is situated in a large plain, enworn by mountains of such height, that, though within the torrid zone, the temperature of its climate is mild and healthful. All the moisture which descends from the high grounds, is collected in several lakes, the two largest of which, of about 90 miles in circuit, communicate with each other. The waters of the one are fresh, those of the others are brackish. On the banks of the latter, and on some small islands adjoining to them, the capital of Montezuma's empire was built.---The access to the city was by artificial cauways or streets, formed of stones and earth, about 30 feet in breadth. As the waters of the lake, during the rainy season, overflowed the flat country, these cauways were of considerable length. That of Tacuba, on the west a mile and a half; that of Tezcucu, on the north-west three miles; that of Cuoyacan, towards the south six miles. On the east there was no cauway, and the city could be approached only by canoes. In each of these cauways, there were openings, at proper intervals, through which the waters flowed: and over these beams of timber were laid, which being covered with earth, the cauway or street had every where an uniform appearance. As the approaches to the city were singular, its construction was remarkable. Not only the temple of their gods, but the houses belonging to the monarch, and to persons of distinction, were of such dimensions, that, in comparison with any other buildings which had been discovered in America, they might be termed magnificent. The habitations of the common people were mean, resembling the huts of other Indians. But they were all placed in a regular manner, on the banks of the canals which passed thro' the city, in some of its districts, or on the sides of the streets which intersected it in other quarters. In several places were large openings or squares, one of which allotted for the great market, is said to have been so spacious, that 40,000 or 50,000 persons carried on traffic...
But how much soever the novelty of those objects might amuse or allum them, the Spaniards, who felt the utmost solicitude with respect to their own situation,—From a concurrence of circumstances, no less unexpected than favourable to their progress, they had been allowed to penetrate into the heart of a powerful kingdom, and were now lodged in its capital, without having once met with open opposition from its monarch. The Tlascalans, however, had earnestly dissuaded them from placing such confidence in Montezuma as had encouraged to withdraw their forces into the capital, that he might cut them off there at one blow with perfect security. The Spaniards now perceived, too plainly, that the apprehensions of their allies was not destitute of foundation; that, by breaking the bridges placed at certain intervals on the causeways, or by destroying part of the causeways themselves, their retreat would be rendered impracticable, and they must remain cooped up in the centre of a hostile city, surrounded by multitudes sufficient to overwhelm them, and without a possibility of receiving aid from their allies. Montezuma had, indeed, received them with distinguished respect. But ought they to reckon upon this as real, or to consider it as feasible? Even if it were sincere, could they presume on its continuance? Their safety depended upon the will of a monarch in whole attachment they had no reason to confide in; and an order flowing from his caprice, or a word uttered by him in passion, might decide irrevocably concerning their fate.

These reflections, so obvious as to occur to the merest follower, did not escape the vigilant sagacity of their general. Before he set out from Cholula, Cortes had received advice from Villa Rica, that the Messenger of the frontiers, having assembled an army in order to attack some of the people whom the Spaniards had encouraged to throw off the Mexican yoke, Escajante had marched out with part of the garrison to support his allies; that an engagement had ensued, in which, though the Spaniards were victorious, Escajante, with seven of his men, had been mortally wounded, his horse killed, and one Spaniard had been surrounded by the enemy, and taken alive; that the head of this unfortunate captive, after being carried in triumph to different cities, in order to convince the people, that their invaders were not immortal, had been sent to Mexico. Cortes, though alarmed with this intelligence, as an indication of Montezuma's hostile intentions, had continued his march. But as soon as he entered Mexico, he became sensible, that, from an excess of confidence in the superior valour and discipline of his troops, as well as from the disadvantage of having nothing to guide him in an unknown country, but the defective intelligence which he received from people with whom his mode of com-

communication was very imperfect, he had pushed forward into a situation, where it was difficult to continue, and from which it was dangerous to retire. Disgrace, and perhaps ruin, was the certain consequence of attempting the latter. The success of his enterprise depended upon supporting the high opinion which the people of New-Spain had formed with respect to the irresistible power of his arms. Upon the first symptom of timidity on his part, their veneration would cease, and Montezuma, whom fear alone restrained at first, would let loose upon him the whole force of his empire. At the same time, he knew that the countenance of his own sovereign was to be obtained only by a series of victories; and that nothing but the merit of extraordinary success could screen his conduct from the charge of irregularity. From all these considerations, it was necessary to maintain his station, and to excite himself out of the difficulties in which he was involved, by venturing upon another bold stroke.—The situation was trying, but his mind was equal to it; and after revolving the matter with deep attention, he fixed upon a plan no less extraordinary than daring:

He determined to seize Montezuma in his palace, and carry him a prisoner to the Spanish quarters. From the superstitious veneration of the Mexicans for the person of their monarch, as well as their implicit submission to his will, he hoped, by having Montezuma in his power, to acquire the supreme direction of their affairs; or, at least, with such a sacred pledge in his hands, he made no doubt of being secure from any effort of their violence.

This he immediately proposed to his officers. The timid startled at a measure so audacious, and raised objections. The more intelligent and resolute, conscious that it was the only resource in which there appeared any prospect of safety, warmly approved of it, and brought over their companions so cordially to the same opinion, that it was agreed infallibly to make the attempt. At his usual hour of visiting Montezuma, Cortes went to the palace, accompanied by Alvarado, Sandoval, Lugo, Vel阿zquez de Leon, and Davila, five of his principal officers, and as many trusty soldiers. Thirty chosen men followed, not in regular order, but fanning at some distance, as if they had no object but curiosity; small parties were posted at proper intervals, in all the streets leading from the Spanish quarters to the court; and the remainder of his troops, with the Tlascalan allies, were under arms, ready to fall out on the first alarm. Cortes and his attendants were admitted without suspicion; the Mexicans retiring, as usual, out of respect. He addressed the monarch in a tone very different from that which he had employed in former conversations; reproaching him bitterly as the author of the violent assault made upon the Spaniards by one of his officers, and demanding public reparation for the loss which he had sustained by the death of some of his companions, as well as for the insult offered to the great prince whose servants they were. Montezuma, confounded at this unexpected accusation, and changing colour, either from the outrush of guilty passion, or from feeling the indignity with which he was treated, affected his own innocence with great earnestness; and as a proof of it, gave orders instantly to bring Quapalopoca and his accomplices prisoners to Mexico. Cortes replied, with feeling complacency, that a declaration so respectful left no doubt remaining.
The emperor carried to the Spanish quarters.

Cortes rules the empire.

Cortes having obtained this important point, resolved to put the conception of the emperor to a trial, and make him more servile. He urged Montezuma to acknowledge himself a vassal to the crown of Castile; to hold his crown on him as he would hold his dominions to the payment of an annual tribute. With this requisition, humiliating as it was, Montezuma complied. He called together the chief men of his empire, and, in a solemn harangue, reminded them of the traditions and prophecies which led them to expect the arrival of a people sprung from the same flock with themselves, in order to take possession of the supreme power; he declared his belief that the Spaniards were destined for this promised race; and that therefore he recognized the right of their monarch to govern the Mexican empire, would lay his crown at his feet, and obey him as a tributary. While uttering these words, Montezuma discovered how deeply he was affected in making such a sacrifice. Tears and groans frequently interrupted his discourse. The first mention of such a resolution struck the assembly dumb with astonishment. This was followed by a fullen murmur of sorrow mingled with indignation; which indicated some violent eruption of rage to be near at hand. This Cortes forewarned, and reasonably interfered to prevent it, by declaring that,

Mex.
that his master had no intention to deprive Montezuma of the royal dignity, or to make any innovation upon the constitution and laws of the Mexican empire. This assurance, added to their dread of the Spanish arms, and the authority of their monarch's example, extorted the consent of the assembled priests, and the act of submission and homage was executed with all the formalities which the Spaniards pleased to prescribe.

Montezuma, at the request of Cortes, accompanied this profession of fealty and homage with a magnificent present to his new soverign; and, after his example, his subjects brought in very liberal contributions. The Spaniards then collected all the treasure which had been either voluntarily bestowed upon them at different times by Montezuma, or had been extorted from his people under various pretences; and having melted the gold and silver, the value of their, without including jewels and ornaments of various kinds, which were preferred on account of their curious workmanship, amounted to two hundred thousand dollars. The remainder was then divided among the army, including Porteñarrero and Montejo had failed with his dispatches to Spain; and he daily expected a return with a confirmation of his authority from the king, without which all that had done served only to mark him out as an object of punishment. While he remained in great anxiety on this account, news were brought that the ships had appeared a few leagues from Spain: but his joy was of short continuance, for a courier very soon arrived from Vera Cruz, with certain information that the armament was fitted out by Velasquez, the governor of Cuba; and instead of bringing succours, threatened them with immediate destruction.

Velasquez had been excited to this hostile measure chiefly through the indiscretion, or rather treachery, of the messengers of Cortes; who, contrary to his express injunctions, had landed on the island of Cuba, and given intelligence of all that had passed: and Velasquez, transported with rage at hearing of the proceedings of Cortes, had now sent against him this armament; confiding of 18 ships, which carried 800 horsemen, 800 infantry, of which 80 were musketeers, and 120 cross-bowmen, commanded by a brave officer named Pompido de Narvaez, whose instructions were, to seize Cortes and his principal officers, to send them prisoners to him, and then to complete the discovery and conquest of the country in his name. This proved a most afflicting piece of news to Cortes. However, thinking it imprudent to attempt any thing against his countrymen at first by force, he sent his chaplains Omeiro with proposals of accommodation. Narvaez rejected his proposals with scorn; but his followers were less violent in their retortments. Omeiro delivered many letters to them, either from Cortes himself, or from his officers, their ancient friends and companions. These Cortes had artfully accompanied with presents of rings, chains of gold, and other trinkets of value; which inspired those needy adventurers with high ideas of the wealth he had acquired, and with envy of the good fortune of those who were engaged in his service. Some, from hopes of becoming sharers in those rich spoils, declared for an immediate accommodation; while others were for the same pacific measure, through fear of incurring the Spanish power entirely in a country where it was so imperfectly established. Narvaez divested both; and, by a proclamation, denounced Cortes and his adherents rebels, and enemies to their country.

Cortes having now no resource but in war, left which is 150 men under the command of Pedro de Alva, the rado, an officer of great bravery, and much respected by the
The Spanish general was now thoroughly convinced of his error; and therefore betook himself to the only resource which was left; namely, to try what effect the interposition of Montezuma would have to soothe or overawe his subjects. When the Mexicans approached the next morning to renew the assault, that unfortunate prince, at the mercy of the Spaniards, and reduced to the sad necessity of becoming the instrument of his own disgrace, and of the slavery of his people, advanced to the battlements in his royal robes, and with all the pomp in which he used to appear on solemn occasions. At the sight of their sovereign, whom they had been long accustomed to reverence as a god, the Mexicans instantly forebore their hostilities, and many prostrated themselves on the ground; but when he addressed them in favour of the Spaniards, and made use of all the arguments he could think of to mitigate their rage, they testified their resentment with loud murmurings; and at length broke forth with such fury, that before the soldiers, appointed to guard Montezuma, had time to cover him with his shields, he was wounded with two arrows, and was killed. A blow on his temple with a stone struck him to the ground. On seeing him fall, the Mexicans instantly shed with the utmost precipitation; but the unhappy monarch, now convinced that he was become an object of contempt even to his own subjects, obstinately refused...
On the death of Montezuma, Cortes having left all hope of bringing the Mexicans to any terms of peace prepared for retreat. But his antagonists, having taken possession of a high tower in the great temple, which overlooked the Spanish quarters, and placing there a garrison of their principal warriors, the Spaniards were so much expedit to their mihle weapons that none could stir without danger of being killed or wounded. From this post, therefore, it was necessary to dislodge them at any rate; and Juan de Escobar, with a large detachment of chosen soldiers, was ordered to make the attack. But Escobar, though a valiant officer, and though he exerted his utmost efforts, was thrice repulsed. Cortes, however, felt that not only his reputation, but the safety of his army, depended on the success of this assault, caused a buckler to be tied to his arm, as he could not manage it with his wounded hand, and rushed with his drawn sword among the thickest of the combatants. Encouraged by the presence of their general, the Spaniards returned to the charge with such vigour, that they gradually forced their way up the steps, and drove the Mexicans to the platform at the top of the tower. There a dreadful carnage began; when two young Mexicans of high rank, observing Cortes, as he animated his soldiers, resolved to sacrifice their own lives in order to cut off the author of so many calamities which desolated their country. They approached him in a suppliant posture, as if they intended to lay down their arms; and seizing him in a moment, hurried him towards the battlements, over which they threw themselves headlong, in hopes of dragging him along with them. But Cortes, by his strength and agility, disengaged himself from their grasp; so that the two Mexicans perished alone.

As soon as the Spaniards became masters of the tower, they set fire to it, and without further molestation continued the preparations for their retreat. This became the more necessary, as their enemies, afominated at this last effort of their valour, had now entirely changed their system of hostility; and, instead of incessant attacks, endeavoured by barricading the streets, and breaking down the cauwayways, to cut off the communication of the Spaniards with the continent, and thus to starve an enemy whom they could not subdue. The first point to be determined was, whether they should march out openly in the face of day, when they could discern every danger, or whether they should endeavour to retire secretly in the night. The latter was preferred, partly from hopes that the supererogation of the Mexicans would prevent them from attacking them in the night, and partly from their own supererogation in giving credit to the predictions of a private defider, who pretended to astrology, and assured them of success if they retreated in this manner. Towards midnight, therefore, they began their march, in three divisions. Sandoval led the van; Pedro Alvarado and Velázquez de León had the conduct of the rear; and Cortes commanded in the centre, where he placed the prisoners, among whom were a son and two daughters of Montezuma, together with several Mexicans of distinction; the artillery, baggage, and a portable bridge of timber intended to be laid over the breaches in the cauway. They marched in profound silence along the cauwayway which led to Tacuba, because it was shorter than any of the rest, and, lying most remote from the road towards Tlafteca, and the sea-coast, had been left most entire by the Mexicans.

They reached the first breach in the cauwayway without molestation, hoping that their retreat was undiscovered. But the Mexicans had not only watched all their motions, but made preparations for a most formidable attack. While the Spaniards were intent upon placing their bridges in the breach, and occupied in conducting their horses and artillery along it, they were suddenly alarmed with the sound of warlike instruments, and found themselves assaulted on all sides by an innumerable multitude of enemies. Unfortunately the wooden bridge was wedged so fast in the mud by the weight of the artillery, that it was impossible to remove it. Dimmed at this accident, the Spaniards advanced with precipitation to the second breach. The Mexicans hemmed them in on every side; and though they defended themselves with their usual courage, yet, crowded as they were in a narrow cauwayway, their discipline and military skill were of little avail; nor did the obscurity of the night allow them to derive much advantage from their fire-arms or the superiority of their other weapons. At last the Spaniards, overborne with the numbers of their enemies, began to give way, and in a moment the confusion was universal. Cortes, with about 100 foot-soldiers, and a few horse, forced his way over the two remaining breaches in the cauwayway, the bodies of the dead sifting to fill up the chaps, and reached the main land. Having formed them as soon as they arrived, he returned with such as were yet capable of service, to await his friends in their retreat. He met with part of his soldiers who had forced their way through the enemy, but found many more overwhelmed by the multitude of their aggressors, or perishing in the lake; and heard the grievous lamentations of others whom the Mexicans were carrying off in triumph to be sacrificed to the god of war.

In this fatal retreat more than one half of Cortes's army perished, together with many officers of distinction. All the artillery, ammunition, and baggage, were lost; the greater part of the horses and above 2000 Tlaftecans were killed, and only a very small part of their treasure saved. The first care of the Spanish general was to find some shelter for his wearied troops; for, as the Mexicans infested them on every side, and the people of Tacuba began to take arms, he could not continue in his present situation. At last he discovered a temple seated on an eminence, in which he found not only the shelter he wanted, but some provisions; and though the enemy did not intermit their attacks throughout the day, they were without much difficulty prevented from making any impression. For six days after, they continued their march through a barren, ill cultivated, and thinly peopled country, where they were often obliged to feed on berries, roots, and the frailks of green maize; at the same time they were harassed without intermission by large parties of Mexicans, who attacked them on all sides. On the fifth day they reached Otumba, not far from the road between Mexico and Tlafteca. Early next morning they
they began to advance towards it, flying parties of the enemy still hanging on their rear; and amidst the insults with which they accompanied their hostilities, Donna Marina remarked, that they often exclaimed with exultation, "Go on, robbers; go to the place where you shall quickly meet the vengeance due to your crimes." The meaning of this to the Spaniards did not comprehend, until they reached the summit of an eminence before them. There a spacious valley opened to their view, covered with a vast army as far as the eye could reach. The Mexicans, while with one body of their troops they harassesthe Spaniards in their retreat, had assembled their principal force on the other side of the lake; and marching along the road which led directly to Tlacala, posted it in the plain of Otumba, through which they knew Cortes must pass. At the sight of this incredible multitude, which they could survery at once from the rising ground, the Spaniards were astonished, and even the boldest began to despair. But Cortes, without allowing their fears time to operate, after warning them by a shot that no alternative remained but to either submit or die, led them instantly to the charge. The Mexicans waited their approach with unusual fortitude: yet such was the superiority of the Spanish discipline and arms, that the impression of this small body was irresistible; and which ever way its force was directed, it penetrated and dispersed the most numerous battalions. But while these gave way in one quarter, new combatants advanced from another; and the Spaniards, though successful in every attack, were ready to sink under these repeated efforts, without seeing any end to their toil, or any hope of victory. At that time Cortes observed the great standard of the empire, which was carried before the Mexican general, advancing; and fortunately recollecting to have heard, that on the fate of it depended the event of every battle, he assembled a few of his bravest officers, whose horses were still capable of service, and, placing himself at their head, pushed towards the standard with such impetuousity that he bore down every thing before him. A chosen body of nobles, who guarded the standard, made some resistance, but were soon broken. Cortes, with a stroke of his lance, wounded the Mexican general, and threw him to the ground. One of his followers alighting, put an end to his life, and laid hold of the imperial standard. The moment that their leader fell, and the standard, towards which all directed their eyes, disappeared, an universal panic struck the Mexicans; and, as if the bond which held them together had been dissolved, every ensign was lowered, each folder threw away his weapons, and fled with precipitation to the mountains. The Spaniards, unable to pursue them far, returned to collect the spoils of the field; and these were so valuable as to be some compensation for the wealth which they had left in Mexico; for in the enemy's army were most of their principal warriors dashed out in their richest ornaments, as if they had been marching to assured victory.

The day after this important action (being July 8th 1520), the Spaniards entered the Tlacala territories, where they were received with the most cordial friendship. Cortes endeavoured to avail himself of this disposition as much as possible; for which purpose he distributed among them the rich spoils taken at Otumba with such a liberal hand, that he made himself sure of obtaining from the republic whatever he should desire. He drew a small supply of ammunition, and two or three field-pieces from his stores at Vera Cruz. He dispatched with all possible confidence with some ships of Narvaez's fleet to Hispaniola and Jamaica, to engage adventurers, and to purchase horses, gunpowder, and other military stores. And as he knew that it would be in vain to attempt the redemption of Mexico, unless he could secure the command of the lake, he gave orders to prepare, in the mountains of Tlacala, materials for building 12 brigantines, so that they might be carried thither in pieces, ready to be put together, and launched when he could in need of their service. But, in the mean time, his soldiers, alarmed at the thoughts of being exposed to such calamities a second time, presented a remonstrance to their general, in which they represented the impiety of attacking a powerful empire with his scattered forces, and observed that they were not sufficiently acquainted with the eloquence of Cortes could now only prevail with them to delay their departure for some time, when he promised to dismiss such as should desire it. However, this was only a pretext; for Cortes, in fact, had the conquest of Mexico as much at heart as ever. Without giving his soldiers an opportunity of cabaling, therefore, he daily employed them against the people of the neighbouring provinces, who had cut off some detachments of Spaniards during his misfortunes at Mexico; and by which, as he was constantly attended with successes, his men soon returned their wonted seats of superiority.

But all the efforts of Cortes could have been of little avail, had he not unexpectedly obtained a reinforcement of Spanish soldiers. The governor of Cuba, to whom the success of Narvaez appeared an event of infallible certainty, having sent two small ships after him with new instructions, and a supply of men and military stores, the officer whom Cortes had appointed to command on the coast artfully decoyed them into the harbour of Vera Cruz, seized the vessels, and easily persuaded the soldiers to follow the standard of a more able leader than him whom they were defined to join. Soon after, three ships of more considerable force came into the harbour separately. These belonged to an armament fitted out by Francisco de Garay, governor of Jamaica, who had long aimed at dividing with Cortes the glory and gain of annexing the empire of Mexico to the crown of Castile. They had, however, unavailing made their attempt on the northern provinces, where the country was poor, and the inhabitants fierce and warlike; so that, after a succession of disasters, they were now obliged to venture into Vera Cruz, and call themselves upon the mercy of their countrymen; and here they also were soon persuaded to throw off their allegiance to their master, and to enlist with Cortes. About the same time a ship arrived from Spain, freighted with some private adventurers, with military stores; and the cargo was eagerly purchased by Cortes, while the crew following the example of the rest, joined him at Tlacala.

From these various quarters, the army of Cortes was...
Mexico.

was augmented with 180 men and 20 horses, by which means he was enabled to disfranchise the soldiers of Nuñez as were most troublesome and discontented; after the departure of whom he full murdered 550 infantry, of whom 80 men were armed with muskets or cross-bows, 40 horsemen, and nine pieces of artillery.

At the head of thefts, with 10,000 Tlascalans and other friendly Indians, he began his march towards Mexico, on the 28th of December, six months after his fatal retreat from that city.

The Mexicans, in the mean time, had made the best preparations they could for opposing such a formidable enemy. On the death of Montezuma, his brother Quetzalcoatl was raised to the throne; and he had an immediate opportunity of showing that he was worthy of their choice, by conducting in person those fierce attacks which obliged the Spaniards to retire from his capital. His prudence in guarding against the return of the invaders was equal to the spirit he had shown in driving them out. He repaired what the Spaniards had ruined in the city, strengthened it with such fortifications as his people could erect; and besides filling his magazines with the usual implements of war, gave directions to make long spears, headed with swords and daggers which they had taken from the Spaniards, in order to annoy the cavalry. But in the midst of these preparations he was taken off by the small-pox; and Guatimozin, his nephew and fon-in-law, raised to the throne.

As soon as Cortes entered the enemy's territories, he discovered various preparations to obstruct his progress. But his troops forced their way with little difficulty, and took possession of Texcoco, the second city of the empire, situated on the banks of the lake, about 20 miles from Mexico. Here he determined to establish his head quarters, as the most proper station for launching his brigantines, as well as for making his approaches to the capital. In order to render his residence there more secure, he deploved the cauque or chief, who was at the head of that community under pretence of some defect in his title, and substituted in his place a person whom a faction of the nobles pointed out as the right heir of that dignity. Attached to him by this benefit, the new cauque and his adherents served the Spaniards with invincible fidelity.

The brigantines advanced slowly under the unskillful hands of soldiers and Indians, whom Cortes was obliged to employ in affitting three or four carpenters who happened fortunately to be in his service, and as he had not yet received the reinforcement which he expected from Hispaniola, he was not in a condition to turn his arms directly against the capital. To have attacked a city so populous, so well prepared for defence, and in a situation of such peculiar strength, must have exposed his troops to inevitable destruction. Three months elapsed before the materials for constructing the brigantines were finished, and before he heard any thing with respect to the success of his negociation in Hispaniola. This, however, did not prevent him from causing the brigantines to be shipped as far as the towns situated around the lake; and though all the Mexican power was exerted to obstruct his operations, he either compelled them to submit to the Spanish crown, or reduced them to ruins. Other towns he endeavoured to conciliate by more gentle means; and though he could not hold any intercourse with the inhabitants but by the intervention of interpreters, yet, under all the disadvantage of that tedious and imperfect mode of communication, he had acquired such thorough knowledge of the state of the country, as well as of the dispositions of the people, that he concluded his negociations and intrigues with astonishing dexterity and facility. Most of the cities adjacent to Mexico were originally the capitals of small independent states; and some of them having been but lately annexed to the Mexican empire, still retained the remembrance of their ancient liberty, and bore with impassiveness the rigorous yoke of their new masters. Cortes having early observed symptoms of their dissatisfaction, availed himself of this knowledge to gain their confidence and friendship. By offering with confidence to deliver them from the odious dominion of the Mexicans, and by liberal promises of more indulgent treatment if they would unite with him against their oppressors, he prevailed on the people of several considerable districts, not only to acknowledge the king of Castile as their sovereign, but to supply the Spanish camp with provisions, and to strengthen his army with auxiliary troops. Guatimozin, on the first appearance of defection among his subjects, exerted himself with vigour to prevent or to punish their revolt; but, in spite of his efforts, the spirit continued to spread. The Spaniards gradually acquired new allies; and with deep concern he beheld Cortes arming against his empire those very hands which ought to have been active in his defence, and ready to advance against the capital at the head of a numerous body of his own subjects.

While, by these various methods, Cortes was gradually circumferencing the Mexican power within such narrow limits that his prospect of overturning it seemed neither to be uncertain nor remote, all his schemes were well nigh defeated by a conspiracy against his own person, and which was discovered only a short time before it was to have been executed. Though many were concerned, Cortes did not think proper to punish any more than the principal ringleader, whom he caused immediately to be hanged; and then, without allowing them leisure to ruminate on what had happened, and as the most effectual means of preventing the return of a mutinous spirit, he determined to call forth his troops immediately to action. Fortunately a proper occasion for this occurred, without his seeming to court it. He received intelligence, that the materials for building the brigantines were at length completely finished, and waited only for a body of Spaniards to conduct them to Tegucuz. The command of this convoy, consisting of 200 foot-soldiers, 15 horsemen, and 2 field-pieces, he gave to Sandoval, who by the vigilance, activity, and courage, which he manifested on every occasion, was growing daily in his confidence, and in the estimation of his fellow-soldiers. The service was to be of itself not singular than important; the beams, the planks, the nails, the carriages, the sails, the iron-work, and all the innumerable variety of articles requisite for the construction of 3 brigantines were to be carried 60 miles over land, through a mountainous country, by people who were unacquainted with the miniftry of domestic animals, or the aid of machines to facilitate any work of labour. The
The Spaniards received another reinforce-
ment.

The city beleaguered.

The Spaniards defeated the Mexicans, after all the labour and merit of Cortes in forming them, were of inconceivable bulk, rudely constructed, and manned chiefly with landmen, hardly possessed of skill enough to conduct them, they must have been objects of terror to a people unacquainted with any navigation but that of their lake, and possessed of no vessel larger than a canoe. Necessity, however, urged Guatimozin to hazard the attack; and hoping to supply by numbers what he wanted in force, he assembled such a multitude of canoes as covered the face of the lake. They rowed boldly to the charge; while the brigantines, retarded by a dead calm, could scarcely advance to meet them. But as the enemy drew near, a breeze suddenly sprung up; in a moment the sails were spread, and the brigantines with irresistible impetuosity broke their feeble opponents, overthrew many canoes, and disintegrated the whole armament with such slaughter, as convinced the Mexicans, that the progress of the Europeans in knowledge and arts rendered their superiority greater on this new element than they had hitherto found it by land.

Each division from that time forward attacked the city more than any other. Each sought to penetrate into the heart of the lake: and the brigantines not only preferred a communication between the Spaniards in their different stations, though at considerable distance from each other; but were employed to cover the caissons on each side, and keep off the canoes, when they attempted to annoy the troops as they advanced towards the city. He formed the brigantines in three divisions, allotting one to each station, with orders to second the operations of the officer who commanded there. From all the three stations he pushed the attack against the city with equal vigour; but in a manner so very different from that whereby sieges are conducted in regular war, as might appear no less improper than singular to persons unacquainted with his situation. Each morning his troops assaulted the barricades which the enemy had erected on the caissons, forced their way over the trenches which they had dug, and through the canals where the bridges were broken down, and endeavoured to penetrate into the heart of the city, in hopes of obtaining some decisive advantage, which might force the enemy to surrender, and terminate the war at once; but when the obstinate valor of the Mexicans rendered the efforts of the day ineffectual, the Spaniards retired
in the evening to their former quarters. Thus their toll and danger were, in some measure, continually renewed, the Mexicans repairing in the night what the Spaniards had destroyed through the day, and recovering the posts from which they had driven them. But necessity prescribed this flow and untoward mode of operation. The number of his troops was so small, that Cortes durst not, with a handful of men, attempt to make a lodgement in a city where he might be surrounded and annoyed by such a multitude of enemies. The remembrance of what he had already suffered by the ill-judged confidence with which he had ventured into such a dangerous situation, was still fresh in his mind. The Spaniards, exhausted with fatigue, were unable to guard the various posts which they daily gained; and though their camp was filled with Indian auxiliaries, they durst not devolve this charge upon them, because they were so little accustomed to discipline, that no confidence could be placed in their vigilance. Besides this, Cortes was extremely solicitous to preserve the city as much as possible from being deserted, both as he defined it to be the capital of his conquests, and wished that it might remain as a monument of his glory. From all these considerations, he adhered obstinately, for a month after the siege was opened, to the system which he had adopted. The Mexicans, in their own defence, displayed valor which was hardly inferior to that with which the Spaniards attacked them. On land, on water, by night and by day, one furious conflict succeeded to another. Several Spaniards were killed, more wounded, and all were ready to sink under the toils of unintermitting service, which were rendered more intolerable by the injuries of the season, the periodic rains being now set in with their usual violence.

Astonished and disconcerted with the length and difficulties of the siege, Cortes determined to make one great effort to get possession of the city before he relinquished the plan which he had hitherto followed, and had recourse to any other mode of attack. With this view, he sent instructions to Alvarado and Sandoval to advance with their divisions to a general assault, and took the command in person of that posted on the causeway of Cuyocan. Animated by his presence, and the expectation of some decisive event, the Spaniards pushed forward with irresistible impetuosity. They broke through one barricade after another, forced their way over the ditches and canals, and having entered the city, gained ground incessantly, in spite of the multitude and ferocity of their opponents. Cortes, though delighted with the rapidity of his progress, did not forget that he might still find it necessary to retreat and in order to secure it, appointed Julian de Alderete, a captain of chief note in the troops which he had received from Hispaniola, to fill up the canals and gaps in the causeway as the main body advanced. That officer deeming it inglorious to be thus employed, while his companions were in the heat of action and the career of victory, neglected the important charge committed to him, and hurried on inconsiderately to mingle with the combatants. The Mexicans, whose military attention and skill were daily improving, no sooner observed this, than they carried an account of it to their monarch.

Guadix, in the instants of the consequences of
MEX [666]

The Mexicans renew the attack with great fury.

A prediction, uttered with such confidence, and in terms so void of ambiguity, gained universal credit among a people prone to superstitition. The zeal of the provincials which had already declared against the Spaniards augmented, and several which had hitherto remained inactive took arms with enthusiastic ardor to execute the decrees of the gods. The Indian auxiliaries who had joined Cortes, accustomed to venerate the same deities with the Mexicans, and to receive the responses of their priests with the same implicit faith, abandoned the Spaniards as a race of men devoted to certain destruction. Even the fidelity of the Tlaxcalans was shaken, and the Spanish troops were left almost alone in their stations. Cortes, finding that he attempted in vain to dispel the superfluous fears of his confederates by argument, took advantage, from the imprudence of those who had framed the prophecy in fixing its accomplishment so near at hand, to give them a striking demonstration of its falsity. He suspended all military operations during the period marked out by the oracle. Under cover of the brigantines, which kept the army at a distance, his troops lay in safety and the fatal term expired without any disaster.

His allies, ashamed of their own credulity, returned to their station. Other tribes, judging that the gods, who had now deceived the Mexicans, had decreed finally to withdraw their protection from them, joined his standard; and such was the levity of a simple people, moved by every flight impression, that, in a short time after such a general defection of his confederates, Cortes saw himself, if we may believe his own account, at the head of 150,000 Indians. Even with such a numerous army, he found it necessary to adopt a new and more wary system of operation. Instead of renewing his attempts to become master of the city at once, by such bold but dangerous efforts of valour as he had already tried, he made his advances gradually, and with every possible precaution against exposing his men to any calamity similar to that which they full bewailed. As the Spaniards pulled forward, the Indians regularly repaired the caseways behind them. As soon as they got possession of any part of the town the houses were instantly levelled with the ground. Day by day, the Mexicans, forced to retire as their enemies gained ground, were hemmed in within more narrow limits. Guatimozin, though unable to stop the career of the enemy, continued to defend his capital with obstinate resolution, and disputed every inch of ground. But the Spaniards, having not only varied their mode of attack, but, by order of Cortes, having changed the weapons with which they fought, were again armed with the long Chimalnian spears, which they had employed with such success against Narvaez; and, by the firm array in which this enabled them to range themselves, they repelled, with little danger, the lofe assault of the Mexicans: incredible numbers of them fell in the conflicts, which they renewed every day. While war wasted without, famine began to confine them within the city. The Spanish brigantines, having the entire command of the lake, rendered it impossible to receive any supply of provisions by water. The vast number of his Indian auxiliaries enabled Cortes to shut up the avenues, to the city by land. The stores which Guatimozin had laid up were exhausted by the multitudes which crowded into the capital to defend their sovereign and the temples of their gods. Not only the people, but persons of the highest rank, felt the utmost distresses of want. What they suffered brought on infectious and mortal distempers, the last calamity that visits besieged cities, and which filled up the measure of their woes.

But, under the press of so many and such various evils, the spirit of Guatimozin remained firm and unabated. He rejected with scorn every overtale of peace from Cortes; and, disdaining the idea of submitting to the oppressors of his country, determined not to sur vive its ruin. The Spaniards continued their progress. At length all the three divisions penetrated into the great square in the centre of the city, and made a secure lodgment there. Three-fourths of the city were now reduced, and laid in ruins. The remaining quarter was so closely prefiled, that it could not long withstand <f>affiahants who attacked it from their new flation with superior advantage, and more assured expectation of success. The Mexican nobles, solicitous to save the life of a monarch whom they revered, prevailed on Guatimozin to retire from a place where resistance was now vain, that he might rout <f>more distant provinces of the empire to arms, and maintain there a more successful struggle with the public enemy. In order to facilitate the execution of this measure, they endeavoured to amuse Cortes with overtures of submission, that while his attention was employed in adjudging the articles of pacification, Guatimozin might escape unperceived. But they made this attempt upon a leader of greater sagacity and discernment than to be deceived by their arts. Cortes suspicious their intention, and aware of what moment it was to defeat it, appointed Sandoval, the officer on whose vigilance he could most perfectly rely, to take the command of the brigantines, with strict injunctions to watch every motion of the enemy. Sandoval, attentive to the charge, observing some large canoes crowded with people rowing along the lake with extraordinary rapidity, instantly gave the signal to chase. Gracia Holguin, who commanded the fleetest brigantine, soon overtook them, and was preparing to fire on the foremost canoe, which seemed to carry some palion whom all the rest followed and obeyed. At once the rowers dropped their oars, and all on board, throwing down their arms, conjured him with cries and tears to forbear, as the emperor was there. Holguin eagerly seized his prize: and Guatimozin, with a dignified compounce, gave himself up into his hands, mortified at what, he thought, a demand only that no insult might be offered to the emperor or his children. When conducted to Cortes, he
he appeared neither with the fullness of the savagery of a barbarian, nor with the declamation of a suppliant. “I have done,” said he, addressing himself to the Spanish general, “what became a monarch. I have defended my people to the last extremity. Nothing now remains but to die. Take this dagger,” laying his hand on one which Cortes wore, “plant it in my breast, and put an end to a life which can no longer be of use.”

As soon as the fate of their sovereign was known, the resolution of the Mexicans was fixed; and Cortes took possession of that small part of the capital which yet remained undestroyed. Thus terminated the siege of Mexico, the most memorable event in the conquest of America. It continued 75 days, hardly one of which passed without some extraordinary effort of one party in the attack, or of the other in the defence of a city, on the fate of which both knew that the fortune of the empire depended. As the struggle here was more obstinate, it was likewise more equal, than any between the inhabitants of the Old and New Worlds.

The great abilities of Guatimozin, the number of his troops, the peculiar situation of his capital, so far counterbalanced the superiority of the Spaniards in arms and discipline, that they must have relinquished the enterprise, if they had trusted for success to themselves alone. But Mexico was overthrown by the jealousy of neighbours who dreaded its power, and by the revolt of subjects impatient to shake off its yoke. By their effectual aid, Cortes was enabled to accomplish what, without such support, he would hardly have ventured to attempt. How much sooner this account of the reduction of Mexico may detract, on the one hand, from the marvellous relations of some Spanish writers, by ascribing to simple and obvious causes which they attribute to the romantic valour of their countrymen, it adds, on the other, to the glory of all his actions.

The exultation of the conquerors was at first excessive. But Mexico was overturned by the jealousy of neighbours who dreaded its power, and by a life which can no longer be regarded. Without regarding the former dignity of Guatimozin, or feeling any reverence for those virtues which he had displayed, he subjected the unhappy monarch, together with his chief favourites, to torture, in order to force from them a discovery of the royal treasures, which it was fupposed they had concealed. Guatimozin bore whatever the refined cruelty of his tormentors could inflict, with the invincible fortitude of an American warrior. His fellow-sufferer, overcome by the violence of the anguish, turned a dejected eye towards his master, which seemed to implore his permission to reveal all that he knew. But the high-spirited prince, dashing on him a look of authority mingled with scorn, checked his weakness, by asking, “Am I now reporting on a bed of flowers?” Overawed by a reproach, he persevered in his duteous silence, and expired. Cortes, abashed by a scene so horrid, refused the royal v迄今 from the hands of his torturers, and prolonged a life referred for new indignities and sufferings.

The fate of the capital, as both parties had foreseen, decided that of the empire. The provinces submitted one after another to the conquerors. Small detachments of Spaniards marching through them without interruption, penetrated, in different quarters, to the great Southern Ocean, which, according to the ideas of Columbus, they imagined would open a short as well as safe passage to the East Indies, and secure to the crown of Castile all the envied wealth of those fertile regions; and the active mind of Cortes began already to form schemes for attempting this important discovery. In his after schemes, however, he was disappointed; but Mexico hath ever since remained in the hands of the Spaniards.

The ancient kingdom of Mexico, properly so called, was divided into several provinces, of which the vale of Mexico was the finest in every respect. It is surrounded by verdant mountains, measuring upwards of 120 miles in circumference at their base. A great part of this vale is occupied by two lakes, the upper one of fresh water, but the lower one brackish, communicating with the former by means of a canal. All the water running from the mountains is collected in this lower lake, on account of its being in the bottom of the valley; hence it was ready, when wafted by extraordinary rains, to overflow the city of Mexico, as has already been observed. This delightful region contained the three imperial cities of Mexico, Acollan, and Tlapac; besides 40 others, with innumerable villages and hamlets; but the most considerable of these, according to Clavigero, now scarcely retain one-twentieth part of their former magnificence.

The principal inland provinces to the northward were

(a) The gold and silver, according to Cortes, amounted only to 122,000 pces, Rel. 208, A, a sum far inferior to that to which the Spaniards had formerly divided in Mexico.
The province of the Otomies began in the northern part of the vale of Mexico, extending through the mountains to the north to the distance of 90 miles from the city of Mexico; the principal cities being Totonac or Tula, and Xilotepetl; the latter made the capital of the country by the Spaniards. Beyond the settlements of the Otomies, the country for more than a thousand miles in extent was inhabited only by barbarous and wandering savages.

The Mixticas began. to the south-west the Malatzicas and Cuiltecas; to the south the Tlauhiques and Cohuixicas; to the south-east, after the states of Itzocan, Jaultepac, Quauhquecollon, Atlizte, Tehuacan, and others, where the great provinces of the Mixticas, the Zapotecas, and the Chiapanecas; towards the east were the provinces of Tepayac, the Popolocas, and Totonac. The maritime provinces on the Mexican Gulf were Coatzacualco and Cuetlachilan, called by the Spaniards Cotlilh. On the Pacific Ocean were those of Colima, Zacatollan, Totoltec, Tecuantepec, and Zoconochco.

The province of the Totonacas began. The maritime provinces on the Mexican sea had several well-inhabited cities and villages. To the east were the provinces of Cuetlachtlan and Coatzacualco; the latter made the capital of the country by the Spaniards. Beyond the settlements of the Totonacas, the country for more than a thousand miles in extent was inhabited only by barbarous and wandering savages.

The province of the Mixtecas began. The Mixtecas extended from the state of Tabasco and the state of Chiapas, towards the north-east, the province of Tzatlan, and adjoining to that the Mixteca coast, named Xicaylan; next to that was the large province of Tecuantepec; and lastly, that of Xochonochco.

This province, the most southerly of the Mexican empire, was bounded on the east and south-east by the country of Xochitepec, which did not belong to Mexico; on the west by Tecuantepec; and on the south by the ocean. The capital, called also Xochonochco, was situated between two rivers, in 14 degrees of latitude and 28° of longitude. On the Mexican Gulf there were, besides the country of the Totonacas, the provinces of Cuitlachitan and Coatzacualco; the latter bounded on the east by the states of Tabasco and the peninsula of Yucatan. The province of Cuetlachitan comprehended all the coast between the rivers Alvarado and Antigua, where the province of the Totones began.

The climate of this vast country varies very much according to the situation of its different parts. The maritime places are hot, unhealthy, and moist; the heat being so great as to cause people to sweat even in the month of January. This heat is supposed to be owing to the flatness of the coasts, and the accumulation of sand upon them. The moisture arises from the vast evaporation from the sea, as well as from the great torrents of water descending from the mountains. The lands which lie in the neighbourhood of high mountains, the tops of which are always covered with snow, must of necessity be cold; and Clavigero informs us, that he has been on a mountain not more than 25 miles distant from the city of Mexico, where there was white frost and ice even in the dog-days. "All the other inland countries (says our author), where the greatest population prevailed, enjoys a climate so mild and benign, that they neither feel the rigour of winter nor the heats of summer. It is true, in many of these countries, there is frequently white frost in..."
Mex.

in the three months of December, January, and February, and sometimes even it flows; but the small inconvenience which such cold occasions continues only till the rising sun; no other fire than his rays is necessary to give warmth in winter; no other relief is wanted in the season of heat but the shade: the same clothing which covers men in the dog-days defends them in January, and the animals sleep all the year under the sky.

This mildness and agreeableness of climate under the torrid zone is the effect of several natural causes entirely unknown to the ancients, who did not believe it to be inhabited; and not well understood by some moderns, by whom it is believed unfavourable to those who live in it. The purity of the atmosphere, the smaller obliquity of the solar rays, and the longer stay of this luminous above the horizon in winter, in comparison of other regions farther removed from the equator, concur to lessen the cold, and to prevent all that horror which disfigures the face of nature in other climates. During that season the serene sky and the natural delights of the country are enjoyed; whereas, under the frigid, and even for the five months of the year, the storms of hail are neither more frequent nor more severe than in Europe.

One undoubted inconvenience which Mexico has is that of volcanoes, of which our author enumerates five. One named by the Spaniards Volcan d'Orizaba is higher than the peak of Teneriffe, according to the account of the Jesuit Tallandier, who measured them both. It began to send forth smoke in the year 1545, and continued burning for 20 years, but has not discovered any symptoms of eruption since that time. It is of a conical figure; and by reason of its great height, may be seen at 50 leagues distance. The top is always covered with snow, but the lower part with woods of pine and other valuable timber. It is about 90 miles to the eastward of the capital.

Two other mountains, named Popocatépetl and Ixtaccihuatl, which lie near each other, at the distance of 43 miles to the south-east of Mexico, are likewise surprisingly high. Clavigero supposes the former to be higher than the highest of the Alps, considering the elevated ground on which the base of it stands. It has a crater more than half a mile wide: from which, in the time of the Mexican kings, great quantities of smoke and flame issued. In the last century it frequently threw out great showers of ashes upon the adjacent places; but in this century hardly any smoke has been observed. This mountain is named by the Spaniards Pelamn, and the other Sierra Nevada. The latter has also sometimes emitted flames. Both of them have their tops always covered with snow in such quantities, that the mists which fall down upon the neighbouring rocks supply the cities of Mexico, Cololopoli, Cholula, and all the adjacent country to the distance of 40 miles, with that commodity; of which the consumpt is so great, that in 1746 the impost upon what was consumed in the city of Mexico amounted to 15,222 Mexican crowns; some years after it amounted to 20,000; and is now in all probability a great deal more. Besides these, there are the two mountains of Colima and Tocltlan, both of which have occasionally emitted flames. Our author does not include in the list of Mexican volcanoes either those of Nicaragua or Guatimala; because these countries were not subject to the Mexican sovereigns. Those of Guatimala sometimes break forth in a most furious manner, and in the year 1773 entirely destroyed that beautiful city. The Nicaraugan volcano called Jiruga was only a small hill before the year 1760. In that year, however, on the 29th of September, it began to burn with furious expulsions, ruining entirely the sugar-work and the neighbouring village of Guacana; and from that time continued to emit fire and burning rocks in such quantities, that the erupted matters in six years had formed themselves into three high mountains nearly six miles in circumference. During the time of the first eruption, the ashes were carried as far as the city of Queretaro, 150 miles distant from the volcano; and at Valladolid, distant 60 miles from it, the shower was so abundant, that the people were obliged to sweep the house-yards two or three times a-day.

Besides these volcanoes, there are others in Mexico of a very remarkable height. The great chain of mountains called the Andes are continued through the Ilimhus of Panama and through all Mexico, until they are lost in the unknown mountains of the north. The most considerable of that chain is known in Mexico, by the name of Sierra Madre particularly in Cina-oa and Tarahumara, provinces no less than 1200 miles distant from the capital.

Mexico is well watered by very considerable rivers. Some of these run into the gulf of Mexico and others into the Pacific Ocean. The Alvarado has its principal source among the mountains of the Zapotecas, and discharges itself by three navigable mouths into the Mexican gulf, at the distance of 30 miles from Vera Cruz. The Coatzocuclau rises among the mountains of the Mixtecas, and empties itself into the gulf near the country of Onohualco. The river Chiapan, which likewise runs into this gulf, rises among the mountains which separate the district of Chiapan from that of Guatimala. The Spaniards call this river Tabajos; by which name they also called that tract of land which unites Yucatan to the Mexican continent. It was also called the Ozijalaco, from the name of the commander of the first Spanish fleet who discovered it.

The most celebrated of the rivers which run into the Pacific Ocean is that called by the Spaniards Guat.
MEX [670] MEX

Mexico. Guadalaxara or Great river. It rises in the mountains of Tolocan; and after running a course of more than 600 miles, discharges itself into the ocean in 22° latitude.

There are likewise in this country several lakes of very considerable magnitude: but those of Nicaragua, Chapallan, and Pazcuaro, which are of the greatest extent, did not belong to the ancient Mexican empire. The most remarkable were those in the vale of Mexico, upon which the capital of the empire was founded. Of these, the fresh water one called the lake of Chalco, extended in length from east to west 12 miles, as far as the city of Xochimilco; from thence, taking a northerly direction, it incorporated itself by means of a canal with the lake of Tezcuco; but its breadth did not exceed six miles. The other, named the lake of Texcoco, extended 15, or rather 17 miles, from east to west, and something more from north to south; but its extent is now much less, by reason of the Spaniards having diverted the course of many of the streams which run into it. This lake is salt, which Clavigero supposes to arise from the nature of the foil which forms its bed.

Besides these, there are a number of smaller lakes, some of which are very delightful. There is a vast variety of mineral waters, of the nitrous, fulphureous, and aluminous kinds; some of them so hot that meat might be boiled in them. At Tetuauacan is a kind of petrifying water, as well as in several other parts of the empire. One of them forms a kind of smooth white flones not displeasing to the taste; the scrapings of which taken in broth are celebrated as a diaphoretic, probably without any good reason. The doe for a peron not difficult to be sweated is one drachm of the scrapings. Many of the rivers of Mexico afford surprising and beautiful cascades; particularly the great river Guadalaxara, at a place called Temptzique, 15 miles to the southward of that city. Along a deep river called Agayaque is a natural bridge consisting of a vast mound of earth, along which carriages pass conveniently. Clavigero supposes it to have been the fragment of a mountain thrown down by an earthquake, and then penetrated by the river.

The mineral productions of Mexico are very valuable. The natives found gold in several provinces of the empire. They gathered it principally from among the sands of their rivers in grains; and the people in whole country it was found, were obliged to pay a certain quantity by way of tribute to the emperor. They dug silver out of mines in Tlachco, and some other countries but it was less prized by them than by other nations. Since the conquest however, so many silver mines have been discovered in that country, especially in the provinces to the north-west of the capital, that it is in vain to attempt any enumeration of them. They had two sorts of copper; one hard, which served them instead of iron, to make axes and other instruments for war and agriculture; the other kind, which was soft and flexible, served for domestic utensils as well as utensils. They had also tin from the mines of Tlachco, and dug lead out of mines in the country of the Otomies; but we are not informed what uses they put this last metal to. They had likewise mines of iron in Tlachco, Tlaco, and some other places; but these were either unknown to the Mexicans, or they did not know how to benefit themselves by them. In Chilapan were mines of quicksilver; and in many places they had sulphur, alum vitræus, cinnabar ochre, and an earth greatly resembling white lead. These minerals were employed in painting and dyeing; but we know not to what use they put their quicksilver. There was great abundance of amber and asphaltum upon their coasts; both of which were paid in tribute to the king of Mexico from many parts of the empire. The former was wont to be set in gold by way of ornament, and asphaltum was employed in their sacrifices.

Mexico produces some diamonds, though but few precious stones, such as amethysts, cats-eyes, turquoises, cornelians, and some green stones resembling emeralds, and very little inferior to them; of all which a tribute was paid to the emperor by the people in whole territories they were found. They were likewise furnished with crystal in plenty from the mountains which lay on the coast of the Mexican gulf, between the port of Vera Cruz and the river Coatzacoalcos. In the mountains of Celpoapan, to the eastward of Mexico, were quarries of Jasper and marble of different colours: they had likewise alabaster at a place called Tecalco, now Tecale, in the neighbourhood of the province of Tapeyacac and many other parts of the empire. The stone tetzontli is generally of a dark red colour, pretty hard, porous and light, and unites most firmly with lime and sand; on which account it is of great request for buildings in the capital, where the foundation is bad. There are entire mountains of leadstone, a very considerable one of which lies between Teotitlan and Chilapan, in the country of the Cohuinacs. They formed curious figures of nephritic flone, some of which are still preserved in European museums. They had a kind of fine white talc which burnt into an excellent plaster, and with which they used to whiten their paintings. But the most useful stone they had was that called itzli, of which there is great abundance in many parts of Mexico. It has a glossy appearance, is generally of a black colour, and semitransparent; though sometimes also of a blue or white colour. In South America this stone is called pietra del galinaceous; and Count Caylus endeavours to shew, in a manuscript dissertation quoted by Bomare, that the obsidio, of which the ancients made their vases marini, were entirely similar to this stone. The Mexicans made of it looking-glasses, knives, lancets, razors, and spears. Sacred vases also were made of it after the introduction of Christianity.

The foil of Mexico, though various, produced every vegetable where the necessaries and even the luxuries of life are produced. The celebrated Dr. Hernandez, the Pliny of New tions, Spain (says Clavigero), has described in his Natural History about 1200 plants natives of the country; but this description, though large being confined to medicinal plants, has only comprized one part of what provident nature has produced there for the benefit of mortals. With regard to the other claffes of vegetables, some are esteemed for their flowers, some for their fruit, some for their leaves, some for their root, some for their trunk or their wood; and others for their gum, refin, oil, or juice."
Mexico abounds with a great variety of flowers, many of which are peculiar to the country, while multitudes of others imported from Europe and Africa rival in luxuriance the natives of the country itself. The fruits are partly natives of the Canary islands, partly of Spain, besides those which grow naturally in the country. The exotics are water-melons, apples, pears, peaches, quinces, apricots, pomegranates, figs, black cherries, walnuts, almonds, olives, chestnuts, and grapes; though these last are likewise natives. There are two kinds of wild vine found in the country of the Mixtecas; the one resembling the common vine in the shoots and figure of its leaves. It produces large red grapes covered with an hard skin, but of sweet and grateful taste, which would undoubtedly improve greatly by culture. The grape of the other kind is hard, large, and of a very harsh taste, but they make an excellent conserve of it. Our author is of opinion that the cocoa tree, plantain, citron, orange, and lemon, came from the Philippine islands and Canaries; but it is certain that these, as well as other trees, thrive in this country as well as in their native soil. All the maritime countries abound with cocoa-nut trees; they have seven kinds of oranges and four of lemons, and there are likewise four kinds of plantains. The largest, called the sapota, is from 15 to 20 inches long, and about three in diameter; it is hard, little esteemed, and only eaten when roasted or boiled. The platano largo, or "long plantain," is about eight inches long and one and a half in diameter: the skin is at first green, and blackish when perfectly ripe. The guinco is a smaller fruit, but richer, softer, and more delicious, though not so wholesome. A species of plantain, called the dominico, is smaller and more delicate than the others. There are whole woods of plantain trees, oranges, and lemons; and the people of Michoacan carry on a considerable commerce with the dried plantains, which are preferable either to raisins or figs. Clavigero enumerates 28 different sorts of fruit natives of Mexico, besides many others, the names of which are not mentioned. Hernandez mentions four kinds of cocoa nuts; of which the smallest of the whole was in most use for chocolate and other drinks daily made use of; the other kinds served rather for money in commerce than for aliment. The cocoa was one of the plants most cultivated in the warm countries of the empire; and many provinces paid it in tribute to the emperor, particularly that of Xocconoho, the cocoa nut of which is preferable to the others. Cotton was one of the most valuable productions of the country as it served instead of flax; though this laft also was produced in the country. It is of two kinds, white and tawny-coloured. They made use of cacao or brasil wood in their dying, as the Europeans also do. They made cordage of the bark, and the wood was made use of to produce fire by friction.

The principal grain of Mexico, before the introduction of these from Europe, was maize, in the Mexican language called maiz or maz; of which there were several kinds, differing in size, weight, colour, and taste. This kind of grain was brought from America to Spain, and from Spain to the other countries of Europe. The French bean was the principal kind of pulse in use among them, of which there were more species than of the maize. The largest was called ayocotl, of the size of a common bean, with a beautiful red flower; but the most esteemed was the small black, heavy, French bean. This kind of pulse, which is not good in Italy, is in Mexico so excellent, that it not only serves for sustenance to the poorer classes of people, but is esteemed a luxury even by the Spanish nobility.

Of the effulent roots of Mexico, the following were Enequant the most remarkable. 1. The nucuma, called by the roots. Mexicans catzotl, was of the figure and size of an onion; solid, fresh, juicy, and of a white colour; it was always eat raw. 2. The camote, is another very common in the country, of which there are three sorts, white, yellow, and purple: they eat hot when boiled. 3. The canacite is the root of a plant which has a beautiful flower called the tyger-flower, with three red pointed petals, the middle part mixed with white and yellow, somewhat resembling the spots of the creature whence it takes its name. 4. The buacu­moate is the root of a kind of Calava plan, and is like­wise boiled. 5. The papa, a root transplanted into Europe, and greatly valued in Ireland, was brought from South America into Mexico. Besides all which they have a number of kitchen vegetables imported from the Canaries, Spain, and other countries of Europe. The American aloe is very similar to the real one, and is a plant of which the Mexicans formerly, and the Spaniards still, make great use.

They have a variety of palm-trees. From the f...
The tree producing liquid amber, the liquid flora of the Mexican, is of a large size, the leaves similar to those of the maple, indented, white in one part and dark in the other, disposed of in threes; the fruit is thorny and round, but polygonous, with the surface and the angles yellow; the bark of the tree partly green and partly tawny. By incisions in the trunk they extract that valuable substance named liquid amber, and the oil of the same name, which is still more valuable. Liquid amber is likewise obtained from a decoction of the branches, but it is inferior to that obtained from the trunk.

The name copalli in Mexico is generic, and common to all the resins; but especially signifies those made use of for incense. There are ten species of these trees yielding resins of this kind; the principal of which is that from which the Copal is got, so well known in medicine and varnishes. A great quantity of this was made use of by the ancient Mexicans, and is still used for similar purposes by the Spaniards.

The teocalli or tepecalli is a resin similar to the incense of Arabia; which diffils from a tree of moderate size that grows in the mountains, having a fruit like an acorn, and containing the nut enveloped in a durable calage, within which there is a small kernel useful in medicine.

The mezquilt, or mezquite, is a species of true acacia, and the gum distilling from it is said to be the true gum arabe. It is a thorny shrub, with branches irregularly disposed, the leaves small, thin, and pinnated; the flowers being like those of the birch-tree—The fruits are sweet and eatable, containing a seed of which the barbarous Chichemecas were wont to make a kind of pulse that served them for bread. The wood is exceedingly hard and heavy, and the trees are as common in Mexico as oaks are in Europe, particularly on hills in the temperate countries.

Of the calcis gum, which is found in plenty in Mexico, the natives in use to make foot-balls, which, though heavy, have a better spring than those filled with air. At present they varnish it with their hats, cloaks, boots, and great coats, in a manner similar to what is done in Europe with wax; and by which means they are rendered all water-proof.

Our author laments that the natural history of the Mexican animals no better. The first Spaniards (fays he) who gave them names, were more skilful in the art of war than in the study of nature. Instead of retaining the terms which would have been most proper, they denominated many animals tigers, wolves, bears, dogs, squirrels &c. although they were very different in kind, merely from some resemblance in the colour of their skin, their figure, or some similarity in habits and disposition. The quadrupeds found in Mexico at the arrival of the Spaniards, were lions, tigers, wild cats, bears, wolves, foxes, the common flags, white flags, bucks, wild goats, badgers, pole-cats, weasels, martins, squirrels, polatucas, rabbits hares, otters, and rats. All these animals are supposed by our author to be common to both continents. The white flag, whether it be the same species of the other or not, is undoubtedly common to both, and was known to the Greeks and Romans. The Mexicans call it the king of the flags. M. Buffon imagines the
white colour of this creature to be the effect of captivity; but Clavigero says, that it is found wild, and of the same white colour, on the mountains of New Spain. In many other points, he also controverts the opinions of this celebrated naturalist, who will not allow the lion, tyger, or rabbit, to be natives of America. "The misll of the Mexicans (says he) is no other than the lion without hair mentioned by Pliny, and totally distinct from the African lion. But the ocollt is no way different from the African tyger, according to the testimony of Hernandez, who knew both the one and the other. The tochtli of Mexico is exactly the rabbit of the old continent; and at least as ancient as the Mexican calender, in which the figure of the rabbit was the first symbolical character of their years. The wild cats, in size much larger than the domestic cats, are fierce and dangerous; the bears are all black, and more corpulent than those which are brought from the Alps into Italy. The hares are distinguished from those of Europe by their longer ears, and the wolves by a groffer head. According to M. Buffon, the Mexicans give the name of polataca to the quimicpaltan, or flying rat of the Mexicans. We call it rat, because it resembles a rat in the head, though it is much larger, and flying; because in its natural state, the skin of its fides is loose and wrinkled, which it distends and expands together with its feet like wings, when it makes any considerable leap from one tree to another. This is confounded with the common squirrel on account of their likeness, but they are undoubtedly different. Mice were brought to Mexico in European ships; the rats were not fo, but known in the country by the name of quimichin, a word metaphorically applied to spites."

Our author now proceeds to enumerate the quadrupeds common to New Spain with the rest of the continent of America. Among these he will not allow a place to the Peruvian sheep, the huana, and floth; all of which are peculiar to South America. Hernandez indeed makes mention of the Peruvian sheep, and gives a drawing of it; but this was only on account of a few individuals brought thence from Peru, which the Mexicans called by that name, in the same manner as he describes several animals of the Philippine islands; not that they had ever been bred in Mexico, or found in any country of North America, unless it was some individual carried there, as they are carried as a curiosity to Europe. The animals which he allows to be common to both countries are, the Mexican hog, the monfete, the oppofum, the armadillo, the techichi, a small animal resembing a dog; which being perfectly dumb, gave occasion to a report that the Mexican dogs could not bark. The flesh of this animal was eat by them, and was esteemed agreeable and nourishing food. After the conquest of Mexico, the Spaniards having neither large cattle nor sheep, provided their markets with this quadruped; by which means, the species soon came to be extinct, though it had been very numerous. The land-squirrel is very numerous in the kingdom of Michuacan, has great elegance of form, and is extremely graceful in its movement; but it cannot be tamed, and bites most furiously every person who approaches it. Besides these, there are felines, rats, and that voracious animal named the tapir. Oviedo informs us, that he has seen it at one bite tear off two or three hand-breaths of skin from a hound, and, at another a whole leg and thigh. The flesh is edible, and its skin is valued on account of its being sufficiently strong to resist musket-balls. There are likewise great numbers of monkeys of many different kinds; some of which have heads resembling those of dogs. Some of them are strong and fierce, equalling a man in stature when they stand upright.

Among the animals peculiar to Mexico, is one named by our author coyoto, which appears to have been inaccurately described by other natural historians; some making it one species and some another. He says it has the voracity of a wolf, the cunning of a fox, the form of a dog, and in some properties resembles the adte and chocal. It is about the size of a miffiff, but more slender. The eyes are yellow and sparkling, ears small, pointed, and erect; the snout blackish, long limbs, and the feet armed with large crooked nails. The tail is thick and hairy, the skin a mixture of black, brown, and white; and the voice is compounded of the howl of the wolf and the bark of the dog. It is one of the most common quadrupeds in Mexico, and most destructive to the flocks. When it invades a sheep-fold, if it cannot find a lamb to carry off, it feeds itself by the neck with its teeth, and coupling with it, and beating it on the rump with its tail, conduces it whither it pleases. It pursues the deer, and will sometimes even attack men. Its usual pace is a trot, but so quick that a horse at the gallop can scarce overtake it. The tlecoyote or tlate coyote is about the size of a midding dog, and in our author's opinion is the largest animal that lives under the earth. Its head has some resemblance to that of a cat; but in colour and length of hair it resembles the lion. It has a long thick tail, and feeds upon poultry and small animals, which it catches in the night-time. The tepexaunti, or mountain-dog, though it is but of the size of a small dog, is so bold that it attacks deer, and sometimes kills them. Its hair and tail are long, the body black, but the head, neck, and breast, white. Mr Buffon reckons this animal the same with the glutton, but Clavigero denies it. Another animal, larger than the two foregoing, is called the xolotzquintli. Some of these are no less than four feet in length. It has a face like the dog, but tufts like the wolf, with erect ears, the neck gros, and the tail long. It is entirely destitute of hair, excepting only the snout where there are some fuch crooked bristles. The whole body is covered with a smooth, soft, ash-coloured skin, spotted partly with black and rawnay. This species of animals, as well as the two former, are almost totally extinct. A Lynean Academician named Giovanni Fabri, has endeavoured to prove that the xolotzquintli is the same with the wolf of Mexico; but this is denied by our author.

An animal called acocotll, a kind of wild cat, is remarkable more for the fabulous account of it than for any singular property with which it is really endowed. According to Dr Hernandez, when this creature takes any prey, it covers it with leaves, and afterwards mounting on some neighbouring tree, it begins howling to invite other animals to eat its prey; being itself always the last to eat; because the poison
of its tongue is so strong, that if it eat first, the prey would be infected, and other animals which eat of it would die.

A curious animal of the mole kind is called tiron or tusa. It is about the size of an European mole, but very different otherwise. The body is about seven or eight inches long, and well made; the snout like that of a mouse, the ears small and round, with the tail short. The mouth is armed with very strong teeth, and its paws are furnished with strong crooked nails, with which it digs its habitations in the earth. It is extremely destructive to the corn fields by the quantity of grain it eats, and to the highways by the number of holes it makes in them; for when, on account of the dimness of its flight, it cannot find its first hole, it makes another, and so on. It digs the earth with its claws and two canine teeth which it has in the upper jaw. In digging, it puts the earth into two membranous like purses, which are under its ear, and which are furnished with muscles necessary for contraction and dilatation. When the membranes are full, it emplaces them by striking the bottom with its paws, and then digs again as before. These creatures are very numerous; but our author does not remember to have seen them in the place where land-squirrels inhabit.

The birds are so numerous, and of such various appearances and qualities, that Mexico has been called the country of birds as Africa is of quadrupeds. Though Hernandez praises over a great number of species, he yet describes above two hundred peculiar to the country. He allows to the eagles and hawks of Mexico a superiority over those of Europe; and the falcons of this country were formerly esteemed so excellent, that, by the defire of Philip II., an hundred of them were sent every year over to Spain. The largest, the most beautiful, and the most valuable kind of eagles, is called by the Mexicans itzaquabili, and will pursue not only the larger kind of birds, but quadrupeds, and even men.

The ravens of Mexico do not, like those of other countries, feed upon carrion, but subsist entirely by feeding corn. The carrion is devoured by the birds called in South America galinuzazi, in Mexico zapilotis and auris. By Hernandez they are said to be a species of ravens; but, according to Clavigero, they are very different, not only in their size but in the shape of their head, their flight, and their voice. — They fly so high, that though pretty large, they are lost to the sight: before a hail-storm they may be seen white in great numbers in the air, until they entirely disappear. They discover carrion by the acuteness of their sight and smell at a great height in the air, and descend upon it in a spiral flight. They are extremely numerous, and are very useful to the country, because they not only clear the fields of carrion but attend the crocodiles, and destroy the eggs of these terrible animals. There is another bird, called by the Mexicans the king of the zapilotis, on account as it is said, that the true zapilot will not touch a bit of carrion till the other has first tasted it.

The aquatic birds are very numerous, and of great variety. — There are at least 20 species of ducks, a vast number of geese, with several kinds of herons, great numbers of swans, quails, water-nails, divers, king's fishers, pelicans, &c. The multitude of ducks is sometimes so great, that they cover the fields, and appear at a distance like flocks of sheep. Some of the herons and egrets are perfectly white, some ah-coloured; others have the plumage of the body white, while the neck, with the tops and upper part of the wings, and part of the tail, are enlivened with a bright scarlet, or beautiful blue. Clavigero mentions a singular quality of the pelican, in which it differs from all other birds hitherto known, viz. that it affilts fuch of its own species as are hurt or sick. Of this disposition the Americans sometimes take the advantage to procure fish without any trouble. They take a live pelican and break its wing, and, after tying it to a tree, conceal themselves in the neighbourhood; there they watch the coming of the other pelicans with their provisions; and as soon as they see them throw up the fish from the pouch they have below their bill, they run in, and leaving a little for the captive bird carry off all the rest. The yolt-quauhtli is a small aquatic bird, with a long narrow neck, small head, long yellow bill, long legs, &c., and claws, and a short tail. It is remarkable for the weapons with which it is naturally provided. On the head is a little circle or corona, of a horn-like substance, which is divided into three very sharp points, and there are two others on the fore-part of the wings.

Numbers of the other classes of birds are valuable for their flesh, plumage, or song, while some are remarkable for their extraordinary instinct or other properties. Our author enumerates more than 70 species of those which afford an agreeable and wholesome food. Besides the common fowls which were brought from the Canaries to the Antilles, and from there to Mexico, there were, and still are, fowls peculiar to the country itself. These partly resemble the common fowl and partly the pesecho, whence they had the name of galipenos from the Spaniards. From Mexico, they were imported into Europe, where they have multiplied very fast, especially in Italy, though the common fowls have multiplied much more in Mexico. There are three kinds of pheasants; one of which is as large as a goose, and very docile. It will become so tame as to pick food from its master's hand, and run to meet him with signs of joy when he comes home, shut the door with its bill &c. By keeping in a yard along with other poultry, it learns to fight like a cock, ruffling the feathers of its crest, as cocks do those of their neck.

There are great numbers of birds valuable on account of their plumage, which was made use of by the Mexicans in their excellent mosaic works; an art which seems now to be totally lost. Peacocks have been carried from the old continent to Mexico; but, not being attended to, have propagated very slowly. The birds remarkable for their song are likewise very numerous; among which is a bird which called the centozontli by Europeans the mocking-bird, is the most remarkable, on account of its counterfeiting naturally the notes of all others it hears. It has been attempted to bring it to Europe, but without success. The cardinals are very remarkable, not only on account of their fine colours, but likewise of their notes, and even the sparrows have a most delightful and various song.
Mexico. There are great numbers of beautiful parrots; and there is a bird which counterfeits the human voice, but in a kind of burlesque tone, and will follow travellers a great way. The iscaya is remarkable for its infinty. Birds of this kind live in society, every tree being a village or city to them, having great numbers of nests in the neighbourhood of each other, all hanging from the boughs. One of them, whose office it is to be the head or guard of the village, resides in the middle of the tree; from which it flies about from one nest to another, visiting them all, and after lingering a little, returns to its place, while the rest continue perfectly silent. If any bird of a different species approaches the tree, it flies to it, and with its bill and wings endeavours to drive it off; but if a man or any large animal comes near, it flies screaming to another tree; and if at that time any of its fellows happen to be returning to their nests, he meets them, and, changing his note, obliges them to retire again: as soon as he perceives the danger over, he returns to his wonted round of visiting the nests.

Mexico, like all other American countries, abounds with reptiles, many of them of an enormous size. The crocodiles are not less to be dreaded than those serpents, of which there are several kinds. There is a kind of a green colour make a great noise in flying; on touching to them, a horrid convulsion is sometimes thrown whenever it is touched to them, and boys often take pleasure in making it burst with a kick. The liver is poisonous as is the body being perfectly flat but the upper part convex; and in the centre, which is the highest part it has a single eye as large as that of an ox, furnished with eyes like the eyes of land animals. This eye remains open even after the bird is dead, and has a hideous appearance, so as sometimes to strike the spectators with horror. Campi endeavours to prove, that this is the bird named by Pliny urauro-fas. The Roman historian does not describe this bird; but Clavigero observes, that the name of uraurofas might be equally applicable to all fish which have eyes upon the head that look up to the sky, as skates and other flat fishes.

The axolotl is a great ugly water-lizard, remarkable for having a periodical evacuation of blood from the uterus, like the human species. It is eatable, like an eel, and the flesh is looked upon to be good in consumptions. There are likewise a vast variety of faolls, sponges, and lithophytes. Hernández gives the figure of a sponge sent to him from the Pacific Ocean, which was of the shape of a man’s hand, but with ten or more fingers; of a clay colour, with black backs and red streaks, harder than the common sponges.

Of flying and other minute insects, the number is prodigiously great. There are a variety of beetles; some of a green colour make a great noise in flying; on which account children are fond of them. There are great numbers of shining beetles, which make a delightful appearance at night, as well as the luminous flies which abound in the country. There are six kinds of bees and four kinds of wasps; of which last, one collects wax and honey of a very sweet taste. It is called the wonder-indian wax from its frequent changes of abode; and in consequence of these changes, it is constantly employed in collecting materials for its habitations. There is also a black hornet with a red tail, the sting of which is so large and strong, that it will not only penetrate a fugar-cane but even the trunk of a tree. The lake of Mexico abounds with a kind of fly, the eggs of which are deposited upon the flags and rushes in such quantities as to form large mafies. These are collected by the fishermen, and carried to market for sale. They are eaten by both Mexicans and Spaniards, and have much the same taste as the caviare of fish. The Mexicans eat also the flies themselves ground and made up with salt-petre. There are abundance of grats in the moist places and lakes; but the capital, though situated upon a lake, is entirely free from them. There are other flies which make no noise in their flight, but cause a violent itching by their bite, and if the part be scratched, an open wound is apt to ensue. The butterflies are in vast numbers, and are accustomed to follow vessels, to devour any fish that is thrown overboard; and, according to Oviedo, they have been known to keep up with ships falling before a wind for no less than 500 miles. The botete is a fish about eight inches in length, but exceedingly thick. While this fish lies alive upon the beach it swells whenever it is touched to an enormous size, and boys often take pleasure in making it burst with a kick. The liver is poisonous as is the body being perfectly flat but the upper part convex; and in the centre, which is the highest part it has a single eye as large as that of an ox, furnished with eyes like the eyes of land animals. This eye remains open even after the bird is dead, and has a hideous appearance, so as sometimes to strike the spectators with horror.
Mexico.

Made of Europe; the figures of some of them are given by Hernandez. But notwithstanding its beauties and advantages, Mexico is subject to the dreadful devastations of locusts, which sometimes occasion the most destructive famines.

There are some of the worms of Mexico made use of by the inhabitants as food; others are poisonous.

There are great numbers of isopodera and scorpions, some of the former growing to an immense size. Hernandez says, that he has seen some of them two feet long and two inches thick. The scorpions are very numerous; and in the hot parts of the country their poison is so strong as to kill children, and give terrible pain to adults. Their stings are most dangerous during those hours of the day, in which the sun is hottest. In the province of Michuacan is a singular species of ant, larger than the common one, with a little bag full of a greyish substance, of which children are very fond. The Mexicans suppose this to be a kind of honey collected by the insect; but Clavigero thinks it rather is its eggs. There is a mitchievous kind of tick, which in the hot countries abounds among the grass. From thence it easily gets upon the cloaths, and from them upon the skin. There it fixes with such force, from the particular figure of its feet, that it can scarcely be got off. At first it seems nothing but a small black speck, but in a short time enlarges to such a degree, from the blood which it sucks, that it equals the size of a bean, and then assumes a leaden colour. Oviedo says, that the best and safest method of getting speedily rid of it is by anointing the part with oil, and then scraping it with a knife.

If it is not speedily removed, a wound is made similar to that which the negro or chagoe makes. The following insects were eaten by the ancient Mexicans: 1. The atleptis, a marsh beetle, resembling in shape and size the flying beetles, having four feet, and covered with an hard heil. 2. The atopinum, a marsh-grasshopper of a dark colour, and great size, being rather less than six inches long and two broad. 3. The abisuitis, a worm which inhabits the Mexican lake, four inches long, and of the thickness of a goose-quill, of a tawny colour on the upper part of the body, and white upon the under part. It flies with its tail, which is hard and poisonous. 4. The sculiltas, a black marsh-worm, which becomes white on being roasted.

Among the curious productions of the animal kind to be met with in this country, Clavigero mentions a kind of zoophytes which he saw in the year 1751, in a house in the country, about ten miles from Angelonpoli, towards the south-east. They were three or four inches long, and had four very slender feet, with two antennae; but their body was nothing more than the fibres of the leaves, of the same shape, size, and colour with those of the other leaves of the trees upon which these creatures were found. Gemelli describes another kind of these zoophytes which are found in Manila.

Mexico produces also silk-worms: and the manufacture of silk might be carried on to great advantage, were it not prohibited for some political reasons. Besides the common silk, there is another found in the woods, very white, soft, and strong. It grows on the trees in several maritime places, particularly in dry seasons. Unless by poor people, however, this silk is not turned to any use, partly from inattention to their interests, but chiefly (says our author) to the obstructions which would be thrown in the way of any one who should attempt a trade of that kind. We know from Cortes's letters to Charles V. that silk used to be sold in the Mexican markets; and some pictures are still preferred, done by the ancient Mexicans upon a paper made of silk.

Cochineal is one of the most valuable products of Mexico, and great care is taken to rear the insect in different parts; but the best is that which comes from the province of Mixteca. Some have reckoned that more than 2500 bags of cochineal are sent every year from Mixteca to Spain; and the trade in that article carried on by the city of Oaxaca is computed at 200,000 crowns value.

Though Mexico, as we have seen, was originally inhabited by a number of different nations, yet all of them resembled each other pretty much, not only in character, but in external appearance. "They generally rather exceed (says our author) than fall under the middle size, and are well proportioned in all their limbs. They have good complexions, narrow foreheads, black eyes, clean, firm, white, and regular teeth; thick, black, coarse, glossy hair; thin beards, and generally no hair upon their legs, thighs, and arms, their skin being of an olive colour. There is scarcely a nation on earth in which there are fewer persoms deformed; and it would be more difficult to find a single hump-backed, lame, or squint-eyed man among a thousand Mexicans, than among an hundred of any other nation. The unpleasantry of their colour, the smallness of their foreheads, the thinness of their beards, and the coarseness of their hair, are so far compensated by the regularity and fine proportion of their limbs, that they can neither be called very beautiful nor the contrary, but seem to hold a middle place between the extremes. Their appearance neither engages nordifficults; but among the young women of Mexico, there are many very beautiful and fair, whose beauty is at the same time rendered more winning by the natural sweetness of their manner of speaking, and by the pleasantry and natural modesty of their whole behaviour. Their features are very acute, especially that of sight, which they enjoy unimpaired to the latest age. Their constitutions are found, and their health robust. They are entirely free of many disorders which are common among the Spaniards; but of the epidemic diseases to which their country is occasionally subject, they are generally the victims; with them these diseases begin, and with them they end. One never perceives in a Mexican that flinking breath which is occasioned in other people by the corruption of the humours or indigestion. Their constitutions are phlegmatic; but the pituitous evacuations from their heads are very scanty, and they seldom spit. They become grey-headed and bald earlier than the Spaniards; and although most of them die of acute diseases, it is not very uncommon among them to attain the age of an hundred. They are now, and ever have been, moderate in eating, but their passion for strong liquors is carried to the greatest excess. Formerly they were kept within bounds by the severity of the laws; but now...
The ancient Mexicans shewed more fire, and were more sensible to the impressions of honour. They were more intrepid, more nimble, more active, more industrious; but they were at the same time more superstitious and cruel."

The Toltecas, who first inhabited Mexico, were accounted much more polished than those who came after them, inasmuch that in after ages it was customary to distinguish people of ingenuity and learning by the name of Toltecas. They always lived in society, collected into cities, under the government of kings, and had regular laws. They were more addicted to the arts of peace than of war; and it was to them that the succeeding nations owed themselves indebted for their knowledge of the culture of grain, cotton, pepper, &c. They understood the art of casting gold and silver, and melting them in whatever forms they pleased, acquiring also great reputation from their skill in cutting gems of all kinds; and they were besides well versed in the sciences of astronomy and chronology.

According to the ancient histories of these people, they observed, about an hundred years before the Christian era, how far the solar year exceeded the civil one; supplying the defect, as we do, by the addition of a day once in four years. In the year 660, while their monarchy continued in Tula, a celebrated astronomer, named Huematzin, assembled with the king's consent all the wise men of the nation; and, with their assent, painted a famous book named *Teomouthl*, or "divide book," in which were represented, in very plain figures, the origin of the earth, their dispersion after the confusion of tongues of Babel, their journey to Asia, their first settlements in America, the founding of the kingdom of Tula, and their progress till that time: but these, and other accounts of their great knowledge and accuracy, favour too much of exaggeration, or perhaps invention, from both which it is impossible to clear the Spaniards when speaking of American affairs.

The Chichimecas derived their knowledge of agriculture from the Toltecas, and of confection the Mexicans also. Being destitute of ploughs or animals of sufficient strength to afford them in their labour, they made use of an instrument of hard copper, which they called *castor* or *can*, but differing in shape either from a spade or mattock. They used copper axes to cut trees, the figure of which was the same with ours; only that they put the ax into the eye of the handle, instead of putting the handle into the eye of the ax as we do. They had several other instruments of agriculture, but the forms of them are not mentioned by historians. They watered their fields by means of the rivers and small torrents which came from the mountains; raising dams to collect them, and forming canals to conduct them properly to the places which required moisture. They used inclosures of stone, as well as hedges for the fields, using for their hedges the aloe plant, which is well calculated for the purpose; and what preparations were necessary they gave in December. They dibbled their maize: a method of sowing more slow indeed than the ordinary one, but which certainly repays the trouble by a vastly larger crop, as well as by saving a very considerable quantity of seed. Close to the newly-sown fields they com
Mexico

164 Magnificent gardens.

In the cultivation of their gardens, the Mexicans were extremely skilful and magnificent; planting in them not only kitchen herbs, but fruit-trees, medicinal herbs, and flowers, with great taste and regularity. Some of the royal gardens excited the admiration of the Spaniards so much, that Cortes, in a letter to Charles V. informed him that the garden at Huatempoc was the most extensive, the most beautiful, and most delightful, that had ever been beheld. It was six miles in circumference, and watered by a beautiful river which crossed it; and there were pleasure-houses erected at proper distances from one another. It was for many years preferred by the Spaniards.—The plants most cultivated, next to maize, were cotton, cacao, and aloe; which last served a great many useful purposes. See Aloe.

165 Tame animals.

Though they had not the advantage of the larger quadrupeds, as horses, oxen, or sheep, they bred up an immense number of quadrupeds unknown in Europe. Private persons brought up the small quadrupeds already mentioned, resembling little dogs; as well as turkeys, quails, geese, ducks, and other kinds of fowl. In the houses of the great men were bred flocks of deer, rabbits, and a variety of birds; and in the royal palaces, almost all the species of quadrupeds and winged animals to be found in these kingdoms were kept, as well as a great number of aquatic animals and reptiles. According to Clavijero, Montezuma II. surpassed all the kings in the world in this kind of magnificence; and there never was a nation equal to the Mexicans in the care they took in taming animals.

Painting was an art in great request among the Mexicans, and one of very great use; as it was only by means of paintings that they recorded their histories. This art they derived, like others, from the Toltecas. Some of these paintings were mere images of their gods, kings, heroes, or of terrestrial objects. Others were historical, containing an account of particular events; others mythological, of which a volume is preserved in the great library of the order of Bologna: others were codes of laws, civil and religious; while some were chronological, astronomical, or astrological; in which was represented their calendar, the position of the stars, changes of the moon, eclipses, and prognostications and variations of the weather. Great numbers of these were burned by the superstitious Spaniards, who imagined that they contained some emblems of heathen worship. They had likewise geographical paintings, which served not only to show the extent and boundaries of their possessions, but likewise the situation of places, the direction of the coasts, and the course of the rivers. In his first letter to Clavijero Cortes says, that having made inquiries if there was any secure harbour for vessels on the Mexican coast, Montezuma presented him with a painting of the whole coast, from the port of Vera Cruz, at that time called Chalchiuhcan, to the river Coatzacuaro.

Another author informs us also, that Cortes, in a long and difficult voyage which he made to the bay of Honduras, made use of a chart presented to him by the lords of Coatzacuaro, in which all the places and rivers were marked from the coast of Coatzacuaro to Huejacalan.

As every thing relating to the Mexican empire was thus delineated in painting, the artists were innumerable: and had the numerous paintings been preserved, we might by means of them have had a complete history of Mexico; but vast numbers were destroyed by the superstitious zeal of the Spaniards. The chief school of painting was in Texcoco; and of the paintings made there they collected such a mass, that it resembled a little mountain; and to all these they set fire at once, to the inexpressible grief of the Indians, and even of themselves, when they came to know their error: for they were compelled afterwards to attempt to remedy the evil, by collecting all the paintings that could be found throughout the empire, and to obtain what information they could from the mouths of the Indians. But though they recovered many, these were still not sufficient; for, from that time forward, the possessors of paintings became so jealous, that they concealed them from the Spaniards with the utmost care; and it was in a manner impossible to make them part with a single piece.

The cloth on which these paintings were done was made of the thread of the aloe or a kind of palm; or they painted on fleeces skins or upon paper. This latter was made of the leaves of a certain kind of aloe, deep-dyed like hemp, and afterwards washed, stretched, and smoothed. They used also the bark of other trees, prepared with gum; but we are ignorant of the method they used in the manufacture. This paper is similar in thickness to the European pasteboard, but softer, smoother, and more easy for writing. In general it was made up in very long sheets, which they preferred in rolls, or folded like bed-sheets. The volume of Mexican paintings preferred in the library of Bologna, is a thick skin, ill dressed, composed of different pieces painted all over, and folded up in that manner. The beautiful colours which they employed both in their paintings and in their dyes, were obtained from wood, leaves, and the flowers of different plants, as well as from various animal substances. Their white was made from a kind of lime which burns into a fine plaster; or from a mineral, which after being made into a paste worked like clay, and formed into small balls, turns white in the fire like Spanish white. Their black was got from another mineral, which has a disagreeable smell, or from the foot of a kind of pine collected in small earthen vessels. They obtained blue and azure colours from indigo; but their mode of obtaining these was very different from that used by the moderns. They put the branches of the plant into hot, or rather lukewarm, water; and after having stirred them about for a sufficient time with a flick or paddle, they passed the water, when impregnated with the dye, into certain pots or cups in which they let it remain until the solid part of the dye was deposited; after which they poured off the water. This sediment was first dried in the sun, and afterwards put between two plates before a fire until it grew hard. They had another plant which likewise afforded a blue colour, but inferior to the indigo. Red was obtained from the seeds of the achiot or cocu,
They did not use hieroglyphics or characters.

They painted a city or village, they painted in like manner a figure which signified the same thing, with its name. To form their histories or annals, they painted on the margin of the cloth or paper the figures of the years in so many squares, and at the side of each square the event or events which happened that year; and if, on account of the number of years, the history of which they meant to relate, they could not all be contained in one canvas, they were continued on another. With respect to the order of representing the years and events, it was at the liberty of the historian to begin at which ever angle of the piece he pleased; but at the same time constantly observing, that if the painting began at the upper angle of the right hand, he proceeded towards the left; but if it began, as it most commonly did, at the upper angle of the left hand he proceeded straight downwards. If he painted the first year at the lower angle of the left, he continued towards the right; but if he began at the lower angle of the right, he painted straight upwards; so that on the upper part of his canvas he never painted from left to right, nor ever on the lower part from right to left; never advanced upwards from the left, nor downwards from the right. When this method of the Mexicans is understood, it is easy to discover at first sight which is the beginning and which the ending of any historical painting. Their paintings, however, right not to be considered as a regular full history, but only as monuments and aids of tradition. We cannot express too strongly the care which parents and masters took to instruct their children and pupils in the history of the nation. They made them learn speeches and discourses which they could not express by the pencil; they put the events of their ancestors into verse, and taught them to sing them. This tradition dispelled the doubts and undid the ambiguity which paintings alone might have occasioned; and, by the assistance of their monuments, perpetuated the memory of their heroes and of virtuous examples; their mythology, tales, laws, and customs.

Nor did that people only make use of tradition, painting, and songs, to preserve the memory of events but also of threads of different colours and different knotted. This curious method of the representation of things, however much used in Peru, does not appear to have been employed in the province of Anahauac, if not in the most early ages; for no traces of such monuments are now to be found. Boturini says, that after the most diligent search, he with difficulty found one in place in Tlalcula, the threads of which were already wanting and consumed by time. If these who peopled South America ever passed the country of Anahuac, they possibly might have left there this art, which was afterwards abandoned for that of painting introduced by the Toltecs or some other nation still more ancient.

The Mexicans arrived at greater perfection in sculpture, calling of metals, and mosaic works, than in painting. Sculpture was likewise one of the arts excelled by the ancient Toltecs; but the Mexicans had sculptors among them when they left their native country of Aztlan. Several of the Toltec statues, however, were preserved till the time of the conquistadors, particularly that of the idol Tiahoc, placed in one of their temples. Stone and wood were the usual materials of their statues; the former was worked with a chisel made of flint; and, in spite of the want of the instruments, each was the phlegmatic nature of the people, that they surmounted every difficulty arising from the indefatigable work of the work. In their statues they learned to express all the attitudes and postures of which the human body is capable. They observed the proportions exactly, and could when necessary execute the most delicate strokes with the chisel. They not only made entire statues, but cut out in wood and in stone figures in baffo relief; of which kind are those of Montezuma II. and one of his sons, recorded with praiseworthy by Acosta. They also made statues of clay and wood, employing for these a chisel of copper. The number of their statues was in proportion to that of their idols; but so active were the Spanish priests in destroying these, that there is now scarce any vestige of them remaining. The foundation of the first church in Mexico was laid with idols; on which occasions many thousand statues of their gods were necessarily broke in pieces. In casting of metals in the art, however, the Mexicans greatly excelled their works of calling either of painting or sculpture. The miracles produced of this kind (says Clavigero), would not be credible, if, besides the testimony of those who saw them, a great number of curiosities of this kind had not been sent from Mexico to Europe. The works of gold and silver faint in presence from the compay Cortes to Charles V. filled the golden lumps of Europe with astonishment; who, as several authors of that period attest, declared that they were altogether imitable. The Mexican founders made both of gold and
MEX [680] MEX

Mexico.

silver the most perfect images of natural bodies. They made a fish in this manner, which had its scales alternately one of silver and the other of gold; a parrot with a moveable head, tongue, and wings; and an ape with a moveable head and feet, having a spindle in its hand in the attitude of spinning. They set gems in gold and silver, and made most curious jewellery of great value. In short, these works were so admirably finished, that even the Spanish fathers, all strong with the same wretched thirst for gold, valued the workmanship above the materials. This wonderful art, formerly practiced by the Toltecas, the invention of which they ascribed to one of their gods, has been entirely lost by the debauch of the Indians, and the indolent neglect of the Spaniards. We are doubtful if there are any remains of those curious works; at least we apprehend that it would be more easy to find them in some of the cabinets of Europe than in all New Spain. Covetousness to profit by the materials must unquestionably have conquered all desire to preserve them as curiosities. The works of the Mexicans in gold and silver, executed with the hammer, were much inferior to those of the Europeans.

But of all the works executed by the ancient Mexicans, those of mosaic were the most curious as well as most highly valued by themselves. Those were made of the feathers of birds; and for procuring them they reared a great number of those birds of fine plumage, with which the country abounded, not only in the royal palaces, but also in private houses; and at certain feasts they carried off the feathers for these purposes, or to sell them at market. They valued particularly the feathers of the humming birds, on account of their smallness, fineness, and various colours; and in these, as well as other birds of fine plumage, nature supplied them not only with all the colours producible by art, but likewise with many which art cannot imitate. Their mosaic works, as well as indeed all others of the Mexicans, required infinite patience. At the undertaking of every work of this kind several artists assembled; and having agreed upon a design, and fixed their measures and proportions, each artist charged himself with the execution of a certain part of the image, and exerted himself so diligently in it, that he frequently spent a whole day in adjusting a feather; first trying one and then another, viewing it sometimes one way, then another, until he found one which gave his part that ideal perfection proposed to be attained. When the part which each artist undertook was done, they assembled again to form the entire image from them. If any part happened to be in the least disarranged, it was requisite again until it was perfectly finished. They laid the feathers of birds with small pincers, that they might not do them the least injury, and pasted them on the cloth with some glutinous matter; then they united all the parts upon a little table or a plate of copper, and flattened them softly until they left the surface of the image so equal and firm, that it appeared to be the work of a pencil. These works were prodigiously admired by the Spaniards; but this wonderful (says Acosta) how it was possible with the feathers of birds to execute works so fine and so equal, that they appear the performance of the pencil; and what neither the pencil nor the colours in painting can effect, they have, when viewed from a side, an appearance so beautiful, so lively, and so animated, that they give delight to the sight. Some Indians, who are able artists, copy whatever is painted with a pencil so exactly with plumage, that they rival the best painters of Spain. The last artists in this admirable kind of work lived lately in Pueblos; but it is most probable that the art either has already died or will die with him. A beautiful kind of mosaic was likewise done with broken shells; and this is still carried on in Guatimala. There were many other artists who formed figures in imitation of the mosaic works with flowers and leaves upon mats, which were made of rushes; and these were eagerly sought after by the Spaniards, on account of their singular beauty. Others imitated with silk the figures done with feathers; but these last were always greatly superior.

The Mexicans were skilled in architecture, even before they left their native country; and many edifices still remain which were constructed by them during their frequent journeys from one place to another. At their first arrival on the lake, they had no other materials to build their houses with but reeds and mud, until the fuccefs of their commerce allowed them to purchase better materials. When the city came to its perfection, the houses of the principal people were constructed of stone and lime; they consisted of two floors, having halls, large court-yards, and chambers fitly disposed; the roofs were flat and terraced; the walls so well whitened, polished, and thinning, that they appeared to the Spaniards when at a distance to have been constructed of silver. The floor was paved with plasters, perfectly level, plain, and smooth. Many of their houses were crowded with battle-ments and turrets; and their gardens had fish-ponds, and the walks of them symmetrically laid out. The large houses had in general two entrances, the principal one to the street, the other to the canal; they had no wooden doors to their houses, but covered the entrance with small reeds, from whence they suspended a firing of cocoashells, or some other materials which would make a noise, so as to awake the attention of the family when any person lifted up the reeds to enter the house. The houses of the poorer sort were constructed of reeds, unburnt bricks, stone, or mud; and the roofs made of a kind of long hay which grows plentifully in the fields, particularly in the warm parts of the country. For this purpose they used also the leaves of the aloe placed in the manner of tiles, to which they bear some resemblance both in thickness and shape. Out of the columns or supports of these houses was generally a tree in the vigour of its growth; by which means, besides the pleasure derived from its foliage and shade, they saved themselves some labour and expense. These houses had one or more apartments according to the circumstances of the family.

Our author is of opinion that the ancient Mexicans, understood the method of constructing arches or vaults, as appears, he says, from some remains of their buildings as well as from their paintings. They had high cornices and other ornaments of architecture. They had also square or cylindrical columns; but it is not known whether these had any capitals or not. They frequently adorned them with figures in basso relief.
The most remarkable pieces of Mexican architecture, however, were their aqueducts. There were two which conveyed the water to the capital from the distance of two miles. They were constructed of flint and cement five feet high, and two paces broad upon a road for that purpose upon the lake; by which the water was brought to the entrance of the city, from whence it was sent forth in smaller channels to supply the different fountains. The famous aqueduct of Chempoallan, which was done in the 16th century, is worthy of being ranked among the greatest in Europe. The conductor of this work was a Franciscan millenary named Tembleque; and it was executed with great skill by the Chempoallefe. The water was brought from a great distance, and the country through which it must pass was mountainous and rocky; but every difficulty was overcome by the ingenuity of the Mexicans. The aqueduct, including all the turnings and windings, exceeded 30 miles in length. The principal difficulty consisted in crossing three great precipices, over which they were obliged to construct three bridges, the first of 47, the second of 137, and the third of 67 arches. The largest arch was 100 feet high, and 61 broad; so that a large vessel could have passed under it. It must however, be observed, that in executing this undertaking, the Mexicans were undoubtedly assisted by European tools, and the directions of European workmen; so that we cannot with strict propriety call it one of their works.

Through the ancient Mexicans never used any instruments of iron in their works, they nevertheless executed beautiful engravings by means of tools made of flint flone. They wrought also marble, Jasper, alabaster, jasper, jasper, and other valuable stones. Of itself they made their looking glasses, which were sometimes set in gold, the sharp pieces which were set in their swords, and razors to shave with. These last were made with such expedition, that an artisan could finish upwards of an hundred in an hour.

They were, as has already been observed, expert jewellers, and understood the art of cutting and polishing the stones, as well as of setting them. The gems most common in their country were the emeralds, amethysts, cornelians, turquoise, and others unknown in Europe. Emeralds were so common, that no lord or noble wanted them; and none of them died without having one fixed to his lip, that it might serve him, as they imagined, in the other world, in head of a heart. When Cortes returned the first time to Spain, he brought with him five emeralds valued, by the jewellers there, at 100,000 ducats. The first was in the form of a rose; the second of an horn; the third of a little fish with eyes of gold; the fourth in the form of a bell, with a fine pearl for a clapper. The fifth was a small cup with a foot of gold, and four little golden chains which united in a pearl in the form of a button. For this alone the Genoese merchants offered 40,000 ducats, in order to fill it again to the grand signior. Besides these, he had two emerald vases valued at 300,000 ducats: but these last were lost by shipwreck in the unfortunate expedition of Charles V. against Algiers. There are no such gems wrought at present, nor is it even known where the emerald mines are situated; though there are still extant some enormous maffles of this precious flone, particularly two in as many churches: but the priests take care to secure them with iron chains, lest any body should carry them off.

In other more common manufactures the Mexicans were by no means deficient. The earthen ware of Cholula was much prized by the Spaniards; and they had the art of ornamenting this kind of ware with various colours, though they did not understand the making of glafs. Their carpenters wrought with instruments of copper; and there are still remains of their labours which display a tolerable skil. Almost every one was acquainted with the method of making cloth. Being defitute of wool, common flilk, lint, or hemp, they were obliged to supply the deficiency by other materials. For wool they substituted cotton, for flilk they used feathers, the wool of the hare or rabbit; and instead of lint and hemp, they used the fibrous part of the leaves of the sloe. From these last they obtained a thread as fine as from lint; and from some species they had a coarser sort resembling hemp. To obtain this thread they soaked the leaves in water, cleaned them, exposed them to the sun, and then beat them till they were fit to be spun. Sometimes they interwove with their cotton the finest down on the belly of the rabbits or hares, after having spun it into thread; and of these they made most beautiful cloths which were particularly used for winter waistcoats for their lords. Their cotton manufactures were equal to any produced in Europe; they wove them with different figures and colours, representing different animals and flowers. Of feathers interwoven with cotton they made mantles and bed-curtains, carpets, gowns, &c. These were exceedingly beautiful; but this kind of manufacture is now lost, though there are still some of these garments in the possession of the principal lords, who wear them upon solemn occasions.

All these advances towards civilization, however, their horrid in the ancient Mexicans, were much more than counterbalanced by the horrible barbarities they committed in their religious ceremonies, and in which they exceeded every nation on earth. Human sacrifices were indeed in use among all the ancient heathens; but such prodigious malacies as have been already related at the dedication of their temples, are unheard of in history. Whether they used these barbarous sacrifices in their own country, or whether the practice began with that of the four Xochimilca princes, of whom we have already given an account, is not

Vol. XL
known; but as they only used their prisoners or slaves whom they bought in this way, it is impossible that during the infancy of their state, the number of human victims could have been very great. Most of those unhappy creatures perished by having their breasts opened, and their hearts pulled out; some were drowned, others starved to death with Hunger; and sometimes they were burnt. Prisoners of high rank were allowed to die by what Clavigero calls the gladiatorian sacrifice, which was performed in the following manner. Near to the greater temple of large cities, in an open space of ground sufficient to contain an immense number of people, was a round terrace eight feet high, upon which was placed a large round stone resembling a millstone in shape, but much larger, almost three feet high, well polished, and having figures cut upon it. On this stone, which was called temalcoy, the prisoner was placed, armed with a shield and short sword, and tied by one foot. Here he was encountered by a Mexican officer or savior better armed than himself. If the prisoner was vanquished, he was carried, dead or alive, to the temple, where his heart was taken out and offered in the usual manner; but if he conquered six combatants, he gained his life and liberty. An instance, however, is given in which this custom was infringed; for the Huetzotzincas having taken the principal lord of Cholula, a man of singular bravery, he overcame seven combatants; not withstanding which he was put to death; but on this account the Huetzotzincas were rendered forever infamous among these nations.

Histories differ concerning the number of victims who perished annually in these sacrifices: Clavigero inclines to think it was 20,000, but others make it much more. Zumarraga, the first bishop of Mexico, says in a letter of the 12th of June 1531, addressed to the general chapter of his order, that in that capital alone there were above 20,000 victims annually sacrificed. Some authors, quoted by Gomara, say that 50,000 were annually sacrificed in the various parts of the empire. Acofa says, that there was a certain day of the year on which they sacrificed 5000 victims, and another on which 20,000 were sacrificed. According to others they sacrificed, on the mountain Tepeyacac only, 20,000 annually to one of their female deities. On the other hand, Bartholomew de las Casas reduces the number of human victims to 50 or at most 100. "We are strongly of opinion (says Clavigero), that all these authors have erred in the number; Las Casas by diminution, and the rest by exaggerating the truth."

Besides these cruelties which they practiced upon others, the Mexicans were accustomed to treat themselves with the most inhuman atrocities, thinking that the diabolical rage of their deities would be appeased by human blood. "It makes one shudder (says Clavigero), to read the atrocities which they practised upon themselves, either in atonement for their transgressions, or in preparation for their festivals. They mangled their legs as if it had been insensible, and let their blood run in such profusion as if it had been a superfluous fluid in the body. The effusion of blood was frequent and daily with some of their priests. They pierced themselves with the sharpest spines of the aloe, and bored several parts of their bodies, particularly their ears, lips, tongue, and the fat of their arms and legs. Through the holes which they made with these spines they introduced pieces of cane, the first of which were small but every time this penitential suffering was renewed a thicker piece was made use of. The blood which flowed from them was carefully collected in the leaves of the plant acaznajal. They fixed the bloody spines in little balls of hay, which they exposed upon the battlements of the walls of the temple, to testify the penance which they did for the people. Those who exercised such severities upon themselves within the inclosure of the greater temple of Mexico, bathed in a pond that was formed there, and which, from being always tinged with blood, was called zapan."

The dress of the Mexicans was very simple: that of the men consisted only of a large belt or girdle, the two ends of which hung down before and behind; the women wore a square mantle, about four feet long; the other ends were tied upon the breast or upon one shoulder. The Mexican gown was also a piece of square cloth, in which the women wrapped themselves from the waist down to the middle of the leg. They wore also a small under-vest or waistcoat without sleeves, named huepilli.

The dress of the poorer sort was made of the thread of the mountain palm, or of coarse cotton; but those of better station wore the finest cotton, embellished with various colours, and figures of animals or flowers; or woven with feathers, or the fine hair of the rabbit, &c. The men wore two or three mantles, and the women three or four veils, and as many gowns, putting the longest undermost, so that a part of each of them might be seen. Their shoes were only soles of leather, or coarse cloth of the mountain palm tied with ribbons; but those of the great people were adorned with ribbands of gold and jewels. They all wore long hair, and thought themselves dishonoured by being shaved, or having their hair clipped, except the consecrated virgins in the temple. The women wore it loose; but the men tied it up in different forms, and adorned their heads with fine feathers, both when they danced and went to war. With this simplicity, however, they mixed no small quantity of extravagance. Besides feathers and jewels, with which they used to adorn their heads, they wore ear-rings, pendants at their upper lip, as well as many at their noses, necklaces, bracelets for the hands and arms, as well as certain rings like collars which they wore about their legs. The ear-rings of the poor were shells, pieces of crystal, amber, &c.; but the rich wore pearls, emeralds, amethysts, or other gems, set in gold.

Instead of soap the Mexicans used a kind of fruit called coyolaltocchi; the pulp of which is white, viscous, and very bitter, makes water white, raises a froth, and will clean linen like soap. They used also a kind of root named amoll, which is not unlike the saponaria of the old continent. It is now more used for washing the body, especially the head, than for clothes. Clavigero says that there is a kind of this root which dyes the hair of a golden colour, and that he has been witness to this effect on the hair of an old man.

The principal inhabitants of Mexico, in modern times, are Spaniards sent hither by the court, to fill the vacant places.
the posts of government. They are obliged, like those in the mother-country who aspire to any ecclesiastical, civil, or military employments, to prove that there have been neither heretics, Jews, Mohammedans, nor any person in their family who have been called before the inquisition for four generations. Merchants who are desirous of going to Mexico, as well as to other parts of America, without becoming colonists, are compelled to observe the same forms. They are also obliged to swear that they have 300 palms of merchandise, their own property, in the fleet in which they embark, and that they will not carry their wives with them. On these absurd conditions they become the principal agents of the European commerce with the Indies. Though their charter is only to continue three years, and a little longer for countries more remote, it is of great importance. To them alone belongs the right of selling, as commissioners, the major part of the cargo. If these laws were observed, the merchants flattered in the new world would be confined to dispose of what they have received on their own account.

The predilection which administration has for Spaniards born in Europe, has reduced the Spanish Creoles to acquire wealth subordinate flations. The descendants of the companions of Cortes, and of those who came after them, being constantly excluded from all places of honour or of trust that were any way considerable, have seen the gradual decay of the power that supported their fathers. The habit of being obliged to bear that unjust contempt with which they have been treated, has, at last, made them become really contemptible. They have totally lost, in the vices which originate from indolence, from the heat of the climate, and from a superfluous enjoyment of all things, that firmness and that fort of pride which have ever characterized their nation. A barbarous luxury, shamefully pleasures, and romantic intrigues, have enervated all the vigour of their minds, and sensualities hath completed the ruin of their virtues. Blindly devoted to priests too ignorant to enlighten them by their insufficiency, too depraved to edify them by their example, and too mercenary to attend to both these duties of their function, they have no attachment to any part of their religion but that which enfeebles the mind, and have neglected what might have contributed to rectify their morals.

The Melchees, who constitute the third order of citizens, are held in still greater contempt. It is well known that the court of Madrid, in order to replenish a part of that dreadful vacancy which the avarice and cruelty of the conquerors had occasioned, and to regain the confidence of those who had escaped their fury, encouraged as much as possible the marriage of Spaniards with Indian women. These alliances, which became pretty common throughout all America, were particularly frequent in Mexico, where the women had more understanding and were more agreeable than in other places. The Creoles transferred to this mixed progeny the contemptuous flight they received from the Europeans. Their condition, equivocal at first, in process of time was fixed between the whites and the blacks.

These blacks are not very numerous in Mexico. As the natives are more intelligent, more robust, and more industrious, than those of the other colonies, they have hardly introduced any Africans except such as were required either to indulge the caprice, or perform the domestic service, of rich people. These slaves, who are much beloved by their masters, on whom they absolutely depend, who purchased them at an extravagant price, and who make them the ministers of their pleasures, take advantage of the high favour they enjoy, to oppress the Mexicans. They assume over these men, who are called free, an ascendant which keeps up an implacable hatred between the two nations. The law has studied to encourage this aversion, by taking effectual measures to prevent all connection between them. Negroes are prohibited from having any amorous correspondence with the Indians; the men, on pain of being mutilated; the women, of being severely punished. On all these accounts, the Africans, who in other settlements are enemies to Europeans, are in the Spanish Indies their warm friends.

Authority has no need of this support, at least in Mexico, where population is no longer what it was formerly. The first historians, and those who copied them, have recorded, that the Spaniards found there, 10,000,000 of souls. This is supposed to have been the exaggerated account of conquerors, to exalt the magnificence of their triumph; and it was adopted, without examination, with so much the more readiness, as it rendered them the more odious. We need only trace with attention the progress of those ruffians who at first defolated these fine countries, in order to be convinced that they had not succeeded in multiplying men at Mexico and the adjacent parts, but by depopulating the centre of the empire; and that the provinces which are remote from the capital, differed in nothing from the other deserts of South and North-America. It is making a great concession, to allow that the population of Mexico has only been exaggerated one-half: for it does not now much exceed 2,000,000.

It is generally believed, that the first conquerors Mexicans, treated the Indians out of wantonness, and that even the priests incited them to these acts of ferocity. Undoubtedly these inhuman soldiers frequently shed blood without even an apparent motive; and certainly their fanatic missionaries did not oppose these barbarities as they ought to have done. The works was not, however the real cause, the principal source of the depopulation of Mexico; it was the work of a flow tyranny, and of that avarice which extracted from its wretched inhabitants more rigorous toil than was compatible with their constitution and the climate.

This oppression was coeval with the conquest of the country. All the lands were divided between the crown, the companions of Cortes, and the grandees or ministers who were most in favour at the court of Spain. The Mexicans, appointed to the royal domains, were destined to public labours, which originally were considerable. The lot of those who were employed on the estates of individuals was still more wretched. All ground under a dreadful yoke: they were ill-fed; they had no wages given them; and services were required of them, under which the most robust men would have sunk. Their misfortunes excited the compassion of Bartholomew de las Cajas.
This man, so famous in the annals of the new world, had accompanied his father in the first voyage made by Columbus. The mildness and simplicity of the Indians affected him so strongly, that he made himself an ecclesiastical, in order to devote his labours to their conversion. But this soon became the least of his attention. As he was more a man than a priest, he felt more for the cruelties exercised against them than for their superstitions. He was continually hurrying from one hemisphere to the other, in order to comfort the people for whom he had conceived an attachment, or to soften their tyrants. This conduct which made him be idolized by the one and dreaded by the other, had not the success he expected. The hope of striking awe, by a character revered among the Spaniards, determined him to accept the bishopric of Chiapa in Mexico. When he was convinced that this dignity was an insufficient barrier against that avarice and cruelty which he endeavoured to check, he abdicated it. It was then that the courtiers, firm, disinterested man, accused his country before the tribunal of the whole universe. In his account of the tyranny of the Spaniards in America, he accuses them of having destroyed 15,000,000 of Indians. They ventured to find fault with the ceremony of his style; but no one condemned him of exaggeration. His writings, which indicate the amiable turn of his disposition, and the sublimity of his sentiments, have flamed a disgrace upon his barbarous countrymen, which time hath not, and never will efface.

The court of Madrid, awakened by the representations of the virtuous Las Casas, and by the indignation of the whole world, became sensible at last, that the tyranny it permitted was repugnant to religion, to humanity, and to policy, and resolved to break the chains of the Mexicans. Their liberty was now only constrained by the feudal condition, that they should not quit the territory where they were settled. This precaution owed its origin to the fear that was entertained of their going to join the wandering savages to the north and south of the empire.

With their liberty their lands ought also to have been restored to them; but this was not done. This injustice compelled them to work solely for their oppressors. It was only decreed, that the Spaniards, in whose service they laboured, should stipulate to keep them well, and pay them to the amount of 5 l. 5 s. per family a year.

From these profits the tribute imposed by government was subtracted, together with 4 s. 4½ d. for an institution which it is astonishing the conquerors should have thought of establishing. This was a fund set apart in each community, and appropriated to the relief of such Indians as were decayed or indigested, and to their support under private or public calamities.

The distribution of this fund was committed to their caciques. These were not the descendants of those whom they found in the country at the time of the conquest. The Spaniards chose them from among those Indians who appeared the most attached to their interests; and were under no apprehension at making these dignities hereditary. Their authority was limited to the supporting the police in their districts, which in general extended eight or ten leagues; to collecting the tribute of those Indians who laboured on their own account, that of the others being floated by the masters whom they served; and to preventing their flight by keeping them always under their inspection, and not suffering them to contract any engagement without their consent. As a reward of their services, these magistrates obtained from government a property. They were permitted to take out of the common flock 2 d. annually for every Indian under their jurisdiction. At last they were empowered to get their fields cultivated by such young men as were not yet subject to the poll tax; and to employ girls, till the time of their marriage, in such occupations as were adapted to their sex, without allowing them any salary except their maintenance.

These institutions, which totally changed the condition of the Indians of Mexico, irritated the Spaniards to a degree not to be conceived. Their pride would not suffer them to consider the Americans as free men; nor would their avarice permit them to pay for labour which hitherto had cost them nothing. They employed themselves successively, or in combination, craft, remonstrances, and violence, to effect the subversion of an arrangement which so strongly contradicted their warmest passions; but their efforts were ineffectual. Las Casas had raised up for his beloved Indians protectors who seconded his design with zeal and warmth. The Mexicans themselves, finding a support, impeached their oppressors before the tribunals; and even the tribunals that were either weak or in the interest of the court. They carried their resolution so far, as even unanimously to refuse to work for those who had treated any of their countrymen with injustice. This mutual agreement, more than any other circumstance, gave solidity to the regulations which had been decreed. The other, prescribed by the laws was, gradually established. There was no longer any regular system of oppression; but merely several of those particular vexations which a vanquished people, who have left their government, can hardly avoid from those who have subjugated it.

These clandestine acts of injustice did not prevent the Mexicans from recovering, from time to time, certain detached portions of that immense territory of which their fathers had been depopulated. They purchased them of the royal domain, or of the great proprietors. It was not their labour which enabled them to make these acquisitions; for this they were indebted to the happiness of having discovered some of them mines, others treasures, which had been concealed at the time of the conquest. The greatest number derived their resources from the priests and monks, to whom they owed their existence.

Even those who experienced a fortune less propitious, procured for themselves, by the sole profits of their pay, more conveniences than they had enjoyed before they underwent a foreign yoke. We should be very much deceived if we should judge of the ancient prosperity of the inhabitants of Mexico by what has been paid of its emperor, its court, its capital, and the governors of its provinces. Depotism had there produced those fatal effects which it produces everywhere. The whole state was sacrificed to the caprices,
The Mexicans are now less unhappy. Our fruits, our corn, and our cattle, have rendered their food more wholesome, agreeable, and abundant. Their houses are better built, better disposed, and better furnished. Shoes, drawers, shirts, a garment of wool or cotton, a rug, and a hat, constitute their dress. The dignity which it has been agreed to annex to lands, is more universal; it is even very uncommon in the vicinity of the mines, towns, and great roads, where tyranny seldom sleeps: but we often find it with satisfaction in remote parts, where the Spaniards are not numerous, and where they have in some measure become Mexicans.

The employments of this people are very various. The most intelligent, and those who are in easy circumstances, devote themselves to the most necessary and most useful manufactures, which are dispersed through the whole empire. The most beautiful manufactures, are established among the people of Tlascala. Their old capital, and the new one, which is called Anglos, are the centre of this industry. Here they manufacture cloth that is pretty fine, calicoes that have an agreeable appearance, certain flight silks, good hats, gold lace, embroidery, lace, glaftons, and a great deal of hard-ware.

The care of flocks affords a maintenance to some Mexicans, whom fortune or nature have not called to more distinguished employments. America, at the time it was discovered, had neither hogs, sheep, oxen, horses, nor even any domestic animal. Columbus carried some of these useful animals to St Domingo, from whence they were generally dispersed, and at Mexico more than in any other place. They have multiplied prodigiously. They count their horned cattle by thousands, whose skins are become an object of considerable exportation. The horses are degenerated, but the quality is compensated by the number. Hog's lard is here substituted for butter. Sheep's wool is dry, coarse, and bad, as it is every where between the tropics.

The vine and olive-tree have experienced the same degeneracy. The cultivation of them was at first prohibited, with a view of leaving a free market for the commodities of the mother country. In 1766, permission was given to the Jesuits, and a little afterwards to the marquis Del Valle, a descendant from Cortes, to cultivate them. The attempts have not proved successful. The trials, indeed, that have been made, have not been abandoned; but no person has solicited the liberty of following an example which did not promise any great emolument. Other cultures have been more successful. Cotton, sugarc, silk, cacao, tobacco, and European corn, have all thriven in some degree. The Spaniards are encouraged to prosecute the labours which these cultures require, from the happy circumstance of their having discovered iron mines, which were entirely unknown to the Mexicans, as well as some mines of a kind of copper that is hard enough to serve for implements of husbandry. All these articles, however, for want of men and industry, are merely confirmed within the country.

There is only the vanilla, indigo, and cochineal, which make part of the trade of Mexico with other nations.

New-Mexico, so called because of its being discovered later than Old-Mexico, a country of America, is bounded on the north by high mountains, beyond which is a country altogether unknown, the situation of which is well known on the east; by New Spain on the south; and on the west by the gulf of California, and the Rio Colorado; extending it is said, above 100 miles from east to west, and about 900 from south to north; but the twentieth part of the country within these limits is neither cultivated nor inhabited either by Spaniards or Indians. As it lies in the midst of the temperate zone, the climate, in general, is very pleasant; the summers, though very warm, are neither sultry nor unhealthy; and the winters, though pretty sharp, are far from being insupportable, and, for the most part, clear and healthy.

The greatest encomiuns are lavished on the fertility of the soil, the richness of the mines, and the variety of valuable commodities produced in this country. It is said to be beautifully diversified with fields, meadows, rising grounds, and rivers; abounding with fruit and timber trees, turquoises, emeralds, and other precious stones, mines of gold and silver, a great variety of wild and tame cattle, fowl and fowls. Upon the whole, we may safely affirm, that New-Mexico is among the pleasantest, richest, and most plentiful countries in America, or any other part of the world. There are few great or navigable rivers in it; the most considerable are, the Rio Solado and Rio del Norte, which, with several smaller streams, fall into the gulf of Mexico. On the coast of the gulf are divers bays, ports, and creeks, which might be easily converted into excellent harbours if the Spaniards were possessed of any portion of that commercial spirit which animates the other maritime nations of Europe.

The Spanish writers tell us, that New-Mexico is inhabited by a great variety of Indian nations or tribes, totally unconnected with each other; but the principal are the Apaches, a brave, warlike, refractory people; fond of liberty, and the inveterate enemies of tyranny and oppression. About the close of the last century, thinking themselves aggrieved by the Spanish government, they made a general insurrection, and did a great deal of mischief; but were at last obliged to submit, and have since been curbed by stronger garrisons. Most of the natives are now Christians.
THE SPANIARDS first entered this country, they found the natives well clothed, their lands cultivated, their villages neat, and their houses built with stone. Their flocks also were numerous, and they lived more comfortably than most of the other savages of America. As to religion, they were idolaters, and worshipped the sun and moon; but whether they offered human sacrifices, we are not sufficiently informed.

As to the number of the provinces of this country, we can advance nothing certain: some writers making them only five, others 10, 15, 20, and 25; but adding no description, either of them or the towns contained in them, excepting the capital, Santa Fé, which we are told stands near the source of the Rio del Norte, in 36° of north latitude, and about 130 leagues from the gulf: that it is a well-built, handsome, rich town; and the seat of the bishop, suffragan of Mexico, as well as the governor of the province, who is subordinate to the viceroy of Mexico, or New Spain.

MEYER (Felix), an eminent landscape painter, was born at Winterthur in 1653, and received his earliest instruction from a painter at Nuremberg: but he was afterwards a disciple of Ermels, a good landscape painter, whose manner he entirely followed. In search of still greater improvement, however, he travelled to Italy: but the climate not agreeing with him, he withdrew to Switzerland; where, as he was indefatigable in surveying all the beauty, the wildness, and magnificence of nature in those romantic scenes, he made a multitude of noble designs, which procured him very high reputation. As he was not expert at painting figures, those which he inferred in his own pictures being very indifferent, such of his landscapes as were supplied with figures by Roos or Rugendas, are accounted most estimable. He died in 1713.

MEYESENS (John) a painter of considerable eminence, was born at Brugges in 1612; and at first was taught the principles of painting by Anthony van Opilal, but afterwards he became a disciple of Nicholaus vander Horft. When he commenced painter, he undertook both history and portrait: but the latter seems to have been his principal employment; and his reputation for that style of painting became very great throughout the Low Countries. His remarkable excellence confirmed in his producing a very striking resemblance in his minutest his pictures with a great deal of care, and in giving them a lively and good expression.

MEZERAY (Francis Edouide), an eminent French historian, the son of Isaac Edudes a surgeon, was born at Rye, in Lower Normandy, in 1610; and took the surname of Mezeray, from a hamlet near Rye. Having performed his studies at Caen, he discovered a strong inclination to poetry; but going to Paris, he, by the advice of one of his friends, applied himself to the study of politics and history, and procured the place of commissary at war, which he held for two campaigns. He then flut himself up in the college of St Barbe, in the midst of books and manuscripts; and, in 1643, published the first volume of the History of France, in folio; and some years after, the other two volumes. Mezeray in that work surpassed all who had written the history of France before him, and was rewarded by the king with a pension of 4000 livres. In 1668, he published an abridgment of his History of France, in three volumes 4to, which was well received by the public; but as he inferred in that work the origin of most of the taxes with very free reflections, Mr Colbert complained of it, when Mezeray promised to correct what he had done in a second edition; but those corrections being only palliations, the minister caused half of his pension to be suppressed. Mezeray complained of this in very severe terms; when he obtained no other answer than the suppression of the other half. Vexed at this treatment, he resolved to write on subjects that could not expose him to such disappointment; and composed his twelfth on the origin of the French, which did him much honour. He was elected perpetual secretary to the French academy; and died in 1683. He is said to have been a man extremely negligent in his person; and so careless in drefs, that he might have passed for a beggar rather than for what he was. He was actually seized one morning by the archers des pauvres, or parish-officers; which mistake was so far from provoking him, that he was highly diverted with it, and told them, that "he was not able to walk on foot, but that as soon as a new wheel was put to his chariot, he would attend them wherever they thought proper." He used to study and write by candle-light, even at noon-day in summer; and, as if there had been no fun in the world, always waited upon his company to the door with a candle in his hand. With regard to religion, he affected Pyrrhonism; which however was not, it seems, so much in his heart as in his mouth. This appeared from his last sickness: for having sent for those friends who had been the most usual witnesses of his licentious talk about religion, he made a sort of recantation, which he concluded with desiring them "to forget what he might formerly have said upon the subject of religion; and to remember, that Mezeray dying was a better believer than Mezeray in health." Besides his history, he also wrote, 1. A continuation of the history of the Turks. 2. A French translation of John de Saribury's Latine treatise on the vanities of the court. 3. There are attributed to him several satires against the government; and in particular, those that bear the name of Sandriecourt.

MEZIERS, a strong town of France in Champagne, with a citadel. It was besieged with a powerful army by Charles V. who was obliged to raise the siege in 1521. It is seated on the river Meuse, partly upon a hill, and partly in a valley, in E. Long. 5° 48'. N. Lat. 49° 46'.

MEZIRIAC (Claude Gaéfpar Backet Sieur de), one of the most ingenious men of the 17th century, was born at Brefle, of an ancient and noble family. He was a good poet in French, Italian, and Latin; an excellent grammarian, a great Greek scholar, and an admirable critic. He was well versed in the controversy; both in philosophy and religion; and was deeply skilled in algebra and geometry, of which he gave proof by publishing the six books of Diophantes, enriched with a very able Commentary and Notes. In his youth he spent a considerable time at Paris and at Rome; at which last place he wrote a small collection of Italian poems, in competition with Vaugelas, who was there at the same time; among which there are limitations.
MEZ [687]

MEZ

imitations of the most beautiful families contained in the eight first books of the *Aeneid*. He also translated Ovid's *Epistles*; a great part of which he illustrated with very curious Commentaries of his own. While he was at Paris, they talked of making him preceptor of Louis XIII. upon which he left the court in great haste; and afterwards declared that he had never felt so much pain upon any occasion of his life; for he seemed to have already upon his shoulders the important weight of the whole kingdom. He undertook the translation of all Plutarch's works, with notes; which he had brought nearly to a conclusion, when he died at Bourg, in Breton, anno 1638, at 45 years of age. He left behind him several finished works, that were not printed.

MEZUZOTH, in the Jewish customs, certain pieces of parchment which the Jews fix to the door-posts of their houses, taking that literally which Moses commands them, saying, "Thou shalt never forget the laws of thy God, but thou shalt write them upon the posts of thy house, and upon thy gates." This expression means nothing else, but that thou shalt always remember them, whether thou comest into thy house or goest out. But the Hebrew doctors imagined, that the lawgiver meant something more than this. They pretended, that to avoid making themselves ridiculous, by writing the commandments of God without their doors, or rather to avoid exposing themselves to the profanation of those parts black which are to represent the wick, they ought at least to write them on a parchment, and to inclose it in something. Therefore they wrote these words upon a square piece of parchment prepared on purpose, with a particular ink, and a square kind of character. Deut. vi. 4, 5, 6, 7, 8, 9. "Hear, O Israel, the Lord our God is one Lord, &c."—Then they left a little space, and afterwards went on, Deut. vi. 13. "And it shall come to pass, if thou hearken diligently to my commandments, &c." as far as, "Thou shalt write them upon the door-posts of thy house, &c." After this they rolled up the parchment, and put it into a case of reeds or other materials; they wrote on the case the word *Shedai*, which is one of the names of God; and they put it at the doors of their houses, chambers, and all places most frequented; they fixed it to the knocker of the door, on the right side; and as often as they entered in or went out they touched it in this place, with the end of their finger, which they afterwards killed out of devotion. The Hebrew word *mezuzah* properly signifies the door-posts of a house; but it is also given to this roll of parchment now mentioned.

MEZZOTINTO, a particular manner of representing figures on copper, so as to form prints in imitation of painting in Indian ink. See *Engraving*.

The invention of this art has been usually attributed to Prince Rupert. Rut Baron Heinikin, a very judicious and accurate writer upon the subject of engraving, afferts, with great appearance of truth, that it was a lieutenant-colonel de Siegan, an officer in the service of the landgrave of Hesse, who first engraved in this manner; and that the print which he produced was a portrait of the princess Amelia Elizabeth of Hesse, engraved in the year 1643. Prince Rupert learned the secret from this gentleman, and brought it into England when he came over the second time with Charles II. Prince Rupert's print of *An Executioner holding a Sword in one Hand and a Head in the other*, a half-length, from Spagnoletto, is dated 1658. This art has never been cultivated with success in any country but England.

The prince laid his grounds on the plate with a channelled roller; but one Sherwin, about the same time, laid his grounds with a half-round file, which was pressed down with a heavy piece of lead. Both these grounding tools have been laid aside for many years; and a hand-tool, resembling a shoemaker's cutting-board-knife, with a fine crenelling on the edge, was introduced by one Edial, a smith by trade, who afterwards became a mezzotinto painter.

It is very different from the common way of engraving. To perform it, they rake, hatch, or punch, the surface of the plate all over with a knife, or instrument made for the purpose, first one way, then the other, across, &c. till the surface of the plate be thus entirely furrowed with lines or furrows, close and as it were contiguous to each other; so that, if an impression was then taken from it, it would be one uniform blot or smut. This done, the design is drawn or marked on the same face; after which, they proceed with burnishers, scrapers, &c. to expunge and take out the dents or furrows, in all the parts where the lights of the piece are to be; and that more or less as the lights are to be stronger or fainter; leaving those parts black which are to represent the shadows or deepenings of the draught.

As it is much easier to scrape or burnish away parts of a dark ground corresponding with the outline of any design sketched upon it, than to form shades upon a light ground by an infinite number of hatches, strokes, and points, which must all terminate with exactness on the outline, as well as differ in their force and manner; the method of scraping, as it is called, in mezzotinto, consequently becomes much more easy and expeditious than any other method of engraving. The instruments used in this kind of engraving are cradles, forgers, and knives.

In this engraving, the plate must be prepared and polished in the same manner as for other engraving; and afterwards divided equally by lines parallel to each other, and traced out with very soft chalk. The distance of these lines should be about one-third of the length of the face of the cradle which is to be used, and these lines should be marked with capital letters, or strokes of the chalk. The cradle is then to be placed exactly between the two first lines, and passed forwards in the same direction; being kept as steady as possible, and pressed upon with a moderate force. The same operation must be repeated with respect to all the other lines; till the instrument has thus passed over the whole surface of the plate. Other lines must be then drawn from the extremities of the other two sides, in the same manner; which, intersecting the first at right angles, will with them form squares; and the same operation must be repeated with the cradle as in the case of the first.

New lines must then be drawn diagonally, and the cradle passed between them as before; and when the first diagonal operation is performed, the lines must be crossed at right angles as the former, and the cradles
The plate having undergone the action of the cradle, according to the disposition of the first order of lines, a second let must be formed, having the same distances from each other as the first. But they must be so placed as to divide those already made into spaces one-third less than their whole extent; i.e., every one after the first on each side will take in one-third of that before it, e.g. beginning at A, of which the third must be left out; a third of B will consequently be taken in, and so of the rest. These lines of the second order must be marked with small letters, or letter strokes to distinguish them from the first; and the same treatment of the plate must be pursued with respect to them as was practiced for the others. When this second operation is finished, a third order of lines must be made; the third of which, e.g. in A, must omit two-thirds of it, and consequently take in two-thirds of B, &c. By these means, the original spaces will be exactly divided into equal thirds; and the cradle must be again employed between these lines as before.

When the whole of this operation is finished, it is called a turn, but in order to produce a very deep and uniform ground, the plate must undergo the repetition of all these several operations for above twenty times; beginning to pass the cradle again between the first lines, and proceeding in the same manner through all the rest. When the plate is prepared with a proper ground, the sketch must be chalked on it, by rubbing the paper on the backside with chalk. It is also proper to overtrace it afterwards with black lead or Indian ink. The scraping is then performed, by pairing or cutting away the grain of the ground in various degrees; so that none of it is left in the original state except in the touches of the strongest shade. The general manner of proceeding is the same as drawing with white upon black paper. The mases of light are first begun with; and those parts which go off into light in their upper part, but are brown below: the reflections are then entered upon; after which the plate is blackened with a printer's blacking-ball made of felt in order to discover the effect; and then the work is proceeded with; observing always to begin every part in the places where the strongest lights are to be.

The art of scraping mezzotint toes has been applied to the printing with a variety of colours, in order to produce the resemblance of paintings. The inventor of the method of doing this was J. C. Le Blanc, a native of Frankfort, and pupil of Carlo Maratta, between the years 1720 and 1730. It was established by the inventor on this principle, that there are three primitive colours, of which all the rest may be composed by mixing them in various proportions; that any two of these colours being mixed together, preserve their original power, and only produce a third colour such as their compound must necessarily give; but if transparent colours be mixed, and three primitive kinds compounded together, they destroy each other, and produce black, or a tendency to it, in proportion to the equality or inequality of the mixture; and that if, therefore, these three colours be laid, either separately or upon each other, by three plates, engraved correspondently on these principles to the colouring of the design the whole variety of tints necessary may be produced. The requisites, therefore, to the execution of any design in this method of printing are as follows: 1. To settle a plan of the colouring to be imitated; showing where the presence of each of the three simple colours is necessary, either in its pure state or combined with some other to produce the effect required; and to reduce this plan to a painted sketch of each, in which not only the proper outlines, but the degree of strength should be expressed. 2. To engrave three plates according to this plan, which may print each of the colours exactly in the places where, and in proportion in which, they are wanted. 3. To find three transparent substances proper for printing with these three primitive colours. The manner in which Mr Le Blanc prepared the plates was as follows: The three plates of copper were first well fitted with respect to size and figure to each other, and grounded in the same manner as those designed for mezzotinto prints; and the exact place and boundary of each of the three primitive colours, conformably to the design, were sketched out on three papers, answering in dimensions to the plate. These sketches are then turned on the plates; and all the parts of each plate that were not to convey the colours were entirely scraped away, in forming the light of mezzotinto prints. The parts that were to convey the colours were then worked upon; and where the most light or diluted tints of the colour were to be, the grain in the ground was proportionally taken off; but where the full colour was required, it was left entire. In this regard was had, not only to the effects of the colour in its simple state, but to its combined operation, either producing orange-colour, green, or purple, by its admixture with one alone; and likewise to its forming brown, grey, and shades of different degrees, by its co-operation with both the others. But though the greatest part of the engraving was performed in the mezzotinto manner, yet the graver was employed occasionally for strengthening the shades, and for correcting the outline where it required great accuracy and steadiness.

It was found necessary sometimes to have two separate plates for printing the same colour, in order to produce a stronger effect: but the second plate, which was used to print upon the first, was intended only to glaze and soften the colours in particular parts that might require it. With respect to the black and brown tints, which could not be so conveniently produced in a due degree by the mixture of the colours, umber and black were likewise used.

With respect to the order in which the plates are to be applied, it may be proper to observe, that the colour which is least apparent in the picture should be laid on first; that which is between the most and least apparent next; and that which predominates last; except where there may be occasion for two plates for the same colour, as was before-mentioned; or where there is any required for adding browns and shades.

Mr Le Blanc applied this art to portraits, and showed, by the specimens he produced, the possibility of its being brought by further improvements, to afford imitations of painting which might have some value. It is nevertheless much better adapted to the simpler subjects,
subjects, where there are fewer intermixtures of colours; and where the accuracy of the reflections, and demi-tints, are not so essentially necessary to the truth of the design, from the greater latitude of form, and disposition of the colour, as in plants, anatomical figures, and some subjects of architecture. But perhaps plates engraved or rather finished with the tool, particularly with respect to the outline, would be better accommodated in some of these cases than those prepared only by scraping.

Mr. Cochin remarks, at the end of an account he has given of Mr. Le Blon's manner, that though this ingenious artist confined his method principally to the use of three colours; yet, should this invention be once taken up and cultivated, there would be more probability of success in using a greater variety: and that several different kinds might be printed by one plate; provided they were laid on in their respective proper places by printing-balls, which should be used for that colour only. His hint might however be very greatly improved, by the further affinities of pencils, accommodated to the plates, for laying on the colours in the proper parts.—For the method of taking off mezzotinto prints on glass, see Back-purple.

Miasma, among physiogists, a particular kind of effluvia, by which certain fevers, particularly intermittent fevers, are supposed absolutely to refract the fire; but this is to be understood only of certain degrees of heat, and when they are mixed with certain bodies. Cronstedt observes, however, that they may with equal propriety be called airtrent; because they melt with that degree of heat in which neither quartz nor limetone are in the smallest degree altered. They are still more readily melted when either naturally or artificially combined with a martial earth. Hence some ores, though much mixed with mica, may be very readily melted; while others, in which the same subfubstance is mixed with quartz, it may be impossible to melt; because the mica renders the quartz so compact as to prevent it from cracking. It does the same with an apyrous clay, which is the reason why the lapis ollaris refists the fire so strongly.

M. Margraaf affirms, that he has obtained Epsom salt from talc; and Mr. Fabroni informs us, that in decomposing nitre by means of a micaceous subfubstance, as soon as the acid is distilled there takes some other subfubstance hitherto unknown at the end of the operation: he adds, that on employing aqua regia or marine acid to dissolve this subfubstance, the yellow colour which results from the solution shows that it contains some iron. This last assertion is confirmed by M. Monnet, who found that phlogilificated alkali and solution of galls produce a bluish colour with that of mica. He adds, that its component parts are the same with those of asbestos, excepting only that the latter contains more iron.

Cronstedt informs us, that the martsal mica acquires a shining yellow colour in a crucible heated, which has induced many to examine it in hopes of finding gold; though no metal can be obtained from it except iron, which may be dissolved by means of aqua regia. A late German author indeed has pretended, that he produced from mica an unknown femimetal which resembled iron mixed with zinc. He owned, however, that he made use of a flux composed of several metals, some of which probably united with the talc, and thus deceived him. The talc cubes, which are micaceous bodies of the figure of aluminous crystals are much valued and sought after by some mineralogists. They are met with in some parts of Sweden; and when broken are found to consist of an iron ore frequently mixed with a marialtical copper ore, and are only covered with a very thin coat of mica. The broad and transparent talc named Mufcovy-glass is used instead of glass.
The translation of the text from the image is as follows:

The Jews at Jerusalem; the way to entice the people to idolatry, by a fecond coloction under a muffle, with a heat somewhat stronger; about the tenth degree of his thermometer. The colour was of a dark purple, and the flowering particles so bright as to show their gla"y form, very different from true mica.

MICAH, or The Book of MICAH, a canonical book of the Old Testament, written by the prophet Micah, who is the seventh of the twelve lesser prophets. He is cited by Jeremiah, and prophesied in the days of Josiah, Aliz, and Hezekiah. He censures the reigning vices of Jerusalem and Samaria, and denounces the judgments of God against both kingdoms. He likewise foretells the confusion of the enemies of the Jews, the coming of the Messiah, and the glorious succession of his church.

MICHAEL, or MIC}, (i.e. who is like to God?) The scripture account of Michael is, that he was an archangel, who prevailed over the Jewish nation, as other angels did over the Gentile world, as is evident of the kingdoms of Perse and Greece, (Dan. x. 13.) that he had an army of angels under his command (Rev. xii. 7.) that he fought with the Dragon, or Satan and his angels; and that, contending with the Devil, he disputed about the body of Moses, (Jude 9.) As to the combat between Michael and the Dragon, some authors understand it literally, and think it means the expulsion of certain rebellious angels, with their head or leader, from the presence of God. Others take it in a figurative sense; and refer it, either to the contest that happened at Rome between St Peter and Simon Magus, in which the apostle prevailed over the magician, or to those violent persecutions under which the church laboured for three hundred years, and which happily ceased when the powers of the world became Christian. Among the commentators who maintain the former opinion is Grothus; and among those who take it in a figurative sense are Hammond and Mede.

The contest about the body of Moses is likewise taken both literally and figuratively. Those who understand it literally are of opinion, that Michael by the order of God hid the body of Moses after his death; and that the Devil endeavoured to discover it, as a fit means to entice the people to idolatry, by a superfluous worship of his relics. But this dispute is figuratively understood to be a controversy about rebuilding the temple, and restoring the service of God among the Jews at Jerusalem; the Jewish church being ifly enough styled the body of Moses. It is thought by some, that this story of the contest between Michael and the Devil was taken by St Jude out of an apocryphal book called, The Assumption of Moses.

The Roman church celebrates three appearances of Michael, of which no mention is made in scripture, and which have happened, they say, a long time after the age of the apostles. The first appearance of this archangel was at Colossae in Phrygia, but at what time is uncertain. The second is that of Mount Garganus, in the kingdom of Naples, about the end of the fifth century. The third is his appearance to Aubert bishop of Avranches, upon a rock called the Tomb, where at this day is the abbey of St Michael. This was about the year 956. The first of these festivals is observed on the 6th of September, the second on the 8th of May, and the last on the 16th of October. It has been supposed, that it was Michael the archangel who conducted the Israelites in their journey through the wilderness. (See Ex. xxxii. 20, 23, and xxxiii. 2.) that it was he who appeared to Moses in the burning bush; who appeared to Joshua in the fields of Jericho; and to Gideon and Manoah the father of Samson; and, in a word, to him have been imputed the greatest part of the most remarkable appearances either in the Old or New Testament.

MICHAEL ANGELO. See ANGELO.

Mount MICHEL, one of the most celebrated state-prisons of France, lies about 20 miles from Granville. It is a rock situated in the middle of the bay of Avranches; and is only accessible at low water. Nature has completely fortified one side, by its craggy and almost perpendicular defcent, which renders it impracticable to mount it by any address or courage, however comformate. The other parts are surounded by walls fenced with semilunar towers after the Gothic manner; but sufficiently strong, together with the advantage of its situation, to render it impregnable to any attack. At the foot of the mountain begins a street or town, which winds round its base to a considerable height. Above are chambers where state-prisoners are kept, and where there are other buildings intended for residence. On the summit is erected the abbey itself, occupying a prodigious space of ground, and of a strength and solidity equal to its enormous size; since it has for many centuries withstood all the injuries of the weather, to which it is so much exposed. In an apartment, called the Sale de Chevalerie, the knights of St Michael used to meet in solemnconvocation on important occasions. They were the defenders and guardians of this mountain and abbey, as the temple of the holy sepulchre. The hall in which they met is very spacious, but rude and barbarous. At one end is a painting of the archangel, the patron of their order; and in this hall Louis XI. first instituted and invested with the insignia of knighthood the chevaliers of the cross of St Michael. There is a miserable dark apartment, or rather dungeon, in which many eminent persons were formerly confined. In the middle of it is a cage, composed of prodigious bars of wood; and the wicket which gives entrance into it is 10 or 12 inches in thickness. The inside of it comprises about 12 or 14 feet square, and it is nearly 20 in height. Towards the latter end of the last century, a certain newswriter in Holland, who had presumed to print some very
Michael, very severe and sarcastic reflections on Madame de Maintenon, was confined to this place. Some months after his publication, he was indicted, by a person sent expressly for that purpose, to make a tour into Flanders. The moment he had quitted the Dutch territories, he was put under arrest; and immediately, by his majesty's express command, conducted to Mount Michael, where he was shut up in this cage. Here he lived upwards of 23 years; and here he at length expired. During the long nights of winter, no candle or fire was allowed him. He was not permitted to have any book. He saw no human face, except the gaoler, who came once every day to perform him, through a hole in the wicket, with his little portion of bread and wine. No instrument was given him with which he could destroy himself; but he found means at length to draw out a nail from the wood with which he engraved, or cut on the bars of his cage, certain fleurs de lis and armorial bearings, which formed his only employment and recreation. They are very curiously performed considering the rudeness of his tools.

The subterraneous chambers in this mountain are said to be so numerous, that the gaolers themselves do not know them. There are certain dungeons called Aublétiers, into which they were accustomed, to let down malefactors guilty of very heinous crimes; they provided them with a loaf of bread and a bottle of wine, and then they were totally forgotten, and left to perish by hunger in the dark vaults of the rock. This punishment, however, has not been inflicted by any king in the last or present century.

Here also is a remarkable chamber, in one corner of which is a kind of window; between this and the wall of the building is a very deep space, of near 100 feet perpendicular, at the bottom of which is another window opening to the sea. It is called the Hole of Montgomeri; and the history of it is as follows: In the year 1559, Henry II. king of France was unfortunately killed at a tournament by the count de Montgomeri. He was a Huguenot; and having escaped the massacre of Paris, made head against the royal forces in Normandy, supported by queen Elizabeth with arms and money. Being driven from his fortresses in these parts, he retired to a rock called the Tombelaine. This is another similar to Mount Michael; only three quarters of a league from it, and of nearly equal dimensions. At that time there was a castle upon it, which has since been demolished, and of which scarce any vestiges now remain. From this fortress, accessible only at low-water, he continually made excursions and annoyed the enemy, who never dared to attack him. He coined money, lade all the adjacent country under contribution, and rendered himself universally dreaded. Defeized, however, to prey upon Mount Michael, he found means to engage one of the monks resident in the abbey; who promised to give him the signal for this enterprise by displaying a handkerchief. The monk having made the signal, betrayed him, and armed all his associates, who waited Montgomeri's arrival. The chieftain came, attended by 50 chosen soldiers, all desperate, and capable of any attempt. They crossed the sand; and having placed their scaling ladders, mounted one by one. As they came to the top they were dispatched, each in turn, without noise, Montgomeri, who followed last, discovered the per-

fidy, and escaped with only two of his men, with whom he regained the Tombelaine. They preserve with great care the ladders and grappling irons used on this occasion. The count was at last beleagued and taken prisoner by the marchal de Matignon, in Oct. 1554, at Domfront, in Normandy; and Catharine de Medicis, who hated him for having committed, though innocently, the caufe of her husband's death, caused him to be immediately executed.

The church of Mount Michael is a great curiofity. It stands on nine pillars of most enormous dimensions, built on the solid rock. Each of them appears to be about 25 feet in circumference: besides these, there are two others much inferior in size, on which the centre of the church rests, and over which is the tower. The following is the legendary account of the origin of this church: In the reign of Childebert II. there was a bishop of Avranches named St Aubert. To this holy man the archangel Michael was pleased to appear one night, and ordered him to go to this rock to build a church. St Aubert treated this as a dream; upon which the angel appeared a second time, and being still disobeyed, he returned a third time, when, by way of imprinting his command upon the saint's memory, he made a hole in his skull, by touching it with his thumb. The skull is still preserved in the treasury of the church. It is inclosed in a little shrine of gold, and a crystal, which opens over the orifice, admits the gratification of curiosity by the minutest examination of it. The hole is of a size and shape proportionable to the thumb said to have produced it; but it is impossible to determine whether it has been really made by a knife or any other way. It is not to be supposed that the saint would forget such a sensible mark of the angel's displeasure; he therefore immediately repaired to the rock, and constructed a small church, as he had been commanded. Here, however, true history supplies the place of fable; and informs us, that it was in 1666 when Richard the second duke of Normandy began to build the abbey. It was completed about the year 1790, under William the Conqueror, though many other additions, were made by succeeding abbots.

In the treasury of the church are innumerable other relics; among which some few have a real and intrinsic value. There is a fine head of Charles VI. of France, cut in a crystal, and the representation of a cockle-shell in gold, weighing many pounds, given by Richard II. duke of Normandy, when he founded the abbey. There is an arm laid to belong to St Richard king of England; but who this saint was it must be very difficult to determine.

St Michael's, a borough town of Cornwall, between St Columb and Truro, 247 miles from London. Though one of the oldest boroughs in the county by prescription, and of great note in the Saxon time, it is a mean hamlet in the parishes of Newland and St Endore; yet it is governed by a portreeve, yearly chosen by a jury of the chief inhabitants, out of the six chief tenants, called deputy lords of the manor, because they hold lands in the borough. Here is no market, but two fairs. A court-leet is held here twice a year. This place was formerly called Modiahole, and afterwards Michel. Its lift of members begins in the 6th of Edward VI.

St Michael's Mount, in the county of Cornwall, in the corner of Mount's-Bay is a very high rock, only
M I C [692] M I C

MICHAELIS (John David), a celebrated biblical critic, and author of many esteemed works, was the eldest son of Dr Christian Benedikt Michaelis, professor in the university of Halle in Lower Saxony, and was born at that place Feb. 27, 1717. His father devoted him at an early age to an academical life; and with that view he received the first part of his education in a celebrated Prussian seminary, called the Orphan-houses at Glanxhe, in the neighbourhood of his native place.

He commenced his academic career at Halle in 1733, and took his master's degree in the faculty of philosophy in 1739. In 1741 he made an excursion to Britain, where his superior knowledge of the oriental languages, which was considerably increased by his indefatigable researches in the Bodleian library at Oxford, introduced him to the acquaintance, and gained him the esteem of the first literary characters; with several of whom and particularly Bishop Lowth, he was in correspondence for many years. On his return to Halle, after an absence of fifteen months, he began to read lectures on the historical books of the Old Testament, which he continued after his removal to Gottingen in 1745. In 1746 he was appointed professor extraordinary, and soon after professor of philosophy in that university. The next year he obtained a place of secretary to the royal society there, of which he was director in 1761, and was soon afterwards made Aulic counsellor by the court of Hanover.

In 1764 his distinguished talents, but chiefly his application relative to a journey to Arabia, which was undertaken by several literary men, at the expense of the king of Denmark, in consequence of his application by means of Count Bernsförp, procured him the honour of being chosen a correspondent, and afterwards foreign member, of the academy of inscriptions at Paris, of whom the institution admitted only eight; and in the same year he became a member of the society of Haarlem. In 1775, Count Hopkin, who eighteen years before had prohibited the use of his writings at Upsal, when he was chancellor of that university, prevailed upon the king of Sweden to confer on him the order of the polar star, as a national compensation. In 1786 he was raised to the distinguished rank of privy counsellor of justice by the court of Hanover; and in 1788 received his last literary honour, by being unanimously elected a fellow of the royal society of London. -

His great critical knowledge of the Hebrew language, which he displayed in a new translation of the Bible, and in other works, raised him to a degree of eminence almost unknown before in Germany; and his indefatigable labours were only equalled by his desire of communicating the knowledge he acquired to the numerous students of all countries who frequented his admirable lectures, which he continued to deliver on various parts of the sacred writings in half yearly courses, and on the Hebrew, Arabic, and Syriac languages, to the last year of his life. He was professor in the university of Gottingen forty-five years, and, during that long period, he filled the chair with dignity, credit, and usefulness. He died October 22, 1791, aged 74. He is said to have left behind him several valuable MSS. Of the works that were published during his life-time, and which are very numerous, a catalogue, in the order of their publication, is given in the Gentleman's Magazine for March 1762.

MICHAELMAS, or Feast of St Michael and all Angels, a festival of the Roman church, observed on the 29th of September. See Michael.

MICKLE (William Julius), the celebrated translator of the Ludiad, was the son of the reverend Alexander Mickle a Scotch clergyman, who had formerly been a dissenting minister in London, an adherent to the reverend Dr Watts, and one of the translators of Bayle's Dictionary. This gentleman having resided a few years in London, was presented to the church of Langholm near Kelso in Scotland, where he married; and our author was one of the younger sons. He was born about the year 1735, and was educated by his father. In his early years his passion for poetry frequently discovered itself; though till the age of 13 he did not show any particular attachment to books. At that time having accidentally met with Spencer's Fairy Queen, he became enamoured of his manner of writing, and instantly began to imitate him. After the death of his father, he came to Edinburgh to reside with an uncle who was a brewer there, and who admitted him into a share of his business; but not being qualified to succeed in this line, he went to London about the time of the conclusion of the war which began in 1755, with a view to procure a commission in the marine service. Here he was disappointed; but introduced himself to the first Lord Lyttelton, to whom he sent one of his poems. From his lordship, however, he received no other favour than being admitted to several interviews, and encouraged to persever in his poetical plans.

So closely did our author cultivate the study of the muses, that before he was 18 years of age he had written two tragedies and half an epic poem; but all these were committed to the flames. The first of his poems which appeared in print was published in one of the Edinburgh magazines, and intited, "On passing thro' the parliament Clofe of Edinburgh at Midnight." This was afterwards inserted in a collection of Original Poems by a Scotch gentleman, Vol. II. p. 172.

From the time of Mr Mickle's arrival at London till the year 1765, it is not known how he employed his time, though it is probable that he was employed in some branch of the printing business; and in 1765 he engaged himself as corrector to the Clarendon press.

This year he published the poem which first brought him into notice, intitled, "Pollio, an Elegiac Ode, written in the Wood near R----,(Rollin) Caffle," 4to. This was an elegy written on the death of his brother; which, previous to its publication, had been shown to Lord Lyttelton, and received some corrections from him. The latter, in an epistle to the author, spoke of it as equal to any thing of the kind in our language. In 1767 he published a poem called "The Conclave, in two Cantos, after the manner of Spencer,"
Mickle

Spencer," 4to; and in 1769 he published, "A Letter to Mr Harward, wherein some of his evasive Glosses, false Translations, and blundering Criticisms, in support of the Arian Heresy, contained in his Literal Translation of the New Testament, are pointed out and confuted," 8vo: and next year he published "Mary Queen of Scots, an elegy;" "Hengift and Mary a Ballad;" and "Knowledge, an Ode;" in Pearch's Collection of Poems. In 1770 he published "Voltaire in the Shades, or Dialogues on the Deistical Controversy," 8vo. The Elegy on Mary had been submitted to the judgment of Lord Lyttelton, who declined to criticize it, not for its deficiency in poetical merit, but from thinking differently from the author concerning that unfortunate princess.

About this time Mr Mickle was a frequent writer in the Whitehall Evening post; but a more important work now engaged his attention. When no more than 17 years of age he had read Caftara's translation of the Lusiad of Camoens into French, and then projected the design of giving an English translation of it. From this, however, he was prevented by various avocations till the year 1771, when he published the first book as a specimen: and having prepared himself by acquiring some knowledge of the Portuguese language, he determined to apply himself entirely to this work. With this view he quit his residence at Oxford, and went to a farm-house at Forefit-hill, where he pursued his design with unremitting fidelity till the year 1775, when the work was entirely finished.

During the time that Mr Mickle was engaged in this work he subsisted entirely by his employment as corrector of the press; and on his quitting that employment he had only the subscriptions he received for his translation to support him. Notwithstanding these difficulties, he adhered steadily to the plan he had laid down and completed it in about five years.

When his work was finished, Mr Mickle applied to a person of great rank, with whom his family had been connected, for permission to dedicate it to him. Permission was granted, and his patron honoured him with a very polite letter, but after receiving a copy, for which an extraordinary price was paid for the binding, he did not think proper to take any notice of the author. At last a gentleman of high rank in the political world, a firm friend to the author, and who afterwards took him under his protection, waited on the patron, and heard him declare that he had not read the work, but that it had been represented not to have the merit it was at first said to possess. The applause with which the work was received, however, soon banished from the author's mind those disagreeable sensations which had been occasioned by the contemptuous neglect of his patron, as well as some severe criticisms which had been circulated concerning it. A second edition was prepared in 1778, with a plate prefixed to it, executed by the celebrated artift Mortimer; on whom Mr Mickle wrote an epitaph in 1799. This year also he published a pamphlet, intitled, "A Candid Examination of the reasons for depriving the East India Company of its Charter, contained in The History and Management of the East India Company with its Commencement to the Present Time; together with some Strictures on the Self-Contradictions and Historical Errors of Dr Adam Smith, in his Raisons for the Abolition of the said Company," 4to. About this time some of his friends thought of recommending him to the king as deserving of a pension; but this scheme was never put in execution. Dr Lowth, bishop of London, would have put him into orders and provided for him in the church; but this was not agreeable to our author's disposition. While he was meditating a publication of all his poems, in which he would most probably have found his account, he was appointed secretary to Commodore Johnstone, who had lately obtained the command of the Romney man of war. In November 1779 he arrived at Lisbon, and was named by his patron joint agent for the prizes which were taken. In this capital and its neighbourhood he resided more than six months, being every where received with every mark of politeness and attention; and during this period he composed his poem called "Almada Hill," which in 1781 was published in quarto. He collected also many particulars concerning the manners of the Portuguese, which he intended also to have published. During his stay at Lisbon the royal academy was opened; and Mr Mickle, who was present at the commencement of its establishment, had the honour to be admitted a member under the presidency of Don John of Braganza duke of Lusoens. His presence being thought necessary in England to attend to the proceedings of the courts of law respecting the condensation of some of the prizes, he did not accompany the commodore in his last expedition, nor did he go any more to sea. In 1782 he published "The Prophecy of Queen Emma, an ancient Ballad lately discovered, written by Johannes Turgoaus, prior of Durham, in the reign of William Rufus; to which is added by the Editor, an Account of the Discovery, and Hints towards a Vindication of the Authenticity, of the Poems of Offian and Rowley," 8vo.

In June this year Mr Mickle married Miss Tomkins, daughter of the person with whom he resided at Forefit-hill, while engaged in translating the Lusiad. Having received some fortune with this lady, as well as made some money himself when in the service of Commodore Johnstone, he now enjoyed a comfortable independence. Having fixed his residence at Wheatley in Oxfordshire, he devoted his time to the revision of his poetical works, which he proposed to publish by subscription; but the plan has not yet been carried into execution. The last seven years of his life were employed in writing for the European Magazine. The Fragments of Leo, and some of the most approved reviews of books, in that performance, were of his production. He died after a short illness on the 24th of October 1788 at Wheatley, leaving one son behind him. His poetry possesses much beauty, variety, harmony of numbers, and vigour of imagination: his life was without reproach; his foibles were few and inoffensive; his virtues many; and his genius very considerable.

MICROCOMP, a Greek term signifying the little world; used by some for man, as being fuppofed an epitome of the universe or great world.

MICROCOMPACID. See PHOSPHORUS (A cid of).
MICROGRAPHY, the description of objects too minute to be viewed without the assistance of a microscope. See Microscopic Objects.

MICROMETER, an instrument, by the help of which the apparent magnitudes of objects viewed thro' telescopes or microscopes are measured with great exactness.

I. The first telescopic microscopes were only mechanical contrivances for measuring the image of an object in the focus of the object-glass. Before these contrivances were thought of, astronomers were accustomed to measure the field of view in each of their telescopes, by observing how much of the moon they could see through it; the diameters being reckoned at 15 or 16 minutes; and other distances were estimated by the eye, comparing them with the field of view. Mr Gascoigne, an English gentleman, however, fell upon a much more exact method, and had a Treatise on Optics prepared for the press; but he was killed during the civil wars in the service of Charles I. and his manuscript was never found. His instrument, however, fell into the hands of Mr R. Townly who says, that by the help of it he could mark above 40,000 divisions in a foot.

Mr Gascoigne's instrument being shown to Dr Hooke, he gave a drawing and description of it, and proposed several improvements in it, which may be seen in Phil. Trans. abr. Vol. I. p. 217. Mr Gascoigne divided the image of an object, in the focus of the object-glass, by the approach of two pieces of metal ground to a very fine edge, in the place of which Dr Hooke would substitute two fine hairs stretched parallel to one another. Two other methods of Dr Hooke's, different from this, are described in his Posthumous Works, p. 497, 498. An account of several curious observations that Mr Gascoigne made by the help of his micrometer, particularly in the measurement of the diameters of the moon and other planets, may be seen in the Phil. Trans. Vol. XLVIII. p. 190.

Mr Huygens, as appears by his System of Saturn, published in 1659, used to measure the apparent diameters of the planets, or any small angles, by first measuring the quantity of the field of view in his telescope; which, he says, is best done by observing the time which a star takes up in passing over it, and then preparing two or three long and slender brass plates, of various breadths, the sides of which were very straight, and converging to a small angle. In making use of these pieces of brass, he made them slide in two slips, that were made in the sides of the tube, opposite to the place of the image, and observed in what place it just covered the diameter of any planet, or any small distance that he wanted to measure. It was observed, however, by Sir Isaac Newton, that the diameters of planets, measured in this manner, will be larger than they should be, as all lucid objects appear to be when they are viewed upon dark ones.

In the Ephemerides of the Marquis of Malvafia published in 1662, it appears that he had a method of measuring small distances between fixed stars and the diameters of the planets, and also of taking accurate draughts of the spots of the moon; and this was by a net of silver wire, fixed in the common focus of the object and eye-glass. He also contrived to make one of two flars to pass along the threads of this net by turning it, or the telescope, as much as was necessary for that purpose; and he counted, by a pendulum-clock, the time that elapsed in its passage from one wire to another, which gave him the number of the minutes and seconds of a degree contained between the intervals of the wires of his net, with respect to the focal length of his telescope.

In 1666, Meerts Azout and Picard published a description of a micrometer, which was nearly the same with that of the Marquis of Malvafia, excepting the method of dividing it, which they performed with more exactness by a screw. In some cases they used threads of silk, as being finer than silver wires. Dechales also recommends a micrometer consisting of fine wires, or filken threads, the distances of which were exactly known, disposed in the form of a net, as peculiarly convenient for taking a map of the moon.

M. de la Hire says, that there is no method more simple or commodious for observing the digits of an eclipse than a net in the focus of the telescope. Thefe, he says, were generally made of silken threads; and that for this particular purpose six concentric circles had also been made use of, drawn upon oiled paper; but he advises to draw the circles on very thin pieces of glass with the point of a diamond. He also gives several particular directions to assist persons in the use of them. In another memoir he shews a method of making use of the fame net for all eclipses, by using a telescope with two object-glasses, and placing them at different distances from one another.

Different Constructions of Micrometers. The first we shall describe is that by Mr Huygens. Let ABCD, CXXV, be a section of the telescope at the principal focus of fig. 1., the object-glasses, or where the wires are situated, which are placed in a short tube containing the eye-glass, and may be turned into any position by turning that tube; mn is a fine wire extended over its centre; uvw are two straight plates whose edges are parallel and well defined, and perpendicular to mn; uv is fixed, and xy moves parallel to it by means of a screw, which carries two indexes over a graduated plate, to show the number of revolutions and parts of a revolution which it carries. Now to measure any angle, we must first ascertain the number of revolutions and parts of a revolution corresponding to some known angle, which may be thus done: If, Bring the inner edges of the plates exactly to coincide, and let each index to o; turn the screw, and separate the plates to any distance; and observe the time at that mn is in passing along the wire mn from one plate to the other: for that time, turned into minutes and seconds of a degree, will be the angle answering to the number of revolutions, or the angle corresponding to the distance. Thus, if =cos. of the star's declination, we have \(\frac{15}{5} \) dm, the angle corresponding to the distance, and hence by proportion, we find the angle answering to any other. dxy. Set up an object of a known diameter, or two objects at a given distance, and turn the screw till the edges of the plates become tangents to the object, or till their opening just takes in the distance of the two objects upon the wire mn; then from the diameter, or distance of the two objects from each other, and their distance from the glass, calculate the angle, and observe the number of revolutions and parts corresponding.

dxy. Take the diameter of the sun on any day, by making the edges of the plates tangent to the opposite limbs, and find,
from the nautical almanac, what is his diameter on that day. Here it will be best to take the upper and lower limbs of the sun when on the meridian, as he has then no motion perpendicular to the horizon. If the edges do not coincide when the indexes stand at 0, we must allow for the error. Instead of making a proportion, it is better to have a table calculated to show the angle corresponding to every revolution and parts of a revolution. But the observer must remember, that when the micrometer is fixed to telescopes of different focus lengths, a new table must be made. The whole system of wires is turned about in its own plane, by turning the eye-tube round with a hand, and by that means the wire $m n$ can be thrown into any position, and consequently angles in any position may be measured. Dr Bradley added a small motion by a rack and pinion to set the wires more accurately in any position.

Instead of two plates, two wires were afterwards put; and Sir Isaac Newton observed, that the diameters of the planets measured by the plates were somewhat bigger than they ought, as appeared by comparing Mr Huygens's measures with others taken with the wires; and also by comparing the diameter of mercury observed in and out of the sun's disk, the latter being the greatest. Dark objects on bright ones appear least, and light objects on dark ones appear greater, than if they were equally bright; owing, perhaps, to the brighter image on the retina diffusing itself into the darker; and the bright image of the planet being intercepted by the plates, the faint diffused light becomes more sensible, and is mistaken for the edge of the planet.

But the micrometer, as now contrived, is of use not only to find the angular distance of bodies in the field of view at the same time, but also of those which, when the telescope is fixed, pass through the field of view successively; by which means we can find the difference of their right ascensions and declinations. Let A, B, C be three parallel and equidistant wires, the middle one bisecting the field of view; $H O R$, a fixed wire perpendicular to them passing through the centre of the field; and Ff, Gg, two wires parallel to it, each moveable by a micrometer screw, as before, so that they can be brought up to $H O R$, or a little beyond. Then to find the angular distance of two objects, bring them very near to Bh, and in a line parallel to it, by turning about the wires, and bring one upon $H O R$, and by the micrometer screw make F for G pass through the other; then turn the screw till that wire coincides with $H O R$, and the arc which the index has passed over shows their angular distance. If the objects be further remote than you can carry the distance of one of the wires Ff, Gg, from $H O R$, then bring one object to Ff and the other to Gg; and turn each micrometer screw till they meet, and the sum of the arcs passed over by each index gives their angular distance. If the objects be two stars, and one of them be made to run along $H O R$, or either of the moveable wires as occasion may require, the motion of the other will be parallel to the same wires, and their difference of declinations may be observed with great exactness; but in taking any other distances, the motion of the stars being oblique to them, it is not quite so easy to get them parallel to $H O R$, because if one star be brought near, and the eye be applied to the other to adjust the wires to it, the former star will have gotten a little away from the wire. Dr Bradley, in his account of the use of this micrometer, published by Dr Maskelyne in the Philosophical Transactions for 1772, thinks the best way is to move the eye backwards and forwards as quick as possible; but it seems to me to be best to fix the eye at some point between, by which means it takes in both at once sufficiently well defined to compare them with $B b$. In finding the difference of declinations, if both bodies do not come into the field of view at the same time, make one run along the wire $H O R$, as before, and fix the telescope and wait till the other comes in, and then adjust one of the moveable wires to it, and bring it up to $H O R$, and the index gives the difference of their declinations. The difference of time between the passage of the star at either of the cross moveable wires, and the transit of the other star over the cross fixed wire (which represents a meridian), turned into degrees and minutes, will give the difference of right ascension. The star has been here supposed to be bisected by the wire; but if the wire be a tangent to it, allowance must be made for the breadth of the wire, provided the adjustment be made for the coincidence of the wires. In observing the diameters of the sun, moon, or planets, it may perhaps be most convenient to make use of the outer edges of the wires, because they appear most distinct when quite within the limb; but if there should be any sensible infection of the rays of light in passing by the wires, it will be best avoided by using the inner edge of one wire and the outward edge of the other; for by that means the infection at both limbs will be the same way, and therefore there will be no alteration of the relative position of the rays passing by each wire. And it will be convenient in the micrometer to note at what division the index stands when the moveable wire coincides with $H O R$; for then you need not bring the wire when a star is upon it up to $H O R$, only reckon from the division at which the index then stands to the above division.

With a micrometer therefore thus adapted to a telescope, Mr Servington Savery of Exeter proposed a new way of measuring the difference between the greatest and least apparent diameters of the sun, although the whole of the sun was not visible in the field of view at once. The method we shall briefly describe. Place two object-glasses instead of one, to form two images whose limbs shall be at a small distance from each other; or instead of two perfect lenses, he proposed to cut a single lens into four parts of equal breadths by parallel lines, and to place the two segments with their straight sides against each other, or the two middle frustums with their opposite edges together; in either case, the two parts which before had a common centre and axis, have now their centres and axes separated, and consequently two images will be formed as before by two perfect lenses. Another method in reflectors was to cut the large concave reflector through the centre, and by a contrivance to turn up the outer edges whilst the straight ones remained.
M I C [696] M I C

remained fixed; by which means the axis of the two parts became inclined, and formed two images. Two images being formed in this manner, he proposed to measure the distance between the limbs when the diameters of the fun were the greatest and least, the difference of which would be the difference of the diameters required. Thus far we are indebted to Mr. Savery for the idea of forming two images; and the admirable use to which they were put, and thereby form one image of the object; two segments may be brought together by a handle sliding in a line drawn through the centre of each segment; and consequently the motion of each image will be parallel to that line, which can be thrown into any position by the contrivance of another handle to turn the glass about in its own plane. The brass-work carries a vernier to measure the distances of the centres of the two segments. Now let E and H be the centres of the two segments, F their principal focus, and P Q two distant objects in FE, FH, produced, or the opposite limbs of the same object PBQO; then the images of P and Q formed by each segment, or the images of the opposite limbs of the object PBQO, coincide at F; hence two images m x F, nx F of that object are formed, whose limbs are in contact; therefore the angular distance of the points P and Q is the same as the angle which the distance EH subtends at F, which, as the segments supposed to be measured are very small, will vary as EH extremely nearly; and consequently if the angle corresponding to one interval of the centres of the segments be known, the angle corresponding to any other will be found by proportion. Now to find the interval for some one angle, take the horizontal diameter of the sun on any day, by separating the images till the contrary limbs coincide, and read off by the vernier the interval of their centres, and look into the nautical almanac for the diameter of the sun on that day, and you have the corresponding angle. If greater exactness be required than from taking the angle in proportion to the distances of their centres, we may proceed thus:—Draw FG perpendicular to EH, which therefore bisects it; then one half EH, or EG, is the tangent of half the angle EFH; hence, half the distance of their centres: tangent of half the angle corresponding to that distance: : half any other distance of the centres: tangent of half the corresponding angle (A).

Hence the method of measuring small angles is manifest; for we consider P, Q, either as two objects whose images are brought together by separating the two segments, or as the opposite limbs of one object PBQA, whose images, formed by the two segments E, H, touch at F; in the former case, EH gives the angular distance of the two objects; and in the latter, it gives the angle under which the diameter of the object appears. Hence, to find the angular distance of two objects, separate the segments till the images approach one another, and read off the distance of the centres of the segments from the vernier (c), and find the angle as directed in the last article. From hence appears one great superiority in this above the wire micrometer; as, with this, any diameter of an object may be measured with the same ease and accuracy; whereas with that we cannot with accuracy measure any diameter, except that which is at right angles to its apparent motion.

But, besides these two uses to which the instrument seems so well adapted, Dr. Maldeyne has shown, in the Philosophical Transactions for the year 1771, how it may be applied to find the difference of right ascensions and declinations. For this purpose, two wires at right angles to each other, bisecting the field of view must be placed in the principal focus of the eye-glass, and movable about in their own plane.—

Let

(a) If the object be not a distant one, let / be the principal focus; then F /: FG : : FG : FK (FG being produced to meet a line joining the apparent places of the two objects P, Q), :: dividendo, FG : : FK, and alternando, FG : : GK :: FG : FK :: (by similar triangles) EH : PQ, hence, therefore the angle subtended by EH at / = the angle subtended by PQ at G; and consequently, as G is constant, the angle measured at G is, in this case also in proportion to EF. The instrument is not adapted to measure the angular distance of bodies, one of which is near and the other at a distance, because their images would not be formed together.

(b) Besides these two images, there will be two others receding from each other, for each segment gives an image of each object.

(c) To determine whether there be any error of adjustment of the micrometer scale, measure the diameter of any small well defined object, as Jupiter's equatorial diameter; or the longest axis of Saturn's ring, both ways, that is, with o on the vernier to the right and left of o on the scale, and half the difference is the error required; which must be added to or subtracted from all observations, according as the diameter measured with o on the vernier, when advanced on the scale, is less or greater than the diameter measured the other way. And it is also evident, that half the sum of the diameters thus measured gives the true diameter of the object.
Let HCRe be the field of view, HR and Ce the two wires; turn the wires till the westernmost star (which is the belt, having further to move) run along ROH; then separate the two segments and turn about the micrometer till the two images of the same star lie in the wire Ce; and then, partly by separating the segments, and partly by raising or depressing the telescope, bring the two innermost images of the two stars to appear and run along ROH, as a, b, and the vernier will give the difference of their declinations; because, as the two images of one of the stars coincided with Ce, the image of each star was brought perpendicularly upon HR, or to HR in their proper meridian. And, for the same reason, the difference of their times of passing the wire COe will give their difference of right ascensions. These operations will be facilitated, if the telescope be mounted on a polar axis. If two other wires KL, MN, parallel to Ce, be placed near H and R, the observation may be made on two stars whose difference of meridians is nearly equal to HR the diameter of the field of view, by bringing the two images of one of the stars to coincide with one of these wires. If two stars be observed whose difference of declinations is well settled, the scale of the micrometer will be known.

It has hitherto been supposed, that the images of the two stars can be both brought into the field of view at once upon the wire HOR: but if they cannot, set the micrometer to the difference of their declinations as nearly as you can, and make the image which comes first run along the wire HOR, by elevating or depressing the telescopes; and when the other star comes in, if it do not also run along HOR, alter the micrometer till it does, and half the sum of the numbers shown by the micrometer at the two separate observations of the two stars on the wire HOR will be the difference of their declinations. That this should be true, it is manifestly necessary that the two segments should recede equally in opposite directions; and this is effected by Mr. Dollond in his new improvement of the object-glass micrometer.

The difference of right ascensions and declinations of Venus or Mercury in the sun's disk and the sun's limb may thus be found. Turn the wires so that the north limb n of the sun's image AB, or the north limb of the image N of the planet, may run along the wire RH, which therefore will then be parallel to the equator, and consequently Ce a secondary to it; then separate the segments, and turn about the micrometer till the two images V of the planet pass Ce at the same time, and then by separating the segments, bring the north limb of the northernmost image V of the planet to touch HR, at the time the northernmost limb n of the southernmost image AB of the sun touches it, and the micrometer shows the difference of declinations of the northernmost limbs of the planet and sun, for the reason formerly given, we having brought the northernmost limbs of the two innermost images V and AB to HR, these two being manifestly interior to o and the northernmost limb N of the image FO. In the same manner we take the difference of declinations of their southernmost limbs; and half the difference of the two measures, (taking immediately one after another) is equal to the difference of the declinations of their centres, without any regard to the sun's or planet's diameters, or error of adjustment of the micrometer; for as it affects both equally, the difference is the same as if there were no error: and the difference of the times of the transits of the eastern or western limbs of the sun and planet over Ce gives the difference of their right ascensions.

Instead of the difference of right ascensions, the distance of the planet from the sun's limb, in lines parallel to the equator, may be more accurately observed thus: Separate the segments, and turn about the wires and micrometer, so as to make both images, Fig. 6, V, V', run along HR, or so that the two interferences I, I', of the sun's image may pass Ce at the same time. Then bring the planet's and sun's limbs into contact, as at V, and do the same for the other limb of the sun, and half the difference gives the distance of the centre of the planet from the middle of the chord on the sun's disk parallel to the equator, or the difference of the right ascensions of their centres, allowing for the motion of the planet in the interval of the observations, without any regard to the error of adjustment, for the same reason as before. For as you take any point in the chord of a circle, half the difference of the two segments is manifestly the distance of the point from the middle of the chord; and as the planet runs along HR, the chord is parallel to the equator.

In like manner, the distances of their limbs may be measured in lines perpendicular to the equator, by bringing the micrometer into the position already described*, and instead of bringing V to HR, separate the segments till the northernmost limbs coincide as at V; and in the same manner make their southernmost images to coincide, and half the difference of the two measures, allowing for the planet's motion, gives the difference of the declinations of their centres.

Hence the true place of a planet in the sun's disk may at any time of its transit be found; and consequently the nearest approach to the centre and the time of ecliptic conjunction may be deduced, although the middle should not be observed.

But however valuable the object-glass micrometer undoubtedly is, difficulties sometimes have been found in its use, owing to the alteration of the focus of the eye, which will cause it to give different measures of the same angle at different times. For instance, in measuring the planet's diameter, the axis of the pencil coming through the two segments from the contrary limbs of the sun, as PF, QF, fig. 3, crossing one another in the focus F under an angle equal to the sun's semidiameter, the union of the limbs cannot appear perfect, unless the eye be disposed to see objects distinctly at the place where the images are formed; for if the eye be disposed to see objects nearer to or further off than that place, in the latter case the limbs will appear separated, and the former they will appear to lap over (o). This imperfection led Dr. Malkevine

* See the preceding page col. 2, par. 2.
...MC

...Micrometer.

...focal length of the

...par.

...Next CQ1.

...cil to coincide, or very nearly so before the formation of the images, by which means the limbs when brought together would not be liable to appear separated from any alteration of the eye; and this he found would be effected by the refraction of two prisms, placed either without or within the telescope; and on this principle, placing the prisms within, he constructed a new micrometer, and had one executed by Mr. Dollond which upon trial answered as he expected. The construction is as follows.

Let AB be the object-glass; ab the image, supposing the fun, which would have been formed in the principal focus Q1; but let the prisms PR, SR be placed to intercept the rays, and let EF, WG, be two rays proceeding from the exterior and western limbs of the sun, converging, after refraction at the lens, to a and b; and suppose the refraction of the prisms to be such, that in fig. 8, the ray EFR, after refraction at R by the prism PR, may proceed in the direction RQ1; and as all the rays which were proceeding to a suffer the same refraction at the prism, they will all be refracted to Q1; and therefore instead of a image ab, which would have been formed by the lens alone, an image QC is formed by those rays which fall on the prism PR; and for the same reason the rays falling on the prism PR will form an image QC; and in fig. 9, the image of the point b is brought to Q1, by the prism PR; and consequently an image Qd is formed by those rays which fall on PR; and for the same reason, an image QC is formed by the rays falling on SR.

Now in both cases, as the rays EFR, WGR, coming from the two opposite limbs of the sun, and forming the point of contact of the two limbs, proceed in the same direction RQ1, they must thus accompany each other through the eye-glass and also through the eye, whatever refractive power it has, and therefore to every eye the images must appear to touch. Now the angle aRB1 is twice the refraction of the prism, and the angle aCQ is the diameter of the sun; and as these angles are very small, and have the same subtense ab, we have the angle aRB: angle aCQ: QC: RQ: Now as CQ is constant, and also the angle aRB, being twice the refraction of the prism, the angle aCQ varies as RQ. Hence the extent of the scale for measuring angles becomes the focal length of the object-glass, and the angle measured is in proportion to the distance of the prisms from the principal focus of the object-glass, and the micrometer can measure all angles (very small ones excepted, for the reason afterwards given *) which do not exceed the sum of the refractions of the prisms; for the angle aCQ, the diameter of the object to be measured, is always less than the angle aRB, the sum of the refractions of the prisms, except when the prisms touch the object-glass, and then they become equal. The scale can never be out of adjustment, as the point o where the measurement begins answers to the focus of the object-glass, which is a fixed point for all distant objects, and we have only to find the value of the scale answering to some known angle; for instance, bring the two limbs of the sun's images into contact, and measure the distance of the prisms from the focus, and look in the nautical almanac for the sun's diameter, and you get the value of the scale.

In fig. 8, the limb Q1 of the image QC, is illuminated by the rays falling on the object-glass between A and F, and of the image Qd by those falling between B and G; but in fig. 9, the same limbs are illuminated by the rays falling between B and F, A and G respectively, and therefore will be more illuminated than in the other case; but the difference is not considerable in achromatic telescopes, on account of the great aperture of the object-glass compared with the distance FC.

It might be convenient to have two sets of prisms, one for measuring angles not exceeding 3°, and therefore fit for measuring the diameters of the sun and moon, and the lucid parts and distances of the cups in their eclipses; and another for measuring angles not much greater than 3°, for the convenience of measuring the diameter of the planets. For as QC : OR :: sum of the refractions of the prisms : angle aCQ, the apparent diameter of the object, it is evident that if you diminish the third term, you must increase the second in the same ratio, in order to measure the same angle; and thus by diminishing the refractive angle of the prisms, you throw them farther from Q1, and consequently avoid the inconvenience of bringing them near to Q1 for the reason in the next paragraph; and at the same time you will increase the illumination in a small degree. The prisms must be achromatic, each composed of two prisms of flint and crown glasses, placed with their refracting limbs contrariwise, otherwise the images will be coloured.

In the construction here described, the angle measured becomes evanescent when the prisms come to the principal focus of the object-glass, and therefore o on the scale then begins; but if the prisms be placed in the principal focus they can have no effect, because the pencil of rays at the junction of the prisms would then vanish, and therefore it is impracticable to bring the two images together to get o on the scale. Dr. Mädckelyne, therefore, thought of placing another pair of prisms within, to refract the rays before they came to the other prisms, by which means the two images would be formed into one before they came to the principal focus, and therefore o on the scale could be determined. But to avoid the error arising from the multiplication of medium, he, instead of adding another pair of prisms, divided the object-glass through its centre, and filling the segments a little it separated the images, and then by the prisms he could form one image very distinctly, and consequently could determine o on the scale; for by separating the two segments you form two images, and you will separate the two pencils so that you may move up the two prisms, and the two pencils will fall on each respectively, and the two images may be formed into one. In the instrument which Dr. Mädckelyne had made, o on the scale was chosen to be about ¼ of the focal length of the object-glass.

* Next col. par. 1st.
Micrometer. —

Micrometer-glass, and each prism refracted 27°. By this means all angles are measured down to o.

In the Philosophical Transactions for 1779, Mr. Ramden has described two new micrometers, which he contrived with a view of remedying the defects of the object-glass micrometer.

1. One of these is a catoptric micrometer, which besides the advantage it derives from the principle of reflection, of not being disturbed by the heterogeneity of light, avoids every defect of other micrometers, and can have no aberration, nor any defect arising from the imperfection of materials or of execution; as the extreme simplicity of its construction requires no additional mirrors or glasses to those required for the telescope; and the separation of the image being effected by the inclination of the two specula, and not depending on the focus of any lens or mirror, any alteration in the eye of an observer cannot affect the angle measured. It has peculiar to itself the advantage of an adjustment, to make the images coincide in a direction perpendicular to that of their motion; and also of measuring the diameter of a planet on both sides of the zero, which will appear no inconsiderable advantage to observers who know how much easier it is to ascertain the contact of the external edges of two images than their perfect coincidence.

A represents the small speculum divided into two equal parts; one of which is fixed on the end of the arm B; the other end of the arm is fixed on a fixed axis X, which crosses the end of the telescope C. The other half of the mirror A is fixed on the arm D, which arm at the other end terminates in a socket, that turns on the axis X, both arms are prevented from bending by the braces α α. G represents a double screw, having one part s cut into double the number of threads in an inch to that of the part g; the part s having 100 threads in one inch, and the part g 50 only. The screw c works in a nut F in the side of the telescope, while the part g turns in a nut H, which is attached to the arm B; the ends of the arms B and D, to which the mirrors are fixed, are separated from each other by the point of the double screw pressing against the stud k, fixed to the arm D, and turning in the nut H on the arm B. The two arms B and D are pressed against the direction of the double screw e g by a spiral spring within the part s, by which means all shake or play in the nut H, on which the measure depends, is entirely prevented.

From the difference of the threads on the screw at s and g, it is evident, that the progressive motion of the screw through the nut will be half the distance of the separation of the two halves of the mirror; and consequently the half mirrors will be moved equally in contrary directions from the axis of the telescope C.

The wheel V fixed on the end of the double screw has its circumference divided into 100 equal parts, and numbered at every fifth division with 5, 10, &c. to 100, and the index I shows the motion of the screw with the wheel round its axis, while the number of revolutions of the screw is shown by the divisions on the same index. The feel-screw at R may be turned by the key S, and serves to incline the small mirror at right angles to the direction of its motion. By turning the finger-head T (fig. 11.), the eye-tube P is brought nearer or farther from the small mirror, to adjust the telescope to distinct vision; and the telescope itself has a motion round its axis for the convenience of measuring the diameter of a planet in any direction. The inclination of the diameter measured with the horizon is shown in degrees and minutes by a level and vernier on a graduated circle, at the breadth of the telescope.

"It is necessary to observe (says Mr. Ramden), that, besides the table for reducing the revolutions and parts of the screw to minutes, secondly, it may require a table for correcting a very small error which arises from the eccentric motion of the half-mirrors. By this motion their centres of curvature will (when the angle to be measured is large) approach a little towards the large mirror; the equation for this purpose in small angles is insensible; but when angles to be measured exceed ten minutes, it should not be neglected. Or, the angle measured may be corrected by diminishing it in the proportion the verified sine of the angle measured, supposing the eccentricity radius, to the focal length of the small mirror."

Mr. Ramden preferred Caillegrain's construction of the reflecting telescope to either the Gregorian or Newtonian, because in the former, errors caused by one speculum are diminished by those in the other.

From a property of the reflecting telescope (which, he observes, has not been attended to), that the apertures of the two specula are to each other very nearly in the proportion of their focal lengths, it follows that their aberrations will be to each other in the same proportion; and these aberrations in the same direction, if the two specula are both concave; or in contrary directions, if one speculum is concave and the other convex. In the Gregorian construction both specula being concave, the aberration at the second image will be the sum of the aberrations of the two mirrors; but in the Caillegrain construction, one mirror being concave and the other convex, the aberration at the second image will be the difference between their aberrations. By assuming such proportions for the focus of the specula as are generally used in the reflecting telescope, which is about as 1 to 4, the aberration in the Caillegrain construction will be to that in the Gregorian as 3 to 5.

2. The other is a dioptric micrometer, or one founded on the principle of refraction. This micrometer is applied to the erect eye-tubes of a refracting telescope, and is placed in the conjugate focus of the first eye-glass; in which position, the image being considerably magnified before it comes to the micrometer, any imperfection in its glass will be magnified only by the remaining eye-glasses, which in any telescope seldom exceeds five or six times. By this position also the size of the micrometer glass will not be the same part of the area which would be required if it was placed in the object-glass; and, notwithstanding this great disproportion of size, which is of great moment to the practical opticalian, the same extent of scale is preferred, and the images are uniformly bright in every part of the field of the telescope.

Fig. 12, represents the glases of a refracting telescope: y y, the principal pencil of rays from the object glases O 1 t and u \(u \), the axis of two oblique pencils; \(a \), the first eye-glasses; \(m \), its conjugate focus, or the
place of the micrometer; \(a \) the second eye-glass; \(d \) the third; and \(f \) the fourth, or that which is nearest the eye. Let \(p \) be the diameter of the object-glass, \(e \) the diameter of a pencil at \(m \), and \(f \) the diameter of the pencil at the eye; it is evident, that the axis of the pencils from every part of the image will cross each other at the point \(m \); and \(e \), the width of the micrometer-glasses, is to \(p \) the diameter of the object glasses as \(m a \) is to \(e \), which is the proportion of the magnifying power at the point \(m \); and the error caused by an imperfection in the micrometer glasses placed at \(m \) will be to the error, had the micrometer been at \(O \), as \(m \) is to \(p \).

Fig. 13. represents the micrometer: \(A \), a convex or concave lens divided into two equal parts by a plane across its centre; one of these semilenses is fixed in a frame \(B \), and the other in the frame \(E \); which two frames slide on a plate \(H \), and are pressed against it by thin plates \(a a \); the frames \(B \) and \(E \) are moved in contrary directions by turning the button \(D \); \(L \) is a scale of equal parts on the frame \(B \); it is numbered from each end towards the middle with \(10 \), \(20 \), \&c. There are two verniers on the frame \(E \), one at \(M \) and the other at \(N \), for the convenience of measuring the diameter of a planet, \&c. on both sides of the zero. The first division on both of these verniers coincides at the same time with the two zeros on the scale \(L \); and if the frame is moved towards the right, the relative motion of the two frames is shown on the scale \(L \) by the vernier \(M \); but if the frame \(B \) be moved towards the left, the relative motion is shown by the vernier \(N \).—This micrometer has a motion round the axis of vision, for the convenience of measuring the diameter of a planet, \&c. in any direction, by turning an endless screw \(F \); and the inclination of the diameter measured with the horizon is shown on the circle \(g \) by a vernier on the plate \(V \). The telescope may be adjusted to distinct vision by means of an adjusting screw, which moves the whole eye-tube with the micrometer nearer or farther from the object-glasses, as telescopes are generally made; or the same effect may be produced in a better manner, without moving the micrometer, by sliding the part of the eye tube \(m \) on the part \(n \), by help of a screw or pinion. The micrometer is made to take off occasionally from the eye-tube, that the telescope may be used without it.

Still, however micrometers remained in several respects imperfect. In particular, the imperfections of the parallel-wire micrometer in taking the distance of very close double stars, are the following.

When two stars are taken between the parallels, the diameters must be included. Mr Herchel informs us, he has in vain attempted to find lines sufficiently thin to extend them across the centres of the stars so that their thickness might be neglected. The single threads of the filk worm, with such lenfess as he uses, are so much magnified that their diameter is more than that of many of the stars. Besides, if they were much less than they are the power of defection of light would make the attempt to measure the distance of the centres this way fruitless: for he has always found the light of the stars to play upon those lines and separate their apparent diameters into two parts. Now since the spurious diameters of the stars thus included, as Mr Herchel affires us, are continually changing according to the flate of the air, and the length of time we look at them, we are, in consequence, left at an uncertainty, and our measures taken at different times and with different degrees of attention, will vary on that account. Nor can we come at the true distance of the centres of any two stars, one from another, unless we could tell what to allow for the semidiambres of the stars themselves; for different stars have different apparent diameters, which, with a power of 227, may differ from each other as far as two seconds.

The next imperfection is that which arises from a defection of light upon the wires when they approach very near to each other; for if this be owing to a power of repulfion lodged at the surface, it is easy to understand, that such powers must interfere with each other, and give the measures larger in proportion than they would have been if the repulsive power of one wire had not been opposed by a contrary power of the other wire.

Another very considerable imperfection of these micrometers is a continual uncertainty of the real zero. Mr Herchel has found, that the least alteration in the situation and quantity of light will affect the zero, and that a change in the position of the wires, when the light and other circumstances remain unaltered, will also produce a difference. To obviate this difficulty whenever he took a measure that required the utmost accuracy, his zero was always taken immediately after, while the apparatus remained in the same situation; it was in when the measure was taken; but this enhances the difficulty, because it introduces an additional observation.

The next imperfection, which is none of the smallest, is that every micrometer that has hitherto been in use requires either a screw, or a divided bar and pinion to measure the distance of the wires or divided image. Those who are acquainted with works of this kind are but too sensible how difficult it is to have screws that shall be perfectly equal in every thread or revolution of each thread; or pinions and bars that shall be so evenly divided as perfectly to be depended upon in every leaf and tooth to perhaps the two, three, or four thousandth part of an inch: and yet, on account of the small scale of these micrometers, these quantities are of the greatest consequence; an error of a single thousandth part inducing in most instruments a mistake of several seconds.

The last and greatest imperfection of all is that these wire micrometers require a pretty strong light in the field of vision; and when Mr Herchel had double stars to measure, one of which was very obscure, he was obliged to be content with less light than is necessary to make the wires perfectly distinct; and several stars on this account could not be measured at all, though otherwise not too close for the micrometer.

Mr Herchel, therefore, having long had much occasion for micrometers that would measure exceeding small distances exactly, was led to bend his attention to the improvement of these instruments; and the result of his endeavours has been a very ingenious instrument: called a lamp-micrometer, which is not only free from the imperfections above specified, but also possesses the advantages of a very large scale. This instrument is described in the Philosophical Transactions for 1782; and the construction of it is as follows:

\[ABGCE. \]
ABGCFE (fig. 14.) is a stand nine feet high, upon which a semicircular board $\phi g o h p$ is moveable upwards or downwards, in the manner of some fire-screens as occasion may require, and is held in its situation by a peg g put into any one of the holes of the upright piece A B. This board is a segment of a circle of fourteen inches radius, and is about three inches broader than a semicircle, to give room for the moves of the handles $r D$, $e P$, to work. The use of this board is to carry an arm L, thirty inches long, which is made to move upon a pivot at the centre of the circle, by means of a string, which passes in a groove upon the edge of the semicircle $\phi g o h p$; the string is fastened to a hook at q (not expressed in the figure, being at the back of the arm L), and passing along the groove from $o b$ to g is turned over a pulley at q, and goes down to a small barrel s, within the plane of the circular board where a double-jointed handle $r P$ commands its motion. By this contrivance, we see, the arm L, may be lifted up to any altitude from the horizontal position to the perpendicular, or be suffered to descend by its own weight below the horizontal to the reverse perpendicular situation. The weight of the handle P is sufficient to keep the arm in any given position; but if the motion should be too easy, a friction spring applied to the barrel will moderate it at pleasure.

In front of the arm L a small slider, about three inches long, is moveable in a rabble from the end L towards the centre backwards and forwards. A string is fastened to the left side of the little slider, and goes towards L, where it passes over a pulley at m, and returns under the arm from m, towards the centre where it is led in a groove on the edge of the arm, which is of a circular form, upwards to a barrel (raised above the plane of the circular board) at r, to which the handle $r D$ is fastened. A second string is fastened to the slider, at the right side, and goes towards the centre, where it passes over a pulley s; and the weight w, which is suspended by the end of this string, returns the slider towards the centre, when a contrary turn of the handle permits it to act.

By a and b are represented two small lamps, two inches high, 1 $\frac{1}{4}$ in breadth by 1 $\frac{1}{2}$ in depth. The sides back and top, are made so as to permit no light to be seen, and the front consists of a thin brass sliding-door. The flame in the lamp a is placed three-tenths of an inch from the left side, three-tenths from the front, and half an inch from the bottom. In the lamp b it is placed at the flame height and distance, measuring from the right side. The wick of the flame consists only of a single very thin lamp cotton thread; for the smallest flame being sufficient, it is easier to keep it burning in its confined a place. In the top of each lamp must be a little slit lengthways, and also a small opening in one side near the upper part, to permit air enough to circulate to feed the flame. To prevent every reflection of light, the side opening of the lamp a should be to the right, and that of the lamp b to the left. In the sliding door of each lamp is made a small hole with the point of a very fine needle just opposite the place where the wicks are burning, so that when the sliders are shut down, and every thing dark, nothing shall be seen but two little lucid points of the size of two stars of the third or fourth magnitude. The lamp a is placed so that its lucid point may be in the centre of the circular board where it remains fixed. The lamp b is hung to the little slider which moves in the rabble of the arm, so that its lucid point, in an horizontal position of the arm, may be on a level with the lucid point of the centre. The moveable lamp is suspended upon a piece of brass fastened to the slider by a pin exactly behind the flame, upon which it moves as a pivot. The lamp is balanced at the bottom by a leaden weight, so as always to remain upright, when the arm is either lifted above or depressed below the horizontal position. The double-jointed handles $r D$, $e P$, consist of light deal rods, ten feet long, and the lowest of them may have divisions, marked upon it near the end P, expressing exactly the distance from the central lucid point in feet, inches, and tenths.

From this contraction we see, that a person at a distance of ten feet may govern the two lucid points, so as to bring them into any required position south or north preceding or following from o to 90° by using the handle P, and also to any distance from six-tenths of an inch to five or six and twenty inches by means of the handle D. If any reflection or appearance of light should be left from the top or sides of the lamps, a temporary screen, consisting of a long piece of pallet-board, or a wire frame covered with black cloth, of the length of the whole arm, and of any required breadth, with a bit of half an inch broad in the middle may be affixed to the arm by four bent wires projecting an inch or two before the lamps, situated so that the moveable lucid point may pass along the opening left for that purpose.

Fig. 15. represents part of the arm L, half the real fire; S the slider; m, the pulley, over which the cord $x y z$ is returned towards the centre; v the other cord going to the pulley n of fig. 14. R the brass piece moveable upon the pin r, to keep the lamp upright. At R is a wire rivetted to the brass piece, upon which is held the lamp by a nut and screw. Fig. 16. 17. represent the lamps a, b, with the sliding doors open, to show the situation of the wicks. W is the leaden weight with a hole d, in it, through which the wire R of fig. 15. is to be passed when the lamp is to be fastened to the slider S. Fig. 18. represents the lamp u with the sliding door shut; l the lucid point; and $i k$ the openings at the top, and t at the sides, for the admission of air.

"Every ingenious artist (says Mr Herchel) will soon perceive, that the motions of this micrometer are capable of great improvement by the application of wheels and pinions, and other well known mechanical resources; but as the principal object is only to be able to adjust the two lucid points to the required position and distance, and to keep them there for a few minutes, while the observer goes to measure their distance, it will not be necessary to lay more upon the subject."

"I am now to show the application of this instrument. It is well known to opticians and others who have been in the habit of using optical instruments, that we can with one eye look into a microscope or telescope, and see an object much magnified, while the naked eye may see a scale upon which the magnified picture is thrown. In this manner I have generally determined the power of my telescopes; and any one who has acquired a facility of taking such observations will
The measures of this micrometer are not confined to double stars only, but may be applied to any other objects that require the utmost accuracy, such as the diameters of the planets or their satellites, the mountains of the moon, the diameters of the fixed stars, &c.

"For instance, October 22, 1781, I measured the apparent diameter of α Lyrae; and judging it from the greatest importance to increase my scale as much as convenient, I placed the micrometer at the greatest convenient distance, and (with some trouble, for want of longer handles, which might easily be added) took the diameter of this star by removing the two lucid points to such a distance as just to enclose the apparent diameter. When I measured my radius, it was found to be twenty-two feet six inches. The distance of the two lucid points was about three inches, for I will not pretend to extreme nicety in this observation, on account of the very great power I used, which was 6450. From these measures we have the magnified angle 38' 10": this divided by the power gives 0.355 for the apparent diameter of α Lyrae. The scale of the micrometer, on this occasion, was no less than 8.434 inches to a second, as will be found by multiplying the natural tangent of a second with the power and radius in inches.

November 28, 1781, I measured the diameter of the new star; but the air was not very favourable, for this singular star was not so distinct with 227 that evening as it generally is with 469: therefore, without laying much stress upon the exactness of the observation, I shall only report it to exemplify the use of the micrometer. My radius was 35 feet 11 inches. The diameter of the star, by the distance of the lucid points was 2.4 inches, and the power I used 227: hence the magnified angle is found 19', and the real diameter of the star 5'0.022. The scale of this measure 4.74, millifems of an inch, or almost half an inch to a second."

In the Philosophical Transactions for 1791, a very simple micrometer for measuring small angles with the telescope, is described by Mr. Cavallo; who introduces his description with the following observations upon the different sorts of telescopical micrometers in use. "These instruments may be divided into two classes; namely, those which have not, and those which have, some movement amongst their parts. The micrometers of the former sort consist mostly of fine wires or hairs, variously disposed, and situated within the telescope, just where the image of the object is formed. In order to determine an angle with those micrometers, a good deal of calculation is generally required. The micrometers of the other sort, of which there is a great variety, some being made with movable parallel wires, others with prisms, others again with a combination of lenses, and so on, are more or less subject to several inconveniences, the principal of which are the following. 1. Their motions generally depend upon the action of a screw; and of course the imperfections of its threads, and the greater or less quantity of lost motion, which is observable in moving a screw, especially when small, occasion a considerable error in the mensuration of angles. 2. Their complication and bulk renders them difficultly applicable to a variety of telescopes, especially to the pocket ones. 3. They do not measure the angle without some loss of time, which is necessary to turn the screw,
M I C [703]

Micrometer, or to move some other mechanism. 4. and lastly, They are considerably expensive, so that some of them cost even more than a tolerably good telescope.

After having had long in view (our author informs us) the construction of a micrometer which might be in part at least, if not entirely, free from all those objections; he, after several attempts, at first proceeded with a simple contrivance, which after repeated trials, has been found to answer the desired end, not only from his own experience, but from that of several friends, to whom it has been communicated.

This micrometer, in short, consists of a thin and narrow slip of mother-of-pearl finely divided, and situated in the focus of the eye-glass of a telescope, just where the image of the object is formed. It is immaterial whether the telescope be a refractor or a reflector, provided the eye-glass be a convex lens, and not a concave one as in the Galilean construction.

The simplest way of fixing it is to fix it upon the tube, which generally stands within the tube, and in the focus of the eye-glass. When thus fixed, if you look through the eye-glass, the divisions of the micrometrical scale will appear very distinct, unless the diaphragm is not exactly in the focus; in which case, the micrometrical scale must be placed exactly in the focus of the eye-glass, either by pushing the diaphragm backwards or forwards, when that is practicable; or else the scale may be easily removed from one or other surface of the diaphragm by the interposition of a circular piece of paper or card, or by a bit of wax. This construction is fully sufficient, when the telescope is always to be used by the same person, but when different persons are to use it, then the diaphragm which supports the micrometer must be constructed so as to be easily moved backwards or forwards, though that motion need not be greater than about a tenth or an eighth of an inch. This is necessary, because the distance of the focus of the same lens appears different to the eyes of different persons; and, therefore, whoever is going to use the telescope for the measurement of any angle, must first of all unscrew the tube which contains the eye-glass and micrometer from the rest of the telescope, and, looking through the eye-glass, must place the micrometer where the divisions of it may appear quite distinct to his eye.

In case that any person should not like to see always the micrometrical scale in the field of the telescope, then the micrometrical scale, instead of being fixed to the diaphragm, may be fitted to a circular perforated plate of brass, wood, or even paper, which may be occasionally placed upon the said diaphragm.

Mr Cavallo has made several experiments to determine the most useful substance for this micrometer;—Glass, which he had successfully applied for a similar purpose to the compound microscope, seemed at first to be the most promising; but it was at last rejected after several trials; for the divisions upon it generally are not easily perceived, or too rough; and though with proper care and attention the divisions may be proportioned to the sight, yet the thickness of the glass itself obstructs in some measure the distinct view of the object; Ivory, horn, and wood, were found useless for the contraction of this micrometer, on account of their bending, swelling and contracting very easily; whereas mother-of-pearl is a very steady substance, the divisions upon it may be marked very easily, and when it is made as thin as common writing paper it has a very useful degree of transparency.

Fig. 19, exhibits this micrometer scale, but shows it four times larger than the real size of one, which he has adapted to a three-feet achromatic telescope that magnifies about 83 times. It is formed less than the 24th part of an inch broad; its thickness is equal to that of common writing paper; and the length of it is determined by the aperture of the diaphragm, which limits the field of the telescope. The divisions upon it are the 200th of an inch, which reach from one edge of the scale to the middle of it, excepting every fifth and tenth division, which are longer. The divided edge of it passes through the centre of the field of view; though this is not a necessary construction in the formation of this micrometer.

Two divisions of the above described scale in my telescope are very nearly equal to one minute; and as a quarter of one of those divisions may be very well distinguished by estimation, therefore an angle of one eighth part of a minute, or of 7''1/2, may be measured with it.

When a telescope magnifies more, the divisions of the micrometer must be more minute; and Mr Cavallo finds, that when the focus of the eye-glass of the telescope is shorter than half an inch, the micrometer may be divided with the 500ths of an inch; by means of which, and the telescope magnifying about 300 times, one may easily and accurately measure an angle smaller than half a second. On the other hand, when the telescope does not magnify above 30 times, the divisions need not be 70 minutes; for instance, in one of Dolland’s pocket telescopes, which when drawn out for use is about 14 inches long, a micrometer with the hundredths of an inch is quite sufficient, and one of its divisions is equal to little less than three minutes, so that an angle of a minute may be measured by it.

“In looking through a telescope furnished with such a micrometer (says our author), the field of view appears divided by the micrometer scale, the breadth of which occupies about one-seventh part of the aperture; and as the scale is semitransparent, that part of the object which happens to be behind it may be discerned sufficiently well to ascertain the division, and even the quarter of a division, with which its borders coincide. Fig. 20, shows the appearance of the field of my telescope with the micrometer, when directed to the title page of the Philosophical Transactions, wherein one may observe that the thickness of the letter C in the fourth line of a division, the diameter of the O is equal to three divisions, and so on.”

At first view, one is apt to imagine, that it is difficult to count the divisions which may happen to cover or to measure an object; but upon trial it will be found, that this is readily performed; and even people who have never been used to observe with the tele-
Micrometer... learn to measure very quickly and accurately with this micrometer; for since every fifth and tenth division is longer than the rest, one soon acquires the habit of saying, five, ten, fifteen; and then, by adding the other divisions less than five, completes the reckoning. Even with a telescope which has no hand, if the object end of it be rested against a steady place, and the other end be held by the hand near the eye of the observer, an object may be measured with accuracy sufficient for several purposes, as for the estimation of small distances, for determining the height of a house, &c.

After having constructed and adapted this micrometer to the telescope, it is then necessary to ascertain the value of the divisions. It is hardly necessary to mention in this place, that though these divisions measure the chords of the angles, and not the angles or arches themselves, and the chords are not as the arches, yet it has been shown by all the trigonometrical writers, that in small angles the chords, arches, lines, and tangents, follow the same proportion so nearly, that the very minute difference may be safely neglected; so that if one division of this micrometer is equal to one minute, we may safely conclude that two divisions are equal to two minutes, three divisions to three minutes, &c. On thera are various methods of ascertaining the value of the divisions of such a micrometer, they being the very same that are used for ascertaining the value of the divisions in other micrometers. Such are, the passage of an equatorial star over a certain number of divisions in a certain time; or the measuring of the diameter of the sun by computation from the focal distance of the object and other lenses of the telescope; the half of which however, is subject to several inaccuracies; but as they are well known to astronomical persons, and have been described in many books, they need not be further noticed here. However, for the sake of workmen and other persons not conversant in astronomy, I shall describe an easy and accurate method of ascertaining the value of the divisions of the micrometer.

Mark upon a wall or other place the length of six inches, which may be done by making two dots or lines six inches asunder, or by fixing a six-inch ruler upon a stand; then place the telescope before it so that the ruler or six-inch length may be at right angles with the direction of the telescope, and just five feet 3½ inches distant from the object glafs of the telescope: this done, look through the telescope at the ruler or other extension of six inches, and observe how many divisions of the micrometer are equal to it, and that same number of divisions is equal to half a degree, or 30' and this is all that needs be done for the required determination; the reason of which is because an extension of six inches subtends an angle of 30' at the distance of 5 feet 3½ inches, as may be easily calculated by the rules of plane trigonometry.

In one of Dollond's 14-inch pocket telescopes if the divisions of the micrometer be the hundredths of an inch, 11 of these divisions will be equal 30', or 23 to a degree. When this value has been once ascertained, any other angle measured by any other number of divisions is determined by the rule of three. Thus suppose that the diameter of the sun micrometer through the same telescope, be found equal to 12 divisions, say as 11½ divisions are to 30 minutes, so are 12 divisions to \(\frac{12 \times 30'}{11.5} \) 31.3, which is the required diameter of the sun.

Notwithstanding the facility of this calculation, a scale may be made answering to the divisions of a micrometer, which will show the angle corresponding to any number of divisions to mere inspection. Thus, for the above-mentioned small telescope, the scale is represented in fig. 21. AB is a line drawn at pleasure; it is then divided into 23 equal parts, and those divisions which represent the divisions of the micrometer that are equal to one degree, are marked on one side of it. The line then is divided again into 60 equal parts, which are marked on the other side of it; and these divisions represent the minutes which correspond to the divisions of the micrometer. Thus the figure shows, that six divisions of the micrometer are equal to 15 minutes, 11½ divisions are nearly equal to 29 minutes, &c. What has been said of minutes may be said of seconds also, when the scale is to be applied to a large telescope.

Thus far this micrometer and its general use have been sufficiently described; and mathematical persons may easily apply it to the various purposes to which micrometers have been found subservient. But as the simplicity, cheapness, and at the same time the accuracy of this contrivance, may render the use of it much more general than that of any other micrometer; and I may venture to say, that it will be found very useful in the army, and amongst seafaring people, for the determination of distances, heights, &c.; I shall therefore join some practical rules to render this micrometer useful to persons unacquainted with trigonometry and the use of logarithms.

Problem I. The angle, not exceeding one degree which is subtended by an extension of one foot, being given, to find its distance from the place of observation. N. B. This extension of one foot or any other which may be mentioned hereafter, must be perpendicular to the direction of the telescope through which it is observed. The distances are reckoned from the object glafs of the telescope; and the answers obtained by the rules of this problem, though not exactly true, are however so little different from the truth, that the difference seldom amounts to more than two or three inches, which may be safely neglected.

Rule 1. If the angle be expressed in minutes, say as the given angle is to 60, so is 687.55 to a fourth proportional, which gives the answer in inches.

2. If the angle be expressed in seconds, say as the given angle is to 3600, so is 687.55 to a fourth proportional, which expresses the answer in inches.

3. If the angle be expressed in minutes and seconds, turn it all into seconds, and proceed as above.

Example. At what distance is a globe of one foot in diameter when it subtends an angle of two seconds?

\[\frac{2 \times 3600}{687.55} = \frac{3600 \times 687.55}{2} = 123759 \] inches, or 10312.2 feet which is the answer required.
"This calculation may be shortened; for since two of the three proportionals are fixed, their product in the first case is 41253, and in the other two cases is 2475180; so that in the first case, viz. when the angle is expressed in minutes, you need only divide 41253 by the given angle; and in the other two cases, viz. when the angle is expressed in seconds, divide 2475180 by the given angle, and the quotient in either case is the answer in inches.

"Problem I. The angle, not exceeding one degree, which is subtended by any known extension, being given, to find its distance from the place of observation.

"Rule. Proceed as if the extension were of one foot by Problem I. and call the answer B; then, if the extension in question be expressed in inches, say, as 12 inches are to that extension, so is B to a fourth proportional, which is the answer in inches; but if the extension in question be expressed in feet, then you need only multiply it by B, and the product is the answer in inches.

"Example. At what distance is a man six feet high when he appears to subtend an angle of 3°.

"By Problem I. if the man were one foot high, the distance would be 81506 inches; but as he is six feet high, therefore multiply 81506 by 6, and the product gives the required distance, which is 495036 inches, or 41253 feet.

Angles subtended by an extension of one foot at different distances.

<table>
<thead>
<tr>
<th>Angles in</th>
<th>Distances in feet</th>
<th>Angles in</th>
<th>Distances in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 1</td>
<td>34377</td>
<td>Min. 31</td>
<td>110,9</td>
</tr>
<tr>
<td>2</td>
<td>17189</td>
<td>32</td>
<td>107,4</td>
</tr>
<tr>
<td>3</td>
<td>11457</td>
<td>33</td>
<td>104,2</td>
</tr>
<tr>
<td>4</td>
<td>8594</td>
<td>34</td>
<td>101,1</td>
</tr>
<tr>
<td>5</td>
<td>6876</td>
<td>35</td>
<td>98,2</td>
</tr>
<tr>
<td>6</td>
<td>5749</td>
<td>36</td>
<td>95,5</td>
</tr>
<tr>
<td>7</td>
<td>4911</td>
<td>37</td>
<td>92,9</td>
</tr>
<tr>
<td>8</td>
<td>4297</td>
<td>38</td>
<td>90,4</td>
</tr>
<tr>
<td>9</td>
<td>3820</td>
<td>39</td>
<td>88,1</td>
</tr>
<tr>
<td>10</td>
<td>3437</td>
<td>40</td>
<td>85,9</td>
</tr>
<tr>
<td>11</td>
<td>3125</td>
<td>41</td>
<td>83,7</td>
</tr>
<tr>
<td>12</td>
<td>2805</td>
<td>42</td>
<td>81,4</td>
</tr>
<tr>
<td>13</td>
<td>2644</td>
<td>43</td>
<td>79,9</td>
</tr>
<tr>
<td>14</td>
<td>2475</td>
<td>44</td>
<td>78,1</td>
</tr>
<tr>
<td>15</td>
<td>2292</td>
<td>45</td>
<td>76,4</td>
</tr>
<tr>
<td>16</td>
<td>2148</td>
<td>46</td>
<td>74,7</td>
</tr>
<tr>
<td>17</td>
<td>2022</td>
<td>47</td>
<td>73,1</td>
</tr>
<tr>
<td>18</td>
<td>1915</td>
<td>48</td>
<td>71,9</td>
</tr>
<tr>
<td>19</td>
<td>1809</td>
<td>49</td>
<td>70,4</td>
</tr>
<tr>
<td>20</td>
<td>1713</td>
<td>50</td>
<td>68,7</td>
</tr>
<tr>
<td>21</td>
<td>1627</td>
<td>51</td>
<td>67,4</td>
</tr>
<tr>
<td>22</td>
<td>1562</td>
<td>52</td>
<td>66,1</td>
</tr>
<tr>
<td>23</td>
<td>1494</td>
<td>53</td>
<td>64,8</td>
</tr>
<tr>
<td>24</td>
<td>1432</td>
<td>54</td>
<td>63,6</td>
</tr>
<tr>
<td>25</td>
<td>1375</td>
<td>55</td>
<td>62,5</td>
</tr>
<tr>
<td>26</td>
<td>1312</td>
<td>56</td>
<td>61,4</td>
</tr>
<tr>
<td>27</td>
<td>1273</td>
<td>57</td>
<td>60,3</td>
</tr>
<tr>
<td>28</td>
<td>1227</td>
<td>58</td>
<td>59,2</td>
</tr>
<tr>
<td>29</td>
<td>1185</td>
<td>59</td>
<td>58,2</td>
</tr>
<tr>
<td>30</td>
<td>1146</td>
<td>60</td>
<td>57,3</td>
</tr>
</tbody>
</table>

Angles subtended by an extension of six feet at different distances.

<table>
<thead>
<tr>
<th>Angles in</th>
<th>Distances in feet</th>
<th>Angles in</th>
<th>Distances in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. 1</td>
<td>20626,8</td>
<td>Min. 31</td>
<td>665,4</td>
</tr>
<tr>
<td>2</td>
<td>10313</td>
<td>32</td>
<td>644,5</td>
</tr>
<tr>
<td>3</td>
<td>6875,4</td>
<td>33</td>
<td>625</td>
</tr>
<tr>
<td>4</td>
<td>51565</td>
<td>34</td>
<td>606,6</td>
</tr>
<tr>
<td>5</td>
<td>41252</td>
<td>35</td>
<td>589,3</td>
</tr>
<tr>
<td>6</td>
<td>34377</td>
<td>36</td>
<td>572,9</td>
</tr>
<tr>
<td>7</td>
<td>2946,6</td>
<td>37</td>
<td>557,5</td>
</tr>
<tr>
<td>8</td>
<td>2578,2</td>
<td>38</td>
<td>542,8</td>
</tr>
<tr>
<td>9</td>
<td>2291,8</td>
<td>39</td>
<td>528,9</td>
</tr>
<tr>
<td>10</td>
<td>20626</td>
<td>40</td>
<td>515,6</td>
</tr>
<tr>
<td>11</td>
<td>18753</td>
<td>41</td>
<td>503,1</td>
</tr>
<tr>
<td>12</td>
<td>17188</td>
<td>42</td>
<td>491,1</td>
</tr>
<tr>
<td>13</td>
<td>15867</td>
<td>43</td>
<td>479,7</td>
</tr>
<tr>
<td>14</td>
<td>14733</td>
<td>44</td>
<td>468,8</td>
</tr>
<tr>
<td>15</td>
<td>1375</td>
<td>45</td>
<td>458,4</td>
</tr>
<tr>
<td>16</td>
<td>12981</td>
<td>46</td>
<td>448,4</td>
</tr>
<tr>
<td>17</td>
<td>12133</td>
<td>47</td>
<td>439,9</td>
</tr>
<tr>
<td>18</td>
<td>11459</td>
<td>48</td>
<td>431,7</td>
</tr>
<tr>
<td>19</td>
<td>10856</td>
<td>49</td>
<td>424,1</td>
</tr>
<tr>
<td>20</td>
<td>10314</td>
<td>50</td>
<td>416,5</td>
</tr>
<tr>
<td>21</td>
<td>982,2</td>
<td>51</td>
<td>409,4</td>
</tr>
<tr>
<td>22</td>
<td>937,6</td>
<td>52</td>
<td>396,7</td>
</tr>
<tr>
<td>23</td>
<td>860,8</td>
<td>53</td>
<td>380,9</td>
</tr>
<tr>
<td>24</td>
<td>859,4</td>
<td>54</td>
<td>381,9</td>
</tr>
<tr>
<td>25</td>
<td>825</td>
<td>55</td>
<td>375</td>
</tr>
<tr>
<td>26</td>
<td>793,3</td>
<td>56</td>
<td>368,3</td>
</tr>
<tr>
<td>27</td>
<td>763,9</td>
<td>57</td>
<td>361,9</td>
</tr>
<tr>
<td>28</td>
<td>739,6</td>
<td>58</td>
<td>355,6</td>
</tr>
<tr>
<td>29</td>
<td>711,3</td>
<td>59</td>
<td>349,6</td>
</tr>
<tr>
<td>30</td>
<td>687,5</td>
<td>60</td>
<td>343,7</td>
</tr>
</tbody>
</table>
The micrometer has not only been applied to telescopes, and employed for astronomical purposes; but there have also been various contrivances for adapting it to microscopical observations. Dr Jurin's method was upon the same plate with his pin, and observing how many rings made an inch; and he used this wire in the same manner as Leeuwenhoek used his hand. Dr Hooke used to look upon the microscope, and be magnified with the other eye. In this manner he was able, by the help of a ruler, divided into inches and small parts, and laid on the pedestal of the microscope, to which it appeared to have through the glass; being compared with the diameter as it appeared to be magnified. A little practice says, Mr Baker will render this method exceedingly easy and pleasant.

Mr Martin in his Optics recommended such a micrometer for a microscope as had been applied to telescopes: for he advises to draw a number of parallel lines on a piece of glass, with the point of a diamond at the distance of one forty of an inch from one another, and to place it in the focus of the eye-glass. By this method, Dr Smith contrived to take the exact draught of objects viewed by a double microscope for he advises to get a lattice, made with a single silver wire or squares, drawn upon a plain glass by the stitches of a diamond, and to put it into the place of the image, formed by the object-glass: then by transferring the parts of the object, seen in the squares of the glass or lattice upon similar corresponding square drawn on paper, the picture may be exactly taken. Mr Martin also introduced into compound microscopes another micrometer consisting of a screw. See both these methods described in his Optics, p. 277.

The mode of actual admeasurement (Mr Adams observes) is without doubt the most simple that can be imagined, and at one glance, the different effects of combined glasses; and as it saves the trouble, and avoids the obscurity, of the vulgar modes of calculation: but many persons find it exceedingly difficult to adopt this method, because they have not been accustomed to observe with both eyes at once. To obviate this inconvenience, the late Mr Adams contrived an instrument called the Needle-Micrometer, which was first described in his Micrographia Illustrata; and of which as now constructed, we have the following description by his son Mr George Adams in the ingenious Essays above quoted.

This micrometer consists of a screw, which has 50 threads to an inch; this screw carries an index, which points to the divisions on a circular plate, which is fixed at right angles to the axis of the screw. The revolutions of the screw are counted on a scale which is an inch divided into 50 parts; the index to these divisions is a flower-de-luce marked upon the slider, which carries the needle point across the field of the microscope. Every revolution of the micrometer screw is divided by means of the divisions on the circular plate, as this is divided into 20 equal parts, over which the index passes at every revolution of the screw; by which means we obtain with ease the measure of 1000th part of an inch: for 50, the number of threads on the screw in one inch, being multiplied by 20, the divisions on the circular plate are equal to 1000; so that each division on the circular plate shows that the needle has either advanced or receded 1000th part of an inch.

To place this micrometer on the body of the microscope, open the circular part FKH, fig. 25 by taking out the screw G, and then turn the sliding tube of the body of the microscope, so that the small holes which are in both tubes may exactly coincide, and let the needle g of the micrometer have a free passage through them; after this, screw it fast upon the body by the screw G. The needle will now traverse the field of the microscope, and measure the length and breadth of the image of any object that is applied to it. But further assistance must be had, in order to measure the object itself, which is a subject of real importance; for though we have ascertained the power of the microscope, and know that it is so many thousand times, yet this will not afford us an accurate idea of its real size; for our ideas of bulk being formed by the comparison of one object with another, we can only judge of that of any particular body, by comparing it with another whole size is known: the same thing is necessary, in order to form an estimate by the microscope; therefore to ascertain the real measure of the object, we must make the point of the needle pass over the image of a known part of an inch placed on the stage, and write down the revolutions made by the screw, while the needle passed over the image of this known measure; by which means we ascertain the number of revolutions on the screw, which are adequate to a real and known measure on the stage. As it requires an attentive eye to watch the motion of the needle point as it passes over the image of a known part of an inch on the stage, to obtain an accurate measure of the image, but ought to repeat it at least six times; then add the six measures thus obtained together, and divide their sum by six, or the number of trials; the quotient will be the mean of all the trials. This result is to be placed in a column of a table next to that which contains the number of the magnifiers.

By the assistance of the fectorial scale, we obtain with ease a small part of an inch. This scale is shown at fig. 22, 23, 24, in which the two lines ca, cb, with the side aK, form an isosceles triangle; each of these sides is two inches long, and the base still only of one-tenth of an inch. The longer sides may be of any given length, and the base still only of one tenth of an inch. The longer lines may be considered as the line of lines upon a fector opened to one-tenth of an inch. Hence whatever number of equal parts ca, cb are divided into, their transverse measure will be such a part of one-tenth as is expressed by their divisions. Thus if it be divided into ten equal parts, this will divide the
the inch into 100 equal parts; the first division next will be equal to 100th part of an inch, because it is the tenth part of one tenth of an inch. If these lines are divided into twenty equal parts, the inch will be by that means divided into 200 equal parts. Lastly, if 46, ca, are made three inches long and divided into 100 equal parts, we obtain with ease the tenth part of the inch. The scale is represented as solid at fig. 23, but as perforated at fig. 22 and 24. So that the light passes thro' the aperture, when the sectoral part is placed on the stage.

To use this scale, first fix the micrometer, fig. 25, to the body of the microscope; then set the sectoral scale, fig. 24, in the stage, and adjust the microscope to its proper focus or distance from the scale, which is to be moved till the base appears in the middle of the field of view; then bring the needle point, fig. 25, (by turning the screw L) to touch one of the lines, ca, exactly at the point answering to 20 on the sectoral scale. The index a of the micrometer is to be set to the first division, and that on the dial plate to 200, which is the mean of the divisions that we are using.

Example. Everything being prepared agreeable to the foregoing directions, suppose you are desirous of ascertaining the magnifying power of the lens marked No. 4. Turn the micrometer screw until the point of the needle point traversed the magnified image of the tenth part of an inch; then the division where the two indices remain, will show how many revolutions, and parts of a revolution, the screw has made, while the needle point traversed the magnified image of the one tenth of an inch; suppose the result to be 26 revolutions of the screw, and 14 parts of another revolution, this is equal to 26 multiplied by 20, added to 141, that is, 534,000 parts of an inch. The 26 divisions found on the straight scale of the micrometer, while the point of the needle passed over the magnified image of one-tenth part of an inch, were multiplied by 20, because the circular plate CD, fig. 25, is divided into 20 equal parts; this produced 520; then adding the 14 parts of the next revolution, we obtain the 534,000 parts of an inch, or five-tenths and 3400 parts of another tenth, which is the measure of the magnified image of one-tenth of an inch at the aperture of the eye-glasses or at their focus. Now if we suppose the focus of the two eye-glasses to be one inch, the double thereof is two inches; if we reckon in the 1000th part of an inch, we have 2000 parts for the distance of the eye from the needle point of the micrometer. Again, if we take the distance of the image from the object at the stage at 6 inches, or 6000, and add thereto 2000, double the distance of the focus of the eye glaelf, we shall have 8000 parts of an inch for the distance of the eye from the objects; and as the glaefs double the image, we must double the number 534 found upon the micrometer, which then makes 1068: then, by the following analogy, we shall obtain the number of times the microscope magnifies the diameter of the object; say, as 240, the distance of the eye from the image of the object, is to 800, the distance of the eye from the object; so is 1068, double the measure found on the micrometer, to the number of times the microscope magnifies the diameter of the object. By working in this manner, the magnifying power of each lens, with the compound microscope may be easily found, though the result will be different in different compound microscopes, varying according to the combination of the lenses, their distance from the object and one another, &c.

Having discovered the magnifying power of the microscope, with the different object-lenses that are used therewith, our next subject is to find out the real size of the objects themselves, and their different parts; this is easily effected, by finding how many revolutions of the micrometer-screw answer to a known measure on the sectoral scale or other object placed on the stage; from the number thus found a table should be constructed, expressing the value of the different revolutions of the microscope with that object-lens, by which the primary number was obtained. Similar tables must be constructed for each object lens. By a set of tables of this kind, the observer may readily find the measure of any object he is examining; for he has only to make the needle point traverse over this object, and observe the number of revolutions the screw has made in its passage, and then look into his table for the real measure which corresponds to this number of revolutions, which is the measure required.

Mr Coventry of Southwark has favoured us with the description of a micrometer of his own invention; the scale of which, for minuteness, surpasses every instrument of the kind which we have any knowledge of, and which, indeed, we could scarcely have formed a conception, had he not indulged us with several of these instruments, graduated as underneath.

The micrometer is composed of glasses, ivory, silver, &c. on which are drawn parallel lines from the 10th to the 10,000th part of an inch. But an instrument thus divided, he observes, is more for curiosity than use; but one of those which Mr Coventry has sent us is divided into squares, so finely that fifteen millions of them are contained on the surface of one square inch, each square appearing under the microscope true and distinct; and though so small, it is a fact, that animals are found which may be contained in one of these squares.

The use of micrometers when applied to microscopes, is to measure the natural size of the object and how much that object is magnified. To ascertain the real size of an object in the single microscope, nothing more is required than to lay it on the micrometer, and adjust it to the focus of the magnifier, noticing how many divisions of the micrometer it covers. Suppose the parallel lines of the micrometer to be the 1000th of an inch, and the object covers two divisions; its real size is 500ths of an inch; if five, 200ths, and so on.

But to find how much the object is magnified, is not mathematically determined so easily by the single as by the compound microscope: but the following simple method (says Mr Coventry) I have generally adopted, and think it tolerably accurate. Adjust a micrometer under the microscope, say the 1000th of an inch of divisions, with a small object on it; if squares, the better; notice how many divisions one side of the object covers; suppose 20; then cut a piece of
In using the compound microscope, the real size of the object is found by the same method as in the single: but to demonstrate the magnifying power of each glass to greater certainty, adopt the following method.— Lay a two-feet rule on the stage, and a micrometer level with its surface (an inch fippofo, divided into 100 parts): with one eye see how many of those parts are contained in the field of the microscope, (suppose 50); and with the other, at the same time look for the circle of light in the field of the microscope, which with a little practice will soon appear distinct; mark how much of the rule is intersected by the circle of light, which will be half the diameter of the field. Suppose eight inches; consequently the whole diameter will be fifteen. Now, as the real size of the field, by the micrometers, appeared to be only 50 hundredths or half an inch, and as half an inch is only one 32d part of 16 inches, it shows the magnifying power of the glass to be 32 times in length, 1024 superficies, and 32,768 cubic (a).

Another way of finding the magnifying power of compound microscopes, is by using two micrometers of the same divisions; one adjusted under the magnifier, the other fixed in the body of the microscope in the focus of the eye-glass. Notice how many divisions of the micrometer in the body are seen in one division of the micrometer under the magnifier which microscope again must be multiplied by the power of the eye-glass. Example: Ten divisions of the micrometer in the body are contained in one division under the magnifier; so far the power is increased ten times: now, if the eye-glass be one inch focus, such glass will of itself magnify about eight times in length, which, with the ten times magnified before, will be eight times ten, or 80 times in length, 6,400 superficies and 512,000 cube.

If (says Mr Coventry) these micrometers are employed in the solar microscope, they divide the object into squares on the screen in such a manner as to render it extremely easy to make a drawing of it. And (says he) I apprehend they may be employed to great advantage with such a microscope as Mr Adam's Lucern; because this instrument may be used either by day or night, or in any place, and gives the actual magnifying power without calculation. The case with which we have been favoured by Mr Coventry contains fixed micrometers, two on ivory and four on glass. One of these ivory is an inch divided into 400 parts, every fifth line longer than the intermediate one, and every tenth longer still, for the greater ease in counting the divisions under the microscope, and is generally used in measuring the magnifying power of microscopes. The other ivory one is divided into squares of the 50th and 100th of an inch, and is commonly employed in measuring opaque objects.

Those made of the glass are for transparent objects, which, when laid on them, show their natural size. That marked on the brass 100, are squares divided to the 100th of an inch: that marked 5000 are parallel lines forming nine divisions, each division the 100th of an inch; the middle division is again divided into 5, making divisions to the 5000th of an inch. That marked 10,000 is divided in the same manner, with the middle division divided into 10, making the 100,000th of an inch. Example:

The glass micrometer without any mark is also divided, the outside lines into 100th, the next into 1000th, and the inside lines into the 4000th of an inch: these are again crossed with an equal number of lines in the same manner, making squares of the 100th, 1000th, and 4000th of an inch, thus demonstrating each other's size. The middle square of the 1000th of an inch (see fig. 26) is divided into sixteen squares;
MICROSCOPE, an optical instrument, consisting of lenses, or mirrors, by means of which small objects appear larger than they do to the naked eye. Single microscopes consist of a single lens or mirror; or if more lenses or mirrors be made use of, they only serve to throw light upon the object, but do not contribute to enlarge the image of it. Double or compound microscopes are those in which the image of an object is compos’d by means of more lenses or mirrors than one.

For the principles on which the construction of microscopes depends, see Optics. In the present article, it is intended to describe the finished instrument with all its varied apparatus, according to the latest improvements; and to illustrate by proper details its uses and importance.

I. Of Single Microscopes.

The famous microscopes made use of by Mr. Leeuwenhoek, were all, as Mr. Baker affirms us, of the single kind, and the construction of them was the most simple possible; each confiting only of a single lens set between two plates of silver, perforated with a small hole, with a moveable pin before it to place the object on and adjust it to the eye of the beholder. He informs us also, that lenses only, and not globules, were used in every one of those microscopes.

1. The single microscope now most generally known and used is that called Wilson’s Pocket Microscope. The body is made of brass, ivory, or silver, and is represented by AA, BB. CC is a long fine-threaded male screw that turns into the body of the microscope; D a convex glass at the end of the screw. Two concave round pieces of thin brass, with holes of different diameters in the middle of them, are placed to cover the abovementioned glass, and thereby diminish the aperture when the greatest magnifiers are employed. Microscope EE, three thin plates of brass within the body of the microscope; one of which is bent semicircularly in the middle, so as to form an arched cavity for the reception of a tube of glass, the use of the other two being to receive and hold the slides between them. F, a piece of wood or ivory, arched in the manner of the semicircular plate, and cemented to it. G, the other end of the body of the microscope, where a hollow female screw is adapted to receive the different magnifiers. H, is a spiral spring of steel, between the end G and the plates of brass, intended to keep the plates in a right position and counteract the long screw CC. I, is a small turned handle, for the better holding of the instrument, to screw on or off at pleasure.

To this microscope belong fix or seven magnifying glasses, six of them are set in silver, brass, or ivory, as in the figure K; and marked 1, 2, 3, 4, 5, 6, the lowest numbers being the greatest magnifiers. J, is the seventh magnifier, set in the manner of a little barrel, to be held in the hand for the viewing of any larger object. M, is a flat slip of ivory, called a slider, with four round holes through it, wherein to place objects between two pieces of glass or Muscovy, as they appear at d d d d. Six such sliders, and one of brass, are usually fold with this microscope some with object placed in them, and others empty for viewing any thing that may offer: but whoever pleases to make a collection, may have as many as he desires. The brass slider is to confine any small object, that it may be viewed without crushing or destroying it. N, is a tube of glass contriv’d to confine living objects, such as frogs, fishes, &c, in order to discover the circulation of the blood. All these are contained in a little neat box of fish-skin or mahogany, very convenient for carrying in the pocket.

When an object is to be viewed, thrust the ivory slider, in which the said object is placed, between the two flat brass plates EE: observing always to put that side of the slider where the brass rings are farthest from the eye. Then screw on the magnifying glasses you intend to use, at the end of the instrument G; and looking through it against the light, turn the long screw CC, till your object be brought to suit your eye; which will be known by its appearing perfectly distinct and clear. It is most proper to look at it first through a magnifier that can show the whole at once and afterwards to inspect the several parts more particularly with one of the greatest magnifiers; for thus you will gain a true idea of the whole, and of all its parts. And though the greatest magnifiers can show but a minute portion of any object at once such as the claw of a flea, the horn of a louse, or the like; yet by gently moving the slider which contains the object the eye will gradually examine it all over.

As objects must be brought very near the glasses when the greatest magnifiers are made use of, be careful not to scratch them by rubbing the slider against them as you move it in or out. A few turns of the screw CC will easily prevent this mischief, by giving them room enough. You may change the objects in your sliders for any others you think proper, by taking out the brass rings with the point of a penknife; the tales will then fall out, if you but turn the sliders;
replacing the brass rings you will fallen them as they were before. It is proper to have some sliders furnished with tacks, but without any object between them, to be always in readiness for the examination of fluids, fluids, fands, powders, the farina of flowers, or any other casual objects of such sort as need only be applied to the outside of the tale.

The circulation of the blood may be eafily feen in the tails or fins of fishes, in the fine membranes between a frog's toes, or belt of all in the tail of a water-newt. If your object be a small fift, place it within the tube N, and spread its tail or fin along the fide thereof: if a frog, choose such an one as can but juft be got into your tube; and, with a pen, or small flick, expand the transparent membrane between the toes of the frog's hind feet as much as you can. When your object is so adjusted that no part of it can intercept the light from the place, you intend to view, unscrew the long fcrew CC, and thrust your tube into the arched cavity, quite through the body of the microscope; then fcrew it to the true focal distance, and you will fee the blood paffing along its vessels with a rapid movement, and in a molt surprifing manner.

The third or fourth magnifiers may be used for frogs or fishes: but for the tails of water-newts, the fifth or fixth will do; because the globules of their blood are twice as large as thofe of frogs or fift. The fifth or second magnifier cannot well be employed for this purpofe; because the thickness of the tube in which the object lies, will fcare and its being brought to near as the focal distance of the magnifier.

An apparatus for the purpofe of viewing opaque objects generally accompanies this microscope; and which consists of the following parts. A brass arm QR, which is fcrewed at Q, upon the body of the microscope G. Into the round hole R, any of the magnifiers faitible to the object to be viewed are to be fcrewed; and under it, in the fame ring, the concave polished silver fpeculum S. Through a small aperture in the body of the microscope under the brass plates EE, is to flide the long wire with the forceps T: This wire is pointed at one of its ends; and when either the points of the forceps may be used for the objects as may be necessary. It is easy to conceive, therefore, that the arm at R, which turns by a twofold joint at a and b, may be brought with its magnifier over the object, the light reflected upon it by the application of the fpeculum, and the true focus obtained by turning of the male fcrew CC as before directed. As objects are not fometimes not well fixed for view, either by the forceps or point, the small piece thrown at N is added, and in fuch cafes answers better; it fcrews over the point of T; it contains a small round piece of ivory, blackened on one fide, and left white upon the other as a contrait to coloured objects, and by a small piece of watch-fpring fadders them upon the ivory.

A. A is a fcrew of brafs fixed upright upon a round wooden bafe B, or mahogany drawer or cafer, fo as to stand perfectly firm and ready. C is a brafs fcrew, that passes through a hole in the upper flim of the fcrew into the fide of the microscope D, and fcrews it falf to the faid fcrew. E is a concave fpeculum set in a box of brafs, which hangs in the arch G by two small fcrows f/; that fcrew into the opposite fides thereof. At the bot tom of this arch is a pin of the fame metal, exactly fitted to a hole in the wooden pedeltal made for the reception of the pin. As the arch turns on this pin, and the fpeculum turns on the end of the arch, it may, by this twofold motion, be eafily adjusted in fuch a manner as to refect the light of the fun of the sky, or of a candle, directly upwards through the microscope that is fixed perpendicularly over it; and by fo doing may be made to anfwer many purpofes of the large double refleting microscope.

The body of the microscope may alfo be fixed horizontally, and objects viewed in that position by any light you choose; which is an advantage the common double refleting microscope has not. It may alfo be rendered further ufeful by means of a flip of glafs; one end of which being thruf through between the plates where the sliders go, and the other extending to fome distance, such objects may be placed thereon as cannot be applied in the sliders: and then having a limb of brafs that may falen to the body of the microscope, and extend over the projecting glafs a hollow ring wherein to fcrew the magnifiers, all sorts of subjects may be examined with great convenience, if a hole be made in the pedeltal, to place the fpeculum exactly underneath, and thereby throw up the rays of light. The pocketmicroscope, thus mounted, fays Mr. Baker, "is as easy and pleasant in its ufe; as fit for the moft curious examination of the animalcles and falls in fluids, of the farina in vegetables, and of the circulation in fmall animals; in short, is as likely to make considerable discoveries in objects that have some degree of transparency, as any microscope I have ever seen or heard of."

The brafs fcrew A is now generally made to UNScrew into three parts, and pack with the microscope and apparatus into the drawer of a mahogany pocket-cafer, upon the lid of which the fcrew is made to fix when in ufe.

The opaque apparatus alfo, as above defcribed, is applicable this way by refl eftion. It only confisits in turning the arm R (fig. 1.), with the magnifier over the concave fpeculum below (fig. 2.), or to receive the light as reflected obliquely from it: the fcrew screwed into R will then refect the light, which it receives from the glafs fpeculum, strongly upon the object that is applied upon the wire T underneath.

This microscope, however, is not upon the moft convenient construction, in comparison with others now made: it has been outlawed for many years past from its popular name, and recommendation by its makers. Its portability is certainly a great advantage in its ufe; but in moft reftects it is fuperceded by the microscopes hereafter defcribed.

5. Microscopes for Opaque Objects, called the Single Opaque Microscope. This microscope remedies the inconvenience of having the dark fide of an object next the eye, which formerly was an unfurmountable objection to the making observations on opaque objects with any considerable degree of exaftness or satisfaction: for, in all other contrivances commonly known, the nearest of the instrument to the object (when glaffes that magnify much are ufed) unavoidably over shadows it so much, that its appearance is rendered obf cure and infiftent. And, notwithstanding ways have
MICROSCOPE.

Plate C CXCVII.
Aquatic Microscope. Fig. 4. represents a very convenient and useful microscope, constructed by Mr. John Ellis, author of An Essay upon Corallines, &c. To practical botanists, observers of animacula, &c. it possest many advantages above those just described. It is portable, simple in its construction, expeditious, and commodious in use. K, represents the box containing the whole apparatus; it is generally made of fifh-skin; and on the top there is a female screw, for receiving the screw that is at the bottom of the pillar A: this is a pillar of brass, and is screwed on the top of the box. D, is a brass pin which fits into the pillar; on the top of this pin is a hollow socket to receive the arm which carries the magnifiers; the pin is to be moved up and down, in order to adjust the lenses to their focal or proper distance from the object. [N. B. In the representations of this microscope, the pin D is delineated as passing through a socket at one side of the pillar A; whereas it is usual at present to make it pass down a hole bored through the middle of the pillar.] E, the bar which carries the magnifying lens; it fits into the socket X, which is at the top of the pin or pillar D. This arm may be moved backwards and forwards in the socket X, and sideways by the pin D; so that the magnifier, which is screwed into the ring at the end of this bar, may be easily made to traverse over any part of the object that lies on the stage or plate B. F is a polished silver speculum, with a magnifying lens placed at the centre thereof, which is performed for this purpose. The silver speculum screws into the arm E, as at F. G, another speculum, with its lens, which is of a different magnifying power from the former. H, the semicircle which supports the mirror I; the pin R, affixed to the semicircle H, pulls the whole which is towards the bottom of the pillar A. B, the stage, or the plane, on which the objects are to be placed; it fits into the small dove-tailed arm which is at the upper end of the pillar D. A, a plane glass, with a small piece of black silk stuck on it; this glass is to lay in a groove made in the stage B. M, a hollow glass to be laid occasionally on the stage instead of the plane glass C. L, a pair of nippers. These are fixed to the stage by the pin at bottom. The steel wire of these nippers slides backwards and forwards in the socket, and this socket is moveable upwards and downwards by means of the joint, so that the position of the object may be varied at pleasure. The object may be fixed in the nippers, stuck on the point, or affixed, by a little gum-water, &c. to the ivory.
To use this microscope: Take all the parts of the apparatus out of the box; then begin by screwing the pillar A to the cover thereof; pass the pin R of the semicircle which carries him mirror thro' the hole that is near the bottom of the pillar; pull the stage into the dovetail B, slide the pin into the pillar (see the N. B. above); then pass the bar E through the socket which is at the top of the pin D, and screw one of the magnifying lenses into the ring at F. The microscope is now ready for use; and though the enumeration of the articles may lead the reader to imagine the instrument to be of a complex nature, we can safely affirm that he will find it otherwise. The instrument has this peculiar advantage, that it is difficult to put any of the pieces in a place which is inappropriate to another. Let the object be now placed either on the stage or in the nippers L, and in such manner that it may be as nearly as possible over the centre of the stage: bring the speculum F over the part you mean to observe; then throw as much light on the speculum as you can, by means of the mirror I, and the double motion of which it is capable; the light received on the speculum is reflected by it on the objects. The distance of the lens F from the object is regulated by moving the pin D up and down, until a distinct view of it is obtained. The best rule is, to place the lens beyond its focal distance from the object, and then gradually to slide it down till the object appears sharp and well defined. The adjustment of the lenses to their focus, and the distribution of the light on the object, are what require the most attention: on the first the difficulty of the division depends; the pleasure arising from a clear view of the parts under observation is due to the modification of the light. No precise rule can be given for attaining accurately these points; it is from practice alone that ready habits of obtaining these necessary properties can be acquired, and with the assistance of this no difficulty will be found.

A very fine and convenient microscope for botanical and other purposes, though inferior in many respects to that of Mr. Ellis, was contrived by the late ingenious Mr. Benjamin Martin, and is represented at fig. 5, where AB represents a small arm supporting two or more magnifiers, one fixed to the upper part as at B, the other to the lower part of the arm at C; these may be used separately or combined together. The arm AB is supported by the square pillar IK, the lower end of which fits into the socket E of the foot FG; the stage DL is made to slide up and down the square pillar; H, a concave mirror, for reflecting light on the object.—To use this microscope, place the object on the stage reflect the light on it from the concave mirror, and regulate it to the focus, by moving the stage nearer to or farther from the lens at J. The ivory fiddles pass through the stage; other objects may be fixed in the nippers MN, and then brought under the eye-glasses; or they may be laid on one of the glasses which fit the stage. The apparatus to this instrument consists of three ivory fiddles; a pair of nippers; a pair of forceps; a flat glass and a concave ditto, both fitted to the stage.

The two last microscopes are frequently fitted up with a toothed rack and pinion, for the more ready adjustment of the glasses to their proper focus.

6. Withering's portable Botanical microscope. Fig. 6. represents a small botanical microscope contrived by Dr. Withering, and described by him in his Botanical Arrangements. It consists of three brass plates ABC, which are parallel to each other; the lower plate D and E are riveted into the upper and lower plates, which are by this means united to each other; the middle plate or stage is movable on the aftermentioned wires by two little sockets which are fixed to it. The two upper plates each contain a magnifying lens, but of different powers; one of those contains and keeps in their places the fine point F, the forceps G, and the small knife H.—To use this instrument, un-case the upper lens, and take out the point, the knife, and the forceps; then screw the lens on again, place the object on the stage, and then move it up or down till you have gained a distinct view of the object, as one lens is made of a shorter focus than the other; and the plain lenses of a still deeper focus may be had if required. This little microscope is the most portable of any. Its principal merit is its simplicity.

7. Botanical Lens or Magnifier. The haft with which botanists, &c. have frequent occasion to view objects, renders an apparatus of a diſtinct form indispensably necessary. The most convenient of any yet contrived, appears to be that contrived, in regard to the form of the mounting, by the late Mr. Benjamin Martin; and is what he called a Hand Megaloscope, because it is well adapted for viewing all the larger part of small objects universally, and by only three lenses it has seven different magnifying powers.

Fig. 7. represents the case with the three frames and lenses, which are usually of 1, 1½, and 2 inches focus; they all turn over each other, and slide into the case and are turned out at pleasure.

The three lenses singly, afford three magnifying powers; and by combining two and two, we make three more; for d with e makes one, d with f' another, and e with f a third; which, with the three singly, make six; and lastly, all three combined together make another; so that upon the whole, there are seven powers of magnifying with these glasses only.

When the three lenses are combined, it is better to turn them in, and look through them by the small apertures in the sides of the case. The eye in this case is excluded from extra light; the aberration of the superfluous rays through the glasses is cut off; and the eye coincides more exactly with the common axes of the lenses.

A very useful and easy kind of microscope (described by Joblot, and which has been long in use), adapted chiefly for viewing, and confining at the same time, any living insects, small animals, &c. is shown at fig. 8 CCXXVIII, where A represents a glass tube, about 1½ inches diameter and 2 inches high. B, a case of brass or wood, containing a sliding tube, with two or three magnifying glasses that may be used either separately or combined. In the inside, at the bottom, is a piece of ivory, black and white on opposite sides, that is occasionally removed, and admits a point to be inserted into the centre. The cap unscrews at D, to admit the placing of the object: the proper distance of the glasses from
Microscope from the object is regulated by pulling up or down the brass tube E at top containing the eye-glasses.

This microscope is particularly useful for exhibiting the well-known curious

curculio imperialis, vulgarly called the diamond beetle, to the greatest advantage; for which, as well as for other objects, a glass bottom, and a polished reflector at the top, are often applied to condense the light upon the object. In this case, the stand and brass-bottom F, as shown in the figure, are taken away on unscrewing.

9. Mr Lyonet's Single Anatomical Deflecting Microscope. Fig. 9, represents a curious and extremely useful microscope, invented by that gentleman for the purpose of minute dissections, and microscopic preparations. This instrument must be truly useful to amateurs of the minute, &c. being the best adapted of any for the purposes of dissection. With this instrument Mr Lyonet made his very curious microscopic dissection of the chenille de jaule, as related in his

Tract Anatomique de la chenille qui ronge le bois de faule, 4to.

AB is the anatomical table, which is supported by a pillar NO; this is screwed on the foot CD. The table AB is prevented from turning round by means of two steady pins. In this table or board there is a hole G, which is exactly over the centre of the mirror EF, that is to reflect the light on the object; the hole G is designed to receive a flat or concave glass, on which the objects for examination are to be placed.

RXZ is an arm formed of several balls and sockets, by which means it may be moved in every possible situation; it is fixed to the board by means of the screw H. The left arm IZ has a female screw, into which a magnifier may be screwed as at Z. By means of the screw H, a small motion may be occasionally given to the arm IZ, for adjusting the lens with accuracy to its focal distance from the object.

Another chain of balls is sometimes used, carrying a lens to throw light upon the object; the mirror is likewise so mounted, as to be taken from its place at K, and fitted on a clamp, by which it may be fixed to any part of the table AB.

To use the Deflecting Tube:—Let the operator sit with his left side near a light window; the instrument being placed on a firm table, the side DH towards the stomach, the observations should be made with the left eye. In deflecting, the two elbows are to be supported by the table on which the instrument rests, the hands resting against the board AB; and in order to give it greater stability (as a small shake, though imperceptible to the naked eye, is very visible in the microscope), the deflecting instruments are to be held one in each hand, between the thumb and two fore-fingers.

II. Of Double Microscopes, commonly called Compound Microscopes.

Double microscopes are so called, from being a combination of two or more lenses.

The principal and chief advantages which the compound microscopes have over the single, are, that the objects are represented under a larger field of view, and with a greater amplification of reflected light.

1. Culpeper's Microscope. The compound microscope, originally contrived by Mr Culpeper, is represented at Fig. 10. It consists of a large external brass body A, supported upon three scrolls, which are fixed to the flange EF; the flange is supported by three larger scrolls, that are screwed to the mahogany pedestal GH. There is a drawer in the pedestal which holds the apparatus. The concave mirror I is fitted to a socket in the centre of the pedestal. The lower part LMCD of the body forms an exterior tube, into which the upper part of the body ABLM slides, and may be moved up or down, so as to bring the magnifiers, which are screwed on at N, nearer to or farther from the object.

To use this microscope: Screw one of the buttons, which contains a magnifying lens, to the end N of the body; place the slider, with the objects, between the plates of the slider-holder. Then, to attain distinction, and a pleasing view of the object, adjust the body to the focus of the lens you are using, by moving the upper part gently up and down, and regulate the light by the concave mirror.

For opaque objects, two additional pieces must be used. The first is a cylindrical tube of brass (representing at L, Fig. 11.), which fits on the cylindrical part at N of the body. The second piece is the concave speculum E; this is to be screwed to the lower end of the aforesaid tube; the upper edge of this tube should be made to coincide with the line which has the same number affixed to it as to the magnifier you are using; ex. gr. if you are making use of the magnifier marked 5, slide the tube to the circular line on the tube N that is marked also with N° 5. The slider-holder should be removed when you are going to view opaque objects, and a plane glass should be placed on the flange in its head to receive the object; or it may be placed in the nippers, the pin of which fits into the hole in the flange.

The apparatus belonging to this microscope consists of the following particulars; viz. Five magnifiers each fitted in a brass button; one of these is seen at N, Fig. 10. Six ivory sliders, five of them with objects. A brass tube, to hold the concave speculum. The concave speculum in a brass box. A fifth pan. A set of glass tubes. A flat glass fitted to the flange. A concave glass fitted to the flange. A pair of forceps. A steel wire, with a pair of nippers at one end, and a point at the other. A small ivory cylinder, to fit on the pointed end of the aforesaid nippers. A convex lens, moveable in a brass surround; this is affixed to a long brass pin, which fits into a hole on the flange. The construction of the foregoing microscope is very simple, and it is cheap in use; but the advantages of the flange and mirror are too much confined for an extensive application and management of all kinds of objects. Its greatest recommendation is its cheapness; and to those who are desirous of having a compound microscope at a low price, it may be acceptable.

2. Cuff's Microscope. The improved microscope next in order is that of Mr Cuff. Besides remedying the disadvantages abovementioned, it contains the addition of an adjusting screw, which is a considerable improvement, and highly necessary to the examination of objects under the best defined appearance from the glasses. It is represented at Fig. 11. with the apparatus that usually accompanies it. A, B, C, shows the body of this microscope, which contains an eye-glass at A, a broad lens at B, and a mag-
A magnifier which is screwed on at C. The body is supported by the arm D, from which it may be removed at pleasure. The arm D is fixed on the sliding bar F, and may be raised or depressed to any height within its limits. The main pillar a b is fixed in the box b; and by means of the brass foot d is screwed to the mahogany pedestal X, Y, in which is a drawer containing all the apparatus. G is a milled-headed screw, to tighten the bar F when the adjusting screw e is used. g is the stage, or plate which carries the objects; it has a hole at the centre n. G a concave mirror, that may be turned in any direction, to reflect the light of a candle, or the sky, upon the object.

To use this microscope: Screw the magnifier you intend to use to the end C of the body, place the slipper-holder P in the hole n, and the slipper with the object between the plates of the slipper holder; set the upper edge of the bar D to coincide with the divisions which correspond to the magnifier you have in use, and pinch it by the milled nut; now reflect a proper quantity of light upon the object, by means of the concave mirror G, and regulate the body exactly to the eye and the focus of the galsses by the adjusting screw e.

To view opaque objects, take away the slipper-holder P, and place the object on a flat glass under the central body of the cylinder, or on one end of the jointed nippers o p. Then screw the silver concave speculum b to the end of the cylinder L, and slide this cylinder on the lower part of the body, so that the upper edge thereof may coincide with the line which has the fame mark with the magnifier which is then used; reflect the light from the concave mirror G to the silver speculum, from which it will again be reflected on the object. The galsses are to be adjusted to their focal distance as before directed.

The apparatus consists of a convex lens H, to collect the rays of light from the fun or a candle, and condense them on the object. L a cylindrical tube, open at each end, with a concave speculum screwed to the lower end b. P the slipper holder: this consists of a cylindrical tube, in which an inner tube is forced upwards by a spiral spring; it is used to receive an ivory slipper K, which is to be slid between the plates b and L. The cylinder P fits the hole n in the stage; and the hollow part at k is designed to receive a glass tube. R is a brass cone, to be put under the bottom of the cylinder P, to intercept occasionally some of the rays of light. S a box containing a concave and a flat glass, between which a small living insect may be confined: it is to be placed over the hole n. T a flat glass, to lay any occasional object upon; there is also a concave one for fluids. O is a long steel wire, with a small pair of pilers at one end, and a point at the other, designed to flick or hold objects; it flips backwards and forwards in the short tube g; the pin g fits into the hole of the stage. W a little round ivory box, to hold a supply of tale and rings for the slipper.

V a small ivory cylinder, that fits on the pointed end of the steel wire: it is designed for opaque objects. Light-coloured ones are to be stuck upon the dark side, and vice versa. M a fish-pan, whereon to fasten a small fish, to view the circulation of the blood: the tail is to be spread across the oblong hole at the small end, and tied fast, by means of a ribbon fixed thereto; the knob is to be shoved through the slit made in the stage, that the tail may be brought under the magnifier.

3. This microscope has received several material improvements from Mr Martin, Mr Adams, &c. By an alteration, or rather an enlargement, of the body of the tube which contains the eye-glasses, and also of the eye-glasses, themselves, the field of view is made much larger, the mirror below for reflecting light is made to move upon the same bar with the stage, by which means the distance of it from the stage may be very easily and suitably varied. A condensing glass is applied upon the stage in the slipper-holder, in order to modify and increase the light that is reflected by the mirrors below from the light of a candle or lamp. It is furnished also with two mirrors in one frame, one concave and the other plane, of glass silvered; and by simply unfurring the body, the instrument, when desired, may be converted into a single microscope. Fig. 12, is a representation of the instrument thus improved; and the following is the description of it, as given by Mr Adams in his Essay.

A B represents the body of the microscope, containing a double eye-glasses and a body glass: it is here shown as screwed to the arm C D, from whence it may be occasionally removed, either for the convenience of packing, or when the instrument is to be used as a single microscope.

The eye-glasses and the body glasses are contained in a tube which fits into the exterior tube A B; by pulling out a little this tube when the microscope is in use, the magnifying power of each lens is increased.

The body A B of the microscope is supported by the arm C D; this arm is fixed to the main pillar C F, which is screwed firmly to the mahogany pedestal G H; there is a drawer to this pedestal, which holds the apparatus.

N I S, The plate or stage which carries the slipper-holder K L: this stage is moved up or down the pillar C E, by turning the milled nut M; this nut is fixed to a pinion, that works in a toothed rack cut on one end of the pillar. By means of this pinion, the stage may be gradually raised or depressed, and the object adjusted to the focus of the different lenses.

K L is a slipper-holder, which fits into a hole that is in the middle of the stage N I S; it is used to confine and guide either the motion of the slippers which contain the objects, or the glass tubes that are designed to confine small fishes for viewing the circulation of the blood. The slipper are to be passed between the two upper plates, the tubes through the bent plates.

L is a brass tube, to the upper part of which is fixed the condensing lens before spoken of; it fits into the under part of the slipper-holder K L, and may be set at different distances from the object, according to its distance from the mirror or the candle.

O is the frame which holds the two reflecting mirrors, one of which is plane, the other concave. These mirrors may be moved in various directions, in order to reflect the light properly, by means of the pivots on which they move, in the semicircle Q R, and the motion of the semicircle itself on the pin S: the concave mirror generally answers best in the day-time; the plane mirror combines better with the condensing lens,
MICROSCOPE

lens, and a lamp or candle. At D there is a socket for receiving the pin of the arm Q (fig. 31.), to which the concave speculum, for reflecting light on opaque objects, is fixed. At S is a hole and slot for receiving either the nippers L (fig. 31. Pl. ccxi.) or the fifth-pan I; when these are used, the slider-holder must be removed. T, a hole to receive the pin of the convex lens M, fig. 31.

To use this microscope: Take it out of the box. Screw the body into the round end of the upper part of the arm C D. Place the brass sliders, which contain the magnifiers, into the dovetailed slot which is on the under side of the aforesaid arm, as seen at E, and slide it forwards until the magnifier you mean to use is under the centre of the body; opposite to each magnifier in this slot there is a notch, and in the dovetailed part of the arm C D there is a spring, which falls into the abovementioned notch, and thus makes each magnifier coincide with the centre of the body. Pass the ivory slider you intend to use between the upper plates of the slider-holder K L, and then reflect as strong a light as you can on the object by means of one of the mirrors; after this, adjust the object to the focus of the magnifier and your eye, by turning the milled screw M, the motion of which rises and depresses the stage N I S. The degree of light necessary for each object, and the accuracy required in the adjustment of the lenses to their proper focal distance from the object will be easily attained by a little practice.

When opaque objects are to be examined, remove the slider-holder, and place the object on a flat glass, or fix it to the nippers L, the pin of these fit into the hole on the stage; screw the concave speculum R into the arm Q (fig. 31.), and then pass the pin of this arm through the socket D, fig. 12, the light is now to be reflected from the concave mirror to the silver speculum, and from this down on the object. No exact rule can be given for reflecting the light on the object; we must therefore refer the reader to the mother of all ametines, practice. The speculum must be moved lower or higher, to suit the focus of the different magnifiers and the nature of the object.

The foregoing directions apply equally to the using of this instrument as a single microscope; with this difference only, that the body A B is then removed, and the eye is applied to the upper surface of the arm C D, exactly over the magnifiers.

This microscope is sometimes made with the following alterations, which are supposed to make it still more convenient and useful. The arm C D carries the body and magnifiers is made both to turn on a pin, and to slide backwards and forwards in a socket at C, so that, instead of moving the objects below on the stage, and disturbing them, the magnifiers are more conveniently brought over any part of the objects as directed. The condensing glasses are made larger, and slides upon the square bar CF quite distinct from the stage, like the mirrors below; and it is thereby made useful for any other objects that may be applied on glasses fitted to the stage, as well as those put into the slider-holder K. It is thereby not confined to this stage alone, as in the preceding. When the body A B is taken away, the arm C D may be slid away from its bar, with the magnifiers, and the forceps, wire, and joint, applied to it; and it there-

by serves the purpose of a small hand single or ocular microscope, for any object occasionally applied to this wire. The magnifiers in the slider E are mounted in a wheel cafe, which perhaps prevents its being in the way so much as the long slider E before described. This contrivance is represented at X, fig. 12.

4. Martin's New Universal Compound Microscope.—This instrument was originally constructed by the late Mr B. Martin, and intended to comprise all the uses and advantages of the single, compound, opaque, and aquatic microscopes. The following is a description of it as now made, with a few alterations, chiefly suggested (we are told) by Mr Jones of Holborn.

Fig. 13 is a representation of the instrument placed up for use. A, B, C, D, is the body of the microscope: which consists of four parts, viz. A B the eyepiece, or that containing the eye-glasses, and is screwed into C, which is a moveable or sliding tube on the top; this inner tube contains the body-glass screwed into its lower part. D is the exterior tube or case, in which the other slides up and down in an easy and steady manner. This motion of the tube C is useful to increase or decrease the magnifying power of the body-glass when thought necessary, as before mentioned. E is a pipe or stout screwed on to the body of the microscope D, and at its lower part, over the several magnifying lenses hereafter described. F G H I is the square filem of the microscope, upon which the stage R moves in an horizontal position, upwards or downwards, by means of the fine rackwork of teeth and pinion. K L is a strong solid joint and pillar, by which the position of the instrument is readily altered from a vertical one to an oblique or to a perfectly horizontal one, as may be required: it is thus well adapted to the eye of the observer either sitting or standing; and as it is very often convenient to view objects by direct unreflected light, when the square filem F I is placed in an horizontal position for this purpose, the mirror T is then to be taken off in order to prevent the obstruction of the rays. M is a circular piece of brass, serving as a base to the pillar. N O P, the tripod or foot by which the whole body of the microscope is readily supported; it folds up when packed into the case. W is a brass frame, that contains the condensing lens, and acts in conjunction with the large concave and plane mirrors below at T; the reflected rays from which, either of the common light or of that of a candle or lamp, it agreeably modifies, and makes steady in the field of view.

The particulars of the apparatus to this microscope are as follows: Q is a circular brass box, containing six magnifiers or object lenses, numbered 1, 2, 3, 4, 5, 6; the digits of which appear severally through a small round hole in the upper plate of it. To the upper side is fixed a small circle of brass, by which it is connected with, and screwed into, the round end of the arm a b c d; which is a long piece of brass, and moves through either by teeth or pinion, or pot, as may be defined, in e f; which is a socket on the upper part of the pillar, and admits, with a motion both easy and steady, the brass arm. R is a fixed stage, upon which the objects to be viewed are to be placed: it is firmly fastened to the square-pilar, which is moved by the rackwork. In the middle is a large circular hole, for receiving...
Microscope receiving concave glases, with limbs, &c. It has also a fixing spring-frame to forefall down flips of glases or other things: at a b c are three small fockets or holes, intended to receive several parts of the apparatus. S is the refractor, or illuminating lens, for converging the sun’s rays upon opaque objects laid upon the flage R. To this purpose it moves on a semicircle upon a long Shank, in a spring focket b, in the arm i; this arm moving every way by a stout pin k in the focket a of the flage. In this manner it is easily adjusted to any position of the fun, candle &c.— T, the reflecting-glases frame, containing a concave and plane specular, which is moved upon the square end of the ivory, for the reception of the three following articles: which makes the single opaque microscope, by being screwed to the box n° 2. is a larger fize than that in room of the box fixed stage, &c.; and circular plane and concave glases, n° 4. for extemporaneous transparent objects.­

The preceding are the chief articles of supply:­

No. 5. is the silvered specular, called a Liberkhun, which makes the fingle opaque microscope, by being screwed to the filder a b c d (fig. 13.) in room of the box of lenses Q, and the body A.E. above it. The chief use of this is to view very small objects strongly illuminated near the compounded focus of the mirror T (fig. 13.) No. 6. is the forceps or pliers, for holding fuch kind of objects, and by which they can be applied very readily to the focus of the lens, in the liberthun. They have a motion all ways by means of the spring focket a, the joint b, and the Shank c, which is placed in the focket c of the fixed flage R (fig. 13.) No. 7. is a small piece of ivory, to be placed upon the pointed end of the pliers: it is black upon one fide, and white upon the other to receive opaque objects.

No. 8. is a liberthun of a larger fize than that first mentioned, with a hole in its centre; this is ferewed into n° 9. the hole a of a brafs ring, fattenfed to a long wire b; which moves up and down in the spring focket b of the flage R, in which it also moves fideways; and thus, with body A.E. above, forms an aquatic compoud microscope for thowing all forts of objects in water and other fluids placed under it in the watch-glases n° 2. on the flage.

No. 11. is a cone with a proper aperture a to exclude superfusious light, that would disturb a critical examination of a curious object; it is placed on the under fide of the fixed flage R.

No. 12. is what is usually called a bug-box, containing of a concave glases with a plane one ferewed over it by means of which a bug, louse, flea, &c. may be secured and viewed alive. It is to be placed on either Microscope of the flages R (fig. 13.), or n° 1 (fig. 14.).

No. 13. is the fidel pin. In the long concave body a, a fidel may be fo confined by the ribband, that the transparent tail may be in part over the flit or hole at a. In this flate, it is placed on the flage R, with the pin d in the hole e of the flage, and moves freely and horizontally for viewing the circulation of the blood, &c.

No. 14. is the filder holder—that is placed on the flage R: it receives the fliders and tubes when filled with transparent objects, to be viewed either by the compound or fingle microscope.

No. 15. reprefents the ivory filder, to hold the objects between the tale as usual.

No. 16. is a useful auxiliary flider framed in brafs. In this filder small concave glases are cemented; and a flip of plane glases slides over them; by which any small living object, as mites, &c., may be confined without injury, and deliberately viewed.

No. 17. repreffes a fet of glases tubes, three in number, one within another; they are useful for small tadpoles, water-newts, &c., when the circulation of the blood is to be viewed. There is a fmall hole at one end of each tube, that ferves to admit the air; for when they are filled with water, the other end is stopped with a cork.

No. 18. is a small ivory box, containing fpare tales and wires, to supply the fliders with occasionally.

No. 19. a brafs cell or button, containing a very small lens, properly fet between two small plates of brafs, that it may be brought very near to the object when viewed therewith as a fingle microscope. This magnifier is screwfed into the fame hole as the wheel of fix magnifiers Q are (fig. 13.).

No. 20. is a lens, adapted to view and examine objects, by magnifying them sufficiently, so as to be able to apply them to the microscope for infpection; on this account it is called the explorer.

The preceding are the chief articles of the apparatus, which on account of their being somewhat different from what is applied to other microscopes, we have been thus particular in describing. In using the microscope, and while viewing objects by either the fingle or compound instrument, the focal diftances of the magnifiers are made perfectly exaft by turning of the pinion at the nut a, in one way or the other, very gently in the teeth of the rack-work at X (fig. 13.).

It is necessary that the centres of the object lenes or magnifiers, the flage, and the mirrors at bottom, fould all be in a right line in the axis of the microscope, when opaque objects are to be viewed, that are placed upon the ivory piece n° 7., or the forceps n° 6. and all other fuch fort of objects which are placed in the centre of the flage R, or filder-holder n° 14. But when aquatic or living objects, which require a great space to move in, are to be viewed, then the horizontal motion at c f (fig. 13.) is made ufe of, and the view may be extended laterally over the whole of the diameter of the object or field of view; and by putting the arm a b c d forward or backward in its focket e f, the view is extended in the contrary direction equally well; and in this manner the whole
MICROSCOPE of the objects may be viewed without the least disturbance.

As the brass arm \(abc \) may be brought to the height of three or four inches above the stage \(R \); so, by means of the rack-work motion of the stage, a lens of a greater focal distance than the greatest in the wheel \(Q \) may be occasionally applied in place of the wheel, and thereby the larger kind of objects be viewed; the instrument becoming, in this case, what is called a megascope.

In viewing moving living objects, or even fixed ones, when nice motions are requisite, a rack-work and pinion is often applied to the arm \(abc \); the arm is cut out with teeth; and the pinion, as shown at \(Y \), is applied to work it. This acts in one direction; and in order to produce an equally necessary motion perpendicular to this, rack-work and pinion is applied tangent-wise to the stage, which is then jointed.

What has been related above respects the construction of those denominated "parlour microscopes," in contradistinction to those which are portable; their dimensions, however, have been considerably reduced by opticians, in order to render them fit for the pocket; and as they are for the most part constructed on nearly the same principles as those with which an instrument has been already described, what has been said will sufficiently instruct our readers in using any pocket microscope whatever. Only it may be observed, that in the reduced instruments, both the field of view and the magnifying power are proportionally diminished.

We shall conclude the account of this sort of microscope with descriptions of a very portable pocket apparatus of microscopic instruments, and of a new microscopic pocket-telescope, both invented by the late Mr. B. Martin, and since made by most instrument makers in London.

The former is represented at fig. 15. It consists of two parts, viz. the body \(a b \), and the pedal or \(k \), which is joined by a screw at the part between \(b \) and \(i \). It consists of three cylindrical tubes, viz. (1.) the exterior tube, or cafe \(a b \); (2.) a middle tube \(c b \); and (3.) the interior tube \(f g \).

The middle tube \(c d \) is the adjuster; and is connected with the outer tube by the rack-work of teeth and pinion, as shown at \(e \); by which means it is moved up and down at pleasure through the smallest space, and carries with it the internal tube \(f g \). The interior tube \(f g \) receives on its lower part at \(b \) the several capsules or boxes, 2, 3, 4, 5, (fig. 16.) which contain the object lenses or magnifiers.

The method of using this compound microscope in the perpendicular position, is as follows. The stage \(n^o \) 1. is put within the exterior tube at \(b \). Under the springs are applied the four ivory sliders, which contain a variety of transparent objects; then move the interior tube \(f g \) up and down with the hand, till you discern the object in the slider, and then let it rest. After this, turn the pinion at \(e \) very tenderly one way or the other, till you obtain a perfect view of the transparent objects properly illuminated, from a mirror contained in the pedestal or \(k \), suspended upon, and moveable about the points of two screws (11). \(n^o \) 6. (fig. 16.) represents a moveable stage, which is placed in the spring socket \(m \). It contains a concave glass for the reception of animal-cules in fluids; and has the advantage of bringing any part into view by moving the handle at \(m \). If living and moving objects are required to be shown, they must be confined in the concave, by putting a glass cover, \(n^o 7. \), upon the stage; and then a small spider, a leaf, flea, bug, &c. may be seen, and the motion or circulation of the blood, &c. observed with surprising distinctness.

To view the circulation of the blood in the most eminent degree, it must be done by placing small frogs tadpoles, water-newts, fishes, &c. in a tube as represented \(n^o \) 8. (fig. 17.) which tube is placed in the opposite fides of the cafe \(a b \), fig. 15. in the lower part.—\(n^o \) 9. (fig. 16.) is a pair of pincers or pliers \(d \), for holding any object; the other end of the steel wire is pointed to receive a piece of ivory \(b \), with one end black and the other white, on which you focus objects of different hue: this also, when used, is placed in the spring socket \(m \).

To use this instrument as a compound opaque, you screw off the body part \(a b \), and screw it to the handle \(r \) (fig. 16.) by this means you may hold the microscope in a horizontal position, as shown in the figure. The silver dihr or spectulum (which is contained in the bottom or bafe \(k \), fig. 15.), is then screwed on at \(b \). \(n^o \) 9. is placed in the spring-socket \(m \), and adjusted backward and forward in \(m \), till the reflected light from the spectulum falls in a proper manner on the opaque object. Either of the 4 magnifiers, 2, 3, 4, 5, may be used, and brought to a proper focus, as before described by the tooth and pinion \(e \) fig. 15.) If you take off the opaque apparatus, and apply the stage \(n^o \) 1. (fig. 16.) with an ivory slider, and at the end \(b \) screw in either of the two lenses \(n^o \) 10. (which are distinguished by the name of illuminators), the microscope being held up to the light (and properly adjusted), the whole field of view will be strongly illuminated, and present a most pleasing appearance of any transparent object. These two convex lenses are of different focuses, and are to be used singly or together; \(n^o \) 2. being the greatest magnifier, will require the object to be strongly illuminated, and of course both the lenses must be used together. By candle-light, this method of viewing transparent objects will prove very entertaining; by screwing the handle \(r \) into the part \(f \) of \(n^o \) 10. it becomes a delightful hand megascopc for viewing flowers, fol­­¬
The Microscope n° 15, which has a small lens set in its centre. The slider-holder n° 12 is taken out of n° 11, and the pincers or nippers d b, being detached from the other part of n° 9, are passed through the long spring socket n° 11, and ready to receive any opaque body in the pincers or on the black or white piece of ivory. To the large screw of n° 13, are applied the two lenses n° 10, which make it the complete megalascope that can be defined.

The handle r contains the four ivory fliders with objects.

The large green case which contains this universal microscope and its apparatus, is six inches long, three inches wide, two inches deep, and weighs together 16 ounces. "Thus (says Mr Martin) so small, so light, so portable, and yet so universally complete, is this pocket microscope apparatus, that you find nothing material in the large three-pillared microscope, the opaque microscope, Wilson's single microscope, and the aquatic microscope, all together, which you have not in this; beside some very considerable advantages in regard to the field of view, &c. which they have not." (A.)

This inventive artift having contriv'd a construction of the compound microscope so small as to admit of being packed in a common walking cane, thought next of introducing the same instrument into the inlufe of what he called his Pocket Three-bras draw-er Achromatic Telescope. The same eye-glasses that serve the purpose of a telescope, answer as the compound magnifier for viewing transparent objects in a microscope.

Fig. 18, 19, 20, represent the telescope separated by unfcrewing it at m, in order that the whole of the necessary parts in the microscope may be exhibited. Fig. 19, represents the exterior tube, which is of mahogany, and its rings of brass. It is detached from the rest of the telescope, as not making any part of the microscope. The brass cover H, that shuts up the object-glass of the telescope, is allo the box which contains the two-wheel object-frames, and a small plain reflecting mirror.

In fig. 20, A is the cover taken off, by unfcrewing the top part: The mirror B is taken out; and also, by unscrewing the bottom part, the two circular wheels with the objects shown in C and D.

Fig. 18, is a representation of the three internal brass sliding tubes of the telescope, which form the microscopic part. The tubes are to be drawn out as shown in this figure; then, at the lower end of the large tube in the inside, is to be pulled out a short tube b c, that serves as a kind of stage to hold the wheels with objects, and support the reflecting mirror. This tube is to be partly drawn out, and turned so that the circular hole that is pierced in it may coincide with a similar hole that is cut in the exterior tube.

This tube is represented as drawn out in the figure; and the mirror B placed therein, and the wheel with transparent objects. C (fig. 20.) represents the wheel with transparent objects, and D the wheel with opaque objects. They are both made of ivory; and turn round upon a centre brafs pin fit upon the top, which fits upon the edge of the tube; which tube is then to be pushed up into the telescope tube, so that its lower end may rest upon the upper edge of the wheel according to its view at a fig. 18.

In viewing the objects, the second brafs tube of the telescope must be pulled down, till its milled edge at top falls upon that of the exterior tube, taking care that the circular hole is duly placed to the exterior one. These circular holes are not seen in fig. 18. being fupposed in the opposite side, where the wheel is fixed. The adjustment for the focus is now only necessary, which is obtained by pushing downwards or upwards the proper tube, till the object appears quite distinct. In viewing transparent objects, the instrument may be used in two positions; one vertical, when the light is to be reflected upon the object by the mirror; the other, by looking up directly against the light of a candle, common light, &c.; in which case the mirror must be taken away. In viewing opaque objects, the instrument is not used: but as much common light as possible must be admitted through the circular holes in the sides of the tubes.

There is a spare hole in the transparent wheel, and also one in the opaque, to receive any occasional object that is to be viewed. Any fort of object whatever, may be viewed, by only pushing up the microscope tube into its exterior, and bringing the first eye-tube to its focal distance from the object.

The brass tubes are fo contriv'd, that they fop when drawn out to the full length; fo that by applying one hand to the outside tube, and the other to the end of the smallest tube, the telescope at one pull may be drawn out; then any of the tubes (that next to the eye is bent) may be pushed in gradually, till the most distinct view of the object be obtained.

The tubes all glide through short brafs spring tubes, any of which may be unfcrew'd from the ends of the sliding tubes by means of the milled edges which project above the tubes, taken from each other, and the springs set clear if required.

III. Of Solar Microscopes.

This instrument, in its principle, is composed of a tube, a looking-glas or mirror, a convex lens, and Wilson's single microscope before described. The fun's rays being reflected through the tube by means of the mirror upon the object, the image or picture of the object is thrown distinctly and beautifully upon a screen of white paper or a white linen sheet, placed at

(A) Notwithstanding the properties that have been ascribed to the above instrument, and the praises bestowed upon it by some, which induced us to admit so minute a description; we muft apprije our readers, that it has been omitted in Mr Adam's enumeration; and upon inquiry we learn, that it has fallen into neglect among the most judicious opticals, being found too imperfect to serve the purposes of science, and too complicated for the life of persons who seek only entertainment.
But though the obtaining a perfect circular spot of Microscope light upon the screen before you apply the microscope, is a certain proof that your mirror is adjusted right, that proof must not always be expected: for the sun is so low in winter, that if it shine in a direct line against the window, it cannot then afford a spot of light exactly round; but if it be on either side, a round spot may be obtained, even in December. As soon as this appears, screw the tube C into the brass collar provided for it in the middle of your wood-work, taking care not to alter your looking-glass: then screwing the magnifier you choose to employ to the end of your microscope in the usual manner, take away the lens at the other end thereof, and place a slider, containing the objects to be examined, between the thin brass plates, as in the other ways of using the microscope.

Things being thus prepared, screw the body of the microscope over the small end E of the brass tube F; which slip over the small end E of the tube D, and pull out the Said tube D less or more as your object is capable of enduring the sun's heat. Dead objects may be brought within about an inch of the focus of the convex lens 5; but the distance must be shortened for living creatures, or they will soon be killed.

If the light fall not exactly right, you may easily, by a gentle motion of the jointed wire and pulley, direct it through the axis of the microscopic lens. The short tube F, to which the microscope is screwed, renders it easy, by fixing it backwards or forwards on the other tube E, to bring the objects to their focal distance; which will be known by the sharpness and clearness of their appearance: they may also be turned round by the fame means without being in the least disordered.

The magnifiers most useful in the solar microscope are in general, the fourth fifth or sixth. The screen on which the representations of the objects are thrown, is usually composed of a sheet of the largest elephant paper, strained on a frame which slides up or down, or turns about at pleasure on a round wooden pillar, after the manner of some fire-screens. Larger screens may also be made of several sheets of the same paper pasted together on cloth, and let down from the ceiling with a roller like a large map.

"This microscope (says Mr. Baker) is the most entertaining of any; and perhaps the most capable of making discoveries in objects that are not too opaque: as it shows them much larger than can be done any other way. There are also several conveniences attending it, which no other microscope can have: for the weakest eye makes use of it without the least straining or fatigue; numbers of people together may view any object at the same time; and by pointing to the particular parts thereof, and discourse on what lies before them, may be able better to understand another, and more likely to find out the truth, than in other microscopes, where they must peep one after another, and perhaps see the object neither in the same light nor in the same position. Those also, who have no skill in drawing, may, by this contrivance, easily sketch out the exact figure of any object they have a mind to preserve a picture of; since they need only lay a paper on the screen, and trace it.
The improved Solar Microscope as used with the improved single Microscope, with teeth and pinion. Fig. 22. represents the whole form of the single microscope; the parts of which are as follows: ABCD the external tube; GHIK the internal moveable one; QM part of another tube within the last, at one end of which is fixed a plate of brass hollowed in the middle, for receiving the glass tubes: there is also a moveable flat plate between which, and the fixed end of the second tube, the ivory sliders are to be placed. L, a part of the microscope, containing a wire spiral spring, keeping the tube QM with its plates firm against the fixed part IK of the second tube.

EF is the small rack-work of teeth and pinion, by which the tube IG is moved gradually to or from the end AB, for adjusting the objects exactly to the focus of different lengths. NO is a brass slider, with six magnifiers; any one of which may easily be placed before the object. It is known when either of the glass tubes is in the centre of the eyehole, by a small spring falling into a notch in the slide of the slider, made against each of the glasses. Those parts of the apparatus, fig. 14, (Pl. cccx. c., marked no. 15, 16, 17, 18, 19, 20, 21, and 22. are made use of here to this microscope. GH is a brass cell, which holds illuminating glass for converging the sun's beams or the light of a candle strongly upon the objects. The aperture of the glass is made greater or less, by two circular pieces of brass, with holes of different sizes, that are screwed separately over the fixed lens. But at times, objects appear best when the microscope is held up to the common light only, without this glass. It is also taken away when the microscope is applied to the apparatus now to be described.

Fig. 23. represents the apparatus, with the single microscope screwed to it, which constitutes the Solar Microscope. AB is the inner moveable tube, to which the single microscope is screwed. CD is the external tube, containing a condensing convex glass at the end D, and is screwed into the plate EF, which is cut with teeth at its circumference, and moved by the pinion I, that is fixed with the plate GH. This plate is screwed fast against the window-shutter, or board fitted to a convenient window of a darkened room, when the instrument is used. KL is a long frame, fixed to the circular plate EF; containing a looking-glass or mirror for reflecting the solar rays through the lens in the body of the tube D. O is a brass milled head, fastened to a worm or endless screw; which on the outside turns a small wheel, by which the reflecting mirror M is moved upwards or downwards.

In using this microscope, the square frame GH is first to be screwed to the window-shutter, and the round hole of the size of the moveable plate EF, that carries the reflector, in the window-shutter or board; and, by means of two brass nuts a a, let in to the shutter to receive the screws PP, when placed through the holes in the square frame GH, at the two holes QQ; which will firmly fasten the microscope to the shutter, and is easily taken away by only unscrewing the screws PP.

The white paper screen, or white cloth, to receive the images, is to be placed several feet distant from the window: which will make the representations the larger in proportion to the distance. The usual distances are from 6 to 16 feet.

The frame KL, with its mirror M, is to be moved by turning the pinion I, one way or the other, till the beams of the sun's light come through the hole into the room: then, by turning of the worm at O, the mirror must be raised or depressed till the rays become perfectly horizontal, and go straight across the room to the screen. The tube CD, with its lens at D, is now to be screwed into the hole of the circular plate EF: by this glass the rays will be converged to a focus; and from thence proceed diverging to the screen, and there make a large circle of light. The single microscope, fig. 22, is to be screwed on to the end AB (fig. 23.) of the inner tube; and the slider NO, with either of the lenses marked 1, 2, 3, 4, 5, or 6, in the centre of the hole at the end AB. This will occasion a circle of light upon the screen much larger than before. The slider or glass-tube, with the objects to be viewed, is to be placed between the plates at IK against the small magnifier, and moved at pleasure. By shifting the tube AB in or out, you may place the object in such a part of the condensed rays as shall be sufficient to illuminate it, and not scorch or burn it; which will generally require the glass to be about one inch distant from the focus. It now remains only to adjust the object: or, to bring it so near to the magnifier that its image formed upon the screen shall be the most distinct or perfect: and it is effected by gently turning the pinion F, fig. 22, a small matter one way or the other. If the object be rather large in size, the least magnifiers are generally used, and vice versa.

No. 1. is the greatest magnifier, and no. 6. the least, in the brass slider NO. But, if desired, single lenses of greater magnifying powers are made: and they are applied, by being screwed to the end AB, fig. 22. and the brass slider NO is therewith taken away.

The same object may be variously magnified, by the lenses severally applied to it; and the degree of magnifying power is easily known by this rule: At the distance of the object is to that of its image from the magnifier; so is the length and breadth of the object to that of the image.

Instead of the brass sliders with the lenses NO, there is sometimes screwed a lens of a large size, and longer focal distance: the instrument is then converted into a spectroscope; and is adapted for viewing the larger kind of objects contained in large sliders, such as is represented at R. And in the same manner, small objects of entertainment, painted upon glasses like the sliders of a magic lantern, are much magnified, and represeted upon the same screen.

The solar microscopes just described are capable on-
Microscope. A magnifying transparent objects; for which purpose the last instrument is extremely well adapted. But opaque objects form the most considerable part of the curious collections in the works of art as well as nature, a solar microscope for this purpose was a long time wanted. For several years previous to 1774, the late Mr Martin made several efforts towards the construction of such an instrument; and at last completed one about the time just mentioned, which he named,

III. The Opaque Solar Microscope. With this instrument (to use his own words) all opaque objects, whether of the animal, vegetable, or mineral kingdom, may be exhibited in great perfection, in all their native beauty: the lights and shades, the prominences and cavities, and all the varieties of different hues, tints and colours; heightened by reflection of the solar rays condensed upon them. — Transparent objects are also shown with greater perfection than by the common solar microscope.

Fig. 24 represents the solar opaque microscope, mounted for exhibiting opaque objects.

Fig. 25. is the single tooth-and-pinion microscope, as before, which is used for showing transparent objects; the cylindrical tube Y thereof being made to fit into the tube FE of the solar microscope.

ABCD (fig. 24) represents the body of the solar microscope; one part thereof, ABCD, is conical; the other, CDEF, is cylindrical. The conical part receives the tube G of the opaque box, or the tube Y of the single microscope. At the large end AB of the conical part, there is a lens to receive the rays from the mirror, and reflect them towards the box HIKL. NOP is a braze frame; which is fixed to the moveable circular plate a b c: in this frame there is a plane mirror, to reflect the solar rays on the aforementioned lens. This mirror may be moved into the most convenient position for reflecting the light, by means of the nuts Q and R. By the nut Q it may be moved from east to west, and it may be elevated or depressed by the nut R. d e. Two screws to fasten the microscope to a window-shutter. The box for opaque objects is represented by HIKL: it contains a plane mirror M, for reflecting the light which it receives from the large lens to the object, and thereby illuminating it; S is a screw to adjust this mirror, or place it at a proper angle for reflecting the light. V X, two tubes of brass, one sliding within the other, the exterior one in the box HIKL; these carry the magnifying lenses; the interior tube is sometimes taken out, and the exterior one is then used by itself. Part of this tube may be seen in the plate within the box HIKL. At H there is a braze plate, the back part of which is fixed to the hollow tube b, in which there is a spiral wire, which keeps the plate always bearing against the side H of the braze box HIKL. The sliders, with the opaque objects, pass between this plate and the side of the box; to put them there, the plate is to be drawn back by means of the nut g: if k is a door to one side of the opaque box. The foregoing pieces constitute the several parts necessary for viewing opaque objects. We shall now proceed to describe the solar microscope, which is used for transparent objects; but in order to examine these, the box HIKL must be first removed, and in its place we must insert the tube Y of the single microscope that we are now going to describe.

Fig. 25. represents a large tooth-and-pinion microscope; at m, within the body of this microscope, are two thin plates, that are to be separated, in order to let the ivory sliders pass between them; they are prefixed together by a spiral spring, which bears up the upper plate, and forces it against the upper one, the tube Y.

The slider S (under fig. 24.), which contains the magnifiers, fits into the hole n; and any of the magnifiers may be placed before the object, by moving the aforenamed slider; when the magnifier is at the centre of the hole P, a small spring falls into one of the notches which is on the side of the slider.

Under the plate m are placed two lenses, for enlarging the field of view on the screen: the smaller of the two is fixed in a piece of brass, and is nearest the plate m; this is to be taken out when the magnifiers, N 5 4, 5, or 6 are used, or when the megalacope lens T (fig. 24.) is used; but is to be replaced for N 1, 2, 3.

This microscope is adjusted to the focus by turning the milled nut O.

To use the solar microscope: Make a round hole in the window-shutter, a little larger than the circles a b c; pass the mirror ONP through this hole, and apply the square plate to the shutter; then mark with a pencil the places which correspond to the two holes through which the screw is to pass; take away the microscope, and bore two holes at the marked places, sufficiently large to let the milled screws a c pass through them.

The screws are to pass from the outside of the shutter, to go through it; and being then screwed into their respective holes in the square plate, they will when screwed home, hold it fast against the inside of the shutter, and thus support the microscope.

Screw the conical tube ABCD to the circle a b c, and then slide the tube G of the opaque box into the cylindrical part CD EF of the body, if opaque objects are to be examined; but if they be transparent objects, you mean to show, then place the tube Y within the tube CDEF.

The room is to be darkened as much as possible, that no light may enter but what passes through the body of the microscope; for, on this circumstance, together with the brightness of the sun's flame, the perfection and distinctness of the image in a great measure depend.

When the microscope is to be used for opaque objects, 1. Adjust the mirror NOP, so as to receive the solar rays, by means of the two finger screws or nuts, Q R; if k, Q, turns the mirror to the right or left; the second R, raises or depresses it: this you are to do till you have reflected the sun's light through the lens at AB strongly upon a screen of white paper placed at some distance from the window, and formed thereto a round spot of light. An inexperienced observer will find it more convenient to obtain the light by forming this spot before he puts on either the opaque box or the tooth-and-pinion microscope.

Now put in the opaque box, and place the object between the plates at H; open the door k, and adjust the mirror a l till you have illuminated the object strongly. If you cannot effect this by the screw S, put in the tooth-and-pinion microscope.
The object being strongly illuminated, shut the door f, and a distinct view of the object will soon be obtained on your screen, by adjusting the tube VX, which is effected by moving them backwards or forwards.

A round spot of light cannot always be procured in northern latitudes, the altitude of the sun being often too low; neither can it be obtained when the sun is directly perpendicular to the front of the room.

As the sun is continually changing its place, it will be necessary, in order to keep his rays full upon the object, to keep them continually directed thro' the axis of the instrument, by the two screws Q and R.

To view transparent objects, remove the opaque box, and insert the tube Y, fig. 25, in its place; put the slider S into its place at n, and the slider with the objects between the plates at m; then adjust the mirror NOP, as before directed by the screws Q, R, so that the light may pass through the object; regulate the focus of the magnifier by the screw O. The most pleasing magnifiers in use are the fourth and fifth.

The size of the object may be increased or diminished, by altering the distance of the slider from the microscope: five or six feet is a convenient distance.

To examine transparent objects of a larger size, or to render the instrument what is usually called a megala scope, take out the slider S from its place at n, and screw the button T (fig. 24.) into the hole at T, fig. 25, and remove the glass which is under the plate at m, and regulate the light and focus agreeable to the foregoing directions.

N. B. At the end of the tube G there is a lens for increasing the density of the rays, for the purpose of burning or melting any combustible or fusible substance: this lens must be removed in most cases left the objects should be burnt. The intensity of the light is also varied by moving this tube backwards or forwards.

\[\text{Apparatus of the Opaque Solar Microscope.} \]

The large square plate and mirror; the body of the microscope; the opaque box and its tube; the tooth and pinion microscope; the slider with the magnifiers; the megala scope magnifier; the two screws d and e; some ivory sliders; some sliders with opaque objects; a brass frame, with a bottom of soft deal tolick any object on; a brass cylinder K (fig. 31.), for confining opaque objects.

\[\text{IV. The Camera Obscura, or Lucernal, Microscope.} \]

The great facility with which objects can be represented on paper or a rough glass in the camera obscura, and copies drawn from them by any person though unskilful in drawing, evidently suggested the application of the microscope to this instrument. The greatest number of experiments that appear to have been made with this view, were by the late Mr Martin and Mr Adams; the former of whom frequently applied the microscope to the portable camera and with much effect and entertainment. But these instruments being found to answer only with the assistance of the sun, Mr Adams directed his experiments to the construction of an instrument of more extended utility, which could be equally employed in the day-time and by night. He accordingly proceeded so far as to produce, by candle-light, the images of objects refracted from a single magnifier upon one or two large convex lenses (of about five inches or upwards in diameter), at the end of a pyramidal shaped box, in a very pleasing and magnified appearance, so as to give opaque objects as well as transparent ones the utmost distinctness of representation; but full the light of a candle or lamp was found generally insufficient to throw the requisite degree of illumination upon the objects. The invention of what is called Argand's lamp, within these few years offered a complete remedy for this defect, by the intensity and steadiness of its light. This did not escape the present Mr Adams (son of the former), who immediately applied it; and who had likewise O altered and improved his father's instrument, both in construction and form, as to render it altogether a different one, and far more perfect and useful.

The advantages and properties of this excellently conceived instrument are numerous and important. "As the far greater part of the objects which surround us are opaque (says our author), and very few are sufficiently transparent to be examined by the common microscopes, an instrument that could be readily applied to the examination of opaque objects has always been a desideratum. Even in the examination of transparent objects, many of the fine and more curious portions are lost and drowned, as it were, in the light which must be transmitted through them; while different parts of the same object appear only as dark lines or spots, because they are so opaque as not to permit any light to pass through them. These difficulties, as well as many more, are obviated in the lucernal microscope; by which opaque objects of various sizes may be drawn with ease and distinctness: the beautiful colours with which most of them are adorned, are rendered more brilliant, without changing in the least the real tint of the colour; and the concave and convex parts retain all their proper form. The facility with which all opaque objects are applied to this instrument, is another considerable advantage, and almost peculiar to itself; as the texture and configuration of the more tender parts are often hurt by previous preparation, every object may be examined by this instrument, first as opaque, and afterwards (if the texture will admit of it) as transparent. The lucernal microscope does not in the least fatigue that eye; the object appears like nature itself, giving ease to the sight and pleasure to the mind: there is also, in the use of this instrument, no occasion to shut the eye which is not directed to the object. A further advantage peculiar to this microscope is, that by it the outlines of every object may be taken, even by those who are not accustomed to draw; while those who can draw well will receive great assistance, and execute their work with more accuracy and in less time than they would otherwise have been able to have performed it. Transparent objects as well as opaque may be copied in the same manner. The instrument may be used at any time of the day, but the best effect is by night; in which respect it has a superiority over the polar microscope, as that instrument can only be used when the sun shines.
Transparent objects may be examined with the lucernal microscope in three or four different modes, from a blaze of light almost too great for the eye to bear, to that which is perfectly easy to it: And by the addition of a tin lantern to the apparatus, may be thrown on a screen, and exhibited at one view to a large company, as by the solar microscope.

We shall now proceed to the description of the instrument and apparatus as given by Mr. Adams.

Fig. 26. represents the improved lucernal microscope, mounted to view opaque objects. ABCD is a large mahogany pyramidal box, which forms the body of the microscope; it is supported firmly on the base, and contains the lenses for condensing the light, and throwing it upon the object; there is a second tube within that, marked 9 and 10, which may be placed at different distances from the object by the pin 11.

When this glass is used as a single microscope, without any reference to the lucernal, the magnifiers, or object lenses, are to be screwed into the hole 12, and to be adjusted to a proper focus by the nut 13.

N. B. At the end AB (fig. 26) of the wooden body there is a slide, which is represented as partly drawn out at A: when quite taken out, three grooves will be perceived; one of which contains a board that forms the end of the box; the next contains a frame with a greyed glass; and the third, or that farthest from the end AB, two large convex lenses.

Fig. 28. represents one of Argand’s lamps, which are the most suitable for microscopic purposes, on account of the clearness, the intensity, and the steadiness of the light. The following account of the method of managing them, with other observations, is copied from an account given by Mr. Parker with those he sells.

The principle on which the lamp acts, consists in diaphragming the wick in thin parts. so that the air may come into contact with all the burning fuel by which means, together with an increase of the current of air occasioned by rarefaction in the glass tube, the whole of the fuel is converted into flame.

The wicks are circular; and, the more readily to regulate the quantity of light, are fixed on a brass collar, with a wire handle, by means of which they are raised or depressed at pleasure.

To fix the wick on a wooden mandril is contrived, which is tapered at one end, and has a groove turned at the other.

The wick has a felvage at one end, which is to be put foremoist on the mandril, and moved up to the groove; then putting the groove into the collar of the wick-holder, the wick is easily pushed forward upon it.

The wick-holder and wick being put quite down in their place, the spare part of the wick should, while dry, be set a-light, and suffer to burn to the edge of the tube; this will leave it more even than by cutting, and, being black by burning, will be much easier lighted: for this reason, the black should never be quite cut off.

The lamp should be filled an hour or two before it is wanted, that the cotton may imbibe the oil and draw the better.

The lamps which have a reservoir and valve, need no other direction for filling than to do it with a proper trimming pot, carefully observing when they are full; then pulling up the valve by the point, the reservoir, being turned with the other hand, may be replaced without spilling a drop.

Those lamps which fill in the front like a bird-fountain, must be reclined on the back to fill; and this

4 Y 2 should
Screw the tubes PO into the end DE. The magnifying Microscope

The handle G, or the milled nut fig. 27, must be placed on the square end of the pinion a.

Place the lamp lighted before the glass lump n, and the object you intend to examine between the spring-plates of the stage; and the instrument is ready for use.

In all microscopes there are two circumstances which must be particularly attended to: first, the modification of the light, or the proper quantity to illuminate the object; secondly, the adjustment of the instrument to the focus of the glasses and eye of the observer.

In the use of the lucernal microscope there is a third circumstance, which is, the regulation of the guide for the eye.

1. To throw the light upon the object. The flame of the lamp is to be placed rather below the centre of the glass lump n, and as near it as possible; the concave mirror s must be so inclined and turned as to receive the light from the glass lump, and reflect it thence upon the object; the best situation of the concave mirror and the flame of the lamp depends on a combination of circumstances, which a little practice will discover.

2. To regulate the guide for the eye, or to place the centre of the eye-piece L so that it may coincide with the focal point of the lenses and the axis of vision; Lengthen and shorten the tubes MN, by drawing out or putting in the inner tube, and raising or depressing the eye-piece ML, till you find the large lens (which is placed at the end AB of the wooden body) filled by an uniform field of light, without any prismatic colours round the edge; for till this piece is properly fixed, the circle of light will be very small, and only occupy a part of the lens; the eye must be kept at the centre of the eye piece L, during the whole of the operation; which may be rendered somewhat easier to the observer, on the first use of the instrument, if he hold a piece of white paper parallel to the large lens, removing it from or bringing it nearer to them till he find the place where a lucid circle, which he will perceive on the paper, is brightest and most distinct; then he is to fix the centre of the eye-piece to coincide with that spot; after which a very small adjustment will set it perfectly right.

3. To adjust the lenses to their focal distance. This is effected by turning the pinion a, the eye being at the same time at the eye-piece L. The grey glasses is often placed before the large lenses, while regulating the guide for the eye, and adjusting for the focal distance.

If the observer, in the process of his examination of an object, advance rapidly from a shallow to a deep magnifier, he will have himself some labour by pulling out the internal tube at O.

The upper part of the stage is to be raised or lowered occasionally, in order to make the centre of the object coincide with the centre of the lens at O.

To delineate objects, the grey glasses must be placed before the large lenses; the picture of the object will be formed on this glass, and the outline may be accurately taken by going over the picture with a pencil.

The
MICROSCOPE.

Fig. 30.

Plate CCCI

Fig. 31.
Microscope

The opaque part may be used in the day-time without a lamp, provided the large lenses at A B are screened from the light.

To use the Lucernial Microscope in the examination of Transparent Objects. The instrument is to remain as before; the upper part f 3 s of the opaque stage must be removed, and the stage for transparent objects, represented at fig. 28, put in its place; the end 9 10 to be next the lamp.

Place the greyed glasses in its groove at the end A B, and the object in the slider-holder at the front of the stage; then transmit as strong a light as you are able on the object, which you will easily do by raising or lowering the lamp.

The object will be beautifully depicted on the grey glasses; it must be regulated to the focus of the magnifier, by turning the pinion a.

The object may be viewed either with or without the guide for the eye. A single observer will see an object to the greatest advantage by using this guide, which is to be adjusted as we have described above.

If two or three wish to examine the object at the same time, the guide for the eye must be laid aside.

Take the large lens out of the groove, and receive the image on the grey glasses; in this case, the guide for the eye is of no use: if the grey glasses be taken away, the image of the object may be received on a paper screen.

Take out the grey glasses, replace the large lenses, and use the guide for the eye; attend to the foregoing directions, and adjust the object to its proper focus. You will then see the object in a blaze of light almost too great for the eye, a circumstance that will be found very useful in the examination of particular objects. The edges of the object in this mode will be somewhat coloured: but as it is only used in this full light for occasional purposes, it has been thought better to leave this small imperfection, than, by remedying it, to sacrifice greater advantages; the more so, as this fault is easily corrected, and a new and interesting view of the object is obtained, by turning the instrument out of the direct rays of light, and permitting them to pass through only in an oblique direction, by which the upper surface is in some degree illuminated, and the object is seen partly as opaque, partly as transparent. It has been already observed, that the transparent objects might be placed between the slider-holders of the stage for opaque objects, and then be examined as if opaque.

Some transparent objects appear to the greatest advantage when the lens at 9 10 is taken away; as, by giving too great a quantity of light, it renders the edges less sharp.

The variety of views which may be taken of every object by means of the improved lucernial microscope, will be found to be of great use to an accurate observer: it will give him an opportunity of correcting or confirming his discoveries, and investigating those parts Microscope in one mode which are invisible in another.

To throw the image of transparent objects on a screen, as in the solar microscope. It has been long a microscopical desideratum, to have an instrument by which the image of transparent objects might be thrown on a screen, as in the common solar microscope; and this not only because the sun is so uncertain in this climate, and the use of the solar microscope requires confinement in the finest part of the day, when time seldom hangs heavy on the mind; but as it also affords an increase of pleasure, by displaying its wonders to several persons at the same instant, without the least fatigue to the eye.

This purpose is now effectually answered, by affixing the transparent stage of the lucernial to a lantern, with one of Argand's lamps. The lamp is placed within the lantern, and the end 9 10 of the transparent stage is screwed into a female screw, which is riveted in the sliding part of the front of the lantern; the magnifying lenses are to be screwed into the hole represented at 12, and they are adjusted by turning the milled nut. The quantity of light is to be regulated by raising and lowering the sliding-plate or the lamp.

Apparatus which usually accompanies the improved Lucernial Microscope. The stage for opaque objects, with its semicircular lump of glasses, and concave mirror. The stage for transparent objects, which fits on the upper part of the foregoing stage. The sliding tube, to which the magnifiers are to be affixed: one end of these is to be screwed on the end D of the wooden body; the magnifier in use is to be screwed to the other end of the inner tube. Eight magnifying lenses: these are so constructed, that they may be combined together, and thus produce a very great variety of magnifying powers. A fish-pan, such as is represented at I. A steel wire L, with a pair of nippers at one end, and a small cylinder of ivory f at the other. A slider of brass N, containing a flat glass slider, and a brass slider into which are fitted some small concave glasses. A pair of forceps. Six large and six small ivory sliders, with transparent objects. Fourteen wooden sliders, with four opaque objects in each slider; and two spare sliders. Some capillary tubes for viewing small animals.

Ingenious men seldom content themselves with an instrument under one form; hence such a variety of microscopes, hence many alterations in the Lucernial Microscope. Mr Adams himself, we understand, has fitted up this last in a great many different ways; and it is reasonable to think that no person is more likely to give it every improvement of which it is susceptible.

Of the alterations by other hands we shall only particularise one, made by Mr Jones of Holborn (a), whose description is as follows:

A, represents a portion of the top of the mahogany b. 2 x 5

(a) We trust the reader will never consider any paragraph wherein the name of an instrument-maker or other artist is inserted, as a recommendation of those artists by the editors of this work. In the course of a pretty extensive correspondence, they have been favoured with very liberal communications from various artists, for which they are greatly indebted to them: the inserting their names in this work is therefore to be considered as a grateful acknowledgment from the editors for favours conferred on them,—not as a testimonial.
MICROSCOPE box in which it packs, to preserve it steady; it slides in a dove-tail groove within the sides, a similar groove to which is cut in the top of the box A; so that when the instrument is to be used, it is slipped out of the box without-fins, and then slips into the groove at top ready for use, almost instantly, as shown in the figure. The adjustment of the objects is at the stage E; for the right focal distance is readily and conveniently made by turning the long screw-rod B B, which goes through the two pillars supporting the box, and works in the base of the brass stage E; which base is also dovetailed, so as to have a regular and steady motion in another brass basis which supports it. In this instrument, therefore, the pyramidal box does not move; but the stage part only, which, from its small weight, moves in the most agreeable and steady manner. While observing the image of the object upon the glass through the light-hole at G, the object may be moved or changed by only turning the rack-work and pinion applied to the stage, by means of the handle D, for that purpose. By this contrivance you have no occasion to change your position during the view of the objects upon one of the sliders. This motion changes the objects horizontally only; and as they are generally placed exactly in one line, it answers all the purposes for which this motion is intended very well. But it may sometimes happen that the observer would wish to alter the vertical position of the object; to perform which there is another plane rod at F, that acts simply as a lever for this purpose, and moves the sliding part of the stage E vertically either upwards or downwards.

Thus, without altering his position, the observer may investigate all parts of the objects in the most satisfactory manner. Rack-work and pinion might be applied to the stage for the vertical motion also; but as it would materially enhance the expense, it is seldom applied. The brass work at the handle of D contains a Hooke's universal joint.

The brilliancy of the images of the objects shown upon the large lenses at the end of the box, being very frequently so great as to dazzle the eyes, Mr. Jones applied a slight tinge of blue, green, and other coloured glasses to the light-hole at G, which softens this glare, and calls an agreeable hue upon the objects.

Description of the Parts of a Microscopic Apparatus, common to most Instruments, which are delineated in fig. 31.

A and B represent the brass cells which contain the magnifiers belonging to the different kinds of compound microscopes. The magnifiers are sometimes contained in a slider like that which is delineated at S (fig. 24). The lenses of A and B are confined by a small cap; on unrewinding this, the small lens may be taken out and cleaned. The magnifiers A of the lucernial microscope are so contrived, that any two of them may be rewound together, by which means a considerable variety of magnifying power is obtained.

To get at the lenses in the slider S (fig. 24), take out the two setters which hold on the cover.

c, represents the general form of the slider-holder. Microscope It consists of a cylindrical tube, in which an inner tube is forced up by a spring. It is used to receive the ivory or any other slider, in which the transparent objects are placed; there are to be slid between the two upper plates: the hollow part in one of the plates is designed for the glass tubes.

d, the condensing lens and its tube, which fits into the slider-holder C, and may be moved up and down in it. When this piece is pulled up as far as it will go, it condenses the light of a candle, which is reflected on it by the plain mirror of the compound microscope, and spreads it uniformly over the object; in this case it is best adapted to the shallowest magnifiers.

If the deeper lenses are used, it should be drawn down, or rather removed further from the object, that it may concentrate the light in a small compass, and thus render it more definite. The condensing lens is sometimes fitted up differently; but the principle being the same, it will be easy to apply it to use notwithstanding some variations in the mechanism.

e, a brass cone. It fixes under the slider-holder, and is used to lessen occasionally the quantity of light which comes from the mirror to any object.

f, a box with two flat glasses, which may be placed at different distances from each other in order to confine a small living insect.

g, a small brass box to hold the silver speculum H.

h, a small silver concave speculum, designed to reflect the light from the mirror on opaque objects; it should only be used with the shallowest magnifiers. It is applied in different ways to the compound microscope; sometimes to a tube similar to that represented at X, which slides on the lower part of the body; sometimes it is screwed into the ring of the piece Q; the pin of this generally fits into one of the holes in the stage. When this speculum is used, the slider-holder should be removed.

i, a fish-pan, wherein a small fish may be fastened, in order to view the circulation of the blood: its tail may be spread across the oblong hole at the smallest end, and tied fast by means of the ribbon fixed there to, by flowing the knob which is on the back of it through the slit made in the stage; the tail of the fish may be brought under the lens which is in use.

k, a cylindrical piece, intended for the solar opaque microscope: by pulling back the spiral spring, smaller or larger objects may be confined in it.

l, A pair of triangular nippers for taking hold of and confining a large object.

m, a long steel wire, with a small pair of pliers at one end and a steel point at the other: the wire slips backwards or forwards in a spring tube, which is fixed to a joint, at the bottom of which is a pin to fit one of the holes in the stage; this piece is used to confine small objects.

n, a small ivory cylinder that fits on the pointed end of the steel wire L; it is designed to receive opaque objects. Light-coloured ones are to be stuck on the dark side, and vice versa.

m, a convex lens, which fits to the stage by means of
MICROSCOPE

of the long pin adhering to it. This piece is designed to collect the light from the fun or a candle, and to throw it on any object placed on the stage; but it is very little used at present.

N, a brass slider, into which is fitted a flat piece of glass, and a brass slider containing four small glass slides, one or two of them concave, the others flat; it is designed to confine small living objects, and when used is to be placed between the two upper plates of the slider.

O, a glass tube to receive a small fish, &c.
P, represents one of the ivory slides, wherein objects are placed between two pieces of tale, and confined by a brass ring.

Q, a piece to hold the speculum H: this piece is generally fitted to the microscope represented at fig. 12.

R, a pair of forceps, to take up any occasional object.

S, a camel's hair pencil to brush the dust off the glasses; the upper part of the quill is fcooped out, to take up a drop of any fluid, and place it on either of the glasses for examination.

T, an instrument for cutting thin transverse sections of wood. It consists of a wooden base, which supports four brass pillars; on the top of the pillars is placed a flat piece of brass, near the middle of which there is a triangular hole.

A sharp knife, which moves in a diagonal direction, is fixed on the upper side of the aforementioned plate, and in such a manner that the edge always coincides with the surface thereof.

The knife is moved backwards and forwards by means of the handle a. The piece of wood is placed in the triangular trough which is under the brass plate, and is to be kept steady therein by a milled screw which is fitted to the trough; the wood is to be pressed forward for cutting by the micrometer screw b.

The pieces of wood should be applied to this instrument immediately on being taken out of the ground, or else they should be soaked for some time in water, to soften them so that they may not hurt the edge of the knife.

When the edge of the knife is brought in contact with the piece of wood, a small quantity of spirits of wine should be poured on the surface of the wood, to prevent its curling up; it will also make it adhere to the knife, from which it may be removed by pressing a piece of blotting paper on it.

y, An appendage to the cutting engine, which is to be used instead of the micrometer screw, being preferred to it by some. It is placed over the triangular hole, and kept flat down upon the surface of the brass plate, while the piece of wood is pressed against a circular piece of brass which is on the under side of it. This circular piece of brass is fixed to a screw, by which its distance from the flat plate on which the knife moves may be regulated.

z, An ivory box, containing at one end spare tale for the ivory sliders, and at the other spare rings for pressing the tales together and confining them to the slider.

After what has been related of Microscopes, they cannot be said to complete without the valuable addition of a micrometer; for the use and advantages of which, see the article Micrometer.

Having presented our readers with descriptions of the various microscopes generally used, we think it our duty to point out to them those which we conceive to be best calculated to answer the purposes of science. The first which presents itself to our mind is that of Ellis: It is better adapted, than any other portable microscope, to the purposes of general observation; simple in its construction, and general in its application. To those who prefer a double microscope, we should recommend that figured in Plate CCXCVIII. (1.) If opaque objects, as insects, &c., be subjects of investigation, the Lucernar Microscope claims the preference: but if annexation alone guides the choice, the Solar Microscope must be fixed upon.

We shall now proceed to explain some necessary particulars respecting the method of using microscopes: after which, we shall subjoin an enumeration of the principal objects discovered or elucidated by their means.

On this subject Mr. Adams, in his Essay on the Microscopes, has been very copious; with a view, as he informs us, to remove the common complaint made by Mr. Baker, "that many of those who purchase microscopes are so little acquainted with their general and extensive usefulness, and so much at a loss for objects to examine by them, that after diverting their friends some few times with what they find in the slides which generally accompany the instrument, or perhaps with two or three common objects, the microscope is laid aside as of little further value; whereas no instrument has yet appeared in the world capable of affording so constant, various, and satisfactory an entertainment to the mind."

I. In using the microscope, there are three things necessary to be considered. (1.) The preparation and adjustment of the instrument itself. (2.) The proper quantity of light, and the best method of adapting it to the object. (3.) The method of preparing the objects, so that their texture may be properly understood.

1. With regard to the microscope itself, the first thing necessary to be examined is, whether the glasses be clean or not; if they are not so, they must be wiped with a piece of soft leather, taking care not to soil them afterwards with the fingers; and, in replacing them, care must be taken not to place them in an oblique situation. We must likewise be careful not to let the breath fall upon the glasses, nor to hold that part of the body of the instrument where the glasses are placed with a warm hand; because thus the moisture expelled by the heat from the metal will condense upon the glasses, and prevent the object from being distinctly seen. The object should be brought as near the centre of the field of view as possible; for there only it will be exhibited in the greatest perfection. The eye should be moved up and down from the eye-glass of a compound microscope, till the situation is found where the largest field and most distinct view of the object are to be had; but every person ought to adjust the microscope to his own eye, and not to depend upon the situation it was placed in by another. A small magnifying power should always
Microscope always be begun with; by which means the observer will best obtain an exact idea of the situation and connection of the whole; and will of consequence be less liable to form any erroneous opinion when the parts are viewed separately by a lens of greater power. Objects should also be examined first in their most natural position: for if this be not attended to, we shall be apt to form very inadequate ideas of the structure of the whole, as well as of the connection and use of the parts. A living animal ought to be as little hurt or discomposed as possible.

From viewing an object properly, we may acquire a knowledge of its nature; but this cannot be done without an extensive knowledge of the subject, much patience, and many experiments; as in a great number of cases the images will resemble each other, though derived from very different substances. Mr. Baker therefore advises us not to form an opinion too suddenly after viewing a microscopic object; nor to draw our inferences till after repeated experiments and examinations of the object in many different lights and positions; to pass no judgment upon things extended by force, or contracted by dryness, or in any manner out of a natural state, without making suitable allowances. The true colour of objects cannot be properly determined by very great magnifiers; for as the pores and interstices of an object are enlarged according to the magnifying power of the glasses made use of, the component particles of its substance will appear separated many thousand times further afar than they do to the naked eye; hence the reflection of the light from these particles will be very different, and exhibit different colours. It is likewise somewhat difficult to observe opaque objects; and as the apertures of the larger magnifiers are still more small, they are not proper for the purpose. If an object be so very opaque, that no light will pass through it, as much as possible must be thrown upon the upper surface of it. Some consideration is likewise necessary in forming a judgment of the motion of living creatures, or even of fluids, when seen through the microscope; for as the moving body, and the space wherein it moves, are magnified, the motion will also be increased.

2. On the management of the light depends in a great measure the distinctness of the vision; and as, in order to have this in the greatest perfection, we must adapt the quantity of light to the nature of the object and the focus of the magnifier, it is therefore necessary to view it in various degrees of light. In some objects, it is difficult to distinguish between a prominence and a depression, a shadow or a black stain; or between a reflection of light and whiteness, which is particularly observable in the eye of the libella and other flies; all of these appearing very different in one position from what they do in another. The distinctness of an object likewise depends on the quantity of light, the distinctness of vision, and on regulating the quantity to the object; for some will be in a manner lost in a quantity of light scarce sufficient to render another visible.

There are various ways in which a strong light may be thrown upon objects; as by means of the sun and a convex lens. For this purpose, the microscope is to be placed about three feet from a southern window; then take a deep convex lens, mounted on a semicircle and stand, so that its position may easily be varied; place this lens between the object and the window, so that it may collect a considerable number of solar rays, and reflect them on the object or the mirror of the microscope. If the light thus collected from the sun be too powerful, it may be lessened by placing a piece of oiled paper, or a piece of glass lightly greyed, between the object and lens. Thus a proper degree of light may be obtained, and diffused equally all over the surface of an object: a circumstance which ought to be particularly attended to; for if the light be thrown irregularly upon it, no distinct view can be obtained. If we mean to make use of the solar light, it will be found convenient to darken the room, and to reflect the rays of the sun on the abovementioned lens by means of the mirror of a solar microscope fixed to the window-shutter; for thus the observer will be enabled to preserve the light on his object, notwithstanding the motion of the sun. But by reason of this motion, and the variable state of the atmosphere, solar observations are rendered both tedious and inconvenient: whence it will be proper for the observer to be furnished with a large tin lantern, formed something like the common magic lantern, capable of containing one of Argand's lamps. This, however, ought not to be of the fountain kind, lest the rarefaction of the air in the lantern should force the oil over.

There ought to be an aperture in the front of the lantern, which may be moved up and down, and be capable of holding a lens; by which means a pleasant and uniform light as strong as the solar rays may easily be procured. The lamp should likewise move on a rod, so that it may be easily raised or depressed. This lantern may likewise be used for many other purposes; as viewing of pictures, exhibiting microscopic objects on a screen, &c. A weak light, however, is best for viewing many transparent objects; among which we may reckon the prepared eyes of flies, as well as the animalcules in fluids. The quantity of light from a lamp or candle may be increased by removing the microscope to a greater distance from them, or by diminishing the strength of the light which falls upon the objects. This may very conveniently be done by pieces of black paper with circular apertures of different sizes, and placing a larger or smaller one upon the reflecting mirror, as occasion may require. There is an oblique situation of the mirrors, which makes likewise an oblique reflection of the light easily discovered by practice, (but for which no general rule can be given in theory) and which will exhibit an object more distinctly than any other position, showing the surface, as well as those parts through which the light is transmitted. The light of a lamp or candle is generally better for viewing microscopic objects than day-light; it being more easy to modify the former than the latter, and to throw it upon the objects with different degrees of density.

3. With regard to the preparation of objects, Swammerdam has, in that particular, excelled almost all other investigators who either preceded or have succeeded him. He was so industrious and indefatigable, that neither difficulty nor disappointment could make the least impression upon him; and he never abandoned the pursuit of any object until he had obtained
Microscope had a satisfactory idea of it. Unhappily, however, the methods he made use of in preparing his objects for the microscope are now entirely unknown. Dr. Boerhaave examined with the strictest attention all the letters and manuscripts of Swammerdam which he could find; but his researches were far from being successful. The following particulars, however, have thus come to the knowledge of the public.

For differing of small insects, Swammerdam had a brass table made by S. Muijenbroek, to which were allied two brass arms moveable at pleasure to any part of it. The upper part of these vertical arms was contrived in such a manner as to have a slow vertical motion; by which means the operator could readily alter their height as he found convenient. One of these arms was to hold the minute objects, and the other to apply the microscope.

The lenses of Swammerdam’s microscopes were of various fixes as well as foci: but all of them the best that could be procured, both for the transparency of the glass and the fineness of the workmanship. His observations were always begun with the smallest magnifiers, from which he proceeded to the greatest; but in the use of them, he was so exceedingly dextrous, that he made every observation subservient to that which succeeded it, and all of them to the confirmation of each other, and to the completing of the description. His chief art seems to have been in contrasting scissors of an exquisite fineness, and making them very sharp. Thus he was enabled to cut very minute objects to much more advantage than could be done by knives and lancets; for these, though ever so sharp and fine, are apt to disfigure delicate substances by displacing some of the filaments, and drawing them after them as they pass through the bodies; but the scissors cut them all equally. The knives, lancets, and styles he made use of in his dissections, were so fine that he could not see to sharpen them without the assistance of a magnifying glass; but with these he could dissect the intestines of bees with the same accuracy that the best anatomists can do those of large animals. He made use also of very small glass tubes no thicker than a bristle, and drawn to a very fine point at one end, but thicker at the other. These were for the purpose of blowing up, and thus rendering visible the smallest vessels which could be discovered by the microscope; to trace their courses and communications, or sometimes to inject them with coloured liquors.

Swammerdam sometimes made use of spirit of wine, water, or oil of turpentine, for suffocating the insects he wished to examine; and would prefer them for a time in these liquids. Thus he kept the parts from putrefying, and gave them besides such additional strength and firmness, as rendered the dissections much more easy than they would otherwise have been. Having then divided the body transversely with the scissors, and made what observations he could without farther dissection, he proceeded to extract the intestines carefully with very fine instruments, to wash away the fat in the like careful manner; and thus to put the parts into such a state as would best expose them to view; but these operations are best performed while the insects are in their nymphal state.

Vol. XI.

Sometimes the delicate viscera of the insects, after having been suffocated as abovementioned, were put into water; after which, having broken them gently, he procured an opportunity of examining them, especially the air vessels, which he could thus separate entire from all the other parts, to the admiration of all who beheld them; as these vessels cannot be distinctly seen in any other manner, or indeed in any way whatever, without injuring them. Frequently also he injected water with a syringe to cleanse the parts thoroughly, after which he blew them up with air and dried them; thus rendering them durable, and fit for examination at a proper opportunity. Sometimes he made very important discoveries, by examining insects which he had preferred for several years in balsam. Other insects he punctured with a very fine needle; and after squeezing out all their moisture through the holes made in this manner, he filled them with air, by means of very slender glass tubes; then dried them in the shade; and lastly anointed them with oil of spike in which a little rosin had been dissolved; and by which means they, for a long time, retained their proper forms. He was likewise in possession of a singular secret, by which he could preserve the limbs of insects as linen and periphiaceous as ever they had been. He used to make a small puncture or incision in the tails of worms; and after having with great caution squeezed out all the humours, as well as great part of the viscera, he injected them with water in such a manner as to give them the appearance of living creatures in perfect health. He found that the fat of all insects was entirely dissoluble in oil of turpentine; by which means he was enabled plainly to discern the viscera; though, after this dissolution, it was necessary to cleanse and wash them frequently in clean water. In this manner he would frequently have spent whole days in the preparation of a single caterpillar, and cleaning it from its fat, in order to discover the true situation of the insect’s heart. He had a singular dexterity in stripping off the skins of caterpillars that were on the point of spinning their cones. This was done by letting them drop by their threads into sealing water, and then suddenly withdrawing them. Thus the epidermis peeled off very easily; and, when this was done, he put them into distilled vinegar and spirit of wine mixed together in equal proportions; which, by giving a due degree of firmness to the parts, gave him an opportunity of separating them with very little trouble from the exuvia, without any danger to the internal parts. Thus the nymph could be shown to be wrapped up in the caterpillar and the butterfly in the nymph; and there is little doubt that those who look into the works of Swammerdam, will be amply recompened, whether they consider the unexampled labour or the piety of the author.

M. Lyonet, a late eminent naturalist, unhappily drowned the insects he designed to examine; by which means he was enabled to preserve both the form and transparency of the parts. According to him, the insect, if very small, viz. one tenth of an inch, or little more, in length, should be dissected on a glass somewhat concave. It should be fastened that the insect will not fly by keeping for a few days, spirit of wine diluted with water must be substituted instead of pure water. The insect must be suffered to dry; after which it may
Microscope be fastened by a piece of soft wax, and again covered with water.—Larger objects should be placed in a trough of thin wood; and for this purpose the bottom of a common chip box will answer very well; only surrounding the edge of it with soft wax, to keep in the water or other fluid employed in preserving the insect. The body is then to be opened; and if the parts are soft like those of a caterpillar, they should be turned back, and fixed to the trough by small pins, which ought to be set by a small pair of nippers. At the back, and fixed to the trough by small pins, which operation, so that its parts may be gradually unfolded, no parts become detached; or, if the animal be killed. Holding then the creature by the thorax, its parts can be easily laid hold of a spider's thread, or a grain of sand; Two fine steel needles fixed in wooden handles, about two inches and three quarters in length; which were the most generally useful instruments he employed.

Dr. Hooke, who likewise made many microscopic observations, takes notice, that the common ant or pismire is much more troublesome to draw than other insects, as it is extremely difficult to get the body in a quiet natural posture. If its feet be fettered with wax or glue, while the animal remains alive, it so twists its body, that there is no possibility of gaining a proper view of it; and if it be killed before any observation is made, the shape is often spoiled before it can be examined. The bodies of many minute insects, when their life is destroyed instantly shrivel up; and this is observable even in plants as well as insects, the surface of these small bodies being affected by the least change of air; which is particularly the case with the ant. If this creature, however, be dropped into rectified spirit of wine, it will instantly be killed; and when it is taken out, the spirit of wine evaporates, leaving the animal dry, and in its natural posture, or at least in such a state that it may easily be placed in whatever posture we please.

Parts of insects. The wings, in many insects, are so transparent, that they require no previous preparation; but some of those that are folded up under stytra or cafes, require a considerable share of dexterity to unfold them; for these wings are naturally endowed with such a spring, that they immediately unfold themselves again, unless care be taken to prevent them. The wing of the earwig, when expanded, is of a tolerable size, yet is folded up under a café not one eighth part of its bulk; and the texture of this wing renders it difficult to be unfolded. This is done with the least trouble immediately after the insect is killed. Holding then the creature by the thorax, between the finger and thumb, with a blunt-pointed pin endeavour gently to open it, by spreading it over the fore-finger, and at the same time gradually sliding the thumb over it. When the wing is sufficiently expanded, separate it from the insect by a sharp knife or a pair of scissors. The wing should be pre-fed for some time: between the thumb and finger before it be removed; it should then be placed between two pieces of paper, and again pressed for at least an hour; after which time, as there will be no danger of its folding up any more, it may be set between the tales, and applied to the microscope. Similar care is requisite in displaying the wings of the notonecta and other water-insects, as well as most kinds of griffils.

The minute scales or feathers, which cover the wings of moths or butterflies, afford very beautiful objects for the microscope. Those from one part of the wing frequently differ in shape from such as are taken from other parts; and near the thorax, shoulder, and on the fringes of the wings, we generally meet with hair instead of scales. The whole may be brushed off the wing, upon a piece of paper, by means of a camel's-hair pencil; after which the hairs can be separated with the assistance of a common magnifying glass.

It is likewise a matter of considerable difficulty to dissect properly the objects of insects, such as the great, tabanus, &c. and the experiment must be repeated a great number of times before the structure and situation of the parts can be thoroughly investigated, as the observer will frequently discover in one what he could not in another. The collector of the box which forms a very curious object, ought to be first carefully washed in spirit of turpentine; by which means it will be freed from the unctuous matter adhering to it: when dry, it is again to be washed with a camel's-hair pencil to disengage and bring forward the small hairs which form part of this microscopic beauty. The best method of managing the flings of insects, which are in danger of being broken by reason of their hardness, is to soak the cafe and the shift of the apparatus for some time in spirit of wine or turpentine; then lay them on a piece of paper, and with a blunt knife draw out the fling, holding the flate with the nail of the finger or any blunt instrument; but great care is necessary to preserve the feelers which when cleaned add much to the beauty of the object. The board of the lepas antifera is to be soaked in clean soft water frequently brushing it while wet with a camel's-hair pencil: after it is dried, the brushing must be repeated with a dry pencil to disengage and separate the hairs which are apt to adhere together.

To view to advantage the fat, brains, and other similar substances, Dr. Hooke advises to render the surface smooth, by prepping it between two plates of thin glass, by which means the matter will be rendered much thinner and more transparent; without this precaution, it appears confused by reason of the parts lying too thick upon one another. For macular floris take a piece of the flesh, thin and dry; moisten it with warm water, and after this is evaporated the vesicles will appear more plain and disjunct; and by repeated macerations they appear still more so. The cœurs of insects afford a pleasing object, and require but little preparation. If bent or curled up, they will become so relaxed by being kept a few hours in a moist atmosphere, that you may easily extend them to their natural positions; or the steam of warm water will answer the purpose very well.

The eyes of insects in general form very curious and
Microscopic and beautiful objects. Those of the libellula and other flies, as well as of the lobster, &c., must first be cleaned from the blood, &c. after which they should be soaked in water for some days: one or two skins are then to be separated from the eye, which would be otherwise too opaque and confus'd; but some care is requisite in this operation; for if the skin be rendered too thin, it is impossible to form a proper idea of the organization of the part. In some instances, however, the organization is such, that by altering the texture of the part, we destroy the objects which we wish to observe. Of this sort are the nerves, tendons, muscular fibres, many of which are viewed to most advantage when floating in some transparent fluid. Thus very few of the muscular fibres can be discovered when we attempt to view them in the open air, though great numbers may be seen if they be placed in water or oil. By viewing the thread of a ligament in this manner, we find it composed of a vast number of smooth round threads lying close together. Elastick objects should be pulled or stretched out while they are under the microscope, that the texture and nature of those parts, the figure of which is altered by being thus pulled out, may be more fully discovered.

Other objects. To examine bones by the microscope, they should first be viewed as opaque objects; but afterwards, by procuring thin slices of them, they may be viewed as transparent. The sections should be cut in all directions, and be well washed and cleaned; and in some cases maceration will be useful, or the bones may be heated red hot in a clear fire, and then taken out; by which means the bony cells will appear more conspicuous. The pores of the skin may be examined by cutting off a thin slice off the upper skin with a razor, and then a second from the same place; applying the latter to the microscope. The lizard, guana, &c. have two skins, one very transparent, the other thicker and more opaque; and, separating these two, you obtain very beautiful objects.

To view the scales of fish to advantage, they ought to be soaked in water for a few days, and then carefully rubbed to clean them from the skin and dirt which may adhere to them. The scales of the eel are of a great curiosity; and the more so, as this creature was not known to have any scales till they were discovered by the microscope. The method of discovering them is this. Take a piece of the skin of an eel from off its side, and spread it while moist on a piece of glass, that it may dry very smooth: when thus dried, the surface will appear all over dimpled or pitted by the scales, which lie under a sort of cuticle or thin skin; which may be raised with the sharp point of a penknife, together with the scales, which will then easily slip out; and thus we may procure as many as we please.

The leaves of many trees, as well as of some plants, when dissected, form a very agreeable object. In order to dissect them, take a few of the most perfect leaves you can find, and place them in a pan with clean water. Let them remain there three weeks, or a month, without changing the water; then take them up; and if they feel very soft, and almost rotten, they are sufficiently soaked. They must then be laid on a flat board, and holding them by the stalk, draw the edge of a knife over the upper side of the leaf, which Microscope will take off most of the skin. Then turn the leaf, and do the same with the under side; and when the skin is taken off on both sides, wash out the pulpy matter, and the fibres will be exhibited in a very beautiful manner. The leaf may be slit into two parts, by splitting the stalk; and the skins peeled from the fibres will also make a good object. This operation is best performed in the autumn; the fibres of the leaves are much stronger at that season, and less liable to be broken. The internal structure of shells may be observed by grinding them down on a bone; and all ores and minerals should be carefully washed and brushed with a small brush to remove any forcible that may adhere to them.

To view the circulation of the blood, we must observe living animals of the most transparent kind. A small eel is sometimes used for this purpose; in which case it must be cleaned from the slime naturally adhering to it; after which it may be put into a tube filled with water, where it can be viewed in a satisfactory manner. The tail of any other small fish may be viewed in the same manner, or put upon a slip of flat glass, and thus laid before the microscope. By filling the tube with water when an eel is made use of, we prevent in a great measure the luminous of the animal from filling the glass. The particles of the blood form a very curious object, and have been carefully viewed by different philosophers; who, nevertheless, differ from one another very much in their accounts of them. The best method of viewing these is to take a small drop of blood when warm, and spread it as thin as possible upon a flat piece of glass. By diluting it a little with warm water, some of the globules will be separated from the smaller, and many of them subdivided; or a small drop of blood may be put into a capillary glass-tube, and then placed before the microscope. Mr Baker advises warm milk as proper to be mixed with the blood; but Mr Hewfon, who is accounted the most accurate observer, diluted the blood with that fluid which undoubtedly is more natural to it, viz. its own serum. By this method he could preserve the small particles entire, and view them distinctly; and thus he found that they were not globular, as had been imagined by other anatomists, but flat. Having shaken a piece of the crafamentum of the blood in serum till the latter became a little coloured, he spread it with a soft hair pencil on a piece of thin glass, which he placed under the microscope, in such a manner as not be quite horizontal, but rather higher at one end than the other. Thus the serum flows from the higher to the lower part; and, as it flows, some of the particles will be found to swim on their flat sides, and will appear to have a dark spot in the middle; while others will turn over from one side to the other as they roll down the glass. Many cruel experiments have been tried in order to observe the circulation of the blood in living creatures, and an apparatus has been invented for viewing the circulation in the mesentery of a frog; but this can answer no useful purpose, and will never be put in practice by persons of humanity, we forbear to mention it.

It. Befides
Microscopic animals. They are the animalcules or moving bodies in water, in which certain substances have been infused; and of which there are a great many different kinds. These animalcules are sometimes found in water which we would call pure, did not the microscopes discover its minute inhabitants; but not equally in all kinds of water, or even in all parts of the same kind of it. The surfaces of infusions are generally covered with a scum which is easily broken, but acquires thickness by standing. In this scum the greatest number of animalcules are usually found. Sometimes it is necessary to dilute the infusions; but this ought always to be done with water, not only distilled, but viewed through a microscope, left it should also have animalcules in it, and thus prove a source of deception. It is, however, most proper to observe the minute objects after the water is a little evaporated; the attention being less diverted by a few objects than when they appear in great numbers. One or two of the animalcules may be separated from the rest by placing a small drop of water on the glass near that of the infusion; join them together by making a small connection between them with a pin; and as soon as you perceive that an animalcule has entered the clear drop, cut off the connection again.

Eels in paette are obtained by boiling a little flour and water into the confidence of book-binders paette; then exposing it to the air in an open vessel, and beating it frequently together to keep the surface from growing moulty or hard. In a few days it will be found peopled with myriads of little animals visible to the naked eye, which are the eggs in question. They may be preferred for a whole year by keeping the paette moistened with water; and while this is done, the motion of the animals will keep the surface from growing moulty. Mr. Baker directs a drop or two of vinegar to be put into the paette now and then. When they are applied to the microscope, the paette must be diluted in a piece of water for them to swim in.

Numerless animalcules are observed by the microscope in infusions of pepper. To make an infusion for this purpose, bruise as much common black pepper as will cover the bottom of an open jar, and lay it thereon about half an inch thick; pour as much soft water into the vessel as will rile about an inch above the pepper. Shake the whole well together; after which they must not be stirred, but be left exposed to the air for a few days; in which time a thin pellicle will be formed on the surface, in which innumerable animals are to be observed by the microscope.

The microscopic animals are so different from those of the larger kinds, that scarce any fort of analogy seems to exist between them; and one would almost be tempted to think that they lived in conformance of laws directly opposite to those which preserve ourselves and other visible animals in existence. They have been systematically arranged by O. F. Müller; though it is by no means probable that all the different classes have yet been discovered. Such as have been observed, however, are by this author divided in the following manner.

I. Such as have no external organs.
 * Membranaceous.

II. Those that have external organs.
* Naked, or not included in a shell.
5. Leucophora : Ciliatum undique. Every part ciliated.
 * Covered with a shell.

This is by our author defined to be "an invisible (to the naked eye), pellucid, simple, puntiform worm;" but of which, small as it is, there are several species.
1. The monas terminor gelatinosa, is a small jelly-like point, which can be but imperfectly seen by the single microscope, and not at all by the compound one. In a full light they totally disappear, by reason of their transparency. Some infusions are so full of them that scarce the least empty space can be perceived; the water itself appearing composed of innumerable globular points, in which motion may be perceived somewhat similar to that which is observed when the sun's rays shine on the water; the whole multitude of animals appearing in commotion like a hive of bees. This animal is very common in ditch-water, and in almost all infusions either of animal or vegetable substanices.
2. Monas atomus or albida; white monas with a variable point. This appears like a white point, which thro' a high magnifier appears somewhat egg-shaped. The smaller end is generally marked with a black point, the situation of which is variable; sometimes it appears on the large end, and sometimes there are two black spots in the middle. This species was found in sea water, which had been kept through the whole winter, but was not very feitid. No other kind of animalcule was found in it.
3. Monas punctum or nigra, black monas. This was found in a feitid infusion of pears, and appears in form of a very minute, opaque, and black point, moving with a slow and wavering motion.
4. Monas ocellus, transparent like tale, with a point in the middle. This is found in ditches covered with con-
Microscope farva, and sometimes with the cycloidium milium; the margin of it is black, with a black point in the middle.

5. Monas lent or hyalina, of a tawny appearance. This is found in all kinds of water; sometimes even in that which is pure, but always in the summer-time in ditch-water. It is found also in all infusions of animal or vegetable substances, whether in fresh or salt water; myriads being contained in a single drop. It is found likewise in the filth of the teeth. It is nearly of a round figure; and so transparent, that it is impossible to discover the least vestige of infintines. They generally appear in clusters, but sometimes singly. Contrary to what happens to other animalcules, they appear to cover the edges of the drop when evaporating, and where they instantly die. A few dark shades, probably occasioned by the wrinkling of the body, are perceived when the water is nearly evaporated. The motions of this animalcule are generally very quick; and two united together, may sometimes be seen swimming among the reeds; which is thought to be a single one generating another by division, as is related under the article Animalcule. These and the animalcules of the first species are so numerous, that they exceed all calculation even in a very small space.

6. Monas micra, marked with a circle. This is found in the purest waters, and may be discovered with the third lens of the single microscope when the magnifying power is increased. It appears like a small lucid point; but can assume an oval or spherical shape at pleasure: sometimes the appearance of two kidneys may be perceived in its body, and there is commonly the figure of an ellipse in it; the situation of which is moveable, sometimes appearing in the middle and sometimes approaching to other extremity. It seems encompaied with a beautiful halo, which is thought to be occasioned by the vibration of fine invisible hairs. It has a variety of motions, and often turns round for a long time in the same place.

7. The tranquilla, or egg-shaped transparent monas with a black margin, is found in urine which has been kept for some time. Urine in this state acquires a scum in which the animalcules reside; but though kept for several months, no other species was found in it. A drop of urine is usually fatal to other animalcules, though this species is to be met with in no other substance. It is generally fixed to one point, but has a kind of vacillatory motion. Frequently these creatures are surrounded with a halo. Sometimes they are quadrangular, and at other times spherical; the black margin is not always to be found; and sometimes there is even an appearance of a tail.

8. The lamellula, or flat transparent monas, is most usually found in salt-water; is of a whiteness of colour and transparent, more than twice as long as it is broad, with a dark margin, having a vacillatory motion, and frequently appearing as double.

9. The pubescula or monas with a green margin. These are generally found in marshy grounds in the month of March. They appear like small spherical grains of a green colour on the circumference, having sometimes a green bent line passing through the middle. They appear sometimes in clusters, from three to seven or more in number, having a waving kind of motion.

10. The nuc, or transparent granulous monas, is Microscope farva, and sometimes with the cycloidium milium; the margin of it is black, with a black point in the middle. This is found in a variety of infusions, and is of that kind which multiplies by dividing itself. They appear in clusters of four, five, or sometimes many more; the corpuscles being of various sizes, according to the number collected into one group. The smaller particles, when separated from the larger, move about with incredible swiftness. A single corpuscle separated from the head, and put by itself into a glass, soon increased in size till it nearly attained the bulk of the parent group. The surface then assumed a wrinkled appearance, and gradually became like the former, separating again into small particles, which likewise increased in bulk as before.

II. The protozoa.

An invisible, very simple, pellucid worm, of a variable form.

1. The diffusus, branching itself out in a variety of directions. It is very rare, and only met with in fens; appearing like a grey mucous mass, filled with a number of black globules, and continually changing its figure, pushing out branches of different lengths and breadths. The internal globules divide immediately, and pass into the new formed parts; always following the various changes of the animalcule; which changes seem to proceed entirely from the internal mechanism of its body, without the aid of any external power.

2. The tenus, running out into a fine point. This is a pellucid gelatinous body, filled with black molecules, and likewise changing its figure, but in a more regular order than the former. It first extends itself in a straight line, the lower part terminating in a bright acute point. It appears to have no intestines; and when the globules are all collected in the upper part, it next draws the pointed end up toward the middle of the body, which assumes a round form. It goes through a number of different shapes, part of which are described under the article Animalcule.

It is found in some kinds of river-water, and appears confined almost entirely to one place, only breeding sidewise.

III. Polos.

An invisible, very simple, pellucid, spherical worm.

1. The punctum; of a black colour, with a lucid point. This is a small globule, with one hemisphere opaque and black, the other having a crystalline appearance; and a vehement motion is observed in the black part. It moves as on an axis, frequently passing through the drop in this manner. Many are often seen joined together in their passage through the water; sometimes moving as in a little whirlpool, and then separating. They are found in great numbers on the surface of hectic fea-water.

The graminum is of a spherical figure and green colour, the circumference being bright and transparent. It is found in marshy places about the month of June, and moves but slowly. It seems to have a green opaque nucleus.

2. The globulos, with the hinder part somewhat obscure, sometimes verges a little towards the oval in its shape, having a flow fluttering kind of motion, but
Microscope more quick when disturbed. The intestines are but

just visible. It is found in most vegetable infusions, and is ten times larger than the mona lens.

4. The pilula, small and round, with green intestines. This is found in water where the lemmata minor grows, in the month of December, and has a kind of rotatory motion, sometimes slow and at others quick. The intestines are placed near the middle, apparently edged with yellow. There is a small incision on one of the edges of the sphere, which may possibly be the mouth of the creature. The whole animal appears encompassed with a halo.

5. The grandinella, with immovable intestines, is much smaller than the last, and marked with several circular lines. The intestines are immovable, and no motion is perceived among the interior molecules. Sometimes it moves about in a straight line, at others irregularly, and sometimes keeps in the same spot, with a tremulous motion.

6. The socialis, with crystalline molecules placed at equal distances from one another. This is found in water where the chara vulgaris has been kept; and has its molecules disposed in a sphere, filling up the whole body of the animalcule; but whether they be covered by a common membrane or united by a stalk (as in the vorticella fascii to be afterwards described) is not known. When very much magnified, some black points may be seen in the crystalline molecules. Its motion is sometimes rotatory and sometimes not.

7. The sphericula, with round molecules, appears to consist of pellucid homogeneous points of different sizes. It moves slowly from right to left and back again, about a quarter of a circle each time.

8. The lumula, with lumular molecules, is a small roundish transparent body, consisting of an innumerable multitude of homogeneous molecules of the shape of a crescent, without any common margin. It moves continually in a twofold manner, viz. of the molecules among one another, and the whole mass turns slowly round. It is found in marshy places in the beginning of spring.

9. The globular, or spherical membraneous volvox is found in great numbers in the infusions of hemp and tremella, and in stagnant waters in spring and summer it was first observed and described by Leeuwenhoek, but the descriptions of it given by authors differ considerably from each other. The following is that of Mr Baker. "There is no appearance of either head tail or fins. It moves in every direction, backwards, forwards, up or down, rolling over and over like a bowl, spinning horizontally like a top, or gliding along smoothly without turning itself at all; some times its motions are very slow, at other times very swift and when it pleases it can turn round as upon an axis very nimbly, without moving out of its place. The body is transparent, except where the circular floris are placed, which are probably its young. The surface of the body in some is as if all dotted over with little points, and in others as if granulated like flax-green. In general it appears as if set round with short moveable hairs." Another author informs us that "they are at first very small, but grow so large that they can be discerned with the naked eye: they are of a yellowish green colour, globular figure, and in substance membraneous and transparent; and in the midst of this substance several small globes may be perceived. Each of these is smaller animalcula, which have also the diaphanous membrane, and contain within themselves still smaller generations, which may be distinguished by means of very powerful glasses. The larger globules may be seen to escape from the parent, and then increase in size."

This little animal appears like a transparent globule of a greenish colour, the fetus being composed of smaller greenish globules. In proportion to its age it becomes whiter and brighter, and moves slowly round its axis; but to the microscope its surface appears as if granulated, the rounder small globules fixed in the centre being largest in those that are young. The exterior molecules may be wiped off, leaving the membrane naked. When the young ones are of a proper size, the membrane opens, and they pass through the figure; after which the mother melts away. Sometimes they change their spherical figure, and become flat in several places. They contain from 8 to between 30 and 40 globules within the membrane.

10. The morum, with spherical green globules in the centre. This is found amongst the lemmata in the months of October and December, and has a slow rotatory motion. The globules seldom move, though a slow quivering motion may sometimes be perceived among them in the centre.

11. The alva, composed of green globules not enclosed in any membrane, is found in the month of August in water where the lemmata polyrrhiza grows. —It consists of a congeries of greenish-coloured globules, apparently of an equal size, with a bright spot in the middle; the whole mass is sometimes of a spherical form, sometimes oval, without any common membrane: a kind of halo may be perceived round it, and the mass generally moves from right to left, but scarce any motion can be perceived among the globules themselves. These masses contain from four to fifty globules, of which a solitary one may sometimes be seen. Sometimes also two masses of globules have been perceived joined together.

12. The vegetans, terminating in a little bunch of globules. This is found in river-water in the month of November. It consists of a number of floccose opalescent branches invisible to the naked eye; and at the apex of these a small congeries of very minute oval pellucid corpuscles. Muller, who discovered this supposed it at first to be a species of microscopic and river fernulae; but he afterwards found the bunches quitting the branches, and swimming about in the water with a proper spontaneous motion; many of the old branches being destroyed, and the younger ones furnished with them.

IV. Enchelis: A simple, invisible, cylindric worm.

1. The viridis, or green enchelis has an obtuse tail, the forepart terminating in an acute truncated angle; the intestines are obscure and indistinct. It continually varies its motion, turning from right to left.

2. The punctifera, having the fore part obtuse, the hinder part pointed. It is opaque, and of a green colour, with a small pellucid spot in the fore part, in which two black points may be seen; and a kind of double
The body is round, of a very dark green, the fore-part egg-shaped, and generally moves long and somehow winding inately, with a bright sky-coloured fluid, and some black molecules transparently situated.

15. The frutillus, with the fore-part truncated, is found in an infusion of grass and hay, and runs backward and forward through the drop with a wavering motion. It is one of the most transparent animalculae, and has the fore-part obtusely convex.

16. The caudata, with a kind of tail, is but seldom met with. The body is grey and transparent, with globular molecules divided from each other and dispersed through the whole; the fore-part is thick and obtuse, the hind part crystalline and small, the end truncated.

17. The epistomium, with the fore-part slender and roundish, is among the smaller animalcula; the body cylindrical and bright, the hind part obtuse, the fore-part smaller, and terminating in a globule, with now and then a black line down the middle.

18. The gemmata is found in ditch-water where the lemma thrives. It has a cylindrical body, the upper part running out into a transparent neck, with a double series of globules running down the body. It moves slowly and generally in a straight line.

19. The retrograda moves commonly sideways, and sometimes in a retrograde manner. It has a gelatinous transparent body, thicker in the middle than at the ends, without any thing that can be called intestines except a pellucid globule discoverable near the hinder part.

20. The testina, with oblate ends, is found in sea-water, and has a quick vacillatory motion from one side to the other. The body is round, with the fore-part transparent. More than half the length of it is without any visible intestines; but the lower end is filled with minute vesicular and transparent globules; a large globular vessel is observed in the fore part.

21. The forcimem was found by Joblot in an infusion of blue bottles moving very slowly in an undulatory manner. The body is cylindrical, about four times as long as broad, truncated at both ends, the intestines, opaque, and not to be distinguished from one another. It forms itself into the shape of the letter S, by turning the two extremities contrariwise.

22. The index is found in water with the lemma minor; the body opaque, of a grey colour, and long conical shape; the lower end is obtuse, one side projecting like a finger from the edge, with two very small projections from the lower end. It has the power of retracting these projections, and making both ends appear obtuse.

23. The truncus, with a kind of head, is the largest of this kind of animalculae. The body is grey, long, and mucous; the fore-part globular, the binder part obtuse; but it can alter its shape considerably. Sometimes there is an appearance of three teeth proceeding...
A very simple, invisible, round, and rather long worm.

1. The *lineola* is found in most vegetable infusions in such numbers, that it seems to fill up almost the whole of their substance. It is so small, that with the best magnifiers we can discern little more than an obscure tridimensional motion among them. It is more slender than the monas terms.

2. The *rugula* is like a bent line; and sometimes draws itself up in an undulated shape, at other times without bending the body at all.

3. The *bacillus*, equally truncated at both ends, is found in an infusion of hay; but Müller mentions the following remarkable fact, viz. that having made two infusions of hay in the same water he put the hay whole in the one, but cut in pieces in the other: he found in the former none of the vibrio bacillus, but many of the monas, lens and kolpoda cecullus; in the latter were many of the vibrio, but few of the other.—This is from six to ten times longer than the monas lens, but much more slender.

4. The *astula* is a round, gelatinous, little, undulating line. This is the animal which Leewenhoeck says is less than the tail of one of the female animalculae. It never appears straight; but when at rest it resembles the letter V, and when in motion the letter M. It commonly rests on the top of the water; sometimes it fixes itself by one extremity, and whirs round.

5. The *spira*, with obtuse windings or flexures, is found in river-water, but seldom. It is slender, and gelatinous, resembling a serpentine line, with an intine down the middle.

6. The *spirillum* is exceedingly minute, and twisted in the form of a spiral, which seems to be its natural shape, as it never untwists itself, but moves forward in Microscope a straight line, vibrating the hind and fore-parts. It was found in 1782 in an infusion of the souchus argenteus.

7. The *vermiculus* has a milky appearance, with an obtuse apex, and a languid undulatory motion, like that of the common worm. It is found in marthy water in November, but seldom. It is thought to be the animal mentioned by Leewenhoeck as found in the dung of the frog and spawn of the male libellula.

8. The *interferon* is found in marthy waters, and has a slow progressive motion. It is milk-coloured, with two obtuse ends, and four or five spherical eggs are perceivable at the hinder extremity.

9. The *bipanicula* is found in fetid salt-water, and moves slowly; for the most part in a straight line. The body is pellucid, and of a taw-like appearance; both ends are truncated, and in the middle one or two pellucid globules placed lengthwise.

10. The *tripanicula* is also transparent and tawy, with both ends tapering. It has three pellucid globules, the middle one of which is largest, the space between them being generally filled with a green matter. It moves in a straight line, backwards and forwards.

11. The *paxillifer*, or straw-like vibrio, consists of a transparent membrane, with yellow intestines, and two or three visible points. They are found in parcels together from seven to forty in number, and ranged in a variety of forms. When at rest, they generally assume a quadrangular figure; and are thought to have some affinity to the hair-like animal described by Mr. Baker, and of which an account is given under the article Animalcula, n° 3.

12. The *lamula*, or bow-shaped vibrio, resembles the moon at its first quarter; it is of a green colour, and has from seven to ten globules disposed in a longitudinal direction.

13. The *verminus* is found in great plenty in salt-water kept for some days till it becomes fetid. It moves quickly, and with an undulatory motion, backwards and forwards. It has a long transparent membrane, with the hind part broader than the fore one. These animalculae seem to be joined together in a very singular manner.

14. The *nolleus* is found in great plenty in spring-water and is alternately at rest and in motion every moment; in the former case resembling the letter T, and in the latter V. It is a white pellucid animalcule, with a globule affixed to the base.

15. The *aevus* in the shape of a fewing needle; the neck round and partly transparent, and marked in the middle with a red point; the tail resembling a fine bristle.

16. The *fugittus*, with a facetious tail, has a long and flexible body; broadest about the middle, and filled there alo with grey molecules; the fore-part being drawn out into a thin and transparent neck, and the upper end thick and black. It is found in salt-water, and seems to move by contortings and extending its neck.

17. The *gerdus*, with a tail terminated by a small tubercle, was found in an infusion made with salt water. Its fore part throughout about one fifth of its length is transparent, and furnished with an alimentary tube of a sky colour; the lower part being
18. The *perpunctatus* is somewhat pointed at both ends. This is found in the infusions of vegetables which have been kept for some weeks. Its body is of a whitish colour, frequently convoluted, and drawn into different figures. The tail is furnished with a long row of very minute points.

19. The *cadaver* is found in river-water; the tail is extremely small, and bent so as to form a considerable angle with the body; the mouth, oesophagus, the molecules in the intestines, and the twittings of them, are easily discerned.

20. The *anguilula* is divided into four varieties: 1. The vinegar cell; 2. That in pale; 3. That of fresh water; and 4. That of salt. The two first are treated of under the article *Animalcule*; the third is exceedingly transparent, with a few transverse lines upon the body, but without any appearance of intestines. Sometimes it has a long row of little globules, and is frequently furnished with two small oval ones: the tail terminates in a point. It has been found in the sediment formed by vegetables on the sides of vats in which water had been kept for a long time. The fourth variety appears, when pressed between two glass plates, to be little more than two crystalline skins with a kind of intestines of a clay colour. The younger ones are furnished with pellicular molecules.

21. The *linter*, or ventricose oval vibrion, with a short neck, is found among the *lemnae*, but not very frequently. It is among the larger kinds of animalcules, egg-shaped, pellicular, inflated, and somewhat depressed at top; having a moveable crystalline neck, and the belly filled with pellicular molecules.

22. The *urticula* resembles a bottle; the belly is full of molecular intestines, the neck bright and clear at the top truncated, and some have a pellicular point at the bottom of the belly. It has a constant and violent vacillatory motion, the neck moving very quickly from side to side.

23. The *fusa* is found in water just freed from the froth, and not often in any other fluid. It is pellicular, with intestines like points in the middle. There is likewise an alimentary canal gradually diminishing in size. Its motion is very quick.

24. The *columbus* is larger than many of the other species of vibrion, and resembles a bird in shape. The neck, which is a little bent, is round, shorter than the trunk, of an equal size throughout, and of a bright appearance, with the apex obtuse. The trunk is thick, somewhat triangular; full of yellow molecules; the fore-shortened part acute, the motion slow.

25. The *fritilla* has a linear body, being a bright membraneous thread; the hinder part somewhat thicker, round, and filled with molecules, excepting at the end, where there is a small empty pellicular space. It can draw in the slender filament part at pleasure.

26. The *ana* with both ends attenuated, and the neck longer than the tail, is found in salt water; tho' a kind is likewise found in fresh water with a neck longer than the other. The trunk of this animalcule is oblong, opaque, and filled with molecules; the fore and hind parts are drawn out into a pellicular tely membrane, which the creature can retract at pleasure.

27. The *cygno* is a very pellicular line, crooked at Microscope top, swelling in the middle, and sharp at the end; the middle full of dark coloured molecules and pellicular intestines. It is very small, and moves more slowly than any of those that move and advance their necks.

28. The *sper* is found in water where duckweed grows. The trunk is elliptic, round, and without any inequality on the sides. It is full of molecules: the hind part sharp and bright; the fore part produced into a bending neck, longer than the body; the apex whole and even, with blue canals passing between the marginal edges, occupying the whole length of the neck; and in one of them a violent descent of water to the beginning of the trunk is observable. It moves the body slowly, but the neck more briskly.

29. The *der* is found in water that has been kept for a long time, and is full of vegetable green matter. The body is elliptical and ventricose, the hind part somewhat sharp, and sometimes filled with darkish molecules. The neck is three or four times longer than the body; of an equal size throughout, and is moved very quickly; but the motion of the body itself is slow.

30. The *sals*, with a crooked neck, and obtuse hinder part, is pellicular and elliptical; the fore part lefseening into a little, round, bright neck, nearly as long as the trunk. The latter is somewhat gibbous, and filled with very small molecules; and there are two small bright globules, one within the hinder extremity, and the other in the middle of the body. The neck of this animalcule is immovable; whence it moves something like a scythe.

31. The *intermedius* appears to be an intermediate species between the *falsa* and the *fșiola*. It seems to be a thin membrane constantly folded. The whole has a crystalline tely appearance; the middle filled with grey particles of different sizes. It has all round a distinct bright margin.

VI. Cyclidium.

A simple, invisible, flat, pellicular, orbicular or oval worm.

1. The *bullia*, or orbicular bright clytidium. This is found occasionally in an infusion of hay. It is very pellicular and white, but the edges somewhat darker than the rest. It moves slowly, and in a semicircular direction.

2. The *millium* is very pellicular, and, splendid like crystal; of an elliptical figure, with a line through the whole length of it. The motion is swift, interrupted, and fluttering.

3. The *glutaeus* is one of the smallest animalcules; the body somewhat of an oval shape, with two small blue spaces at the sides.

4. The *glutaeus* has an oval pellicular body, with both ends plain, or an oval membrane with a distinct well-defined edge. The intestines are so transparent, that they can scarce be discerned when it is empty. When full, they are of a green colour, and there are dark globules discoverable in the middle. When there is plenty of water this animalcule moves swiftly in a circular and diagonal direction; when it moves slowly, it seems to be taking in water, and the intestines are in a violent commotion. It generates by division.

5. The *nigricans* is very small, pellicular, and flat, with a black margin.
6. The *rystratium* is oval, smooth, and very pellucid, with the fore part running out into an obtuse point, with which it seems to feel and examine the bodies to which it comes. The intelleses are filled with a blue liquor, the colour of which sometimes vanishes, and then they seem to be composed of vehicles.

7. The *nucleus* resembles a grape feed, the body being pellucid and depressed, the fore part obtusely convex, and the hind part acute.

8. The *hyalinum* has a tremulous kind of motion; the body oval, flat, and bright, without any visible intellesines.

9. The *pediculus* is scarce ever seen but on the hydrapallida, upon which it runs as if it had feet. It is gelatinous and white; the bottom gibbous over the back; the extremities depressed and truncated, with one end sometimes apparently cloven into two, which may be flippoused the mouth.

10. The *dubium* is of an oval shape, with one side convex the other concave; the margin pellucid, and the inner part containing a great number of vehicles.

VII. *Paramaciun.*

An invisible, membranaceous, flat, and pellucid worm.

1. The *aurelia* is membranaceous, pellucid, and four times longer than it is broad; the fore part obtuse and transparent; the hind part filled with molecules. It has somewhat the appearance of a gimlet by reason of a fold which goes from the middle to the apex, and is of a triangular figure. It moves in a rectilinear and vacillatory manner. It is found in ditches where there is plenty of duckweed, and will live many months in the same water without any renewal of the latter.

2. The *chyrella* is found in salt water, and differs very little from the former, only the ends are more obtuse, and the margins are filled with black globules.

3. The *veratum* is found in ditches, and has an oblong, green, and gelatinous body, filled with molecules; the lower part thicker than the other; and both ends obtuse. It propagates by division.

4. The *veliferum* is membranaceous, oval, grey, and pellucid, with many oval corpuscles dispersed through the body.

5. The *marginatum* is flat, elliptical, and every where filled with molecules, except in the lower end where there is a pellucid vehicle. It is surrounded by a broad double margin, and a bright spiral intestine is observable.

VIII. *Kolpoda.*

An invisible, pellucid, flat, and crooked worm.

1. The *lamella* is very seldom met with. It resembles a long, narrow, and pellucid membrane, with the hind part obtuse, narrower, and curved towards the top. It has a vacillatory and very singular motion; going upon the sharp edge, not on the flat side as is usual with microtopic animals.

2. The *glenula* is found in fetid water; and has the apex somewhat bent, the belly oval, convex, and frigilated.

3. The *rostrum* is found though seldom, in water where the lemma grows; and has a flow and horizontal motion. The fore part is bent into a kind of hook; the hind part obtuse, and quite filled with black molecules.

4. The *ubrea* is depressed, membranaceous, and flexible; one edge nearly straight; the other somewhat bent, filled with obscure molecules, and a few little bladders dispersed here and there.

5. The *mucronata* is a dilated bright membrane; the apex an obtuse point, with a broad marked border running quite round it. It is filled with grey molecules within the margin, and has a truncated appearance.

6. The *triquetra* was found in salt water, and appears to consist of two membranes; the upper side flattened, the lower convex, with the apex bent into a kind of shoulder.

7. The *striata* is likewise found in salt water, and is very pellucid and white, with the upper part rather bent, and terminating in a point; the lower part obtusely round: there is a little black pellucid vehicle at the apex; and with a very great magnifying power the body appears covered with long MEDIAII.

8. The *nucleus* is of an oval shape, with the vertex pointed, and of a brilliant transparency, by which the vicerca are rendered visible. These consist of a number of round diaphanous vehicles.

9. The *melagrini* has a dilated membrane, with very fine folds, which it varies in a moment. The fore part of the body to the middle is clear and bright; the hind part variously folded in transverse and elevated plains and full of molecules. Beneath the apex are three or four teeth; but in some the edge is obtusely notched, and set with smaller notches. In the hinder part are 12 or more equal pellucid globules.

10. The *affinitis* is found on the sea-coast, and has an elliptic mass in the middle, but is not folded like the former. The margin of the fore part is notched from the top to the middle; the lower part swells out, and contracts again into a small point.

11. The *eculus* is found in vegetable infusions, and in fetid hay; moving in all directions, and commonly with great vivacity. It is very pellucid, and has a well defined margin, filled with little bright vehicles differing in size, and of no certain number. Its figure is commonly oval, with the top bent into a kind of beak, sometimes oblong, but most commonly obtuse. It has in the inside from 8 to 24 bright little vehicles not discernible in such as are young. Some have supposed there to be animals which this creature has swallowed; but Mr Muller is of opinion that they are its offspring. When this creature is near death by reason of the evaporation of the water, it protrudes its offspring with violence. From some circumstances it would seem probable that this animalcula calls its skin, as is the case with some insects.

12. The *pulcher* is found in an infusion of the *saccharina* arvenis. It is very pellucid and crystalline, with several globules, and has an oblique incission a little below the apex.

13. The *eculus* is elliptical, flat on the upper side, and convex on the under; the fore part is clear, and from the middle to the hinder part is full of silver-like globules. It frequently stretches out the fore part, and folds it in different positions.
14. The *ren*, or *crassa*, is found in an infusion of hay, commonly about 13 hours after the infusion is made, and has a quick and vacillatory motion. Its body is yellow, thick, and somewhat opaque; curved a little in the middle, so that it resembles a kidney; and full of molecules. When the water in which it swims is about to fail, it takes an oval form, is compressed, and at last bursts.

15. The *fiorum* has an uniform and transparent body, without any sensible inequality; and is of a pale colour, with obscure little globules. It propagates by division.

16. The *cuneus* is white, gelatinous, and without any distinct vifeera; having a bright refracted pellucid pulule on one side of the fore-part. The apex has three or four teeth; and it can bend the hinder part into a spiral form.

IX. *Genium*

An invisible, simple, smooth, and angular worm.

1. The *petiolus* is found in pure water, and moves alternately towards the right and left. It is quadrangular, and pellucid, with 16 spherical molecules of a greenish colour, “let in a quadrangular membrane, like the jewels in the breast-plate of the high-priest, reflecting light on both sides.”

2. The *poleinatum* is found in dunghills; and appears like a little quadrangular membrane, plain on both sides: but with a large magnifier it appears like a bolliier formed of three or four cylindric pillows sunk here and there.

3. The *corygatum* is found in various kinds of infusions; and is somewhat of a square shape, very small, and in some positions as it appears.

4. The *rectangulum* differs but little from the former: the angle at the base is a right one; the larger vehicle is transparent, the rest green.

5. The *truncatum* is found chiefly in pure water and then but seldom. It has a languid motion, and much larger than the foregoing. The fore part is a straight line, with which the sides form obtuse angles, the ends of the sides being united by a curved line. The internal molecules are of a dark green, and there are two little bright vehicles in the middle.

X. *Burjaria.*

A very simple, hollow, membranous worm.

1. The *truncatella* is visible to the naked eye; white oval, and truncated at the top, where there is a large aperture defending towards the base. Most of them have four or five yellow eggs at the bottom. They move from left to right, and from right to left; ascending to the surface in a straight line, and sometimes rolling about while they defend.

2. The *ballina* is pellucid and crystalline, having splendid globules of different sizes swimming about with it. The under side is convex, the upper hollow, with the fore part forming a kind of lip.

3. The *kirrandinella* has two small projecting wings, which give it somewhat of the appearance of a bird; and it moves something like a swallow. It is invisible to the naked eye; but by the microscope appears a pellucid hollow membrane.

4. The *dupilla* was found among duckweed, and appears like a crystalline membrane folded up, with-out any visible intestines except a small congeries of Microscope points under one of the folds.

5. The *globius* has a roundish shape, and is hollow; the lower end being furnished with black molecules of different sizes, the fore part with obscure points, the rest entirely empty, and the middle quite transparent. It moves very slowly from right to left.

XI. *C. crearia.*

An invisible transparent worm with a tail.

1. The *gyrus* greatly resembles the spermatic animalcules. It has a white gelatinous body; the fore part somewhat globular; the hind part round, long, and pointed. Sometimes it appears a little compressed on each side. When swimming it keeps its tail in continual vibration like a tadpole.

2. The *gibba* is found in the infusions of hay and other vegetables; and is small, opaque, gelatinous, white, and without any visible intestines.

3. The *inquieta* is found in salt-water, and is remarkable for changing the shape of its body: sometimes it appears spherical, sometimes like a long cylinder, and sometimes oval. It is white and gelatinous, the tail filiform and flexible, the upper part vibrating violently. A pellucid globule may be observed at the base, and two very small black points near the top.

4. The *lema* varies its form so much, that it might be mistaken for the pylorus of Baker, described under the article *Animalcule*; though in fact it is totally different. The body sometimes appears of an oblong, sometimes of a triangular, and sometimes of a kidney shape. The tail is generally short, thick, and annulated; but sometimes long, flexible, cylindrical, and without rings; vibrating, when stretched out, with so much velocity, that it appears double. A small pellucid globule, which Muller supposes to be its mouth, is observable at the apex; and two black points not easily discovered, he thinks, are its eyes. Sometimes it draws the tail entirely into the body. It walks slowly after taking three or four steeps, and extends the tail, erecting it perpendicularly, shaking and bending it; in which state it very much resembles a leaf of the lemma.

5. The *tubo*, with a tail like a bristle, is found among duckweed. It is of a tapering appearance, partly oval and partly spherical; and seems to be composed of two globular bodies, the lowermost of which is the smallest, and it has two little black points like eyes on the upper part. The tail is sometimes straight, sometimes turned back on the body.

6. The *podaria* is found in November and December, in marshy places covered with lemma. It is pellucid; and seems to consist of a head, trunk, and tail: the head resembles that of a herring; the trunk is ventricose and full of intestines, of a spiral form and black colour. The tail most commonly appears to be divided into two bristles. The intestines are in a continual motion when the body moves and by reason of their various shades make it appear very rough. There are likewise some hairs to be perceived. It turns round as upon an axis when it moves.

7. The *viridis*, is found in the spring in ditches of standing water; and in some of its states has a considerable resemblance to the tail, but has a much greater power of changing its shape. It is naturally cylin-drical,
8. The *Pteridium* is found in salt-water, but seldom. It is small, the body rather opaque and of a round figure. The upper part is bright, and near it a row of short hairs. It has a flow rotatory motion.

9. The *bista* was likewise found in salt-water. It is opaque and cylindrical; and when in motion, the body appears to be surrounded with rows of small hairs separated from each other.

10. The *ovum* has a ventricose, cylindrical, thick, and wrinkled body; the lower part terminating in a small straight neck like that of a pitcher; the tail linear, and terminating in two diverging points.

11. The *catillus* has a moveable head fixed to the body by a point. The abdomen is twice as long as the head, full of intestines, and has a tail still narrower, and terminating in two bristles which it can unite and separate at pleasure. It moves briskly, but without going far from its first place.

12. The *catillina* was found in a ditch where there was plenty of duckweed. It is larger than the preceding, and has a thicker and more cylindrical body; the lower part truncated, with two short diverging points projecting from the middle.

13. The *lapus*, is found in water among duckweed, and is larger than most of the genus. The head is larger than the body; the apex turned down into a little hook; the tail is like the body, but narrower, terminating in two very bright spines, which it extends in different directions. Sometimes it contracts into one half its common size, and again extends itself as before.

14. The *vermicularis* is long, cylindrical, fleshy, and capable of changing its shape. It is divided into eight or nine rings or folding plaits; the apex either obtuse, or notched into two points; the hinder part rather acute and terminating in two pelliculur thorns, between which a swelling is sometimes perceived. It often projects a kind of clavell protozoa from the intestine, at the apex. It is found in water where there is duckweed.

15. The *foecipta* is found in marish places, is cylindrical and wrinkled with a forked protozoa which it can thrust out or pull in.

16. The *pleuroletta* is found in water which has been kept for several months. It is membraneous, roundish, and white, with two blackish points in the fore part, the hinder part being furnished with a slender sharp tail. It has orbicular intestines of different sizes in the middle; the larger of them bright. The motion is vacillatory; and in swimming it keeps one edge of the lateral membrane upwards, the other folded down.

17. The *tripes* is flat, pelliculur, triangular, having each angle of the base or fore part bent down into two linear arms, the apex of the triangle prolonged into a tail. It is found in salt water.

18. The *cyclidium* is frequently found in pure water, and has an oval, smooth, membraneous, pelliculur body with a black margin. The tail is concealed under the edge, and comes out from it at every motion, but in such a manner as to project but little from the edge. There is also a kind of border to the hinder part.

19. The *trias* appears as an oval pellicular membrane, something larger than the *monas longa*. The fore edge is thick and truncated; the hinder part acute, and terminating in a short tail. It whirls about in various directions with great velocity.

20. The *dicer* is a small orbicular animalcule, with a bent tail.

21. The *orbus* is round, and has a tail consisting of two long bristles.

22. The *luna* is likewise round, and has the fore-part hollowed into the form of a crescent.
Microscope

The fore-part is truncated, the hind-part brought nearly to a point, with a kind of oval hole on one side.

9. The *fraxilis* is long, with finuated angles, white, gelatinous, and granulated, changing its form considerably.

10. The *dilatata* appears like a gelatinous membrane, with a few grey molecules in the fore-part, and a great number in the hinder part. It is sometimes dilated into a triangular form with finuated sides; at other times the shape is more irregular and oblong.

11. The *scintillons* was found in December among the lefer lama. It is of a green colour, oval, round, and opaque. It is supposed to be ciliated from its bright twinkling appearance, which probably arises from the motion it gives the water.

12. The *vesiculifera* is oval, very pellucid, with a defined dark edge and inside, containing some very bright bladders or vesicles. The middle frequently appears blue, and the vesicles appear as if set in a ground of that colour.

13. The *globulifera* was found in a ditch where the lemma minor grew. The body is round, very pellucid, without molecules, but with three little pellucid globules, and every where set with short hairs.

14. The *pulilata* is found in marshy waters; and is white, gelatinous, and somewhat granulated; the lower part truncated as if an oblique section were made in an egg near the bottom. It is covered with little erect shining hairs, and at the lower extremity a few bright pustules may be discovered.

15. The *turbilata* is found in flowing salt water; and is round, pellucid, somewhat of the shape of an acorn, with a pellucid globule at the lower end.

16. The *acuta* is found in salt water, and is gelatinous, thick, capable of assuming different shapes; having the apex bright, and the rest of the body filled with little spherules. Sometimes it draws itself up into an orbicular shape, at others one edge is finuated.

17. The *notata* is oval, round, and has a black point at the edge.

18. The *candida* is found in salt water; and is membranaceous, flat, very white, with no visible integuments except two oval bodies not easily perceived. The whole edge is ciliated.

19. The *nodulata* is oblong and oval, with a double row of little nodules.

20. The *gigantea* is common in salt water in the months of November and December. It is oblong and subdepressed, with a black margin filled with little molecules, but more particularly distinguished by a curved line in the middle somewhere in the shape of the letter S; one end of which is sometimes bent into the form of a small spiral.

21. The *trigona* is found in marithes, but not commonly. It is a yellow triangular mass filled with unequal pellucid vehicles, one of which is much larger than the rest, and the edge surrounded with short fluctuating hairs.

22. The *fluida* is somewhat of a kidney shape, but ventricose.

23. The *flava* is reniform and finuated.

24. The *armilla* is round and annular.

25. The *coronula* is of the shape of an inverted cone, opaque, and of a green colour. This requires to be observed for some time before we can ascertain its character. The body is composed of molecular vessels; the fore part is wide and truncated, with a little prominent horn or hook on both sides; the hind part being conical, every where ciliated, and the hairs exceedingly minute; those in the fore part are three times longer than the former, and move in a circular direction. The hinder part is pellucid, and sometimes terminates in two or three obtuse pellucid projections. At one time this animalcule will appear reniform and ciliated on the fore part; but at another time the hairs are concealed. It dissolves into molecular vessels when the water evaporates.

26. The *heterodonta* appears to the naked eye like a white point; in the microscope as a cylindrical body, the fore part obtusely round, the middle rather drawn in; the lower part round, but much smaller than the upper part. It appears wholly ciliated through a large magnifier.

XIII. *Trichoda.*

An invisible, pellucid, hairy worm.

1. The *grandinella* is a very small pellucid globule, with the integuments farr very visible, the top of the surface furnished with several small bristles not easily discoverable, as the creature has a power of extending or drawing them back in an instant. It is found in pure water as well as in infusions of vegetables.

2. The *conuta* is a pellucid globule filled with bright integuments, the fore part furnished with hairs, the hind part with a pellucid globule.

3. The *granata* resembles the two former; and has a darkish nucleus in the centre, with short hairs on the edge.

4. The *trochus* is somewhat of a pear-shape, and pellucid; each side of the fore part being distinguished by a little bunch of hairs.

5. The *hydrius* is one of the smallest of this genus, and is found in fresh water. It is smooth and free from hairs, except at the fore part, where there are a few.

6. The *fofus* is small, globular, and crysalkine; befits every where with diverging rays longer than the diameter of the body; the inside full of molecules. The body contracts and dilates, but the creature remains confined to the same spot. It was found with other animalcules in water which had been kept three weeks.

7. The *flavis* is orbicular, bright, and filled with pellucid integuments, frequently having in it a moveable sub stance of the shape of the letter S. It has hairs seldom exceeding 17 in number, set round the circumference, each of them nearly equal in length to the diameter of the animalcule.

8. The *bomba* is of a yellow colour, and full of clay-like molecules. It moves with such velocity as to elude the sight; and appears of various shapes, sometimes spherical, sometimes kidney-shaped, &c.

9. The *orbis* is composed of vesicular molecules; is of a spherical figure, smooth pellucid, and a little notched in the fore part. The notched part is filled with long hairs, but there are none on the rest of the body.

10. The *urina* is membranaceous, pellucid, some what in the form of a water pitcher, with the fore part hairy. It moves but slowly.

11. The *diata* is of a clay-colour, and filled with molecules,
26. The *painea* is found in salt water; and is of a Microscope
long cylindrical shape, filled with molecules, the fore
part bright and clear, with a long opening near the
top which tapers to a point, and is befit with hairs.

27. The *satuia* is ventricose, rather inclining to an
oval figure, with a small tube at the fore part, the upper
part of which is hairy.

28. The *graenota* is oblong and rather broad, with
three little horns on the fore part.

29. The *toriata* is found in the month of Decem-
ber in river-water. It is a beautiful animalcule, of a
flox colour. It is of an oblong shape, the lower end
somewhat larger than the other. It has a set of streaks
running from one end to the other, and at the abdo-
men a double row of little eggs lying in a transverse
direction.

30. The *wulata* is found in the infusion of hay and
other vegetables. It is six times longer than broad,
round, flexuous, of an equal fire, the greater part filled
with obscure molecules; the fore part rather empty,
with an alimentary canal and lucid globules near the
middle. The margin of the forepart is covered with
short hairs.

31. The *auronita* is of a gold colour, pellucid, and
filled with veicles.

32. The *ignita* is of a fine purple colour, with some-
thing of a redish cast, pellucid, splendid, with a num-
ber of globules of different sizes; the fore part small,
the hinder part obtuse, with a very large opening which
feems to run through the body.

33. The *pina* is very small, and so transparent that
it cannot easily be delineated. It is of a spherical
shape; the under part being convex, the upper com-
pressed into a kind of keel, and the fore part small.

34. The *foreps* is found about the winter solstice
in water covered with lemma. It is of a yellow colour,
large, somewhat transparent, and filled with mole-
cules, with a large opaque globule in the lower part.
The fore part is divided into long lobes, one of which
is falciform and acute, the other dilated and ob-
lquely truncated. It can open, shut, or close, these
lobes at pleasure; and by the motion of them it ap-
pears to suck in the water.

35. The *forps* is found in river water. It has the
fore part formed into a kind of foreps, one of which
is twice as long as the other, hooked and ciliated.

36. The *index* is found in fast water, and has the
under part of the front of the margin hairy; the apex
is formed by the fore part projecting like a finger on
a direction joint.

37. The *thoeida* is of a yellow colour, formed of
two pellucid membranes frillated longitudinally; the
lower end obliquely truncated, and the two extremities
bent in opposite directions.

38. The *nucicula* has three corners; the fore part
tuncated and ciliated, the hind part acute and bent a
little upwards. It has a crystalline appearance and a
kind of longitudinal keel runs down the middle.

39. The *fuccia* is of a flattened oval shape, the edge
hairy, and hollowed out in such a manner as to form
two unequal legs.

40. The *faeata* is ovated and ventricose, the apex
acute, with a furrow at the abdomen, and both sides of
it ciliated.

41. The *anis* is found in pure water; and is smooth,
five
42. The *barbata* is round, somewhat linear, with both ends obtuse; the fore part narrower, forming as it were a kind of neck, under which is a row of fluctuating hairs. The trunk is full of grey molecules.

43. The *fasciata* is long, oval, pellucid, and covered with very minute hairs, and has a great number of mucous vesicles about the body.

44. The *erinita* is long, round, wherever ciliated on the upper part, and the under part like many hairs as far as the middle.

45. The *angulata* is long, more convex than most of the genus, divided by a kind of articulation in the middle into two parts equal in breadth, but of different lengths; the apex has short waving hair.

46. The *lutera* is found in an infusion of old grass.

47. The *parilis* is found in salt water; and is long, full of grey molecules; the fore part truncated and hairy, and rather smaller than the other.

48. The *verrucularis* is found in river water; and is pellucid in the fore part, and in the hind part full of molecules.

49. The *melita* is found in salt water, but very rarely. It is oblong, ciliated, with a globular apex, a dilatable neck, and a kind of peristaltic motion perceivable within it.

50. The *fimbriata* is subovate, the apex hairy, the hinder part obliquely truncated and serrated.

51. The *canculus* is found but rarely in vegetable infusions, and moves in a languid manner. The fore part is ventricose; the back divided by an incision in the middle into two tubercles; the lower part of the belly flattened.

52. The *angur* is oblong, depressed, pellucid, and filled with molecules; the vertex is truncated, the fore part forming a small beak with three feet underneath; beyond which, toward the hinder part, it is furnished with bristles.

53. The *fina* is roundish, pellucid, and consists of three parts. The head is broad, and appears to be hooded, the top being furnished with very small hairs; on the lower part of the head is a transparent vesicle, and over the breast from the base of the head hangs a production resembling the sheath of the fee in the pupa of the gnat.

54. The *funarum* is round and crystalline; the hinder part smaller than the other. The edge of the back and the part near the tail are bright and clear. It bends itself into the form of an arch.

55. The *bifinis* is arched and flattened with an hairy apex, and two little bristles proceeding from the tail.

56. The *rattus* is oblong, with a kind of keel; the fore part hairy, and a very long bristle proceeding from the hind part.

57. The *levis* resembles the former, but differs in the form of the tail, which consists of two bristles, and likewise in having a kind of incision in the body a little below the apex.

58. The *perillii* is found in marlshes. It is cylindrical, pellucid, muscular, and capable of being folded up. It appears double; the interior part full of molecules, with an orbicular muscular appendage, which it can open and shut, and which forms the mouth. The external part is membranaceous, pellucid, dilated, and marked with transverse streaks; and it can protrude or draw in the orbicular membrane at pleasure. Some have four articulations in the tail, others five; and it has two pairs of bristles, one placed at the second joint, the other at the left.

59. The *calamus* has a considerable resemblance to a common nail; the fore part is round and hairy, the hinder part terminating in a sharp tail.

60. The *cornuta* is membranaceous, elliptical, full of molecules; the fore part truncated, the other round, and terminating in a tail as long as the body.

61. The *gallina* is found in river water. It is of a grey colour, flat, with seven large molecules and globules within it; the front obtuse, set with hairs; the hinder part terminating in a tail formed of very fine hairs.

62. The *nigricans* is found in the infusions of hay which have been kept for some months. It is smooth, egg-shaped, with a double margin drawn underneath it; the fore part narrow, and furnished with short hairs which continually play about; having a small tail underneath. It moves slowly, and is furnished with molecular intestines.

63. The *delphis* is found in river water. It is smooth, pellucid, having the forepart dilated into a semicircle, gradually decreasing in breadth towards the tail. The front is hairy, the hairs forming as rays from the semicircular edge; one of the edges is sometimes contracted.

64. The *dolphin* is found in hay that has been infused for some months. It is pellucid, smooth, and egg-shaped; the hinder part terminating in a tail about half the length of the body, dilated at the upper end, truncated, and always bent upwards. It moves sometimes on its belly and sometimes on its side.

65. The *clava*, or club trichoda, has the fore part thick, but the hinder part narrow; both extremities obtuse, pellucid, and replated with molecules; the hind part bent down towards the tail.

66. The *venaticum* is oblong, the fore part hairy, the hinder part rather acute, and filled with molecules and black vesicles.

67. The *febris* is large and curved, the fore part small, the hinder part gradually diminishing into a tail, the under part beft with hairs longitudinally.

68. The *piscis* is oblong, the fore part hairy, the hind part terminating in a very slender tail. It is smooth pellucid, much longer than broad, and filled with yellow molecules; the fore part obtuse, the hinder part extremely slender and transparent, the upper side convex.

69. The *larum* is long, round, beft with hairs, and has the tail divided into two points.

70. The *longicauda* is cylindrical; the fore part truncated, and beft with hairs; the tail long, furnished with two bristles, and having two joints.

71. The *fixa* has the circumference set with hairs, and a little solitary pedicle projecting from the body.

72. The *inquisitorius* is sheathed within a cylindrical transparent
MIC

73. The *ingenita* is sheathed in a depressed bag, broad at the base. The animalcule itself is funnel-shaped, with one or more hairs proceeding from each side of the mouth of the funnel. It can extend or contract itself within the bag, fixing its tail to the base, without touching the sides. It is found in salt water.

74. The *innia* is sheathed in a cylindrical bag, with a pedicle passing through and projecting beyond it.

75. The *transfigea* is broad, the fore part hairy, the hinder part full of bristles; one side sunk, and the other pointed.

76. The *ciliata* is ventricose, the hinder part covered with hair.

77. The *bulla* is membranaceous, the sides bent inwards; the fore and hind parts both covered with hairs.

78. The *pellionella* is somewhat thick in the middle, and pellucid, with a few molecules here and there; the sides obtuse, the fore part ciliated with very fine hairs, the hinder part fet with bristles.

79. The *cyllidium* has the hinder extremity filled with globules of various sizes. It Vacation upon the edge, commonly advancing on its flat side, and continually drawing in water. It then gapes, and opens into a very acute angle, almost to the middle of the body; but this is done so instantaneously, that it can scarce be perceived.

80. The *cicera* is oval, the fore part hairy, and the hinder part also furnished with some straight and curved hairs in two families. Its body is flat, and filled with molecules; and in the fore part is an oblong empty space, into which we may sometimes see the water fucked in.

81. The *pollex* is egg-shaped, with an incision in the fore part; the front and base hairy.

82. The *lynceus* is nearly square, with a crooked beak and hairy mouth. It is membranaceous, and appears compressed, stretched out into a beak above, under it there is a little bundle of hairs; the lower edge bends in and out, and is surrounded with a few bristles. The intefines are beautiful, and a small bent tube goes from the mouth to them in the middle of the body. There is likewise another tube between the fore and hind edge, filled with blue liquor. The intefines and other tube are frequently in motion.

83. The *rofa* is orbicular, the fore part notched; one side furnished with hairs, the hinder part with bristles.

84. The *refrata* is found in water where duckweed has been kept. It is depressed, capable of changing its shape, yellow, with long ciliated hairs; it has four feet tapering to a point, one of them longer than the rest. Both feet and hairs are within the margin. The shape of the body is generally triangular; the apex formed into an obtuse beak, which the creature sometimes draws in so that it appears quite round.

85. The *lagena* is round, ventricose, with a long neck, and the lower end set with bristles.

86. The *charon* was found in salt water. It is oval, and resembles a boat as well in its motion as shape: the upper part is hollowed, the under part furrowed and convex; the stern round, with several hairs proceeding from it.

87. The *cinex* is about the size of the *lynceus*, has an oval body, with a convex back, flat belly, and inclination in the margin of the fore part, the edges of which incline appear to move. When this animalcule meets with any obstacles in swimming, it makes use of four bristles, which appear on the under side as feet.

88. The *cicera* differs but little from the cinex. It is oval, with an obscure margin, the fore part covered with hairs on the under side, and the hinder parts beardless.

XIV. Kerata

An invisible worm with horns.

1. The *raffina* is found in river water. It has three rows of horns on the back, which occupy almost the whole of it.

2. The *lyncether* is square, and its disc furnished with shining horns.

3. The *kifiro* appears an oblong membrane, pellucid, with four or five black points in the fore part, which are continually changing their situation, thick set with small globules in the middle, among which four larger ones are sometimes perceived, which by Mr. Adams are supposed to be eggs. In the middle of the hind part are some longitudinal strokes resembling bristles, which, however, do not seem to project beyond the body.

4. The *cicera* is found in water covered with lema. It is somewhat of a pear shape, compressed, with a broad and blunt fore part; the front furnished with hairs or little vibrating points inserted under the edge, shorter in the hind part, partly extended straight, and partly bent down, having a retrograde motion.

5. The *kaufrum* is orbicular, with the horns in the middle, the fore part membranaceous and ciliated, with several bristles at the hinder part.

6. The *kifiro* differs from the preceding only in having the hinder part without any bristles.

7. The *patella* has an univalved shell, is orbicular, crystalline; the fore part somewhat notched; the fleshy body in the middle of the shell; with horns or hairs of different lengths jutting out beyond the shell, and acting instead of feet and oars, some of which are bent; and the superior ones constitute a double transverse row.

8. The *pennis* is oval and rather flat, with one edge bent, the opposite one ciliated, the front furnished with horns, and the hind part with bristles.

9. The *pullafer* agrees in many respects with the *tricoda pulex*; the upper part is pellucid, without any black molecules; the front truncated, the whole surface of the head covered with hair, and the fore part smooth.

10. The *mytilus* is a large animalcule; the fore and hind parts rounded, very pellucid and white, dark in the middle, with black intefines intermixed with a few pellucid veicles; both extremities appearing as if composed of two thin plates. It has two small horns, with which it agitates the water so as to form a little whirlpool.

11. The *lejus* is egg-shaped, compressed, pellucid, and
The microscope and crowned with short waving hairs; the bafe terminated with bristles.

12. The *florus* is an oval, smooth, animalcule, somewhat crooked and opaque, with a fascicle of vibrating hair on the fore part: it has a sharp tail furnished with unequal rows of moveable hairs, the back being also ciliated: the hairs produce a rotatory motion. The figure varies from oval to oblong, and the filaments of the coelentera are often entangled in the tail.

13. The *caelestium* is found in the infusion of vegetables. The body is broad and flat, both sides, obtuse, filled with black molecules, and there is a black spot near the hinder part, where there are likewise a few short bristles.

14. The *polula* is found in salt water. It is oval, convex: one edge of the hinder part flattened, both ends set with hairs, and some horns on the fore part.

XV. Himantopus:

A pellucid, invisible, and cirrated worm.

1. The *acarus* is lively, conical, ventricose, full of black molecules, with a bright and transparent fore part. The lower part of the apex has rows of long hairs on the under part set like rays. Four locks of long crooked hair or feet proceed from the belly, and it is continually moving these and other hairs in various directions.

2. The *lipis* is a lively diverting animalcule, smooth, pellucid, full of small points, the fore part clubbed and a little bent, the hinder part narrow: the bafe obliquely truncated, and terminating in a tail frettched out transversely. The top of the head and middle of the back are furnished with long and vibrating hairs; three moveable and flexible curls hang down from the sides of the head at a distance from each other. When the creature is at rest, its tail is curled; but when in motion, it is drawn tight and extended upwards.

3. The *famnis* is found, though seldom, in water where the lemma grows. The cilia are longer than the hairs, and are continually vibrating; it has two moveable curls hanging on the side of the head.

4. The *volitator* is shaped like a crescent, and has some crystalline points; the convex part has a row of hairs longiset towards the tail, and underneath are four feet. It is very lively, and often turns round with a swift circular motion.

5. The *larus* is long and cirrated in the middle; the body is depressed and long; the hinder part acute, and generally curved, pellucid, and filled with granular molecules.

6. The *charon* is found in sea-water, but rarely. It is oval, pellucid, and membranous, with longitudinal furrows, and several bent diverging rows of hair below the middle, but none on the hinder part.

7. The *corona* is a membranous lamina, very thin, pellucid, crystalline, and filamentary: the edge of the bafe thick set with molecular interstices; the fore part furnished with a kind of mane; towards the hind part are three equal curved hairs or spines.

XVI. Vorticella:

A naked worm with rotatory cilia, capable of contracting and extending itself.

1. The *viridis* is visible to the naked eye, appearing like a small green point; but the microscope discovers it to be nearly cylindrical, a little thicker at the fore part than the other, and obtuse at both ends. It appears to be totally destitute of limbs, notwithstanding which it keeps the water in continual motion; so that it probably has some invisible rotatory instrument. It moves sometimes circularly, sometimes in a straight line.

2. The *sphero da* appears also like a point; but thro' the microscope it is a globular mass of a dark green colour. It occasions a vehement motion in the water, probably by means of some short hairs with which it is furnished.

3. The *cincla* is of an irregular shape, sometimes assuming an oval figure, and appearing as if its round with a transverse keel. It is invisible to the naked eye, ciliated on every side; the hairs all moveable, and longer on one side than the other.

4. The *lunifera* is found in salt water; has the fore part obtuse, the bafe broad, and hollowed away like a crescent, with a short protuberance in the middle of the concave part: the fore part is ciliated.

5. The *bifata* is found in salt water, and is ventricose crammed, with molecules; the fore-part truncated, and both sides of it pellucid: there is a prominent papilla in the middle, when which the animalcule is at rest appears notched, the edge of the aperture being ciliated; the hairs are capable of moving in various directions.

6. The *vairis* is cylindrical, truncated, opaque, and blackish coloured, the fore part ciliated.

7. The *sputariun* is found in October, with the lesser lemma, and is one of the most singular of the microscopic animalcules. When viewed sideways, it is sometimes nearly cylindrical, only tapering a little towards the hinder part, and having a broad pellucid edge. Viewed from the top, it has sometimes a broad face or difc, furnished with radiating hairs, the under part contracted into a globular shape, of a dark green colour, and filled with small grains.

8. The *polymorpha* is visible to the naked eye, and appears like a green point moving with great agility; but when viewed through a microscope, it assumes such a variety of forms, that it is impossible to describe them. The body is granulous; and a series of pellucid points is sometimes to be observed.

9. The *multiformis* is found in salt water, and very much resembles the former.

10. The *nigra* is found in August in meadows covered with water. It may be seen with the naked eye, appearing like a black point swimming on the surface. Through the microscope it appears as a small conical body, obtuse and ventricose at one end, and acute at the other. When the extremities are extended, two small white hooks become visible, by the assistance of which it moves in the water, and it probably has a rotatory organ: it moves continually in a vacillating manner on the top of the water.

11. The *cyclus* is likewise visible to the naked eye: it is of a dirty red colour, of a shape somewhat conical, and resembling a grenadier's cap.

12. The *articula* is green and ventricose; the belly capable of being lengthened or shortened; the fore part truncated, much in the shape of a common water bottle;
13. The *ocretata* is met with in rivers, though very seldom, and in shape somewhat resembles the lower part of a boot. The apex of the upper part is truncated and ciliated, the heel pointed, and the foot round.

14. The *valga* is as broad as long, and the apex truncated and ciliated; both angles of the base projecting outwards, one somewhat like a wart, the other like a finger: It is found in marshy waters.

15. The *papillaris* is likewise found in marshes where the *conferva nitida* grows. It is ventricose; the fore part truncated, with a papillary tail, and a beautiful circular disc and ciliated margin.

16. The *facculus* is thick, of an equal diameter everywhere, and full of molecules. The edge of the mouth is bent back; the hinder part is obtuse, sometimes notched and contracted, with cilia to be seen on both sides of the mouth.

17. The *cirrata* is found in ditch-water. It is ventricose, the aperture ciliated, and two tufts of hair on each side of the belly.

18. The *najuta* is invisible to the naked eye, but the microscope discovers it to be furnished with a rotatory organ encompassing the middle. It is pellucid, cylindrical of an unequal size; the fore part truncated and ciliated, with a triangular prominence in the middle of the aperture; the hinder part is obtuse, with a point on each side of the middle of the body. When the water is nearly exhaled, two rotatory organs are observable; one on the fore part, and the other encompassing the middle of the body; the hairs of the latter being in violent motion. Other stamnules of moving hair are likewise to be observed; and the quick and various motions of this apparatus are very surprising.

19. The *fistulina* is of an orbicular shape, with a molecular disc and ciliated margin.

20. The *disicina* is likewise orbicular, the edge ciliated, with a kind of handle on the under side.

21. The *cephina* is bowl-shaped, cryalline, with an opaque spherule in the middle.

22. The *albina* is cylindrical in the fore part, the hinder part tapering, and almost ending in a point.

23. The *fritillina* is empty and cylindrical, with a truncated apex.

24. The *truncatella* is of the larger kind of animals with a cryalline body, full of black molecules, the skin perfectly smooth and colourless, the hinder extremity rounded, and the anterior part truncated; at this extremity there is a large opening that serves for a mouth, which is thickly ciliated.

25. The *limacina* is cylindrical, truncated, and has two pairs of cilia.

26. The *fraxinina* is mostly cylindrical, the hinder part rather tapering, and full of opaque molecules; transparent towards the upper end. Within the edge at the top are two small tubercles, from each side of which proceeds a pair of small hairs.

27. The *cratagaria* is found in the month of April, both in the mud and on the tail of the monoculus quadriconcis. They are generally heaped together in a spherical form, and united to one common stalk. They are likewise often to be found without a pedicle, the body rather contracted, the aperture circular, and furnished with a marked margin. It has two small Microscope arms; and with a powerful magnifier a violent rotatory motion may be observed. Sometimes an individual will separate from the community, and move in a kind of spiral line for a little time, and then go back to the rest.

28. The *lamata* is not ciliated, nor has it any hairs upon it; the body is granulated, the fore part broad and truncated, the hinder part obtuse, and capable of being contracted or extended.

29. The *crateriformis* is a lively animalcule, pellucid, round; longer than it is broad, approaching somewhat to a square figure, with convex sides; the head is situated at the large end, the skin smooth, and some traces of intestines may be discovered with difficulty. There is a considerable opening surrounded by hair at the larger end, and the filaments composing it are in continued motion. Two of them are sometimes seen joined together, and full of small spines. In this state they draw each other alternately different ways; the surface is smooth, and the hairs invisible.

30. The *canalculata* appears to the naked eye as a number of white points adhering to the sides of the glads. When magnified, the fore part is narrower than the hind one; in the side is a kind of incision, and the hinder part is notched towards the middle. It excites a continual whirling motion in the water by means of a rotatory organ with which it is furnished.

31. The *veratilis* is a pellucid, gelatinous animalcule, of a greenish colour, and furnished with small radii about the circumference; so that it appears like a very small water hedgehog.

32. The *ampula* is contained in a transparent bottle-shaped bag; the head divided into two lobes. It sometimes lies at the bottom of the bag, and sometimes nearly fills the whole of it.

33. The *folliculata* is gelatinous and cylindrical; and when most extended, the base appears attenuated, and the apex truncated.

34. The *larva* is of a clay colour, the aperture ciliated, with a globular projection at times appearing to proceed from it.

35. The *faculata* has the shape of an inverted cone, with an aperture in the figure of a crescent; the lower part of the trunk notched, forming as it were two teeth; the tail biphilous. Each of these is surrounded with a loose bright skin, the head being divided from the trunk by a deep incision.

36. The *anita* is cylindrical and ventricose, the aperture destitute of hairs; both sides of it are furnished with rotatory cilia, and the tail is biphilous.

37. The *tremula* has something of a conical shape; the mouth being divided into parts which are set with small spines; and a point projects from the tail.

38. The *fertina* is mucular, pellucid, folding variously, the fore part truncated; round the margin are rows of hairs; but it has also slender hairs or spines continually vibrating, with which it draws in all animate and inanimate substances which it is able to manage.

39. The *lacinulata* is shaped like an inverted cone, the aperture lobated, the tail small and furnished with two bristles. When swimming, the rotatory organ may be discovered. It moves swiftly in an oblique direction.
40. The *constricta* is of two kinds; *vis.* of a pale yellow and of a white colour. They move by fixing their tail to the place where they are, and then extending their body as much as possible; fixing the fore part to the place to which they intend to move, then drawing the hinder part to it, and so on. Sometimes they turn round about upon one of the points of their tail; at other times they spring forwards with a jerk. When at rest they open their mouths very wide.

41. The *toga* has a convex body, filled with molecules, and of a dark colour; the hinder part somewhat broader than the forepart; the latter ciliated, and the tail formed of two very thin pellucid spines, which are somewhat curved, and much longer than the body.

42. The *rotatoria* is the *wheel animal* described by Mr Baker; and of which an account is given under the article *Animalcule*.

43. The *faceta* is commonly found in water, and has a cylindric body with a rotatory organ, consisting of a row of hairs at the apex; the tail is divided into two parts, turning a little inwards. When at rest it joins the segments of the tail, but opens them when in motion.

44. The *calculus* is commonly found in marshy waters. It is a little thick mucular animalcule, folding itself up: equally broad throughout, the body figured by longitudinal folds, widening in various directions. The anterior part is connected to the body by a little neck; and it occasionally shows a small rotatory organ. Its motion is rotatory, but in various directions.

45. The *canicula* is cylindrical, the aperture plain, with a short articulated tail divided into two parts.

46. The *fles* has a large body, the apex of an equal thickness, obtuse, with rotatory filaments: the tail is acute, with two pellucid spines in length about one-third part of the body, alternately separating from and approaching one another.

47. The *fistulosa*. See the article *Polype*.

48. The *fisculosa*, when considerably magnified, appears like a circle surrounded with crowns or ciliated heads, tied by small thin tails to a common centre, from whence they advance towards the circumference, where they turn very briskly, occasioning a kind of whirlpool, which brings in its food. When one of them has been in motion for a time, it stops and another begins; sometimes two or three may be perceived in motion at once: they are frequently to be met with separate, with the tail flicking in the mud. The body contracts and dilates very much, so as sometimes to have the appearance of a cudgel, at others to assume almost a globular form.

49. The *fisculosa* appears to the naked eye like a yellow globule adhering to the ceratophyllon like a little flower or a heap of yellow eggs. When magnified, they are seen to consist of a congeries of animalcules confitituting a sphere from a mouldy centre. They contract and extend their bodies either alone or in society, and excite a vortex in the water by means of a dié. When they quit the society and act singly they may be observed to consist of a head, abdomen, and tail; the head being frequently drawn back into the abdomen so far that it cannot be seen, only exhibiting a broad kidney-shaped dié hanging out. The abdomen is oblong, oval, and transparent; the tail sharp, twice as long as the abdomen, sometimes rough and annulated, or altogether smooth.

50. The *citrina* is found in flagrant water; the head full of molecules, wound every where of an equal size, and very transparent. Both sides of the orifice are ciliated, and each has a rotatory motion appearing sometimes without and sometimes within the edge of the mouth.

51. The *piriformis* is somewhat oval, with a very small retractile foot, which it can draw within itself.

52. The *tuberola* has a broad upper part, the under part small, with two projections at the anterior end, furnished with a number of fibrille, which produces a current of water by their vibration, and thus collect food for the animal.

53. The *ringens* is pear-shaped, pellucid, the middle of the aperture convex, both sides ciliated, the pedicle four times shorter than the body. It can contract the orifice to an obtuse point.

54. The *inclina* has a pendulous, pellucid, little head; the anterior part truncated, and occasionally contracting itself twice as short as the pedicle. It is shaped like a tobacco-pipe.

55. The *vaginata* is erect, of the shape of a truncated egg; the pedicle is contained in a sheath.

56. The *globularia* is frequent among the *cyclopa* quadricorn. It has a small spherical head, the aperture of the mouth ciliated, the pedicle four times larger than the body, which it contracts into a spiral form.

57. The *lanaris* has a small goblet-shaped head, the margin of the orifice protubérant, ciliated on both sides, with undulating hairs, and the pedicle eight or ten times the length of the body. The pedicle extends itself as often as the mouth is opened, but is twifed up spirally when it is shut, and this is frequently repeated in a short space.

58. The *cervaria* is the same with the *bell-animal* mentioned by Mr Baker. See the article *Animalcule*.

59. The *mutans* has a simple pedicle; twists itself spirally; is extremely slender, with a kind of cap on its head; the margin white and round, and seemingly encompassed with a lucid ring; the head diminishing towards the base.

60. The *nebulosa* is narrow at the base; open and truncated at the top; the margin seemingly surrounded with a ring; but, when the aperture is shut, the animalcule is of the shape of an egg, with a simple fuscaceous pedicle, considerably longer than the body and commonly much bent back.

61. The *annularis* is visible to the naked eye; the head an inverted cone, convex when the mouth is shut, but truncated when it is open; with a protuberant edge; the pedicle simple, very long, thick, and, while at the top than any where else; the apex twifed spirally. When contracted, it appears to be annulated.

62. The *acutifrons* inhabits that whitish substance which often entirely covers plants, wood, shells, &c. When this substance is examined by a microscope, it appears to be wholly composed of living animals of the polype kind. See *Polype*.
The microscopist has a rotatory organ, which may sometimes be seen projecting beyond the aperture; there is a little head at the apex, and the pedicle is twisted and very slender. A congealed green mass which is often found swimming about in ditches is composed of myriads of these animals, which are not visible to the naked eye, and when magnified appear like a bundle of green flowers.

The biaus resembles a citron; the apex is truncated, the base narrow, and a gaping cleft is observable, descending from the apex to one third of the body.

The bellis is of a yellow colour, and much resembles the flower of a daisy; it is ciliated round the margin of the head, and moves in a rotatory manner.

The gemella has a long pedicle, constantly furnished with two small heads.

The pyria has a long pedicle, firmly attached to the sides of the vesel in which it is placed. By the microscope, we discover a long pedicle flicking to the sides of the vesel, from which proceed an innumerable quantity of crystalline pellucid pearls; which together with the vesel sides, are variously agitated in the water. Sometimes they move separately; sometimes they are drawn down to the root, and in a moment expanded again.

XVII. Brachionus:
A contraéile worm, covered with a shell, and furnished with rotatory cilia.

1. The friratrus has an oblong, pellucid shell, capable of altering its figure. The apex is truncated, with six small teeth on the edge of it, twelve longitudinal striae down the back, the base obtuse and smooth. The teeth are occasionally protruded or retracted; and there are two small spines or horns on the other side of the shell. The animal itself is of a yellow colour, crystalline, and mucular; now and then the animal emerging, it opens its shell both at the fore and hind part.

2. The squamula has an oval orbicular shell, a truncated apex, four teeth, smooth base, and no tail.

3. The pala is of a yellow colour; univalved, with an oblong excavated shell; four long teeth at the apex; a smooth base.

4. The bipalium is univalved, the shell oblong and inflected, ten teeth at the apex, the base smooth and a spurious tail.

5. The sputum is extremely bright and splendid, has a large body, a crystalline and nearly circular shell, without either incision or teeth, only towards the apex it falls in so as to form a smooth notch. A double glittering organ, with ciliated edges, projects from the apex; both of them of a conical figure, and standing as it were upon a pellucid substance, which is divided into two lobes, between which and the rotatory organ there is a silver-coloured crumuluted membrane. Two small claws may likewise be discovered near the mouth.

6. The gyreum is univalved, the shell oblong, apex notched, the tail naked, and base smooth.

7. The lenticularis is univalved, the shell extending considerably beyond the body; the base divided into three small horns, with two hairs at the end of the tail.

8. The patella is found in marshy water in the wintertime. It is univalve, the shell oval, plain, crystalline, with the anterior part terminating in two acute points on both sides, though the intervening space is commonly filled up with the head of the animal. By these points it fastens itself, and whirls about the body erect. The rotatory cilia are perceived with great difficulty.

9. The bractea is univalve, the shell somewhat orbicular, apex lunate, base smooth, and the tail furnished with two spines.

10. The trispes is univalve, with an oblong shell; the apex hairy, and base notched.

11. The ovatus is bivalve; the shell flattened, apex notched, a hollow part at the base, the tail formed of two tufts of hair.

12. The tripes is bivalve, the apex of the shell bearded, three horns at the base, and double tail. It fixes itself to the objects by the filaments of the tail.

13. The dentatus is bivalve, with an arched shell; the apex and base are both toothed, and the tail formed of two spines.

14. The mucronatus is bivalve, somewhat of a square form; the base and apex pointed; the tail consisting of two spines.

15. The uncinatus is one of the smallest bivalved animalcules; the apex and anterior part round, the hinder part straight terminating in a point, furnished with a hook on the fore part, a small rotatory organ, a long tail composed of joints, and divided at the end into two bristles. It can open its shell both at the fore and hind part.

16. The cirratus is larger than the preceding; ventricose, somewhat transparent, the head conical, with a bundle of hairs on both sides; and it has likewise a rotatory organ.

17. The paflus has a cylindrical shell, with two long pendulous locks of hair proceeding from the front, the tail consisting of a single bristle.

18. The quadratus has a quadrangular shell, with two small teeth at the apex, two horns proceeding from the base, and no tail.

19. The impexus has a quadrangular shell, a smooth undivided apex; obtuse base; notched margin; and flexuous tail.

20. The urceolaris. See Polype.

21. The brachinus Bakeri has a ventricose shell, four teeth at the apex, two horns at the base, and a long tail terminating in two short points. The horns are frequently extended, and the circular end of each is furnished with a tuft of little hairs, which sometimes move in a vibratory manner, at other times have a rotatory motion. Mr Muller has also discovered this creature two small feelers and a tongue.

22. The patulus has a ventricose shell, with eight teeth.
These are the different kinds of animalcules which have yet been discovered. To what is said of them in general under the article ANIMALCULE, we shall here add the following observations from Mr Adams.—

"How many kinds of these invisibles there may be (says he), is yet unknown; as they are discerned of all fixes, from those which are barely invisible to the naked eye, to such as refill the force of the microscope as the fixed stars do that of the telescope, and with the greatest powers hitherto appear only as so many moving points. The smallest living creatures our instruments can show, are those which inhabit the waters; for though animalcule equally minute may fly in the air, or creep upon the earth, it is scarce possible to get a view of them; but as water is transparent, by confining the creatures within it we can easily observe them by applying a drop of it to the glasses.

"Animalcules in general are observed to move in all directions with equal ease and rapidity, sometimes obliquely, sometimes straight forward; sometimes moving in a circular direction, or rolling upon one another, running backwards and forwards through the whole extent of the drop, as if diversifying themselves; at other times greedily attacking the little parcels of matter they meet with. Notwithstanding their extreme minuteness, they know how to avoid obstacles, or prevent any interference with one another in their motions: sometimes they will suddenly change the direction in which they move, and take an opposite one; and, by inclining the glass on which the drop of water is, as it can be made to move in any direction, so the animalcules appear to move as easily against the stream as with it. When the water begins to evaporate, they flock towards the place where the fluid is, and flow a great anxiety and uncommon agitation of the organs with which they draw in the water. These motions grow languid as the water falls, and at last cease altogether, without a possibility of renewal if they be left dry for a short time. They sustain a great degree of cold as well as infects, and will perish in much the same degree of heat that destroys infects. Some animalcules are produced in water at the freezing point, and some infects live in snow.—By mixing the least drop of urine with the water in which they swim, they instantly fall into convulsions and die.

"The same rule seems to hold good in those minute creatures, which is observable in the larger animals, viz, that the larger kinds are less numerous than such as are smaller, while the smallest of all are found in such multitudes, that there seem to be myriads for one of the others. They increase in size, like other animals, from their birth until they have attained their full growth; and when deprived of proper nourishment, they in like manner grow thin and perish."

The modes of propagation among these animalcules are various, and the observation of them is extremely curious. Some multiply by a transverse division, as is observed under the article ANIMALCULE; and it is remarkable, that though in general they avoid one another, it is not uncommon, when one is nearly divided, to see another pull itself upon the small neck which joins the two bodies in order to accelerate the separation.—Others, when about to multiply, fix themselves to the bottom of the water; then becoming first oblong, and afterwards round, turn rapidly, as if in a centre, but perpetually varying the direction of their rotary motion. In a little time, two lines forming a cross are perceived; after which the siphulae divide into four, which grow, and are again divided as before. A third kind multiply by a longitudinal division, which in some begins in the fore-part, in others in the hind-part; and from others a small fragment detaches itself, which in a short time assumes the shape of the parent animalcule. Lastly, others propagate in the same manner as the more perfect animals.

In our observations under the article ANIMALCULE, we suggested some doubts whether all those minute bodies which go under the name of animalcules really do enjoy animal life; or whether they are not in many cases to be accounted only inanimate and exceedingly minute points of matter actuated by the internal motion of the fluid. This has also been the opinion of others: but to all hypotheses of this kind Mr Adams makes the following reply. "From what has been said, it clearly appears, that their motions are not purely mechanical, but are produced by an internal spontaneous principle; and that they must therefore be placed among the class of living animals, for they possess the strongest marks and the most decided characters of animation; and, consequently, that there is no foundation for the supposition of a chaotic and neutral kingdom, which can only have derived its origin from a very transient and superficial view of these animalcules.—It may also be farther observed, that as we fee that the motions of the limbs, &c. of the larger animals, are produced by the mechanical contraction of the body, and the action of the soul thereon, and are forced by the ocular demonstration which arises from anatomical dissection to acknowledge this mechanism which is adapted to produce the various motions necessary to the animal; and as, when we have recourse to the microscope, we find those pieces which had appeared to the naked eye as the primary mechanical causes of particular motions, to confit themselves of lefer parts, which are the causes of motion, extension, &c. in the larger; when the structure therefore can be traced no farther by the eye, or by the glasses; we have no right to conclude that the parts which are invisible are not equally the subject of mechanism; for this would be only to assert, in other words, that a thing may exist because we see and feel it, and have no existence when it is not the object of our senses.—The same train of reasoning may be applied to microscopic infects and animalcula: we see them move; but because the muscles and members which occasion these motions are invisible, shall we infer that they have not muscles, with organs appropriated to the motion of the whole and its parts? To say that they exist not because we cannot perceive them, would not be a rational conclusion. Our senses are indeed given us that we may comprehend some effects; but then we have also a mind, with reason, befowed upon.
M I C

Microscope upon us, that, from the things which we do perceive with our senses, we may deduce the nature of those causes and effects which are imperceptible to the corporeal eye.

Leaving these speculations however, we shall now proceed to give a particular

Explanation of the figures of the various animals, with their parts,

and figures, &c. represented in the plates.

Fig. 32. 33. represent the eggs of the phalena neutria, as they are taken from the tree to which they adhere, and magnified by the microscope. The strong groundwork visible in many places shows the gum by which they are fastened together; and this connection is strengthened by a very tenacious substance interposed between the eggs, and filling up the vacant spaces. Fig. 34. shows a vertical section of the eggs, exhibiting their oval shape.—Fig. 35. is a horizontal section through the middle of the egg. These eggs make a beautiful appearance through the microscope. The small figures a, b, c, represent the objects in their natural size, without being magnified.

Fig. 36. shows the larva of the musca chameleon, an aquatic insect. When viewed by the naked eye, it appears (as here represented) to be composed of twelve annular divisions, separating it into an head, thorax, and abdomen; but it is not easy to distinguish the two latter parts from each other, as the integuments lie equally both in the thorax and abdomen. The tail is furnished with a fine crown or circle of hair, disposed in the form of a ring; and by this means it is supported on the surface of the water, the head and body hanging down towards the bottom, in which posture it will sometimes remain for a considerable time without any motion.—When it has a mind to sink to the bottom, it closes the hairs of the ring, as in fig. 37. Thus an hollow space is formed, including a small bubble of air; by enlarging or diminishing which, it can rise or sink in the water at pleasure. When the bubble escapes, the insect can replace it from the pulmonary tubes, and sometimes considerable quantities of air may be seen to escape from the tail of the worm into the common atmosphere; which operation may easily be observed when the worm is placed in a glass of water, and afforded an entertaining spectacle. The snout of this insect is divided into three parts, of which that in the middle is immovable; the other two, which grow from the sides of the middle one, are moveable, and are on the sides like the tongues of lizards, or serpents. In these lateral parts lies most of the creature's strength; for it moves upon them, when out of the water, appearing to walk on its mouth, and to use it as the parrot does its beak to affift it in climbing.

The larva is shown fig. 38. as it appears through a microscope. It grows narrower towards the head, is largest about that part which we may call the thorax, converging all along the abdomen, and terminates at length in a sharp tail surrounded with hairs, as has already been mentioned. The twelve annular divisions are now extremely visible, and are marked by numbers in the plate. The skin appears somewhat hard, and resembling that green, being thick set with grains pretty equally distributed. It has nine holes, or spiracula, probably for the purpose of breathing, on each side; but it has none of these on the tail division a, nor any microscope visible on the third from the head. In the latter, indeed, it has some very small holes concealed under the skin, near the place where the embryo wings of the future fly are hid. "It is remarkable (says Mr Adams) that caterpillars, in general, have two rings without these spiracula, perhaps because they change into flies with four wings, whereas this worm produces a fly with only two. The skin of the larva is adorned with oblong black furrows, spots of a light colour, and orbicular rings, from which there generally springs a hair; but only those hairs which grow on the insect's sides are represented in the figure. There are also some larger hairs here and there, as at cc. The difference of colour, however, in this worm arises only from the quantity of grains in the same space; for where they are in very great numbers, the furrows are darker, and paler where they are less plentiful.

The head is divided into three parts, and covered with a skin which has hardly any discernible grains.—The eyes are rather protuberant, and lie near the snout; on which there are two small horns at i i. It is crooked, and ends in a sharp point as at f. The legs are placed near the snout between the sinuæs in which the eyes are fixed. Each of these legs consists of three joints, the outermost of which is covered with stiff hairs like bristles g g. From the next joint there springs a horny bone h h, used by the insect as a kind of thumb: the joint is also composed of a black substance of an intermediate hardnes, between bone and horn; and the third joint is of the same nature. In order to distinguish these parts, those that form the upper sides of the mouth and eyes must be separated by means of a small knife; after which, by the aid of the microscope, we may perceive that the leg is articulated by some particular ligaments, with the portion of the insect's mouth which answers to the lower jaw in the human frame. We may then also discern the muscles which serve to move the legs, and draw them up into a cavity that lies between the snout and those parts of the mouth which are near the horns i i. The insect walks upon these legs, not only in the water, but on the land also. It likewise makes use of them in swimming, keeping its tail on the surface contiguous to the air, and hanging downward with the rest of the body in the water. In this situation, the only perceptible motion it has is in its legs, which it moves in a most elegant manner, from whence it is reasonable to conclude, that the most of this creature's strength lies in its legs, as we have already observed.

The snout of this larva is black and hard: the back part quite solid, and somewhat of a globular form; the front sharp and hollow. Three membranaceous divisions may be perceived on the back part; by means of which, and the muscles contained in the snout, the creature can contract or expand it at pleasure.

The extremity of the tail is surrounded with thirty hairs, and the sides adorned with others that are smaller; and here and there the large hairs branch out into smaller ones, which may be reckoned single hairs. All these have their roots in the outer skin, which in this place is covered with rough grains, as may be observed by cutting it off and holding it against the light upon
Microscope upon a slip of glass. Thus also we find, that at the extremities of the hairs there are grains like those on the skin; and in the middle of the tail there is a small opening, within which are minute holes, by which the insect takes in and lets out the air it breathes. The hairs, however, are seldom disposed in such a regular order as is represented in fig. 38, unless when the insect floats with the body in the water, and the tail with its hairs a little lower than the surface, in which case they are disposed exactly in the order delineated in the plate. The least motion of the tail downward produces a concavity in the water; and it then assumes the figure of a wine-glass, wide at the top and narrow at the bottom. The tail answers the double purpose of swimming and breathing, and through it the insect receives what is the principle of life and motion to all animals. By means of these hairs also it can stop its motion when swimming, and remain suspended quietly without motion for any length of time. Its motions in swimming are very beautiful, especially when it advances with its whole body floating on the surface of the water after filling itself with air by the tail.—To let out, it first bends the body to the right or left, and then contracts it in the form of the letter S, and again stretches it out in a straight line: by thus contracting and then extending the body alternately, it moves on the surface of the water. It is very quiet and is not disturbed by handling.

These creatures are commonly found in shallow standing waters in the beginning of June; but some years much more plentifully than others. They crawl on the grass and other plants which grow in such waters, and are often met with in ditches floating on the surface of the water by means of their tail, the head and thorax at the same time hanging down; and in this posture they turn over the clay and dirt with their feet in search of food, which is commonly a viscid matter met with in small ponds and ditches.

It is very harmless, though its appearance would seem to indicate the contrary. It is most easily killed by fpirit of turpentine.

Fig. 39. shows the insect named by M. de Geer Physapus, on account of the bladders at its feet, (Phypus physapus, Lin.). This insect is to be found in great plenty upon the flowers of dandelion, &c. in the spring and summer. It has four wings two upper and two under ones (represented fig. 44.), but the two undermost are not to be perceived without great difficulty. They are very long; and fixed to the upper part of the breast, lying horizontally. Both of them are rather pointed towards the edges, and have a strong nerve running round them, which is fit with a hair tine tuffed at the extremity. The colour of these wings is whitish: the body of the insect is black; the head small, with two large reticulate eyes. The antennae are of an equal size throughout, and divided into fix oval pieces, which are articulated together. The extremities of the feet are furnished with a membranaceous and flexible bladder, which it can throw out or draw in at pleasure. It Leipzig from the substances on which it walks, and thus seems to fix itself to them: the bladder sometimes appears concave towards the bottom, the concavity diminishing as it is left preferred. The insect is represented of its natural size at b.

Fig. 40. represents the Cimex striatus of Linneus, remarkable for very bright and elegantly disposed colours, though few in number. The head, prothorax, and thorax, are black: the thorax ornamented with yellow spots; the middle one large, and occupying almost one-third of the posterior part; the other two are on each side, and triangular. The scutellum has two yellow oblong spots, pointed at each end. The ground of the elytra is a bright yellow, spotted and striped with black. The nerves are yellow; and there is a brilliant triangular spot of orange, which unites the cranaceous and membranaceous
Microscope.: cousin parts; the latter are brown, and clouded. It is found on the elm-tree in June. It is represented of its natural size at a.

Fig. 46. shows the *Coryneus asparagi* of Linnaeus, so called from the larva of the insect feeding upon that plant. It is a common weed on meadows and in woods, and very beautiful. It is of an oblong figure, with black antennae, composed of many joints, nearly oval. The head is a deep and bright blue; the thorax red and cylindrical: the elytra are blue, with a yellow margin, and having three spots of the same colour on each: one at the base, of an oblong form, and two united with the margin: the legs are black; but the under side of the belly is of the same blue color with the elytra and head. This little animal when viewed by the naked eye, scarcely appears to deserve any notice; but when examined by the microscope, is one of the most pleasing opaque objects we have. It is found in June on the asparagus after it has run to seed; and is shown of its natural size at d. De Geer says that it is very scarce in Sweden.

Fig. 47. shows an insect of a shape so remarkable, that many trials have been at a loss to determine the genus to which it belongs. In the Fauna Suecia, Linnaeus makes it an *attelabius*; but in the last edition of the Systema Naturae, it is ranged as a me-loe, under the title of the *Molcus monoceros*; though of this alfo there seems to be some doubt. The true figure of it can only be disovered by a very good microscope. The head is black, and appears to be hid or buried under the thorax, which projects forward like a horn: the antennae are composed of many joints, and are of a dirty yellow color, as well as the feet: the hinder part of the thorax is reddish, the fore part black.—The elytra are yellow, with a black longitudinal line down the future; there is a band of the same colour near the apex, and also a black point near the bafe, the whole animal being curiously covered with hair. The natural size of it is shown at e. It was found in May. Geoffroy says that it lives upon umbelliferous plants.

Fig. 48—53. exhibit the anatomy of the coofus caterpillar, which lives on the willow. The egg from which it proceeds is attached to the trunk of the tree by a kind of viscous juice which soon becomes hard that the rain cannot difsolve it. The egg itself is very small and sphericoid, and, when examined by the microscope, appears to have broad waving furrows running through the whole length of it, which are again crossed by close freams, giving it the appearance of a wicker basket. It is not exactly known what time they are hatched; but as the small caterpillars appear in September, it is probable that the eggs are hatched some time in August. When small, they are generally met with under the bark of the tree to which the eggs were affixed; and an aqueous moisture, oozing from the hole through which they got under the bark is frequently though not always, a direction for finding them. These caterpillars change their colour but very little, being nearly the fame when young as when old. Like many others they are capable of spinning as soon as they come from the egg. They also change their skin several times; but as it is almost imposibl to rear them under a glass, so it is very difficult to know exactly how often this moultng takes place.—Mr Adams conjectures that it is more frequently than the generality of caterpillars do, some having been microscoped observed to change more than nine times.

The coofus generally fails for some days previous to the mounting; during which time the fleshy and other interior parts of the head are detached from the old skull, and retire into the neck. The new coverings soon grow on, but are frst very fole. When the new skin and the other parts are formed, the old skin is to be opened, and all the members withdrawn from it; an operation naturally difficult, but which must be rendered more fole from the soft and weak state of the creature at that time. It is always much larger after each change.

From Mr Lyonet’s experiments, it appears that the coofus generally paffes at half two winters, if not three before it aiumes the pupa state. At the approach of winter, it forms a little cafe, the infide of which is lined with filk, and the outside covered with wood ground like very fine faw-dust. During the whole feafon it neither moves nor eats.

This caterpillar, at its frst appearance, is not above one-twelfth of an inch long; but at laft attains the length of two, and sometimes of three inches. In the month of May it prepares for the pupa state, the frst care being to find a hole in the tree fufficient to allow the moth to issue forth and if this cannot be found, it makes one equal in fize to the future pupa. It then begins to form of wood a cafe or cone; uniting the bits, which are very thin, together by filk, into the form of an ellipoid, the outside being formed of small bits of wood joined together in all directions; taking care, however, that the pointed end of the cafe may always be opposite to the mouth of the hole: having finifhed the outside of the cafe, it lines the infide with a filen tapestry of a clofe texture in all its parts, except the pointed end, where the texture is looser, in order to facilitate its efcape at the proper time. The caterpillar then places itself in fuch a pofure, that the head may always lie towards the opening of the hole in the tree or pointed end of its cafe. Thus it remains at reft for fome time; the colour of the skin frst becomes pale, and afterwards brown; the interior parts of the head are detached from the skull; the legs withdraw themselves from the exterior cafe; the body shortens; the posterior part grows small, while the anterior part swells so much, that the skin at laft bursts; and, by a variety of motions, is pushed down to the tail; and thus the pupa is exhibited, in which the parts of the future moth may be easily traced.—The covering of the pupa, though at frst fof, humid, and white, soon dries and hardens, and becomes of a dark purple colour: the posterior part is moveable; but not the fore-part, which contains the rudiments of the head, legs, and wings. The fore-part of the pupa is furnished with two horns, one above and the other under the eyes. It has also feveral rows of points on its back. It remains for fome weeks in the cafe after which the moth begins to agitate itself, and the points are then of effential service, by acting as a fulcrum, upon which it may reft in its endeavours to proceed forward, and not fip back by its efforts for that purpofe.

The moth generally continues its efforts to open the cafe for a quarter of an hour; after which, by redoubled efforts, it enlarges the hole, and pefifes forward
The muscle marked a is long and slender, fixed by microscope its anterior extremity under the gastric muscles a and b of the first ring, to the circumflex scale of the base of the lower lip. It communicates with the muscle c of the second ring, after having passed under some of the arteries, and introduced itself below the muscle δ. The muscle δ is so tender, that it is scarce possible to touch the belly of the caterpillar without breaking it. It is sometimes double, and sometimes triple.

Anteriorly it is fixed to the posterior edge of the side of the parietal scale, the lower fixture being at the middle of the ring near the inferior line.

There are three muscles marked ξ; the first fixed at one extremity near the lower edge of the upper part of the parietal scale; the other end divides itself into three or four tails, fixed to the skin of the caterpillar under the muscle δ. The anterior part of the second is fixed near the first; the anterior part of the third a little under the first and second, at the skin of the neck under the muscle A. These two last passing over the cavity of the first pair of limbs, are fixed by several tails to the edge opposite to this cavity. In this subject there are two muscles marked ϕ, but sometimes there is only one anteriorly; they are fixed to the lower edge of the parietal scale, the other ends being inserted in the first fold of the skin of the neck on the belly-side. Fig. 50. ξ: represents the muscles δ and ϕ; as in that figure they do not appear injured by any unnatural connection.

In the second and four following rings we discern two large dorsal muscles A and B. In the 9th, 10th and 11th rings are three, A, B, and C; in the 11th are four, A, B, C, and D; and in the anterior part of the 12th ring are five, A, B, C, D, and E. All these ranges of muscles, however, as well as the gastric muscles a, b, c, d, appear at first sight only as a single muscle, running nearly the whole length of the caterpillar; but when this is detached from the animal, it is found to consist of so many different muscles, each consisting only of the length of one of the rings, their extremities being fixed to the division of each ring, excepting the middle muscle a, which, at the 6th, 7th, 8th, and 9th rings, has its insertions rather beyond the division. Each row of muscles appears as one, because they are closely connected at top by some of the fibres which pass from one ring to the other.

The muscles A, which are 12 in number, gradually diminish in breadth to the lower part of the last ring; at the 8th and three following divisions they communicate with the muscles B, and at the 11th with D. In the lower part of the last ring, A is much broader than it was in the preceding ring; one extremity of it is contracted, and communicates with B; the lower insertion being at the membrane J, which is the exterior skin of the fecal bag. The muscles A and B, on the lower part of the last ring, cannot be seen until a large muscle is removed, which on one side is fixed to the subdivision of the ring and on the other to the fecal bag.

The right muscles B, which are also 12 in number, begin at the second ring, and grow larger from thence to the seventh. They are usually narrower from thence to the 12th; the deficiency in width be--
Microscope ing supplied by the six muscles C, which accompany it from the 7th to the subdivision of the 12th ring. The muscles B and C communicate laterally with the 8th, 11th, and 12th divisions. C is wanting at the subdivision of the 12th; its place being here supplied by B, which becomes broader at this part.

The first of the three floating muscles V originates at the first ring, from whence it introduces itself under N, where it is fixed, and then subdivides, and hides itself under other parts. The second begins at the second division, being fixed to the anterior extremity of B of the second ring; from thence directing itself towards the stomach; and, after communicating with the case of the corpus carapaceum, it divides, and spreads into eight muscles which run along the belly. The third begins at the third division, originating partly at the skin, and partly at the junction of the muscles B of the second and third ring. It directs itself obliquely towards the belly, meeting it near the third spiracle; and, branching from thence, it forms the oblique muscles of some of the viscera.

The thin, long, muscle \ddot{a}, which is at the subdivision of the last ring, and covers the anterior insertion of the muscle (a) where the ring terminates, is single. It begins at one extremity of the muscle (e) at the fore-part of the ring runs along the subdivision round the belly of the caterpillar, and finishes, on the other side, at the extremity of a similar muscle C.

Fig. 49. shows the dorsal muscles of the coelom. To view which in an advantageous manner, we must use the following mode of preparation:

1. All the dorsal muscles, 55 in number, must be taken away, as well as the seven lateral ones already described.
2. All the straight muscles of the belly must be taken away, as well as the muscular roots (e), and the ends of the gastric muscles (c), which are at the third and fourth divisions.
3. At the second division the muscle \ddot{a} must be removed; only the extremities being left to show where it was inserted.

The parts being thus prepared, we begin at the third ring; where there are found four dorsal muscles C, D, E, and F. The first one C is inserted at the third division, under the muscles \ddot{a} and \ddot{a}, where it communicates by means of some fibres with the muscle / of the second ring; proceeding from thence obliquely towards the intermediate superior line, and is fixed at the fourth division. As soon as C is retracted, the muscle D is seen; which grows wider from the anterior extremity; it lies in a contrary direction to the muscle C, and is inserted into the third and fourth divisions. The muscle E lies in the same direction as the muscle C, but not so obliquely; the lower insertion is at the fourth division; the other at the third, immediately under C. The muscle F is nearly parallel to D which joins it; the first insertion is visible, but the other is hid under the muscles E and G at the fourth division.

In the eight following rings, there are only two dorsal muscles; and of these D is the only one that is completely seen. It is very large, and diminishes gradually in breadth from one ring to the other, till it comes to the last, sending off branches in some places. E is one of the first muscles of the back; Microscope and is inferted under the dividing muscles \ddot{a}, at the divi-
sions of its own ring.

On the anterior part of the 12th ring there are three dorsal muscles, D, E, and F. D is similar to that of the preceding ring, marked also D, only that it is no more than half the length; terminating at the subdivision of its own ring. E is of the same length, and differs from the muscle E of the preceding ring only in its direction. F is parallel to E, and shorter than it; its anterior end does not reach the twelfth division.

On the posterior part there is only one dorsal muscle, fastened by some short ones to the subdivision of the last ring, traversing the muscles \ddot{a}; and being fixed there as if designed to strengthen them, and to vary their direction. — is a single muscle, of which the anterior insertion is visible, the other end being fixed to the bottom of the foot of the last leg; its use is to move the foot. The anterior part of the muscle \ddot{b} branches into three or four heads, which cross the superior line obliquely, and are fixed to the skin a little above it. The other end is fastened to the membrane T.

Fig. 50. and 51. show the muscles of the caterpillar when it is opened at the back. The preparation for this view is to disengage the fat and other extra-
nomous matter, as before directed.

The first ring has only two gastric muscles (c) and (d); the former is broad, and has three or four little tails: the first fixture is at the base of the lower lip, from whence it descends obliquely, and is fixed be-

between the inferior and lateral line. The small muscle (d) is fastened on one side to the first spiracle; on the other, a little lower, to the intermediate inferior and lateral line; and seems to be an antagonist to the muscle P, which opens the spiracle. The po-
terior fixture of is under the muscle C, near the skin of the neck: \ddot{b} is fixed a little on the other side of C, at the middle of the ring.

In the second ring there are three gastric muscles, \ddot{a}, \ddot{b}, and \ddot{i}; \ddot{g} and \ddot{b} are fixed at the folds which termi-
nate the ring; but only the anterior part of \ddot{i} is fixed there. The muscle \ddot{b} is triple, and in one of the divisions separated into two parts; that marked \ddot{i} comes nearer the inferior line, and is fixed a little be-
yond the middle of the ring, where the corresponding muscle of the opposite side is forked to receive it.

In the third ring, the muscle \ddot{b}, which was triple in the foregoing ring, is only double here, that part which is nearest the inferior line being broad: it has three tails, of which only two are visible in the figure. It is exactly similar to that of the preceding ring; and is crossed in the same manner by the muscle from the opposite side of the ring.

Throughout the eight following rings, the muscle \ddot{f}, which runs through them all, is very broad and strong. The anterior part of it is fixed at the inter-

mediate inferior line, on the fold of the first division of the ring; the other part is fixed beyond the lower division; with this difference, that at the 10th and 11th rings it is fixed at the last fold of its ring; whereas, in the others it passes over that ring, and is inferted into the skin of the following one. In all
The first extremity of the muscle \(g \) is fastened to the fold which separates the ring from the preceding one, and is parallel to \(f \) and placed at the side of it. The first first muscles marked \(g \) are forked; that of the fourth ring being more so than the rest, nor does it unite till near its anterior insertion. The longest tail lays hold of the following, and is inserted near the inferior line; the other inserts itself near the same line, at about the middle of its own ring. The two laft do not branch out; but terminate at the divisions, without reaching the following ring. The muscle \(b \), placed at the side of \(f \), has nearly the same direction, and finishes at the folds of the ring.

The anterior part of the 12th ring has only one gallinaceous muscle, marked \(c \); it is placed on the intermediate inferior line, and is inserted at the folds of the upper division, and at the subdivision of this ring. The lower part has a larger muscle marked \(e \), with several divisions; one placed under \(b \), with one extremity fixed near the lateral line, at the subdivision of its ring; the other to the fecal bag, a little lower than the muscle \(b \).

In fig. 51, all the gallinaceous muscles described in fig. 50, disappear, as well as those lateral and dorsal ones of which the letters are not to be found in this figure.

In the first ring are the gallinaceous muscles, \(e, f, g \), which are best seen here: the first is narrow and long, passing under and crossing \(f \); one of its insertions is at the lower line, the other at the lateral, between the spiraculum and neck: \(f \) is short, broad, and nearly straight, placed along the intermediate line; but between it and the lateral it passes under \(e \), and is fixed to the fold of the skin which goes from the one bag to the other; the lower insertion is near the second division. There are sometimes three muscles of those marked \(g \), and sometimes four: the lower parts of them are fixed about the middle of the ring, and the anterior parts at the fold of the skin near the neck. The muscles \(i, b \) are fixed to the same fold; the other end of \(h \) being fixed under the muscle \(n \), near the spiraculum. Above the upper end of \(f \), a muscular body, \(g \), may be seen. It is formed by the separation of two floating muscles.

The second ring has six gallinaceous muscles, \(k, l, m, n, e, f, p \). The first is a large oblique muscle, with three or four divisions placed at the anterior part of the ring; the head is fixed on the corresponding muscle, terminating to the right and left of the line. \(l \) is a narrow muscle, whose head is fixed to the fold of the second division; the tail of it lies under \(m \), and is fastened to the edge of the skin that forms the cavity for the leg. The two muscles marked \(m \) have the same obliquity, and are placed the one on the other: the head is inserted in the skin under the muscle \(p \), and communicates by a number of fibres with the tail of the muscle \(n \), the other end is fixed to the intermediate inferior line at the fold of the third division. The large and broad muscle \(n \), covers the lower edge of the cavity of the limb, and the extremity of the tail of \(l \). It is fixed first at the skin, near the intermediate line, from whence it goes in a perpendicular direction towards \(m \), and introduces itself under \(o \) and \(w \), where it is fixed. The muscle \(o \) is narrow and bent, and covers the edge of the cavity of the leg for a little way; one end terminating there, and the other finishing at the third division near \(m \). That marked \(p \) is also bent: it runs near the anterior edge of the cavity of the leg; one end meets the head of \(o \), the other end terminates at a raised fold near the inferior line. There is a triangular muscle on the side of the lateral muscle \(a \), similar to that marked \(g \) in the following ring: in this figure it is entirely concealed by the muscle \(m \).

The third ring has no muscle similar to \(m \); that marked \(k \) differs only from that of the second ring in being crooked by the opposite muscle. Those marked \(l, m, n, p \), are similar to those of the preceding one. The muscle \(g \) is triangular; the base is fastened to the fold of the ring; on the lower side it is fixed to the muscle \(a \), the top to the skin at the edge of the cavity for the leg.

The eight following rings have the gallinaceous muscles, \(i, k, l, m \) and \(n \). The muscle \(i \) is quite straight, and placed at some distance from the inferior line: it is broad at the fourth ring, but diminishes gradually in breadth to the 11th. In the fourth it is united; but divides into two heads, which divercate in the following rings. In the fix next rings these heads are fixed nearly at the same place with \(o \) and \(f \); and in the other two it terminates at the fold of the ring. The anterior insertion of the first and last is at the fold where the ring begins; that of the fix others is somewhat lower under the place where the muscle \(i \) terminates. The lower part of the oblique muscle \(k \) is inserted in the skin near \(f \); the upper part at the intermediate inferior muscle upon the fold which separates the following ring, but is wanting in the 11th. The muscle \(i \) is large and co-operates with \(M \); in the opening and shutting the spiraculum, one of its figures is near the intermediate inferior line, at about the same height as \(i \). The tail terminates a little below the spiraculum.

The twelfth ring has only the single gallinaceous muscle \(d \), which is a bundle of six, seven, or eight muscles: the first fixture of these is at the subdivision of the ring near the inferior line; one or two cross this, and at the same time the similar muscles of the opposite side. Their fixture is at the bottom of the foot; and their office is to assist the muscle \(a \) in bringing back the foot, and to loosen the claw from what it lays hold of. One of the insertions of this muscle \(a \) is observed in this figure near \(d \), the other near the subdivision of the ring.

Fig. 52, and 53, show the organization of the head of the coitus, though in a very imperfect manner, as M. Lyonet found it necessary to employ twenty figures to explain it fully. The head is represented as it appears when separated from the fat, and disengaged from the neck. HH are the two palpi. The truncated muscles D belong to the lower lip, and assist in moving it. K shows the two ganglions of the neck united. II are the two vesicles which assist in spinning the silk. L, the oesophagus. M, the two dissolving vessels. The Hebrew characters 1 are the continuation of the four cephalic arteries. In fig. 52, the ten abductor muscles of the jaw
Microscope are represented by SS, TT, VV, and Z. Four occipital muscles are seen in fig. 53, under e e and f. At a k is represented a nerve of the first pair belonging to the ganglion of the neck; b is a branch of this nerve.

Fig. 54, exhibits the nerves as seen from the under part; but excepting in two or three nerves, which may be easily distinguished, only one of each pair is drawn, in order to avoid confusion. The nerves of the first ganglion of the neck are marked by capital letters, those of the ganglion (a) of the head by Roman letters; the nerves of the small ganglion by Greek characters. Those of the frontal ganglion, except one, by numbers.

The muscles of the coifus have neither the colour nor form of those of larger animals. In their natural state they are soft, and of the consistence of a jelly. Their colour is a greyish blue, which, with the same lustre, they are generally flat and of an equal size; and from them, as well as from that in the head, the nerves are distributed thro' the body.

The spinal marrow in the coifus goes along the belly; is very small, forking out at intervals, nearly of the same size throughout, except at the ganglions, and is not included in any case. It is by no means fo tender as in man; but has a great degree of tenacity, and does not break without a considerable degree of tension. The substance of the ganglions differs from that of the spinal marrow, as no vessels can be discovered in the latter; but the former are full of very delicate ones. There are 94 principal nerves, which divide into innumerable ramifications.

The coifus has two large tracheal art.ries, creeping under the skin close to the spiracula; one at the right and the other at the left side of the insect, each of them communicating with the air by means of nine spiracula. They are nearly as long as the whole caterpillar; beginning at the first spiraculum, and extending somewhat farther than the last; some branches also extending quite to the extremity of the body. Round each spiraculum the trachea pushes forth a great number of branches, which are again divided into smaller ones, and these further subdivided and spread through the whole body of the caterpillar. The tracheal artery, with all its numerous ramifications, are open elastic vessels, which may be pressed close together, or drawn out considerably, but return immediately to their usual size when the tension ceases. They are naturally of a silver colour, and make a beautiful appearance. This vessel, with its principal branches, is composed of three coats, which may be separated from one another. The outermost is a thick membrane furnished with a great variety of fibres, which describe a vast number of circles round it, communicating with each other by numerous ducts. The second is very thin and transparent, without any particular vessel being distinguishable in it. The third is composed of feyly threads, generally of a spiral form; and fo near each other as scarcely to leave any interval; They are curiously united with the membrane which occupies the intervals; and form a tube which is always open, notwithstanding the flexure of the vessel. There are also many other peculiarities in its structure. The principal tracheal vessels divide into 1326 different branches.

The heart of the coifus is very different from that of larger animals, being almost as long as the animal itself. It lies immediately under the skin at the top of the back, entering the head, and terminating near the mouth. Towards the last rings of the body it is large and capacious, diminishing very much as it approaches the head, from the fourth to the twelfth division. On both sides, at each division, it has an appendage, which partly
Microscope partly covers the muscles of the back, but which growing narrower as it approaches the lateral line, it forms a number of irregular lozenge-shaped bodies. This tube, however, seems to perform none of the functions of the heart in larger animals, as we find no vessel opening into it which answers either to the aorta or vena cava. It is called the heart, because it is generally filled with a kind of lymph, which naturalists have supposed to be the blood of the caterpillar; and because in all caterpillars which have a transparent skin, we may perceive alternate regular contractions and dilatations along the superior line, beginning at the eleventh ring, and proceeding from ring to ring, from the fourth; hence this vessel is thought to be a string or row of hearts. There are two white oblong bodies which join the heart near the eighth division; and these have been called reniform bodies, from their having somewhat of the shape of a kidney.

The most considerable part of the whole caterpillar with regard to bulk is the corpus crassum. It is the first and only substantial that is seen on opening it. It forms a kind of sheath which envelops and covers all the parts, and introducing itself into the head, enters all the muscles of the body, filling the greatest part of the empty spaces in the caterpillar. It very much resembles the configuration of the human brain, and is of a milk-white colour.

The oesophagus descends from the bottom of the mouth to about the fourth division. The fore-part, which is in the head, is fleshly, narrow, and fixed by different muscles to the cutaneous parts of it; the lower part which passes into the body, is wider, and forms a kind of membranaceous bag, covered with very small muscles; near the stomach it is narrower, and, as it were, confined by a strong nerve fixed to it at distant intervals. The ventricle begins a little above the fourth division where the oesophagus ends, and finishes at the tenth. It is about seven times as long as broad; and the anterior part, which is broadest, is generally folded. These folds diminish with the bulk as it approaches the intestines; the surface is covered with a great number of aerial vessels, and opens into a tube, which M. Lyonet calls the large intestine.

There are three of these large tubes, each of which differs so much from the rest, as to require a particular name to distinguish it from them.

The two vessels from which the coiffus spinos its skit are often above three inches long, and are distinguished into three parts; the anterior, intermediate, and posterior. It has likewise two other vessels, which are supposed to prepare and contain the liquor for dissolving the wood on which it feeds.

Fig. 53 shows the wing of an earwig magnified; a represents it of the natural size. The wings of this insect are so artificially folded up under short cases, that few people imagine they have any. Indeed, they are very rarely made use of their wings. The cases under which they are concealed are not more than a fifth part of the size of one wing, though a small part of the wing may be discovered, on a careful inspection, projecting from under them. The upper part of the wing is cutaneous and opaque, but the under part is beautifully transparent. In putting up their wings, they first fold back the parts AB, and then flatten the ribs like a fan; the strong muscles used for this purpose being seen at the upper part of the figure. Some of

The ribs are extended from the centre to the outer edge; Microscope others only from the edge about half way; but they are all united by a kind of band, at a small but equal distance from the edge: the whole evidently contrived to strengthen the wing, and facilitate its various motion. The insect itself differs very little in appearance in its three different states. De Geer afferts, that the female hatches eggs like a hen, and broods over her young ones as a hen does.

Fig. 56. represents a wing of the Hemerobius perla magnified. It is an insect which seldom lives more than two or three days. The wings are nearly of a length, and exactly similar to one another. They are composed of fine delicate nerves, regularly and elegantly disposed as in the figure, beautifully adorned with hairs, and lightly tinged with green. The body is of a fine green colour; and its eyes appear like two burnished beads of gold, whence it has obtained the name of golden eye. This insect lays its eggs on the leaves of the plum or the rose tree; the eggs are of a white colour, and each of them fixed to a little pedestal and covered by which means they stand off a little from the leaf, appearing like the fructification of some of the molluscs. The larva proceeding from these eggs resembles that of the coccinella or lady-cow, but is much more handsome. Like that, it feeds upon aphides or pucerons, fucking their blood, and forming itself a cake with their dried bodies; in which it changes into the pupa state, from whence they afterwards emerge in the form of a fly.

Fig. E, F, I. represent the duct of a moth's wing magnified. This is of different figures in different moths. The natural size of these small plumes is represented at H.

Fig. 57. shows a part of the cornea of the libellula magnified. In some positions of the light, the sides of the hexagons appear of a fine gold colour, and divided by three parallel lines. The natural size of the part magnified is shown at A.

Fig. 58. shows the part c of a lobster's cornea magnified.

Fig. 59. shows one of the arms or horns of the lepas antifera, or barnacle, magnified; its natural size being represented at A. Each horn consists of several joints, and each joint is furnished on the concave side of the arm with long hairs. When viewed in the microscope the arms appear rather opaque; but they may be rendered transparent, and become a most beautiful object, by extracting out of the interior cavity a bundle of longitudinal fibres, which runs the whole length of the arm. Mr Needham thinks that the motion and use of these arms may illustrate the nature of the rotary motion in the wheel-animal. In the midst of the arms is an hour glass, consisting of a jointed hairy tube, which includes a long round tongue that can be puffed occasionally out of the tube or sheath, and retracted occasionally. The mouth of the animal consists of six laminae, which go off with a bend, indented like a saw on the convex edge, and by their circular disposition are so ranged, that the teeth, in the alternate elevation and depression of each plate, strike against whatever comes between them. The plates are placed together in such a manner, that to the naked eye they form an aperture not much unlike the mouth of a contracted purse.

Fig. 60. shows the apparatus of the Tabanus or Co.
Microscope fly, by which it pierces the skin of horses and oxen, in order to suck their blood. The whole is contained in a flasky case, not expressed in the figure. The feelers are of a spongy texture and grey colour, covered with short hairs. They are united to the head by a small joint of the same substance. They defend the other parts of the apparatus, being lanced upon it side by side whenever the animal stings, and thus preserve it from external injury. The wound is made by the two lancets Bb and B, which are of a delicate structure but very sharp, formed like the dissecting knife of an anatomist, growing gradually thicker to the back. The two instruments c and C, appear as if intended to enlarge the wound by irritating the parts round it: for which they are jagged or toothed. They may also serve, from their hard and horny texture, to defend the tube E, which is of a fester nature, and tubular, to admit the blood, and convey it to the stomach. This part is totally inclosed in a line D, which entirely covers it. These parts are drawn separately at B, C, D, E. De Geer observes, that only the females suck the blood of animals; and Reaumer informs us, that having made one, that had sucked its fill, disgorge itself; the blood it threw up appeared to him to be more

The natural size of this apparatus is shown at f. Fig. 61. shows a bit of the skin of a lump-fish (Cynoglossum) magnified. When a good specimen of this can be procured, it forms a most beautiful object. The tubercles exhibited in the figure probably secrete an unctuous juice.

Fig. 62. shows the scale of a sea-urchin found on the English coast; the natural size is exhibited at h.

Fig. 63. is the scale of an haddock magnified; its natural size as within the circle.

Fig. 64. the scale of a parrot fish from the West Indies magnified; I the natural size of it.

Fig. 66. part of the skin of a sole fish, as viewed through an opaque microscope; the magnified part, in its real size, shown at L.

The scales of fishes afford a great variety of beautiful objects for the microscope. Some are long; others round, square, &c. varying considerably not only in different fishes, but even in different parts of the same fish. Leeuwenhoek supposed them to consist of an infinite number of small scales or strata, of which those next to the body of the fish are the largest. When viewed by the microscope, we find some of them ornamented with a prodigious number of concentric flutings too near each other, and too fine to be easily enumerated. These flutings are frequently traversed by others diverging from the centre of the scale, and generally proceeding from thence in a straight line to the circumference.

For a more full information concerning these and other microscopical objects, the reader may consult Mr Adams's Essays on the Microscope, who has made the most valuable collection that has yet appeared on the subject. See also the articles Anim. Lace, Crystallization, Polype, Plants, and Wood, in the present Work.

MIDAS (fab. hist.), a famous king of Phrygia, who having received Bacchus with great magnificence, that god, out of gratitude, offered to grant him whatever he should ask. Midas defied that every thing he touched should be changed into gold. Bacchus consented; and Midas, with extreme pleasure, every where found the effects of his touch. But he had found reason to repent of his folly: for wanting to eat and drink, the aliments no sooner entered his mouth than they were changed into gold. This obliged him to have recourse to Bacchus again, to beseech him to restore to him his former state; on which the god ordered him to bathe in the river Pactolus, which from thence forward had golden sands. Some time after, being chosen judge between Pan and Apollo, he gave another instance of his folly and bad taste, in preferring Pan's music to Apollo's; on which the latter being enraged, gave him a pair of ass's ears. This Midas attempted to conceal from the knowledge of his subjects: but one of his servants saw the length of his ears, and being unable to keep the secret, yet afraid to reveal it from apprehension of the king's resentment, he opened a hole in the earth, and after he had whispered there that Midas had the ears of an ass, he covered the place as before, as if he had buried his words in the ground. On that place, as the poets mention grew a number of reeds, which when agitated by the wind uttered the fame sound that had been buried beneath and published to the world that Midas had the ears of an ass. Some explain the fable of the ears of Midas, by the supposition that he kept a number of informers and spies, who were continually employed in gathering every seditious word that might drop from the mouths of his subjects. Midas according to Strabo, died of drinking bull's hot blood. This he did, as Plutarch mentions, to free himself from the numerous ill dreams which continually tormented him. Midas, according to some, was son of Cybele. He built a town which he called Ancyra.

MIDAS, Ear-fish, the smooth ovato-oblong baccum, with an oblong and very narrow mouth. It consists of six valvular parts, but the lower one alone makes up almost the whole shell.

MIDCHESTER, the point of the ecliptic that culminates, or in which it cuts the meridian.

MIDDLEBURG, one of the Friendly Islands in the South Sea. This island was first discovered by Tasman, a Dutch navigator, in January 1742–3; and is called by the natives Ava-ava: it is about 16 miles from north to south, and in the widest part about 8 miles from east to west. The skirts are chiefly laid out in plantations, the south-west and north-west sides especially. The interior parts are but little cultivated, though very capable of it; but this neglect adds greatly to the beauty of the island; for here are agreeably diversified groves of cocoa-nuts and other trees, lawns covered with thick grass, here and there plantations and paths leading to every part of the island, in such beautiful disorder, as greatly to enliven the prospect. The hills are low; the air is delightful; but unfortunately water is denied to this charming spot. Yams, with other roots, bananas, and bread-fruit, are the principal articles of food; but the latter appeared to be scarce. Here is the pepper tree, or ata-ata, with which they make an intoxicating liquor, in the same disgusting manner as is practised in the Society Islands. Here are several orderiferous trees and shrubs, par-
particularly a species of the lemon tribe; and the botanical gentlemen met with various new species of plants. Here also are a few hogs and fowls.

There are no towns or villages; most of the houses are built in plantations, which are laid out in different parts, with no other order than what convenience requires. They are neatly constructed, but are left roomless, and the plantations are laid out in the Society Islands. The floors are a little raised, and covered with thick, strong mats. The same fort of matting serves to inclose them on the windward side, the others being open. They have little areas before most of them, which are planted round with trees or ornamental shrubs, whose fragrance perfumes the air. Their household furniture consists of a few wooden platters, cocoa-nut shells, and pillows made of wood, and shaped like four-footed foots or forms; their common clothing, with the addition of a mat, serves them for bedding.

The natives are of a clear mahogany or chestnut brown, with black hair, in short frizzled curls, which seems to be burnt at the tips; their beards are cut or shaven. The general figure of the men is equal to our middle size, from five feet three to five feet ten inches; the proportions of the body are very fine, and the contours of the limbs extremely elegant, though something more mufcular than at Otaheite, which may be owing to a greater and more confirm exercise of strength in their agriculture and domestic economy. Their features are extremely mild and pleasing; and differ from the old Otaheitean faces in being more oblong than round, the nose sharper, and the lips rather thinner. The women are, in general, a few inches shorter than the men, but not so small as the lower clafs of women at the Society Islands. The practice of puncturing the skin, and blacking it, which is called tattowering, is in full force among the men, for their belly and loins are very strongly marked in configurations more compounded than those at Otaheite. The tenderer parts of the body were not free from these punctures; the application of which, besides being very painful, must be extremely dangerous on glandular extremities.

The men in general go almost naked, having only a small piece of cloth round the loins, but some wrap it in great abundance round them from their waist to this cloth is manufactured much like that at Otaheite, but overlaid with a strong glue, which makes it stiff, and fit to refit the wet. The women are likewise covered from the waist downwards: they often have loose necklaces, consisting of several strings of small shells, seeds, teeth of fish; and in the middle of all, the round operculum, or cover of a shell as large as a crown-piece. The men frequently wear a fling round their necks, from which a mother-of-pearl shell hangs down on the breast; both the ears of the women were perforated with two holes, and a cylinder cut out of tortoise-shell or bone was stuck through both the holes. The most remarkable circumstance observed of this people was, that most of them wanted the little finger on one, and sometimes on both hands: the difference of sex or age did not exempt them from this amputation; for even among the few children that were seen running about naked, the greater part had already suffered this loss. This circumstance was observed by Palman. Another singularity which was observed to be very general among these people, was a round spot on each cheek-bone, which appeared to have been burnt or blistered. On some it seemed to have been recently made, on others, it was covered with scurf, and many had only a slight mark of its former existence: how, or for what purpose it was made, could not be learnt. The women here, in general, were reserved; and turned, with dignity, from the immodest behaviour of ungovernable fear and passion, were not, however, wanting some who appeared to be of cally virtue, and invited their lovers with licentious gestures. The language spoken here is soft, and not unpleasant; and whatever they said was spoken in a kind of singing tone. Omai and Malvine, who were both passengers on board the ship, at first declared that the language was totally new and unintelligible to them; however, the affinity of several words being pointed out, they soon caught the particular modification of this dialect, and conversed much better with the natives than any on board the ships could have done, after a long intercourse. They have the neat est ornaments imaginable, consisting of a number of little flat sticks, about five inches long, of a yellow wood like box, firmly and elegantly connected together at the bottom by a tissue of the fibres of cocoanut, some of which were of their natural colour, and others dyed black; the same fibres were likewise used in the making of baskets, the table of which was highly elegant, and varied into different forms and patterns. Their clubs are of a great variety of shapes, and many of them so ponderous as scarce to be managed with one hand. The most common form was quadrangular, so as to make a rhomboid at the broad end, and gradually tapering into a round handle at the other. The greater part were carved all over in many chequered patterns, which seemed to have required a long space of time, and incredible patience, to work up; as a sharp stone, or a piece of coral, are the only tools made use of: the whole surface of the plain clubs was as highly polished as if an European workman had made them with the best instruments. Besides clubs, they have spears of the same wood, which were sometimes plain sharp-pointed sticks, and sometimes barbed with a sling-ray's tail. They have likewise bows and arrows of a peculiar construction: the bow, which is fix feet long, is about the thickness of a little finger, and when flung forms a flight curve; its convex part is channelled with a single deep groove, in which the bow-string is lodged. The arrow is made of reed, near fix feet long, and pointed with hard wood: when the bow is to be bent, instead of drawing it so as to increase the natural curvature, they draw it the contrary way, making it perfectly straight, and then form the curve on the other side. Most of their canoes have outriggers, made of poles, and their workmanship is very admirable: two of these canoes are joined together with a surpising exactness, and the whole surface receives a very curious polish. Their paddles have short broad blades, something like those at Otaheite, but more neatly wrought, and of better wood. They keep their dead above ground, after the manner of the Society Islands; as a corpse was seen deposited on a low hut.
Middleham, a particular had his back and shoulders covered with a large cancerous ulcer, which was perfectly livid within, and of a bright yellow all round the edges. A woman was likewise unfortunate enough to have her face destroyed by it in the most shocking manner; there was only a hole left in the place of her nose; her cheek was swelled up, and continually oozing out a purulent matter; and her eyes seemed ready to fall out of her head, being bloody and fo:re: though these were some of the most miserable objects that could possibly be seen, yet they seemed to be quite unac­ concerned about their misfortunes, and traded as briskly as any of the rest.

MIDDLELAM, a town in the north-riding of Yorkshire, situated on the river Ure, 255 miles from London. It had once a castle, where was born M. Tullius Cicero, only son of Richard III.; and is noted for a woollen manufactury and frequent horsec­ races. Its market is on Monday; and fairs Nov. 6 and 7. The town stands on a rising ground; and the castle, which was on the south side, was formerly moated round by the help of a spring conveyed in pipes from the higher grounds. The church of Mid­ delham is extra-parochial.

MIDDLESEX, a county of England, which de­ rives its name from its situation amidst the three kings­ doms of the East, West, and South Saxons. It is bounded on the north by Hertfordshire; on the south by the river Thames, which divides it from Surry; on the west by the river Colne, which separates it from Buckinghamshire; and on the east by the river Lea, which divides it from Essex. It extends about 23 miles in length, but hardly 14 in breadth, and is not more than 115 in circumference; but as it com­ pranges the two vast cities of London and Westminster, which are situated in the south-east part of the coun­ ty, it is by far the wealthiest and most populous county in England. It is divided into 602 liberties, containing 200 parishes, besides a vast number of chapels of ease, and 5 market-towns, exclusive of the cities of London and Westminster. The air is very pleasant and healthy, to which a fine gravelly soil does not add a little contribute. The soil produces plenty of corn, and the county abounds with fertile meadows and gardeners grounds. In a word, the greater part of the country is so prodigiously asfifted by the rich compost from London, that the whole of the cultivated part may be considered as a garden. The natural produc­ tions are cattle, corn, and fruit; but its manufactures are too many to be enumerated here, there being hardly a single manufacture practised in Great Britain but what is also established in this county.—Though London is the chief city, Brentford is the county­ town where the members of parliament are elected.

MIDDLETOWN (Dr Conyers), a very celebrated English divine, the son of a clergyman in Yorkshire, was born at Richmond in 1685. He distinguished himself, while fellow of Trinity-college, Cambridge, by his controversy with Dr Bentley his master, relating to some mercenary conduct of the latter in that station. He afterwards had a controversy with the whole body of physicians, on the dignity of the medical profession; concerning which he published De medici­orum apud veteres Romanos degentium condi­ tioni deferiatio; qua, contra viros celebrimos Jacobum Sponium et Richardum Meadum, ferealem atque ignobilem earn fauffis, and in the course of this dispute much re­ fentment and many pamphlets appeared. Hitherto he had flood well with his clerical brethren; but he drew the resentment of the church on him in 1729, by writing "A letter from Rome, showing an exact conformity between popery and paganism," &c.; as this letter, though politely written, yet attacked Popish miracles with a gaiety that appeared dangerous to the cause of miracles in general. Nor were his Objections to Dr Waterland's manner of vindicating Scripture against Tindal's "Christianity as old as the Creation," looked on in a more favourable point of view. In 1741, came out his great work, "The history of the life of M. Tullius Cicero," 2 vols 4to; which is indeed a fine performance, and will probably be read as long as taste and polite literature subsist among us: the author has nevertheless fallen into the common error of bi­ographers, who often give panegyrics instead of his­ tory. In 1748, he published, "A free inquiry into the miraculous powers which are supposé to have fulfilled in the Christian church from the earliest ages, through several ages and centuries," He was now attacked from all quarters; but before he had a notice of his antagonists, he supplied them with an­ other subject in "An examination of the lord bishop of London's discourses concerning the life and extent of prophecy," &c. Thus Dr Middleton continued to dis­ play talents and learning, which were highly esteem­ ed by men of a free turn of mind, but by no means in a method calculated to invite promotion in the cler­ ical line. He was in 1723 chosen principal librarian of the public library at Cambridge; and if he were not to dignities in the church, he was in easy circum­ stances, which permitted him to afer a dignity of mind often forgotten in the career of preferment. He died in 1750, at Hilderham in Cambridge-hire, an estate of his own purchasing; and in 1752, all his works, except the life of Cicero, were collected in 4 vols, 4to.

MIDDLEWICH, a town of Cheshire, 167 miles from London. It stands near the conflux of the Croke and Dan, where are two salt-water springs, from which are made great quantities of salt, the brine being faid to be so strong as to produce a full fourth part salt. It is an ancient borough, governed by burgesses; and its parli extends into many adjacent townships. It has a spacious church. Its market is on Tuesdays; and fairs on St James's-day, July 25; and Holy-Thur­ day. By the late inland navigation, it has communica­ tion with the rivers Mersey, Dee, Ribble, Ouse, Trent, Darwent, Severn, Humber, Thames, Avon, &c. which navigation, including its windings extends above 500 miles, in the counties of Lincoln, Notting­ ham, York, Lancaster, Westmoreland, Stafford, War­ wick, Leicester, Oxford, Worcester, &c. The river Wheelock, after a course of about 12 miles from Mow­ cop-hill, runs into the Dan a little above this town.

MIDHURST, a town of Sussex, 52 miles from London, has been represented in parliament ever since the 4th of Edward II. It is a neat small town, on a hill surrounded with others, having the river Arun at the bottom; and is a borough by prescription, go­ verned by a bailiff, chosen annually by a jury at a court-leet of the lord of the manor. The market is on Thursday; fairs on March 21, and the Thursday after.

MIDIAN,
MIDIAN, or Madian (anc. geog.), a town on the south side of Arabia Petraea; so called from one of the sons of Abraham by Keturah.—Another Midian, near the Arnon and Jopelis, in ruins in Jerom's time. With the daughters of these Midianites the Israelites committed fornication, and were guilty of idolatry. A branch of the Midianites dwelt on the Arabian gulph, and were called Kenites; some of whom turned profelytes, and dwelt with the Israelites in the land of Canaan.

MID-LOTHIAN. See Lothian.

MIDSHIP-FRAME, a name given to that timber, or combination of pieces formed into one timber, which determines the extreme breadth of the ship, as well as the figure and dimension of all the interior timbers.

In the article Ship-building, the reader will find a full explanation of what is meant by a frame of timbers. He will also perceive the outlines of all the principal frames, with their gradual dimensions, from the midship-frame delineated in the plane of projection annexed to that article. As the parts of which the several frames are composed have the same relation to each other throughout the vessel, and as the correct proportion, without and within these frames, are also nearly alike, and fixed in the same manner, it will be here sufficient for our purpose to represent the principal or midship-frame, together with its corresponding parts, which are as follows:—A, the keel, with a false keel beneath it. B, the chocks fixed upon the keelson, to retain the opposite pieces of the frames firmly together. C, one of the beams of the orlop. D, one of the lower deck beams; with d the beams of the upper deck. E, the hanging-knees, by which the beams are attached to the timbers. F, the standards, which are fixed above the decks to which they belong. G, the clamps, which fasten the extremities of the beams. H, the gun-ports of the lower deck; with h the ports of the upper deck. I, K, L, different pieces of thick-fluff, placed opposite to the several scarfs or joinings, in the frame of timbers. M, the planks of the deck. N, the water-ways. O, the planks of the ceiling, between the several ranges of thick-fluff. P, the sprikker. Q, the main-wale, to fortify the ship's side opposite to the lower deck. R, the channel-wale, opposite to the upper deck. S, the whale-rail. T, the string, with the moulding under the gun-wale. U, the floor-timbers, which are laid across the keel and bolted to it. V, the federal futtocks; and W the top-timbers, which are all united into one frame. X, the keelson.

MIDSHIPMAN, a sort of naval cadet, appointed by the captain of a ship of war, to second the orders of the superior officers, and assist in the necessary business of the vessel, either aboard or ashore.

The number of midshipmen, like that of several other officers, is always in proportion to the size of the ship to which they belong. Thus a first-rate man of war has 25, and the inferior rates a suitable number in proportion. No person can be appointed lieutenant without having previously served two years in the royal navy in this capacity, or in that of mate, besides having been at least four years in actual service at sea, either in merchant ships or in the royal navy.
MID [762]

Officer who cons his lefson by rote as very ill qualified for his station, because particular situations might render it necessary for the said officer to assist at putting his own orders in practice. An ignorance in this practical knowledge will therefore necessarily be thought an unpardonable deficiency by those who are to follow his directions. Hence the midshipman who associates with these officers in the tops, till he has acquired a competent skill in the service of extending or reducing the sails, &c. will be often entertained with a number of furious jolts, at the expense of his superiors. Hence also he will learn, that a timely application to those exercises can only prevent him from appearing in the same despicable point of view, which must certainly be a cruel mortification to a man of the smallest sensibility.

If the midshipman is not employed in these services, which are undoubtedly necessary to give him a clearer idea of the different parts of his occupation, a variety of other objects present themselves to his attention. Without presuming to dictate the studies which are most essential to his improvement, we could wish to recommend such as are most suitable to the bent of his inclination. Astronomy, geometry, and mechanics, which are in the first rank of science, are the materials which form the skilful pilot and the superior mariner. The theory of navigation is entirely derived from the two former, and all the machinery and movements of a ship are founded upon the latter. The action of the wind upon the sails, and the resistance of the water at the stem, naturally dictate an inquiry into the property of solids and fluids; and the state of the ship, floating on the water, seems to direct his application to the study of hydrostatics, and the effects of gravity. A proficiency in these branches of science will equally enlarge his views, with regard to the operations of naval war, as directed by the efforts of powder and the knowledge of projectiles. The most effectual method to excite his application to those studies, is, perhaps, by looking round the navy, to observe the characters of individuals. By this inquiry he will probably discover, that the officer who is eminently skilled in the sciences, will command universal respect and approbation; and that whoever is satisfied with the delpicable ambition of shaming the hero of an assembly, will be the object of universal contempt. The attention of the former will be engaged in those studies which are highly useful to himself in particular, and to the service in general. The employment of the latter is to acquire those superficial accomplishments that unbind the mind from every useful science, emasculate the judgment, and render the hero infinitely more dexterous at falling into his station in the dance than in the line of battle.

Unless the midshipman has an unconquerable aversion to the acquisition of those qualifications which are fo essential to his improvement, he will very rarely want opportunities of making a progress therein. Every step he advances in these meritorious employments will facilitate his accession to the next in order. If the dunces, who are his officers or mates, are rattling the dice, roaring bad verses, hitting on the flute, or scraping discord from the fiddle, his attention to more noble studies will sweeten the hours of relaxation. He should recollect, that no example from fools ought to influence his conduct, or seduce him from that laudable ambition which his honour and advantage are equally concerned to pursue.

MIDWIFE, one whose profession is to deliver women in labour. See MIDWIFERY.

MIDWIFERY,

The art of assisting women in the birth of children. It is supposed to comprehend also the management of women both before and after delivery, as well as the treatment of the child in its most early state.

History of Midwifery. The art of midwifery is certainly almost coeval with mankind. The first midwife of whom mention is made under that name, assisted at the second labour of Rachel, the wife of Jacob. Another midwife is spoken of in Genesis, at the lying in of Thamar, who was delivered of twins. But the most honourable mention of midwives is that in Exodus, when Pharaoh king of Egypt, who had a mind to destroy the Hebrews, commanded the midwives to kill all the male children of the Hebrew women; which command they disobeyed, and thereby obtained a remembrance from God.

From all the passages in Scripture where midwives are mentioned, it is plain, that women were the only practitioners of this art among the Hebrews. Among the Greeks also women assisted at labours. Pharamace, the mother of Socrates, was a midwife. Plato speaks at large of midwives, explains their functions, regulates their duties, and remarks that they had at Athens the right of proposing or making marriages. Hippocrates makes mention of midwives, as well as Aristotle, Galen, and Aetius. This last even frequently quotes a woman called Aegipha, who was probably a midwife. They were called among the Greeks Mamma, or mamma; that is to say, mamma, or grandmamma.

We are still better acquainted with the customs of the Romans, and know that they employed women only. This may be deduced from the comedies of Plautus and Terence alone. We there see that they are women only who are called to assist persons in labour. Besides, Pliny, in his Natural History, frequently speaks of midwives and their duties; and names two, Sidira and Salpet, who had apparently the greatest reputation. Women were also employed after the fall of the empire; and it is certain, that, till lately, all individual nations have employed women only as midwives. This appears even from their names in many different languages, which are all feminine. There were, however, especially in great cities, surgeons who applied themselves to the art of midwifery, and made it their particular study. They were sent for in
in difficult cases, where the midwives found their incapacity; and then the surgeon endeavoured to deliver the woman by having recourse to instruments useful in those cases, as by cotchets, crow-sbills, &c.; but as these cases happened but seldom, women remained in possession of this business. It is certain according to Afruc, that Maria Therefa, wife of Louis XIV., employed women only in her labour; and the example of the queen determined the conduct of the princes and court-ladies, and likewise of the other ladies of the city. The same author tells us, that he has been informed that the same secret was kept secret in the city of Lyons and Tours. The same author tells us that he has been informed that the same secret was kept secret in the city of Lyons and Tours.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.

In opposition to this account, which is taken from Afruc, that author tells us, that he is aware of an objection from Hyginus, who asserts, that the ancients had not midwives; which made the women, through modesty, rather choose to run the risk of death than to make use of men on this occasion. For the Athenians, he adds, had forbid women and men to study physic, that is to say, the art of midwifery. A young woman, named Agrippa, desirous of learning this art, cut off her hair, dressed herself in the habit of a man, and became a scholar to one Halophilus, who taught her this business. Foreign countries soon adopted the custom, and likewise the name of

aouchers, though they had no such term in their own language; but in Britain they have more generally been called men-midwives.
MIDWIFERY.

The study of midwifery in Britain as a science is not of very ancient date. The first book published on the subject appeared in the year 1540, and was intitled *The Byrthe of Mankind,* otherwise named, *The Woman's Book,* by Thomas Raynold, phisician. It underwent a second edition by Thomas Ray, a printer whose name is not much known. It was adorned with prints, and went through several editions, and appears to have been held in high estimation. In 1653, the celebrated William Harvey published his treatise on generation; and afterwards engaging in the practice of midwifery, published his *Exercitatio de parte.* Some notice is also taken by Sydenham of the diseases incident to child-bed women, and of those of young children. About this time several other tracts on subjects relating to midwifery appeared, by Wharton, Charleton, Mayow, &c., but till about the year 1634, Dr Denman confiders the treatise of Raynold already mentioned as being the standard. The appearance of the works of Ambroze Paré, which were now first published, depressed the reputation of Raynold's book; and Dr Chamberlen, a celebrated physician, likewise applied himsef about the same time to midwifery. He introduced an instrument into the art called a *forcipis,* but Dr Denman suppofes to have been a *velhita.* He had three sons who likewise prafticed midwifery, and, as welt as himself, obtained considerable character; and one of the young men went over to Paris with a view to fill the secret, or advance his fortune by a practice which he had found successful in England. In this he was disappointed: the French bedside in which he was engaged proved unsuccessful, and he suffered much reproach in consequence. Returning to England, therefore, in 1672, he published a translation of Maurice's midwifery, which continued in great estimation for many years.

Dr Willoughby, who wrote a treatife on midwifery, quoted in manuscript by Dr Denman, complains of the practice of midwives about this time. He fays, that the books upon the subject all copied one another, recommending methods which could not but be prejudicial to the woman; and that particularly they did not attend to the efforts of nature, but endeavoured to force the birth before the proper time. He was the grandson of Sir Francis Willoughby, fo much celebrated in the time of queen Elizabeth; and Dr Denman is of opinion, that the fame and fortune acquired by Dr Chamberlen, induced to many gentlemen as now prafticed midwifery to undertake the study of it, and to make use of instruments as he did. Among these was Dr Bamber; but others attempted to raise their reputation by a quite contrary practice. In 1723, Dr Mannbray published a book on midwifery, intitled, *The Female Physician, or the Whole Art of New im-

proved Midwifery,* in which he violently declaims against the use of instruments; and next year he published an appendix, under the title of *Midwifery brought to perfection,* in which he fluts forth in a pompous manner the improvements he had made. This, however, was no more than a syllabus of his lectures, having been the first public teacher of midwifery in Britain.

Dionis's midwifery made its appearance in 1719, and Deventer's in 1729. The latter, in Dr Denman's opinion, was more esteemed than it deserved, as he generally condemns the use of instruments; notwithstanding which, he thinks it a considerable acquisition to the science in this country.

In 1727 appeared Dr Simfon's work, intitled, *The Synne of the Womb:* a work (says Dr Denman) of sufficient ingenuity, but not of much use in practice, even if his theory had been true.
having been pleased, in the year 1783, to form a rank in which those who dedicate themselves to the study of midwifery should be placed, I trust that future accounts will be more correct; and that this measure adopted by the college will promote the public benefit, by confining the industry and abilities of one class of men to this branch of the profession."

In Scotland, though there has for a long time been professors of midwifery, yet the surgeons likewise practice that art as well as their own. Several approved treatises on the subject have appeared in this country; particularly a system by the late Dr Smellie, which has been long held in the highest estimation in both kingdoms; and within these few years, several excellent performances by Dr Alexander Hamilton of the university of Edinburgh: And indeed, we may venture to affirm, that both theory and practice of midwifery are as well understood in this kingdom as in any part of the world.

PART I. THEORY OF MIDWIFERY.

CHAP. I. DESCRIPTION OF THE PELVIS IN GENERAL.

Dr Denman observes, that the term pelvis has been applied indiscriminately to the inferior cavity of the abdomen, and to the bones which form that cavity; but he thinks it most proper to confine it to the bones, and to distinguish the hollow by the name of the cavity of the pelvis. In the state of infancy, the pelvis is composed of five or six bones, most of which in the fetus are soft and flexible; some of them being, in a manner, quite cartilaginous; while the edges of others are found covered with a substance of the same kind. This construction is thought by some to facilitate delivery, as the pelvis of the fetus can thus change its figure like the cranium; but M. Baudelocque thinks this an erroneous opinion, "consonant neither to reason nor experience."

In the adult the pelvis consists only of four bones, viz. the sacrum, the os coccygis, and the two osseum innominatae. These being already described under the article Anatomy, we shall here content ourselves with observing, that an anchylosis is not unfrequently formed between the os sacrum and the osseum innominata; and sometimes an imperfect joint in consequence of their separation; whence the part is very much weakened, and the person ever afterwards walks with difficulty. The os coccygis in infancy is cartilaginous; but in the adult it is composed of three, or more frequently of four bones, connected by intermediate cartilage, the uppermost of which is somewhat broader than the lower part of the os sacrum. In some subjects these bones coalesce, and form a single one: in others an anchylosis is formed between the sacrum and os coccygis; in consequence of which the latter is shortened and turned inwards, so as to obstruct the head of the child in its passage through the pelvis. But the impediment thereby occasioned at the time of labour may be overcome by the force with which the head of the child is propelled, and the os coccygis again separated from the sacrum with a noise loud enough to be distinctly heard. In general, however, some regressive motion is preserved between the bones of which the os coccygis is composed; and that which is produced between the sacrum and os coccygis, when the latter is pressed by the head of a child passing through the pelvis, occasions a considerable temporary enlargement of the inferior aperture of the pelvis. Any lateral motion is prevented by the interposition of the coccygoid muscles, part of the levatores ani, and some portions of the sacro-sciatic ligaments into the sides of the os coccygis. The os innominatum, in a woman of the ordinary size, is about six inches broad from the anterior to the posterior superior spine. The height is nearly six inches and an half from the anterior spine to the bottom of the tuberosity of the ischium, and seven and an half if taken from the middle of the cribs of the ilium; and hence we may in some measure be enabled to determine the depth of the cavity of the pelvis laterally from the superior to the inferior limit."

"The osseum pubis (says M. Baudelocque) are joined together by means of a substance which has always been described by the name of cartilage, though it differs as much from that as from a ligament. According to some anatomists, each os pubis is covered by its own cartilage. Their junction not a true synchondrosis; but a close articulation, which admits only of inoffensive motions. By carefully examining this symphysis, we observe that each os pubis is really covered by a cartilage at its anterior extremity; that this cartilage is thicker before than behind, and in its superior and inferior parts than in the middle of its length; that these bones, thus covered, are bound together by means of a substance which seems ligamentous, and whose fibres, which are mostly transverse, go from one to the other; that these fibres are disposed, that the deepest are the thickest, and the most superficial the longest; that they leave between one another a kind of meshes filled with reddish corpuscles, very like those which are seen about the moveable articulations, and which are commonly thought to be synovial glands. We observe farther, that this fibrous and ligamentous substance does not occupy the whole thickness of the symphysis, and does not bind the bones together through the whole extent of the surfaces presented by their anterior extremities; but that there exists a true articulation of the species known by the name of arehrosis. If we open this symphysis towards the inside of the pelvis, after a cellular tissue very thin and loose, which we meet with first, we discover a capillary membrane, whose most apparent fibres are transverse; afterwards..."
Towards two cartilaginous facettes, smooth, polished, and moist, from six to eight lines long and two broad, of a figure a little similar, lightly convex on one bone and concave on the other. These facettes comprehend nearly the middle third of the length of the facrum and the posterior third of its thickness.—This facet then presents in one third of its extent, or thereabouts, a true articulation; and in the rest a *synovecia* and *synechrodes* at the same time.

This compound and articular subsance, being detached from the bones, forms a kind of wedges, whose base constitutes the anterior part of the facrum, and its edge the posterior; so that these bones seem to touch towards the inside of the pelvis, and appear separated to the distance of several lines without: The base of this kind of wedge is generally from four to six lines broad towards the middle of the length of the facrum, and from eight to ten in the inferior and superior parts, while the edge at most does not exceed one line. Its thickness, taken according to that of the bones, is greater above than below; where this subsance, become thinner, forms what is called the triangular ligament.

This first means of union was not sufficient to give these bones the firmness necessary for the free exercise of the functions to which the pelvis is defined. It is covered and fortified in all parts, but especially before, by bundles of ligamentous and aponeurotic fibres. Independently of the thick and very strong ligamentous structure which forms the fore-part of the facrum, we observe bundles of tendinous fibres which decussate each other a thousand ways, some of which arise from the interior * gracilis* and the external *obturators*, and others from the external portions of the inguinal rings. The triangular expansion which terminates the facrum inferiorly, and which forms the top of the arch of the pubes, seems to have other uses than that of binding the bones together.

The manner in which the *os facrum* is connected with the *os innominatus*, differs considerably from that in which the *osa pubis* are joined. Here each articular facet is covered by a true cartilaginous layer, and there are inequalities on each side, which mutually receive one another, while nothing of that kind is observed in the junction of the pubes; neither are there in any part of these articular facettes any of the transverse fibres, which go from one bone to the other in the *osa pubis*: these articulations, therefore, derive all their strength from the great numbers of ligaments which surrond them. Most of these are very short, and do not extend beyond the edges of the articular facettes; but there are others longer to be seen above, below, and behind these facrymies.

The *os facrum* is not only articulated with the ilia, but with the spine and coccyx. It is joined in three places to the spine: 1. By an oblong and cartilaginous impreffion in the middle of the back, which unites it to a similar impreffion in the body of the left lumbar vertebra, by means of an elastic subsance. 2. By two little articular maffes fixed in the posterior edge of that first impreffion, and which answer to similar subsances in the vertebræ abovementioned.

The elastic subsance which unites the middle of the base of the facrum to the spine, is entirely similar in its nature to that seen between the bodies of all the vertebræ. Being very thick before and thin behind, the angle resulting from the disposition of the articular facettes of these two parts is rendered more obtuse. This *os facrum* junction is surrounded by an infinity of ligaments, some without and others concealed within the *spina* canal. All motion is not prohibited by this kind of junction; but, as it only depends on the compression of the intermediate subsance, it can be but very small. The motion between the body of the left lumbar vertebra and the base of the facrum, is never extensive enough to make any alteration in the degree of acuteness of the angle which results from their junction; but the convexity of the lumbar column may be augmented or diminished by means of a compound motion, formed of those which take place between each of the lower lumbar vertebrae and between the lower ones of the back. This augmentation or diminution of the convexity, in proportion as the trunk is bent backward or forward, or by raising or lowering the breech when the woman lies on her back, deserves particular attention in the practice of midwifery; for thus we may make a favourable change in the direction of the axis of the pelvis, relatively to that of the trunk, to that of the uterus, and in the direction of the expulsive forces of the latter, which may be rendered more or less efficacious according to circumstances, by making the woman preserve a proper attitude.

The junction of the coccyx with the facrum permits the former to move, and yield to the different degrees of preffure it undergoes in different circumstances. The mobility is very great in youth; but diminishes intenfibly as the patient grows older, and at last is totally lost. If entirely lost, or considerably diminished, before a woman is past child-bearing, it produces sometimes, though very rarely, an obstacle to delivery. The connections of the pelvis with the inferior extremities are not of much importance in midwifery. The natural course of labour cannot be disturbed by any fault in their configuration when the pelvis itself is well formed; but in general they are confequences of a deformity of it. They are *enarthrodes*, which allow of motion in every direction.

The pelvis is divided into two parts, called the *upper* and *lower*, by a ridge sometimes elliptical, and sometimes of other shapes. The breadth of the upper part from the anterior superior spine of one ilium to another, is usually eight or nine inches, and its depth from three to four. At the back part of it is the projection of the lumbar vertebrae, and at the sides the *iliac fossa*. The lower part forms a kind of canal, whose entrance and outlet are somewhat narrower than the middle; whence it has been distinguished into the *superior* and the *inferior* brim, and an excavation.—The *superior* brim is a kind of circle forming the entrance of the canal; its form, however, is various, as is also its obliquity from behind forwards. M. Levret has fixed this brim at an angle of from 35 to 40 degrees.

The smallest diameter of this brim is generally about four inches, extending from the middle of the projection of the facrum to the superior and internal part of the facrum of the pubes. The other
MIDWIFERY.

Hitherto we have treated only of that form of the pelvis which is most favourable for delivery; but the proportions and forms of it are various; and as it differs from those above described, the delivery is attended with more or less difficulty.

The defects of the pelvis, with regard to facility of delivery, consiLts in its being either too large or too small. At first sight it might be imagined, that a large pelvis, would make the delivery more easy, as the head of the child will thus be exposed to fewer frictions, be more easily expelled, and the labour be less painful. But women who have a very large pelvis, are subject to those inconveniences which arise from an obliquity of the uterus, or even to a defect of it altogether; especially in the time of labour, when that viscus, being already charged with the weight of the child, is entirely subjected to the expulsive power of the abdominal muscles. In women who have had several children, the uterus is but weakly retained by its ligaments; and in subsequent pregnancies it descends still lower, until at last it rests on the margin of the pelvis. This, however, does not take place before the conclusion of the first four or five months, before that time its weight lies principally on the extremity of the rectum; and by this, as well as by its bulk, the discharge of the urine and feces is impeded, and accidents sometimes ensue from the compression of the veins which pass through the pelvis. These symptoms sometimes vanish about the middle of pregnancy, but reappear towards the latter end, because the head of the child is early engaged in the pelvis, and acts on the same parts that the whole uterus did before. Besides all these accidents, there are others which may take place at the time of delivery; so that upon the whole, it cannot be reckoned any real advantage for a woman to have a large pelvis.

The accidents, however, which arise from too great a size of the pelvis, are much more easily remedied, and in themselves less dangerous, than such as arise from its narrowness. This defect may be considered as either relative or absolute. The former arises from an excess of size in the head of the child; the latter from a bad conformation of the pelvis itself. The absolute narrowness of the pelvis rarely affects all parts of it at once; it is generally found only in one of the straits; in which case, the other is usually of the natural size, may, sometimes even larger than natural. The fault is more frequently in the superior than in the inferior strait; and it is remarkable, that it most commonly affects the strait in its small diameter; very rarely in its transverse; sometimes affecting only one side. In the inferior strait it is generally caused by the approximation of the tuberocities of the ischia.

"It is easy (says M. Baudeloque) to determine why the superior strait is more frequently deformed than the inferior; and why it is almost always between the pubes and facrum that it is defective respecting delivery. If we consider the direction of the forces which act on the pelvis of vicious children, in whom the bones are at the same time softer and more loosely connected than in the natural flat, we shall see that the greater part of those forces tend to carry the base of the sacrum forward and the astra.
Description of the Pelvis in general.

Whether the child be standing or sitting, if we attend to the direction of the spinal column, we shall see that the weight of the body must in some manner push the base of the sacrum towards the pubes; and that it acts in the same manner on the inner parts of the acetabula, which serve as a fulcrum to the inferior extremities when the child is standing or walking. The faa pubis, particularly in these latter cases, must be pushed towards the sacrum; in such a manner, however that their posterior extremities often approach a little nearer to the projection of the base of that bone than their anterior extremities, or the symphyses. If the superior frait does not constantly present the same figure in deformed pelvises; if it is sometimes larger on one side than the other; if one of the acetabula is nearer to the sacrum, while the other approaches less; if the symphyses of the pubes is removed, in many cases from a line which would divide the body into two equal parts—it is because the rickets have not equally affected all the bones of the pelvis, nor equally hurt all their junctions; and because the attitude which the child takes in walking or sitting may change a little the direction of the compreling powers just mentioned. The weight of the body may also equally hurt the form of the inferior frait, but variably, according to the most usual attitude of the child and the direction taken by the spinal column. For example; if it fits much, the sacrum will be more curved, and the frait more contracted from before backwards; in this attitude, if it inclines habitually to one side, one of the iliacal tuberosities will be thrown inwards, the os ilium will be more elevated, &c. The action of the muscles which are attached to the pubes, the pressure of cloaths, and that which the arms of the nurse exert on this part, contribute also something to the deformities in question, but much less than the weight of the trunk: whence we see, of what importance it is to keep ricketty children in bed; and leave them at liberty; instead of obliging them to walk, to fit up, or have them constantly in the arms, as is done almost every where.

The dimensions of the pelvis itself vary no less than the contour of the straits. If the diameter of some, taken from the pubis to the middle of the projection of the os sacrum, be only a few lines; in others the defect is several inches, so that scarcely a single inch is left between these bones. These extremes, however, are not frequently met with; and the latter of them is never so great in the inferior as in the superior frait. On comparing the dimensions of a well-formed pelvis with those of a child's head, we shall find that the former might admit of being inches less in circumference, and yet be large enough for an easy delivery. The circumference of a common head is usually no more than ten inches and a quarter, or ten and an half. The first degree of narrowness in any pelvis therefore must be, when each diameter is something less than three inches and an half. M. Baudezloque says, that he has seen pelvises in which the distance of the pubes from the sacrum superficially was no more than six or eight lines; and he had in his possession two others, in one of which the distance from the back of the right acetabulum to the projection of the sacrum was only three or four lines, and the other had but twelve lines between that projection and the symphyses of the pubes.

The narrowness of the pelvis is to be accounted one of the principal causes of difficult delivery. When an opening of only three inches and a quarter is less, the labour must be more difficult than when it is three inches and an half, as the number of frictions which the child's head must undergo are then more numerous and frequent. When there is an opening of only three inches, the labour must be still more difficult; but still there are instances of natural deliveries without any assistance, notwithstanding the disproportion between the size of the child's head and pelvis. This may even happen when the diameter of the pelvis is still smaller, such as two inches and three quarters, or two and an half. M. Solayres observed in a case of this kind, that the head was lengthened in such a manner, that its longest diameter was eight inches all but two lines, that which goes from one parietal protuberance to the other being reduced to two inches five or six lines; and M. Baudezloque has observed similar changes in the form of the head, and the respective lengths of its diameters at the infant of birth, where the child was equally deformed, the long diameter being seven inches, and the transverse one two inches five or six lines. The children were in good health; and the day after their birth their heads wanted very little of the usual proportions.

But when the small diameter of the pelvis is less than two inches and an half, the head of the child cannot pass; and then some of the dangerous chirurgical methods must be undertaken, which frequently prove fatal both to the mother and child. Even when the pelvis is two inches and an half in diameter, the natural delivery is not always without danger to both; as, on one hand, the soft parts which cover the pelvis are subjected to such violent pressure that they become inflamed, exquisitely painful, and at last are even threatened with gangrene: on the other, the bones of the child's cranium riding over one another, or sometimes fractured and depressed, wound the brain, and produce internal extravasations which generally prove fatal. The bad consequences resulting from a deformed pelvis, sow themselves sooner or later, according as the superior or inferior frait is vitiated. When both are so, the obstacles to the birth begin to manifest themselves as soon as the labour begins; and sometimes those at the superior frait are so great that the expulsive powers are exhausted, and the head stops there; or if it be pushed farther into the pelvis, and stopping there, it will remain incapable of being delivered without the assistance of art. The head cannot pass this frait without being in a considerable degree elongated; and when it enters the pelvis, the cavity being there sufficient for it, it naturally returns to its former dimensions, at least in part, and more or less so as it stays a longer or shorter time. The same conformation of the head, however, which enabled it to pass the first frait, is still more necessary to enable it to pass the second: and hence the symptoms which had come on with the first pains, sometimes disappear in a great measure during the time that the head stays in the excavation; but increase to
Inferior

When the superior flait alone is contracted, the head advances at first with great difficulty; but as soon as the lateral expansions have cleared this flait, the other parts of the pelvis being relatively or absolutely larger, the head passes them with so much ease, that the delivery is frequently terminated by a few pains. The contrary is observable when the fault is in the inferior slait, if the first be of the usual size. The head then descends easily into the lower part of the pelvis; but cannot proceed any further, until it overcome the obstacles which obstruct its course, and render it difficult and laborious. In this case, the symptoms attending obstruction appear later than in the former. In these cases, however, it is necessary that the practitioner should accustom himself by practice to form a just estimate of the powers of nature, otherwise he may easily deceive himself; in the former, supposing that a delivery is impossible; and in the latter, that a delivery will be easy which cannot be effected without the assistance of art. An instance of this is given by our author, in a case to which (he says) more than forty persons were witnesses.

The operator pronounced that the woman would be speedily delivered, on account of the facility with which the child's head had engaged with the first pains; and attributing the obstacles which soon after obstructed its course to another cause, rashly destroyed the child by using the crotchet, when its life might have been preserved by other means, having waited two days in blind security, expecting a natural delivery. M. Baudeloque obtained poxelion of the pelvis of this woman after she died; and tells us, that the circumference of the superior slait of the pelvis, when divested of all its coverings, measured 14 inches, but the inferior only nine. The distance from the point of the os sacrum to the symphysis of the pubes, as well as the interval between the ischiatic tubercles, was but three inches. The cavity of this pelvis diminished insensibly in breadth from one slait to the other, and was as regular as possible in its contour.

The excavation, or middle part of the pelvis, is much more seldom defective in its form than the sfraits; and when this is the case, it must arise from some exostosis, or from the facrum describing a right line in its anterior part, instead of being curved as usual. The straight and flat form of the facrum generally produces fewer obstacles to delivery than the too great curvature of it. The former fault generally affects only the cavity of the pelvis, and cannot hinder the passage of the child, if the canal be otherwise well disposed: but the latter, or too great a curve of the sacrum, commonly proves injurious to both sfraits, contracting them from before backwards, and at the same time diminishing the depth of the pelvis at the back part, as well as the respective height of the arch of the pubes. In these cases the head, though it passes the first flait with difficulty, cannot pass the second; being stopped in its course by the inferior part of the facrum before the occiput is long enough to engage under the arch.
MIDWIFERY.

Part I.

Description of the Pelvis in general.

... tion in the latter periods of pregnancy, and the child's head forced down by the action of the uterus, and of the abdominal muscles in time of labour.

This separation, however, is not always the effect of a relaxation and stretching of the ligamentous tissue of the symphysis. In some cases, where the obstacles which obstruct the passage of the child are very great, and the efforts for its expulsion very strong and lafting, the symphysis tears, and permit the bones to separate much farther than they could have done by a simple relaxation.

"I must add (says M. Baudeloque) that it is not the symphysis of the pubes, properly speaking, which tears; for no effort can break the ligamentous sulphur which unites these bones to each other; the symphysis detaches itself from one of them, and leaves the bone naked." The separation in question has likewise frequently taken place in instrumental deliveries, to which the natural efforts seemed to contribute nothing; and it has also been found in consequence of a stroke or fall.

"Being deceived in the principle of this separation (says M. Baudeloque), they necessarily erred in the conclusion deduced from it. It has been firmly believed to take place in all labours, that it was thought to be absolutely necessary; and that without it many women could not be delivered without extreme difficulty. Having thus mistaken the necessity and pretended advantages of this separation, the natural relaxation of the symphysis, and above all the dryness and rigidity necessarily induced in them by age, were consequently reckoned among the causes of difficult labours. Obstacles have been attributed to the state of these symphyses, which merely depend on the relaxation of the neck of the uterus, and of the external parts; and it has been recommended to moisten and relax them by the use of baths, cataplams, liniments, fomentations, &c. But what can be expected from such methods, when delivery is obstructed by a narrow pelvis? Will any one venture to assert, that he has once by such means obtained the effect he expected, and that he has thus assisted labours which could not otherwise have been terminated but by the Caesarean operation, as has so often been published? I should have dispelled with demonstrating the fallacy which has prevailed on this point, if it had not led some practitioners into a very serious conclusion. In order to appreciate all these means, and fix the degree of confidence to be placed in them, supposing that they could operate to the relaxation of the symphysis of the pelvis, it is necessary to determine what degree of amplitude can be given to that cavity by the separation of the bones which constitute it. The osa pubis cannot separate without augmenting the circumference of the pelvis; but how much will its diameter be increased? If the circumference were perfectly circular, every possible diameter would partake of that augmentation; but as the entrance of the pelvis is in general the more elliptical as it deviates more from its natural state, it follows, that its different diameters cannot increase in the same proportion; and we may say that there is none but the transverse one which can become larger.

In an accurate separation the antero-superior diameter is scarce at all augmented; and it has been repeatedly demonstrated, that the osa pubis must separate at least an inch to procure two lines in that direction; while the transverse diameter shall be increased fix lines, and often more.

"The pelvis being larger in most women than is necessary for their delivery, the separation of the bones could be of no advantage to them, nor render their delivery more easy. Far from regarding it, with some ancient authors, as a benefaction of nature, we ought to consider it as an additional source of inconveniences in those women who are subject to it; for, on one side, we see that a pelvis too large exposes the woman to a number of accidents; and on the other, that there are some which inevitably accompany the separation, and the mobility of the bones which form that cavity. Far from favouring delivery in all these cases, it could not but render it more tedious and painful to the woman, as experience has convinced me. If we ought to expect any real advantage from it, considering it only with respect to the passage of the child, it could only be in those women who have the pelvis deformed, and where the defect which rendered delivery impossible did not exceed two lines at the most; since a separation of an inch cannot procure an augmentation of more than twolines in the small diameter of the superior strait, which is almost always that which occasions the greatest obstacles to the exit of the child. If from a separation of an inch, which has never taken place between the osa pubis without a rupture of their symphyses, we are not to expect an augmentation of more than two lines in the direction of the little diameter of the superior strait, what can we obtain from a separation always much less, and so little-apparent in most women that we may doubt its existence? The examination of a great number of women who have died in child-bed has proved to me that it is excessively rare for the separation in question to amount to two lines; and I never found it exceed that but once. But supposing (what is impossible) that art could procure a separation of an inch between the osa pubis without dividing their symphyses, what practitioner would dare to affirm without fear of being deceived, that the volume of the child's head did not exceed the little diameter of the superior strait by more than two lines? If it is difficult to estimate justly the degree of opening in the pelvis, it is much more difficult still to judge of the child's head; and it is only by taking the mean between the largest and the smallest that we usually establish the relation of its dimensions to those of the pelvis; but a between, in the case supposed, cannot supply the place of that precision which would be necessary."

From his reasoning upon this subject, M. Baudeloque concludes directly against the operation of cutting the symphyses of the pubes, as being not only useless, but attended with very dangerous consequences. "When this separation (says he) has been suddenly made, severe pains in the parts divided, an impossibility of walking, and sometimes even of moving the inferior extremities, inflammation, fever, abscissae, caries, and lastly death itself, have generally been the effects of it; but when a relaxation only takes place, the consequences are less severe; a painful and towering walk being the only symptom attending it. If the relaxed symphyses at last grow firm again, if the bones of the pelvis recover their former liability, if the
Pelvis in general.

Definition of the ligaments of the pelvis.

The violent symptoms frequently attend even flight separations of the bones in question. M. Baudeloque gives an instance of a woman who had kept her bed ten months, being all that time afflicted with the most excruciating pains in the joints of the osse pubis, and of one of the ilia, with the facrum, whenever she attempted to move the inferior extremities, though no separation of the symphyses could be discovered, nor any thing besides a slight mobility in that of the pubes. The accident had been perceived during the time of labour, and the midwife had been accused of luxating the bones.

Dr. Denman has also treated this subject at considerable length. He informs us, that for many centuries it was believed that these bones were always separated during the time of labour; or that there was a disposition to separate, and an actual separation, if the necessity of any particular case required that enlargement of the cavity of the pelvis which was consequent to it. The degree of separation was also supposed to be proportioned to such necessity; and when this did not happen naturally, instruments were made use of for dilating the parts: and, on the same principle, the feparation of the symphyses of the pubes has been recommended. "This opinion (says he)ought probably to be ascribed as one reason for the superficial notion taken by the early writers on midwifery of those difficulties which are sometimes found to occur in parturition from the narrowness or deformity of the pelvis. To this may also be referred much of the popular treatment of women in child-bed, and many popular expressions in use at present. But this opinion has been controverted by many writers, who assert, that there was neither a separation nor a disposition to separate; but that when either of them did happen, they were not to be esteemed as common effects attendant on the parturient state, but as definite separations of the connecting parts. The disputants on each side have appealed to presumptive arguments, and to facts proved by the examination of the bodies of those who died in child-bed, and in justification of their several opinions. But notwithstanding all that has been said, I know not that we are authorized by the experience of the present time to say, that a separation, or a disposition to separate, prevails universally at the latter part of pregnancy, or at the time of labour: yet that these effects are often, if not generally produced, may be gathered from the pain and weaknesses at the parts where the bones of the pelvis are joined to each other, before and after delivery. In some cases the pregnant women are sensible of a separation at the junction of the bones, especially at the symphyses of the osse pubis; and the noise which accompanies it may sometimes be heard by the bystanders.

"A strong presumptive argument in favour of the separation of the bones has been drawn from quadrupeds. In these the ligaments which pass from the obtuse processes of the ilia to the sacrum, on which the firmness of the junction of the bones very much depends, and which at all other times resist any impression attempted to be made upon them, are for several days previous to parturition gradually deprived of their strength, and the animal walks in such a manner as would indicate us to believe could only be produced by a separation of the bones of the pelvis. Now it is not reasonable to conclude, that a circumstance which generally takes place in one class of viviparous animals should never occur in another, especially in a matter in which there is not essential difference."

Notwithstanding these arguments, however, Dr. Denman does not look upon the matter to be as absolutely decided. No person, he says, who has been conversant in the direction of women who have died in child-bed, can have wanted opportunities of observing every intermediate state of these parts, from a separation in which the surfaces of the bones were softened and at a considerable distance from each other, to that in which there was not the least disposition to difunite.

When this separation takes place beyond a certain degree, it is to be looked upon as a rhizion: and, he says, that it may be produced by the two following causes. First, A spontaneous disposition of the connecting parts. Secondly, The violence with which the head of the child is protruded through the pelvis.

Of each of these causes he gives an example. The first was of a young lady of a healthy constitution, who had been married in the 21st year of her age, and in 1774 was delivered of her third child, which was unsuccess, and the labour was severe and tedious. For several days before delivery she had been so much afflicted with pain and weaknesses in her loins, that she could not walk without assistance. She recovered without any unfavourable circumstance, excepting that for several weeks she was incapable of standing upright, or putting one foot before the other; the attempt to do either being attended with pain and a sensation of looseness and jarring, both at the parts where the osse innominata are joined to the sacrum, and at the symphyses of the osse pubis. By the use of strengthening medicines she was recovered, and in a few months was perfectly well.

It being suspected that the complaints abovementioned had proceeded from too frequent parturition, she was advised to suckle her child for a longer time than usual; and accordingly continued a nurse for 15 months. Soon after she became with child a fourth time. The complaints which had accompanied her former pregnancy now came on sooner, and with greater violence than before, insomuch that for three weeks before delivery the could neither walk nor stand; and there was reason to suppose that the bones of the pelvis were separating. She was delivered on the 7th of July 1777, the labour being accompanied with faintings, great irritability, and a total inability to move her inferior extremities. A few days after her delivery she had a fever, which terminated in an abscess in one of her breasts, by which she was confined to her bed for near seven weeks. In nine weeks she could walk with crutches, and received considerable benefit by being sent into the country; and likewise, as she imagined, by drinking half a pint of infusion of malt twice a-day. In about five months she was able to walk without assistance; though sometimes sensible...
MIDWIFERY.

Part I.

Description of the Pelvis in general.

Of the motion of the bones, which seem never to have been perfectly united.

About Christmas the same year, this lady became again pregnant; and in the month of July 1778 she began to feel an inability to move; which, however, was attributed to the heat of the weather; but on a sudden the pain and weakness of her back returned to such a degree, that she could walk no more till the 11th of October, when she was delivered of a fine child, but after a most severe and tedious labour, occasioned in a great measure by her being totally unable to move. The symptoms after her delivery became very extraordinary and alarming. On the fourth day a fever came on; and though this was soon removed, the pain at the junction of the bones still continued. She had no command of her inferior extremities; and the pain when she was moved, became so excruciating, that she felt as if tearing asunder. Her stomach was at times much disturbed; but when the pain became violent, the vomits, vomiting or hiccough came on. Strange delirium, fever, and other nervous affections, all of which ceased when the pain was allayed by opiates.

Having remained for several months in this deplorable situation, it was at last thought proper to raise her from her bed, and cause her to make an effort to stand or walk, lest her complaints should be made worse by such a long course of inactivity. She had now, however, totally lost the power of supporting herself; the motion of the bones was plainly perceived; and the consequences of every trial were so painful, that there was a necessity for desisting. She was brought into a coach, into which she was placed, upon a couch, in a boat to Margaret, for the benefit of the air and sea-bathing, from which she was always sensible of receiving advantage.

In this place she continued to reside; and in eight years after her delivery became able to walk without crutches.

The second case was of a young woman of a healthy but delicate constitution, who was in labour of her first child. The pains were so strong, that the head of the child was forced through the external parts, and the perineum supposed to be lacerated, in spite of all the opposition which could be made. At the instant when the head of the child was expelled, the operator perceived something to jar under his hand, and was even sensible of a noise, which he attributed to the laceration of the perineum. In a little time the placenta was extruded without hurry or violence; and a few drops of tinctoria opii were given to allay the uneasiness which took place, and was supposed to be occasioned by after-pains. On the following days, however, the complaints of uneasiness in the region of the abdomen; but no particular notice was taken of it, as the milk was regularly secreted, and there was no symptom of fever; but on the fourth day, when taken out of bed, she was found to be unable either to stand or walk by reason of the pain and weakness in the part of which she originally complained. This was afterwards conjectured to arise from a separation of the bones of the pubes; to which conjecture the long continuance of the complaints seemed to give countenance. The conjecture was founded on the positions and attitudes in which the patient fought to find relief. The symptoms were as follow. —When she endeavoured to stand upright, she could do better upon one foot than both, and with her feet close than at a distance, together with the pain at the symphysis, she had a sense of extreme weakness, accompanied with a faintness. When she felt herself upon her chair, refting her elbows upon the arms, the complaints became tolerable. When she had remained a little time in this position, they again became importunate, and she supported herself with her hands upon her knees, and presently bent forwards, to as to lean her elbows upon her knees; this position becoming irksome, she was obliged to return to her bed, where she became immediately easy. When she first attempted to walk, she was compelled to bend forwards in such a manner as to rest her hands upon her knees, making a straight line from her shoulders to her feet. At the end of 14 weeks, whilst she was in a coach, into which she had often been lifted for the benefit of air and exercise, she had a discharge which she supposed to be menstrual; but, which, though it ceased before her return, gave immediate relief. From this time she became better every day, and in five weeks was able to walk. She had afterwards three children, with which her labours were easy, and she never had any return of the above-mentioned complaints.

From all this it is evident, that Dr. Denman differs considerably in his opinion from M. Baudelocque concerning the separation of these bones. According to him, it appears that this separation, though extremely painful, does not seem to be attended with fatal consequences; and with regard to the quantity of the separation, it must undoubtedly be sometimes much greater than what M. Baudelocque supposes; for Dr. Denman brings an instance from the 48th number of the Philosophical Transactions, in which the bones were separated to the distance of four inches. This happened in consequence of the starting of a horse when a gentleman was riding. He observes, however, that, in women the violence which the connecting parts of the bones undergo when the head of the child is protruded through the pelvis with extreme difficulty, sometimes occasions an affection of more consequence than even the separation of the bones themselves. This is the formation of matter upon the loofened surfaces of the bones, preceded by great pain, and other symptoms of inflammation.

In the beginning of this complaint, it is difficult to ascertain whether the connecting parts of the bones or some of those contiguous, be the seat of the disease; but when suppuration has taken place in consequence of the injury sustained at the junction of the os ilium with the sacrum, the abscissae have sometimes been cured by common treatment, having formed in the neighbourhood of the injured part. At other times, when matter has been formed about the symphysis of the os ilium, the symptoms have extended, and the cause of them only discovered after the patient died. In some cases, the matter has burst through the capsular ligament of the symphysis at the inferior edge, or perhaps made its way into the bladder; and
Part I. MIDWIFERY.

In others has infalinated itself under the periculum, continuing its course along the pubes, until it arrives at the acetabulum. Thus all the symptoms were aggravated; and the matter making its way towards the surface, a large abscess has been formed on the inner or fore-part of the thigh, or near the hip; so that the patients have at last sunk under the fever and profuse discharge from the ulcer. On dissecting those who have died in this manner, the track of the matter has been followed from the aperture of the abscess to the symphyses, the cartilages of which were found to be eroded, the bones carious, and the adjacent parts very much injured or destroyed. Our author imagines it possible, by means of some particular symptoms, to discover whether or not there be any disposition in the parts abovementioned to suppulate, or to know when suppuration has taken place. In all cases of unusual pain attended with evíordial symptoms, the parts ought to be examined with great care and attention; for where there is any disposition to suppulate, it might perhaps be removed by proper means; and when the matter is formed, if there be a swelling in the symphyses, and, more especially, if a fluctuation could be perceived, the propriety of making an incision to evacuate the matter, and prevent further bad consequences, might be determined.

With regard to the possibility of re-uniting the bones of the pelvis after they have once been separated, our author has the following observations. "When the connection of the bones of the pelvis has either been impaired or destroyed, it is probable that a confirmation or re-union may take place by a restoration of the original mode, by a callus, or by anchylosis. But it is likewise possible that the bones may remain in a state of separation, and an articulation be formed by the ends of each bone, at the symphyses of the os pubis, and at the junction of the os innominata with the os sacrum." Of this last the Doctor has seen one instance in a dead body, and has had reason to suspect the existence of it in some living persons. In the lower degrees of imperfection the former method of union probably takes place; as the complaints made by women of pain and weakness, after delivery, generally go off before their month of confinement is elapsed; but when they continue for a longer time, the best method is to enjoy the patient relin an horizontal posture. In an increased degree of the complaint, where the health of the patient is affected, a longer time will be required for the recovery; but should the injury be too great to admit of the restoration of the original mode of union, a much longer time will be requisite for the formation of a callus, if this ever takes place except as a previous step to an anchylosis. This last has been observed frequently to take place at the junction of the osa innominata with the sacrum, but never at the symphyses of the pubes. In this case relief can be expected excepting from such remedies as tend to restore the constitution to its primum vigour; and in the first case above related, the only thing from which the patient seemed to obtain relief was the cold-bath. She was likewise much afflicted by the use of a scald, or brod belt, made of soft leather, quilted, and buckled with such firmness over the lower part of the body as to lessen, if not prevent, the motion of the bones; and this was kept in its situation by a bandage passed between the legs, from the hind to the fore part of the belt. But when a joint is formed between the separated surfaces of the bones, all hope of recovering the patient to her former health may be given up. The only thing which can then be done for her relief must be by the use of a belt, or some similar contrivance, to sublimate, as much as possible, artificial firmness, instead of natural. Dr Denman saw one case in which he suspected this to have happened, and in which the life of the patient was truly miserable: He is of opinion, however, that it very rarely occurs; having been informed of another person, who, after eight years confinement to her bed, in consequence of the separation of the bones in the time of labor, was at last restored to the perfect use of her inferior extremities. Incidences also, though rare, have occurred, in which women, after labour, have suffered much pain in the region of the sacrum, and totally lost the power of moving their inferior extremities. This has been supposed a paralytic affection, and they are said to be bed ridden; but as these patients have generally been restored, though after a very long confinement, our author thinks it reasonable to suppose that their infirmity had been occasioned by a separation of two bones, which at different periods after the accident, according to the degree of their separation, had recovered their former connection and strength.

CHAP. II. Of Pregnancy.

At the time of conception, and for some time after, the parts which from the small fetus are so blended together, that one cannot be distinguished from another. The whole mass is then called an ovum. This ovum consists of four membranes; the placenta or after-birth; the funis umbilicalis or navel-string, leading to the child; and the surrounding watery fluid in which it floats. Before the child acquires a distinct and regular form, it is called embryo, and afterwards retains the name of fetus till its birth. For the increase and nutrition of the fetus, see Anatomy, n° 1010.

During the progress of impregnation the uterus suffers considerable changes; but, though it enlarges as the ovum increases, yet in regard to its contents, it is never full; for, in early gestation, these are confined to the fundus only; and though the capacity of the uterus increases, yet it is not mechanically stretched, for the thickness of its fides do not diminish; there is a proportional increase of the quantity of fluids, and therefore pretty much the same thickness remains as before impregnation.

The gravid uterus is of different sizes in different women; and must vary according to the bulk of the fetus and infant. The situation will also vary according to the increase of its contents and the position of the body. For the first two or three months, the cavity of the fundus is triangular, as before impregnation; but as the uterus increases, it gradually acquires a more rounded form. In general, the uterus never rises directly upwards, but inclines a little obliquely, most commonly to the right side; its position is never, however, so oblique as to prove the folge
Pregnancy. causa either of preventing or retarding delivery; its increase of bulk does not seem to arise merely from dilatation, but to depend on the same cause as the extension of the skin in a growing child. This is proved from some late instances of extraneous causes, where the uterus, though there were no contents, was nearly of the same size, from the additional quantity of nourishment transmitted, as if the ovum had been contained within its cavity.

The internal surface, which is generally pretty smooth, except where the placenta adheres, is lined with a tender efflorescence of the uterus, which, after delivery, appears as if torn, and is thrown off with the cleaning. This is the membrana decidua of Dr Hunter.

Though the uterus, from the moment of conception, is gradually distended, by which considerable changes are occasioned, it is very difficult to judge of pregnancy from appearances in the early months. For the first three months the os tinece feels smooth and even, and its orifice as small as in the virgin state. When any difference can be perceived, about the fourth or fifth month from the descent of the fundus through the pelvis, the tubercle or projecting part of the os tinece will seem larger, longer, and more expanded; but, after this period, it shortens, particularly at its fore-parts and sides, and its orifice or labia begin to separate, so as to have its conical appearance destroyed. The cervix, which in the early months is nearly flat, now begins to stretch and to be distended to the os tinece; but during the whole term of utero-gestation, the mouth of the uterus is strongly cemented with aroppy mucous, which lines it and the cervix, and begins to be discharged on the approach of labour. In the last week, when the cervix uteri is completely distended, the uterine orifice begins to form an elliptical tube, in stead of a fissure or to assume the appearance of a ring on a large globe; and often at this time, especially in pendulous bellies, disappears entirely, so as to lose out of the reach of the finger in touchings. Hence the os uteris is not in the direction of the axis of the womb, as has generally been supposed.

About the fourth, or between the fourth and fifth month, the fundus uteri begins to rise above the pubes or brim of the pelvis, and its cervix to be dilated nearly one third. In the fifth month the belly swells like a ball, with the skin tense, the fundus about half way between the pubes and navel, and the neck one half dilated. After the sixth month the greatest part of the cervix uteri dilates, so as to make almost one cavity with the fundus. In the seventh month the fundus advances as far as the umbilicus. In the eighth it reaches midway between the navel and the coccyx, and in the ninth to the coccyx itself; from thence the fundus uteri and the neck being entirely dilated, which, with the os tinece, become the weakest part of the uterus. Thus at full time the uterus occupies all the umbilical and hypogastric regions; its shape is almost pyramidal, that is, more rounded above than below, and having a fisure on that part which is surrounded by the brim of the pelvis.

The appendages of the uterus suffer very little change during pregnancy, except the ligamenta lata, which diminish in breadth as the uterus enlarges, and at full time are almost entirely obliterated.

The most remarkable change happens in the ovary. A cicatrix of a roundish figure and yellowish colour appears in this body, called by anatomists the corpus luteum. It is always to be found in one of the ovaria; and in cases of twins a corpus luteum often appears in both ovaria. It was formerly considere as the calyx ovii; but modern physiologists think it a gland, from whence the seminal fluid is often ejected. In early gestation it is most conspicuous, when a cavity is observable, which afterwards collapses; no vessels appear at the centre of this cavity which has the appearance of cicatrix, but all around that centre the substance is vascular.

During the progress of distention, the substance of the uterus becomes much looser, of a softer texture, and more vascular than before conception; its veins particularly, in their diameters, being enlarged in such a manner as to get the name of funiculi; they observe a more direct course than the arteries, which run in a spiral manner, anastomosing with another and through its whole substance, especially where the placenta adheres, where this vascular appearance is most conspicuous.

The arteries pass from the uterus through the decidual, and open into the substance of the placenta in a flatter direction. The veins also open into the placenta, and by injecting these veins from the uterus with wax, the whole spongy or cellular part of the placenta will be filled.

The muscular structure of the gravid uterus is extremely difficult to be shown; in the wombs of women who die in labour, or soon after delivery, fibres running in various directions are observable more or less circular, that seem to arise from three different origins; viz. from the place where the placenta adheres, from the aperture or orifice of each of the tubes; but it is almost impossible to demonstrate regular plans of fibres, continued any length without interruption.

Chap. III. Spurious Gravidty.

The various diseases incident to the uterine system, and other morbid affections of the abdominal viscer, will frequently excite the symptoms and assume the appearance of utero-gestation. Complaints arising from a simple obstruction are sometimes mistaken for those of breeding; when a tumor about the region of the uterus is also formed, and gradually becomes more and more bulky, the symptoms it occasions are so strongly marked, and the resemblance to pregnancy so very striking, that the ignorant patient is often deceived, and even the experienced physician imposed on.

Scirrhous, polyposus, or sarcomatosus tumors in or about the uterus or pelvis; dropsy or ventrity of the uterus or tubes; fistula or droopy of the ovaria, and mental conception, are the common causes of such fallacious appearances. In many of these cases the menopha appear; nausea, retchings, and other symptoms of breeding ensue; and the bowels will be mistaken for the motion of the child; and in the advanced
MIDWIFERY.

Part I.

Superfetation.

Advanced stages of the diseased, from the pressure of the swelling on the adjacent parts. Tumefaction and hardeness of the mamma supervene, and sometimes a vivid or ferous fluid distils from the nipple; circumstances that strongly confirm the woman in her opinion, till time or the dreadful consequences that often ensue at last convince her of her fatal mistake.

False Conception—Mola. Other kinds of spurious gravidity, less hazardous in their nature, sometimes remain in the ovariun, and sometimes even of the former.

Of these some buried in the abdomen, and others forms abcesses, and are thereby discharged; others dry, and appear bony, and remain during life, or are discharged as above, or by ploth, &c.

Chap. IV. Superfetation.

Soon after impregnation takes place, the cervix uteri becomes entirely shut up by means of a thick viscous gluten: the internal cavity is also lined by the external membrane of the ovum, which attaches itself to the whole internal surface of the fundus uteri: the Fallopian tubes also become flaccid; and are, as gravity advances, suffused to be removed at such a distance, that they cannot reach the ovarium to receive or convey another ovum into the uterum. For these, and other reasons, the doctrine of superfetation is now pretty generally exploded. A doctrine that seems to have arisen from the cause of a double or triple conception, where, some time after their formation in utero, one ovum has been expelled, and another has remained; or after the extinction of life at an early period, one or more may be still retained, and thrown off in a small and putrid flake, after the birth of a full-grown child.

The uterus of brutes is divided into different cells; and their ova do not attach themselves to the uterus so early as in the human subject, but are suffused to receive their nourishment for some time by absorption. Hence the os uteri does not close immediately after conception; for a bitch will admit a variety of dogs while she is in heat, and will bring forth puppies of these different species: thus it is common for a greyhound to have, in the same litter, one of the greyhound kind, a pointer, and a third, or more, different from both. Another circumstance that has given rise to superfetation in the human subject, which can only happen when there is a double set of parts, instances of which are very rare.

Chap. V. Extra uterine Fetus, or ventral Conception.

The impregnated ovum, or rudiments of the fetus, is not always received from the ovarium by the tube Fallopiana, to be thence conveyed into the cavity of the uterus; for there are instances where the fetus sometimes remains in the ovarium, and sometimes even in the tube; or where it drops out of the ovarium, miffes the tubes, and falls into the cavity of the abdomen, takes root in the neighbouring parts, and is thereby nourished: But as these fœtuses cannot there receive so much nourishment as in the succulent uterus, they are left, and generally come to their full growth before the common term.

Of these some buried in the abdomen; and others forms abcesses, and are thereby discharged; others dry, and appear bony, and remain during life, or are discharged as above, or by ploth, &c.

Chap. VI. Monstrs.

When two or more ova contained in the uterus attach themselves to one another as to adhere in whole or in part, so as to form only one body with membranes and water in common, this body will form a confused irregular mass called monstrous; and thus a monster may be either defective in its organic parts, or be supplied with a supernumerary set of parts derived from another ovum. This seems a rational conjecture; but while every thing relative to generation is a mystery, how can we account for the extraordinary phenomena? Some authors enumerate a third species of monster, the product of a mixed breed, exemplified, for instance, in the mule, produced by the mixed generation of an ass and a mare. In this animal there are organical parts different from what pre-existed in the parents; there is a defect of some parts, a luxuriant growth of others; and there is a defect in the parts of generation, which renders the animal unfit for propagation, constitutes a very curious and particular species.

Chap. VII. Diseases of Pregnancy.

After conception, a remarkable change is soon discernible in the genital system. This is the source Midwife—whence arise different symptoms, that are how—by Dr. Hamilton.

Hence liable to considerable variation, not only in the constitution of different women, but in the same woman in different pregnancies, and at different periods of the same pregnancy.

Pregnancy—though a natural alteration of the animal-economy, which every female seems originally formed to undergo, and hence not to be considered as a state of disease, occasions, however, sooner or later, in many women, various complaints, which evidently depend on it as a cause.

Diseases incident to the pregnant state may be considered, either: 1. As arising from sympathy in the early months; or, 2. As depending on the stretching and pressure of the uterus towards the more advanced stages.

1. Though
I. Though the former of these complaints are generally to be accounted for from other causes than that of plethora; yet, in many constitutions, a certain phlegmatic disposition in the early months of pregnancy seems to prevail in the vascular system: and therefore, though many inconveniences may ensue from a too frequent, a too copious, or an indiscriminate use of venesection: yet if prudently and judiciously employed, abortion by this means will not be endangered, as some late authors have alluded; but on the contrary, on many occasions, a reasonable bleeding will be attended with the most beneficial and salutary effects.

In young women, suddenly affected with severe sickness and loathing, febile commotion, headach, vertigo, and other symptoms of breeding, more especially in full fanguineous habits, besides a spare light diet and suitable exercise, recourse must be had to proper evacuations, the chief of which is venesection: this may be safely performed at any time of gravida, and occasionally repeated according to the urgency of the symptoms; small bleedings, at proper intervals, are preferable to copious evacuations, which, in early pregnancy ought always to be carefully guarded against.

When the stomach is loaded with putrid bile or acrid fuburra, the offensive matter should be discharged by gentle vomits of specachuan, or of infusions of charomile flowers. The violent efforts to retch and vomit, and the commotions thence excited, which often occasion the expulsion of the fetus, will by this means frequently be removed, in most cases greatly diminished. During the term of breeding, the state of the belly must be also attended to. When laxative medicines become necessary, those of the mildest and gentlest kind should be administered.

In women liable to nervous complaints, where the stomach is weak, and the sickness violent and continued, the patient should be put on a course of light, aromatic, and strengthening bitters such as infusions of bark, colombo, &c. and her diet, air, exercise, company, and amusement, should be regulated in order to settle the stomach, and leisen the sensibility of the system, opiates will often happily succeed, when every other remedy fails.

Heart burn and diarrhoea—common symptoms of breeding, or of pregnancy, must be treated pretty much as at other times. Both complaints chiefly depend on the state of the stomach.

Transfusion, tenson, and pains in the mamma—If light lacing here be only avoided, and the breasts have room to enlarge and swell, no inconvenience ever follows: these effects arise from a natural cause, and seldom require medical treatment. If very troublesome and uneasy, bathing with oil, or anointing with pomatum, and covering with soft flannel or fur, will in most cases prove the cure.

The menstrual evacuation—is in some women regular for the first, second, or third period after coition. This seldom happens but in women of fanguineous phlegmatic habits, such as have been accustomed to large copious evacuations at other times when the discharge is to be considered as beneficial.

Diluiva, nervos, or hysteric fits—When these are occasioned by falls, frights, and passions of the mind, they frequently end in the lofs of the child: But when they happen about the term of quickening, they seem to arise from the escape of the uterus from its confinement within the capacity of the pelvis; in which case they are commonly short, of short duration, and never threaten any dangerous consequence.

II. The second class of complaints, viz. those that are incident to the advanced stages of utero-gestation and that depend on the change of situation of the gravid uterus, its enlargement and preffure on the neighbouring parts are more painful in their symptoms, and more dangerous in their consequences, than those enumerated in the preceding class. The premature exclusion of the fetus is generally the worst inconvenience resulting from the one; the death of the mother, along with the loss of the child, is too frequently an attendant of the other.

Difficult or suppression of urine—is sometimes occasioned by the preffure of the uterus on the neck of the bladder, before the fundus uteri escapes from its confinement within the brim of the pelvis. This complaint, if early attended to, will seldom prove troublesome or hazardous; but cannot be entirely removed till the uterus rises above the brim of the pelvis, and by its enlargement becomes supported by refting on the expanded bones of the os illa. But if neglected in the beginning,

A retroversion of the uterus—is generally the consequence; a case that demands particular attention. Here the fundus uteri, instead of being loofe, falls back in a reclined state within the hollow of the os iliacum; thus a tumour is formed in the vulva, whereof of the os tincus makes the superior part; the body of the uterus, by this means, becomes strongly wedged between the rectum and bladder; and, from the enlargement of the uterus itself, and accumulating load of tissues and urine, the reduction will prove in many instances utterly impracticable. A total suppression of urine, or a rupture of the coats of the bladder, fever, inflammation, or gangrene of the uterus, often ensue; and these are succeeded by delirium, convulsions, death.

The indications of cure, in this dangerous disease, are sufficiently obvious: For, in the first place, every obstacle that prevents the reduction should be removed; thus the contents of the rectum and bladder must, if possible, be evacuated; emollient fomentations and cataplasmis must be applied, if indicated by inflammation or tumefaction of the parts. Secondly, The reduction of the prolapsed uterus must be attempted, by placing the patient upon her knees, with her head low and properly supported. While this is attempted within the vagina, a finger or two should also be paffed within the rectum, by which the operation in some cases may be facilitated: but at other times, no power whatever will be sufficient for this purpose. Lastly, If the reduction be accomplished, the fever, inflammatory symptoms, and other consequences of the disease, must be subdued; and a recurrence prevented by an open belt, red, and recumbent posture, and promoting a free discharge of urine; means that ought to be perfed till the uterus rises within the abdomen, when the patient will be secured from future danger.
MID WIFERY.

Diseases of Pregnancy.

Coughs in pregnancy—In the following cases: if they proceed from the same cause with the preceding complaint; if they may depend on the stomach; if the febire heat, that in many women prevails, will also prove an occasional cause. It may be obviated or prevented by a proper regulation of the regimen, and by such gentle laxative medicines as are best suited to the state of the woman; the chief of which are ripe fruit, magnesia, and water; also, eleuthery, cream of tartar, sulphureous and aleptic medicines, oleum rhini, emollient givlers.

The phys—frequently arise in consequence of coughs, or from prelure to the gravid uterus on the hemorrhoidal veins. These are also to be removed or palliated by the same means employed on other occasions; regard being had to this disposition, which may be applied universally to the gravid state, that all violent remedies are to be avoided; a light diet should be enjoined; the belly should be kept moderately open; and topical liniments or cataplams should be applied, such as Bals. sulphur. Bals. traumaticum, Liniment. ex ol. palm. Ung. fambucum. cum laud. liquid. Poultices of bread and milk with opium, &c. according to the various circumstances of the case.

Oedematous swellings of the legs and abdomen.—are occasioned by the languid state of the circulation, by the intermission of the venous blood from the prelure of the affected uterus on the vena cava, &c. These, though very troublesome and inconvenient, are seldom however of dangerous consequence, except where the habit is otherwise diduc; and seldom require puncture, as the swelling generally subsides very quickly after delivery. They can only, therefore, at this time, admit of palliation; for which purpose, along with a proper diet and moderate exercise, a frequent recuperate poultice, open belly, and dry frocons applied to the legs evening and morning, will prove the most effectual means.

Various swellings in the legs and thighs.—from the intermission of the venous blood in these parts, occasioned by the prelure of the gravid uterus, are to be treated in the same manner with the preceding complaint.

Pains in the back, legs, sciatica, cramp.—occur occasionally by the stretching of the muscles and ligaments, and from the prelure of the uterus on the neighboring parts; symptoms that are motl troublesome in a first pregnancy, are to be palliated by venenection, an open belly, and light spair diet. If the patient be of a full habit, and pre-disposed to inflammatory complaints, where the prelure is very great in the advanced months, or in twins, &c. if proper remedies are neglected, inflammation of the uterus and ad centificer, or dreadful epileptic fits, may quickly ensue; the event whereof is generally fatal. Cramphp fam in the belly and legs require the fame palliative treatment; to which may be added friction, and the application of astr, o. volatile. bals. anodyna, or the like, to the parts injured.

Cough, dyspepsia, vomiting, difficulty or incontinence of urine, occasioned by the prelure of the bulky uterus on the flombs, liver, diaphragm, &c.—Complaints that can only be alleviated by frequent small bleedings, a light sparing diet, and open belly. The patient should be placed in an easy posture, something between sitting and lying; and when the ut. ruses high, a moderate degree of prelure: from the superior part downwards, may in some cafes prove useful. But this must be used with great caution: for dreadful are the effects of vio.

Difficult of labor.—is inconvenient. It may frequently kill both mother and child, and ought to be guarded from the earliest months.

Epileptic fits,—are a very dreadful and alarming appearance. They generally depend upon the same cause with the above complaints: they may also arise from irritation, excited by the motion and stretching of the uterus; and from various other causes. Such as have convulsions when young, are most liable to have them during pregnancy; they happen most frequently in first pregnancies, or where the fetus is very large, or in twins, triplets, &c. In such cases, the distention of the uterine fibres is so great, that actual laceration is sometimes the consequence.

At whatever period of pregnancy they seize, the utmost danger may be dreaded. This, however, will be in proportion to the severity, duration, and recurren- ence of the paroxysm, to the term of gravidation, to the constitution of the patient, and her condition during the remission. The danger is greater towards the latter end of pregnancy than in the earlier months or in time of labour.

Such as arise from inanition, from excessive and profuse hemorrhages, from violent blows, falls, &c. or from a ruptured uterus, are for the most part fatal.

Hysterical or nervous spasms must be carefully distinguished from true epileptic fits. The former are milder than the latter; they are not attended with foamings; they do not affect the posture; the pulse is smaller, feebleer, and more frequent; the woman is pretty hearty after they are over; they are followed with no bad consequences, and yield to the common treatment. Women of strong, robust, vigorous constitutions, are more generally the subjects of the one; the delicate, the nervous, and the irritable, of the other.

Epileptic fits generally come on very rapidly; if any previous symptoms occur, the fit is commonly announced by an intense pain in the scrobiculum cordis, or violent headache.

In the pregnant state, these fits are for the most part symptomatic, and will therefore only admit of a palliative cure. They may be distinguished into three classes: those of the early months, those of the latter, and those that come on with labour-pains.

With regard to the cure, the term of pregnancy, as well as the constitution of the patient, and particular cause of the disease, must carefully be considered.

1. Convulsions at an early period of pregnancy chiefly happen to young women of a plethoric fanguine habit; and can therefore only be removed or palliated by a free and bold use of the lancet, by an open belly, cold regimen, and spare diet. After pientful evacuations, if the stomach be loaded with acid fæces or putrid bile, a gentle pulse may be of use: but such remedies, on those occasions, must be employed with great caution. Instead of a plethoric, if the patient is of a nervous habit, a very necessary and important dilution, the intentions of cure will essentially vary. 1 or more plates in large doses and frequently repeated, emollient givlers, stupes applied to the legs, the femicupium, and every other means to soothe the nerves and remove spasmodic irritations, will prove the most effectual remedies. If inefinance 5 F or
MID WIFERY.

I. Those that affect the general system; as,
1. External accidents changing the state of the circulation.
2. Changes in the circulation from internal causes.
3. Debility.
4. Plethora.

II. Those that affect the uterus and placenta; as,
1. Direct affections.
2. Stimuli communicated from an affection of other parts.

With regard to the cure.—Though a flooding in some constitutions may happen, even in early gestation, and may remit and recur from time to time, and the woman go on to the end of her reckoning; and tho' it seldom or never happens that this complaint proves mortal to the mother in the first five weeks of pregnancy; yet every appearance of this kind, even the slightest, is to be dreaded; as in the early months it will often throw off the fetus, and, in the latter, always threatens the utmost danger both to mother and child. Floodings of gravid women we cannot propose radically to cure; they will only admit of palliation. With this view, the indications are,

I. To lessen the force and velocity of the blood in general.
II. To promote the confinement of the patulous mouths of the bleeding vessels, or the formation of coagula in their orifices.

1. To answer the first indication, rest and a recumbent posture, cool air, tranquillity of mind, a light diet, venefaction, and opiates, are the chief means.

2. To restrain the violence of the hemorrhagy, internal astringent medicines are recommended; but this is to be accomplished chiefly by means of cold flyptic applications to the parts and their neighbourhood. But as these floodings often arise from so various and opposite causes, it is difficult to lay down particular indications, or to point out a method of cure suited to every case that may occur. The intention of cure can only be regulated by a careful and judicious consideration of the cause, and of those particular circumstances with which the case may be attended. In early pregnancy, it may be restrained by keeping the patient quiet and cool, by giving internally cooling things and opiates; but, in the advanced stages, the deluge is sometimes so profuse as to kill very suddenly. Under such circumstances, when the woman is near her time, emptying the uterus by delivery, if practicable, is the only safe expedient both for preserving the life of the mother and of the child.

If the hemorrhagy can be restrained, a recurrence must be guarded against, by avoiding or counteracting the occasional or remote causes.

CHAP. IX. Abortion, or Miscarriage.

May be defined, the premature expulsion of the embryo or fetus. Some, however, make the following distinction: When a woman miscarry in early gestation, this they consider as an abortion; but if in the latter months, that they term a premature birth. The symptoms that threaten abortion are:

Flooding.
Abortion.

Pain in the back and belly.

Bearing down pains with regular intermissions.

The evacuation of the waters.

The death of the child, which discovers itself by the following symptoms; though in general these are so doubtful and fallacious, that none of them afford an infallible sign:

1. The fulcitiding of the abdominal tumor.
2. Cefation of motion in the fetus.
3. The sensation of a heavy weight falling from side to side, as the woman turns herself in bed.
4. Sickness, faintings, rigors, cold sweats.
5. The breasts turning flaccid.
6. Coldness of the abdomen, and putrid discharge from the vagina.

Abortions are seldom dangerous in the first five months; but a frequent habit of miscarriage debilitates the system, frightens the constitution, and lays the foundation of chronic diseases of the womb, or of the parts that can press upon it, or that are afflicted with circumstances, that none of them afford infallible assurance of the issue.

In the advanced months, the prognosis will be more or less favourable according to the patient's former state of health, the occasional causes, and symptoms with which it is attended. The proximate cause of abortion is the same with that of true labour, viz. a contracted effort of the uterus and abdominal muscles, assisted by the other expulsive powers. The remote causes cannot be explained with precision; as many circumstances, with regard to the nature of impregnation, and connection of the fetus with the placenta and uterus, are subjects still involved in darkness. They may in general, however, be reduced,

I. To whatever interrupts the regular circulation between the uterus and placenta.

II. To every cause that excites the spasmodic contraction of the uterus, or other affluting powers.

III. To whatever occasions the extinction of life in the fetus.

Amongst the first are:

1. Diseases of the uterus.
2. Imperviousness or spasmodic constriction of the extremities of the uterine blood vessels.
3. Partial or total separation of the placenta or chorion from the uterus.
4. Determination to other parts.

To the second general head belong all causes that produce a strong contraction of the elastic fibres of the uterus, or of the parts that can press upon it, or that occasion a rupture of the membranes: such as,

1. Violent agitation of mind or body.
2. A disease of the membranes.
3. Too large a quantity of liquor amnii.
4. The crotal position of the fetus.
5. Its motion and kicking.

The last head includes the numerous causes of the death of the child, which, besides those referred to in the preceding clauses, may be occasioned by,

1. Diseases peculiar to itself.
2. Diseases communicated by the parents.
3. External accidents happening to the mother; or,
4. Accidents incident to the fetus in utero.
5. Diseases of the placenta or funis.
6. Knots and circumvolutions of the chord.
7. Too weak an adhesion of placenta or chorion to the uterus: and,

8. Every force that tends to weaken or destroy this attachment.

With regard to the treatment. This must be varied according to the particular circumstances of the case: nor is it possible to point out particular indications, or propose any regular plan to be pursued for this purpose. Abortion is often preceded by no apparent symptoms, till the rupture of the membranes, and evacuation of the waters, announce the approaching expulsion of the fetus. Either to remove threatening symptoms, or to prevent miscarriage when there is reason to apprehend it, often baffles our utmost skill; because it generally happens, that there is a cessation of growth in the ovum; or in other words, an extinction of life in the fetus, some time previous to any appearance of abortion. For instance, in early gestation, a woman commonly miscarries about the 11th or 12th week; but the age of the fetus at this time is generally no more than eight weeks. At other times, when by accident the fetus perishes, perhaps about the fifth or sixth month, it will still be retained in utero, and the expulsion will not happen till near the completion of full time.

As women who have once aborted are so liable to a recurrence from a like cause, at the same particular period, such an accident, in future pregnancies, should therefore be guarded against with the utmost caution. On the first appearance of threatening symptoms, the patient should be confined to a horizontal posture; her diet should be light and cooling; her mind should be kept as tranquil as possible; a little blood from the arm may be taken occasionally; and opiates administered according to circumstances: but excepting so far as depends on thefe, and such like precautions, for the most part, in the way of medicine, very little can be done.

Manual assistance is seldom or never necessary during the first five months of pregnancy: the exclusion of fetus and placenta should generally be trusted to nature.

The medical treatment of abortion must therefore be considered with a view only to the prophylactic cure: and this again will chiefly consist in proper means.

CHAP. X. Regimen during Pregnancy.

Women, when pregnant, should live a regular temperate life; moderation in eating and drinking should now be very carefully observed, and every thing that has any tendency to disagree with the stomach should be avoided; otherwise the manner of life should be much as usual. If complaints do occur, these should be treated as at other times; only guarding against such things as, by violent operation, many endanger miscarriage. If the woman has formerly been subject to this accident, the cause should be carefully considered, and suitable remedies applied; if pellagoric, for instance, the blood should be cooled, live sparingly, and kept quiet, till the gets beyond the dangerous period. If the be weak, delicate, and nervous, bark, light aromatic bitters, mineral waters, and the cold bath (if able to bear it) will prove the belt prophylactic remedies. The cold bath has, in many cases, cured the most obstinate fluxus album, and sometimes even sterility itself; and, in relaxed habits disposed to miscarriage, when every other
PART II. OF LABOURS.

LABOURS are divided into three classes: natural, laborious, and preternatural.

In whatever manner the head of the child presents, where the delivery at full time is performed by nature, the labour is with great propriety called natural; when the birth is protracted beyond the usual time, or cannot be accomplished without extraordinary assistance, it is deemed laborious; and preternatural, when any other part but the head presents.

CHAP. I. Natural Labour.

By whatever power the uterus is enlarged, when any further increase is prevented, a stimulus to contraction must ensue: by this means an uneasy sense is excited, which must, in the woman produce an effort to procure relief; and thus arise the true labour-pains, which at first are light and of short duration, a considerable remission intervening: the periods of recurrence soon become more frequent; the pains acquire an increased force, producing more and more change on the os uteri; which, yielding to the impelling causes, gradually opens and expands; till at length it becomes completely dilated, the membrane protruded and ruptured, and the child, by the expulsive force of the uterus, lifted by that of the diaphragm and abdominal muscles, is thus pushed along and delivered.

The symptoms of approaching labour are, the subsiding of the abdominal tumour: hence a discharge of mucus from the vagina, sometimes tinged with blood; incontinency, or supposition of urine; tenesmus; pains of the belly, loins, and about the region of the pubes; restlessness, hot and cold fits, &c.

Spurious pains are to be carefully distinguished from those of genuine labour. The former arise from the stretching of the uterus and its pressure on the neighbouring parts, or from colicinens; and are to be distinguished from the latter by the following symptoms: They are most troublesome towards the evening, increase in the night, and abate through the day; they are more trifling and irregular than true uterine pains; the uterine orifice is not affected and there is no increased flow of mucus from the parts.

True pains begin about the region of the kidneys, strike forward towards the pubes, and down the thighs; they return at regular periods: there is a copious discharge of mucus from the vagina; the os uteri gradually opens, and can be felt to dilate in time of a pain; while the membraneous bag, in a tense state, forcibly pushes against the finger.

The event of labours is so precarious, that no certain judgment can be formed from almost any symptoms, till the labour itself be considerably advanced. A prognosis in general is chiefly to be formed from the age, state of health, and temperament of the patient; from the force, duration, and recurrence of the pains; and from their effect on the uterine orifice; from the time of the rupture of the membranes; from the general make and form of the woman, but, in particular of that of the pelvis; from the bulk and position of the child, &c.

With regard to the method of delivery, and position of the woman, this has been different at different ages and in different countries: the chief thing, however, is to guard against cold and fatigue, observing that the woman be placed in the most favourable posture for supporting the back, for the action of the abdominal muscles, &c. and most convenient for the necessary attendants: till the labour is considerably advanced, she may be indulged in whatever posture is most agreeable; after which the bed or couch is the most proper.

With regard to assistance in natural parturition, the accoucheur
accoucheur for the most part has little to do, till the membranes are ruptured, and the head in perimem. In time of labour, the woman should be kept very cool, and every means of being overheated should be avoided. She should be put to bed in proper time, placed on her side or back, with her head and shoulders a little raised; a cloth tied to the bed-post, or held by an affiant, to support her hands in time of pain, and her feet rolling against a foot-board; her knees should be drawn up towards the belly, and a folded pillow put between them. All efforts to press or strain, except what nature excites, are improper, hurtful, and should be avoided; the membranes, if possible, ought not to be ruptured till they almost protrude at the os externum; the perineum must be lubricated when formed into a tumor, and carefully supported while thus mechanically advanced through the pelvis and into a tumor, and carefully supported while thus mechanically advanced through the pelvis and into the cavity of the uterus. Thus fucceeding, accordmg to the improper, and often followed with most dangerous consequences. The perinreum must now be released, by cautiously folding it over the face and chin of the child; and this ought to be made further sure of by pulling a finger under it round and round. After the head has thus mechanically advanced through the pelvis and vagina, a pain or two must be waited for, when in like manner the boy will follow; nothing more being necessary than to support the child while it is gradually pulled forwards by the expulsive force of the natural pains.

When the child has cried, and the change in the circulation freely taken place, the funis umbilicalis must be tied and divided, the infant must be wrapped in a warm receiver, and given to the nurse to be washed and dressed.

The parts of the woman must now be gently wiped, a warm soft cloth must be applied, and a proper time waited for the separation of the placenta.

This is also the work of nature, and seldom requires more force to bring it along than if it lay entirely loose within the cavity of the uterus. Thus in pulling, no greater force should be employed than is just sufficient to put the funis on the stretch; for if it is already separated, no violence is necessary to extract it; and if the adhesion is very firm, all violent efforts are improper, and often followed with most dangerous consequences. Its advancing is known by the contraction of the uterus, and shifting of the abdominal tumor, and by the lengthening of the cord. By the spontaneous contraction of the uterus, this separation is effected; the expulsion will be slower or more expeditious, according to the state and condition of the woman, according to the number of children she has born, and accordingly to the duration or violence of the labour; it is easier and sooner separated in a first birth, when the woman is in good health, and when the labour has been properly managed. In most cases, this separation is accomplished within half an hour after the delivery of the child. It adheres most firmly after premature births, when the woman has been sickly during pregnancy, where the labour has been tedious and difficult, or when hasty attempts have been made to extract it. A finger, or finger and thumb, guided by the funis, and introduced within the vagina, to bring down the edge, will remove any difficulty occasioned by the centre or bulky part passing the uterine or vaginal orifice.

When it becomes necessary to employ force in extracting the placenta, which is never requisite but in cases of flooding, when the woman has been in bad health during pregnancy, when she has suffered much in time of labour, or when the funis has been torn from it (though the first of these cases is perhaps the only one wherein the practice is absolutely proper), the method of doing it is as follows: In ordinary cases the woman should be laid on her back or side; but when the belly is pendulous, or when the placenta is attached to the fundus uteri, the must be placed on her knees, which is the most convenient posture.

The accoucheur, though with a certain degree of courage, yet with the utmost possible tenderness, must then pass his hand well lubricated through the vagina into the uterus, and feel for the convex body of the after-birth; if the chord be entire, this will direct him; if not he must feel for the loose membranes at the edge of the cake, and must not be deceived by copula of blood that lie in the way; if the uterus be contrived in the middle like a hand-glass, a circumstance that sometimes, though rarely, occurs, this must be overcome by a gradual dilatation with one finger after another, till the whole hand in a conical manner can safely be passed. He must not content himself with feeling a part; he should be able to move his fingers round the whole body of the cake; the adherent must be separated very gradually, in a direction from the sides round and round. The placenta is distinguished from the uterus, as well by its softness as by its convex puckered feel. This convexity, increases in the same proportion as the uterus contracts; hence the middle part or centre of the placenta is first detached; and if the edges are carefully separated, by gently passing the fingers behind, the whole body becomes loose, and disengaged, which must now be brought along with great caution, that no part be left behind, and that no injury be done to the woman in making the extradiation.

Though bad consequences sometimes follow from the retention of the placenta, yet it is much to be questioned, if these are not less to be dreaded than the dangerous fluids, convulsions, delirium, inflammation of the uterus, fever, &c. that may be induced from the preposterous practice of passing the hand to make the extraction; and would it not in general be better to confine the practice of introducing the hand to cases of uterine hemorrhages only? Where the adhesion is so firm as to require force, or where its place of attachment is out of the reach of the fingers, by which, for the most part, the edge may be brought down,
MIDWIFERY.

CHAP. II. Laborious or difficult Labour.

When the birth is protracted beyond the ordinary time, or when the child’s head though naturally presenting, cannot be brought forwards without assistance, the labour is accounted difficult or laborious.

Though the causes of laborious births are various and complicated, they may in general be considered as depending,

I. On the mother.

II. On the child.

III. On the secundines.

I. The birth may be protracted, or the labour-pains interrupted, by,

(1.) Debility in the mother, arising from

a. Dickafe, viz.

1. Flooding.
2. Epileptic fits.
3. Crampish fits.
4. Lownefs and faintnings.
5. Inflammatory diathesis.
6. Colic.
7. Nauséating sicknings and vomiting.
8. Hectic or consumptive habit.

b. From passions of the mind.

c. From mismanagement in time of labour.

(2.) Local complaints in the parts, or their neighbourhood, viz.

a. In the bones occaoning narrowness, and defortion.

b. In the soft parts, viz.

1. Dryness and conftriction of the vagina.
2. Thickness and rigidity of the os tincte.
3. Scirrhous or polyposus tumours about the parts.
4. Accumulated fecrets in the intestines.
5. Stone in the urethra.
6. Prolapsus of the uterus, vagina, and rectum.

II. Difficulties also arise on the part of the child, viz.

1. From the bulk and ossification of the head.
2. The situation in which the head presents.
3. Large broad shoulders, or their transverse deficient through the pelvis.

III. The secundines, viz.

1. The rigidity of the membranes, and the contrary.
2. Too great a quantiy of water.
3. The funis umbilicalis too long or too short.
4. The prolapsus of the funis before the child’s head: and,
5. The attachment of the placenta towards the cervix or os uteri.

The treatment of laborious births requires a very nice and careful attention to the condition of the patient and other circumstances, from whence only we can judge when assistance becomes requisite, and how it may be applied to the best advantage. That pain and misery is the unavoidable and ineparable attendant of child-bearing, though dealt out in different proportions to different subjects, the testimony of all nations, and all ages, as well as daily experience, bear witness; nor is the castief labour altogether excepted from pain, even under the most favourable circumstances. The delivery, however, promises to be safe and easy, when the woman is of proper age, in good health, the child presenting right, and the pelvis well proportioned; but the force of the natural pains may be interrupted, and of consequence labour be retarded from,

I. Debility in the mother, arising from

a. Dickafe. This may appear under various forms; as,

1st, A flooding. Which is very alarming, even along with labour-pains: though less so in this case than when at a distance from full time; because as the labour-pains increase, the hemorrhagy very generally abates: or if not, breaking the membranes when the aperture of the os uteri is sufficient to admit the hand, seldom fails to produce that effect. The woman in this case must be kept cool. Opiates must be administered; she must be comforted with the best assurances of a happy delivery: and the natural pains must be waited for.

But if the hemorrhagy proceeds from a separation of the placenta, attached towards the cervix or orifice uteri, in this unhappy cafe, the whole body of the cake may be completely separated before the aperture of the uterus be sufficient for allowing the head to pass; and the deluge may be so sudden and impetuous that the woman will sink immediately under it. Breaking the membranes and making the delivery, either by turning the child, or extracting with the forceps or crotchet; according to circumstances, with as much expedition as is consistent with the mother’s safety, is the only expedient by which the threatening catatrophe may be prevented.

2dly, Epileptic fits may in like manner retard labour and endanger the life of the mother. If the child is not thrown off by a few fits, which is often the case, the delivery should be effected as soon as possible.
Part II.

Midwifery.

3dly, Crampish pains in the thighs, legs, rarely in the belly, are very troublesome. They depend on the pressure of the head on the nerves as it passes through the pelvis, and can only be removed by delivery; which, as these pains are seldom if ever attended with danger, is not to be forced on this account. Breaking the membranes will sometimes remove them.

4thly, Lowness and faintness often occur, and frequently prove the cause of protracted labour.

No general rules with regard to the management of slow labour can be recommended. The mode of treatment, where so many circumstances may occur, must be suited to the condition of the patient, as every particular case will in some measure require a different management. Much depends on the prudence and judgment of the attentive practitioner. For instance, when the patient is nervous, low-spirited, or weakly, from whatever cause, in general her strength must be supported; she must not be put on labour too early; the must avoid heat, fatigue, and every means of exhausting her strength or spirits. When she is irritable, or the pains trifling and unprofitable, opiates are particularly indicated; they remove spurious or grinding pains, recruit the spirits, procure rest, and amuse time. Little elixir for the most part is to be done. If the uterus once begins to dilate, though the dilatation goes on slowly, it is by much the best and safest practice to do nothing but regulate the management as above.

The pains at last will become strong and forcible; and the delivery, even where the patient has been very weakly, will often have a safe and happy termination. In these tedious labours, if the strength of the woman be properly supported, every thing almost is to be expected from nature. Forcible means should be the last resource.

5thly, Inflammatory diathesis, in young subjects of strong rigid fibres and plethoric habits, must be obviated by venefaction, an open belly, and cooling regimen.

6thly, Colic.—Many women have severe attacks of this diæse immediately before the labour-pains come on; the reason of which is sufficiently obvious: the belly, which formerly rose so high that the fundus of the womb pressed against the pit of the stomach, afterwards subsiding; by the child's pressing to the lower part of the womb, and the oval of the head being applied to the oval of the basin, the contents of the intestines will be forced lower and lower, and the straight gut will be dilated. Hence colic-pains, mitigation, and uneasiness, a frequent desire to go to stool, or frequent loose stools, generally ensue. The best palliative remedy is to issue emollient glysters repeatedly till the bowels be entirely emptied. Although some degree of purging should attend the temenium, it will be necessary to wash the fist gut, by the use of one or more glysters. The irritating cause being in this way removed, an opiate, if no inflammatory heat or fever prevails, may be afterwards given with advantage.

7thly, Nauseating sickness, with vomiting.—When these symptoms occur, warm water or chamomile tea must be drunk freely. Sick-nes and vomiting happen in some degree in the earlier labours. Sometimes they proceed from a disorderly state of the stomach; but in general are to be accounted for from the well-known sympathy of the womb with the stomach; and accompany the stretching of the os uteri only.

8thly, Hectic or consumptive habit.—It is a melancholy thing to attend a labouring woman in this state. The pains are weak and trifling; the uterus force much down; and she is feeble, and liable to faint when the pains go off. But however apparently exhausted, the progress of labour goes on, in most cases, much better than could be well expected. The office of the womb gives little resistance to the force of the pains, weak and trifling as they are; the parts are soft and lax, and soon stretch in such a manner, that, if there be no fault in the pelvis, the child readily obtains a palling.

Here little is to be done but supplying the patient from time to time with light nourishment; with cordials that do not heat: and keeping up a free circulation of cool air all around her: for this purpose the curtains should be quite drawn aside, doors and windows widely opened; and the should be placed in a position with her head and breast well raised, that an early respiration may be promoted. Hectic women under proper management rarely sink immediately after delivery; they generally survive a week or longer, tho' they seldom outlive the month.

2. Passions of the mind. Any piece of news in which the patient, her family, or relations are interested, should be carefully concealed, as well as every thing that tends in general to affect the passions; as labour may not only be interrupted from this cause, but the most dangerous symptoms, as swellings, convulsions, delirium, and fatal syncope, may be induced.

3. From mismanagement in time of labour often arises debility; so that the patient's strength is exhausted, the pains at length entirely cease, and the head of the child remains locked in the pelvis, merely from want of force or pain to push it forwards. In all cases where the labour has the appearance of being tedious, the woman's patience must, as much as possible, be supported. During the grinding pains, the must be kept cool and quiet: opiates may be exhibited to pass the time, till the forcing throes ensue, when she will acquire resolution, the parts will dilate kindly, and the labour end happily; whereas, if she considers herself in labour from the earliest appearance of grinding pains, she is frightened at the length of time, and her patience runs out. Slow lingering labours happen chiefly to elderly women having a rigidity in the parts, to nervous subjects, and to such as have been weakly during pregnancy. It is of great consequence, and the advice cannot be too much inculcated, to avoid exhausting the woman's strength too much at first.

2. Local complaints in the parts, or their neighbourhood.

a. Narrowness or distortion of the bones of the pelvis. Where there is any material defect in this cavity, a superficial knowledge of the form and structure of the parts will enable us to judge. If, from the figure of the woman's body, there is reason to suspect a faulty pelvis; if the spine is twisted, the legs crooked, the breast-bone raised, or the chest narrow; whether the pelvis be affected or not, she will require a particular management; for the constitution of such women is weak;
weak and feeble, and they cannot be much confined to bed on account of their breathing. We can never be absolutely certain of a distortion of the pelvis (except when the distortion is confined to the inferior aperture) till the uterine orifice is considerably dilated. After this time, if the pains are strong and forcible, and the head of the child makes no advance, a narrow pelvis or large head is to be suspected. The pelvis may be faulty at the brim, bottom, or in the cavity or capacity. The first of these, which most frequently occurs, is the most difficult to be discovered. The second can be readily perceived by the touch: for we can feel the defects in the shape of the os ilium and coecy, in the position of the ischiis, and in the bending of the pubes; and where the distortion is so general, that the whole cavity of the pelvis is affected, the shape of the woman's body, the flow progress of the labour, and the state of the parts to the touch, will afford sufficient information.

In the first case, we can only know the distortion by the symptoms: for we should not attempt to introduce the hand till the mouth of the womb be dilated: it is afterwards unnecessary: for we know that the pelvis is too small, or the head too large, by its not advancing in proportion to the pains, and by feeling a sharp ridge like a fow's back on the top of the child's head, which is occasioned by the bones riding over each other in consequence of the pressure.

How long nature, in such circumstances, can support the conflict, it is difficult to say. It is sufficient to observe, that when things are properly prepared for the advance of the child, when the first stage of the labour is accomplished, but its progress is then suspended, it is of little consequence to the midwife called in. 4. Accumulated moisture in the pelvis (and mother or child, or both, may fall a victim, and a return by gentle pressure must be prevented. We must not, however, allow ourselves to be imposed upon, either by the impatience of the distressed mother, or by the clamours of the officious impertinents about her. In according that assistance we are able to give, we are only to be directed by the symptoms of the case: we must remember, that the gentlest assistance our hands or instruments in laborious births can afford, is always attended with hazard and risk; that if instruments be applied too early, nature will be thus interrupted in her work, and the most fatal consequences may ensue; and that if assistance be delayed too long, the mother may die undelivered: we ought, however, to be informed, that the former practice of having too early recourse to forcible means, where, in time, nature unaided might do her business, has proved by far more fatal than the latter. We ought therefore carefully to consider the general history of the patient, and particular circumstances of the case, that we may hit the proper time of making the delivery; which, in these laborious labours, is exceedingly difficult to determine; yet it is a matter of the utmost importance, as there is always one, often two or more lives at stake, and the accoucheur is accountable for the consequences of his misconduct or neglect.

6. The fault may be in the first parts as,

1. Dryness and contraction of the vagina. Here all stretching and scooping is to be avoided. The natural moisture is to be supplied by lubricating with pomatum or butter, or by throwing up injections of warm oil; the parts are likewise to be relaxed by the application of warm soaps, or by warm items directed to them.

2. Thickness and rigidity of the os ilium. This happens chiefly in women well advanced in life, where the parts open more slowly, and the labour generally proves more tedious. Here also little is to be done but waiting with patience, comforting the woman as well as possible, and giving an opiate from time to time. The parts may be relaxed with butter or pomatum, by throwing into the vagina injections of warm oil, or by the application of warm soaps to the os externum. Every forcible attempt to open or stretch the uterus, as some authors presume to advise, is apt to induce inflammation and its consequences, and to interrupt the natural pains: it is therefore universally the fittest practice to trust in every case to theft; though tedious, or even violent, the labour for the most part will end more happily, and the woman recover better, than if force had been employed.

3. Polypos tumors, &c.—There is seldom occasion in case of cicatrices in the vagina, to dilate with the scalpel, to remove polypos tumors by excision, or to cut upon and extract a stone from the urethra in time of labour. But if circumstances are urgent, such expedients are safe and practicable, and warranted by many precedents.

4. Accumulated feces in the intestines ought always to be removed by repeated emollient glysters on the first appearance of approaching labour.

5. A stone in the urethra, if it cannot be pushed back, must be cut upon and extracted, as already advised.

6. Prolapsus of the uterus may happen at full time, in a pelvis too wide in all its dimensions; for which, however, nothing can be done but to support the uterus in time of a p in, that the stretching of the parts may be gradual. Prolaps of the vagina and rectum must be reduced at the remission of the pain, and a return by gentle pressure must be prevented.

7. Obliquity of the uterus, though a favourite theory of some authors, never happens in such a degree as to influence delivery, except in the case of a pendulous abdomen, or where it depends on the make or distortion of the pelvis. The first of these, though it may, by throwing the child's head over the pubes, occasion perhaps no little delay, will seldom prove any material obstacle to the progress of the labour.

II. The proportion of labour may depend on the child, and may arise from,

1. The bulk or dilatation of the head.

There may be either natural disproportion between the head and body, or the swelling may be occasioned by a patrid encephaly in consequence of the child's death, or the enlargement may proceed from a hydrocephalus.
MID WIFERY.

2. The breadth of the shoulders, or their transmission through the pelvis, rarely proves the cause of protracted labour. The head is always more far advanced before any obstruction can arise from this cause; and if the head has already passed, in a pain or two the shoulders will follow. The same reasoning will also apply with regard to the aperture of the uterus itself, if the head passes freely, in like manner will the shoulders; the os uteri, if ever, is capable of contracting upon the neck of the child, and thus preventing the advance of the shoulders; and should this prove the case, what can we do but wait with patience? After the delivery of the head, if the woman falls into delirium, or if, after several pains, the shoulders do not follow, and the child's life be in danger from delay, we should naturally be induced to help it forward in the gentlest manner we are able, by passing a finger on each side as far as the axilla, and thus gradually pulling along.

III. Lastly, From the secundines, difficulty and danger sometimes arise.

11. The rigidity of the membranes, and the contrary. From the first of these causes, the birth is sometimes rendered tedious; but as the same effect is much oftener produced by the opposite cause, and the consequences of the latter are more troublesome and dangerous than the former, we should always be exceedingly cautious of having recourse to the common expedient of breaking the membranes, which ought never to be done till we be certain the difficulty depends upon this cause; and, even then, the head of the child should be well advanced, and the membranes protruded almost as far as the os externum. Many inconveniences arise from a premature evacuation of the waters; for thus the parts become dry and rigid, a contrition of the os uteri for a time ensues, the pains often either remit or become less strong and forcing, though not less painful and fatiguing; the dilatation goes on so slowly, and the labour becomes so severe, that the woman's strength and spirits, by the unprofitable labour, are quite overcome and exhausted; so that the head remains confined in the passage, more or less, from want of force of pain to push it forwards. The woman in the beginning of labour should therefore be treated with the utmost delicacy and gentleness. The work of nature is too often spoilt by officious hands. She should be felt on touched while the membranes are whole, left they should be ruptured; and, even when touching is necessary, this should only be done when the
2dly, Too great a quantity of water may prevent the uterus from contracting, and thus weaken the force of the pains. Though this may, however, occasion a delay, it will never be attended with more dangerous consequences; and the same advice already given will hold equally good in this case, that the membranes should never be broken till the soft parts be completely dilated; and we are assured that the difficulty or delay proceeds only from this cause.

3dly, The funis umbilicalis too long. The funis may be faulty from its too great length, or the contrary: thus the extraordinary length, by forming circumvolutions round the child's neck or body, sometimes proves the cause of protracting the labour. But as this can only happen when the chord is of an uncommon length, there is generally enough left to admit of the exit of the child with safety; and it is time enough, in general, after the child is born, to lift the foole over the shoulders or head: there is seldom occasion to divide the chord in the birth; a practice that may be attended with trouble and hazard.

The practice of introducing a finger in ano, to press back the coccyx, or to prevent the head, when it advances, from being retracted by circumvolutions of the chord, is now entirely laid aside; an expedient that can answer no end, but that of fretting and bruising the parts of the mother, and injuring those of the child.

Funis too short. The funis is sometimes thick and knotty, or preternaturally thickened by disease. In this case, part of the placenta may be separated as the child advances through the pelvis, and thus a flooding of other fluids be prevented; or the funis may be actually ruptured, and occasion the death of the child, if the birth does not quickly follow. Such cases, however, rarely happen.

An inconvenience, at least fully as bad as the former, may arise from the too great length of the funis, though it may depend on other circumstances: viz.

4thly. The prolapsus of the funis before the head. In this case, if possible, should be pushed up above the presenting part; for, if the labour pains are flow, and the chord becomes cold, or the pulsation in it begins to grow languid, the circulation will thus be interrupted, and the life of the child destroyed. If the head is far advanced in the pelvis, and the child's life in danger, the delivery may be performed with the forceps. But to push up the head, and turn the child with a view to preserve its life, as many authors recommend, is a practice by no means advisable: we should seldom, in this position, be enabled to save the child; and turning under such circumstances can never be done but at the immediate hazard of losing the mother.

5thly. Placenta attached towards the cervix or os uteri. This case is truly melancholy; for, if the delivery is not speedily accomplished, the effusion from the uterine vessels will be so copious and profuse, that the unfortunate woman must in a very short time perish. On this occasion the delivery must be conducted in the best manner the judgment and skill of the operator can direct, and with as much expedition as the safety of the mother will admit.

Thus, in most laborious cases, provided the woman's strength be supported, the management properly regulated, the natural moisture of the parts when deficient supplied, manual affiatice very seldom becomes requisite; but as cases do occur, wherein nature, with all advantages, will fail, and the common methods of relief prove unsuccessful, recourse must be had to more powerful means, while the woman is able to support the conflict. In all such cases, the condition of the patient, the structure and state of the parts, and position of the presenting part of the child, must very carefully be considered.

Method of Delivery by Instruments.

When the powers of nature are insufficient to expel the child, extraordinary assistance must be had recourse to. In laborious births, this is chiefly of two kinds.

1. The head is either extracted as it presents: or,

2. Its disadvantageous position.

3. The head is either extracted as it presents: or,

4. Its disadvantageous position.

Whatever is the cause, when the natural pains begin to remit, and the parts of the woman begin to swell; when her strength declines, her pulse grows feeble, and there is no prospect of advantage to be gained by delay; measures must be taken for affisting the delivery, otherwise both mother and child may perish from neglect.

As instruments are never to be employed but in the most urgent and necelisitous cases, and expressly with a view to preserve the life of mother or child, or both; those of a safe and harmless kind should always be made trial of, in preference to those of a destructive nature.

Use of the Forceps.

The forceps is an instrument intended to lay hold of the head of the child in laborious births, and to extract it as it presents. This instrument, as now improved, in the hands of a prudent and cautious operator, may be employed without doing the least injury either to mother or child.

In every obstetrical case, wherein manual affiatice becomes necessary, the contents of rectum and bladder should, if possible, be previously emptied.

The membranes also should be broken, the soft parts completely dilated, and the head of the child as far as possible advanced, previous to the use of any instrument.

The form and structure of the parts of the woman, the situation and progress of the presenting part of the child, must at this time be carefully considered. The concavity of the sacrum, for instance, will determine the progress of the labour. The touch of the vertex, fontanela, lamboidal, or sagittal future, the fore or back
back part of the ear, or some part of the face, will avert the certain true presentation of the child.

The lower the head is advanced in the pelvis, our success with the forceps is the more to be depended on. For when it has proceeded as far as the inferior aperture, by means of this instrument it may be readily relieved; but when the head of the child is confined at the brim, both the application of instruments, and the extraction by this means, are exceedingly difficult and dangerous.

The head may be so firmly wedged in the pelvis that the forceps can neither be introduced nor fixed without bruising or tearing the parts of the woman; whatever, therefore, insurmountable difficulties occur, either in applying or extruding with the forceps, the life of the mother must not be endangered by fruitless efforts: the head of the child must immediately be opened, and the delivery accomplished without further delay.

In laborious births, the proper forceps-cases may be reduced to two, which include, however, a considerable variety. These are,

I. The smooth part of the cranium.

II. The face, presenting.

The head may present,

1st. Naturally, when low advanced in the pelvis, with the vertex to the pubes, and the forehead or face in the hollow of the factrum. Or,

2ndly. When higher in the pelvis, the vertex may present with the face laterally, the ears to the pubes and factrum. Or,

3rdly. The fontanel may present with the face to the pubes and vertex to the factrum; or with the vertex to the pubes and face to the factrum.

1. When the head presents naturally. The woman in this case must be placed on her back across the bed, properly supported; the accoucheur, seated before or in a kneeling posture, after gradually lubricating the perineum and vagina, must proceed gently to stretch the parts, by passing the hand in a conical manner through the os externum vagina, pushing it forwards by the side of the child's head, till it advances as far as an ear, if possible: along this hand he is to guide a blade of the forceps, which with the other hand he introduces in the direction of the line of the pelvis, holding the handle backwards towards the perineum, and keeping the clam closely applied to the child's head. This must be iniminated very gradually by a kind of wriggling motion, pushing it on till the blade is applied along the side of the head over the ear; he must then gently withdraw the first hand from the pelvis, with which he must secure the handle of the blade of the forceps already introduced, till the other blade be passed along the other hand, in the same slow cautious manner: the handles must then be brought opposite to each other, carefully locked, and allowed to slip in extræting, properly secured by tying a fillet or garter round them; but this must be loosed during the remission of pulling, to prevent the brain from being injured by the pressure. The extraction must be made by very slow and gentle degrees, and with one hand only, while the other is employed to guard the perineum: the motion in pulling should be from blade to blade; the accoucheur must rest from time to time, and, if the pains are not gone, should always in his efforts only cooperate with those of nature. The child and mother will suffer less by going on in this gradual manner than by precipitating the birth, which can never be done but at the risk of destroying both. If, in making the extraction, the forceps slip, they must be cautiously withdrawn blade by blade, and again introduced in the same manner.—

When the tumour of the perineum forms, and the vertex begins to protrude at the os externum, the accoucheur must arise from his seat, raise the handle gently upwards, and by a half round turn, bring the hind-head from under the symphysis or arch of the pubes; remembering carefully to guard the perineum from laceration and its consequences, to which it is now greatly exposed.

In attempting the introduction of either blade, if it meets with any interruption, it must be as often withdrawn, and pushed up again in a proper direction till every difficulty be surmounted; and if, from the smallness or constitution of the parts, the introduction of the second blade shall seem impracticable, the former one must be withdrawn, and the latter must be first introduced.

2. The vertex may present with the face laterally in the pelvis. It is always difficult to apply the forceps till the bulky part of the head has passed the brim; and here it is not only difficult to the operator, but extremely hazardous to the patient, to introduce this instrument till the ear of the child has got under the pubes. When the ears thus present to pubes and factrum, the woman should be placed on her side or knees, the most difficult blade of the forceps should be first applied, which is the one under the pubes; when both are passed, and properly secured, the patient should again be turned to her back, before the operator attempts to extract, and the head in this case (as the quarter-turn can seldom be made without danger) should be delivered in the manner wherein it presents; because, when confined any time in the passage, its figure is altered by the overlapping of the bones, in such a manner that it pigeons along, in general, with far less difficulty than to attempt to pull up and make the mechanical turns; a work often altogether impracticable, by which contortion or laceration of the parts of the woman, and the most fatal consequences, may be occasioned. The handles of the forceps must here particularly be well pressed backwards towards the perineum, that the claims may humour the curvature and intrusion of the factrum, and accommodate themselves to the form of the child's head.

This is a case wherein the forceps often fail; if so they will sometimes succeed by varying the mode of application, and fixing them over the forehead and occiput; if this method fails also, the size of the head must be diminished, and the extraction made with the blunt hook or crotchet.

3. The fontanella may present with the face to the pubes. This is the most common of the fontanel cafes; though sometimes the face is lateral in the pelvis, sometimes diagonal, and sometimes it is turned to the factrum. The true position is ascertained by the direction of the fontanel, and that of the ear. Here, as in other laborious births, nature should be intruded as long as we dare. The hands do not always de-
In the third, the chin presents, as some practitioners have supposed; nor will the deviation from its ordinary mode of descent always of itself influence the delivery, at least very rarely in such a manner as to require extraordinary assistance. In whatever manner the head presents, when it is situated high in the pelvis, the delivery cannot be effected without difficulty or hazard; in such circumstances, the application of the forceps will frequently baffle the utmost efforts of the accoucheur, and the consequences of such attempts may prove fatal to mother and child.

When extreme weakness in the mother,极度 weakness in the mother, convulsions, or other urgent symptoms, render it necessary to force the delivery, whether the face be to pubes or sacrum, the forceps may be applied along the ears, in the same manner as directed in a natural labour; and the head, for the reasons already given, should be brought along in the manner it presents: the extraction should be made with great deliberation, that the parts of the woman may have time to stretch; the perineum must be carefully supported; the forceps must be gently released, when the head is delivered; and the rest of the delivery conducted as in a natural labour.

In this case, when situated high in the pelvis, the fontanel preenting, and the face either to pubes or sacrum, the long axis of the head interferes the short diameter of the pelvis, and very often, though the forceps be applied, and a firm hold of the head be obtained, it is not possible to bring it along with all the force we dare exert. If this method therefore fails, the common forceps should be cautiously withdrawn, and the long ones applied if possible, over the forehead and occiput, when the size of the head, by the compression it suffers in passing along, being perhaps somewhat diminished, the extraction will be successfully performed. This method also failing, previous to the operation of embryotomy, Dr. Leak's forceps, with the third blade, may be had recourse to. But of this little can be said with confidence, till the instrument has been more generally employed. From the difficulty of succeeding in the application of the common forceps, it may, a priori, be concluded, that the introduction of a third blade, even in the hands of an expert practitioner, however ingenious the invention, is an expedient not easily to be put in practice. Neither is Roonhuyse's lever, or a blade of the forceps passed up between the pubes and forehead or hindhead of the child, in order to procure the delivery of the head, to be recommended in such cases: however some have boasted of its success, it is an instrument that may do much mischief; and few practitioners can use it with safety.

II. Face presenting.—Of laborious births, face-cafes as we have already observed, are the most difficult and the most dangerous. From its length, roughness, and inequality, the face must occasion greater pain; and from the solidity of the bones, it must yield to the propelling force with much more difficulty, than the smooth movable body of the cranium. Face-cafes are the most troublesome that occur in the practice of midwifery, and in which the most expert practitioners may be useless in their attempts; and these attempts, if too early exerted, will be followed in many instances with fatal consequences. Whatever way the face presents, it should be allowed to advance as low as possible in the pelvis; by which means the access will be more easy, and the position, for the application of instruments, more favourable. In this awkward situation, much mischief may be done by rashness; whereas, if time be allowed, and the patient be properly supported, the delivery will generally end well.

The face may present with,
1. The chin to the pubes.
2. to the sacrum.
3. laterally.

From the difficulty of applying instruments in these cases, some authors recommend, as an universal practice, to turn the child, and deliver by the feet. But this in general is a dangerous practice, and seldom or never advisable, except when the membranes remain entire, till the os uteri is completely dilated, and the head continues locked about the brim of the pelvis; and even then the propriety of the practice is doubtful; because if the head is small, or the pelvis be well proportioned, the face will descend without much difficulty; and if otherwise, besides the risk in attempting to turn, the child may be lost from the pressure of the chord, or the difficulty of extracting the head after the delivery of the body.

When assistance becomes necessary, the best practice in face-cafes is the following: Having placed the patient in a convenient posture, let the accoucheur in the gentlest manner pass his hand within the pelvis; and during the remission of pain only, endeavour to raise the head of the child, so that he may push up the shoulders entirely above the brim of the pelvis, and thus change the position of the face: by this means, if successful, he will be able to reduce the first of these cases, so as to make the fontanel present with the face to the pubes: he will reduce the second so as to bring down the vertex, with the face to the sacrum; and the third he will reduce to a vertex case, with the face lateral. The delivery may be afterwards trusted to nature; which failing, there is easier access for the application of instruments to make the extraction, as already directed. The success, however, of the accoucheur, in altering the position of the head, by pushing it up, will entirely depend on the time he is called; for, should the head be firmly wedged in the pelvis, no force he dares employ will be sufficient to alter the posture.

If, therefore, every attempt to reduce the face, and make the vertex or fontanel present, shall prove unsuccessful, and symptoms are urgent, the forceps must be applied over the ears of the child, and the extraction performed in the best manner the operator is able. And, failing these, immediate recourse must be had to the crotchet.

1. In the first case, previous to the introduction of the forceps, the chin if possible should be advanced below the pubes.
2. In the second, the chin should be advanced to the inferior part of the sacrum. And,
3. In the third, the chin should be as low as the hinder part of the tuber ischi: and although in general the head is to be extracted as it presents, if the operator meets with considerable resistance, it must be gently pushed up and turned with the chin, either laterally.
Part II. MIDWIFERY.

DIFFICULT LABOUR.

terally, below the pubes, or into the hollow of the
fcrum, according to the particular circumstances of
the cafe, and in a direction best accommodated to the
form and diameter of the pelvis.

USE OF THE SCISSORS, CROCHET, AND BLUNT HOOK.

When the head of the child, from its size, unfa-
vourable position, or from a fault in the pelvis, cannot
be protruded by the force of natural pains, nor extrac-
ted by the forceps, recourse must be had to more vi-
lent means, and the life of the child must be destroyed
in order to preserve that of the mother. This opera-
tion was by the ancients called EMBRYOTOMY.

When the head, from its extraordinary bulk, is de-
tained at the brim of the pelvis; on evacuating the
contents, the bones of the cranium immediately col-
lapse, and the head is afterwards propelled by the force
of the labour-pains; failing which, only the ex-
traction must be made with the blunt-hook or crotchet.

The unfavourable position of the head is of itself a
cause insufficient to justify the use of destructive instru-
ments, which ought never to be employed but in ex-
treme cases, after every milder method has failed. From
the difficult access to the cranium in order to make a
perforation and evacuate the brain, a face-case makes
a very troublesome and dangerous crotchet one. Very
luckily, in narrow pelvises, the face rarely presents, and
very seldom advances far in that direction; at other
times, the position may be so altered, that the crown,
the back of the ear, or some other part of the cranium,
be reached; otherwise the crotchet must be fixed in
the mouth, orbit of the eye, &c.; and the head brought
along in that direction, till the scissors can be
employed to open the skull.

But the grand cause of difficult labour is, the nar-
rowness or distortion of the pelvis. For when, at the
brim, instead of four inches and a quarter from pubes
to facrum, it measures no more than one and a half,
one and three-fourths, two, or two inches and one-
fourth, the use of instruments becomes absolutely re-
quiste, and very frequently in those of two inches and
one-half, and three inches; or when the diameters
through the capacity, or at the inferior aperture, are
retralched in the same proportion, difficulties will in
like manner arise, and the delivery, except the labour
be premature, or the child a small size, cannot be
accomplished without the assistance of destructive in-
struments.

We judge of the form of the woman; by the pro-
gress of the labour; by the touch. When the fault is
at the inferior aperture, the touch is pretty decisive;
_ e.g., if a lump is felt in the os facrum instead of a con-
cauity; if the coccyx is angulated; if the symphysis
pubis projects inwards in form of an acute angle; if
the tuberocities of the ischiae approach too near each
other; or the one tunder be higher than the other; such
appearances are infaUible marks of a distorted pelvis.

But when the narrowness is confined to the brim, this
is only to be discovered by the introduction of the hand
within the pelvis: the projection of the lumbar verteb-
re, over the facrum, is a species of narrow pelvis that
much frequently occurs in practice. In this case, the
child's head, by the pressure it sustains between the
pubes and facrum, is moulded into a conical or figur-
loaf form, the parietal bones are squeezed together,
overlapping one another, and will be felt to the touch
when the labour is advanced, like an acute ridge, some-
thing in the form of a bow's back.

Instead of the complicated instrumental apparatus
invented by the ancients, such as screws, hook, &c.
for fixing in, laying hold of, and extracting the head
as it presented, an operation in many cases difficult and
dangerous, when the head was bulky or the pelvis nar-
w, as the woman frequently lost her life in the at-
tempt; the practice of diminishing the size of the head,
by opening the cranium and evacuating the brain, pre-
vious to the extraction, is a modern improvement; and
an important one: the instruments for this purpose
consists simply of a pair of long scissors, a sharp curved
crotchet, and a blunt hook: these are preferable to
every other, whether of an ancient or modern construc-
tion.

When the accoucheur is under the disagreeable ne-
cessity of destroying the child to preserve the mother,
the must be laid in the same position as already ad-
vanced for the application of the forceps; and the same
rules, recommended for the one operation, will in gen-
eral apply to the other.

Thus, in the narrowest pelvis that occurs, previous
to opening the cranium, the soft parts should be com-
pletely distended, and the head of the child should be fixed
readily in the pelvis and advanced as far as possible;
for while the head is high and loose above the brim,
the application of instruments is very difficult as well
as hazardous.

The long scissors must be cautiously introduced into
the vagina, directed by the hands of the accoucheur;
the points must be carefully guarded, till they press
against the cranium of the child, which they must be
made to perforate with a boring kind of motion, till
they are pushed on as far as the refts; they must then
be opened fully, carefully re-flurt, half turned, and
again widely opened, so as to make a crucial hole in
the skull. They must afterwards be pushed beyond the
refts, opened diagonally again and again, in such a
manner as to tear and break to pieces the bones of the
cranium; they must then be flush with great care;
and withdrawn along the hand, in the same cautious man-
ner as they were introduced, lest they should bruise or
tear the uterus, vagina, or any other part of the
woman. After a free opening in the cranium has thus
been made, the brain must be scooped out with the
fingers or blunt-hook, and the loofe sharp pieces of
bone must be carefully separated and removed, that no
part of the woman be tore while the head is extrac-
ting. The teguments of the scalp should now be brought
over the ragged bones of the cranium, and the woman
should be allowed to rest an hour or two, according to
her strength and other circumstances: the bones of
the cranium will now collapse; and if the woman has as
much strength remaining, or the pelvis be not much
distorted, the head being thus diminished, will be pro-
truded by the force of natural pains; otherwise it must
be extracted, either by means of two fingers introdu-
ced within the cavity of the cranium, by the blunt-
hook introduced in the same manner, guarding the
point on the opposite side while making the extrac-
tion; or, failing these, by the crotchet, which, though,
dangerous in the hands of an ignorant rash operator, may be employed by the prudent practitioner with as much safety as the bluntest instrument.

The method of introduction is the same with a blade of the forceps. The chief thing to be attended to is, to guard the point till it be applied against the head, and firmly fixed in its hold, which should always be done from the outside of the cranium; provided a firm hold is obtained, no matter where, behind the ears, about the os petrosum, orbits of the eyes, maxilla inferior, &c. according to the presentation of the head. The woman being properly secured, and the handle of the instrument covered with a cloth, the operator must then pull, at first gently, afterwards more forcibly, reeling from time to time, and endeavouring to make the extraction in the best manner the circumstances of the case will admit of. If the pelvis be much distorted, so that, by means of the utmost strength the accoucheur can exert, little purchase is made, he may apply to the opposite side a blade of the forceps, which are now so constructed as to lock with the crotchet; let him then bring the handles together, secure properly, and thus endeavour to make the extraction. Should this expedient also fail, the blade of the forceps must be withdrawn, the other blade of the crotchet must be applied, the handles brought together and secured, and the extraction made, moving from blade to blade.

Should the head present in such a manner, that, in attempting to extract it, the crotchet divides the vertebrae of the neck, and the head is thus forced from the body, an accident that can only happen in the hands of an ignorant labouring practitioner; the head must be pulled up above the brim of the pelvis, the crotchet or blunt hook must be fixed under the axilla, the arms must be brought down, and the body extracted, by fixing the crotchet below the scapula on the sternum, or among the ribs; the head must afterwards be extracted in the manner already advised: or should the head in extracting be pulled from the body, as may happen when the child has been long dead, or when it is putrid, the delivery of the body must be effected by means of the crotchet as now directed; a method preferable to that of turning, as some advise.

If the head, instead of yielding to the force of pulling, be at last cut and broken in pieces, the operator must endeavour to bring down an arm of the child, to fix the crotchet about the jaw or neck, pull at both holds, and thus attempt to make the extraction; this also failing, he must bring down the other arm, fix the crotchet in the thorax, and, in a word, must tear the child in pieces, that the delivery may be accomplished by any means.

In face-cases, where it is impracticable to alter the position, and when the pelvis is much distorted, the double crotchet is sometimes requisite; the handles must be well secured, kept well backwards towards the perineum, and the motion always from blade to blade. It very seldom, however, happens, that there is occasion for the double crotchet: by that means the head is flattened in pulling; whereas if the blade only can be employed, the head is lengthened; and, in pulling,

can better accommodate itself to the shape of the pelvis as it passes along.

Chapter III. Preternatural Labour.

In whatever manner the child presents when the body is delivered before the head, the birth is accounted preternatural. Preternatural labours may be referred to one of the four following classes.

1. When one or both feet, knees, or the breech, present.
2. When the child lies across in a rounded or oval form, with the arm, shoulder, side, back, or belly, presenting.
3. When one or both of the upper extremities present, the child lying in the form of a sheath, the feet towards the fundus uteri, the waters evacuated, and the uterus strongly contracted round the body of the child.
4. Lastly, Premature or flooding caes, or others in which it may be necessary to force the delivery, either previous to the rupture of the membranes, or quickly after it.

The causes of crosses labours most commonly assigned by authors are: The obliquity of the uterus; circumvolutions of the umbilicalis round the child’s body; the shortness of the umbilical, or attachment of the placenta towards the fundus uteri; shocks affecting the mother when pregnant, &c. The position of the fetus may also be influenced by its own motion and stirrings, by the particular form and bulk of its body, by the manner of stretching of the uterus, by the quantity of liquor amnii, and by many other circumstances.

The symptoms that indicate an unfavourable position of the child, before it can be discovered by the touch, are very uncertain and fallacious; a crost birth may however, be suspected,

1. If the pains be more slack and trifling than ordinary.
2. If the membranes be protruded in a long form like a gut, or the finger of a glove.
3. If no part of the child can be discovered when the uterine orifice is considerably opened.
4. If the presenting part through the membranes be smaller, feels lighter, and gives less reluctance than the bulky ponderous head.

Lastly, after the rupture of the membranes, if the meconium of the child be passed along with the waters, it is a sign that the breech presents, or that the child is dead.

Preternatural labours are difficult or hazardous, according to,

1. The form of the pelvis, and general health and constitution of the woman.
2. The bulk of the child, and its manner of presenting.
3. The time the waters have been evacuated, and the uterus contracted round the body of the child.
4. When complicated with plurality of children; the prolapsus of the umbilicalis; the limbs of the child entangled with the chord; profound and violent
Part II.

MIDWIFERY.

Turning is often laborious, and always dangerous in proportion to the force used in searching for and bringing down the feet; though in general, the difficulty and hazard are not so great, as in many cases strictly called laborous, when the head presents; the treatment of preternatural labours being better known, and for the most part easier put in practice.

Each class of the general division of cross labours includes a variety of different cases. By considering a few of every class, a general idea of the whole will be formed.

CLASS I.

CASE I. The simple left and easiest case is the Agrippan posture, when the child presents with the feet.

The foot is to be distinguished from the hand, first, by the weight and resistance it gives to the touch; secondly by the shortness of the toes; thirdly, by the projecting heel.

When the feet present in the passage, the labour should be allowed to go on as if natural. If the child be of an ordinary size, the woman in health, the parts well proportioned, in the way of affluence nothing further seems necessary but the application of a warm cloth round the body of the child, which must be properly supported till it advances as far as the pains are able to force it. If the size be ordinary, or rather small, it will sometimes make the mechanical turns and be entirely pushed along by the force of the natural pains; but it generally stops at the shoulders, after the breech protrudes without the os externum, where the resistance is so great, that the accoucheur's assistance becomes requisite.

In this case, the patient must be placed on her back, properly supported; the hand of the accoucheur must be cautiously introduced; the parts of the woman must be gently stretched; the feet of the child must be laid hold of, and brought as low in the vagina as possible; a soft warm cloth must be wrapped around them, and the extraction must be performed in a slow cautious manner, making large motions in a circular or lateral direction, retting from time to time, if the pains are gone; and if not, always waiting for the natural efforts. When advanced as far as the breech, the body, if not already in a proper direction, must be pushed up, and gently turned with the face towards the mother's back; and to make sure that the face turns with the body, or to prevent the chin, vertex, or shoulders, from catching on the pubes, or angle of the facrum, an extraordinary quarter-turn more must be made; this must be returned previous to the extraction; and the difficulty arising from the obstruction of the shoulders must be removed in the following manner: While the breast and legs of the child are supported over the pubes, when the bulky part of the head is projected, the accoucheur must incline his head, and take a little of the head in his hand, and endeavour to relieve it, pulling from pubes to facrum, alternately raising and depressing the head till it advances downward, so that the face descends from the hollow of the facrum, when the accoucheur must rise from his seat, and bring the hind-head from the pubes with a half round turn, imitating that of a natural labour.

If the position be unfavourable, the face, if possible, should be turned to the facrum, by pulling up the head, or by pulling back the chin; if the contraction of the uterus is the cause of resistance, which rarely occurs, it must be gently stretched with the fingers. Or if the difficulty arises from circumvolutions of the chord round the legs, thighs, or neck of the child, these must be disengaged in the easiest manner possible; it is rarely necessary to divide the fuses on this account.

Should every method fail in bringing down the head, the delivery must be effected by means of the forceps cautiously passed over the ears, with the handles under the child's body, in a direction downwards towards the narium. If the pelvis be very narrow, or the head of a large size, it must be opened by pulling the scissors through the occipital bone, so that the contents of the cranium may be evacuated, and the extraction made by means of the forceps, blunt hook or crotchet. But if the head, by the efforts to extract it, be actually fevered from the body, and left behind in the uterus, an accident which sometimes occurs, it must be delivered by inclosing it in the forceps, while secured from rolling by pressing externally on the abdomen. If the forceps cannot be applied, the cranium must be opened, the texture of the brain destroyed, and the extraction performed by the fingers of the accoucheur, by the blunt-hook, or by the crotchet. If the under-jaw remains, the head would divide in the way of the natural motions of the joint: be mutil then lift hands, when the other arm is to be relieved in the same manner; both arms being brought down, the woman must now rest a little, when a pain or two generally follows, and the head is also forced along. But should the woman be much exhausted, and if the head does not quickly advance, the child may be lost from delay. The extraction of the head in preternatural labours is often the most difficult and the most dangerous part of the delivery; the cause of resistance, when it does not advance, is chiefly owing to its confinement between the angle of the facrum and pubes, when the bulky part of the head is detained at the brim; whether the resistance be here directed towards the inferior aperture of the pelvis, if the head does not advance in a pain or two, the extraction must be made in this manner: While the right hand of the accoucheur supports the body of the child below, with two fingers pressing on either shoulder, the left hand and fingers must in the same manner be placed over the back of the neck, and pulling gently in the direction from pubes to facrum, he must thus endeavour to bring it along; but, should the pelvis be narrow, or the child's head of a large size, or the face be laterally or anteriorly placed in the pelvis, or, what rarely happens, the os uteri contracted round the neck of the child; either of these cases, the accoucheur will sometimes meet with the utmost difficulty. When the above method therefore fails, he must introduce two fingers of the right hand into the child's mouth, while those of the left hand are expanded over the shoulders, as already directed; and in this way he must endeavour to relieve it, pulling from pubes to facrum, alternately raising and depressing the head till it advances downward, so that the face descends from the hollow of the facrum, when the accoucheur must rise from his seat, and bring the hind-head from the pubes with a half round turn, imitating that of a natural labour.

If the position be unfavourable, the face, if possible, should be turned to the facrum, by pulling up the head, or by pulling back the chin; if the contraction of the uterus is the cause of resistance, which rarely occurs, it must be gently stretched with the fingers. Or if the difficulty arises from circumvolutions of the chord round the legs, thighs, or neck of the child, these must be disengaged in the easiest manner possible; it is rarely necessary to divide the fuses on this account.

Should every method fail in bringing down the head, the delivery must be effected by means of the forceps cautiously passed over the ears, with the handles under the child's body, in a direction downwards towards the narium. If the pelvis be very narrow, or the head of a large size, it must be opened by pulling the scissors through the occipital bone, so that the contents of the cranium may be evacuated, and the extraction made by means of the forceps, blunt hook or crotchet. But if the head, by the efforts to extract it, be actually severed from the body, and left behind in the uterus, an accident which sometimes occurs, it must be delivered by inclosing it in the forceps, while secured from rolling by pressing externally on the abdomen. If the forceps cannot be applied, the cranium must be opened, the texture of the brain destroyed, and the extraction performed by the fingers of the accoucheur, by the blunt-hook, or by the crotchet. If the under-jaw remains, the head would divide in the way of the natural motions of the joint: be mutil then lift hands, when the other arm is to be relieved in the same manner; both arms being brought down, the woman must now rest a little, when a pain or two generally follows, and the head is also forced along. But should the woman be much exhausted, and if the head does not quickly advance, the child may be lost from delay. The extraction of the head in preternatural labours is often the most difficult and the most dangerous part of the delivery; the cause of resistance, when it does not advance, is chiefly owing to its confinement between the angle of the facrum and pubes, when the bulky part of the head is detained at the brim; whether the resistance be here directed towards the inferior aperture of the pelvis, if the head does not advance in a pain or two, the extraction must be made in this manner: While the right hand of the accoucheur supports the body of the child below, with two fingers pressing on either shoulder, the left hand and fingers must in the same manner be placed over the back of the neck, and pulling gently in the direction from pubes to facrum, he must thus endeavour to bring it along; but, should the pelvis be narrow, or the child's head of a large size, or the face be laterally or anteriorly placed in the pelvis, or, what rarely happens, the os uteri contracted round the neck of the child; either of these cases, the accoucheur will sometimes meet with the utmost difficulty. When the above method therefore fails, he must introduce two fingers of the right hand into the child's mouth, while those of the left hand are expanded over the shoulders, as already directed; and in this way he must endeavour to relieve it, pulling from pubes to facrum, alternately raising and depressing the head till it advances downward, so that the face descends from the hollow of the facrum, when the accoucheur must rise from his seat, and bring the hind-head from the pubes with a half round turn, imitating that of a natural labour.
hand may be effectually secured till locked in the for­
ceps, or till its bulk be diminished, by introducing a'
finger into the mouth, thrusting it through the jaw
under the chin, drawing it down, and passing a liga­
ture through the perforation.

In cases where the child has been long dead, shoul­
the belly or thorax be distended with air or
water, and prove the cause of obstruction, the con­
tents must be evacuated by opening with the scifflars
or tearing with the crotchet; and in general, where
difficulties occur, the delivery must be accomplished in
that manner the circumstances of the case will ad­
mit of.

Case 2. When instead of two, one foot only falls
into the vagina, the other is sometimes detained by
catching on the pubes, and if easily come at, should
be brought down, always remembering to humour
the natural motion of the joint; but, should the leg
be folded up along the child’s body, the attempt is
sometimes both difficult and dangerous, and ought not
to be perfertied in, as the breech will either be forced
down by the assistance of natural pains, or by gently
pulling by one leg only.

Case 3. When one or both knees present, the deliv­
ery must be conducted in the same manner with that
of the feet.

Case 4. When the feet offer along with the breech,
this last must be pushed up, while the former are se­
cured and brought down till it be reduced to a foot­
ing case, and otherwise managed as above.

Case 5. The breech may present with the fore-parts
to the mother,

\(\text{fr.} \), Anteriorly;

\(\text{adly.} \), Laterally; or,

\(\text{ dial.} \), Posteriorly.

Sometimes the breech may be discovered, previous
to the rupture of the membranes; but afterwards with
more certainty, by the meconium of the child palled
with the waters, and by the touch.

In whatever manner the breech presents, the deliv­
ery should be submitted to nature, till the child be ad­
vanced as far as the thorax, when the feet are to be
brought down and laid hold of, the child, if necessary
pushed up, the mechanical turns effected; and the de­
livery otherwise conducted as in a footing case.

There is much less hazard in general, agreeable to an
old observation of Mauriceau, in allowing the child to
advance double, than in precipitating the extraction
by pushing up to bring down the feet before the parts
have been sufficiently dilated; a practice dif­
cult and troublesome to the operator; painful, and
sometimes dangerous, to the mother; and by which
the child is exposed to the risk of strangulation, from
the retention of the head after the delivery of the
body. If the child be small, though doubled, it will
easily pass in that direction; if large though the la­
bour be painful, the natural throes are less violent and
less dangerous than the preposterous help of the ac­
coucheur: If the child thus advances naturally, it
will be less exposed to suffer; if it does not advance,
the parts of the mother will be prepared for the ac­
coucheur to pass his hand into the pelvis, to raise up
the breech, to bring down one or both feet, and de­
deliver as above.

Weakness in the mother, flooding and convulsions,
done in the gentleman manner; the parts must be well lubricated with butter or pomatum; the line of the pelvis must be attended to; the efforts of the operator must be slow and gradual; and thus the utmost rigidity in the soft parts will, in time, be overcome.

7. The hand must be introduced only during the remission of pain; when pain comes, the accoucheur must always rest; otherwise he may push his hand, or the forint, through the body of the uterus.

8. In pushing up, to come at the feet, this must never be done with the points of the fingers, nor with the hand clenched, but with the palm of the hand or the broad expanded fingers, and always during the remission of pain, and the latter should also be observed in bringing down the legs; but, in making the extraction of the body, the efforts of the operator should always co-operate with those of nature.

9. The hand should, if possible, be introduced along the anterior parts of the child; and both feet, if easily come at, should be laid hold of.

10. In turning, the accoucheur should never consider the child as dead, nor allow himself to be deceived by symptoms doubtful and fallacious; the child is sometimes born alive when he would least of all expect it; therefore, in pushing up, bringing down the legs, or extracting the body, it should be handled with the greatest delicacy.

11. When the hand is within the pelvis, it should not always be moved in the line of the umbilicus but rather towards one side of the spine, by which more room is gained, and the prominent angle of the sacrum avoided.

12. The hand should be passed as far as the middle of the child's body, before attempting to search for the feet or before attempting to break the membranes, should these remain entire, till the aperture of the uterus will admit of the hand.

13. If the hand cannot pass the presenting part of the child to come at the feet, instead of violently pushing back, the part should be as it were lifted up in the pelvis, and moved towards a side; by which means difficulties may be surmounted, and great danger often prevented.

By attending carefully to the above rules, laceration of the uterus, floodings, convulsions, inflammations, and their consequences, may be prevented; accidents that frequently happen in the hands of ignorant midwives.

Cæse 1. — The arm presenting. The right is to be distinguished from the left by laying hold of the child's hand, in the same manner as in shaking hands; and thus the general position of the child may be judged of.

When the accoucheur is called in early, the reduction is generally practicable; but if the arm protrudes through the vagina, and the shoulder be locked in the pelvis, it is needless, by fruitless efforts, for the accoucheur to fatigue himself, and dilate his patient to attain a point by which he will gain no very material advantage; as the hand can be passed into the uterus by the side of the child's arm, which will, of course, return into the uterus when the feet are brought down into the vagina.

In order to make the delivery, the hand of the accoucheur, well lubricated, must be conducted into the uterus by the side of the child's arm, along the chiorion, at the opposite side of the pelvis where the head lies; if any difficulty occurs in coming at the feet, this hand must be withdrawn, and the other introduced in its stead; and if still the hand cannot easily pass beyond the child's head or shoulder, the presenting part must be raised up, or gently pushed to a side, that one or both feet may be laid hold of, which must be brought as low as possible, pushing up the head and shoulders, and pulling down the feet alternately till they advance into the vagina, or so low that a noose or fillet can be applied; and thus by pulling with the one hand by means of the noose, and pushing with the other, the feet can be brought down and the delivery finished, however difficult.

The method of forming the noose is by passing the two ends of a tape or garter through the middle when doubled; or, should the garter be thick, by making an eye on one extremity, and pulling the other end through it; this mounted on the points of the fingers and thumb of the accoucheur's hand, must be conveyed into the uterus, passed over one or both feet and ankles, and secured by pulling at the other extremity.

Cæse 2. — The side. This is discovered by feeling the ribs.

Cæse 3. — The back. This is discovered by feeling the spine.

These cases occur rarely, as the uterus must with difficulty admit of such positions. When any of these parts do present, the child seldom passes any part of the brim of the pelvis, and is, in general, more easily turned than in several postures in which it may offer. The belly, from the difficulty with which the legs can be bended backwards, except the child be fetus, putrid, or before the time, will very seldom directly present; if so, it will be early and readily discovered by the prolapsus of the funis, and there will be no great difficulty to come at the feet, and deliver.

The rule in all these cases is, to pass the hand into the womb, in the gentlest manner possible, and to search for the feet and bring them down.

C L A S S III.

When the child lies longitudinally, in the uterus, with the arm or shoulder presenting, and the head more or less over the pubes, or laterally in the pelvis, the feet towards the fundus uteri, the waters evacuated, and uterus contracted round the child's body; these are the most difficult and laborious of all the cases of preternatural labours. Here the protruding arm ought, if possible, to be reduced, and the head brought into the pelvis; for unless the child be very small, it is impossible for the head and arm to pass along together.

In order to effect the reduction of the arm, different instruments have been invented; but the hand of the accoucheur is preferable to every thing of this kind, whether of ancient or modern invention. This, conducted by the arm that protrudes, must be intimated through the vagina into the uterus, as far as the shoulder of the child, which if the accoucheur can raise up, he will generally succeed in reducing the arm.
M I D W I F E R Y.

Preternatural Labour.

Should this method fail, he must attempt to push up the fore-arm at the elbow; but, in bending it, must be very cautious, to avoid overstraining or dislocating the joint. In whatever manner the reduction is accomplished, if any method proves successful, the arm must be retained, till the head, by the force of natural pain, enters the pelvis, and prevents its return; otherwise the arm will descend as often as it is reduced.

But if the attempts for reduction prove impracticable, the woman must be placed on her knees and elbows, and the accoucheur, with great deliberation must endeavour gently to slide up his hand between the uterus and child as far in the uterus as possible, to lift up the head and shoulders, and search for and bring down one or both feet, in the best manner the various circumstances of the case will admit of. As soon as they can be laid hold of, they must be gradually brought down into the vagina, so low that the noose can be applied over them, which must be fixed and pulled with the one hand, while the head and upper parts of the body are raised and gently pushed up with the other.

Should the arm have been long protruded without the os externum, much swelled, and cold; the waters drained off; the uterus strongly contracted; and the position of the child such as to render it impracticable, either to reduce the protruded limb or to search for and bring down the feet; the head if easily come at, must be opened and extracted with the blunt hook or crotchet; or a crochet must be fixed amongst the ribs, and the breech or feet thus pulled down.

Should the pelvis be very narrow, and unsurmountable difficulties occur, the arm must be twirled off at the elbow, though this expedient is rarely necessary; and the delivery must in general be accomplished as the prudence and judgment of the operator can best direct; always remembering, when one life must fall a sacrifice, that the tree must be preferred at the expense of the fruit.

In this, as in other cases, the swelling and coldness of the arm, and even want of pulsation in the artery, are not infallible signs of the child's death; and should this ever be so, it makes little difference in the mode of delivery, unless that it will lead us to pay all our attention to the mother: For a living child gives no more pain: trouble, and danger, and the delivery or not according as the effusion continues or abates.

When both arms present, the delivery must be conducted in the same manner as when one only presents. The former case is less difficult than the latter, as the head seldom advances far when both arms fall into the pessage, so that they can either be reduced or there is easy access to come at the feet to bring them down and deliver.

CLASS IV.

When the membranes remain entire, till the soft parts are so much dilated that the hand will readily find admittance; or when the hand can be passed with ease into the cavity of the uterus, immediately after the rupture of the membranes, so that part of the water may be retained; the delivery may be accomplished, in the most troublesome preternatural cases, with the greatest facility and expedition. But when the waters have been long evacuated, and the uterus, closely contracted round the body of the child, the case will prove laborious to the operator, painful and dangerous to the mother and child.

When there is reason to suspect that the child lies across, which can often be ascertained, either by feeling the presenting part through the membranes, or by some of the signs of preternatural labours already mentioned; the woman should be managed in such a manner, that the membranes may be preferred entire as long as possible: for this purpose she should keep quiet in bed, and her posture should be such as is least favourable for straining, or exerting force during the pain: she should be touched as seldom as possible, till the os internum be sufficiently dilated. The accoucheur should then introduce his hand in a conical form, well lubricated, into the vagina, and through the aperture of the internal orifice, intimating it between the uterus and the membranes, till it advances almost as high as the fundus uteri, when he must break the membranes, by pinching some part of them between a finger and thumb, or by forcibly pulling a finger through them; he must then search for, and endeavour to lay hold of, one or both feet, and deliver.

Should the membranes be ruptured in the attempt he must be ready to run up his hand as quickly as can be done with safety, when, part of the waters by his arm being retained, the operation of turning will be facilitated. Should the placenta adhere on that side of the uterus where the hand is passed, it must again be withdrawn, and the other hand be introduced in the opposite side.

Floodings. It has been already observed, that a flooding seldom proves fatal to the mother before the seventh month of pregnancy; after which period, from its duration or excess, the life of both the mother and child may suffer. Should therefore a flooding attack a woman in the two last months of pregnancy, from whatever cause it may arise, and whether attended with labour-pains or not; if the hemorrhagy be so considerable that she is ready to sink under it, and that cold applications and other means of checking the evacuation shall fail, the woman must be placed in a proper posture, her friends prudently apprised of her danger, and the delivery must be immediately performed, by stretching the vagina and os uteri, till the hand of the operator can easily gain admittance to break the membranes, catch hold of the feet, and extract the child.

If it can possibly be prevented, the membranes in flooding cases should never be broken till the aperture of the uterine orifice will freely admit the hand to pass, that after the evacuation of the waters, the accoucheur may have it in his power either to make the delivery or not according as the effusion continues or abates.

Soon after attempting to stretch the parts, should the labour-pains come on, the waters begin to collect, and the uterine hemorrhagy diminish the accoucheur must then withdraw his hand, and manage the delivery according to circumstances. And if, for instance, the child presents naturally, the delivery must be trusted to nature; otherwise, if the flooding continues, or the child presents across, the accoucheur must persist in his work, going on slowly, and with the utmost
Part II.

M I D W I F E R Y.

...most delicacy, till he be able to reach the feet, to bring them down, and deliver; always remembering, during this process, that the strength of the woman, by proper nourishment, be supported.

But should the placenta adhere to the cervix, or upon the os uteri, the greatest danger is to be dreaded; for thus the flooding will commence from the moment the os uteri begins to stretch, and will increase so rapidly, that the woman, if not speedily delivered, must inevitably sink under it. The whole body of the placenta, in such cases, is sometimes separated when the labour has made but little progress; so that the woman will often perish whether delivery be attempted or not.

As this, however, is the only expedient by which her life, and that of the child, can be saved; in every case where the placenta presents, which the accoucheur will readily discover by the touch of the soft papery substance of that body, he must immediately place the woman in a proper posture, inflame his hand gently by the side of the protruding placenta, break the membranes, search for the feet of the child, and bring them down, so that the delivery may be finished with all possible expedition; for, in this unhappy case, a few minutes delay may prove fatal.

The after-birth ought never to be extracted before the child, if it can possibly be avoided.

After delivery, time should be given for the uterus to contract, that nature may thus throw off the placenta, which never ought to be hurried away, unless the continuance or a recurrence of the hemorrhagy render it necessary.

Prolapkius of the funis. Difficulties arising from the funis falling down into the vagina, and presenting along with some part of the child, may, in this class of the division of preternatural labours, be included.

A prelurture on the chord, in such a degree as to interrupt the circulation, must infallibly depopry the life of the child: hence a coldness and want of pulsation in the chord, or between two and three minutes after delivery, is a certain and infallible criterion; neither is the absence of pains a sure indication of the contrary; as many cases have occurred, where several days have intervened between the birth of a first and second child. The chief symptoms to be depended on are, 1st, The child being of a small size, and the quantity of liquor amni, so considerable as not to account for the bulk of the woman in time of pregnancy, 2dly, The bleeding of the funis umbilicalis next the mother. 3dly, The remora of the placenta. 4thly, The uterine tumor not sensibly diminished, which, very soon after delivery, in ordinary births, will be found gradually shifting lower and lower, and will feel at last as if a hard circumscribed tumor like a ball between the umbilicus and pubes. Hence the utility of the general practice of applying the hand externally on the abdomen, in every case after delivery; by which an accurate knowledge will be formed of the nature and manner of the uterine contraction. When, from any of these circumstances, there is reason to suspect another child, the most certain and infallible manner of discovering it is, the passing of a finger, or the introduction of the hand into the uterus, where another set of membranes will be perceived, and probably some part of the child presenting through them.

The position of twins or triplets is commonly that which is most commodious, and which will occupy the least room in utero: their situation is often diagonal; tho' they may present in every possible posture. Thus, therefore, the general rules recommended for the delivery of one child, are equally applicable in the case of twins, triplets, &c.

It has been the general practice with many, after the birth of one child, to pass the hand immediately into the uterus, to break the membranes, catch hold of the feet of the child, and thus deliver. But this is certainly bad practice, whatever authors have said to the contrary. If the woman is healthy, and the child presents favourably, that is, with the head, breech, or feet, natural pains ought to be waited for, when the child will be expelled by the force of these only; failing which, manual assistance, as in other cases, must be had recourse to.

It very rarely happens, when the first birth is preternatural, that the second membranes are ruptured in making the extraction. Should this prove the case, the limbs...
MIDWIFERY.

Plurality of Children.

limbs of the children may be confounded, so that a
leg and an arm, or three legs, or arms of different
children, may present; which, however, will make
little difference in the mode of delivery; the accou-
cheur will endeavour to lay hold of the foot or feet
most readily within his reach, and will be cautious, in
bringing them down, to make sure they belong to the
same body.

If the child presents crof; if flooding, convulsions,
or other dangerous symptoms, shall take place; if the
woman has suffered much in the first labour; and if,
after several hours, a recurrence of labour-pains does
not enfe; the hand must then be introduced into the
uterus, the membranes must be broken, and the child
must be extruded by the feet; or, if the head remains
locked in the pelvis, and, from want of strength in the
woman, cannot be expelled, the treatment is the same
as in other laborious births.

In twin-cafes it may be recommended as a general
rule to avoid precipitating the delivery of the second
child till the woman shall have refted a proper time,
and till, by the contraction of the fundus uteri, the
second set of membranes occupy the place of the first,
and be protruded as far as the os externum; when, and
not before, the delivery may safely be assisted, though
circumstances require the fuch affiflance neceflary;
whereas, by breaking the membranes and evacuating
the waters when the child lies high in the uterus, a
flooding may be brought on, or an ipamodic conftric-
tion of the uterus round the body of the child may be
occasioned, which may render the delivery both dif-
cult and dangerous.

The placenta of twins, triplets, &c. generally ad-
here, though sometimes they are diffent, and may be
thrown off at different times after the birth of the dif-
cent children; fo that the practitioner fhould be on
his guard, and never fhould leave his patient till he
makes fure there be no more children. When a fecod
child is disovered, no attempts ought to be made to
extract the placenta till after the birth of the remain-
ing child or children; as the woman would be fubjeft
to flooding, which might prove of fatal confequenee
before the uterus could be emptied of its contents.

In cafe of plurality of children, a fecod ligature
fhould be applied on the funis, on that end next the
mother, immediately after the birth of every child;
and a gentle comprefion fhould be made on the abdo-
men of the woman after the firt delivery, which muff
be gradually tightened after every fucceeding one, to
prevent the confequences of a fudden removal of uter-
ine preffure, which is to be dreaded where the diften-
ion has been confeiderable.

The placenta, in fuch cafes, must be managed in
much the fame manner as ufual. In twins, &c. it gen-
erally separates with great facility, provided time has
been given for the uterus to confract. Both chords
fhould be gently pulled; and when it advances towards
the uterine orifice, where, being large and bulky, it
commonly meets with conliderable refiftance, it re-
quires the introduction of a finger or two into the va-
gina for bringing down the edges, after which the
body readily follows.

CHAP. V. Monoburs.

These are of various fizes and forms, and, unless
very fmall, the poffure favourable, and the woman
well made, will prove the caufe of a difficult and
troublefome delivery. Sometimes a child is monftrous
from a preternatural conformation of parts, fuch as a
monftrous head, thorax, abdomen, &c. At other times,
there is a double fet of parts, as two heads, two bod-
ies with one head, four arms, legs, &c. But fuch ap-
pearances very feldom occur in practice; and, when they
do, the delivery must be regulated entirely according
to the circumstances of the cafe. A large head, tho-
rax, or belly, muft be opened. If two bodies united
together are too bulky to paft entire, they muft be
eparated; the fame of supernumerary limbs. If the
poffure be unfavourable, it muft be reduced when prac-
ticable; or otherwile the extraction muft be made
with the crotchet, in the belt manner the confequences
of the cafe will admit of; always in cafes of danger
or difficulty, giving the preference to the safety of the
mother, without regarding that of the child.

CHAP. VI. Crefarean Operation.

When the delivery could not be accomplished by
other means, or when a woman died fuddently with a
living child in her belly, an operation to prefervc the
life of mother and child in the former cafe, and to fave
the child in the latter, has been recommended, and fa-
cesfully performed, by different authors, and in dif-
ferent ages.

This operation is of ancient date; it is the ficla
Crefarea or partus Crefareus of the Latins, and the hy-
ferotomia of the Greeks. Whether it was ever suc-
cesfully performed on the living fubjeft amongst the
ancients seems uncertain; but that it has been fucce-
fsfully practiced by the moderns on various occasions,
and in feveral different countries of Europe, there are
fo many authentic histories on record, that the fect will
fcarcely admit of doubt: but as this, like many other
falterful institutions, has been much abused, and in
many cafes improperly and injudiciously employed,
(for fome of thofe women who survived the operation,
were afterwards fafely delivered of living children),
the circumstances which render this operation nece-
fary demand a very particular inquiry, viz.

1. A narrownefs, or bad confornnation of the bones
of the pelvis.

2. Inperforated vagina, or conftractions in the va-
gina, cicatrices, tumors, or callotities in the os uteri,
&c.

3. The efcape of the child through the uterus when
torn.

4. Ventral conceptions.

5. Hernia of the uterus.

6. The position or bulk of the child.

It will be neceflary carefully to examine these dif-
fent caufes, in order to fhew that they are by no
means, in every cafe, sufficiently powerful motives for
having recourse to it.

1. Bad confornnation of the bones of the pelvis.

When the hand of the operator cannot be intro-
duced within the pelvis; or, in other words, when its largel
 diameter does not exceed one inch, or one inch and a
half, this confornnation is perhaps the only one which
renders the Crefarean operation abfolutely neceflary;
happily, however, fuch a ftructure very feldom occurs
in practice; and when it does the accoucheur will
readily

Part II.

Crefarean Operation.
Part II.

MIDWIFERY.

readily discover it, by attending to the following circumstances, and to the common marks of a narrow pelvis. Wherever the capacity of the pelvis is so strait as not to admit any part of the child's head to enter, nor two fingers of the accoucheur's hand to conduct proper instruments to bear, tear down, and extract the child piece-meal; in this case, recourse must be had to the Caesarean section; an expedient, though dreadful and hazardous, that will give the woman and child the only chance of life; and which, if timely and prudently conducted, notwithstanding of the many instances wherein it has failed, may be performed with some probability of success.

It is true, the success of the operation in the city of Edinburgh, where it has been done five times, has proved discouraging, as none of the women had the good fortune to survive it many days. This, however, is not the fault of the operation, but is to be imputed to the low, weak state of the patients at the time, who had previously been several days in labour, and their strength greatly exhausted, before the operator was called. Delivery by every other means was utterly impracticable; the operation, though the event was doubtful, alone gave a chance of life; and three of the children by this means were extracted alive.

Mr Hamilton surgeon and professor of midwifery in Edinburgh, having been an eye witness of the operation the last time it was performed here, gives the following account of the case which fell under his observation.

Elisabeth Clerk, aged 30, had been married for several years, became pregnant, and miscarried in the third month; the expulsion of the abortion occasioned severe aches, as actually to lacerate the perineum.

Some time after her recovery, she was irregular, afterwards had one flow, of the menopause, again conceived and the child as she imagined, arrived at full time. She was attacked on Monday the 3d of January 1774, about midnight, with labour-pains, which went on flowly, gradually increasing till Saturday the 11th, when she was brought from the country to the Royal Infirmary here. Upon examination, the pelvis seemed considerably distorted; but the body was otherwise well shaped, though of small size; the os externum vaginae was entirely shut up, nor could any vestige of vagina be observed, nor any appearance of labia pudendorum; instead of this, there was a small aperture at the superior part of the vulva, immediately under the mons veneris probably about the middle anterior part of the symphysis pubis. This aperture (which had a small process on the superior part, somewhat resembling the clitoris) was no larger than just to allow the introduction of a finger; the meatus urinarius lay concealed within it; a consultation of surgeons was called, and the Caesarean section was determined on. Having had no stool, nor voided any urine for two days, an injection was attempted to be thrown up; but it did not pass, nor was it possible to push the female catheter into the bladder. Mr William Chalmers was the operator in this case. At fix in the evening, he made an incision on the left side of the abdomen in the ordinary way, through the integuments, till the peritoneum was exposed; two small arteries pruned, which were soon stopped by a slight compression; the wound was then continued through the peritoneum into the cavity of the abdomen, when the bladder appeared slightly inflamed, much distended, reaching with its fundus near as far as the ferobiculus cordis; another unsuccessful attempt was made to pass the female catheter; at length a male catheter was procured, which was, after some difficulty, introduced into the bladder, and the urine evacuated to the quantity of above four pounds, high-smeled and fetid. This occasioned a necessary interruption for a few minutes, between making the opening, into the abdomen and uterus; the bladder collapsing, the uterus, which before lay concealed, now came in view, through which an inclination was made, and a stout male child was extracted alive; and immediately afterwards the secundines. The uterus contracted rapidly. After cleaning the wound, the lips were brought together by the quilt-stitch, and dressed superficially. The patient supported the operation with surprizing courage and resolution; nor was there more than five or six ounces of blood lost on the occasion.

Being laid in bed, she complained of sickness, and had a slight fit of vomiting; but, by means of an anodyne, these symptoms soon abated: she was affected with universal coldness over her body, which also abated on the application of warm irons to the feet; she then became easy, and slept for four or five hours. Next morning, the 16th, about two o'clock, the complained of considerable pain in the opposite side, for which she was bleded; and an injection was given, but without effect; for the pain increased, stretching from the right side to the ferobiculus cordis; nor did fomentations seem to relieve her; her pulse became frequent, she was hot, and complained of drought. At 7 A.M. the injection was repeated, but with no better success; and eight ounces more of blood were taken from the arm; a third injection still failed to evacuate any feaces; the drought increased; and the pulse rose to 128 strokes in a minute. At 11 A.M. the pulse became fuller; and the respiration much oppressed. No stool nor urine passed since the operation. At 12 she was bleded again, when the fizes nee appeared less than formerly. She now took a solution of salt Glules, manna and cr. tart. at short intervals; she vomited a little after the last dose, had a soft stool, and voided a small quantity of urine. At 3 P.M. her pulse was 136, and she had another stool, when this feces were evacuated; she was then ordered two spoonfuls of a cordial anodyne mixture every second hour; the vomiting now abated; the pulse became smaller and more frequent; the patient urinated freely; but the pain and oppressed breathing increased. At leven P.M. her pulse rose to 142, and became weak and fluttering; the called for bread, and swallowed a little with some difficulty; her breath was intense; the dyspnoea still increased. She was now much oppressed, and began to tos; the pulse sunk and became imperceptible; she complained of faintness, but on belching wind her breathing was relieved, and the pulse returned, growing fuller and stronger; the pains of the side still increasing, 12 ounces of blood, very fizzly, were taken away; and two gylfers of warm water with oil were injected without effect; at 8 P.M. the pulse became less frequent and smaller; she complained much of the pain towards the ferobiculus cordis; her breathing was much oppressed; her belly was tense, and swelled as
big as before the operation; her pulse was now small and feeble; she looked ghastly, and expired a little after eight, 26 hours after the operation.

It is to be regretted that the relations would not permit the body to be opened.

Since the first certain accounts of the operation successfully practised by a low-gelder, on his own wife, in the beginning of the 16th century, there are on record above 70 well-attested histories, wherein it has been successfully performed: for, of all the cases related by authors it has not proved fatal to the patient above once in ten or nine instances; which evidently shows the propriety of the practice, and probability of success, both in regard to the mother's own recovery, and for certainly preserving the life of the child. But it should never be attempted, excepting in those cases only where it is absolutely impossible to deliver the woman by any other means whatever; for there are pelvis to be met with, where, without having recourse to this operation, both mother and child must inevitably perish: such have occurred to many practitioners, who, from want of resolution or from ill-founded prejudice, have allowed their patients to perish from neglect, to a well-known maxim in phthisy, That in a desperate case, it is better to employ a doubtful and even desperate remedy than to abandon the patient to certain and utter ruin. Such, for instance, is a case related by Saviard, of a girl aged 27, whose stature was only three feet, who came to lie-in at Paris, in the Hotel Dieux; every method but the operation was in vain attempted; both mother and child died. Mauriceau also relates the history of a woman who was left to die, where, the aperture of the pelvis was so small as not to admit the hand of the accoucheur. And, not to multiply instances, Dr. De la Roche gives a case where the woman had been seven days in labour; the child was faved by the operation, but the woman died the fifth day after, probably from its being too long delayed: the distance, in this subject, from the lower vertebra lumborum and os pubis, was no more than two fingers breadth. The operation, when the necessity is evident, ought therefore to be early performed, that the patient, who from her make and constitution is generally delicate and puny, may have every chance of recovery in her favour without being exhausted by the fruitless efforts of a tedious and painful labour, as too often has been the case. On these occasions, the prudent accoucheur should call in the advice of his elder brethren of the profession, and, by his cautious and prudent conduct, avoid every caufe of censure or reproach.

Exfoliations from the bones of the pelvis is a species of deformity very rarely met with in practice, and which seldom or never takes place to such a degree as to render this operation necessary.

II. Contrifition, callotis, tumors, &c. about the vagina or os tinece. The vagina and os tinece are often affected with contrifitions from cicatrices, with callotis and tumors; but it is seldom, if ever necessary to perform the Caeréan section on this account. Tumors in the vagina may generally be removed with safety, even after the commencement of labour, and delivery happily succeed; or it may be sometimes practicable for the accoucheur to pass his hand by the side of the tumor, to turn the child, and deliver. With regard to contrifitions in the vagina, and callotis in the os uteri, there are many instances where, at the commencement of labour, it was impossible to introduce a finger into the vagina; yet the parts have dilated as labour increased, and the delivery terminated happily. At other times, the dilatation has begun during pregnancy, and been completed before delivery. There is a history, for instance, in the Mem. de l'Acad. des Scienc. 1712, of a woman whose vagina was no larger than to admit a common writing quill; she had been married at 16, and conceived 11 years after: towards the fifth month of her pregnancy, the vagina began to dilate, and continued to do so till full time, when she was safely delivered. Guilemeau dilated, and La Mott extripated, callotis in the vagina and os tinece, when the children were successfully expelled by the force of natural labour.

Harvey relates a case where the whole vagina was grown together with cicatrices; nature, after a tedious labour, made the dilatation, and a large child was born.

La Mott mentions his having delivered three women, who had not the smallest vestige of an orifice through the vagina to the uterus. Dr. Simpson cut through a callotis of an os uteri which was half an inch thick, &c.

Upon the whole, tumors in the vagina, or about the orificium uteri, may be safely extripated without danger of hemorrhagy or other fatal symptoms, and the delivery will happily succeed; and if the vagina be impervious, the os externum flut up, or the labia grown together, the parts should be opened with the scalpel, rather than risk an operation, at best in the dubious and precarious; an operation never allowable in such cases, and therefore universally improper in disease or malformation of the soft parts of generation. If the os externum be entirely closed, if the cavity of the vagina be entirely filled up, or the passage considerably obstructed by tumors, callotis, or contrifition from cicatrice, and there is no reason to suspect a fault in the pelvis, of which a judgment may be formed by the common marks of deformity, under size, or a rickety habit; it is by much the best practice to open a passage through the vagina, and deliver the woman in the ordinary way. If there be no defect in the pelvis, the head of the child, or any other bulky part that presents, will advance in this direction, till it meets with a refitance in the soft parts: thus the teguments will at length be protruded before the child's head, in form of a tumor, when a simple incision downwards to the perineum, in the direction of the anus, will remove the cause of difficulty, by relieving the head; the child will afterwards safely pass, and the wound will heal without any bad consequence.

The state of the pelvis, and progress of the labour in these cases, may often be learned by the touch of the finger in ano.

III. Lacerated uterus is another cause for which this operation has been recommended. The uterus may be ruptured from violence in making the delivery; or such an accident may happen naturally, either from the crofs presentation of the child in time of pregnancy, or in time of labour, when the pelvis is narrow; these cases are generally fatal; and it is very seldom,
Part II.

MIDWIFERY.

if ever, that the life of the mother can be saved by the Caesarean section, after the fetus escapes through the torn uterus into the cavity of the abdomen: because it often happens, that inflammation and phæaeus has affected the parts of the uterus that sufficed the previous to the rupture; or, if otherwise, convulsions or other fatal symptoms soon ensue, from the violent symptoms, they ought universally to be left to nature.

When the child cannot be extricated by the natural passages, tremors, fquintus, cold sweats, syncope, and the death of the mother, for the most part, so quickly follow, that it will at least seem doubtful, to a prudent humane practitioner, how far it would be advisable, after so dreadful an accident, the woman apparently in the agonies of death, rashly to perform another dangerous operation, even with a view to preserve the child, till he had waited till the mother recruits or expires.

If part of the child be contained within the uterus, and the feet can be reached, the practice is to deliver by the orifice of the womb; but when the whole fetus has escaped entirely without the uterus, the Caesarean operation is recommended as the only means of preserving both mother and child.

If the operation on this occasion be ever allowable, it may be asked,

1. At what time must it be performed?
2. Would it not have the appearance of inhumanity to have recourse to this expedient immediately after the uterus bursts, when the woman is seemingly ready to expire, although it be the only time when there is a chance of saving the child?
3. In most cases where this accident happens, should the Caesarean section be made, is it not highly improbable that the mother will survive so terrible a laceration?
4. For if it be done with a view to save the mother, in what manner is the extravasated blood, &c. to be evacuated from the cavity of the abdomen?
5. What seems to make cases of this kind unfavourable, when the accident happens in time of labour, is,

2do. That here the parts before rupture in most cases are in a gangrenous state.

3do. As the rupture is commonly towards the cervix, there is generally a much greater hemorrhage, by reason of the flow of constitution of the uterus at this place.

3do. The uncertainty whether, or how long, the patient will survive it, seems also a considerable obstacle to the operation under such disagreeable circumstances, *Ne occidere quæsitis quam fors interna*.

IV. Ventral conceptions is a fourth indication for this operation. These are either in the ovaria, tubes, or cavity of the abdomen, and seldom arrive at great size; or are retained, very often a long time, without occasioning much complaint. The ifitude of these conceptions has also been no less various than extraordinary; for after being retained for a great many years in an inclosed state, at length obstructions or ulcerations have formed, and they have been discharged throughout all the different parts of the abdomen.

Most women feel pain and violent motion at the time of ordinary delivery in these cases of ventral conception; if therefore the operation be ever necessary, now is the proper time to perform it. But in general as the separation of extra-uterie foetus from their involuntary may occasion immediate death in many cafes, from the vast hemorrhagy that might ensue from the non-contractile power of the parts to which they adhere; unless they point outwardly, or excite the most violent symptoms, they ought universally to be left to nature.

V. Hernia of the uterus are seldom or never sufficient to induce us to perform the Caesarean section. As the uterus is very rarely influenced in such a manner that the orifice cannot be reached, and the delivery successfully made. Many instances are to be found among surgical authors, where deliveries, under such circumstances, have been happily performed, without having recourse to so hazardous an expedient. Thus Mauritius mentions a case, where the uterus in a ventral hernia, was pushed along with the intestines above the belly, and contained in a tumor of a prodigious size; the woman, however, was delivered at the end of her time in the ordinary way. La Mott relates the history of a woman in a preternatural labour, whose uterus and child hung down pendulous to the middle of her thigh, but whom notwithstanding, he safely delivered; and Ruyfch gives a case where the midwife reduced the hernia before delivery; although it was prolapsed as far as the knees, the delivery was safely performed, and the woman had a good recovery.

Lastly, The position or bulk of the child.

Since the practice of turning the child and delivering by the feet, and the late improvement of obstetrical instruments, this operation is never to be performed on account of position, monstroty, or any other obstacle on the part of the child.

Upon the whole, when the pelvis is faulty to such a degree, that no instrument can be conducted to tear and extract the child, this perhaps is the only case wherein this operation should be performed on the living subject. Incisions through the teguments of the abdomen to extract extra uterine foetuses, or bones of foetuses, do not properly fall under the name of Caesarean section, as that name implies incision of the uterus also.

When a woman advanced in pregnancy dies suddenly, either by accident or by natural disease, the Caesarean section is recommended as an expedient to preserve the life of the child. This is a very proper measure, provided the death of the mother be ascertained; but sometimes it is a very nice and difficult point to distinguish between a deliquium and death; and therefore the accoucheur on such an occasion must act with the utmost circumspection. If the operation be delayed but a very short while after the mother expires, it will probably be in vain to make the attempt; for, whatever fabulous stories may be related to the contrary, there are few authentic cases of the facts of any animal surviving the mother, perhaps an hour; and therefore every thing should be in readiness to extract the child with all possible expedition, after the event of the mother’s death. But, in such cases, the agonies of death often perform the part of labour, and the child is sometimes thrown off *in articulo mortis*; or the os uteri is so much dilated, that there is only need to pass the hand, turn the child, and deliver. Thus one should be very cautious in having recourse to this opera.
MIDWIFERY.

Caesarean Operation.

Operation, even in the above circumstances; which should never be done,

1. Till the death of the mother be ascertained beyond doubt;
2. Till the state of the os uteri be examined;
3. Till the consent of the relations be obtained.

And,

Lastly, it need not be undertaken, except where the mother dies suddenly, between the 7th and 9th month.

It is unnecessary where the disease has been lingering; in such cases the child commonly dies before the mother.

When it is doubtful whether the child be alive or not, it may be determined by applying the hand on the abdomen of the mother about the time of, and for a little while after, her death, when the life of the child will be discovered by its motions and struggling.

Thus having pointed out the different causes that determine this operation, it may be observed, that it is a frightful and hazardous one; and although performed successfully in a number of cases, yet, in many others it has failed, and the woman has died either immediately or soon after. It should never, therefore, be undertaken but on extraordinary and desperate occasions; and then it is not only advisable, but incumbent, on every practitioner to whom such cases occur.

To conclude, it may not be improper to give a few directions with regard to the method of performing the operation on the living subject.

Having emptied the bladder, and evacuated the contents of the intestines with repeated emollient dials, raised by bone, so that the wound in length may exceed a little, must be placed on a table or bed, with her left side gently raised with pillows or bolster, and properly secured by assistants. An incision must be made with a common convex scalpel, beginning rather below the navel at the middle space between it and the spine of the os ilium, carrying it obliquely forwards towards this bone, so that the wound in length may exceed six inches. This external wound is to be carried through the common tendons of the abdomen till the peritoneum is exposed, when the operator should reit a little, till the hemorrhagy be entirely abated. He must then, with great caution, make a small opening through this membrane, introduce his finger, and upon this a scalpel (which is preferable to scissors), and with great expedition make a complete dilatation; he must now wipe away the blood with a sponge, press the omentum or intestines gently to a side, if in the way, and endeavour to discover to what part of the uterus the placenta adheres, that it may be avoided in making the incision. This may easily be known by a thickness and solidity in the part, which distinguishes it from the rest of the uterus; it is still more easily discovered when the membranes are entire. The blood-vessels are less in number, and smaller in the middle and anterior part of the uterus, which therefore, if the placenta does not interfere, is the proper place for making the incision, which must be performed with the utmost attention, lest the child should be wounded: if the membranes are entire, more freedom may be used, and vice versa. The direction and length of the wound of the uterus must be the same with the external one. The child must now be quickly extracted, and the placenta carefully separated: these must be given to an assistant, who will divide the chord, and take care of the child, as the operator's attention must be wholly bestowed on the mother. The coagulated blood, &c. being removed by a sponge wrung out of warm water (left the uterus or intestines be protruded, which are very troublesome to reduce), the lips of the external wound must be quickly brought together, and retained by an assistant till secured by a few stitches; generally three will be sufficient: as many needles should be ready threaded with pretty large broad ligatures; the middle stitch ought to be made first; the needle should be introduced at a proper distance, i.e. about an inch and one-fourth from the side of the wound, carrying it first from without inwards, and then from within outwards, securing with a double flip a knot, to be ready to unite, lest violent tension or inflammation should ensue; under the knot a soft compress of lint, sharpee or, rolled plaster, should be applied, and the whole dressings must be secured by a proper compress and bandage. The patient must be afterwards treated in the same manner as after lithotomy, or any other capital operation.

Quæritur. To what cause is the unsuccessful event of this operation to be imputed? When the operation proves fatal, to what immediate cause are we to ascribe the death of the patient? Is it nervous, or uterine irritation, from cutting, that kills? Is it internal hemorrhagy, or the extravasation of fluids into the cavity of the abdomen? Or are not the fatal consequences rather to be imputed to the access of the air on the irritable viscéra? This can only therefore be prevented by exposing these parts for so short a space of time as possible. Dr Monro, the present anatomical professor at Edinburgh, in making experiments on young small animals, such as bitches, cats, frogs, &c. by opening the cavity of the abdomen, and tying the biliary ducts, remarks, that though a large opening into the abdomen be made by incision, if the wound be quickly closed and stitched, the animal will recover, and no bad consequences follow; but if exposed a few minutes to the air, dreadful pain soon comes on, which the creature expresses by the feverish agonies; convulsions at last ensue, and death within four or five hours after the operation. On opening the abdomen after death, the whole viscéra are found to be in an inflamed state, and universally adhering to one another. He has often repeated the experiment, and the same appearances as often take place.

May not the analogy here justly apply to the human subject? And, in performing the Caesarean operation, should we not be very careful that the viscéra be exposed as little as possible, and that the wound be covered with the utmost possible expedition?

CHAP. VII. Of the Section of the Symphysis.

M. Baudeloque, as has already been observed, condemns this operation; and, from what he has advanced, apparently with reason. As no theory, however, can be looked upon as thoroughly established until it
be confirmed by experience, this gentleman has collected together a number of the principal facts relating to this subject. He supposes, that unless it has been successful in saving both the life of the woman and child, the cutting of the symphyses of the pubes cannot by any means be said to have answered its purpose. It is not sufficient that the child has shown some signs of life at its birth, and that the mother has survived for some time. In this respect the Caesarean operation has the advantage of it, as it always saves the life of the child, and it is very rare for the woman to sink under it immediately. He is of opinion, that there is scarcely one of the cases of this operation, the relation of which may not be justly contested, or solid objections raised against it; either because the operators have been deceived with regard to the dimensions of the pelvis and of the child's head, or because they have greatly exaggerated the advantage gained by the separation of the bones. The first and most remarkable instance of success in this operation is of a woman named Souchot; but though it is not denied that the woman was delivered, and recovered after the operation, yet it has been said by those who take the contrary side, that there was no necessity for performing it. It is certain that this woman had been delivered four times before; in all of which cases the child was killed. M. Baudelocque does not enter into the merits of this question: he considers only what advantage could possibly be gained by it.

"Whatever degree of separation (says he) took place between the osa pubis after the section of the symphyses, it must have augmented the size of the passage; that is an incontestible fact: but how much did it enlarge in the direction in which it was originally too narrow? The solution of this problem would be easy, if we knew the dimensions of Souchot's pelvis as well as we know those of her child's head. According to the estimation made of it by the physicians who performed the operation, the diameter of the pelvis was only two inches and a half in the direction from the pubes to the sacrum superiorly, and that of the child's head was just three inches and a half. The excess of the latter was consequently one inch, as well as the amplitude to be procured to the former. A separation of two inches and a half between the osa pubis, the greatest which it was then thought could be obtained, not being able to give more than six lines to the diameter of the pelvis in the aforesaid direction, they thought to make the remaining surplus of the head pass into the separation between the bones; and, moreover they had the precaution to make the partial protuberances pass successively through the flirt, in order to get another line by that means; so that by this system, the section of the pubes produced a result of 13 lines at least, considering it relatively to delivery. Notwithstanding this ingenious calculation, and this great product, the passage was still found narrow enough to give some obstruction to the child's head, and to endanger its life.

"It seems evident that this plan was not formed till after the execution; and that they have only sought to explain what they must have done according to the opinion which they entertained that the diameter of the child's head was an inch larger than that of the pelvis, and not according to what they did and observed: because no one had yet determined the product of a separation of two inches and a half between the osa pubis, with respect to the different diameters of the pelvis, and particularly respecting that which goes from before backward; because they did not measure the separation as they affirm they did, neither in the case of Souchot nor in any other; because the accoucheurs of that woman were then agitated, not agitated, as they have publicly confessed; lastly, because this great product, and those false calculations which we admire in their history of it, were not then necessary. Though they have allowed but two inches and a half to the small diameter of the superior flirt, other accoucheurs equally skilful have allotted it six lines more; and they were not deceived if they considered it a little diagonally, as the smallest diameter of the child's head always presents; that is to say, from one of the sides of the projection formed by the base of the sacrum to the symphyses of the pubes.

Our author now goes on to show at great length, that the pelvis of the woman in question was less out of proportion than had been represented; that only two lines of enlargement were necessary and no more than two were obtained. In like manner, he says, that all the other women upon whom M. Sigault operated were equally well formed excepting one named Veffris. This woman died after palling five days in great agony. The osa pubis were separated about an inch and an half; and in consequence of this separation, the facro-iliac symphyses were plainly injured, as well as the neighbouring parts. On inspecting the body, there were found open, with the periosteum gliding over them, that is to say, from one of the sides of the projection formed by the base of the osa pubis, &c.

In this case, both the mother and her child perished; and M. Baudelocque looks upon it to be sufficient to shew the inefficacy of the operation; and he tells us, that out of five women whom Sigault delivered in this way, one died, and four of the children; but M. le Roy, a more successful operator, out of an equal number saved all the children. In a case related by this gentleman, the osa pubis are said to have separated two inches and a half; and by parting the thighs, an opening of near three inches was obtained; but in this case again, M. Baudelocque contends the measurements of Le Roy. Another woman named Du Bloy, on whom the operation was performed, began to walk on the tenth day after: and this seems to be almost the only case against which M. Baudelocque has not some objection. He mentions, however, an experiment performed on the body of a woman who had died on the 11th day after the Caesarean operation had been performed in the linea alba. The body was emaciated, which rendered the ease more favourable; and a dead child was placed in the belly, after taking out the uterus. The pelvis was only 20 lines in the small diameter, and four inches and a quarter in the transverse. The diameter of the child's head was but three inches five or six lines from one parietal protuberance to the other; the trunk was thin, and every part of the body had been pressed and kneaded, to restore as much as possible the supplencs which death had taken away. An attempt was then made to...
MIDWIFERY.

Section of the Sym.

pubes overflown with a
infected fles.

feet; and above, an extent of 18 or 20
lines under the inferior angle of the Cæsarean
operation. The offa pubis separated at first no more than
two lines; which opening was augmented as gradu-
ally as possible to 21 lines by separating the thighs,
and afterwards it was farther increased to two inches
and a half by pulling the hips. It was next at-
ttempted to bring away the head, which had
spontaneously placed itself in the most advantageous
situation: but, though several gentlemen of the
profession employed their strength successively at
the trunk, and on the lower jaw with two fingers
in the mouth, it did not advance a single line;
nor would it pass the
when it cleared the ftrait, the inferior angle of the
pubis only two inches and three lines; so that the
pubis was separated at 21 lines by
two inches and ten in the other.

The sylvanum was seen on the right
side of the os,

every rents, whenever the offa pubis were
ved and pressed towards the facrum; the left
sym.

physis was open five lines, and the right only three;
a gangrenous abscess was seen on the right side
behind and above the acetabulum, which extended to
the anterior and inferior part of the uterus; where
there was an effar of the same nature; an ulcele gangrenous, and in form of a chilli, was observed in
the posterior part of that viscus, from the upper part
of its neck to the infection of the ligament of the
evium, and it penetrated into its cavity. The diame-
ter of the pelvis was two inches and a half from the
pubes to the base of the facrum; five inches from one
side to the other, and four and a half from one ace-
tabulum to the sacro-ilial junction of the opposite
side. The section had been made on the left os pubis,
which was cut clean, and without the smallest notch."

From these, and a number of other examples
which our limits will not allow us to infer, our
author deduces the following conclusions.

"Though the section of the pubes has been thought
more simple, more easy, and certain, than the Cæs-
arean operation, at a time when experience had not
yet demonstrated the difficulties it might present,
and the dangers that might follow it, ought we to think
the fame of it at present? How many times already
has it been necessary to have recourse to the fav
separate the offa pubis? and how often has it not been
found possible to procure any distance between them
after the separation? How often has this operation
produced a free passage for the child, whose prefer-
vation ought necessarily to enter into the plan of the
operator, as well as that of the mother, and contrib-
uate a part of its success?

"This new operation will appear more simple and
lefs painful than the Cæsarean, if we only confider
the extent of the incision, and the nature and impor-
tance of the parts concerned in it: that is an indis-
putable fact. It is only the teguments and the fat
which is divided, at moft only two inches and an
half, and the symphys of the pubes; there are usu-
ally only small vessels cut, incapable of falling much
blood, and the inflammation does not touch the uterus;
the child comes into the world by the way that na-
ture intended, and which the section of the pubes
renders more or lefs accessible; there is no confide-
rable hemorrhage to be feared, nor thoese extrava-
tions of milky and purulent matter which almoft al-
ways mortally injure the interior viscera which they
fall upon; there are no abolute difficulties in the ex-
cution of this operation but what arise from the in-
timate consolidation of the bones; and it no way ex-
poses women to subsequent hernias which have been
so frequently seen after the Cæsarean operation: this
is the idea which its partifans have had of it, and
which the greater part of them fully entertain.

"But the section of the pubes seldom procures the
child an easy exit; for hitherto the greater part have
died in the passage, or have been victims, a few minutes
after their exit, to the efforts necessary to effect it.
When the separation of the offa pubis has been made, it
has not always been possible to remove them from each
other, on account of the consolidation of the ili with
the facrum; and this cafe, which does not seem to be
exceedingly rare, and which cannot be known till after
the operation, renders it frutilefles, and cannot dispen-
se us from the Cæsarean operation.
MID W I F E R Y.

Part II.

"If we reflect ever so little on the danger to which the child is exposed in a preternatural labour, where we are obliged to bring it by the feet, and on the small number that then escape death, when the mother's pelvis has not, pretty nearly, all its natural dimensions, we discover another source of accidents which accompanies the section of the pubes; and which we doubtless should diminish if we could commit the expulsion of the child to the contractions of the uterus, or take hold of the head with the forceps as some practitioners have already done: but except that in so small number of cases, the child has always been extruded by the feet, whether the head presented or not.

"Though this operation very seldom secures the child's life, even when the pelvis is not excessively deformed, it is not then always exempt from the fearful consequences to the mother. The death of both is certain when that deformity is extreme. The consequences of a spontaneous separation of the os pubis, and of the os illa and sacrum, in some natural or laboured labours, long since announced those which might be expected from this new operation; the example of Velpres, the fifth woman on whom M. le Roy performed it, the fourth by M. Cambon, that at Arras, at Duffeldorp, at Spire, at Lyons, at Gênes; that by M. Riolay, by M. Matthiis, &c. have proved that it was not without cause that those accidents were dreaded. A deviation in the external parts and the neck of the uterus; an inflammation and gangrene of that viscus; collections of purulent, fanious, and putrid matter, in the cellular tissue of the pelvis; a hernia of the bladder between the os pubis; echimoses along the psoas muscles; injury to the canal of the urethra; incontinence of urine, and gangrenes more or less profound, &c. form the group of accidents of which this new operation is susceptible.

"Granting that those of the Caesarean operation are as formidable for the mother, at least it presents a certain resource, exempt from every danger, for the child. Which of the two operations, therefore ought to be preferred?

"Even if we could without inconveniences to the woman obtain a separation of two inches and an half between the os pubis after the section of their symphyses, the Caesarean operation would still be the sole resource in cases of extreme deformaty of the pelvis; the section of the pubes cannot enter into comparison with it, except when the small diameter of the superior iliac shall have, at least, an extent of two inches and an half. Though I suspended my judgement, at the time I published my first edition, concerning the preference to be given to one of the two methods, in the latter case, till I could procure more positive information of the innocence or danger of so considerable a separation; though I required that men who had no interest in vaunting this new method to the detriment of the former; in one word, that its adversaries should have seen a separation of two inches and an half, without a rupture of the sacro-iliac symphyses, and without inconveniences to make me adopt this new operation; at present, better informed on all these points, I am not afraid to reject it, and to affirm, that no one has ever separated the os pubis two inches and a half without destroying the life of the woman. It has had no success but when it has been performed on pelvises at least two inches three quarters in the small diameter, and when the separation has been limited to much less than the point to which they fancied it was carried; in those caes, in fact, where it was absolutely useless; the pelvis being larger still, for I have found it to be more than three inches in some of the women. The section of the pubes cannot at present maintain any comparison with the Caesarean operation; at most, it might be subordinated for the forceps, in some particular cases only: for it cannot, without great inconveniences, give the pelvis an increase of more than two lines from the pubes to the sacrum superiorly; and that instrument may, without danger, reduce the diameter of the child's head as much. But what practitioner would prefer a new operation, which seems to be surrounded by rocks on every side, to one that has been crowned with a thousand successes? If we allow the former any advantages, they would never be more evident than in those species of locked head mentioned by Roederer, where we cannot (says he) introduce any instrument between the head and the pelvis, at whatever part we attempt it; in that case, it would merit a preference over opening the cranium, the use of the crotchetes, and the Caesarean section proposed by the same author; it would be preferable also, in cases where the inferior iliac is contracted transfervely, provided that a small separation were sufficient to give that diameter the necessary extent."

PART III. OF DISORDERS SUBSEQUENT TO DELIVERY.

Chap. I. Of the general Management of Women after delivery

The woman being delivered of the child and placenta, let a soft linen-cloth, warmed, be applied to the external parts; and if the complaint is not of a flattering nature, some nutmeg and sugar grated together in a spoon; the principal design of administering this powder, which among the good women is seldom neglected, is to supply the want of some cordial draught, when the patient is too weak to be raised, or supposed to be in danger of retchings from her stomach's being over-loaded. When she hath in some measure recovered her strength and spirits, let the cloths be removed from the parts, and others applied in their room; and, if there is a large discharge from the uterus, let the wet linen below her be also shifted, that she may not run the risk of catching cold.
MIDWIFERY.

When the patient is either weak or faintly, she ought not to be taken out of bed or even raised up to have her head and body shifted, until she is a little recovered; otherwise she will be in danger of repeated faintings, attended with convulsions, which sometimes end in death. To prevent these bad consequences, her skirt and petticoats ought to be loosened and pulled down over the legs, and replaced by another well warmed, with a broad head-band to be flit up in below, and brought up over her thighs and hips; a warm double cloth must be laid on the belly, which is to be surrounded by the head-band of the skirt pinned moderately tight over the cloth, in order to compress the vitern and the relaxed parietes of the abdomen, more or less as the woman can easily bear it; by which means the uterus is kept firm in the lower part of the abdomen, and prevented from rolling from side to side when the patient is turned; but the principal end of this compression is to hinder too great a quantity of blood from rushing into the relaxed vesels of the abdominal contents, especially when the uterus is emptied all of a sudden by a quick delivery. The presifure being thus suddenly removed, the head is all at once robbed of its proportion of blood, and the immediate revulsion precipitates the patient into dangerous lypothesis.

For this reason the belly ought to be firmly compressed by the hands of an assistant, until the bandage is applied; or, in lieu of it, a long-towel, sheet, or roller, to make a suitable compression; but for this purpose different methods are used in different countries, or according to the different circumstances of the patients. The head-cloths and skirt ought also to be changed, because with sweating in time of labour they are rendered wet and disagreeable. Several other applications are necessary, when the external or internal parts are rent or inflamed; misfortunes that are sometimes happen in laborious and preternatural cases. We shall conclude this chapter with giving some necessary directions with regard to air, diet, &c.

Although we cannot remove the patient immediately after delivery into another climate, we can qualify the air as to keep it in a moderate and salutary temper, by rendering it warm or cold, moist or dry, according to the circumstances of the occasion. With regard to diet, women, in time of labour, and even till the ninth day after delivery, ought to eat little solid food, and none at all during the first five or seven; let them drink plentifully of warm diluting fluids; such as barley-water, gruel, chicken-water, and teas; candles are also commonly used, composed of water-gruel boiled up with mace and cinnamon, to which, when brained, is added a third or fourth part of white wine, or else if the patient drinks plentifully, sweetened with sugar to their taste; this composition is termed white caudle; whereas, if ale is used instead of wine, it goes under the name of brown caudle. In some countries, eggs are added to both kinds; but in that case, the woman is not permitted to eat meat or broths till after the fifth or seventh day; in this country, however, as eggs are no part of the ingredients, the patient is indulged with weak broth, and sometimes allowed to eat a little boiled chicken. But all these different preparations are to be prescribed weaker or stronger, with regard to the spites, wine, or ale, according to the different constitutions and situations of different patients; for example, if she is low and weak, in consequence of an extraordinary discharge of any kind, either before or after delivery, or if the weather is cold, the candles and broths may be made the stronger, but if she is of a full habit of body and has the least tendency to a fever, or if the season is excessively hot, these drinks ought to be of a very weak confidence, or the patient restricted to gruel, tea, barley and chicken-water, and these varied according to the emergency of the case.

Her food must be light and easy of digestion, such as panada, biscuit, and fago; about the fifth or seventh day she may eat a little boiled chicken, or the lightest kind of young meat; but these last may be given sooner or later according to the circumstances of the case and the appetite of the patient. In the regimen as to the eating and drinking, we should rather err on the abdominal side than indulge the woman with meat and strong fermented liquors, even if these last should be mostly agreeable to her palate; for we find by experience that they are apt to increase or bring on fevers, and that the most nourishing and salutary diet is that which we have above perjured. Every thing that is difficult of digestion, or quickens the circulating fluids, must of necessity promote a fever, by which the necessary discharges are obstructed, and the patient's life endangered.

As to the article of sleeping and watching, the patient must be kept as free from noise as possible, by covering the floors and stairs with carpets and clothes, oiling the hinges of the doors, silencing the bells, tying up the knockers, and in noisy streets flowing the pavement with flour; if notwithstanding these precautions, she is disturbed, her ears must be fluffed with cotton, and opiates administered to procure sleep; because watching makes her restless, prevents perspiration, and promotes a fever.

Motion and rest are another part of the nonnaturals to which we ought to pay particular regard. By toiling about, getting out of bed, or sitting up too long, the perpiration is discouraged and interrupted; and in this last attitude the uterus, not yet fully contracted, hangs down, stretching the ligaments, occasioning pain, cold shiverings, and a fever; for the prevention of these bad symptoms, the patient must be kept quiet in bed till after the fourth or fifth day, and then be gently lifted up in the bed-cloaths, in a lying posture, until the bed can be immediately reconveyed, there to continue, for the most part, till the ninth day, after which period women are not so subject to fevers as immediately after delivery. Some there are who, from the nature of their constitutions, or other accidents, recover more slowly, and such are to be treated with the same caution after as before the ninth day, as the case seems to indicate; others get up, walk about, and recover, in a much shorter time; but these may some time or other pay dearly for their foolhardiness, by encouraging dangerous fevers; so that we ought rather to err on the safe side than run any risk whatsoever.

What next comes under consideration is the circumstance of retention and excretion. We have formerly observed, that, in time of labour, before the head of the child is locked into the pelvis, if the woman has not had an easy passage in her belly that same day, the rectum and colon ought to be emptied by a glycerin...
Floodings.

Part III.

MIDWIFERY.

Floodings. glycer, which will affiit the labour, prevent the disagreeable excretion of the feces before the child's head, and enable the patient to remain two or three days after without the needful of going to stool. However, should this precaution be neglected, and the patient very colitive after delivery, we must beware of throwing up stimulating glycers, or administering strong cathartics, lest they should bring on too many loose floods, which, if they cannot be kept, sometimes produce fatal conquences, by-obstructing the perforation and lochia, and exhausting the woman, so as that the will die all of a sudden; a catastrophe which hath frequently happened from this practice. Wherefore, if it be necessary to empty the intestines, we ought to prescribe nothing but emollient glycers, or some very gentle opium, such as manna, or delt. lactis. But no excretion is of more confluence to the patient's recovery than a free perspiration; which is so absolutely necessary, that unless she has a moisture continually on the surface of her body for some days after the birth, the feldom recovers to advantage her health, therefore, in a great measure depends upon her enjoying undisturbed repose, and a constant breathing sweat, which prevents a fever, by carrying off the tension, and affilts the equal discharge of the lochia; and when these are obstructed, and a fever ensues with pain and redness, nothing relieves the patient so effectually as reft and profuse sweating, procured by opiates and sudorifics at the beginning of the complaints; yet these last must be more cautiously prescribed in excessive hot than in cool weather.

The laft of the nonnaturals to be considered are the passions of the mind, which also require particular attention. The patient's imagination must not be disturbed by the news of any extraordinary accident which may have happened to her family or friends: for such information hath been known to carry away the whole of the mind, which also require particular attention. Some prescribe venefion in the arm, to the amount of five or six ounces, with a view of making revulsion; if the pulse is strong, this may be proper; otherwise, it will do more harm than good. Others order ligatures, for compressing the returning veins at the sags, arms, and neck, to retain as much blood as possible in the extremities and head. Besides these applications, the vagina may be filled with tow or linen-rags, dipped in the abovementioned liquids, in which a little allum or fuchar. fatura hath been dissolved; may some practitioners inject proof-spirits warmed, or, foaking them up in a rag or sponge, introduce and squeeze them into the uterus, in order to constringe the vessels.

If the flooding proceeds from another child, the retention of the placenta, or coagulated blood, these ought immediately to be extracted; and if there is an inversion of the uterus, it must be speedily reduced. Should the hemorrhagy, by these methods, abate a little, but still continue to flow, though not in such a quantity as to bring on sudden death; some red wine and jelly ought to be prescribed for the patient, who should take it frequently, and a little at a time, but above all things chicken or mutton broths, administered in the same manner, for fear of overloading the weakened stomach, and occasioning retching; these repeated in small quantities, will gradually fill the exhausted vessels, and keep up the circulation. If the pulse continues strong, it will be proper to order repeated draughts of barley-water, accidulated with elixir vitriol: but if the circulation be weak and languid, extract of the bark, dissolved in ap. cinnamoni tenus, and given in small draughts, or exhibited in any other form, will be serviceable; at the same time, lulling the patient to rest with opiates. These indeed, when the first violence of the blood is abated, if properly and cautiously used, are generally more effectual than any other medicine.

Chap. II. Of violent Floodings.

All women, when the placenta separates, and after it is delivered, lose more or less red blood, from the quantity of half a pound to that of one pound, or even two; but should it exceed this proportion, and continue to flow without diminution, the patient is in great danger of her life: This hazardous hemorrhagy is known by the violence of the discharge, wetting fielth cloths as fast as they can be applied; from the pulse becoming low and weak, and the countenance turning pale; then the extremities grow cold, the fists into faintings, and, if the discharge is not speedily stopped or diminished, is seized with convulsions, which often terminate in death.

This dangerous efflux is occasioned by every thing that hinders the emptied uterus from contracting, such as great weakness and latitude, in consequence of repeated floodings before delivery; the sudden evacuation of the uterus; sometimes, though seldom, it proceeds from part of the placenta's being left in the womb; it may happen when there is another child, or when it is inverted by pulling too forcibly at the placenta.

In this case, as there is no time to be lost, and internal medicines cannot act so suddenly as to answer the purpose, we must have immediately recourse to external application. If the disorder be owing to weakness, by which the uterus is disabled from contracting itself, so that the mouths of the vessels are left open; or, though contracted a little, yet not enough to restrain the hemorrhagy of the thin blood; or if, in separating the placenta, the accoucheur has fcratched or tore the inner surface or membrane of the womb; in these cases, such things must be used as will affiit the contractile power of the uterus, and hinder the blood from flowing so fast into it and the neighbouring vessels: for this purpose, cloths dipped in any cold astringent fluid, such as oxycrata, or red tart wine, may be applied to the back and belly. Some prescribe venefion in the arm, to the amount of five or six ounces, with a view of making revulsion; if the pulse be strong, this may be proper; otherwise, it will do more harm than good. Others order ligatures, for compressing the returning veins at the sags, arms, and neck, to retain as much blood as possible in the extremities and head. Besides these applications, the vagina may be filled with tow or linen-rags, dipped in the abovementioned liquids, in which a little allum or fuchar. fatura hath been dissolved; may some practitioners inject proof-spirits warmed, or, soaking them up in a rag or sponge, introduce and squeeze them into the uterus, in order to constringe the vessels.

Chap. III. Of the After-Pains.

After-pains commonly happen when the fibrous part of the blood is retained in the uterus or vagina, and formed into large clots, which are detained by the sudden contraction of the uterine and external.
MIDWIFERY.

Part III.

The red colour of the lochia commonly continues till the fifth day, though it is always turning more and more serous from the beginning: but, about the fifth day, it flows of a clear, or sometimes (though seldom) of a greenish tint; for, the mouths of the vessels growing gradually narrower by the contraction of the uterus, at last allow the serous part only to pass; as for the greenish hue, it is supposed to proceed from a dissolusion of the cellular or cribiform membrane or mucus, that surrounded the surface of the placenta and chorion; part of which, being left in the uterus, becomes livid, decays, and, dissolving, mixes with and tinctures the discharge as it passes along.

Though the lochia, as we have already observed, commonly continue till the 18th or 20th day, they are every day diminishing in quantity, and soon cease in those women who suckle their children, or have had an extraordinary discharge at first; but, the colour, quantity, and duration, differ in different women: in some patients, the red colour disappears on the first or second day; and in others, though rarely, it continues more or less to the end of the month; the evacuation in some is very small, in others excursive: in one woman it ceases very soon, in another flows during the whole month: yet all of these patients shall do well.

Some allege, that this discharge from the uterus is the same with that from a wound of a large surface; but it is more reasonable to suppose, that the change of colour and diminution of quantity proceed from the flow contraction of the vessels; because, previous to pus, there must have been lacerations and impollthumes, and, in women who suddenly died after delivery, no wound or excoriation hath appeared upon the inner surface of the womb, which is sometimes found altogether smooth; and at other times rough and unequal, on that part to which the placenta adhered. The space that is occupied before the delivery, from being six inches in diameter, or 18 inches in circumference, will, soon after the birth, be contracted to one third or fourth of these dimensions.

Chap. IV. Of the Lochia.

We have already observed, that the delivery of the child and placenta is followed by an efflux of more or less blood, discharged from the uterus, which, by the immediate evacuation of the large vessels, is allowed to contract itself more freely, without the danger of an inflammation, which would probably happen in the contraction, if the great vessels were not emptied at the same time: but as the fluids in the smaller vessels cannot be so soon evacuated, or returned into the vena cava, it is necessary that, after the great discharge is abated, a flow and gradual evacuation should continue, until the womb shall be contracted to near the same size to which it had before pregnancy; and to this it attains about the 18th or 20th day after delivery, though the period is different in different women.

When the large vessels are emptied immediately after delivery, the discharge frequently ceases for several hours, until the fluids in the smaller vessels are propelled into the larger, and then begins to flow again, of a paler colour.

The uterus, in contractions, presses down these coagula to the os internum; which being again gradually stretched, produces a degree of labour-pains, owing to the irritation of its nerves: in consequence of this uneasiness, the woman squeezes the womb as in real labour; the force being increased, the clots are pushed along, and when they are delivered the grows easy.—The larger the quantity is of the coagulated blood, the feverer are the pains, and the longer they continue.

Women in the first child seldom have after-pains; because, after delivery, the womb is supposed to contract and push off the clots with greater force in the first than in the following labours: after-pains may also proceed from obstructions in the vessels, and irritations at the os internum. In order to prevent or remove these pains, as soon as the placenta is separated and delivered, the hand being introduced into the uterus, may clear it of all the coagula. When the womb is felt through the parietes of the abdomen larger than usual, it may be taken for granted that there is a necessity for its being extracted. If the placenta comes away of itself, and the after-pains are violent, they may be alleviated and carried off by an opiate; for, by sleeping and sweating plentifully, the irritation is diminished, the evacuations are increased, the os uteri is relaxed, and the clots are pushed away of itself, and the after-pains are violent, they may be alleviated and carried off by an opiate; for, by sleeping and sweating plentifully, the irritation is diminished, the evacuations are increased, the os uteri is relaxed, and the clots are pushed away.

The uterus, in contracting, presses to the os internum; may clear it of all the coagula. When the womb is felt through the parietes of the abdomen larger than usual, it may be taken for granted that there is a necessity for its being extracted. If the placenta comes away of itself, and the after-pains are violent, they may be alleviated and carried off by an opiate; for, by sleeping and sweating plentifully, the irritation is diminished, the evacuations are increased, the os uteri is relaxed, and the clots are pushed away.

Chap. V. Of the Milk-fever.

About the fourth day, the breasts generally begin to grow turgid and painful. We have formerly observed, that, during the time of uterine distention, the breasts in most women gradually increase till the delivery, growing softer as they are enlarged by the vessels being more and more filled with fluids; and by this gradual dilatation they are prepared for secreting the milk from the blood after delivery. During the two or three first days after parturition, especially when the woman has undergone a large discharge, the breasts have been sometimes observed to subside and grow flaccid; and about the 10th or 12th day, when the lochia begin to decrease, the breasts swell again to their former size, and stretch more and more, until the milk, being secreted, is either sucked by the child, or frequently of itself runs out at the nipples.
Milk-fever

Most of the complaints incident to women after delivery, proceed either from the obstruction of the lochia in the uterus, or of the milk in the breasts, occasioned by anything that will produce a fever; such as catching cold, long and feverish labour, eating food that is hard of digestion, and drinking fluids that quicken the circulation of the blood in the large veins; by which means the smaller, with all the secretory and secretory ducts, are obstructed.

The discharge of the lochia being so different in women of different constitutions, and besides in some measure depending upon the method of management, and the way of life peculiar to the patient, we are not to judge of her situation from the colour, quantity, and duration of them, but from the other symptoms that attend the discharge; and if the woman seems heated, and in a fair way of recovery, nothing ought to be done with a view to augment or diminish the evacuation. If the discharge be greater than the can bear, it will be attended with all the symptoms of mania; but as the lochia seldom flow so violently as to destroy the patient of a sudden, she may be supported by a proper nourishing diet, allayed with cordial and restorative medicine. Let her, for example, use broths, jellies, and after milk; if the pulse is languid and flaky, she may take repeated doses of the coffeee, with mixtures composed of the cordial waters and volatile spirits: stimulants and opiates, frequently administered, with the cure of Persia. in different forms, and astringent wines, are of great service.

On the other hand, when the discharge is too small, or hath ceased altogether, the symptoms are more dangerous, and require the contrary method of cure: for now the5 is to remove a too great plenitude of the vessels in and about the uterus, occasioning tension, pain, and labour, in the circulating fluids; from whence proceed great heat in the part, reflexions, fever, a full, hard, quick pulse, pains in the head and back, nausea, and difficulty in breathing. These complaints, if not at first prevented, or removed by rest and plentiful sweating, must be treated with venesection and the antiphlogistic method.

When the obstruction is recent, let the patient lie quiet, and encourage a plentiful diaphoresis, by drinking frequently of warm, weak, diluting fluids, such as water-gruel, barley-water, tea, or weak chicken-broth.

Should these methods be used without success, and the patient, far from being relieved by rest, plentiful sweating, or a sufficient discharge of the obstructed lochia, labour under an hot dry skin, anxiety, and a quick, hard, and full pulse, the warm diaphoretics must be laid aside; because, if they fail of having the desired effect, they must necessarily increase the fever and obstruction, and recourse be had to bleeding at the arm or ankle to more or less quantity, according to the degree of fever and obstruction; and this evacuation must be repeated as there is occasion. When the obstruction is not total, it is supposed more proper to bleed at the ankle than at the arm; and at this last, when the discharge is altogether stopped, her ordinary drink ought to be impregnated with niter.

If she is colicky, emollient and gently opening gl"sters may be occasionally injected, and her breasts must be fomented and fuddled, either by the mouth or pipe-glasses. If by these means the fever is abated, and the necessary discharges return, the patient commonly recovers; but if the complaints continue, the antiphlogistic method must still be pursued. If, notwithstanding these efforts, the fever is not diminished or removed by a plentiful discharge of the lochia from the uterus, the milk from the breasts, or by a critical evacuation by sweat, urine, or stool, and the woman is every now and then attacked with cold shiverings and chills or abscesses will probably be formed in the uterus or neighbouring parts, or in the breasts; and sometimes the matter will be translated to other situations, and the feast of it foretold from the parts being affected with violent pains; these abscesses are more or less dangerous, according to the place in which they happen, the largeness of the suppuration, and the good or bad constitution of the patient.

If, when the pain in the epigastric region is violent, and the fever increased to a very high degree, the patient should all of a sudden enjoy a cessation from pain, without any previous discharge or critical eruption, the physician may pronounce that a mortification is begun; especially, if, at the same time, the pulse becomes low, quick, wavering, and intermitting: if the woman's countenance, from being florid, turns dusky and pale, while the hercules, and all the attendants, conceive her much mended; in that case, the will grow delirious, and die in a very short time.

What we have said on this subject regards that fever which proceeds from the obstructed lochia, and in which the breasts may likewise be affected: but the milk-fever is that in which the breasts are originally concerned, and which may happen tho' the lochia continue to flow in sufficient quantity; nevertheless, they mutually promote each other, and both are to be treated in the manner already explained: namely, by opiates, diluents, and diaphoretics, in the beginning; and, the prescriptions failing, the obstructions must be resolved by the antiphlogistic method described above. The milk-fever alone, when the uterus is not concerned, is not so dangerous, and is much more easily relieved. Women of an healthy constitution, who suckle their own children, have good nipples, and whose milk comes freely, are seldom or never subject to this disorder, which is more incident to those who do not give suck, and neglect to prevent the secretion in time; or, when the milk is secreted, take no measures for emptying their breasts. This fever likewise happens to women who try too soon to suckle, and continue their efforts too long at one time; by which means the nipples, and consequently the breasts, are often inflamed, swelled, and obstructed.

In order to prevent a too great turgency in the vessels of the breasts, and the secretion of milk, in those women who do not choose to suckle, it will be proper to make external application of those things which, by their prehure and repercussive force, will hinder the blood from flowing in too great a quantity to this part, which is now more yielding than at any other time; for this purpose, let the breasts be covered with "emp. de minia, diapalma, or emp. simp. spread upon linen, or cloths dipped in camphorated spirits, be frequently applied to these parts and the arm-pits; while the patient's diet and drink is of the lightest kind, and given
MIDWIFERY.

Evacuations.

In this case, the sudorifics above mentioned must be prescribed; and if a plentiful sweat ensue, the patient will be relieved; at the same time the milk must be extracted from her breasts, by fucking with the mouth or glasses; should these methods fail, and the fever increase, the ought to be bleded in the arm; and instead of the external applications hitherto used, emollient liniments and cataplasm must be substituted, in order to soften and relax. In order to foften and relax.

If the patient has tolerably recovered, the milk having been at first sucked or discharged from the nipples, and afterwards diffused, no evacuations are necessary before the third or fourth week; and sometimes not till after the first flowing of the menses, which commonly happens about the fifth week; if they do not appear within that time, gentle evacuations must be prescribed, to carry off the plethora, and bring down the catamenia.

EXPLANATION OF THE PLATES.

Plate CCCXVI. fig. 1. represents a well formed pelvis.

AAAA, The os ilium, properly so called. a a, The iliac fossae. b b b, The angle which divides transversely and obliquely, from behind forward, the internal face of the os ilium into two parts, making part of the brim of the pelvis. c c c c, The cribræ of the os ilium. e e, Their anterior superior spines. f f, The angle formed by the internal lip of the cribræ of the os ilium, to which is attached a ligament inserted at the other end in the tranverse apophysis of the last lumbar vertebra. g g, The inferior angle of the os ilium, which makes part of the acetabulum.

BB, The os ischiæ. h h, Its tuberolities. i i, Its branches. k k, Its posterior part, making part of the acetabulum.

CC, The body of the os pubis. l l, Its angle. m m, Its posterior extremity, making part of the acetabulum. n n, Its descending branch, uniting with that of the ischiæ.

DDD, The os sacrum. 1, 2, 3, 4, The anterior holes. o o 0, Its base. p p, The sides. q q, The point. E, The coccyx. F, The last lumbar vertebra. r r, The tranverse apophysis of that vertebra. s s, The ligament proceeding from the tranverse apophysis of the last vertebra to the angle of the internal lip of the cribræ of the os ilium, marked f f. t t, Another ligament which descends from the same apophysis to the superior edge of the sacro-ilacæ symphysis.

Fig. 2. represents the superior strait of a well formed pelvis.

aa, The iliac fossae. b b, The sacro-vertebral angle, or projection of the sacrum. c c, The last lumbar vertebra. d d, The lateral parts of the base of the sacrum. e e, The sacro-ilacæ symphysis. f f, The parts over the acetabula. g g, The symphysis of the pubes.

The lines denote the different diameters of the superior strait. AB, The little diameter. CD, The transverse or great diameter. EF, GH, The oblique diameter, extending from the left acetabulum to the right sacro-ilacæ junction.

Fig. 3. shows the inferior strait of a well formed pelvis.

a a, The external faces of the ossa ilia. b b, Their anterior superior spines. c c, Their anterior inferior spines. d d, The acetabula. e e, The foramina ovalea, with the obturator ligaments. f f, The ischiæ tuberolities. g g, The ossa pubis. h h, The branches of the os pubis and ischium united. i i, The sacrum. k k, The coccyx. l l, The sacro-ischial ligaments. m m, The symphysis of the pubes. n n, Its arch.
Part III.

The diameters of the inferior fruit are marked by the lines. A A, The antero-posterior, or great diameter. BB, The transverse or little diameter. CC, DD, The oblique diameters.

Fig. 4. shows a deformed pelvis.

A, The os pubis. B b, The os ilium. c c, The obturator internus. d d, The left lumbar vertebra. e, The projection of the facrum. f f, The sacro iliac symphysis. g, The symphysis of the pubes. h h, The foramen ovale. i i, The branches of the os pubis and ischia which form the anterior arch of the pelvis. k k, The acetabulum.

AA, The antero-posterior diameter; the natural length being 14 or 15 lines. BB, The transverse diameter; the natural length four inches and ten lines. CC, The distance from the projection of the facrum to that point of the margin which answers to the left acetabulum, being 13 lines. DD, The distance from the same point of the facrum to that of the margin which answers to the right acetabulum, 20 lines.

Fig. 5. shows a vertical section of the pelvis.

Fig. 10. gives a front view of the uterus in situ, surrounded in the vagina; the anterior parts of the os ilium, with the os pubis, pudenda, perineum, and anus, being removed, in order to show the internal parts.

A, The left vertebra of the loins. BB, The os ilium. CC, The acetabulum. DD, The inferior and posterior part of the os ilium. E, The part covering the extremity of the coccyx. F, The inferior part of the rectum. GG, The vagina cut open longitudinally, and stretched on each side of the collum uteri, to show in what manner the uterus is suspeted in the frame.

HH, part of the vesica urinaria stretched on each side of the vagina, and inferior part of the fundus uteri.

I, The collum uteri. K, The fundus uteri. LL, the tubi Fallopian and fimbrize. MM, the ovaria. NN, the ligamenta lata and rotunda. OO, The superior part of the rectum.

Fig. 11. gives a front view of the uterus in the beginning of the first month of pregnancy; the anterior part being removed that the embryo might appear though the amnion, the chorion being detached off.

Fig. 12. In the same view and section of the parts as in fig. 10. shows the uterus as it appears in the second or third month of pregnancy.

HH, The posterior and inferior part of the urinary bladder extended on each side; the anterior and superior part being removed.

I I, The mouth and neck of the womb, as raised up when examining the same by the touch, with one of the fingers of the vagina.

KK, The uterus stretched in the second or third month, containing the embryo, with the placenta adhering to the fundus.

Fig. 13. In the same view and section of the parts with the former figures, represents the uterus in the eighth or ninth month of pregnancy.

A, The uterus as stretched to near its full extent, with the waters, and containing the fetus entangled in the funis, the head presenting at the upper part of the pelvis.

M, The funis umbilicalis.

Fig. 14. gives a front view of twins in utero in the beginning of labour.

H, The os internum stretched open about a fingerbreadth, with the membranes and waters, in time of labour pains.

I I, The inferior part of the uterus, stretched with the waters which are below the head of the child that presents.

KK, The two placetas adhering to the posterior part of the uterus, the two fetuses lying before them, one with its head in a proper position at the inferior part of the uterus, and the other situated preternaturally with the head to the fundus; the bodies of each are here entangled in their proper funis, which frequently happens in the natural as well as preternatural positions.

LL, The membranes belonging to each placenta.

Fig. 15. shows, in a lateral view and longitudinal division of the parts, the gravid uterus when labour is somewhat advanced.

A, The lowest vertebra of the back, the distance from which to the left mentioned vertebra is here shown by dotted lines. CC, The uterine thickened and figure of the uterus when extended by the waters, at the latter end of pregnancy. D, The same constricted and grown thicker after the waters are evacuated. EE, The figure of the uterus when pendulous. FF, The figure of the uterus when stretched higher than usual which generally occasions vomiting and difficulty of breathing. G, The os pubis of the left side. HH, The os internum. I I, The vagina. K, The left nympha. L, The labum pudendi of the same side. M M, The remaining portion of the bladder. N N, The anus. OP, The left hip and thigh.

Fig. 16. shows the forehead of the fetus turned backwards to the os facrum, and the occiput below the pubes, by which means the narrow part of the head is to the narrow part of the pelvis, that is, between the inferior parts of the os acetabulum.
A, the uterus contracted closely to the fetus after
the waters are evacuated. BCD, the vertebrae of the
loins, os sacrum and coccyx. E, the anus. F, the
left hip. G, the perineum. H, the os externum
beginning to dilate. I, the os pubis of the left side.
K, the remaining portion of the bladder. L, the po­
terior part of the os uteri.

Fig. 17, is principally intended to shw in what man­
er the perineum and external parts are stretched by
the head of the fetus, in a first pregnancy, towards
the end of the labour.

A, the abdomen. B, the labia pudendi. C, the
clitoris and its preputium. D, the hairy scalp of the
fetus, swelled at the vertex, in a laborious cafe, and
protruded to the os externum. E, F, the perineum
and anus pushed out by the head of the fetus in
form of a large tumor. GG, the parts that cover the
tuberocities of the offa ilium. H, the part that cov­
ers the os coccygis.

Fig. 18, shows in what manner the head of the fetus
is helped along with the forceps, as artificial hands,
when it is necessary for the safety of either mother or
child.

AABC, the vertebrae of the loins, os sacrum, and
coccyx. D, the os pubis of the left side. E, the re­
maining part of the bladder. FF, the intestinum rec­
tum. GG, the uterius. H, the mons veneris. I, the
clitoris, with the left nymph. X, the corpus ca­
vernum of the clitoris. V, the meatus urinarius. K,
the left labium pudendi. L, the anus. N, the per­
neum. QQ, the left hip and thigh. R, the skin and
muscular parts of the loins.

Fig. 19, shows the head of the fetus, by strong la­
bour-pains squeezed into a longish form, with a tu­
mor on the vertex, from a long compression of the
head in the pelvis.

K, the tumor on the vertex. L, the forceps. M,
the vesica urinaria much distended with a large quan­
tity of urine from the long premure of the head ag­
ainst the urethra. N, the under part of the uterus.
OO, the os uteri.

Fig. 20, shows in the lateral view, the face of the
child prefiguring and forced down into the lower part
of the pelvis, the chin being below the pubes, and
the vertex in the concavity of the os sacrum: the wa­
ter being likewise all discharged, the uterus appears
flosely joined to the body of the child.

Fig. 21, shows, in a lateral view, the head of the
child in the same position as in the former figure.

AB, the vertebrae of the loins, os sacrum, and coc­
cyx. C, the os pubis of the left side. D, the infe­
rior part of the os coccygis. E, the perineum. F, the
left labium pudendi. GGG, the uterius.

Fig. 22, gives a lateral internal view of a distorted
pelvis, divided longitudinally, with the head of a fetus
of the seventh month passing the same.

ABC, the os sacrum and coccyx. D, the os pubis
of the left side. E, the tuberosity of the os ilium.

Fig. 23, gives a side view of a distorted pelvis, di­
vided longitudinally, with the head of a full grown
fetus squeezed into the brim, the parietal bones de­
cussating each other, and compressed into a conical
form.

ABC, the os sacrum and coccyx. D, the os pubis
of the left side. E, the tuberosity of the os ilium.
F, the proceps acutus. G, the foramen magnum.

Fig. 24, shows, in a front view of the pelvis, the
breed of the fetus prefiguring, and dilating the os in­
ternum, the membranes being too soon broke.

Fig. 25, is the reverse of the former, the fore-parts
of the child being to the fore part of the uterus.

Fig. 26, represents, in a front view of the pelvis, the
fetus compressed, by the contraction of the uterus, in­
to a round form, the fore-parts of the former being to­
wards the inferior parts of the latter, and one foot
and hand fallen down into the vagina. In this figure, the
anterior part of the pelvis is removed, by a longitudi­
nal section through the middle of the foramen mag­
num.

AA, the superior parts of the offa ilium. BB, the
uterus. C, the mouth of the womb stretched and
appearing in OOOO, the vagina. D, the inferior and
posterior part of the os externum. EEEE, the re­
mainning part of the offa pubis and ilium. FFFF,
the membrana adiopsea.

Fig. 26, represents, in the same view with fig. 27,
the fetus in the contrary position; the breech and
fore-parts being towards the fundus uteris, the left
arm in the vagina, and the fore-arm without the os ex­
ternum, the shouldor being likewise forced into the os
uteri.

Plate CCCVI, fig. 8, shows a deformed pelvis of
which the small diameter of the superior strait is only
2 inches seven lines. The figure is triple: F. I.
shows its natural state; F. II. the offa pubis sepa­
rated 18 lines; and F. III. with a separation of two.
inches and an half, in order to shw the quantity of
amplification which the section of the symphysis in
such a pelvis can produce.

F. I. aa, the two left lumbar vertebrae; bbb, the
transversf apophyses of these vertebrae; cc, ligaments
proceeding from the transversf apophyses of the left of
these vertebra to the middle and posterior part of the
internal lip of the cript of the os ilium; d d, other
ligaments proceeding from the os ilium to the su­perior
part of the facro-ilacce ligaments; e e, the pro­
jection of the facrum; f f, the lateral part of the bafc
of the facrum; g g, part of the os ilium; the reft of
those bones being concealed by F. II. and III.

h h, the bodies of the offa pubis; i i, their angles.
k k, the os ilium; l l, the branches of thefe bones
and of the pubes.

m, the arch of the offa pubis at the fore part of
the pelvis.

n n, the foramina ovalia concealed by the offa pubis
of F. II. and III.

A, The symphysis of the offa pubis seen perspec­
tively. BB, the facro-ilacce ligaments.
E. II. oo, Part of the os ilium.
PP, The bodies of the pubis; g g, their angles;
rr, their articular facets seen perspectively; f f, very
small portions of the branches of the offa pubis.

s s, The os ilium appearing behind the foramina
ovalia of n n III; t t, articular facets of the os ilium,
corresponding to similar ones observed at the sides of
the facrum.

F. III. uu, The offa ilium, vv, their criptae; xx, the angle
formed by the internal lip of the cript in the middle
and posterior part of its length; y y, the anterior and
Part III.

M I D W I F E R Y.

Explanation of the Plates.

 superior spines of the os ilium; 2, the anterior spines of those bones; &c. peculiar facets of the os ilium, making part of the sacro-iliac lymphatics.

1., The os pubis; 2, their angles; 3, their articular facets seen perpendicularly.

4., The os sacrum; 5, the united branches of the os ischi and pubis; 6, the acetabulum.

The lines indicate the natural size of the pelvis in the different directions in which they are traced; and their dotted extremities, the amplification which the superior frakt acquires in those same directions at a separation of eighteen lines, and of thirty lines between the os pubis. Line 1. Antero-potalerior diameter of the superior frakt, or the distance from the pubis to the projection of the sacrum; two inches seven lines. Line II. Transverse diameter of the superior frakt, in its most extensive part; four inches seven lines. Line III. Oblique diameter of the superior frakt, which extends from that point of the frakt which corresponds with the anterior edge of the left acetabulum, to the right sacro-iliac junction; three inches eleven lines. Line IV. The other oblique diameter, which extends from that point of the frakt which answers to the anterior edge of the right acetabulum, to the left sacro-iliac lymphatics; four inches.

By giving the smallest attention to the relation of these dimensions to those which the head of a fetus in the usual five presents in their direction in time of labour, we shall see that they are very favourable; except the first, which, as it is, strictly speaking, eleven lines too short, being only thirty-one lines in extent; whereas the transverse diameter of the head is commonly forty-two. It is only in this latter direction, and to the extent of eleven lines, that it would be necessary to augment the capacity of such a pelvis, to favour delivery. As the greater part of those who have performed this new operation, have only obtained a separation of eighteen lines thereabouts between the os pubis, it is fixed at that degree in the second figure.

By such a separation in a pelvis perfectly similar to that here represented, the angle of each os pubis recedes from the centre of the projection of the scaprum three lines or very near beyond their natural distance five lines. (See the lines V. and VI.) The diameter posterior pubis receives but the same increase, if we confider it as lengthened to the middle of the dotted line IX. IX, which marks the depth at which it may be presumed the lateral convexity of the head engages. Both the oblique diameters augment five lines before; and about two lines and an half backward; and the transverse diameter seven lines or very nearly.

It is evident that a separation of eighteen lines on such a pelvis cannot remove the disproportion which exists between the small diameter of the superior frakt and the small diameter of the child’s head; since the former augments only three lines, confidered in the most favourable point of view. The amplification which the other diameters receive from a similar separation, is absolutely uceilus; those diameters being naturally large enough.

Supposing that the os pubis recedes in an equal degree, in separating two inches and an half, the angle of each of them will remove from the centre of the projection of the scaprum, only five lines farther than the distance they were from it before; which also gives an increase of but six lines between these two points. (See the lines VII. and VIII.) The small diameter of the entrance of the pelvis does not gain much more, confidering it to the middle of the dotted line XX, which marks the bounds beyond which the convexity of the head could not engage between the os pubis, even if the pelvis were directed of all its parts: which does not happen in the section of the pubis, for the neck of the bladder, the canal of the urethra, their cellular tissue, the anterior form-circum of the orifice of the uterus, and the anterior part of the vagina present at the opening and before the child’s head. At this degree of separation, the transverse diameter augments about thirteen lines, and each oblique diameter nearly fourteen lines: a superficial increase, since those diameters, in the pelvis represented, have all the length requisite for delivery.

The posterior extremities of the oblique diameters, which are dotted and marked with the figures XI and XII, shew the separation which is to be feared in the sacro-iliac lymphatics, by separating the os pubis two inches and an half. It was at that degree that Mr. Baudeloque observed they were open in most of his experiments; since he could easily put the end of his finger, and even of his thumb, into them.

Admitting that the convexity of one of the sides of the child’s head may let itself between the os pubis separated to two inches and an half, as far as the dotted line XX, traced on that very convexity, it is evident that that separation cannot procure the relation of dimensions necessary for an easy delivery, when the pelvis has originally but two inches fix or seven lines in the small diameter; whence it follows that the section of the pubis, supposing that we could obtain a separation of two inches and an half in the living woman without exposing her to disagreeable accidents, would not answer in the case of a pelvis similar to that represented in this plate.

Fig. 9. shows a pelvis with only 14 or 15 lines in the small diameter of its entrance, and four inches ten lines in the largell. The figure is triple like the former. F. I. represents it in its natural figures; F. II. with the os pubis separated two inches and a half; and F. III. with a separation of three inches. M. le Roy says, that he constantly obtained these two degrees of separation without any inconvenience.

F. I.aaa. The three last lumbar vertebrae. b. The projection formed by the last of those vertebrae, with the base of the sacrum. ccc. The sides of the base of the sacrum. ddd. The transverse apophyses of the right side of the abovementioned vertebrae. e. A ligament extending from the flirist of those apophyses to the angle made by the internal lip of the crista of the os ilium towards its middle and posterior part. fff. Another ligament which depends from that apophysis to the superior part of the sacro-iliac lymphatics. ggg. Part of the os ilium. b, b, The bodies of the os pubis; i, i, their angles. k, k, The os ischii. ll, The branches of the os ischii and pubis. m, m, The arc of the os pubis. n, n, The foramina ovales. a, The lymphatics of the os pubis. BB. The sacro-iliac lymphatics.

5 K 2
M I D W I F E R Y.

Part II.

Explanation of the Plates.

F. II. *000*, Part of the osa ilia. \(\varphi \) The articular facettes of the osa ilia, marking the part of the facro-iliac symphyse. \(\rho \), The bodies of the osa pubis.

\(\varphi \) The angles of the osa pubis separated two inches and an half. \(\rho \), The cartilaginous facettes of the osa ilia seen perspectively. \(\varphi \), The branches of the osa ilia and pubes.

F. III. \(u u \), The osa ilia; \(v v \), their cripte: \(x x \), their anterior superior spines. \(y y \), The anterior inferior spines of the osa ilia of F. II. \(x x \), Their anterior articular facettes, making part of the facro-iliac symphyse.

\(\varphi \), The bodies of the osa pubis: \(1 1 \), there angles. \(2 2 \), The articular facettes of each os pubis seen perspectively. \(3 3 \), The united branches of the osa pubis, and ilia seen perspectively.

\(A A \), The osa ilia. \(5 5 \), The foramina ovalia under the projection of the osa ilia.

The lines indicate the length of the different diameters of the superor strait, in the direction in which they are traced; and their dotted extremities, the amplification to be expected from a separation of two inches and an half, and of three inches.

Line I, The antero-posterior, or small diameter of the superior strait; one inch two or three lines.

Line II, The transverse diameter of the same strait; this line, which is four inches ten lines in extent, passes under the projection of the facrum. Line III, The distance from the middle and left lateral part of the projection of the facrum, to that point of the margin of the pelvis which answers to the anterior edge of the acetabulum on the same side; one inch.

Line IV, The distance from the middle and right lateral part of the projection of the facrum, to that point of the margin which answers to the anterior edge of the acetabulum on the same side; one inch eight lines.

The relation of these dimensions to those of a child's head of the usual size, is such, that the small diameter of the latter, supposing always to be three inches and an half, surpasses the small diameter of the entrance of such a pelvis by 27 or 28 lines. This pelvis would be large enough in the direction of the line II, II.

By separating the osa pubis two inches and an half, we augment the breadth of the entrance of the pelvis about three quarters of an inch in the direction of the line II, II; as much, or nearly in the direction of the line III, and only six lines in that of the line IV. The angle of each os pubis marked by the letter \(g g \), recedes from the centre of the projection of the facrum, nine or ten lines beyond what it was distant from it before the separation of the bones: the entrance of the pelvis increasethas much in the direction of the line V, and only half an inch in the course of the line VI. The small diameter, or the line I, continued to the middle of the dotted line IX, IX, which shows the depth to which the child's head may be let in between the osa pubis separated two inches and an half, if the pelvis were divested of all its soft parts: this diameter will then be augmented only seven lines; whence we see that it would still be an inch and an half, at least, shorter than the small diameter of the head of a child of the usual size.

The fection of the pubes would therefore be fruitless on such a pelvis, if it could only procure a separation of two inches and an half; which seems a very exorbitant one. With more reason would it be unsuccessful, if we could separate the osa pubis only 18 lines, as has most frequently happened; since it could not procure the proportion necessary for delivery, even if we could turn that separation entirely to the advantage of the small diameter of the superior strait.

Let us see if a separation of three inches could procure that proportion.

By separating the osa pubis three inches, we augment the breadth of the pelvis 12 or 13 lines in the direction of the line II, II; 10 lines at most in the course of the line III; only seven in the line IV; about an inch in the line V; and only seven lines in the direction of the line VI: the angle of each os pubis recedes an inch farther from the projection of the facrum, than the distance it was at before the separation of the bones; which augments the opening of the pelvis to the amount of an inch or thereabouts in the direction of the line VII, and only half an inch in the line VIII. The antero-posterior diameter of the entrance of this pelvis, considered as far as the middle of the dotted line X X, which shows the greatest depth to which the child's head could be let in between the osa pubis separated three inches, if the pelvis were divested of the soft parts, increasethas but 10 lines or thereabouts; which cannot remove the disproportion that existed before the section of the pubes, between that diameter and the thickness of the child's head which must pass in that direction.

From whence we ought to conclude that this separation also would have no success, if the pelvis were as much deformed as that designed.

The dotted lines XI and XII, show the separation to be feared in the facro-iliac symphyse, by separating the osa pubis three inches.

The two other dotted lines, marked by the characters IX, IX, and X, X, show how far the child's head may be let in between the osa pubis separated to the two degrees stated: they were traced on the convexity of a real head applied behind the osa pubis in a pelvis stripped of its soft parts.

Plate CCCX. fig. 29. shows a well formed pelvis, the anterior part of which is taken away, to show one of the transverse positions of the face of the child, and explain more fully the mechanism of that kind of labour.

\(a a \), Part of the iliac follic. \(b b \), Part of the cripte of the osa ilia. \(c c \), Their anterior superior spines.

\(d d \), The ischiatic tuberities. \(e e \), The acetabula. \(f f \), The thickness of the osa ilia fawn through vertically before their tuberities.

\(g g \), The bodies of the osa pubis fawn through before the acetabula.

\(b b \), A circle representing a vertical section of the uterus, the anterior part of which is taken away in order to show the child. \(i i \), The child's chin. \(k k \), The posterior extremity of the head. \(l l \), The lever applied along the crown of the head, the extremity of it extending beyond the posterior fontanel.
Part III.

Midwifery.

Plate CCLX.

m. The left lateral, and inferior part of the pelvis.

n. A portion of the right lateral part of the uterine cavity.

p. The left hand.

q. The fore and middle fingers, placed at the sides of the nose, and prevailing against the upper jaw.

r. The right hand grasping the extremity of the lever.

Fig. 30. shows the same vertical section of a pelvis as the last; with the child’s body entirely disengaged from it. The head grasped by the forceps is retained at the superior flrit, with the occiput over the pubes, and the lower part of the fore-head against the projection of the facrum.

a, a. The left lumbar vertebrae. d, d, The canal of the vertebras, and of the facrum. g, g, g. Spiny tuberces of the vertebras abovementioned. b, b, b, b, The false vertebras of the facrum. c, c, c, The coccyx. e, e, e, The flattened portion of the anterior face of the facrum.

f. The left sacro-iliachic ligament. h. The cartilaginous and ligamentous facet of the left os pubis making part of the symphys.

i. The mons veneris. k, k, k, k, A circle representing the section of the uterus, the right side of which is taken away to show the head and the infrument. l, l, A portion of the placenta attached to the superior and anterior part of the uterus.

m, m, m, The female branch of the forceps applied on the left side of the head, which answers to the right side of the pelvis. n, n. The male branch of the forceps, applied at the left side of the pelvis, and the right side of the head. s. Part of the left small sacro-iliachic ligament. P. Part of the left os ilium, the rest being concealed by the head.

q. The point to which we ought to bring the lower extremity of the forceps, in bringing the head down into the cavity of the pelvis.

r. The point of elevation at which the extremity of the forceps must be held, when the head occupies the bottom of the pelvis, after having replaced the face underneath.

Fig. 31. shows also the vertical section of a pelvis; but it is supposed to have only three inches in the small diameter of its entrance. The base of the cranium is engaged in it in a transverse direction, the occiput being turned towards the left side, and the face to the right side; so that the greatest thickness of the head is full above the front.

a, a. The two left lumbar vertebrae. b, b, b, b. The five false vertebrae of the facrum. c, c, c, c. The three pieces of the coccyx. d, d, d, The canal of the aforesaid vertebrae. e, e, e, e, Their spinoas apophysse. f, f, f.

Part of the anterior face of the facrum.

g. The left sacro-iliachic ligament. h. The cartilaginous and ligamentous facet of the left os pubis, making part of the symphys. i. The mons veneris.

k, k, k, k, A circle indicating the section of the uterus in the same direction as that of the pelvis. l, l, A portion of the placenta attached to the fundus of the uterus.

m, m, m, The female branch of the forceps, applied on the left side of the child’s head, and under the symphys of the pubes. n, n, n. The female branch of the forceps, applied on the right side of the head, and before the facrum. o. A dotted line, in the direction of which the instrument must be pulled, to bring down the head into the pelvis.

p. The point of elevation at which the forceps must be held when the head is brought down to the bottom of the pelvis, after having turned the face into the curve of the os facrum.

Plate CCCVI. fig. 6, shows M. Bandeloque’s calipers for measuring the antero-posterior diameter of the superior flrit.

a, a. The branches of the calipers. B. The hinge which unites the two branches. c, c. Lenticular buttons which terminate the branches. d. A graduated scale nine inches long, intended to demonstrate the thickness of the body comprised between the two branches. This scale is contained in a deep groove cut lengthwise in the branch of the calipers, from the letter c, to the hinge B; and passes through a mortice made in the other branch under the letter f. e. The place where the scale is united by a kind of a hinge. f. A little screw with a flat head, destined to fix the scale, while we calculate the thickness of the body comprised between the two branches.

Fig. 7. shows the pelvimeter of M. Coutonoli developed in the pelvis.

A. A. The first branch; whose square, B, is applied to the projection of the facrum. C, c, A kind of hooks intended to keep the first branch in its place, while we introduce and develop the second. This has a dove-tailed groove, in which the body of the second branch is lodged and moved. d, d, the second branch of the infrument; whose square e, is placed against the symphys of the pubes. F, a scale four inches long, graduated in the branch d, d; and intended to show the degree of opening from the pubes to the facrum.

Plate CCCVIII. fig. 21. represents in a lateral view of the pelvis, the method of extrading, by means of a curved crotchet, the head of the fetus, when left in the uterus, after the body is delivered and separated from it; either by being too large, or the pelvis too narrow.

A, B, C, the os facrum and coccyx. D, the os pubis of the left side.

E, E, the uterus.

F, the locking part of the crotchet.

g, h, h, The point of the crotchet on the inside of the cranium.

Fig. 32. represents the forceps and blunt hook. A, the straight forceps, in the exact proportion as to the width between the blades, and length from the points to the locking part; the first being two and the second six inches, which, with three inches and a half (the length of the handles), make in all 11 inches, and a half.

B represents the posterior part of a single blade, in order to show the width and length of the open part of the same, and the form and dimensions of the whole.

C, the blunt hook, which is used for three purposes: 1. To affist the extraction of the head, after the cranium is opened with the scissors, by introducing the small end along the ear on the outside of the head to above the under-jaw, where the point is to be fixed; the other extremity of the hook being held with one hand, whilst two fingers of the other are to be introduced into the fore-said opening, by which hold the head is to be gradually extracted. 2. The small end
MIDWIFERY.

This is useful in abortion, in any of the first four or five months, to hook down the foetuses, when lying loose in the uterus, when they cannot be extracted by the fingers or labour-pains, and when the patient is much weakened by blood-drawings. 3. The large hook at the other end is useful to affix the extraction of the body, when the breech presents; but should be used with great caution, to avoid the dislocation or fracture of the thigh.

Fig. 32. A, represents the whole-bone fillet, which may be sometimes useful in laborious cases, when the operator is not provided with the forceps, in sudden and unexpected exigencies.

BB, two views of a pelairy for the prolapsus uteri. After the uterus is reduced, the large end of the pelairy is to be introduced into the vagina, and the os externum retained in the concave part, where there are three holes to prevent the stagnation of any moisture. The small end without the os externum has two tapes drawn through the two holes, which are tied to four other tapes, that hang down from a belt that surrounds the woman's body; and by this means keep up the pelairy. This pelairy may be taken out by the patient when she goes to bed, and introduced again in the morning; but as this sometimes rubs the os externum, so as to make its use uneasy, the round kind, marked C, are of more general use. They are made of wood, ivory, or cork, (the last covered with cloth and dipped in wax): the pelairy is to be lubricated with pomatum, the edge of the pelairy has two tapes, that hang down from a belt that surrounds the woman's body, to prevent lacera-

Fig. 33. A lever recommended by M. Baudeloque. Fig. 33, one of the blades of a lever recommended by M. Herbouin, fixed in the handle. Fig. 39, an anterior view of the same blade with the strap. Fig. 40, the flout of the syringe, when the instrument is used for injecting oil, or any other liquid into the uterus. The following is a general description of Koonhuyzen's lever, with the method of using it, as given by M. Previle, and added to his edition of Smelie's Midwifery. "The lever is an ob-long piece of iron, 11 inches long, one breadth, and about an eighth of an inch in thickness; it is straight in its middle for four inches, and becomes gradually curved at each extremity: the curves are of different lengths and depths; the edges are rounded; and the extremities for the space of an inch, and also the middle of the instrument, are directed to be covered with plaster, and then the whole of it to be sheathed with thin dogskin; taking care to avoid inequalities or folds, which might injure the woman or child. In using it, the accoucheur must introduce the fore-finger of his left hand into the vagina near the anus, to serve as a guide for the instrument, which must now be gently inculcated between his finger and the head of the child, taking care that no part of the uterus be included between the lever and the head. The instrument must then be moved to the right and to the left, to find where there is the greatest space, and in some degree to loosen and disengage the head; and then gradually carried round, until it comes under the pubes, lifting the end of it from time to time, to obtain a free passage. The handle of it must now be raised, and the instrument gently shifted about, until the occiput is exactly lodged in its curve. The more completely and exactly the curve touches and embraces the head, the more speedily and easily the delivery will be effectuated. The instrument being thus firmly and equally applied to the head, the accoucheur must slowly and uniformly raise the handle with his right hand, while with his left he presses the middle of it downward; by this means the coccyx is forced backward, and the lower part of the pelvis is enlarged. By continuing to raise the handle of the lever and to press down its middle or centre, the head of the child is made to descend into the dilated cavity of the vagina: and this is commonly effected in a few minutes; when the left hand must be applied firmly against the anus and perineum, forcing those parts upwards and forwards towards the orifice of the vagina, to prevent laceration, for which purpose also the whole operation must be performed slowly and cautiously, imitating as much as possible a natural labour."

"We found (add the authors of the paper,) a cord fixed round one of the ends of the instrument, about the middle of the curve. This cord, we imagine, served no other purpose than to point out the end of the instrument commonly made use of, or to measure the length of the part introduced."

END OF THE ELEVENTH VOLUME.